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Bandwidth Efficient and Rate-Matched
Low-Density Parity-Check Coded Modulation

Georg Böcherer, Member, IEEE, Fabian Steiner, Student Member, IEEE, and Patrick Schulte

Abstract—A new coded modulation scheme is proposed. At
the transmitter, the concatenation of a distribution matcher
and a systematic binary encoder performs probabilistic signal
shaping and channel coding. At the receiver, the output of
a bitwise demapper is fed to a binary decoder. No iterative
demapping is performed. Rate adaption is achieved by adjusting
the input distribution and the transmission power. The scheme
is applied to bipolar amplitude-shift keying (ASK) constellations
with equidistant signal points and it is directly applicable to
two-dimensional quadrature amplitude modulation (QAM). The
scheme is implemented by using the DVB-S2 low-density parity-
check (LDPC) codes. At a frame error rate of 10−3, the new
scheme operates within less than 1.1 dB of the AWGN capacity
1
2
log2(1 + SNR) at any spectral efficiency between 1 and 5

bits/s/Hz by using only 5 modes, i.e., 4-ASK with code rate 2/3,
8-ASK with 3/4, 16-ASK and 32-ASK with 5/6 and 64-ASK with
9/10.

Index Terms—Rate adaptation, Probabilistic shaping, Ban-
dlimited communication, Modulation, Amplitude-shift keying,
Quadrature amplitude modulation, Forward error correction

I. INTRODUCTION

Reliable communication over the additive white Gaussian
noise (AWGN) channel is possible if the transmission rate per
real dimension does not exceed the capacity-power function

C(P) =
1

2
log2(1 + P/1) (1)

where P is the transmission power and P/1 is the signal-
to-noise ratio (SNR). Throughout this work, we assume unit
variance noise and we change the SNR by varying the
transmission power P. An important consequence of (1) is
that to achieve power and bandwidth efficient transmission
over a substantial range of SNRs, a communication system
must adapt its transmission rate to the SNR. Contemporary
standards such as DVB-S2 [1] support input constellations of
different sizes and forward error correction (FEC) at various
code rates. The combination of a constellation size with a code
rate forms a transmission mode. By choosing the appropriate
mode, the system adapts to the SNR. In Fig. 1 we display
the operating points where a frame error rate (FER) less
or equal to 10−3 can be achieved. The DVB-S2 low-density
parity-check (LDPC) codes are used with bipolar amplitude-
shift keying (ASK) constellations, i.e., the signal points are
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equiprob. signaling, FER = 10−3

rate-matched signaling, FER = 10−3

[2, Fig. 4], BER = 10−3

[3, Fig. 8], BER = 10−3

Fig. 1. Comparison of rate-matching by non-equiprobable signaling to
conventional equiprobable signaling. Both schemes use LDPC codes from
the DVB-S2 standard. Gains of up to 4 dB (at a spectral efficiency of
4.6 bits/s/Hz) are obtained. The rate-matched scheme uses two modes,
namely 64-ASK with a rate 9/10 code and 32-ASK with a rate 5/6 code.
Equiprobable signaling uses 10 modes, which combine {16, 32, 64}-ASK
with {3/4, 4/5, 5/6, 8/9, 9/10} rate codes. The two schemes are evaluated
at a frame error rate (FER) of 10−3. For comparison, the operating points
of the turbo coded modulation schemes with probabilistic shaping suggested
in [2] (red ×) and [3] (red +) are displayed. The operating points of [2], [3]
have a bit error rate (BER) of 10−3. Since BER ≤ FER, our rate-matched
scheme is more energy efficient than the schemes suggested in [2], [3], see
Sec. II-A for a further discussion.

equidistant and symmetric around the origin1. Observe that the
SNR gap between the operating points and the capacity-power
function varies with the SNR. At the upper corner points, the
gap is between 2 and 2.5 dB. Two factors contribute to this
gap: first, the LDPC codes have finite length (coding gap) and
second, the input distribution is uniform (shaping gap). At the
lower corner points, the gap can be as large as 4.5 dB because
the system resorts to one of the supported transmission modes.

To provide modes with a finer granularity, we can increase
the number of code rates and constellation sizes. This approach
is taken in the extension DVB-S2X [5] of DVB-S2. The system
complexity increases with the number of supported code rates,
which suggests the use of rate-compatible codes [6]. In [7]–

1In the DVB-S2 standard, complex amplitude phase shift keying (APSK)
constellations are used because of the non-linear satellite channel [4]. In this
work, we consider the real linear AWGN channel, for which bipolar ASK
constellations work well.
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[10], rate-compatible LDPC codes are designed.
In this work, we take a different approach and propose a

new coded modulation scheme that uses probabilistic shaping
to solve the problem of coarse mode granularity and to remove
the shaping gap. With ASK constellations and only one LDPC
code rate per constellation size, our scheme operates within
less than 1.1 dB of capacity over the whole considered range
of SNR, see Fig. 1. For the transmitter, we propose a new
scheme, which we call probabilistic amplitude shaping (PAS).
The PAS scheme concatenates a distribution matcher [11] for
probabilistic shaping with a systematic binary encoder for
FEC. At the receiver, bit-metric decoding [12]–[14] is used. No
iterative demapping is required. Our scheme directly applies
to two-dimensional quadrature amplitude modulation (QAM)
constellations by mapping two real ASK symbols to one
complex QAM symbol. We presented a preliminary version
of PAS in [15].

This work is organized as follows. In Sec. II, we give an
overview of the related literature on coded modulation with
probabilistic shaping. In Sec. III, we review the information
theoretic limits of the AWGN channel and we discuss optimal
signaling for ASK constellations. We introduce PAS in Sec. IV
and we show in Sec. V how PAS can be implemented by
using distribution matching. In Sec. VI, we combine PAS at
the transmitter with bit-metric decoding at the receiver. We
discuss in Sec. VII the code design problem posed by our
scheme and present a bit-mapper optimization heuristic. We
propose a rate adaption scheme in Sec. VIII and we discuss
numerical results in Sec. IX. The work is concluded in Sec. X.

II. RELATED LITERATURE

On the AWGN channel, uniformly distributed inputs can be
up to 1.53 dB less power efficient than Gaussian inputs [16,
Sec. IV.B], see also Sec. III-D of this work. Coded modulation
with probabilistic shaping uses a non-uniform distribution on
equidistant signal points to overcome the shaping gap. For
works with a theoretical focus on the topic, see for example
[17], [18] and references therein. Here, we review some of
the existing works that address the practical implementation
of probabilistic shaping.

A. Gallager’s Scheme

Gallager proposes in [19, p. 208] to use a many-to-one
mapping to turn a channel with non-uniform inputs into a
super channel with uniform inputs. This approach is combined
with turbo coding in [2] and [3]. In [20], Gallager’s scheme
is combined with convolutional codes. Optimal mappings are
investigated in [21], see also [22, Sec. I.B]. When Gallager’s
scheme is combined with binary FEC, undoing the many-to-
one mapping at the receiver is challenging. In [2], [3], [20],
this inversion is achieved by iterative demapping, which in-
creases the system complexity compared to uniform signaling.
In [3], the authors choose the many-to-one mapping according
to the desired transmission rate. The resulting rate granularity
is coarse. To achieve a finer granularity, more bits must be
mapped to the same signal point, which increases the system
complexity further.

B. Trellis Shaping

Trellis shaping is proposed in [23] and it is discussed in
detail in [24, Chap. 4] and [25, Sec. 4.4]. The transmitter first
selects a set of sequences. A shaping code then selects from
this set the sequence of minimum energy for transmission.
The authors of [26] combine multilevel coding with trellis
shaping using convolutional codes, see also [27, Sec. VIII].
Bit-interleaved coded modulation (BICM) [28], [29] is used
in [30] for lower bit levels and a convolutional shaping code
selects the two highest bit-levels for energy minimization.
LDPC codes were used as shaping codes in [31]. Since shaping
is achieved by the decoder of a shaping code, it is difficult to
make trellis shaping flexible to support different shaping rates.

