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Prüfer der Dissertation: 1. Prof. Dr. sc. techn. Andreas Herkersdorf

2. Prof. Dr. sc. Samarjit Chakraborty

Die Dissertation wurde am 15.01.2016 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
15.06.2016 angenommen.





Acknowledgments

I want to thank advisers, colleagues, partners, and friends who helped me making
this PhD thesis a success story.

First, I would like to express my gratitude towards my doctoral supervisor Pro-
fessor Andreas Herkersdorf. His guidance and scientific input enabled me to quickly
gain traction in my research, produce continuous scientific output, and finally con-
clude my work with this thesis.

Further thanks go to:

My second examiner Professor Samarjit Chakraborty

Dr. Thomas Wild, for his valuable input in technical and organizational aspects

Andre Richter, whom I worked with in the ARAMiS project. Through our joint
work on publications and project related activities like demonstrators, I was able to
benefit from his technical expertise.

Holm Rauchfuss, who supervised me during my Master’s thesis and is also respon-
sible for writing the research proposal for the ARMAiS project, which accompanied
me for more than three years.

All other colleagues, whom I cannot mention individually - you made life at the
institute a very enjoyable, social, and diverting affair.

All students whom I advised in Bachelor’s, Master’s, or seminar thesis or who con-
tributed as working students. Particularly, I want to mention Ammar Saaed, whose
long term engagement led to a joint publication.

Partners form academia and industry within the ARAMiS project, who were very
open in sharing their expertise. The closest collaboration was done conjunction with
Intel Labs Europe, BMW Forschung und Technik GmbH, and BMW AG.

Finally, I want to thank my parents, Gerd and Roswitha Herber. Their loving
support for 28 years forms the foundation this thesis is built upon.

i





Abstract

More than 70% of innovation in modern cars can be attributed to developments
in electronics and associated software components. A steady growth in computing
power and communication resources is necessary to sustain the introduction of new
functions. However, scalability limits have been reached in automotive electronics
due to installation space and weight constraints, so that the number of electronic
control units (ECUs) cannot be increased any further. To enable continuing inno-
vation, ECUs must be consolidated on shared hardware platforms. In this context,
multi-core processors are a key technology, because they allow concurrent execution
of previously distributed functions on one silicon chip. While this tight integration
can solve today’s scalability issues, it introduces new technological challenges.

The consolidation of electronic functions on multi-core ECUs and the introduction
of new functions lead to increased communication demands. In future, consolidated
ECUs could be interconnected by a backbone network. Such a network must support
high bandwidth and real-time communication at the same time. This requirement
can be satisfied by real-time capable Ethernet versions, e.g. Audio Video Bridging
(AVB) Ethernet.

Electronic functions which are consolidated may differ in their requirements for
safety, security, real-time capability etc. In such mixed-criticality scenarios, isolation
among functions is of key importance for all shared components. Virtualization is a
technology that is successfully used in server environments to provide isolated work-
load consolidation. To be applicable to multi-core ECUs, domain specific challenges
like real-time capability have to be solved.

This thesis focuses on the enablement of communication in virtualized multi-core
ECUs considering automotive specific requirements. To enable the use of legacy
networking technologies in such scenarios, a hardware-assisted virtualization archi-
tecture and implementation for Controller Area Network (CAN) controllers is pre-
sented. Additionally, a network virtualization approach is introduced, which enables
mixed-criticality communication on a CAN bus. To address the increased commu-
nication demand of multi-core ECUs, the integration of AVB Ethernet into legacy
dominated automotive embedded systems is discussed. Specifically, gateway strate-
gies between CAN and AVB Ethernet as well as AVB communication controllers are
researched.
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Zusammenfassung

Über 70% der Innovation in modernen Automobilen wird durch Fortschritt in Elek-
tronik und zugehöriger Software erreicht. Eine stetige Verbesserung von Rechen-
leistung und Kommunikationsressourcen ist nötig, um zukünftig einen Zuwachs an
elektronischen Funktionen zu ermöglichen. Aktuelle Bordnetzarchitekturen können
aufgrund von Bauraum- und Gewichtslimitierungen nicht weiter skaliert werden.
Insbesondere ist es nicht möglich, die Anzahl der verbauten Steuergeräte zu erhöhen.
Um weiter innovationsfähig zu sein, müssen Steuergeräte auf gemeinsamen Hard-
wareplattformen konsolidiert werden. Multicore Prozessoren stellen eine Schlüssel-
technologie dar, da sie die nebenläufige Ausführung zuvor verteilter Funktionen auf
einem einzigen Chip erlauben. Diese Integration erhört die Skalierbarkeit fahrzeug-
interner Elektronik, führt jedoch auch zu technologischen Herausforderungen.

Durch Konsolidierung auf Multicore Prozessoren und einen Zuwachs an elektronis-
chen Funktionen steigen die Kommunikationsanforderungen einzelner Steuergeräte.
In Zukunft könnten konsolidierte Steuergeräte durch ein Backbonenetzwerk verbun-
den sein. Solche Netzwerke müssen einen hohen Durchsatz mit Realzeitfähigkeit
verbinden. Diese Anforderung wird durch realzeitfähige Ethernet Varianten erfüllt
wie z.B. Audio Video Bridging (AVB) Ethernet.

Konsolidierte elektronische Funktionen können sich in ihren Eigenschaften in
Bezug auf Sicherheit, Realzeitfähigkeit etc. unterscheiden. Gemeinsam genutzte
Ressourcen müssen eine Isolation von Funktionen unterschiedlicher Kritikalität sich-
erstellen. Virtualisierung ist eine etablierte Technologie im Serverbereich, welche
eine sichere Integration mehrerer Betriebssysteme auf einer gemeinsamen Plattform
in so genannten Virtuellen Maschinen ermöglicht. Um in Multicoresteuergeräten
eingesetzt werden zu können, müssen domänenspezifische Herausforderungen adres-
siert werden.

Diese Arbeit erforscht Beiträge zur Unterstützung von Kommunikation in vir-
tualisierten Multicoresteuergeräten. Um den Einsatz bestehender Netzwerktech-
nologien in solchen Szenarien zu ermöglichen wird eine dedizierte Hardwareun-
terstützung zur Virtualisierung von Controller Area Network (CAN) Controllern
eingeführt. Zusätzlich wird ein Ansatz zur Netzwerkvirtualisierung von CAN Bussen
präsentiert, wodurch isolierte Kommunikationskanäle auf einem einzigen physikalis-
chen Bus geschaffen werden. Der erhöhte Kommunikationsbedarf von Multicores-
teuergeräten wird durch die Integration von AVB Ethernet in bestehende Bordnetze
adressiert. Im Speziellen werden Gateways zwischen CAN und AVB Ethernet sowie
AVB Kommunikationscontroller erforscht.
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I. Introduction

1. Motivation
Today’s automotive embedded systems are highly complex networks of up to 100
computing nodes distributed throughout the car. In automotive terms, such comput-
ing nodes are called Electronic Control Units (ECUs). Historically, new electronic
functions have been added to cars through the introduction of an additional ECU.
This method allows an integration of functions in a way that little or no modifica-
tion is required in legacy components. However, it is inefficient in terms of resource
utilization and overall system complexity. This does not only include the number
of ECUs, but importantly also the wiring harness. The length of a BMW 7 series
wiring harness is 2.7 km [1]. Due to space limitations, scalability of the current
architecture is limited.

Nevertheless, new applications have to be introduced to maintain a high level of
innovation. Major trends are advanced driver assistance systems (ADAS) or even
highly autonomous driving [2], the integration of cars into cyber-physical systems
(CPS) [3], and powertrain electrification [4]. To enable such applications, signif-
icantly increased computing and communication resources are necessary [5]. For
example, a camera-based lane keeping system is a safety critical system, which has
to process video data in real-time and make appropriate control decisions. To be
able to deliver the necessary performance, embedded system architectures in cars
have to be modernized.

Recognizing the limited scalability of today’s decentralized approach using one
function per ECU and a central gateway, car manufacturers are looking to shift the
architecture paradigm to a centralized one [6, 7, 8]. The main goal is to reduce the
total number of ECUs and the complexity of the wiring harness. If multiple functions
can be consolidated on a single processor, it not only reduces space and weight of
the component but also improves communication among functions, because on-chip
resources can be used instead of fieldbuses.

Shifting to the use of multi-core processors in automotive electronics is key to
achieve centralized control units [9]. The integration of multiple cores on a single
chip allows truly parallel execution of code. Thus, functions of previously parallel
ECUs can be running side-by-side on a shared hardware platform. While multi-
core processors offer isolated computing cores, much of the remaining hardware
infrastructure is shared among cores. Resource sharing among functions can lead
to performance degradation through temporal interference. This has been demon-
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I. Introduction

strated for many components like memory [10] or on-chip interconnects [11]. The
resulting challenges with respect to real-time capability, safety, and security, which
cannot be satisfied using today’s technology.

In server environments, platform virtualization is an established technology to
consolidate servers on a shared computing system. By inserting a privileged soft-
ware layer, the so called hypervisor or virtual machine monitor (VMM), multiple
operating systems (OSs) can be executed concurrently in an isolated fashion. OSs
are running in virtual machines (VMs), which are abstract replicas of the actual
physical system. Ideally, the behavior of a VM should be as close as possible to that
of the physical system. However, in order to allow safe resource sharing, certain
privileged instructions have to be monitored and moderated by the hypervisor. The
isolation properties of virtualization could be used in an automotive setting to enable
the concurrent execution of functions on a shared platform [12, 13, 14, 15, 16].

Due to the strong historic association of virtualization with server environments,
current virtualization solutions are not designed to cater the specific needs of auto-
motive applications. The main optimization goals for servers are high throughput
and high utilization. Thus, virtualization has been optimized to be efficient for gen-
eral purpose workloads, but doesn’t address e.g. real-time requirements. Moreover,
virtualization is nearly exclusively applied to x86 processor systems, while in the au-
tomotive domain other architectures like Infineon TriCore or PowerPC are present.
To apply virtualization to automotive electronics, the architecture and associated
requirements have to be understood.

ECUs are grouped into so called functional domains [1, 5]. Within each of these
functional domains, ECUs are connected through one or more communication net-
works, mostly fieldbuses. Inter-domain communication is possible through a central
gateway, which connects all domains. The total number and naming of domains
differs among OEMs. An example configuration could include power train, chassis,
body, comfort, infotainment, and driver assistance domains.

While non-functional requirements are homogeneous within a domain, they can
be quite heterogeneous among different domains. For example, an anti-lock braking
system is a safety critical chassis component with hard real-time requirements. On
the other hand, a rear-seat entertainment system is neither safety critical nor con-
strained by real-time requirements. Loads in such a system are dynamic and may
require significantly more computing resources and network throughput than control
applications. Additionally, to provide dynamic content, entertainment systems rely
on wireless interfaces and are consequently prone to attacks [17]. Therefore, security
concerns are more prominent in such applications scenarios.

When functions from different domains are consolidated, mixed-criticality sce-
narios emerge. In such scenarios, functions of different criticality run concurrently
using shared computing and communication resources. In an automotive setting,
criticalities are usually associated with the so called automotive safety integrity level
(ASIL). To allow integrated execution of functions with different ASIL, strong iso-
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1. Motivation

lation is paramount. If isolation cannot be guaranteed, all functions would have
to developed according to the highest ASIL requirements on the platform, which is
unfeasible due to the high qualification cost of highly safety-critical functions.

Due to the heterogeneous requirements and historic development, different net-
working technologies are used in automotive embedded systems. The list of technolo-
gies includes Controller Area Network (CAN), FlexRay, Local Interconnect Network
(LIN), MOST, Ethernet, and LVDS. Due to its robustness, real-time capability, and
cost-efficiency, CAN is the most widely used networking technology in automotive
embedded systems. It provides up to 1 Mbit/s using an unshielded twisted pair
as physical layer. Within a single car, up to eight CAN buses are used, yet the
maximum bandwidth is limited to 500 kbit/s due to EMC concerns. In future,
CAN FD (flexible data-rate) could be used to increase the throughput to around
10 Mbit/s [18]. Ethernet is currently used as technology for flashing ECUs and for
diagnostics. In future scenarios, it could be used in infotainment, as backbone and
potentially even for control applications.

Consolidation of functions in automotive embedded systems also requires archi-
tectural changes. Car manufacturers are looking to eliminate the bottleneck of the
central gateway by connecting centralized nodes through a backbone network [19].
These consolidated ECUs serve as so called domain control units (DCUs), which are
connected with sensors and actuators through a number of fieldbuses. The back-
bone network has high throughput requirements, but is safety-critical and real-time
constrained at the same time.

To provide high throughput and real-time transmission at the same time, Ethernet-
based networking technologies are being considered [20]. Legacy Ethernet has lim-
ited real-time capabilities [21]. Nevertheless, multiple real-time capable Ethernet
variations exist including AVB Ethernet, TTEthernet, or PROFINET. Such tech-
nologies could be used to satisfy communication requirements of future automotive
embedded systems.

The combination of multi-core processors and virtualization has the potential to
enable centralized and consolidated control units to overcome the scalability issues
of today’s automotive embedded systems. However, technical key issues have to be
addressed in order to produce a safe and secure solution. Within the scope of this
thesis, communication among virtualized multi-core ECUs is the focus. Two key
challenges for networking in future automotive embedded systems will be addressed
within the scope of this thesis:

1. Legacy components are an important aspect in automotive systems. Because
it is too costly to develop a car from scratch, legacy ECUs and thus legacy
networking technologies will be a part of future car generations [22]. Therefore,
it has to be ensured that legacy networks and network controllers can fulfill
the requirements of future architectures like the support of virtualization and
mixed-criticality.
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2. To keep up with rapidly increasing application requirements, new networking
technologies are required. To provide sufficient bandwidth and real-time op-
eration at the same time, real-time capable Ethernet derivations can be used.
However, such technologies have to be integrated efficiently into the existing
ecosystem and interface legacy fieldbuses.
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2. Problem Statement and Contributions

The sharing of network-I/O devices has traditionally been a major challenge in vir-
tualized systems. Mostly, SW-based solutions are used to enable I/O sharing, where
a privileged SW component moderates and forwards I/O transfers. The additional
data copy operations and context switches introduce significant computing over-
heads and added latencies. To reduce I/O-virtualization overheads, HW-assistance
for I/O-virtualization has been introduced. However, current solutions only focus
on I/O devices for networks used in server environments (Ethernet, InfiniBand).

To enable sharing of automotive I/O devices, solutions have to be found, which
address domain specific requirements. In contrast to server systems, where through-
put is the most important property, automotive systems need to satisfy real-time
and safety requirements. Within this thesis, virtualization extensions are re-
searched for CAN, the most widely used automotive bus. A layered architecture is
proposed that extends a standard CAN controller so that it can be used by multiple
tenants. A virtualization layer within the hardware fulfills the tasks of moderating
and forwarding CAN I/O request from and towards VMs.