C. Shell Mapping

Shell mapping [32] was proposed independently by several
groups around the same time, see [33, Sec. VII.], [24, Chap. 8].
In shell mapping, the transmitter first selects a shell, which
is a set of low energy input sequences. It then selects a
sequence within the selected shell for transmission. Shell
mapping combined with trellis coding is used in the ITU-
T Recommendation V.34 [34]. The main challenge is to
efficiently index the shells.

D. Superposition Coding

Superposition coding was proposed in [35]. The transmitter
uses several encoders. Each encoder maps its output to a
signal point. The selected signal points are then superposed
and transmitted. The receiver uses multistage decoding. Turbo
codes are considered in [35] and variations of superposition
coding are proposed and analyzed in [36]. The author of
[37] uses LDPC codes and proposes signal constellations
that reduce the number of decoding stages. Superposition
coding requires sequential decoding of the individual codes
or iterative demapping.

E. Concatenated Shaping

The authors of [38] concatenate BICM encoding with
shaping. A turbo encoder is followed by a one-to-one shaping
block code. The scheme is improved in [39] by iterative
demapping. A variation of this scheme is presented in [40],
where the one-to-one shaping block code is followed by
a many-to-one mapping reminiscent of Gallager’s scheme.
The shaping scheme [39] is used in [41] with LDPC codes
on amplitude and phase-shift keying (APSK) constellations.
Since the shaping decoder is placed before the FEC decoder,
only limited gains are observed in [38]. The works [39]–[41]
therefore use iterative demapping.

F. Bootstrap Scheme

In [42], [43, Chap. 7], we proposed the bootstrap scheme,
which separates shaping and FEC. First, the data is shaped,
i.e., uniformly distributed data symbols are transformed into
non-uniformly distributed symbols. The shaped data is then
systematically encoded. The generated check bits are also
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shaped and embedded in the shaped data of the next transmis-
sion block. The bootstrap scheme is implemented in [42], [43,
Chap. 7] using Geometric Huffman Coding [44] for shaping
and LDPC codes from the DVB-S2 standard for FEC. Since
shaping is done prior to FEC encoding, the bootstrap scheme
borrows from the reverse concatenation proposed in [45], [46]
for magnetic recording. The authors in [18] call the bootstrap
scheme chaining construction and prove that it is capacity-
achieving for any discrete memoryless channel. The drawback
of the bootstrap scheme is that shaping is done over several
consecutive transmission blocks, which have to be decoded in
reverse (bootstrapped). This increases the latency and is prone
to error propagation over blocks.

III. OPTIMAL SIGNALING OVER THE AWGN CHANNEL

The discrete time AWGN channel at time instance i is
described by the input-output relation

Yi = Xi + Zi (2)

where the noise terms Zi, i = 1, 2, 3, . . . are independent and
identically distributed (iid) according to a zero mean Gaussian
distribution with unit variance. For nc channel uses, the input
is subject to the power constraint

E
[∑nc

i=1X
2
i

]
nc

≤ P (3)

where E[·] denotes expectation.

A. AWGN Capacity

Let X̂nc = X̂1, X̂2, . . . , X̂nc be the output of the decoder
that estimates the input Xnc from the output Y nc . The block
error probability is Pe = Pr(X̂nc 6= Xnc). The channel coding
theorem [19, Theorem 7.4.2] states that by choosing nc large
enough, Pe can be made as small as desired if the transmission
rate R is smaller than the channel capacity C(P). The goal
of this work is to design a modulation scheme that achieves
reliable transmission close to the capacity-power function (1),
i.e., for any average signal power P, we want to reliably
transmit data over the AWGN channel at a rate that is close
to C(P).

B. Amplitude-Shift Keying

Let X be distributed on some finite alphabet X of signal
points and suppose E[X2] = P. The channel coding theorem
states that reliable transmission at rate R with average power
P is possible if

R < I(X;Y ) (4)

where I(·; ·) denotes the mutual information in bits. The first
step in designing a coded modulation system is thus to choose
an alphabet X and a distribution PX on X such that I(X;Y )
is close to the maximum value C(P). As input alphabet, we
use an ASK constellation with 2m signal points, namely

X = {±1,±3, . . . ,±(2m − 1)}. (5)

We scale X by the constellation scaling ∆ > 0 and the
resulting input/output relation is

Y = ∆X + Z. (6)

The power constraint for X is now

E[(∆X)2] ≤ P. (7)

C. Optimization of the ASK Input

We use signal point x ∈ X with probability

PXν (x) = Aνe
−νx2

, Aν =
1∑

x′∈X e
−νx′2 . (8)

The scalar Aν ensures that the probabilities assigned by PXν
add to 1. Distributions of the form (8) are called Maxwell-
Boltzmann distributions, see, e.g., [47]. For a fixed constella-
tion scaling ∆ and power constraint P, we choose the input
distribution

PX∆
(x) =PXν (x) with ν : E[(∆Xν)2] = P. (9)

The distribution PX∆ maximizes entropy subject to the power
constraint (7), see [48, Chapter 12]. Some basic manipulations
show that E[X2

ν ] is strictly monotonically decreasing in ν.
Thus, the value of ν for which the condition (9) is fulfilled
can be found efficiently by using the bisection method. For
each constellation scaling ∆, the distribution PX∆ satisfies the
power constraint. We now maximize the mutual information
over all input distributions from this family, i.e., we solve

max
∆

I(X∆; ∆X∆ + Z). (10)

The mutual information I(X∆; ∆X∆ + Z) is a unimodal
function of ∆ and the optimization problem can be solved
efficiently by using the golden section method. We denote the
maximizing scaling by ∆♣ and the corresponding distribution
by PX♣ .

D. Shaping Gap

In Table I, we display the shaping gains of our input X♣

as compared to a uniformly distributed input. For increasing
rates and constellation sizes, the shaping gain increases and
approaches the upper bound of 10 log10

πe
6 ≈ 1.53 dB [16,

Sec. IV.B]. The bound can also be derived by probabilistic
arguments, see [49, Comment 4)]. For 64-ASK and a rate of
5 bits per channel use, the shaping gain is 1.33 dB.

Remark 1. The distribution PX♣ is suboptimal in general.
The optimal distribution PX∗ can be approximated numer-
ically by using the Blahut-Arimoto algorithm [50], [51].
However, there is no analytical expression of PX∗ . For the
operating points in Table I, the energy efficiency of X♣ is
within 0.11 dB of capacity C(P), so the gain from optimizing
further is bounded by 0.11 dB.
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TABLE I
SNR GAPS OF UNIFORM ASK AND X♣ TO CAPACITY C(P).

capacity C(P) uniform ASK X♣

constellation rate [ bits
channel use ] SNR [dB] SNR [dB] gap [dB] SNR [dB] gap [dB] shaping gain [dB]

4-ASK 1 4.7712 5.1181 0.3469 4.8180 0.0468 0.3001
8-ASK 2 11.7609 12.6187 0.8578 11.8425 0.0816 0.7762

16-ASK 3 17.9934 19.1681 1.1747 18.0910 0.0976 1.0771
32-ASK 4 24.0654 25.4140 1.3486 24.1706 0.1052 1.2434
64-ASK 5 30.0988 31.5384 1.4396 30.2078 0.1090 1.3306

E. Input Distribution: Operational Meaning

Suppose we use the channel nc times, i.e., we transmit
length nc codewords. We use codeword xnc with probability
PXnc (xnc). If our transmission rate R is larger than the average
mutual information between input and output, i.e., if

R >

∑nc
i=1 I(Xi;Yi)

nc
(11)

then the probability of error Pr(X̂n 6= Xn) is bounded
away from zero for any decoder. This result follows as a
corollary of the converse of the channel coding theorem [19,
Theorem 7.3.1].

The mutual information terms I(Xi;Yi) are calculated
according to the marginal distributions PXi . We call the
condition (11) the Coded Modulation Converse. The insight
we take from (11) is that building a transmitter with marginal
input distributions

PXi ≈ PX♣ (12)

is necessary to achieve reliable transmission close to the rates
displayed for X♣ in Table I.

IV. PROBABILISTIC AMPLITUDE SHAPING

We now develop a transmitter with property (12).

A. Preliminaries

We make the following two observations:
1) Amplitude-Sign Factorization: We can write X♣ as

X♣ = A · S (13)

where A = |X♣| is the amplitude of the input and where
S = sign(X♣) is the sign of the input. By (5), the amplitudes
take values in

A := {1, 3, . . . , 2m − 1}. (14)

We see from (8) that the distribution PX♣ is symmetric around
zero, i.e., we have

PX♣(x) = PX♣(−x) (15)

and therefore, A and S are stochastically independent and S
is uniformly distributed, i.e., we have

PX♣(x) = PA(|x|) · PS(sign(x)), ∀x ∈ X (16)

PS(1) = PS(−1) =
1

2
. (17)

Fig. 2. The black and white pixels of a 180 × 180 picture are represented
by 1s and 0s, respectively, and then encoded by a DVB-S2 rate 1/2 LDPC
code. The resulting check bits are displayed next to the picture. The empirical
distribution of the original picture is PD̄(1) = 1−PD̄(0) = 0.1082 and the
empirical distribution of the check bits is PR̄(1) = 1− PR̄(0) = 0.4970.

2) Uniform Check Bit Assumption: The second observation
is on systematic binary encoding. A systematic generator
matrix of an (n, k) binary code has the form

G = [Ik|P ] (18)

where Ik is the k × k identity matrix and P is a k × (n −
k) matrix. P is the parity matrix of the code. The generator
matrix G maps k data bits Dk to a length n codeword via

DkG = (Dk|Rn−k) (19)

where Rn−k are redundant bits that are modulo-two sums
of data bits. Suppose the data bits have some distribution
PDk . Since the encoding is systematic, this distribution is
preserved at the output of the encoder. What is the distribution
of the redundancy bits? To address this question, consider
two independent data bits D1 and D2. The modulo-two sum
R = D1 ⊕ D2 is then more uniformly distributed than
the individual summands D1 and D2, see the appendix for
the proof. This suggests that if the redundancy bits are the
modulo-two sum of a large enough number of data bits, then
their distribution is close to uniform. An example of this
phenomenon is shown in Fig. 2. We therefore follow [52,
Sec. VI], [53, Chap. 5], [43, Sec. 7.1] and assume in the
following that the redundancy bits are uniformly distributed
and we call this assumption the uniform check bit assumption.

B. Encoding Procedure

Consider block transmission with nc symbols from a 2m-
ASK constellation. Since we use binary error correcting codes,
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PA A1. . .Anc

b(·) b(A1). . .b(Anc) P b(S1). . .b(Snc) b−1(·)
S1. . .Snc

x X1 . . . Xnc x

∆

Fig. 3. PAS. The ASK amplitudes Ai take values inA = {1, 3, . . . , 2m−1}. The amplitudes Ai are represented by their binary labels b(Ai). Redundancy bits
b(Si) result from multiplying the binary string b(A1)b(A2) · · · b(Anc ) by the parity matrix P of a systematic generator matrix [Ik|P ]. The redundancy bits
b(Si) are transformed into signs Si and multiplied with the amplitudes Ai. The resulting signal points Xi = AiSi take values in X = {±1,±3, . . . ,±(2m−
1)}. The signal points Xi are scaled by ∆ and ∆Xi is transmitted over the channel.

we label each of the 2m−1 amplitudes by a binary string of
length m− 1 and we label each of the signs ±1 by a bit, i.e.,
we use

A 7→ b(A) ∈ {0, 1}m−1 (20)
S 7→ b(S) ∈ {0, 1}. (21)

For the sign, we use b(−1) = 0 and b(1) = 1. We discuss the
choice of b(A) in Sec. VI-C. We use a rate k/n = (m−1)/m
binary code with systematic generator matrix G = [Ik|P ].
For block transmission with nc channel uses, the block length
of the code is n = ncm and the dimension of the code is
k = nc(m−1). The encoding procedure is displayed in Fig. 3.
It works as follows.

1) A discrete memoryless source (DMS) PA outputs
amplitudes A1, A2, . . . , Anc that are iid according
to PA. We explain in Sec. V how the DMS PA
can be emulated from binary data by distribution
matching.

2) Each amplitude Ai is represented by its label
b(Ai).

3) The resulting length (m − 1)nc = k binary string
is multiplied by the parity matrix P to generate
n− k = nc sign labels b(S1), b(S2), . . . , b(Snc).

4) Each sign label b(Si) is transformed into the
corresponding sign Si.

5) The signal Xi = Ai · Si is scaled by ∆ and
transmitted.

We call this procedure probabilistic amplitude shaping (PAS).
Since the signs Snc are a deterministic function of the ampli-
tudes Anc , the input symbols X1, X2, . . . , Xnc are correlated.
Under the uniform check bit assumption, the marginal distri-
butions are

PXi(xi) = PA(|xi|)PSi(sign(xi)) (22)

= PA(|xi|)
1

2
(23)

= PX♣(xi) (24)

that is, if the uniform check bit assumption holds, then PAS
has the desired property (12).

Remark 2. PAS is a special case of the bootstrap scheme [18],
[42]. After encoding, the redundancy bits are approximately
uniformly distributed. Instead of transforming them into a
sequence of symbols with a non-uniform distribution and
transmitting them in the next block as is done in the bootstrap
scheme, they are left unchanged, since by (17), the uniform
distribution is desirable.
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Fig. 4. The mutual information curves (solid) and the transmission rate curves
(dashed) for ASK. The optimal operating points for rate (m − 1)/m codes
are indicated by dots.

C. Optimal Operating Points

We study the rates at which reliable transmission is possible
with our scheme. By (11), reliable communication at rate R
is achievable only if

R <

∑nc
i=1 I(Xi;Yi)

nc
= I(X;Y ) = I(AS;Y ). (25)

Since Anc represents our data, our transmission rate is

R =
H(Anc)

nc
= H(A)

[
bits

channel use

]
(26)

and condition (25) becomes

H(A) < I(AS;Y ). (27)

In Fig. 4, both the mutual information I(AS;Y ) (solid lines)
and transmission rate H(A) (dashed lines) are displayed for
4, 8, 16, 32, and 64-ASK. For high enough SNR, the mutual
information saturates at m bits and the transmission rate
saturates at m − 1 bits. Optimal error correction for block
length nc → ∞ would operate where the transmission rate
curve crosses the mutual information curve. These crossing
points are indicated by dots in Fig. 4. How to operate at other
transmission rates is the topic of rate adaption and we discuss
this in detail in Sec. VIII.
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PA A1. . .Anc

b(·) b(A1). . .b(Anc) P b(Sγnc+1). . .b(Snc) b−1(·)
S1. . .Snc

x X1 . . . Xnc x

∆

PU b(S1). . .b(Sγnc)

Fig. 5. Extension of PAS to code rates higher than (m−1)/m. The fraction γ of the signs is used for data, which is modelled as the output of a Bernoulli-1/2
DMS PU .
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Fig. 6. Optimal operating points of 8-ASK for PAS (c = 2/3) and extended
PAS (c = 3/4).