In mixed-criticality scenarios, the sharing of resources should not lead to safety
or security issues. Therefore, it must be ensured that the performance experienced
for one virtual CAN controller is independent of the utilization of other virtual in-
stances. This is achieved through a temporal isolation mechanism, which sched-
ules any requests towards virtual CAN controllers in order to optimize utilization
and minimize added latencies.

While hardware-assisted virtualization is a mature technology that provides near-
native performance in x86 systems, there are still issues remaining with respect to
interrupt forwarding. Interrupts still require forwarding from host into guest mode,
and thus every interrupt creates a context switch. To reduce the resulting perfor-
mance overhead, modern Ethernet Network Interface Controllers (NICs) implement
interrupt coalescing mechanisms, which jointly forward multiple interrupts. Because
such mechanisms lack real-time capabilities, the concept of deadline-aware inter-
rupt coalescing is introduced and implemented using the example of a virtualized
CAN controller.

Platform virtualization allows the consolidation of mixed-criticality functions in
centralized control units. Nevertheless, automotive embedded systems are naturally
distributed, because the centralized nodes have to communicate with sensors and
actuators. To minimize wiring efforts, it is necessary that functions of different crit-
icality can use shared networking infrastructures. Current networking technologies
used in automotive systems like CAN lack the ability to efficiently support mixed-
criticality traffic. Here, network virtualization for CAN is researched. The
proposed concept divides the physical bus into multiple virtual communication net-
works. The approach guarantees performance and fault isolation among concurrent
virtual networks in mixed-criticality scenarios.
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In addition to the enablement of legacy networks, the integration of new net-
working technologies is key to satisfy the communication requirements of multi-core
based applications. Connecting consolidated ECUs through a backbone network
requires high bandwidth and real-time capabilities at the same time. Audio Video
Bridging (AVB) Ethernet is a favored candidate, which extends legacy Ethernet with
traffic shaping and policing as well as time synchronization to achieve real-time ca-
pable communication. However, AVB Ethernet is significantly different to current
networking technologies with respect to many properties like packet size, network
architecture, admission arbitration etc. Thus, enabling AVB Ethernet for use in
automotive embedded systems is an important challenge.

One problem researched here is how to efficiently interconnect AVB Ethernet with
a legacy fieldbus technology, specifically CAN. A CAN to AVB Ethernet gate-
way connecting these networking technologies has to overcome significant protocol
and technology differences. Through packet aggregation and scheduling, efficient
and real-time capable forwarding is achieved here.

Additionally, research was conducted in the field of AVB Ethernet endpoints.
As AVB Ethernet is a relatively new technology, there is a lack in practical experience
regarding the design and integration of HW/SW systems supporting AVB Ethernet.
Thus, an AVB Ethernet controller was developed and integrated into a multi-core
platform.

Figure I.1.: Contributions towards the enablement of multi-core ECUs in fu-
ture automotive embedded systems.

Fig. I.1 summarizes the contributions of this thesis and illustrates, how their
combination contributes to the enablement of multi-core ECUs in future automo-
tive embedded systems. The enumerated areas within the figure correspond to the
following contributions:

1. Virtualization of CAN controllers to provide efficient, scalable and real-time
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capable communication in multi-core ECUs. This includes a layered archi-
tecture for HW-assisted virtualization, a temporal isolation scheme, and the
deadline-aware interrupt coalescing mechanism

2. Network virtualization for CAN to enable mixed-criticality communication on
a shared physical medium

3. A real-time capable CAN to AVB Ethernet gateway using frame aggregation
and scheduling to maximize its efficiency

4. Design and integration of an AVB Ethernet controller into a multi-core SoC
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3. Structure and Organization
The thesis is structured as follows: Chapter II introduces the state of the art in
automotive embedded systems and virtualization. In chapter III, a concept for a
virtualized CAN controller is proposed. A composable hardware architecture is de-
veloped, in which a virtualization layer is added to enable multi-tenancy for CAN
controllers. A network virtualization approach for CAN is presented in Chapter IV.
It subdivides the physical communication channel of the CAN bus into multiple,
concurrent virtual networks. The enablement of AVB Ethernet is discussed in Chap-
ter V. It includes the gateway for CAN to AVB Ethernet communication as well as
the design of an AVB capable endpoint device. Finally, this thesis is concluded in
Chapter VI.
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This chapter presents and analyzes the state of the art in technologies relevant to this
thesis. As this work aims to improve automotive embedded systems (Section II.1)
through the introduction virtualization (Section II.2) techniques, these two areas
are also the main focus. To get a sufficient view on the state of the art, this chapter
provides information on industrial standards and technologies, commercial products,
established research results, as well as ongoing research activities and trends.

9



II. State of the Art

1. Automotive Embedded Systems
The technical contributions of this thesis are primarily focused on automotive ap-
plication scenarios. Typical requirements, embedded systems architectures and net-
working technologies relevant to automotive electronics will be introduced here.

1.1. Non-Functional Requirements
Besides functional requirements which specify the tasks a component or system has
to fulfill, non-functional requirements are prominent in automotive systems. They
specify the way in which the completion of a task must be fulfilled. A typical
example is a temporal requirement that specifies a time span, in which a task must
be performed. The most relevant requirements will be detailed below.

1.1.1. Real-Time Capability

Real-time capability is a central requirement in automotive embedded systems. In
contrast to conventional systems, where an electronic function must simply deliver
a correct result, the timely delivery of said result is just as important in a real-
time system. For example, in an engine control system, the amount of fuel injected
into a cylinder must be determined before the designated time of injection. This
process involves reading out sensor values, calculating the value, and communicating
it to the corresponding actor. The overall time needed consists of computation and
communication delays.

Figure II.1.: Example distribution of execution times illustrating worst-case
prediction methods

To validate a system’s ability to satisfy real-time constraints, several methods
can be used including analytic, simulative and experimental approaches. Fig. II.1
shows a common distribution of execution times in a scheduled system. In this
context, an execution time is defined as the time from the release of a task until
its completion. The lowest possible execution time is called best case execution
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time (BCET). Average execution times are often close to the best case, whereas
the probability of execution times close to the worst-case are steadily decreasing.
The longest possible execution time is called worst-case execution time (WCET). It
happens only if multiple worst-case conditions occur at the same time and is thus
unlikely to happen.

In an experimental assessment of execution times, a real system is stimulated
through real or synthetic workloads. A measurement setup is used to determine
execution times. Thus, a statistical distribution of execution times can be ob-
tained. However, minimum and maximum execution times are not necessarily equal
to BCET and WCET, because the experiment can only be carried out for a limited
amount of time (usually hours or days).

The coverage of execution times can be improved through simulation. Simulation
uses a computer model replicating the real system as close as possible. Through
abstraction, a speed up can be achieved over experimental assessments. The pre-
cision of a simulation relies on the accuracy of the model used. Compared to an
experiment, it introduces potential error due to modeling imprecision. At the same
time, simulation does not require the actual hardware setup and can thus be done
in earlier design stages, where no running prototype exists.

Finally, real-time analysis can be used to determine bounds for the WCET and
BCET. Real-time analyses use mathematical models of the systems at stake to
obtain the relevant information. In classic real-time analysis, no execution time dis-
tribution is obtained, but rather bounds for the measures of interest. An exception
to this are stochastic real-time analyses. Real-time analysis is the only of the three
methods introduced which is capable of providing an upper bound for WCET. This
is important in safety-critical systems, as it allows to engineer a system, in which
deadlines are guaranteed to be met. The mathematical model often includes ab-
stractions or simplifications due to system complexity. To ensure the integrity of
the analysis, the modeling must provide pessimistic guarantees.

Such methods are important in any scheduled system, not only processing systems.
In networking, communication delays can be addressed in a similar fashion. In this
context, the time from the release of a communication message until its complete
reception at the receiver is called response time. Thus, the corresponding metrics
are called worst/best-case response time (WCRT/BCRT).

1.1.2. Safety

Electronic functions implemented within automotive embedded systems can be highly
safety-critical. Therefore, reliable hard- and software are necessary to guarantee safe
operation of the car as a whole. How safety is guaranteed in an automotive context
in standardized in ISO 26262 [23].

The standard defines multiple criticality levels. Such levels are called Automotive
Safety Integrity Level (ASIL). The ASIL of a component is determined through a
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hazard assessment. All possible hazardous events are classified in terms of their
severity (S0: No injuries, ..., S3: Life-threatening), exposure (E0: Incredibly un-
likely, ..., E4: High probability), and controllability (C0: Controllable in general, ...,
C3: Difficult to control or uncontrollable). Based on this assessment, a safety goal
is defined. The most critical level, ASIL D, is only reached for a combination of {S3,
E4, C3}. Uncritical components are grouped into QM (Quality Management) and
are not handled using ISO 26262.

Safety requirements vary between the functional domains. Only Powertrain, Chas-
sis, and Driver Assistance reach the highest level ASIL D. Other domains like Com-
fort and Infotainment usually do not require qualification at levels higher than ASIL
B [1].

Another important aspect within ISO 26262 is so called ”freedom of interfer-
ence” [23]. Freedom of interference is particularly important when using commercial
of the shelf (COTS) components and in mixed-criticality scenarios. When hardware
components are shared by function of mixed-criticality, it must be ensured that
low-criticality do not interfere with highly safety critical functions.

1.1.3. Security

Historically, security was not a major concern in the automotive design process.
Security concerns were only addressed in the form of anti-theft features. Cyber
security was not considered.

In the last years, connectivity of cars has increased significantly with the intro-
duction of wireless communication interfaces like Bluetooth, WiFi, and LTE. The
increase in wireless interfaces leads to a growing attack surface [17, 24].

At the same time, the power of electronic functions in cars is increasing. Due to
the introduction of advanced driver assistance, electronic systems increasingly take
over the jobs like steering, acceleration, and breaking. At Black Hat 2015, a talk
with the title ”Remote Exploitation of an Unaltered Passenger Vehicle” by Charlie
Miller and Chris Valasek showcased how an attacker can gain access and control a
car via remote1. By gaining access to the head-unit through a mobile data interface,
the hackers were able to perform a code injection towards a so called fast-boot micro-
controller. This is a processing subsystem, which provides CAN access while the
head-unit is still booting. With the gained CAN access, critical actors of the car
like steering and brakes could be controlled. Such an attack could be prevented by
applying state of the art counter-measures from the IT world like code signing [25].

In this thesis, security is a concern in the context of ECU consolidation. While
most attack vectors are present in non safety-critical domains like infotainment [1],
consolidation potentially leads to an integration of attack vectors with safety-critical

1http://spectrum.ieee.org/cars-that-think/transportation/systems/

jeep-hacking-101
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domains. Thus, isolation among these partitions must be ensured within all com-
ponents.

1.2. Embedded System Architecture and Technology
The architecture of automotive embedded systems is divided into functional do-
mains, in which electronic control units (ECUs) communicate through a number
of in-vehicle networks. This architecture is historically grown, highly complex, and
heterogeneous. Currently, around 70 ECUs or up to 100 ECUs in high-end configu-
rations are implemented in automotive systems. The overall wire length adds up to
2.7 km [1].

ECUs are components used to realize electronic functions within the car. Typ-
ically, there is a one-to-one mapping of functions to ECUs. Functions can range
from safety-critical applications like engine control to comfort applications like seat
control. ECUs usually implement at least one microcontroller. In safety-critical do-
mains, automotive specific microcontrollers like Infineon AURIX or Freescale MPC
are used that are designed according to ISO 26262 and provide features for fault-
recognition like lock-step operation.

A simplified example architecture is illustrated in Fig. II.2. Key to the architec-
ture is a component called the central gateway. It interconnects networks from all
functional domains to allow inter-domain communication. Further details regarding
gateways are presented in Section II.1.5.

The number and naming of functional domains varies for different car manufac-
tures. Nevertheless, key domains can be found in nearly every car. They include:

• Powertrain: Components related to functions, which help the car to generate
and deliver power in the direction of motion are grouped in the powertrain
domain. This includes engine control, transmission, exhaust system etc. These
components are interconnected through a high-speed CAN bus (500 kbit/s).
This domain is safety-critical and its configuration is static.

• Chassis: Electronic functions which control the interaction of the car with
the road are grouped in the chassis domain. Example functions include an-
tilock braking, electronic stability programs, active damping, or steer-by-wire.
Properties are similar to powertrain: real-time, safety-critical, and static con-
figuration. Because chassis applications require low latencies, FlexRay is the
networking technology of choice.

• Infotainment: Head-unit, instrument cluster, navigation, and entertainment
applications including audio and video and associated functions constitute
the infotainment domain. In contrast to powertrain and chassis, only lower
criticality levels are reached (up to ASIL B). Due to the high connectivity of
the infotainment domain through several interfaces like WiFi, Bluetooth, and
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Figure II.2.: Example architecture of an automotive embedded system (sim-
plified), adapted from [1]

wireless communication, it has the largest attack surface of all domains. Thus,
security considerations are an important factor, while real-time and safety
play a minor role. Current infotainment systems use MOST for audio/video
transmission and optionally LVDS to connect camera systems. In future, these
could be replaced by Audio Video Bridging (AVB) Ethernet.

• Body: This domain includes basic electronic functions like interior and exte-
rior lighting, wipers, windows, car-access etc. It is implemented using one or
multiple CAN buses. Due to the highly distributed nature of the functions, it
is associated with high wiring effort.

Because sensors and actuators are distributed throughout the car, networking
plays an important role within the car. The key networking technologies currently
used in state of the art cars are:

• Local Interconnect Network (LIN): The cheapest networking technology
LIN [26] uses master-slave topology on a shared bus to provide microcontrollers
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with access to sensors and actuators. The highest possible bandwidth is 20
kbit/s.

• Controller Area Network (CAN): CAN [27] is a shared bus with a single
logical bit line. It provides higher bandwidth than LIN of up to 1 Mbit/s,
though in automotive applications only 500 kbit/s or less is used due to
electro-magnetic interference considerations. Detailed information about CAN
is given in Section II.1.3.

• FlexRay: FlexRay [28] uses time-triggered network arbitration to provide
highly predictable and robust latencies. Data rates reach up to 10 Mbit/s.

• Media Oriented Systems Transport (MOST): MOST [29] is a serial bus
developed for Audio/Video transmission. It is specified for 25, 50 and 150
Mbit/s. While it is currently the de-facto standard for infotainment network-
ing, car makers are looking to replace MOST e.g. through the introduction of
Ethernet.

• Low-voltage differential signaling (LVDS): LVDS is a point-to-point con-
nection using twisted pair. It offers high bandwidth up to 655 Mbit/s and is
typically used as flat panel display link. In the automotive context, it is used
to connect camera systems. Point-to-point wiring is inefficient and the cables
are expensive so that other solutions are required in the mid-term.