D. PAS for Higher Code Rates

We observe in Fig. 4 that the ASK mutual information
curves stay close to the capacity C(P) over a certain range of
rates above the optimal operating points. We therefore extend
our PAS scheme to enable the use of code rates higher than
(m − 1)/m on 2m-ASK constellations. We achieve this by
using some of the signs Si for uniformly distributed data bits.
We illustrate this extension of the PAS scheme in Fig. 5. Let γ
denote the fraction of signs used for data bits. We interpret γnc
uniformly distributed data bits as sign labels b(S1) · · · b(Sγnc).
These γnc bits and the (m − 1)nc bits from the amplitude
labels are encoded by the parity matrix of a rate c code, which
generates the remaining (1 − γ)nc sign labels. The code rate
can be expressed in terms of m and γ as

c =
m− 1 + γ

m
. (28)

For a given code rate c, the fraction γ is given by

γ = 1− (1− c)m. (29)

Since a fraction γ of the signs now carries information, the
transmission rate of the extended PAS scheme is given by

R =
H(Anc) + H(Sγnc)

nc
= H(A) + γ

[
bits

channel use

]
. (30)

U1U2. . .Ukc Matcher Ã1Ã2. . . Ãnc

Fig. 7. The matcher transforms uniform data blocks of length kc into
nc amplitudes that are approximately distributed according to the desired
distribution PA. By replacing the amplitude source PA in the PAS diagrams
in Fig. 3 and Fig. 5 by a matcher, our scheme provides a binary interface to
the source coding part of a digital communication system.

The optimal operating point is then given by the crossing of
the rate curve H(A)+γ and the mutual information. In Fig. 6,
we display for 8-ASK the optimal operating points for c = 2/3
and c = 3/4.

V. DISTRIBUTION MATCHING

In a digital communication system, usually a binary inter-
face separates the source coding part from the channel coding
part [54, Chap. 1]. Up to now, our scheme does not have such
a binary interface, since some of our data is output by an
amplitude source PA . We therefore add a device that takes as
input kc uniformly distributed independent bits Ukc and outputs
nc amplitudes Ãnc . We illustrate this in Fig. 7. We require the
following properties for our device:
P1 The input provides a binary interface to the source coding

part of the digital communication system.
P2 The input can be recovered from the output, i.e., the

mapping is invertible.
P3 The output is approximately the output of a DMS PA .

A device with such properties is called a distribution matcher
[44]. Variable length distribution matchers were proposed in
[16, Sec. IV.A], [47, Sec. VII] and [55] and their design was
studied in [43], [44], [47], [56]–[58].

Variable length matchers can lead to buffer overflow,
synchronization loss and error propagation, see, e.g., [47,
Sec. 1]. We therefore use the constant composition distribution
matcher (CCDM) proposed in [11], which is a fixed length
matcher.

A. Constant Composition Distribution Matching

1) Definitions: To describe the CCDM, we use types, which
are described in detail, e.g., in [59], [60, Chap. 2], [48,
Sec. 11.1], [61, Chap. 2]. Consider an amplitude sequence anc .
Let nα be the number of times that amplitude α occurs in anc ,
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i.e., nα = |{i : ai = α}|. Let PĀ be the empirical distribution
of anc , i.e.,

PĀ(α) =
nα
nc
, α ∈ A. (31)

Since each probability PĀ(α) is an integer multiple of 1/nc,
the distribution PĀ is called an nc-type. The set T nc

PĀ
contains

all permutations of anc and is called the type class of PĀ. A
set of sequences is called a constant composition code, if all
sequences in the set are of the same type.

Example 1. Consider the 4-ASK constellation X = {±1,±3}
and the block length nc = 4. The amplitudes are A = {1, 3}.
Suppose the desired distribution is

PA(1) =
3

4
, PA(3) =

1

4
. (32)

The probabilities are integer multiples of 1/4, so PA is a 4-
type. The corresponding type class of length nc = 4 sequences
is

T 4
PA = {(1, 1, 1, 3), (1, 1, 3, 1), (1, 3, 1, 1), (3, 1, 1, 1)} (33)

where in each sequence, the amplitudes 1 and 3 occur n1 = 3
and n3 = 1 times, respectively. A CCDM maps length kc
binary strings to sequences in T 4

PA
. There are 4 sequences in

T 4
PA

, so we have

kc = log2 |T 4
PA | = 2. (34)

The following lookup table defines a CCDM.

00 7→(1, 1, 1, 3), 01 7→ (1, 1, 3, 1),

10 7→(1, 3, 1, 1), 11 7→ (3, 1, 1, 1).
(35)

This mapping maps binary strings to amplitude sequences
and thereby provides a binary interface (Property P1). The
mapping is one-to-one and therefore invertible (Property P2).

2) General Construction: Consider some block length nc
and a desired amplitude distribution PA. We construct a
CCDM to emulate the DMS PA as follows.
• We quantize PA by an nc-type distribution, i.e., we use a

distribution PĀ with

nα ≈ nc · PA(α), α ∈ A. (36)

Quantizations with property (36) can be calculated easily,
e.g., by rounding nc · PA(α) to the nearest integer.
We use the quantization rule [22, Algorithm 2] in our
implementation. Note that in Example 1, the quantization
step is not needed since the desired distribution is already
of the required type.

• We calculate the input length kc as

kc = blog2 |T
nc
PĀ
|c =

⌊
log2

nc!

n1!n3! · · ·n2m−1!

⌋
(37)

where nα = PĀ(α) ·nc, α ∈ A = {1, 3, . . . , 2m−1}. The
rounding b·c is necessary in general since the cardinality
of the type class T nc

PĀ
may not be a power of two.

In Example 1, rounding is not necessary because the
cardinality of the type class is a power of two.

• We pick a set Cccdm ⊆ T nc
PĀ

with |Cccdm| = 2kc sequences
and define a bijective mapping fccdm from {0, 1}kc to
Cccdm. In Example 1, the cardinality of T nc

PĀ
is 2kc so

Cccdm = T nc
PĀ

.

Remark 3. PAS with CCDM can be seen as an instance of
shell mapping. Since each amplitude sequence is of the same
type, each signal xnc has the same power, i.e.,∑nc

i=1 x
2
i

nc
=

∑nc
i=1 a

2
i

nc
= P. (38)

That is, the signals are selected from a shell that contains the
sequences of energy ncP. A similar signaling was used in [62]
do derive finite length performance bounds for optimal codes
for the AWGN channel.

B. Performance of CCDM

1) Rate: The rate of the CCDM is

kc

nc
=
blog2 |T

nc
PĀ
|c

nc

[
bits

amplitude

]
. (39)

An upper bound on the rate is

blog2 |T
nc
PĀ
|c

nc
≤

log2 |T
nc
PĀ
|

nc

(a)
≤ H(Ā) (40)

where (a) follows by [48, Theorem 11.1.3]. By [11, Eq. (22)],
the rate is lower bounded by

blog2 |T
nc
PĀ
|c

nc

≥ H(Ā)− (|A| − 1) log2(nc + |A| − 1)

nc
− 1

nc
. (41)

The bounds (40) and (41) can be evaluated numerically and
are useful for system design. In Example 1, the rate is 1/2,
while the rate of the DMS that we want to emulate is H(A) =
0.8113. By choosing the block length nc large enough, the
upper and lower bounds (40) and (41) can be made arbitrarily
close to H(A), e.g., for nc = 10 000 and PA of Example 1,
the bounds evaluate to

H(A) ≥ kc

nc
≥ H(A)− 0.0014288. (42)

The actual rate of CCDM for nc = 10 000 and PA of
Example 1 is

kc

nc
=
blog2 |T

nc
PA
|c

10 000
=

8106

10 000
= 0.8106 (43)

which is within 7 × 10−4 bits of the desired rate H(A) =
0.8113.

2) Informational Divergence: Let Ãnc = fccdm(Ukc) with
distribution PÃnc on Cccdm be the output of the CCDM and
let Pnc

A be the output distribution of the DMS PA that we
want to emulate. By [63, Theorem 1.2], a good measure for
similarity in the context of channel coding is the normalized
informational divergence (also known as Kullback-Leibler
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divergence or relative entropy [48, Sec. 2.3]) of PÃnc and Pnc
A ,

which is given by

D(PÃnc‖Pnc
A )

nc
=

∑
anc∈Cccdm

PÃnc (a
nc) log2

PÃnc (a
nc)

Pnc
A (anc)

nc
. (44)

Informational divergence is non-negative and equal to zero
if and only if the two compared distributions are equal [48,
Theorem 2.6.3]. By [11, Eq. (17)], we can write (44) as

D(PÃnc‖Pnc
A )

nc
= H(Ā)− kc

nc
+ D(PĀ‖PA). (45)

In Example 1, we have PĀ = PA, so H(Ā) = H(A) and
D(PĀ‖PA) = 0 and the normalized informational divergence
evaluates to

D(PÃnc‖Pnc
A )

nc
= 0.8113− 1

2
= 0.3113

[
bits

amplitude

]
. (46)

For nc = 10 000 and PA of Example 1, we have

D(PÃnc‖Pnc
A )

nc
= 0.8113− 0.8106

= 7× 10−4

[
bits

amplitude

]
. (47)

In [11], it is shown that the CCDM has Property P3 in the
following sense:

1) As nc →∞, the rate approaches H(A), i.e., we have

kc

nc
→ H(A). (48)

2) As nc → ∞, the normalized informational divergence
(44) approaches zero.

C. Efficient Implementation of CCDM

As we can see from our discussion of Example 1, to emulate
a DMS PA well by CCDM, the block length nc has to be
large. The size of the code book Cccdm grows exponentially
with the input length kc and the implementation of the CCDM
by a lookup table as in (35) becomes infeasible because
of memory limitations. In [11], we propose an algorithm
based on arithmetic coding that performs the mapping fccdm
without storing Cccdm. At [64], we provide a flexible CCDM
implementation written in C/Matlab that takes nc, PA, and
ukc as arguments and outputs the corresponding amplitude
sequence anc = fccdm(ukc) ∈ T nc

PĀ
. In particular, we use the

same CCDM implementation for different transmission rates.
In our simulations (see Sec. IX), the matcher/dematcher of
our CCDM implementation performed faster than the LDPC
encoder/decoder of the Communications System Toolbox of
Matlab (R2014b). For binary output (|A| = 2), an algorithm
similar to [11] was proposed in [65].

VI. BIT-METRIC DECODING

The receiver estimates the transmitted codeword Xnc from
the channel outputs Y nc . In this section, we show how this can
be implemented by a bit-metric decoder.

A. Preliminaries: Binary Labeling and Decoding

Consider a coded modulation system where the input X
takes values in a 2m-ASK constellation. An optimal decoder
uses the symbol-metric pY |X [13, Sec. II.B] and can achieve
the rate

RSMD = I(X;Y ) (49)

where SMD stands for symbol-metric decoding (SMD). We
are interested in successfully decoding at a transmission rate
close to RSMD by using a binary decoder. Recall that our PAS
scheme labels the amplitude A = |X| by a length m−1 binary
string b(A) and the sign S = sign(X) by one bit b(S). The
length m binary string

B = B1B2 · · ·Bm := b(S)b(A) (50)

with distribution PB on {0, 1}m assigns to each signal point
x ∈ X a label via

label(x) = label(sign(x))label(|x|) = b1b2 · · · bm. (51)

Since the labeling is one-to-one, we can also select a signal
point for transmission by choosing the label B, i.e., we use

X = xB = {x ∈ X : label(x) = B}. (52)

We can interpret B as the channel input and the input/output
relation of our channel as

Y = ∆xB + Z. (53)

Using the chain rule, we expand the mutual information of
B and Y as

I(B;Y ) =

m∑
i=1

I(Bi;Y |Bi−1) (54)

= I(B1;Y ) + I(B2;Y |B1)

+ · · ·+ I(Bm;Y |B1 · · ·Bm−1). (55)

This expansion suggests the following binary decoding:
1) Use the channel output Y to calculate an estimate B̂1.
2) Successively use the output Y and the estimates

B̂1 · · · B̂i−1 to calculate the next estimate B̂i.
This approach is called multistage decoding (MD). It requires
multilevel coding (MLC) at the transmitter, i.e., on each bit-
level, an individual binary code with block length nc is used.
MLC/MD was first introduced in [66] and it is discussed in
detail, e.g., in [27]. To use MLC/MD, we would need to
modify our PAS scheme. A simpler approach is to ignore the
estimates B̂j , j 6= i when estimating Bi. This reduces the
mutual information, which can be seen as follows

I(B;Y ) =

m∑
i=1

I(Bi;Y |Bi−1) (56)

=

m∑
i=1

H(Bi|Bi−1)−H(Bi|Y Bi−1) (57)

(a)
≥

m∑
i=1

H(Bi|Bi−1)−H(Bi|Y ) (58)

(b)
= H(B)−

m∑
i=1

H(Bi|Y ) (59)
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where (a) follows because conditioning does not increase
entropy [48, Theorem 2.6.5] and where we used the chain
rule for entropy in (b). The expression (59) can be achieved
as follows. We jointly encode all bit-levels by a single binary
code of block length mnc. At the receiver, we use a bit-metric
decoder. This idea was introduced in [28] and is now usually
called bit-interleaved coded modulation (BICM) [14], [29].
Since our PAS transmitter encodes all bit-levels by a single
binary code G = [Ik|P ], our transmitter is a BICM encoder.
Note that a bit-interleaver is implicitly present in the parity
matrix P . In Sec. VII, we discuss how P can be implemented
by combining the parity matrix of an off the shelf code with
a bit-interleaver.

B. Bit-Metric Decoding

A soft-demapper calculates for each bit-level i

Li = log
PBi(0)

PBi(1)︸ ︷︷ ︸
a-priori information

+ log
pY |Bi(Y |0)

pY |Bi(Y |1)︸ ︷︷ ︸
channel likelihood

. (60)

The distribution PBi and the conditional density pY |Bi in (60)
can be calculated as

PBi(bi) =
∑

a∈{0,1}m : ai=bi

PB(a) (61)

pY |Bi(y|bi) =
∑

a∈{0,1}m : ai=bi

pY |B(y|a)
PB(a)

PBi(bi)
. (62)

By [67, Sec. 8.2.1], Li is a sufficient statistic to estimate bit
level Bi from the channel output Y , i.e., we have I(Bi;Y ) =
I(Bi;Li). A bit-metric decoder uses L1, L2, . . . , Lm to esti-
mate the transmitted data and achieves the rate [12, Theo-
rem 1]

RBMD = H(B)−
m∑
i=1

H(Bi|Y ). (63)

Note that (63) is equal to the expression we derived in (59).

Remark 4. If the bit levels are independent, the rate RBMD
becomes the “BICM capacity” [13, Theorem 1]

m∑
i=1

I(Bi;Y ). (64)

Using non-uniform distributions for the independent bit-levels
results in bit-shaping, which was introduced in [68] and is
discussed in [12]. The authors of [69, Eq. (1)] call (64) the
“pragmatic capacity”.

From a coding perspective, bit-metric decoding transforms
the channel (53) into m parallel binary input channels pLi|Bi ,
i = 1, 2, . . . ,m.

1) The bit channels pLi|Bi are different for different bit
levels. This is important in Sec. VII, where we optimize
the parity matrix P for bit-metric decoding.

2) By (62), the distribution of the bits Bj , j 6= i influences
the channel transition probabilities pLi|Bi of the ith bit-
channel, i.e., for each bit level, the other bit-levels act
as interference.

TABLE II
TWO LABELINGS FOR THE AMPLITUDES OF 8-ASK AND THE RESULTING

SIGNAL POINT LABELINGS

Amplitude 7 5 3 1
natural labeling 00 01 10 11

BRGC 00 01 11 10
Signal point -7 -5 -3 -1 1 3 5 7

natural-based 000 001 010 011 111 110 101 100
BRGC 000 001 011 010 110 111 101 100

5 10 15 20
1

1.5

2

2.5

3

SNR in dB

bi
ts

/c
ha

nn
el

us
e

1
2
log2(1 + P/1)

BRGC
natural-based labeling

Fig. 8. Comparison of RBMD for the two labelings from Table II.