• Ethernet: In current automotive embedded systems, Ethernet is used for de-
bugging and ECU flashing. In future cars, Ethernet could be used to replace
LVDS and MOST or even in real-time scenarios [30]. Real-time capable vari-
ations of Ethernet exist, e.g. TTEthernet or Audio Video Bridging Ethernet
(see Section II.1.4).

Current automotive embedded systems are facing significant scalability issues.
The historical approach of introducing a new ECU for every function has led to an
increase in the number of ECUs that can longer be continued due space and weight
limitations. Thus, future automotive architectures need to consolidate functions on
shared hardware platforms. Car manufactures are propagating the idea of so called
domain controlled architectures, in which one powerful ECU (the domain control
unit (DCU)) implements the majority of all functions. Simpler slave nodes remain
to provide access to distributed sensors and actuators. A major challenge in the
realization of DCUs is that multiple electronic functions have to run on a shared
platform while guaranteeing freedom from interference (see Section II.1.1.2).

A second issue of the current architecture is the central gateway. As a single
component, it is the designated traversal point for any inter-domain communication.
Therefore, throughput requirements towards the central gateway scale directly with
the amount of communication from the domains. A network backbone [19] could be
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used to overcome these issues by decentralizing the task of inter-domain forwarding.
Within an automotive embedded system, a backbone is a high bandwidth network
that interconnects functional domains. Ideally, this backbone should be real-time
capable to enable safety-critical inter-domain communication.
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Figure II.3.: Domain control architecture with backbone network, adapted
from [31]

Fig. II.3 shows an example of a domain controlled architecture. The main chal-
lenges arising are the safe and secure consolidation of functions within DCUs and
the integration of a backbone network. To implement DCUs, multi-core processors
are a key technology. By providing separate computing cores, they allow paral-
lel execution of previously isolated workloads. Nevertheless, additional isolation is
needed, which can be achieved e.g. through virtualization (see Section II.2).

1.3. Controller Area Network (CAN)

Controller Area Network (CAN) is an asynchronous serial bus, which is widely used
in automotive electronics. It has a single logical bit line and can be implemented us-
ing an unshielded twisted-pair wire. CAN features error management and bounded
latencies, which enables it to serve as communication medium in safety-critical do-
mains. The following sections highlight basics regarding the CAN’s communication
protocol and timing analysis.
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1.3.1. CAN Communication Protocol

CAN messages are transmitted through so called data frames. The structure of a
CAN data frame is illustrated in Figure II.4. The beginning of a frame transmission
is indicated by a Start-of-Frame (SoF) bit. It is followed by the message identifier
(MSG ID), which specifies the contents of the message. CAN is a broadcast medium
and does not use sender or receiver addressing. Each receiving node has to decide
based on the ID if it is interested in the message contents. The CAN 2.0 standard
allows the use of extended IDs, which contain 29 instead of 11 bits. However,
due to the increased framing overhead, real implementations are usually constraint
to standard IDs. The data length code (DLC) specifies the payload length to an
integer value of 0 to 8 B. The actual payload is followed by a cyclic redundancy
check. Receiving nodes acknowledge the reception of the frame using the ACK bit.
The frame is concluded by an End-of-Frame (EoF) field containing 7 bits. CAN
frames have a minimum interframe gap of 3 bits.

ACK

dominant recessive

SoF Data FieldMSG ID CRCDLC

11 4 {0,.., 8}·8 15

EoF

1 71 length
(bits)

Figure II.4.: Standard CAN data frame [27]

CAN uses a concept of dominant and recessive logic levels: Multiple nodes can
write a bit simultaneously, but if at least one dominant bit was written, only this
bit will be visible for receivers. The dominant bit level corresponds to a logical ’0’,
and the recessive to a ’1’.

The message arbitration uses a strict priority scheme. Priorities are determined
based on the MSG ID, where the numerically smallest ID has the highest priority.
It uses dominant and recessive logic levels to guarantee a collision free arbitration
phase. Nodes that want to send a message start participating in the arbitration
process by sending the first bit of the ID. Each node samples this bit from the bus
line. If a node sent a recessive bit, but samples a dominant bit, it recognizes a
higher priority message and stops transmitting. This process is repeated until only
one sending node remains.

CAN is an asynchronous bus, meaning that no shared clock exists. Nevertheless,
CAN needs some form of coordination, as bits must be sampled at the same time
to achieve consistent communication. CAN uses two forms of synchronization, hard
and soft synchronization. If the bus was idle and a SoF bit gets transmitted, all
nodes synchronize to the start of this bit (hard synchronization). Throughout the
transmission of a frame, CAN nodes synchronize on positive and negative edges (soft
synchronization).

To ensure the clock drift remains bounded, a change in polarity has to occur at
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least every five bits. CAN uses bitstuffing, i.e. after five consecutive bits with equal
polarity, a bit with opposite polarity is inserted. These bits are removed within the
CAN controller of the receiver. While the bitstuffing is transparent for applications
using CAN for communication, bitstuffing does affect the transmission time of a
CAN frame.

CAN features an extensive error management protocol to detect and correct errors
induced through electromagnetic interference (EMI) or hardware errors. Errors can
be detected in different ways. A sender detects an error, if a different bit is sampled
then the bit transmitted (excluding arbitration phase). Also, six consecutive bits of
equal polarity trigger an error, as they violate the bitstuffing principle. Other errors
can be detected through the CRC code or a general violation of the CAN data frame
format. A single fault can trigger multiple of these errors. If an error is detected,
the detecting node will transmit an error flag and the transmission will be repeated.

1.3.2. CAN Timing Analysis

CAN is often used in applications which require latency guarantees for the trans-
mission of messages. Timing analysis of CAN has been an active research topic for
over 20 years. This section covers the most essential parts of CAN timing analysis,
which is used throughout major parts of this thesis. The presentation is based on
the analysis of Davis et al. [32].

Goal of CAN timing analysis is to determine a pessimistic bound for the worst-
case response time (WCRT) of all messages. The WCRT is defined as the time of
the release of a message m until its successful transmission on the CAN bus. It is
composed of the queuing delay wm, the time it takes for the transmission to start,
and the transmission time Cm, the time to transmit the message on the bus.

In worst-case analyses for CAN, it is assumed that maximum bitstuffing occurs.
In this case, the transmission time of a standard CAN frame containing sm payload
bytes can be calculated as

Cm = (55 + 10sm)τcan . (II.1)

A necessary but not sufficient condition for schedulability is that the CAN uti-
lization must be smaller than 100%. Each message is either assumed to be cyclic or
to have a minimum inter-arrival time noted as Tm. Thus, the bus utilization can be
calculated as

U =
∑
∀m

Cm/Tm. (II.2)

CAN analysis is based on busy period analysis. A busy period is a time span
in which a resource is blocked. For every message m, a different worst-case can be
constructed and therefore, the busy period also differs. The level-m busy period tm
(maximum time during which the CAN bus is blocked by a message of priority m or
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higher) can be constructed as follows. When message m is queued for transmission,
the longest lower priority message has just started transmission. The time of this
blocking Bm can be described as

Bm = max
∀k∈lp(m)

(Ck), (II.3)

where lp(m) is the set of messages with a priority lower than message m. At the
same time as message m is enqueued, all higher priority messages get queued as well.
These higher priority messages are transmitted first. If, during this time period,
additional messages of priority m or higher get queued, they will also contribute to
the length of tm. Also, the release of a message can be subject to a jitter Jm, e.g.
due to variable software delays in the dispatching of a message. The level-m busy
period tm is given by the implicit formulation

tm = Bm +
∑

∀k∈hp(m)∪m

⌈
tm + Jk
Tk

⌉
Ck. (II.4)

It can be solved through fixed point iteration. If tm > Tm− Jm it is possible that
multiple instances q of message m get queued during tm. In this case, the WCRT of
all instances has to be analyzed. The actual number of instances, that have to be
checked, can be computed as

Qm =

⌈
tm + Jm
Tm

⌉
. (II.5)

The computation of the queuing delay is similar to (II.4). In contrast to the busy
period, the queuing delay certainly ends after the transmission of the respective
message instance. It can be determined as

wm(q) = Bm + qCm +
∑

∀k∈hp(m)

⌈
wm(q) + Jk + τbit

Tk

⌉
Ck (II.6)

for every instance q of message m. Using fixed point iteration, (II.6) can be
represented in an explicit, iterative equation

wn+1
m (q) = Bm + qCm +

∑
∀k∈hp(m)

⌈
wnm(q) + Jk + τbit

Tk

⌉
Ck. (II.7)

The WCRT for the q-th instance of messagem can be computed by adding queuing
delay, transmission time, and the release jitter

Rm(q) = Jm + wm(q)− qTm + Cm. (II.8)
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A general latency bound for a message m is consequently given as the maximum
of WCRT of any message instance

Rm = max
∀q∈Q

(Rm (q)) . (II.9)

It was shown in [33] that it is usually sufficient to only analyze the first instance.
Message instances q > 0 only increase the WCRT Rm in high load scenarios (e.g.
more then 99% for a CAN bus with 500 kbit/s), with a message set that is only
just schedulable. In practical systems, bus loads are smaller and systems are not
designed at the edge of schedulability to be able to respond to errors. While the
analysis by Davis et al. [32] is the most general, it is sufficient to use the simpler
version published earlier by Tindell et al. [34]. In this case, (II.7) is simplified to

wn+1
m = Bm +

∑
∀k∈hp(m)

⌈
wnm + Jk + τbit

Tk

⌉
Ck. (II.10)

1.4. Audio Video Bridging (AVB) Ethernet

Audio Video Bridging (AVB) is a real-time Ethernet technology, which is specified by
a set of IEEE standards. It enables time-sensitive and synchronous communication
by extending legacy Ethernet with stream reservation [35], traffic shaping and flow
control [36], and time-synchronization [37]. AVB was originally developed to reduce
the wiring effort in audio and video applications, where point-to-point connections
are state of the art.

Features like high bandwidth, IEEE standardization, and low-latency communi-
cation make AVB Ethernet an interesting candidate for application in automotive
embedded systems. Three possible applications exist:

1. Backbone: Upcoming embedded architectures in automotive electronics use
backbone networks to interconnect different functional domains instead of a
central gateway. Backbone networks need to transfer high data volumes, which
include safety critical messages with strict real-time requirements. AVB Eth-
ernet can fulfill these requirements.

2. Entertainment: Audio and video data of in-car entertainment systems is cur-
rently transferred through MOST. Ethernet is a cost-efficient replacement,
which can cater the associated bandwidth requirements. While entertainment
data is not safety-critical, it still requires reliable latencies to avoid buffer
underruns.

3. Camera streaming: Currently, camera data is streamed using point-to-point
LVDS connections. The increasing amount of cameras, especially used for
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advanced driver assistance systems, makes a switched network solution in-
creasingly desirable. In contrast to entertainment applications, such data is
safety-critical and is constraint by hard real-time requirements.

1.4.1. Traffic Shaping and Flow Control

Every AVB Ethernet package is associated with a fixed priority, which is mapped
to a specific traffic class. Most commonly, three classes/priorities are used, namely
Class A (highest priority), Class B (medium priority) and a legacy class. Class A
and B are dedicated to time-sensitive streaming and are subjected to additional
traffic shaping. AVB uses VLAN frames. The VLAN tag within a frame specifies
the traffic class and priority of the frame.

Figure II.5.: Operational principle of the Credit Based Shaper (CBS) algo-
rithm

Core to the real-time capability of AVB Ethernet is the Credit Based Shaper
(CBS) algorithm. The CBS uses a credit system to police a class to comply to
its allocated bandwidth and to prevent long bursts. This way, interference with
other classes can be limited and real-time guarantees can be given. Packages from
a certain class are only eligible for transmission if the associated credit is greater
or equal to zero. When no transmission is ongoing and no higher priority class is
able to transmit, a transfer is initiated and the credit reduced proportional to the
transmission time. When packets are buffered, but a transmission is not possible,
the credit is increased proportional to its allocated bandwidth.
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Figure II.5 depicts a scenario that applies the CBS principle to an AVB class A
traffic stream. Initially, a legacy packet is transmitting. During the transmission
time, packets from class B and class A are released but cannot be transmitted im-
mediately, because the legacy transmission is non-preemptive. While the packet is
waiting for transmission, the credit of class A is increased. When the transmis-
sion of the legacy frame has concluded, class A has the highest priority and starts
transmitting and its credit is decreased consequently. During the transmission, two
further class A frames get released. A second transmission can follow immediately,
as the credit is zero when the transmission finishes. After the second transmission of
a class A frame, the credit of class A is negative and class B is allowed to transmit.
Before the transmission of the final class A frame can be started, the credit has to
reach zero.

Figure II.6.: Logical architecture of a 3-port AVB Ethernet switch and a talker
endpoint with 2 streams in classes A & B and a legacy traffic class.

AVB devices are generally egress buffered and every egress port has separate
buffers for each traffic class. AVB differentiates endpoints into talkers and listeners,
corresponding to devices which transmit or receive AVB streams. Endpoints can be
both talker and listener at the same time. In talker endpoints with multiple streams,
a second layer of CBS is used to join multiple streams into a single traffic class. An
example architectures of a switch and a talker endpoint are depicted in Figure II.6.

1.4.2. Stream Reservation

At every egress port, information about the allocated bandwidth share for each traf-
fic class is required. This information is communicated through a dynamic stream
reservation protocol.

A reservation can be initiated through a talker advertise. A talker endpoint sends
out a specific Ethernet packet that carries the stream ID and the desired band-
width. When the stream reservation packet arrives at a switch, it checks whether
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the required bandwidth is still available. If the reservation is possible, the stream is
registered and the packet forwarded. If not, a talker failed message is returned to
the initiator. If the talker advertise arrives at the listener, all ports within the com-
munication path have sufficient resources and a listener ready message is returned.
Streams can be deregistered by talkers and listeners.

In automotive systems, most communication requirements are static. For exam-
ple, it is known at design-time, how many cameras are built into a specific car and
what their bandwidth requirements are. Therefore, dynamic reservation might not
be necessary in automotive scenarios.

1.4.3. Time Synchronization

Another feature included in AVB is timing synchronization. It is specified in IEEE
802.1AS and mainly composed of two protocols, the Precision Time Protocol (PTP,
IEEE 1588) and the best master clock algorithm. The best master clock algorithm
selects the clock within a network, which has the highest priority. This clock is called
grandmaster clock and is used as master in the PTP. Similar to the stream reser-
vation, the best master clock could be determined at design-time in an automotive
system.

Figure II.7.: Working principle of Precision Time Protocol in AVB

PTP achieves clock synchronization using an exchange of timestamps as depicted
in Figure II.7. The master initiates a synchronization sequence by sending a sync
message, which contains the timestamp T1. Upon reception, the slave records a
timestamp of the arrival time of the sync message T1’. The slave incorporates
another timestamp T2 into a delay req message. The master measures the arrival
in timestamp T2’ and responds by sending the timestamps {T1, T1’, T2, T2’} in a
delay resp message to the slave. The slave can calculate the offset according to

offset =
(T1′ − T1)− (T2′ − T2)

2
. (II.11)
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The synchronization is most precise, if the transmission times of sync message
and delay req message across the network are equal. Any difference in these times
will directly affect the offset between the two clocks. Also, recording a timestamp is
usually an error-prone operation. Several research activities have been directed at
quantifying these error sources.

The clock synchronization performance of hardware and software timestamping
implementations was evaluated by Mahmood et al. [38]. The authors use a combina-
tion of system measurements and simulation. In an experiment, interrupt handling
and timestamping delays were measured. These delays follow a distribution similar
to a Gaussian distribution and serve as input for a simulation. It was conducted for
two systems, which use a Core i7-37000K and a Core 2 T7400 CPU, respectively.
The root mean square (RMS) error obtained in the simulations ranged between 409
ns and 1.78 µs.

Kern et al. [39] observed the clock synchronization error in an AVB network for
varying temperature conditions. In slowly varying conditions, the error was smaller
than 30 ns. Even in experiments with extreme temperature shocks (a change in 80 K
over 6 minutes), the synchronization errors were found to be smaller than 200 µs.

Lim et al. [40] simulated an AVB Ethernet-based in-car network to assess syn-
chronization errors. In a daisy-chain topology with seven hops (six switches), errors
up to 985 ns were observed. The simulation assumes an ideal implementation of
the synchronization protocol in the endpoints. The traffic scenario is not explicitly
described within the paper, but seems symmetric (equal interference for both direc-
tions during synchronization). Also the simulation time is not given. In worst-case
scenarios, the error could be larger and has to be evaluated for every configuration.

1.4.4. Timing Analysis

The majority of research regarding AVB Ethernet focuses on timing analysis. The
area is still developing and no universally accepted approach exists. This section
gives a brief overview regarding proposed methods, including network calculus, com-
positional performance analysis, and modular performance analysis.

Network calculus [41] is a method, in which network elements are described by a
so called service function. The service curve is a function, which allows to derive
the egress flow of network element from an input flow. From this relation, the delay
of an element can be calculated. Queck [42] proposed a framework, which models
AVB switches using network calculus. It allows to compute worst-case delays for
AVB traffic classes in a given configuration. Azua et al. [43] provide a refinement
of [42]. They improve formal proofs and incorporate shaping properties into the
service curves. This improves timing bounds if there are multiple streams per class.

Another approach is compositional performance analysis (CPA) [44]. CPA sub-
divides a system into resources, which have ingress and egress events. For AVB
Ethernet, this is a port with incoming and outgoing packets. Using busy period
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analysis, the egress events can be derived from the ingress events. The approach
assumes an initial system behavior (e.g. egress behavior at the talker endpoints) and
computes further egress patterns at other resources. In an iterative approach, these
egress patterns are used as ingress patterns for neighboring resources in the next
iteration until convergence [45]. Axer et al. [46] improved the egress event model by
exploiting load bounds of the CBS algorithm.

Reimann et al. [47] propose a method called modular performance analysis. Using
busy period analysis, they derive an analysis to compute end-to-end delays for AVB
messages, which can be transmitted through multiple frames. Bordoloi et al. [48]
provide a formal refinement of previous analyses, focusing only on the busy period
analysis of a single switch.

1.4.5. AVB Ethernet Devices

As AVB has only been around for a few years, there is a limited number of hardware
devices commercially available. The majority of products exist within AVB’s original
application domain of audio and video devices. Recently, few automotive specific
devices have also been announced.

AVB capable switches are produced by NETGEAR, Pathway, and Extreme Net-
works. In August 2015, an automotive grade switch was also annouced by NXP
(SJA1105). Production had not started at the time of writing.

In the field of endpoint devices, a number of AVB Ethernet enabled loudspeakers,
signal processors, and amplifiers exist. Intel has integrated AVB capabilities in
one of their Ethernet controllers (I210). While this controller is not available on
any network cards, it was integrated in to mainboards by ASRock and Supermicro.
Xilinx offers AVB extensions to their Tri-Mode Media Access Controller (TEMAC).
These extensions include an implementation of the time-synchronization using an
embedded MicroBlaze processor and traffic shaping for one traffic class. It is of use,
if e.g. a single audio or video source needs to be transmitted over AVB Ethernet from
an FPGA. For use in an SoC, more traffic classes and more than one stream should
be supported. In Feburary 2015, Freescale introduced an automotive specific ARM-
based SoC that features multi-stream AVB Ethernet support (i.MX6SX). However,
implementation details are not available.

1.5. Automotive Gateways

In automotive context, gateways are defined as networking components that inter-
face separate physical communication networks. In contrast to the conventional
definition, it therefore also applies to interfaces between two networks of the same
kind, e.g. two CAN buses. Because current architectures mainly rely on a central
gateway to interface the domain-specific networks, this central gateway interfaces
multiple protocols at the same time.
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There different conceptual approaches for the implementation of gateways. Gate-
ways can be implemented in software only or by use of dedicated hardware com-
ponents [49]. Generally, the most flexible way is the implementation of gateway
functionalities in software, and often it is the only possible one due to a lack in
respective hardware. Given that two communication controllers exist in a system,
a gateway can be constructed by transferring messages between the two drivers.
Despite the flexibility, this approach imposes a high burden of computing load on
the overall system, as well as increasing on-chip communication load. Nevertheless,
SW-based forwarding is state of the art in current automotive embedded systems,
as dedicated hardware support only exists for CAN to CAN communication.

(a) SW Gateway (b) HW Gateway

Figure II.8.: Gateway architectures based on SW and HW forwarding. Col-
ored components are involved in gateway functionality between
two example CAN networks.

Fig. II.8 shows the two design alternatives using the example of a CAN to CAN
gateway. In the SW Gateway, a forwarding routine is executed on a processing core,
which is invoked by in an interrupt indicating the reception of a CAN message.
Based on a lookup table, this routine may decide to forward the message towards
another CAN bus. When such a decision is made, the transmission routines of
the respective CAN driver are called, passing the received CAN message. The
HW gateway presented in Fig. II.8b is representative of the MultiCAN module
used in Infineon AURIX processors. Instead of multiple stand-alone controllers, the
CAN controllers are implemented in an integrated fashion. Only a CAN MAC is
implemented individually for each physical CAN, while the message buffering and
control is shared. This centralized control enables CAN messages to be forwarded
efficiently among CAN nodes. CAN message objects can be configured as gateways,
where the message is issued for transmission on another CAN bus after its reception.
While the forwarding rules are configured by software, no involvement of the host
system is necessary during operation.

26



1. Automotive Embedded Systems

Much of previous research has concentrated on interfacing operating principles and
timing analysis of gateways. In [50], Guoqi et al. present an analytic framework
for timing analysis of CAN to CAN gateways. The analysis is valid for a gateway
model corresponding to the SW gateway illustrated in Fig. II.8a.

Kim et al. [51] present a gateway mechanism between FlexRay, CAN, and LIN
communication protocols. Main objective is to overcome the differences in mes-
saging format, bus arbitration, etc. No real-time analysis or experimental results
are provided. Schmidt et al. [52] present a similar CAN to FlexRay gateway. The
gateway performs protocol conversion by extracting signals from CAN frames and
assembling new FlexRay frames. An analytic approach is proposed to map messages
onto the buses under real-time constraints. The overall system is evaluated using
experimental analysis.

Zinner et al. [22] present gateway concepts for Ethernet based embedded systems.
They contribute gateway concepts for MOST to AVB Ethernet and FlexRay to AVB
Ethernet communication. The work focuses on achieving QoS across network bound-
aries. A prerequisite that was addressed for both networks is time-synchronization
across these networks.

CAN to Ethernet gateways have been proposed for legacy [53] and Avionics Full
Duplex Switched (AFDX) [54] Ethernet, a real-time capable network technology
used in avionics. Both use frame aggregation mechanisms. Gateways for AVB
Ethernet have only been proposed for FlexRay and MOST [22].

Kern et al. [53] optimized a CAN to legacy Ethernet gateway to provide low
forwarding latencies and small framing overhead. A buffer for CAN messages within
the gateway is completely forwarded when the buffer is full, a timeout occurs, or
upon arrival of a high priority message at the gateway. The outgoing Ethernet traffic
pattern can be bursty, with multiple frames being sent back-to-back. Due to stream
traffic shaping, this is not possible in AVB. Frames would queued within the stream
buffer, which in consequence makes the scheme equivalent to FIFO scheduling.

Ayed et al. [54] proposed a similar strategy under consideration of AFDX specific
characteristics. Communication happens across virtual links (VLs), which have
a reserved bandwidth and maximum frame size. The gateway releases Ethernet
frames periodically. The maximum frame size is chosen to fit the maximum amount
of received CAN payloads in one period, resulting in significant overreservation.
Schedulability analysis is used to evaluate the real-time capability.

Related is also the work of Reinhard et al. [55], which discusses the mapping of
CAN messages into Ethernet communication channels in virtualized multi-core sys-
tems. To enable CAN communication of consolidated ECUs, CAN communication
is migrated towards Ethernet channels and CAN messages are consolidated. The
approach can be viewed as a virtual gateway within an integrated network.

Integration of multiple data units into one transmission unit has been applied
in other areas. IEEE 802.11n wireless LAN uses frame aggregation techniques to
reduce average framing overheads and increase overall throughput [56]. A frame
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aggregation scheduler has been proposed in [57]. It prioritizes packets based on
their expiration time and releases the aggregated packets to minimize the average
drop rate. An optimal frame size is determined dynamically based on the bit error
rate of the channel.
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2. Virtualization

Virtualization is used to abstract isolated, logical resources from hardware resources.
E.g. using platform virtualization, multiple virtual machines (VMs) can be hosted
on a shared computing platform.

Traditionally, virtualization has mainly been used in server environments and is an
important enablement technology for cloud computing [58]. Recently, its isolation
properties have sparked interest in embedded systems.

Virtualization can be applied to various resources like computing, I/O, and com-
munication resources. They will briefly be introduced in the subsequent sections.

2.1. Platform Virtualization

Platform virtualization creates multiple virtual instances on top of a computing
platform. These instances are called virtual machines (VMs). Their properties and
behavior should resemble that of the physical system as close as possible. Because
multiple virtual machines can be hosted on a shared hardware platform, this form of
virtualization can be used to increase utilization of servers and therefore efficiency.

In contrast to physical systems, VMs, can be adjusted at run-time to adapt to
varying performance requirements. For example, the number of cores a machine is
executed on can be reconfigured, or the VM can be moved to completely different
server (live-migration). Of course, VMs can be dynamically created or destroyed.
The flexibility and high resource utilization possible with virtualization have made
it the technological basis of cloud computing.

VMs are realized through an additional software layer called hypervisor or virtual
machine manager (VMM). This privileged layer is responsible for configuring the
overall systems as well as the VMs themselves. To avoid conflicts among concurrent
VMs, they are not able to use privileged instructions. Such instructions have to be
moderated by the hypervisor.

Two kinds of hypervisors can be differentiated [59]:

• Type-1 (bare-metal hypervisor): The hypervisor is directly running on the
hardware platform and has exclusive access towards privileged resources (see
Fig. II.9a). VMs are running as guests on top of the hypervisor. Applications
can only be run within these VMs.

• Type-2 (hosted hypervisor): The hypervisor is running as a process within
an operating system (see Fig. II.9b). Therefore, a host OS is the software layer
with the highest privileges, which has to be passed by the hypervisor for many
instructions. Applications can be executed either within the host OS or on
top of VMs run by the hypervisor.
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(a) Type-1 (b) Type-2

Figure II.9.: Type-1 and Type-2 hypervisor software architecture

Server environments almost exclusively employ type-1 hypervisors, because they
provide the best performance. The additional OS layer under type-2 hypervisors
causes overheads, as many instructions have to be emulated.

A complete computing platform consists of many subcomponents like CPUs, mem-
ory, I/O devices, and on-chip networks. Additionally, virtualized systems are usu-
ally employed in networked environments, where multiple platforms are connected
through communication networks. All of these components face specific challenges
in virtualization.

2.2. CPU Virtualization

Challenges for virtualization are highly dependent on the CPU type: While x86
CPUs struggle with the complexity of the architecture, simpler, embedded CPUs
are limited by their lack of virtualization of awareness or computing power. Yet, the
design space of possible solutions is very similar. In the following, CPU virtualization
is explained using the example of Intel’s x86 CPUs.

In a virtualized system, the hypervisor has to arbitrate the CPU among concurrent
VMs. To allow portability of OSs from physical systems into VMs, the CPU behavior
should be as close as possible to a non-virtualized system.

x86 CPUs provide four privilege levels, where 0 is the highest privilege that allows
access to all critical instructions and registers. In a non-virtualized system, the OS
is executed in level 0 whereas applications run in level 3. A hypervisor needs direct
hardware access and must therefore run in level 0. Thus, guest OSs are moved to a
lower privilege level. While this ensures isolation, as it prevents conflicting critical
instructions from concurrent VMs, it also poses several challenges. Mainly, sensitive
instructions from the guest OS have different semantics outside of ring 0. Therefore,
an unmodified guest OS cannot run on an unmodified, virtualized platform.
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Three major approaches to solve this issue exist, all of which have been imple-
mented in commercial products: Binary translation, paravirtualization, and hardware-
assisted virtualization.

1. Binary translation: Also called full virtualization, this technique runs an
unmodified guest OS. However, critical instructions are translated on-the-fly
by the hypervisor using trap-and-emulate. Binary translation for x86 virtual-
ization was introduced by VMware in 1998 [60].

2. Paravirtualization: This approach modifies the guest OS on source-level,
replacing critical instructions by so called hypercalls. In contrast to binary
translation, the guest OS is fully aware that it is running on a virtualized
CPU. However, an OS has to be ported before it can be run in such a VM.
The prime example for paravirtualization is the XEN hypervisor introduced
in 2003 [61].

3. HW-assisted virtualization: In 2007, Intel introduced Vt-x [62], a set of
hardware extensions targeted at improving virtualization performance in x86
systems. CPUs with Vt-x have two forms of operation: VMX root operation
and VMX non-root operation. All privilege levels are available in both op-
eration forms. VM exit and VM entry operations are introduced to switch
between these operation forms. Sensitive instructions within non-root opera-
tion trigger a VM exit and allow the hypervisor to resolve these instructions.