3) The rate (63) can take on different values for different
labelings of the signal points. We discuss this next.

C. Optimizing the Labeling

We choose the labeling of the m−1 amplitudes; the label of
the sign is already defined by construction. We evaluate RBMD
for 8-ASK and two different amplitude labelings, namely the
natural labeling and the Binary Reflected Gray Code (BRGC),
see [70]. The two labelings are listed in Table II. We have
ordered the amplitudes in descending order so that the actual
signal points are labeled from left to right. The resulting
labelings of the signal points are also displayed in Table II.
Note that the natural labeling of the amplitudes does not lead
to a natural labeling of the signal points, we therefore call it
the natural-based labeling. In contrast, the BRGC labeling of
the amplitudes also leads to the BRGC of the signal points. We
display in Fig. 8 RBMD for the natural-based labeling and the
BRGC labeling. The BRGC labeling is better than the natural-
based labeling and very close to the capacity C(P), which is
consistent with the results presented in [12]. In Table III, bit-
metric decoding with BRGC is compared to symbol-metric
decoding. The SNRs needed to achieve a given rate are listed.

Remark 5. The bit-metric decoding gaps in Table III show
how much we can gain by using MLC/MD or by iteratively
exchanging extrinsic information between the binary soft-
demapper and the binary soft-decoder (BICM-ID, [71]). This
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TABLE III
COMPARISON OF SNRS NEEDED BY SYMBOL-METRIC DECODING AND

BIT-METRIC DECODING TO ACHIEVE A CERTAIN RATE

constellation rate SNR(RSMD) [dB] SNR(RBMD) [dB] Gap [dB]
4-ASK 1 4.8180 4.8313 0.0133
8-ASK 2 11.8425 11.8481 0.0056

16-ASK 3 18.0911 18.0951 0.0039
32-ASK 4 24.1708 24.1742 0.0034
64-ASK 5 30.2078 30.2110 0.0032

gain is negligible and not worth the increased complexity for
the considered scenario.

VII. BIT-MAPPER OPTIMIZATION FOR THE DVB-S2
CODES

In principle, our scheme works for any binary code with a
systematic encoder and a decoder that can process the soft-
output of the binary demappers. In this section, we discuss the
deployment of the DVB-S2 LDPC codes.

A. LDPC Codes and Bit-Channels

LDPC codes are linear block codes with a sparse (n−k)×n
check matrix H . The matrix H can be represented by a Tanner
graph [72] consisting of variable nodes and check nodes. The
variable node degree of the ith coded bit is given by the
number of ones in the ith column of H and the degree of
the jth check node is given by the number of ones in the jth
row of H . The variable and check node degrees influence the
decoding threshold of the LDPC code [73].

Good LDPC codes are often irregular, i.e., not all coded bits
have the same variable node degree [73], [74]. At the same
time, the coded bits are transmitted over different bit-channels.
This suggests that the bit-mapper, which decides which coded
bit is transmitted over which bit-channel, influences the per-
formance.

Bit-mapper optimization was considered, e.g., in [75]–[79].
An alternative approach is to jointly optimize the node degrees
and the bit-mapper. This is done in [80] and [81]. In this work,
we consider bit-mapper optimization.

B. Bit-Mapper Optimization

We use LDPC codes from the DVB-S2 standard. In Ta-
ble IV, we display the variable node degree distributions of
the DVB-S2 codes, e.g., the rate 2/3 code has 4320 coded bits
of variable node degree 13, and it has 38880, 21599, and 1
bits of degrees 3, 2, and 1, respectively. All codes have four
different variable node degrees, which decrease from left to
right. By Sec. IV-B, our PAS scheme places the uniformly
distributed bits of bit-level B1 at the end of the codeword in
the systematic encoding process. For the bit-levels B2 · · ·Bm,
we use the following heuristic.
• A bit interleaver πb sorts the bit stream by bit-levels, i.e.,

b(A1) . . . b(Anc)
πb−→ B2B3 · · ·Bm (65)

where Bi is a string of nc bits of level i.
• A bit-level interleaver permutes the bit-level strings. We

compactly represent the bit-level interleaver by listing

TABLE IV
VARIABLE NODE DEGREE DISTRIBUTIONS OF DVB-S2 CODES

variable node degrees

rate 13 12 11 4 3 2 1

2/3 4320 38880 21599 1
3/4 5400 43200 16199 1
4/5 6480 45360 12959 1
5/6 5400 48600 10799 1
9/10 6480 51840 6479 1

TABLE V
OPTIMAL BIT-LEVEL INTERLEAVER FOR UNIFORM INPUTS AND DVB-S2

CODES

constellation code rate bit-mapper π

8-ASK 2/3 (3, 2, 1)
16-ASK 3/4 (3, 4, 2, 1)
32-ASK 4/5 (3, 2, 5, 4, 1)
64-ASK 5/6 (4, 2, 5, 3, 6, 1)

the bit-levels in the order in which they should occur
in the codeword, e.g., for m = 4, the bit-level interleaver
(4, 2, 3) is

B2B3B4
(4,2,3)−→ B4B2B3. (66)

We keep the bit interleaver fixed and represent the complete
bit-mapping by appending a 1 to the bit-level interleaver, e.g.,
π = (4, 2, 3, 1) stands for the composition of πb with bit-
level interleaver (4, 2, 3). We optimize the bit-level interleaver.
There are (m− 1)! possibilities, among which we choose the
one with the best error performance. The largest considered
constellation is 64-ASK, for which we need to choose among
(6− 1)! = 120 bit level interleavers. This optimization is still
feasible. We display in Table V the optimized bit-mappers for
uniform inputs and rate (m− 1)/m codes.

VIII. RATE ADAPTION

A. Practical Operating Points

We use PAS at the transmitter and bit-metric decoding at
the receiver. The transmission rate and the achievable rate are
given by the respective

R = H(A) + γ, RBMD = H(B)−
m∑
i=1

H(Bi|Li) (67)

where B = b(S)b(A). For each transmit power P, we choose
the amplitude distribution PA and the constellation scaling
∆ to maximize the achievable rate. In this way, we obtain
a transmission rate curve R and an achievable rate curve
RBMD. In analogy to our discussion in Sec. IV-C, the optimal
operating point for our scheme is where R crosses RBMD. We
illustrate this in Fig. 9 for 8-ASK and code rate c = 2/3
(γ = 0). When we use practical codes of finite block length
nc, we must back off from the optimal operating point and
tolerate a positive FER. We back off along the transmission
rate curve R. As we increase the transmission power P, the
rate back-off

RBMD −R (68)
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increases and we expect that the error probability decreases.
This intuition is confirmed by the practical operating points of
the 2/3 DVB-S2 LDPC code shown in Fig. 9.

B. Transmission Rate Adaption

Suppose we achieve a transmission rate R◦ at a FER Pe
by the procedure described in Sec. VIII-A. Suppose further
that this reference operating point is achieved by amplitude
distribution PA and constellation scaling ∆. With the same
code, we now want to transmit at a rate R̃ 6= R◦ and achieve
the same error probability Pe.

Recall that for some optimized ν (see Sec. III-C), the input
distribution PX♣ is given by

PX♣(x) =
e−νx

2∑
x′∈X e

−νx′2 , x ∈ X . (69)

By (16), we can write the amplitude distribution PA of our
reference point as

PA(α) = 2PX♣(α), α ∈ A. (70)

Now define

PAλ(α) =
PA(α)eλα

2∑
α′∈A PA(α′)eλα′

2 , α ∈ A. (71)

The distribution PAλ has the following properties:
• PA and PAλ are Maxwell-Boltzmann distributions. In

particular, the set of Maxwell-Boltzmann distributions is
closed under the mapping PA 7→ PAλ as defined by (71).