The presented approaches differ in performance and maintainability. The abil-
ity to run unmodified guest OSs is desirable, as it minimizes intital porting and
continuous updating efforts. However, full virtualization with binary translation
suffers from performance overheads due to the costly trap-and-emulate operations.
Paravirtualization improves performance, but requires each OS to be ported to the
specific hypervisor. Hardware-assisted virtualization combines the benefits of both
approaches.

2.3. I/O Virtualization

Performance of network-I/O devices poses a major bottleneck in a virtualized sys-
tem. Thus, many iterations of academic research and commercial products have
been presented in the past to cope with this problem. The problem statement is
similar to that of CPU virtualization: multiple tenants require to access a shared
hardware resource. To avoid conflicts, a privileged component must moderate re-
quest from multiple VMs and forward it to the respective hardware. Due to the high
data volume in network-I/O operations, I/O virtualization can contribute significant
overheads.
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Because the main application of virtualization is server virtualization, I/O virtu-
alization is usually associated with Ethernet network interface controllers (NICs).
In the following, key I/O virtualization concepts will be explained.

The initial concept used for I/O virtualization is called device driver emula-
tion [63]. VMs can access I/O devices using unmodified device drivers. However,
because VMs do not have direct hardware access, I/O requests out of VMs have
to be trapped and emulated by the hypervisor. The hypervisor then arbitrates re-
quest from and towards concurrent VMs and communicates with the physical I/O
controller.

The concept of device driver emulation is similar to full virtualization, as it en-
ables the use of unmodified software components within a virtualized environment.
However, it is inefficient, because it requires the hypervisor to emulate privileged
instructions. Also, I/O requests have to pass the device driver twice, within the VM
and the hypervisor, thus creating unnecessary overheads.

(a) Paravirtualization (b) SR-IOV

Figure II.10.: I/O virtualization concepts

The concept of paravirtualization can also be applied to I/O virtualization to
reduce the overheads experienced using device driver emulation. Paravirtualized
network-I/O devices were introduced in XEN [64]. An example architecture for
paravirtualized I/O is illustrated in Fig. II.10a. VMs do not use the actual device
driver (DD), but rather communicate with a privileged driver domain through a so
called front-end driver (FED). The receiving side of this communication is a back-end
driver (BED) within the driver domain. The device driver itself is only placed within
this domain. Because device drivers are a common source of faults, it is usually
preferred to implement this driver domain using a dedicated VM instead within
the hypervisor. I/O virtualization (IOV) routines which (de-)multiplex requests are
executed within the driver domain.

The Front-end/back-end driver model is more efficient than device driver emula-
tion, as it replaces traps with inter-domain communication. Also, front-end drivers
are more lightweight than complete device drivers.

Nevertheless, paravirtualization also suffers from virtualization overheads, which
can limit the achievable throughput and cause significant performance degradation.
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In [65], Menon et al. showcase a profiling toolkit for XEN. Using this toolkit, they
were able to demonstrate throughput degradation of 20%, if driver domain and VM
are executed on the different cores, and up to 66% if they share one core. This
overhead is caused by context switches between VMs and the driver domain as well
as data copy operations.

Recognizing the possibility reducing I/O virtualization overheads through dedi-
cated hardware support, Raj et al. developed the concept of self-virtualized I/O
devices [66]. Using a network processor board, they offload major I/O virtualiza-
tion tasks into hardware close to the Ethernet NIC. This way, the driver domain
is relieved from data copy operations. Compared to a paravirtualized baseline im-
plementation, their implementation of a self-virtualized NIC is able to double the
throughput.

State-of-the-art with respect to I/O virtualization in x86 servers is Single Root
I/O Virtualization (SR-IOV) [67]. SR-IOV extends the PCIe standard to enable
direct sharing of a single I/O device by multiple VMs. The address space of a single
I/O device is divided into multiple partitions. One of these partitions is reserved
for privileged management operations. The corresponding PCIe function is called
physical function (PF). The remaining partitions are used to create virtual functions
(VFs). These functions offer abstract data path functions and are directly mapped
into the address space of VMs. Therefore, the VMs can directly perform network-
I/O operations without involvement of the hypervisor or the driver domain. In an
experimental study on SR-IOV, Dong et al. [67] achieved a throughput of 94.8%
using a 10 Gbit/s Ethernet NIC.

I/O devices usually use interrupts to signal events to the host system. Within
the context of network I/O controllers, the host system is interrupted regularly
to notify the reception of messages. This process is associated with a significant
overhead in any multi-threaded system, because it provokes one or more context
switches within the host CPU. Additional time is consumed by interactions with
the interrupt controller of the system. In scenarios with high throughput and small
packet sizes, the interrupt rates may be so high that livelocks occur, where the CPU
is not able to process interrupts at a sufficient rate [68]. In virtualized environments,
this overhead is significantly increased, because the currently running VM has to be
preempted when the host is interrupted.

The problem of interrupt-caused livelocks first occurred for UART [69], where an
interrupt throttling mechanism had to be implemented in order to reduce the burden
of interrupt processing. Today, such mechanisms are mainly researched and imple-
mented for Ethernet based system, where a number of similar approaches aimed at
reducing the interrupt rate have been introduced. Mogul and Ramakrishnan [68]
proposed a scheme, in which interrupts are disabled temporarily if the interrupt
processing cannot keep up with arrival rates. This scheme can be implemented in
software only and is thus applicable independent of the network interface hardware.
Using dedicated support for interrupt throttling within the NIC can improve the re-
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sponsiveness. Druschel et al. [70] presented a modified network interface controller
(NIC), which enables coalescing of interrupts within the hardware. An interrupt is
only forwarded to the host system, after a configurable amount of interrupts have
been requested or after a timeout has occurred. This scheme increases latencies of
interrupts but also reduces the associated overhead in burst situations significantly.
Nearly all of today’s state of the art Ethernet NICs feature such interrupt throttling
mechanisms.

In typical Ethernet application scenarios like server environments, throughput is
the main optimization goal and latencies are less important. Nevertheless, added
latencies caused by interrupt coalescing can also affect throughput. Zec et al. [71]
showed that TCP throughput can be reduced by up to more than 90%. An important
design goal is therefore a good trade-off between I/O communication latency and
processing overhead associated with interrupts.

The increased overhead for interrupt processing in virtualized systems has sparked
recent research activities regarding interrupt handling. In a virtualized system, a
privileged software component is responsible for interrupt controller interaction.
When the CPU is interrupted, VMs are preempted and an interrupt service routine
within the hypervisor or driver domain is issued. This routing has to forward inter-
rupts the corresponding VM, thus adding another (virtual) interrupting scheme.

To reduce the overhead of virtual interrupts, coalescing schemes can be imple-
mented as part of the hypervisor. Similarly to coalescing within NICs, interrupts
are buffered and forwarded only after a certain amount of buffered interrupts or a
timeout. Such schemes have been implemented for multiple state of the art hyper-
visors including XEN [72] and VMWare ESX [73]. Virtual interrupt coalescing was
shown to reduce the CPU load in a virtualized system with 9 VMs by 71% for TCP
and 24% in the case of UDP.

The need for virtual interrupt forwarding is not only present in systems with par-
avirtualized I/O controllers. While solutions like SR-IOV [67] completely bypass the
hypervisor with respect to data path operations, they still require hypervisor involve-
ment for interrupt processing. This is due to limitations in x86 systems, which must
be configured to receive interrupts either in host or in guest mode exclusively [62].
Solutions for exitless interrupts have been proposed, which receive interrupts exclu-
sively in guest mode and significantly improve interrupt efficiency [74]. This comes
at the price that interrupts targeted towards privileged components like hypervisor
are received in VMs and have to be forwarded to the hypervisor. Guan et al. [75]
tackle the issue by replacing interrupts with a polling scheme to avoid VM exits.

2.4. Network Virtualization

Network virtualization enables multiple logical networks to exist on shared physical
network resources. In a virtual network, a subset of the nodes and edges of the
physical network form logical connections. It is mainly used in Ethernet and IP-
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based networks to improve flexibility, utilization, manageability, and security.
Different approaches towards network virtualization exist. Chowdhury et al. [76]

define, e.g.:

1. Virtual Local Area Network (VLAN): IEEE 802.1Q introduces extended Eth-
ernet frames which incorporate a so called VLAN tag. Any frame within the
physical LAN is uniquely mapped to a VLAN which is indicated by this tag.
All switches within the network forward VLAN frames only on links, which
are assigned to the specific VLAN, thus guaranteeing the VLAN frames will
not be transmitted outside the virtual network.

2. Virtual Private Networks (VPN): VPNs combine network virtualization with
communication encryption. VPNs are mainly used to ensure secure commu-
nication e.g. between distributed locations of a company.

3. Overlay network: Overlay networks leverage existing physical networking re-
sources by building another logical network on top. An example would be an
IP network built on top of a communication or cable television network.

Most network virtualization technologies focus on the use of TCP/IP and Eth-
ernet. Such applications are usually throughput focused. Latencies are rarely a
direct optimization goal. This is strictly in contrast to automotive systems, where
hard real-time requirements have to be met. Nevertheless, few QoS focused network
virtualization approaches have been proposed, which will be presented here.

SecondNet [77] is a data center network virtualization architecture proposed by
Microsoft Research to enable bandwidth guarantees for virtual networks in server
environments. They define a virtual data center as a set of VMs with a service
level agreement, which specifies computation, storage and also bandwidth require-
ments for each VM. This agreement allows customers to view the set VMs as an
isolated data center. The bandwidth reservation are controlled by a centralized vir-
tual data center manager. Bandwidth reservations are enforced decentral through
traffic policing within the hypervisor of each VM.

A similar concept was proposed by Ranghavan et al. [78], who identified the chal-
lenge of rate limiting distributed cloud services. They introduce a logically central-
ized but decentralized executed token bucket policer, which constrains the commu-
nication resources for a cloud service running simultaneously at multiple locations.
They face a trade-off between responsiveness and accuracy. In an embedded system,
such a trade-off should be avoided, as both properties are of high importance.

In addition to classic Ethernet networks, network virtualization has been applied
to many other networking technologies, including mobile communication networks
like LTE [79] and on-chip interconnects like NoCs [80], [81]. This shows that net-
work virtualization is a concept which is applicable and provides benefits in many
application domains and network sizes/topologies.
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Yet, no research or commercial activities have focused on virtualization of em-
bedded networks. The main domain specific challenges are real-time requirements,
fault-tolerance, and legacy compatibility.

2.5. Virtualization in Real-Time and Embedded Systems
While virtualization is a concept mainly applied in server environments and es-
pecially x86 CPUs, there has been a increasing interest to apply virtualization to
embedded systems. Embedded systems differ from server environments, as they
are constraint by real-time and safety requirements. Virtualization is a technology
that can improve safety within a system, because the isolation provided guarantees
that even in the case of system crash within one VM, other concurrent VMs are
not affected. On the other hand, sharing of hardware leads to unwanted temporal
interference effects. Also, the addition of a hypervisor introduces another level of
scheduling, thus potentially reducing the responsiveness of operating systems within
VMs [82].

Several efforts have been undertaken to improve the real-time behavior of general
purpose hypervisors. RT XEN [83] is real-time hypervisor scheduling framework for
XEN developed by Xi et al. In [82], Zhang et al. propose a KVM-based system
architecture, which they tune to achieve sub-millisecond interrupt latencies.

Due to the expected demand in embedded systems, several domain specific hyper-
visors have been developed. The RTA-HV [84] by ETAS is a bare-metal hypervisor,
which was ported to the Infineon AURIX, a typical automotive micro-controller. It
uses a one-to-one mapping between VMs and cores and utilizes the privilege lev-
els provided by the AURIX. XtratuM is an embedded hypervisor developed by the
Universitat Politècnica de València [85]. It is available for ARM, x86, and LEON
cores. The Windriver hypervisor2 is an embedded hypervisor designed for small
footprint and low latencies. It operates on Intel x86 systems and PowerPC. Sysgo’s
PikeOS [86] focuses on temporal determinism and safety. It is running on multiple
platform architectures including PowerPC, x86, ARM, MIPS, SPARC und SuperH.

Rauchfuss et al. [87] propose an architecture for a virtualized Ethernet NIC in
embedded systems. To enable scalability and low latency at the same time, they
suggest a caching mechanism for high priority contexts.

Kim et al. [88] presented a SW-based virtualization solution that supports sharing
of a CAN controller among multiple VMs in the context of avionics. The design
suffers from average added latencies for CAN transmission up to around 200 µs. In
[89], a similar approach is taken using the RTA-HV on an Infineon AURIX processor.

In [90], Münch et al. present a virtualized system intended for use in avionics.
Using on a Freescale QorIQ P4080 multi-core processor, they were able to implement
and benchmark a system using an SR-IOV capable NIC. As the system lacks an
IOMMU they use a workaround using non-transparent bridges to provide spatial

2http://www.windriver.com/announces/hypervisor/
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isolation [91]. Additionally, a temporal isolation scheme for DMA transactions of
SR-IOV devices is presented [92].

Other research focuses on the use of co-processors in virtualized embedded multi-
core processors [93, 94]. They introduce a flexible interface architecture for recon-
figurable co-processors in embedded multi-core systems. They use SR-IOV features
to enable an architecture where multiple co-processors are integrated on one FPGA
and connected to a virtualized host system.
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Multi-core processors are a key technology to satisfy the performance requirements
of future automotive embedded systems. Using virtualization, isolated computing
resources can be provided, which allow a consolidation of today’s highly distributed
architectures. To enable scalable communication for such virtualized multi-core
control units, current network-I/O devices have to be extended.

As introduced in Section II.2.3, network-I/O virtualization has been an active re-
search topic in server environments with both software-based and hardware-assisted
solutions proposed. However, previous research has mainly focused on Ethernet
NICs and was not conducted in a real-time constrained environment.

Here, an extensive concept for a virtualized CAN controller will be presented
(Section III.1). The design focuses on an efficient and scalable implementation while
maintaining spatial and temporal isolation among virtual CAN controllers. Because
interrupts are associated with high overheads, especially in virtualized systems, the
concept of deadline-aware interrupt coalescing is introduced. It reduces the number
of necessary interrupts while maintaining real-time capability.

To show the applicability of the virtualized CAN controller in real-time appli-
cations, added latencies are evaluated using analytic (Section III.2) and simulative
methods (Section III.3). An implementation for a virtualization layer which adds
functions to enable multi-tenancy for legacy CAN controllers is presented in Sec-
tion III.4.1. The processes of design, evaluation, and implementation are presented
sequentially, but are in reality interleaved. For example, evaluation methods are used
to verify the design, but require implementation details like operating frequencies.

Using the virtualization extensions for CAN controllers, a prototypical virtualized
CAN controller is implemented. The prototype is based on a Virtex-7 FPGA board,
which features an SR-IOV capable PCIe endpoint. The board is integrated into an
Intel Core i7 system, with which experimental latencies are determined.

Throughout this chapter, a number of terms regarding I/O virtualization for CAN
controllers are used repeatedly, which are introduced here to improve clarity:

• Virtualized CAN Controller: A CAN controller with dedicated extensions
for I/O virtualization

• Virtual CAN Controller: Abstract version of a CAN controller that allows
CAN data path operations. Multiple virtual CAN controllers exist on the
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shared hardware of a virtualized CAN controller.

• Virtual partition: A virtual partition of a system includes all virtual com-
ponents of a system, which are associated with each other. For example, a
virtual partition can be made up of a VM, virtual memory, and a virtual CAN
controller.

• Virtual interface: The virtualized CAN controller has a memory interface
face, which is subdivided into multiple virtual interfaces. Each virtual interface
is associated with a virtualized CAN controller, through which CAN operations
can be accessed.

The presentation here is based on a number of publications: Preliminary concepts
and results were published in [95, 96]. Extensions for isolation were presented in [97].
A real-time capable interrupt coalescing scheme was published in [98]. Finally, a
discussion of HW/SW trade-offs is featured in [99].
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1. Design
Within this section, functional and non-functional requirements and optimization
objectives are formulated. Based on this, a concept for a layered hardware architec-
ture is introduced, which extends legacy CAN controllers through the addition of
a virtualization layer. Additional features are introduced to ensure temporal isola-
tion among virtual CAN controllers as well as a deadline-aware interrupt coalescing
mechanism to improve the efficiency of the virtualized CAN controller.

1.1. Requirements and Objectives
In this section, requirements and objectives for the design of the virtualized CAN
controller are formulated. They facilitate the general design goal: Create a CAN
controller with virtualization extensions, which allows multiple VMs to use this
shared hardware as if it was multiple physical CAN controllers.

First, requirements are presented, which constrain the design and describe nec-
essary features. Afterwards, design objective are introduced, which translate into
optimization goals.

1.1.1. Requirements

1. Multi-tenancy: The virtualized CAN controller must be able to receive and
perform transmission and reception requests from multiple VMs.

2. Resource sharing: Hardware resources must be shared among all virtual
partitions. This is particularly important for the CAN protocol processor.
This engine is responsible for handling all transactions on the CAN bus and
can be compared to an Ethernet MAC.

3. Spatial isolation: Functions and memory contents of a virtual controller
must only be accessible by the VM associated with it. This is necessary to
avoid manipulations, where e.g. one VM cancels the message transmission of
another VM.

4. Temporal isolation: The temporal behavior of a virtual controller must
be isolated from the behavior of other virtual controllers. Perfect isolation is
hard to achieve in an efficient way on a shared platform. Therefore, controllers
will be considered temporally isolated, if temporal interference among CAN
controllers is limited in a way, that other virtual controllers cannot impact
another controllers performance in a negative way.

5. Freedom from priority inversions: To allow real-time capable transmis-
sion, priority inversions must be avoided. A priority inversion happens, when a
message wins CAN bus arbitration while a higher priority message is buffered.
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6. Message ID to VM mapping/filtering: Each VM receives only a subset
of all messages. The virtualized CAN controller should perform a mapping
of received CAN messages to VMs. One message can be received by multiple
VMs.

7. Scalable number of messages supported: Virtualized CAN controllers are
expected to be used in domain controller units, which consolidate all electronic
functions of a domain. This means that nearly all intra-domain communica-
tion is either transmitted or received through the virtualized CAN controller.
The message buffers and handling of the virtualized CAN controller must be
sufficiently scalable to support such communication scenarios.

8. Privileged management interface: Privileged operations (e.g. CAN bus
rate configuration, virtual controller configuration) are accessible only through
a privileged management interface.

1.1.2. Design Objectives

While the requirements introduced must be fulfilled to ensure the applicability of the
virtualized CAN controller in the desired application scenarios, the design objectives
introduced here are intended to optimize the design.

1. Efficiency: The implementation of the virtualized CAN controller should
utilize as little resources as necessary to satisfy the formulated requirements.
The main resources targeted here are HW resources used by the implementa-
tion. Because FPGA prototyping is used to evaluate the resource utilization,
it translates to flip-flop and look up table usage. Another goal is to provide
an efficient interfacing scheme between software and hardware. It should in-
troduce as little overhead to the processing system as possible.

2. Scalability: The design should be parameterized to support a scalable num-
ber of virtual controllers. For any number of virtual controllers, the design
is only satisfactory if the same number of comparable stand-alone controllers
have higher resource requirements.

3. Layered architecture: The architecture of the virtualized CAN controller
should be layered in order to allow reusability of the virtualization extensions
proposed here. Virtualization extensions should be implemented in a virtual-
ization layer, which can be used to extend various legacy CAN controllers and
can be interface with multiple host systems.

To satisfy the specified requirements and design objectives all at the same time
is challenging, as some are contradicting to some degree. For example, sharing of
resources is necessary to provide an efficient and scalable architecture, but leads to
issues with respect to temporal interference.
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1.2. Functional Design of the Virtualization Layer

The design of the virtualized CAN controller is structured in three layers as depicted
in Fig. III.1. Core to the architecture is a virtualization layer, which implements all
functions necessary to allow multi-tenancy towards a regular CAN controller in a
virtualized setup. The tasks performed within the virtualization layer equivalent to
the ones, which would be located within the hypervisor or privileged driver domain
in a paravirtualized setup.

Figure III.1.: Layered architecture of the virtualized CAN controller

The host-controller interface is system specific. It implements the interaction
with the peripheral or on-chip interconnect depending on the degree of integration.
Applications running within the host system post requests towards this interface as
memory-mapped I/O requests.

Finally, the protocol layer implements basic CAN controller functionalities. It
directly interfaces the CAN transceiver, and is responsible for the bit level CAN
bus interaction. On the side facing the virtualization layer, it must store message
transmission requests and translate them into CAN frames.

Fig. III.2 presents the overall architecture and a component level illustration of the
virtualization layer. The address space of the virtualized CAN controller is divided
into V + 1 partitions. One of these partitions is used exclusively for privileged
operations. It is called physical function (PF) and provides access to management
functionalities. This PF is assigned to a privileged SW component within the system
(here the hypervisor). The remaining V partitions are called virtual functions (VFs).
They provide abstract data path operations through the virtual CAN controllers.
There is a one-to-one mapping between VFs and VMs.

The virtualization layer is divided into a separate transmission (Tx) and reception
(Rx) path. In the following, concepts for buffering, arbitration and message filtering
will be derived for the respective parts of the virtualization layer.
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Figure III.2.: HW architecture of the virtualized CAN controller [99]

1.2.1. Transmission Path

According to the requirements, the Tx path must provide scalable and priority
inversion-free buffering. Therefore, an appropriate combination of message buffering
and selection for transmission has to be found. The CAN bus arbitration follows a
strict priority scheme (see Section II.1.3). A collision free arbitration is started on
the bus whenever the bus is idle and a node has a message buffered and ready for
transmission. The virtualization layer has to buffer messages from multiple VMs
and select the highest priority message whenever an arbitration is about to happen.
To ensure the highest priority message is actually selected, the internal selection
process should occur just before an arbitration on the CAN bus starts.

The tightest timing requirements are present when messages are transmitted back
to back on the CAN bus, leaving only a three bit interframe gap between two trans-
mission. Accordingly, the interframe gap corresponds to the time available after
reception of a frame until the next arbitration starts and a message should have
been selected in the virtualization layer. For a 1 Mbit/s CAN bus, this time equals
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3 µs (6 µs for 500 kbit/s). The virtualization layer could operate at frequencies be-
tween 20 MHz (typical frequency of a CAN controller) and upto 100 MHz (typical
frequency of a PCIe point). Usually, the lower frequency implementation is prefer-
able due to the reduced energy consumption and relaxation of timing constraints
during the implementation. In addition to the arbitration, the CAN message also
has to be forwarded to the protocol layer. Stand-alone CAN controller often have
low throughput interfaces (e.g. 8-bit shared address and data interface for Philip-
s/NXP SJA 1000). To guarantee, the virtualization layer will work as an extension
with many CAN controllers, a transfer time of 1 µs should be assumed. For a
20 MHz implementation, this leaves only 20 clock cycles to do a complete arbi-
tration of all messages. This is insufficient in highly consolidated scenarios, where
potentially more than 100 CAN messages are sent by a virtualized domain control
unit. Therefore, more efficient schemes must be developed.

The requirement of spatial isolation implicates that separate message buffers must
be available for every virtual controller. An effective arbitration can be achieved, if
presorted lists are maintained within each of these buffers. This would significantly
reduce the arbitration efforts necessary during the interframe spacing. Instead of
comparing all messages buffered, only the highest priority message within each vir-
tual controller must be compared.

To allow a flexible and scalable architecture, the separate message buffers for
virtual controllers must not be implemented as separate physical buffers. Instead,
they should be separated on a logical level and implemented within shared physical
memory. This can either be achieved by statically dividing the memory space of the
message into V partitions, or through the use of dynamically managed lists. While
dynamic list management is more complex to implement, it increases flexibility, an
important characteristic in a virtualized system.

Each virtual controller must have a fixed priority queue size and thus allocation
of memory resources. This important, as a minimum queue size is necessary for
real-time capability. Only if all messages of a partition can be buffered at the same
time, it is ensured that no priority inversions can occur. Therefore, the dimensioning
of resources should be performed by the PF.

Multiple options exist for the implementation of a priority queue. The two main
possibilities are a sorted list and a binary tree and are depicted in Fig. III.3. A
double-chained sorted list (Fig. III.3a) is the simplest possible implementation. Mes-
sages are sorted with respect to their priority. Each message object contains a pointer
towards its predecessor and successor. Upon a message insertion request, the list
has to be iterated to find the appropriate location.

A binary tree (Fig. III.3b) is another possible implementation of a priority queue.
Each node can have a left and a right child, where the left child is of higher priority
and the right child is of lower or equal priority. Each node has a pointer towards its
parent and to both children. Upon an insertion request, the tree is iterated starting
with the root node. Messages are always inserted as leaf nodes, meaning they have
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(a) Sorted List (b) Binary Tree

Figure III.3.: Possible implementations of a priority queue

no children after they are appended to the tree.

The benefit of a binary tree compared to a linear list is a reduced complexity of the
message insertion process. For a sorted list, the duration to serve an insertion request
scales linearly O(n) with the number of buffered messages n. For binary trees, the
scaling is logarithmic O(log n). However, in worst-case scenarios, this scaling can
degrade to a linear scaling, if messages are inserted in ascending or descending
priority order. While methods exist to balance binary trees [100], they require
costly reordering within the tree. The implementation complexity this brings does
not seem worthwhile in a hardware implementation. The worst-case performance of
a binary tree is equal to the sorted list. In concrete applications, the release order of
messages might be known or constraint in a way, that allows to predict or exclude
certain constellations and thus limit the maximum depth of the binary tree.

To provide an efficient architecture, not only memory but also control logic must
be shared. Such control logic is usually implemented in finite state machines (FSMs).
The state of the FSM describes the current condition of a virtual controller. This
state could contain transmission counters, buffer fill level, pointers towards queue
elements and so on. The set of values describing the state of the virtual controller
will be called context. Within the FSM, the context is stored in registers. As only
one virtual CAN controller can be active at a time, it is not necessary to provide a
complete set of registers for each one. Instead, the registers can be shared among all
virtual controllers with a context switch happening if a new controller gets activated.

The process of a context switch in a hardware FSM is illustrated in Fig. III.4.
The upper half depicts a regular FSM, which consist of a combinatorial logic block
and sequential logic. Only the sequential logic contains registers. A virtualization
extension is able to perform a context switch, i.e. read-out and store all register
values in a memory and load register values of a different virtual CAN controller
into the FSM’s registers. This process allows to share an FSM among multiple
virtual partitions without the need to replicate all registers. Thus it provides a
scalable and flexible solution for resource sharing.

The logical behavior of the Tx path can be summarized as follows. Messages
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Figure III.4.: Regular finite state machine extended by context switch mech-
anism

are buffered in a separate priority queue for each virtual controller. These priority
queues are represented by binary trees and stored in a shared memory. Just before a
new transmission is possible on the CAN bus, the highest priority messages among
every virtual controller is determined and forwarded to the protocol layer. A block
level architecture is depicted in Fig. III.2. The Buffer Control block manages the
priority queues of each virtual CAN controller. It must provide means for inserting
and removing messages from the buffers. The message buffers are implemented in
a shared memory module called Tx Memory. Finally, an Arbitration module must
select the highest priority message buffered whenever a transmission is soon possible
and forward the message towards the protocol layer.

1.2.2. Receive Path

The Rx path receives CAN messages after every successful transmission on the CAN
bus. Because one VM might require to receive a CAN message sent by another
VM, this also includes messages send from the virtualized CAN controller. Out
of all these messages, every VM needs to receive a subset. These subsets may
overlap. According to the requirements, the mapping of messages towards VMs and
the filtering of messages must happen within the hardware. Here, an efficient and
scalable way of satisfying this job will be explored.

Efficient buffering means that minimal memory resources should be used. There-
fore, all virtual controllers should share one physical memory. Also, no duplicates
should exist within the local memory, but stored messages should be accessible by
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multiple VMs. This approach will reduce the overall memory consumption when
single messages are received within multiple virtual controllers.

CAN controllers implement Rx message storage either as FIFOs or organized as a
series of message objects. FIFOs require less implementation effort and are suitable
if simple ID filtering is applied. More complex CAN controller implementations tend
towards the use of multiple message objects, which contain a filter and a message
buffer. This constellation allows more refined message filtering and enables the read
of concrete messages. In FIFO buffering, only the message that has been buffered
the longest can be directly read.

In the context of a virtualized CAN controller, a message object based buffering
scheme within the receive side seems advantageous. It allows message filtering with
high precision and message based interrupt configurations. This contributes towards
interfacing efficiency, as it reduces the amount of falsely accepted messages and
allows to select polling or interrupt based operation for each message object.

Figure III.5.: Physical and virtual message objects in the virtualized CAN
controller. The color coding within the physical objects indicates
its association with a virtual CAN controller [97].

Fig. III.5 depicts the concept for message storage within the Rx path. The physical
memory contains a list of N message objects. Each of these message objects is
configured to store one specific message. Therefore, these message objects will also
serve as a list of filters for accepting and discarding received CAN messages. Each
message object is associated with one or more virtual controllers. This could be
indicated by an additional flag within the message object (color coding in Fig. III.5).
From the list of physical message objects, a subset of virtual messages objects for
each partition can be derived.