• For λ = 0, we have PAλ = PA.
• For λ → ν, PA approaches the uniform distribution on
A whose entropy is log2 |A| = m− 1.

• For λ → −∞, PAλ approaches the distribution that
chooses the smallest amplitude with probability 1. The
resulting entropy is zero.

From these properties, we see that we can use PAλ to adapt
the transmission rate. The range of feasible rates is

γ ≤ H(Aλ) + γ ≤ m− 1 + γ. (72)

For γ = 0, the rate is between 0 and m− 1. To transmit at a
feasible rate R̃, we proceed as follows.

• Choose the amplitude distribution such that the
desired transmission rate is achieved, i.e., choose

PÃ = PAλ : H(Aλ) + γ = R̃. (73)

• Choose the constellation scaling ∆̃ such that the
resulting error probability P̃e is the same as for the
reference point, i.e., choose

∆̃ : P̃e = Pe. (74)

C. Adaption for Robust Codes

The procedure described in the previous section requires to
search for the right constellation scaling ∆̃ by repeatedly per-
forming Monte Carlo simulations, which is time consuming.
We therefore seek for a simpler method to find ∆̃ by exploring

the relationship between Pe and the rate back-off. We start by
discussing two special cases.

Example 2. (Rate Back-off for Uniform Binary Input). For a
uniformly distributed binary input B and a rate c code, the
transmission rate is R = c and the achievable rate is R∗ =
I(B;Y ). The rate back-off becomes

R∗ −R = I(B;Y )− c. (75)

In [82], it was observed for practical LDPC codes that Pe is
approximately determined by the mutual information I(X;Y ).
Since c in (75) is a property of the considered code and
independent of the channel, this is equivalent to saying that
Pe is approximately determined by the rate back-off.

Example 3. (Rate Back-off for BICM with Uniform Input).
Consider a BICM scheme with a binary code of rate c and
a constellation with 2m signal points. Let B1, B2, . . . , Bm
be the corresponding bit-levels. The achievable rate is R∗ =∑m
i=1 I(Bi;Y ) and for uniform inputs, the transmission rate

is R = c ·m. The rate back-off becomes

R∗ −R =

m∑
i=1

I(Bi;Y )− c ·m. (76)

In [83], it was observed that the achievable rate R∗ approx-
imately determines Pe. A similar observation was made in
[84]. Since c ·m in (76) is a property of the BICM scheme
and independent of the channel, this is equivalent to saying
that the rate back-off approximately determines Pe.

We now apply the observations from Example 2 & 3 to our
scheme. We say a code is robust, if Pe is approximately
determined by the rate back-off RBMD − R. Suppose for PA
and ∆ of our reference point, the achievable rate and the
transmission rate evaluate to R◦BMD and R◦, respectively. If
the considered code is robust, we can adapt to a transmission
rate R̃ as follows.

• Choose the amplitude distribution PÃ according to
(73).

• Choose the constellation scaling ∆̃ such that the
resulting rate back-off is equal to the rate back-off
of the reference point, i.e.,

∆̃ : RBMD(∆̃, PÃ)− R̃ = R◦BMD −R◦. (77)

In Sec. IX, we apply this strategy to the DVB-S2 LDPC codes
and we assess their robustness by evaluating the resulting
FERs.

Remark 6. For our scheme, the rate back-off can be written
as

RBMD −R = 1− γ −
m∑
i=1

H(Bi|Li). (78)

Since the term 1 − γ is independent of the channel and the
input distribution, adjusting the rate back-off corresponds to
adjusting the sum of the conditional entropies

∑m
i=1 H(Bi|Li).

This property is explored for code design in [81, Sec. III.B].

Remark 7. The authors of [85], [86] investigate the analysis
and design of universal LDPC codes, which provably perform
well on different channels.
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Fig. 9. Operating points for 8-ASK and rate 2/3 codes. We use the bit-level
interleaver π = (3, 2, 1), see Sec. VII-B. The optimal point is where the
rate curve R(P) crosses the achievable rate curve RBMD(P). By backing off
from the optimal point along the rate curve, the rate back-off (given by the
distance between the rate curve and the achievable rate curve) increases. For
the rate 2/3 DVB-S2 LDPC code, the FER Pe is decreased from 1.1× 10−1

to 2.8× 10−3 by increasing the rate back-off. SNR and rate are 8.2 dB
and 1.3735 bits/channel use for Pe = 1.1× 10−1 and 8.5 dB and 1.3945
bits/channel use for Pe = 2.8× 10−3.
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Fig. 10. Transmission rate adaption for 8-ASK. The rate 3/4 DVB-S2 code is
used. The triangles mark the operating points calculated under the assumption
that the code is robust, see Sec VIII-C. The reference operating point is the
triangle on the rate H(A) + 1
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curve. In Table IX, we display the FER of the

adapted operating points. For comparison, we display an operating point of
the 2/3 DVB-S2 code.

IX. NUMERICAL RESULTS

We assess the performance of our scheme by Monte Carlo
simulation. For each block, kc uniformly distributed data bits
are transmitted in nc channel uses. γnc of the data bits
Ukc = U1U2 · · ·Ukc are used for bit-level 1 (see Fig. 5). The
remaining kc − γnc data bits are transformed by a CCDM
matcher (see Sec. V) into a sequence of nc amplitudes.
Encoding is then done according to Fig. 5. At the receiver, bit-

TABLE VI
64-ASK, 9/10 DVB-S2, π = (4, 2, 5, 3, 6, 1)

Rate SNR [dB] Gap [dB] FER 95% CI

5.09 31.80 1.15 4.1 · 10−3 ±2.1 · 10−3

4.98 31.09 1.09 8.0 · 10−3 ±4.0 · 10−3

4.89 30.46 1.05 6.8 · 10−3 ±3.4 · 10−3

4.79 29.84 1.03 7.3 · 10−3 ±3.7 · 10−3

4.69 29.23 1.02 6.4 · 10−3 ±3.2 · 10−3

4.59 28.62 1.02 3.8 · 10−3 ±1.9 · 10−3

4.49 28.01 1.01 6.2 · 10−3 ±3.1 · 10−3

4.39 27.41 1.01 7.6 · 10−3 ±3.8 · 10−3

4.29 26.80 1.00 9.6 · 10−3 ±4.8 · 10−3

4.19 26.21 1.00 1.0 · 10−2 ±5.1 · 10−3

4.09 25.61 1.00 1.0 · 10−2 ±5.1 · 10−3

3.99 25.00 0.99 1.0 · 10−2 ±5.0 · 10−3

TABLE VII
32-ASK, 5/6 DVB-S2, π = (4, 5, 2, 3, 1)

Rate SNR [dB] Gap [dB] FER 95% CI

3.62 22.60 0.82 2.1 · 10−3 ±1.1 · 10−3

3.99 25.09 1.07 3.3 · 10−3 ±1.7 · 10−3

3.89 24.36 0.94 1.8 · 10−3 ±9.0 · 10−4

3.79 23.69 0.87 2.8 · 10−3 ±1.4 · 10−3

3.69 23.05 0.84 1.5 · 10−3 ±8.0 · 10−4

3.59 22.42 0.82 1.6 · 10−3 ±8.0 · 10−4

3.49 21.80 0.81 1.5 · 10−3 ±8.0 · 10−4

3.39 21.19 0.80 1.3 · 10−3 ±6.0 · 10−4

3.29 20.58 0.80 8.0 · 10−4 ±4.0 · 10−4

3.19 19.98 0.80 7.0 · 10−4 ±4.0 · 10−4

3.10 19.37 0.80 5.0 · 10−4 ±3.0 · 10−4

3.00 18.76 0.80 7.0 · 10−4 ±4.0 · 10−4

TABLE VIII
16-ASK, 5/6 DVB-S2, π = (4, 3, 2, 1)