A block level architecture of the Rx path is depicted in Fig. III.2. All messages
from the CAN bus are received by the protocol layer and forwarded to the Filtering
module. Based on the message object configuration, the module decides whether to
discard a message or to store it in the Rx Memory. At the same time, it may issue
an interrupt through the Host-Controller Interface if the configuration requires it.
Finally, messages can be fetched through the Read-out Protection module. For any
read operation towards a message object, it checks whether the object belongs to
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the requesting VM and then provides the received data.

1.3. Added Blocking in Virtualization Layer

CAN is a real-time capable communication protocol often used in safety-critical au-
tomotive applications. Proper real-time analysis is thus key to guarantee reliable
operation. The real-time analysis for CAN presented in Section II.1.3.2 assumes an
ideal behavior of CAN nodes. Whenever a CAN message is released for transmis-
sion on the CAN bus, it is immediately able to participate in the bus arbitration.
In an actual implementation, finite latencies within the CAN controller data han-
dling make this behavior impossible. Within a virtualized CAN controller, multiple
partitions may access the controller at the same time. The arbitration among these
requests also has to be considered.

Therefore, this section presents a modified analysis for CAN, which models finite
added latencies within the CAN controller to determine accurate worst-case com-
munication latencies. Head-of-line blocking can occur before a message has been
successfully inserted into the priority queues. Afterwards, it is guaranteed to win
arbitration if it is the highest priority message present. Thus, the analysis focuses
on the insertion of messages into the priority queues of the virtual CAN controllers.

Messages are not sorted with respect to their priority when entering the virtu-
alization layer. Thus, all messages can contribute to blocking at this stage. The
worst-case scenario is assumed to start with a critical instant, where all messages
are released in the host system at the same time. Insertion times into the priority
queue are maximized, if messages are inserted in either increasing or decreasing pri-
ority. To maximize head-of-line blocking at the same time, it is assumed here that
messages are issued in increasing priority order.

In a virtualized CAN controller, messages from all virtual partitions can contribute
to the overall blocking. The total number of messages within a virtual controller v
that have a lower priority than message m is assumed to be

Mlp(m),v = |{k|k ∈ lp(m) ∧ k ∈Mv}| , (III.1)

where | · | is the cardinality of a set and Mv is the set containing all messages
corresponding to virtual controller v.

The time to enqueue a CAN message into the priority buffer is made up of two
parts: The time to switch to the respective context of virtual CAN controller v tswitch
and the time to append the message to the buffer tinsrt. The latter is dependent on
the current buffer depth. When inserting a message at the n-th level, it is given as

tinsrt(n) = (4 + n)/fclk. (III.2)

The constant value of this equation is implementation specific and a look ahead
into the actual delay as seen in the implementation shown in Section III.4.1.
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In a worst-case scenario, all lower priority messages have to be enqueued first
before message m can be added to priority buffer. While higher priority messages
could further delay the insertion of this message, it would not be considered head-
of-line blocking. Higher priority messages are anyway supposed to be transmitted
first. Thus, the overall blocking experienced can be calculated as the sum of insertion
times of all lower priority messages with one context switch happening between each
insertion

Bvirt,m =
V−1∑
v=0

Mlp(m),v−1∑
k=0

tinsrt(k) + tswitch. (III.3)

Using this added blocking, a real-time analysis can be conducted similar to the
one presented for ideal CAN nodes in Section II.1.3.2. For this, a modified blocking
has to be considered. In a worst-case scenario, a transmission of a maximum sized
low priority message has just started transmission when message m is completely
enqueued in the priority buffer. Therefore, modified blocking can be formulated as

Bm = max
k∈lp(m)

(Ck) +Bvirt,m. (III.4)

This blocking is not a flat added latency with respect to overall communication
latency. As it extends the queuing delay wm given by (II.7), further instances of
higher priority may be enqueued during this time, which may overtake message m
while being queued. Actual additional delays can only be determined by analyzing
concrete traffic scenarios. Another important aspect of the added blocking is its
priority dependence. The lowest priority message does not experience any additional
blocking by higher priority messages, while the highest priority message experiences
maximum blocking. The delay for high priority messages is unfortunate, but can
only be reduced through reduction of the insertion time, e.g. by modifying the clock
frequency. For infinite clock frequencies, the added blocking Bvirt,m would be zero
and the analysis equal to that of an ideal CAN node.

Figure III.6.: Bus occupation in a worst-case scenario for message m [96]
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The most important measures of the analysis are summarized in Fig. III.6. At
the beginning of the worst-case, the insertion of message m into the priority queue
is delayed by Bvirt,m. When the message is inserted, a low priority message has
just started transmission, leading to the overall blocking of Bm. Afterwards, higher
priority messages are transmitted. This potentially includes more than one instance
of each message. The queuing delay wm extends, until no further high priority
message is buffered. Now, message m can be transmitted. The overall latency is
given by the worst-case response time (WCRT) Rm.

1.4. Temporal Isolation

The architecture presented above enables multiple VMs to communicate on a CAN
bus using a shared virtualized CAN controller. The analysis presented above shows
that added latencies from the virtualization layer are bounded. However, this re-
quires each VM to follow a predefined communication pattern. If their use of the
virtualized controller does not conform to the predefined scheme, other virtual par-
titions might be affected in a negative way, which leads to increased latencies and
possibly deadline misses.

Temporal isolation of virtual CAN controllers is an important feature in mixed-
criticality scenarios. To enable such applications, temporal interference among vir-
tual controllers must be limited so that performance with respect to timing can be
guaranteed for each virtual partition independent of the use by others.

Goal of the temporal isolation scheme proposed here is to create isolated vir-
tual CAN controllers that feel as close as possible to separate physical controllers.
Temporal interference on the CAN bus itself can occur also with multiple physical
CAN controllers, if one CAN node e.g. behaves like a ’babbling idiot’, i.e. send-
ing messages in an uncontrolled way and flooding the bus. This problem has been
addressed extensively [101, 102] and will be considered solved in this context. This
work will only focus on the interference occurring within the shared resources of the
virtualized CAN controller.

1.4.1. Virtual I/O Interface Scheduling

To ensure isolation among virtual CAN controllers, a virtual I/O interface scheduling
scheme is proposed. CAN controller functionalities can be accessed through memory
mapped I/O transactions. While all VMs can issue requests in parallel, e.g. when
running concurrently on multiple processor cores, they cannot be served in parallel.
As all virtual controllers share common hardware modules like FSMs, the access
towards them has to multiplexed. A scheduling among such request should minimize
latencies while providing isolated temporal performance.

Peripheral interconnects are designed to serve traffic from multiple devices. Be-
cause peripheral devices like 10 Gpbs Ethernet controllers or video encoders require
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bandwidth significantly larger than necessary for CAN controller operation, available
peripheral communication bandwidth is often multiple orders of magnitude larger.
This creates a need to buffer incoming requests. As temporal isolation can only be
achieved effectively if it is ensured for all involved components, it is assumed that
isolated communication channels are also provided within the on-chip and peripheral
interconnect. For PCIe, this is possible e.g. through the use of virtual channels. It is
therefore assumed that incoming requests arrive sorted with respect to virtual CAN
controllers and are e.g. buffered within the virtual egress buffers of the peripheral
interconnect.

Figure III.7.: Scheduling of virtual interfaces: Requests from VMs are buffered
within the host-controller interface and issued to the respective
virtual controllers based on a scheduling algorithm [97].

Fig. III.7 shows an illustration of a virtual interface scheduling mechanism. Buffered
requests for multiple virtual CAN controllers are multiplexed towards the virtual-
ization layer. The sequence in which requests are forwarded is determined by a
scheduling mechanism.

To select a scheduling mechanism, a number of criteria are determined that should
be used to evaluate its feasibility. Ideally, a scheduling mechanism for virtual inter-
faces satisfies the following properties:

1. Predictability: The scheduling mechanism must be deterministic in a way,
that allows predicting bounds for the virtual interface blocking. This is neces-
sary for real-time analysis to be derived and therefore for the virtual controller
to be used in safety-critical applications.

2. Temporal isolation: Latencies must be bounded independent of the inter-
face utilization by other virtual partitions. Additionally, temporal interference
should be minimized in order to reduce jitter within a virtual partition.

3. Low-latency: The scheduling algorithm should minimize latencies experi-
enced at the virtual controller interface. This objective is non-trivial, as the

52



1. Design

latencies of all messages and virtual controllers cannot be minimized at the
same time, but may have to be traded off. Here, no prioritization should be
done among virtual controllers. Latencies of high priority messages should be
the primary optimization target. Latencies should be reduced by eliminating
unnecessary context switches.

4. Scheduler complexity: The scheduler must be simple in order to perform
scheduling decisions at high rate and in real-time. Thus, schedulers with
complexity O(1) will be considered.

1.4.2. Exploration of Round-Robin Scheduling Mechanisms

Round-robin (RR) is a simple scheduler that schedules resources in a round-based
fashion. It guarantees that all sources are served each round. Different versions
of RR exist, where weights are used to allow one source to be served more often
than once during a round. Also, time-triggered versions exist, where sources are
scheduled at static predefined times. The following versions of RR will be evaluated
with respect to their ability to satisfy above requirements. Similar RR variations
are also used by the PCIe standards for virtual channel and port arbitration [103].

• Simple RR: Requests are scheduled in turns from different buffers. This scheme
is repeated in a cyclic manner. If a buffer holds no requests, it is skipped and
the next non-empty buffer is scheduled.

• Weighted RR (WRR): During one cycle, multiple requests from each buffer
can be served. The number of served requests corresponds to a configurable
weight, which can differ for every buffer. It allows accounting for specific
communication demands of different applications.

• Time-based RR (TBRR): Time windows of configurable length are assigned
to each virtual interface. During each window, requests from the respective
virtual partition are scheduled. The scheme is repeated cyclic. If a buffer does
not hold requests during its window, it will not be skipped.

• Weighted time-based RR (WTBRR): Time windows have a configurable length,
which can differ for each partition. The scheduling mechanism shown in
Fig. III.7 corresponds to a WTBRR scheme.

All of the above satisfy the requirement of scheduling complexity. Regular RR
schemes make the scheduling decision depending on whether requests are currently
buffered. Time-based versions make the scheduling decision based on the current
time.

Also, all of the schedulers are predictable. Particularly, time-based versions can
be predicted without the need to make worst-case assumptions regarding the use by
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other partitions. Request can take a variable duration to be served (e.g. insertion
requests take longer if insert deeper into the priority buffer). Therefore, real-time
analyses for regular RR would have to assume that message insertions occur at
maximum depth. On the other hand, time windows need to be large enough to
serve a maximum sized request. Predictability is closely related to the requirement
of temporal isolated. Bounded latencies can be achieved with all schedulers and
therefore isolation can be achieved. However, time-based versions are superior with
respect to temporal isolation as they do not suffer from temporal interference.

Weighted versions of RR scheduling allow scheduling partitions to be tailored to
the communication needs of applications. By serving multiple requests of the same
virtual partition in a row, the number of necessary context switches can be reduced.
This may be used to improve the scheduling with respect to worst-case latencies.

The predictability and temporal isolation properties favor a (weighted) time-based
RR implementation. As the non-weighted implementation is a special case of a the
weighted version, WTBRR will be analyzed in the following.

1.4.3. Configuration and Added Latencies for WTBRR

A weighted time-based round robin (WTBRR) scheme can be used to provide iso-
lated performance at the interface towards the virtualization layer of the virtualized
CAN controller. This allows to provide bounded latencies for operations like a mes-
sage insertion and thus, for message transmission across the CAN bus. Within this
section, two objectives should be achieved: First, a configuration that minimizes
latencies according to the requirements formulated, and secondly, a timing analy-
sis that allows to calculate the blocking contributed at the interface towards the
virtualization layer.

The scheduler should be configured to minimize latencies while focusing on re-
quests for high priority message transmission. As seen in the analysis without any
isolation measure in Section III.1.3, a message can only experience head-of-line block-
ing by lower priority messages. While the original analysis had to consider lower
priority messages from all partitions, here, a message can only be blocked by mes-
sages within the same partition due the temporal isolation.

Generally, the worst-case scenario for a message m within virtual controller v can
be assumed as follows. Just before the message transmission request for message m
was issued, all other messages are released as well (critical instant). At the same
time, the time window of the WTBRR scheduler for partition v has just concluded.
The head-of-line blocking ends, when message m or a higher priority message has
been inserted to the priority queue and is thus ready for CAN bus arbitration. At
this time, the worst-case scenario on the CAN bus begins.

The overall added blocking for message m in virtual controller v can thus be
summarized as the time needed to serve all lower priority requests for controller v
with the resources provided by the scheduler. Depending on the message priority,
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different WTBRR configurations are optimal with respect to latencies. For the
lowest priority messages, minimal window sizes are optimal as they reduce the time
until the first request for each virtual controller will be served. This scheme has the
downside that it causes many context switches. Also, small window sizes are harder
to utilize, as a high percentage of the window may be unusable if the remaining time
is insufficient to finish an insertion request.

Here, it is proposed to dimension windows so that a transmission request for every
message of a virtual controller v can be served. This scheme minimizes the amount
of context switches during a worst-case. Also, it guarantees minimum latencies for
high priority messages at the cost of increased latencies for lower priority messages.
A sufficiently large window can be determined as

twindow,v = tswitch +
Mv−1∑
k=0

tinsrt(k). (III.5)

Using this window size, the insertion of a message m is guaranteed to be completed
during the first complete window corresponding to virtual controller v. Using a
WTBRR scheme and window sizes according to (III.5), the added blocking can be
calculated as

Bvirt,m =
∑
w∈V\v

twindow,v + tswitch +

Mlp(m),v−1∑
k=0

tinsrt(k), (III.6)

where V = {v : v ∈ N; 0 ≤ v < V } describes the set of virtual controllers. The
blocking consists of the time needed for time windows corresponding to other vir-
tual controllers to be served, context switches, as well as the time needed to insert
lower priority messages. Because the window size is chosen at design-time, no run-
time metrics of other virtual controllers affect these latencies. Equation (III.6)
directly corresponds to (III.3), which describes added latencies without temporal
isolation measures. By replacing this equation in the original analysis, worst-case
communication latencies can be computed.

Fig. III.8 shows an example scenario, showcasing blocking during a message in-
sertion. It shows all components of the blocking including time windows of other
partitions, context switches and the insertion of lower priority messages. While there
are more context switches in the non-isolated case, the overall blocking is smaller
nevertheless. This is due to the reservation of time windows in the WTBRR scheme,
and the trade-off that has to be made to achieve isolation. It should be noted that
the highest priority message would actually have a reduced latency in the isolated
scenario due to the reduction of context switches.