Rate SNR [dB] Gap [dB] FER 95% CI

2.96 18.40 0.67 2.0 · 10−2 ±9.8 · 10−3

3.00 18.66 0.69 3.0 · 10−2 ±1.4 · 10−2

2.90 18.01 0.65 2.3 · 10−2 ±1.2 · 10−2

2.80 17.38 0.63 2.0 · 10−2 ±9.8 · 10−3

2.70 16.75 0.62 1.6 · 10−2 ±7.8 · 10−3

2.60 16.13 0.61 1.3 · 10−2 ±6.7 · 10−3

2.50 15.51 0.61 7.2 · 10−3 ±3.6 · 10−3

2.40 14.89 0.61 3.5 · 10−3 ±1.8 · 10−3

2.30 14.27 0.62 2.5 · 10−3 ±1.3 · 10−3

2.20 13.64 0.62 1.9 · 10−3 ±9.0 · 10−4

2.10 13.01 0.62 1.3 · 10−3 ±7.0 · 10−4

2.00 12.37 0.63 5.0 · 10−4 ±2.0 · 10−4

TABLE IX
8-ASK, 3/4 DVB-S2, π = (3, 2, 1)

Rate SNR [dB] Gap [dB] FER 95% CI

1.85 11.45 0.63 1.5 · 10−3 ±8.0 · 10−4

2.00 12.44 0.69 3.8 · 10−3 ±1.9 · 10−3

1.90 11.75 0.64 2.1 · 10−3 ±1.1 · 10−3

1.80 11.08 0.62 1.2 · 10−3 ±6.0 · 10−4

1.70 10.41 0.62 2.3 · 10−3 ±1.2 · 10−3

1.60 9.75 0.62 1.2 · 10−3 ±6.0 · 10−4

1.50 9.07 0.63 1.5 · 10−3 ±7.0 · 10−4

1.40 8.39 0.64 1.2 · 10−3 ±6.0 · 10−4

1.30 7.69 0.65 2.2 · 10−3 ±1.1 · 10−3

TABLE X
4-ASK, 2/3 DVB-S2, π = (2, 1)

Rate SNR [dB] Gap [dB] FER 95% CI

1.13 6.70 0.90 5.2 · 10−3 ±2.6 · 10−3

1.20 7.26 0.94 2.6 · 10−3 ±1.3 · 10−3

1.10 6.45 0.90 6.4 · 10−3 ±3.3 · 10−3

1.00 5.66 0.90 1.4 · 10−2 ±6.8 · 10−3
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metric decoding is performed (see Sec. VI) and the amplitude
estimates are transformed back into kc−γnc data bit estimates
by a CCDM dematcher, see [11]. The dematcher output
together with the other γnc data bit estimates form the data
estimate Ûkc = Û1Û2 · · · Ûkc . We estimate the end-to-end
FER Pr{Ûkc 6= Ukc}. For each FER estimate, we also provide
the corresponding 95% confidence interval (CI). The spectral
efficiency is R = kc

nc
. We use the DVB-S2 LDPC codes and we

decode with 100 iterations. For each considered (constellation,
code rate) mode, we first determine the practical operating
point with FER ≈ 1× 10−3 following the procedure described
in Sec. VIII-A. We also optimize the bit-mapper using the
heuristic proposed in Sec. VII-B. We then use the rate adaption
(77) to operate the same (constellation, code rate) mode over
a range of SNRs and spectral efficiencies. We use the same
bit-mapper for all operating points of the same (constellation,
code rate) mode. The results are displayed in Table VI–X.
In the first line of each table, the practical operating point is
displayed and separated from the rest of the displayed values
by a horizontal line. For 8-ASK, we also display the resulting
operating points in Fig. 10.

1) Spectral Efficiency: In Table VI—X, we display the SNR
gap of our scheme to capacity C(P) = 1

2 log2(1 +P/1). Over
a range of 1 bit/s/Hz to 5 bit/s/Hz, our scheme operates within
1.1 dB of capacity. The rate 5/6 code with 16-ASK has a gap
of only 0.61 to 0.69 dB, while the rate 9/10 code with 64-ASK
has a gap of 1 dB. This indicates that the spectral efficiency
can be improved further by using optimized codes. The work
[81] confirms this.

2) Robustness: Recall that the listed operating points
were found by (77) with the practical operating point from
Sec. VIII-A as reference point. The results in Table VI—
X show that the DVB-S2 codes are robust in the sense of
Sec. VIII-C, since over the whole considered range, the result-
ing FER is within the waterfall region. Some configurations
show a “more robust” behavior than others, e.g., the FER of
the rate 3/4 code with 8-ASK (Table IX) is almost the same
for the spectral efficiencies from 1.3 to 2.0 bits/s/Hz, while for
the rate 5/6 code with 16-ASK, the FER changes by almost
two orders of magnitude. Because of limited computational
resources, we were not able to simulate FERs below 10−4. To
keep the FERs for 16-ASK above 10−4, we had to increase
the target FER of the practical operating point to ≈ 10−2.
In principle, the operating points of 16-ASK that result in
a too low (too high) FER could be adjusted by decreasing
(increasing) the transmission power.

3) Rate: Since all considered codes have the same block
length of 64800 bits, the number of channel uses nc gets
smaller for larger constellations. As discussed in Sec. V, the
CCDM matcher that we use to emulate the amplitude source
PA has a rate close to H(A) when the output length nc is large.
For the smaller constellations 4, 8 and 16-ASK, the effective
rate is equal to H(A) with a precision of two decimal places.
For the larger constellations 32 and 64-ASK, we observe a
slight decrease of the effective rate, e.g., instead of the target
rate 5.00 we observe an effective rate R = 4.98. See also [11]
for a discussion of this phenomenon. We calculate the SNR
gap with respect to the effective rate.

4) Error Floor: The DVB-S2 codes are designed to get the
FER down to a reasonable value and an outer code then lowers
the error probability further [1]. Since the CCDM dematcher
performs a non-linear transformation, one corrupted symbol
at the dematcher input can lead to various corrupted bit-errors
at the dematcher output, so in-block error propagation can
occur. In our scheme, an outer encoder should therefore be
placed between the matcher and the inner encoder and the
outer decoder should be placed between the inner decoder and
the dematcher. To preserve the amplitude distribution imposed
by the matcher, a systematic outer encoder has to be used.

X. CONCLUSIONS

We proposed a practical rate-matched coded modulation
scheme that adapts its transmission rate to the SNR. At the
transmitter, a distribution matcher is concatenated with a sys-
tematic encoder of a binary LDPC code. At the receiver, bit-
metric decoding is used. No iterative demapping is required.
The reported numerical results show that on the complex
baseband AWGN channel, any spectral efficiency between
2–10 bit/s/Hz can be achieved within 1.1 dB of capacity
log2(1+P/1) by using the off-the-shelf DVB-S2 LDPC codes
of rate 2/3, 3/4, 4/5 and 9/10 together with QAM constellations
with up to 4096 signal points. Future work should investigate
rate-matched coded modulation for short block lengths and for
multiple-input multiple-output channels.

APPENDIX

Let D1 and D2 be two independent binary random variables
with distributions P and Q, respectively, and define R = D1⊕
D2. Without loss of generality, assume that

P (0) ≤ P (1), Q(0) ≤ Q(1). (79)

Since PR(1) = 1−PR(0), the distribution PR is more uniform
than P and Q if

min{P (1), Q(1)} ≥ PR(0) ≥ max{P (0), Q(0)}. (80)

By PR(0) = P (0)Q(0) + P (1)Q(1), we have

PR(0) ≥ P (0)Q(0) + P (1)Q(0) = Q(0) (81)
PR(0) ≥ P (0)Q(0) + P (0)Q(1) = P (0) (82)
PR(0) ≤ P (0)Q(1) + P (1)Q(1) = Q(1) (83)
PR(0) ≤ P (1)Q(0) + P (1)Q(1) = P (1). (84)

These four inequalities imply (80).
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