The configuration proposed here gives equal priority to all virtual partitions of
the virtualized CAN controller. In many application scenarios, low-latency operation
might only be required in a subset of all virtual controllers. In this case, latencies
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Figure III.8.: Comparison of added latencies experienced by a medium priority
message m in virtual controller v = 3 using WTBRR isolation
and no isolation

for certain virtual controllers could be reduced by minimizing the time windows
assigned to other virtual partitions. The configuration of such differentiated service
levels is highly application specific. The evaluations in Sections III.2 and III.3 focus
on scenarios where all partitions prioritized equally.

1.5. Deadline-Aware Interrupt Coalescing
Interrupts are an essential component for low-latency notification of events like mes-
sage reception in I/O devices. However, interrupts are also associated with high
overheads in the host system, especially in virtualized systems.

Interrupt requests (IRQs) force the processor to suspend running tasks and switch
to a privileged mode to run an interrupt service routine (ISR). The time needed
to switch into this privileged mode is greater in virtualized systems, as it involves
exiting the currently running VM and switching from guest to host mode. Additional
issues that occur are cache pollution caused by the frequrent execution of ISRs and
wake-ups from low power states.

Approaches like interrupt coalescing reduce the overall amount of interrupts by
consolidating multiple notifications in one interrupt. However, state of the art so-
lutions for interrupt coalescing (see Section II.2.3) are designed for server condi-
tions and thus lack real-time capability. Here, an interrupt coalescing approach is
presented, which incorporates a knowledge of message deadlines and thus enables
interrupt coalescing in real-time settings. It is applied to CAN and implemented for
the virtualized CAN controller.

In CAN communication, interrupts are an important mechanism to achieve low
latency message reception [33]. To reduce the overall load, CAN controllers within
every node are programmed to only accept a subset of all received frames depending
on the application requirements. The arrival of frames is notified to the host system
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through interrupt service requests. In a virtualized system, the currently running
VM is exited and the processor switches into a privileged mode to forward the
interrupt. The actual ISR is executed within the VM, which reads out the message
from the CAN controller and stores it in the main memory. After conclusion of the
ISR, the VM is left again so that the hypervisor can complete the process by notifying
the interrupt controller. An example of a sequence of such message receptions is
illustrated in Fig. III.9. Depending on the hypervisor implementation and platform,
additional VM exits may be necessary. The time consumed by context switches
and hypervisor routines is considered overhead and can be reduced by consolidation
multiple IRQs.

Figure III.9.: CAN interrupt handling in a virtualized environment [98]

CAN is a communication medium often used in real-time settings. That means,
a CAN message must be successfully transmitted before a predefined deadline. An
interrupt coalescing mechanism for CAN must not interfere with real-time design
goals. The fundamental principles of the CAN protocol and timing analysis were
presented in Section II.1.3.

CAN follows a non-preemptive strict priority arbitration scheme, which enables
the computation of an upper bound for the worst-case response times (WCRT) [32].
For every message m, the WCRT Rm must be smaller or equal to the deadline
Dm. Typically, messages on the CAN bus or transmitted cyclic or sporadic with a
minimum inter-arrival time Tm.

CAN is used in real-time systems, i.e. message transmissions have to meet pre-
defined deadlines. The worst-case response time (WCRT) of each message m can
be calculated analytically and should be smaller than its deadline Dm to guaran-
tee a system’s schedulability. Messages are either transmitted in cyclic manner or
sporadically with a minimum inter-arrival time Tm. Fig. III.10 shows an exemplary
configuration of these values for a single message.

In a real system, average latencies experienced by messages are significantly
smaller than the corresponding WCRT. [104]. Fig. III.10 shows a histogram of
message latencies in an example configuration along with key metrics. In this sce-
nario, the typical case response time (TCRT) and the WCRT differ by more than
one order of magnitude. The difference between a message’s deadline and the actual
transmission time will be called slack from here on. During the slack, the system
can postpone the processing of the message without risking a deadline violation.
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Figure III.10.: Response time distribution of CAN message m = 14 with cycle
time T14 = 10 ms at 90 % bus load on 500 kbit/s bus [98]

This means that interrupts can be held back for a long time in cases where the
transmission latency is smaller than the WCRT. If multiple interrupt requests are
stored at the same time, a consolidated IRQ can be forwarded.

Figure III.11.: Deadline-aware interrupt coalescing for CAN [98]

Fig. III.11 demonstrates an message reception sequence using deadline-aware in-
terrupt coalescing. Received messages trigger an IRQ within the hardware. However,
these IRQ are not directly forwarded, but buffered within a hardware extensions
layer. This layer maintains knowledge of the closest deadline of currently buffered
messages. In the example, three additional messages are received before the dead-
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line of the first received message requires the IRQ to be forwarded, thus reducing
the number of interrupts by 75%. Such a mechanism is only possible, if information
regarding message deadlines is available within the I/O hardware.

To explore possible implementations, an analytic framework will be established
first. It is assumed that tiD,m corresponds to the instant of time, at which an interrupt
has to forwarded in order to guarantee that the deadline requirements of the i-th
instant of message m are met. The deadline Dm of a message m is the absolute time
available between the release of any instance of message m and the point in time,
at which the message has to be received.

Therefore, tiD,m is given by the relation

tiD,m = tirelease,m +Dm, (III.7)

where tirelease,m is the release time of the i-th instance of message m. Thus, the
release time of each message is essential to have accurate knowledge of when an
interrupt has to be forwarded. When the bus is idle at the time of message release,
the release time is equivalent to the start of the message transmission. Otherwise,
receiving nodes cannot accurately tell the release time, because it is masked by
ongoing transmissions.

To enable deadline-aware interrupt coalescing, predictions regarding the release
time of messages have to made. In order to not violate real-time constraints, the
predictions must be pessimistic, meaning that the estimated release time must be
greater or equal the actual release time. For the actual interrupt forwarding decision,
the remaining slack of a message instance is deciding. The slack at time t can be
derived using the release time as

tislack,m = tiD,m − tiRx,m = Dm − (tiRx,m − tirelease,m). (III.8)

Thus, the issue can be formulated either as estimation of the deadline, release
time, or the slack. Here, three approaches are introduced, which use estimates
to enable deadline-aware interrupt coalescing. They are presented in the order of
increasing complexity.

• Fixed delay: This approach is similar to state of the art solutions. Interrupts
are forwarded after a fixed timeout. To guarantee real-time capability, the
timeout has to be smaller or equal the minimal slack which can occur for a
given configuration. It can be calculated as the minimal difference between
deadline and worst-case response time min∀mDm −Rm.

• Message-based delay: Using an approach with fixed delay fails to address
the diversity with respect to timing properties for different messages. If only
one message is at the edge of schedulability, no coalescing is possible even if
other messages have high slack. The approximation precision can improved by
increasing the granularity. After every message reception, the minimal slack
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of said message is computed as Dm − Rm. This value is solely derived from
static configuration data and represents a lower bound for the actual slack of
a message instance given by (III.8). If this value is smaller than the current
timeout of the interrupt coalescing, it will be updated.

• Dynamic deadline estimation: Both previous approaches rely only on
static information. Thus, they fail to exploit dynamic measures of every mes-
sage instance. Specifically, they cannot leverage the fact that typical latencies
are significantly smaller than worst-case latencies. Therefore, a dynamic ap-
proach for deadline estimation will be presented in the following.

The actual release time of a CAN message is masked, when the bus is busy during
the release. To make a pessimistic of the release time, information regarding the
CAN activity can be used. When a message m starts transmission on the CAN bus,
it is known that no other CAN messages of the same priority are currently queued
if all CAN nodes enqueue message within their CAN controller sorted with respect
to priority. This allows to estimate that message m had not been released the last
time a message of lower priority won the arbitration process. However, legacy CAN
controllers, which use FIFO based queuing still exist, which makes this approach
useless. Either way, it is for certain that a message was not yet queued the last time
the bus was idle. Therefore, a safe prediction can be made, when the release time
of a message is assumed to coincide with the last time the bus was idle.

tD,m

CAN

trelease,m t

t̂release,m

Message m

t̂D,m

Dm

tslack,m

t̂slack,m

tRx,m

eest,m

Figure III.12.: Deadline estimation of a message based on the last idle time [98]

An example of the deadline estimation is illustrated in Fig. III.12. Values that
are estimated are characterized by the operator 〈 ·̂ 〉. The estimation error of the
slack using dynamic deadline estimation can be calculated as

eiest,m = t̂ islack,m − tislack,m ≤ 0. (III.9)

A negative error means that the estimated slack is smaller than the actual slack.
A non-positive estimation error is a necessary property to guarantee real-time capa-
bility, which is given here. The performance of deadline-aware interrupt coalescing
in a realistic setting will be evaluated in Section III.3.2 using simulative methods.
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2. Analytic Evaluation
Based on the analytic framework presented above, the virtualized CAN controller
should be evaluated using realistic transmission patterns. The traffic scenario used
here is based on in-car measurements presented in [105]. Message transmissions are
assumed to occur cyclic. Thus, their behavior can be described by a cycle time Tm.
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Figure III.13.: Cycle time distribution used for traffic pattern generation
throughout CAN-related evaluations

The cycle time distribution used throughout this and following evaluations is
depicted in Fig. III.13. It is comparable to distributions used in related work [32,
106]. Message payload sizes are uniformly distributed between 0 and 8 bytes.

The design of the virtualized CAN controller is optimized to provide real-time
capable CAN operation for multiple concurrent virtual partitions of a system. The
implementation adds blocking at the interface towards the virtualized CAN con-
troller, through which the virtual controllers can be accessed. This blocking was
modeled analytically and can be calculated through (III.3). When using the tem-
poral isolation scheme, it is calculated using (III.6). In this evaluation, the added
blocking should be quantified using a realistic scenario.

For the scenario used here, a message set with 85% bus load on a 500 kbit/s CAN
bus was generated using the cycle time distribution from Fig. III.13. Half of the
traffic is randomly assigned to V = 4 virtual CAN controllers. The virtualization
layer is assumed to operate at 24 Mhz.

Fig. III.14 depicts the results for every virtual controller with and without tem-
poral isolation. Added latencies of upto 30 µs can be seen. The overall largest
latencies are actually seen in the non-isolated case, where more context switches can
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Figure III.14.: Worst-case bound for added latencies experienced at the virtu-
alization layer

occur. The highest priority message in each virtual controller does not necessary
have lower latency using the isolation scheme. It is only the case, if these messages
are globally high priority as seen for v = 2 and v = 3.

Generally, all latencies are decreasing along with message priority. Without iso-
lation measures, the lowest priority can hardly experience head-of-line blocking.
With activated temporal isolation, any message in a specific virtual controller can
be blocked by all other virtual controllers independent of the message priority, be-
cause there are statically assigned scheduling windows. The largest partition (here
v = 2) has the lowest blocking, as the combined window sizes of all other virtual
controllers is minimal. Also, with temporal isolation, low priority messages expe-
rience smaller blocking, as they cannot suffer head-of-line blocking by the higher
priority messages in the same virtual controller. However, the latency decrease for
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low priority messages is less steep. Specifically, the slope using isolation is around
one forth of the slope without isolation. This corresponds to the total number of
virtual CAN controllers V = 4.

The evaluation above is limited to a single setting involving the fixed number of
V = 4 virtual CAN controllers. To evaluate the scalability of the approach, a second
scenario is considered. Here, the same traffic configuration is divided in to 16 equal
parts. Added latencies are evaluated for increasing degrees of consolidation, where
an increasing amount of partitions are integrated in the virtualized CAN controller.
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Figure III.15.: Scaling of added latencies due to virtualization extensions

Fig. III.15 shows added latencies as a function of the number of consolidated
partitions. There is a linear trend for increasing latencies with the number of virtual
controllers V . It is due to the linearly increasing amount of messages, which have
to share the interface towards the virtualized CAN controller.

The added latencies for high priority messages are similar with or without tem-
poral isolation. This was an optimization goal specified in the design requirements.
The price necessary for the added isolation property is an increase in latencies of
low priority messages. Nevertheless, latencies did not exceed 50 µs in the analysis
conducted here even in highly consolidated scenarios. This latency is smaller than
a minimum CAN frame transmission time on a 500 kbit/s bus (96 µs). Also, it is
more than two orders of magnitude smaller than the smallest cycle time used in the
scenario. Often, these cycles times equal the message’s deadline (implicit deadlines).

The latency bounds without isolation can only hold true, if every partition behaves
as specified in the usage model. In Section III.3.1, the temporal isolation property
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will be evaluated using simulation.
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3. Simulation

Analytic methods are well suited to provide worst-case latency bounds and are
thus an essential tool in real-time systems. However, when measures for typical
behavior or statistical distributions are required, simulation can be used to provide
such results. For consistency, the simulations use the same traffic distributions as
introduced in Fig. III.13 and used in the analytic evaluation.

3.1. Temporal Isolation

Temporal isolation is an important property in shared systems, where the behavior
of single tenants cannot be completely specified. This is especially the case in mixed-
criticality scenarios, where single partitions are developed to lower safety goals and
are thus more prone to failures, or where security concerns vary among partitions.
Goal of the temporal isolation mechanism presented in Section III.1.4 is to provide
virtual CAN controllers, which behave as close as possible to separate physical con-
trollers. Attacks directed towards the CAN bus itself are out of scope here and
assumed to be protected against. However, interference within the virtualized CAN
controller can occur, if e.g. one virtual machine issues a high amount of register
writes. Such behavior could occur due to a failure if e.g. a code segment is stuck in
a loop or due to an attack.

3.1.1. Simulation Scenario

Goal of this simulation is to assess how latencies change when the virtualized CAN
controller is exposed to flooding of requests from one VM. The simulation tries to
cover a critical instant, i.e. the first instances of all messages are released at the
same time. Afterwards, messages are sent cyclic. Cycle times are derived from the
distribution given by Fig. III.13. If two message instances are issued at the same
time, the lower priority message is released first. Additionally, the VM attached to
virtual CAN controller v = 0 issues malicious requests towards its partition. The
rate at which such request are issued is varied throughout the simulation. The
intensity of the attempted denial-of-service attack is quantified by the factor IDos.
It specifies a ratio between the number of valid request, which correspond to the
traffic scenario specification, and the amount of malicious requests. The factor
IDos is chosen as 100, 1000, and 10,000. In the scenario, 1010 regular requests
are issued towards virtual CAN controller v = 0 within 100 ms. The maximum
intensity chosen here would lead to a 1.3 Gbit/s rate of malicious requests on a
PCIe interconnect(assuming 128 bit Transaction Layer Packets (TLPs) for write
requests).

The simulation scenario is triggered from a SystemC model. The virtualization
layer was originally also modeled in SystemC and was incrementally replaced by
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a Verilog RTL description with increasing confidence in the design. The final im-
plementation is presented in Section III.4.1. It takes four clock cycles to serve
each malicious request and the clock frequency of the virtualization layer is kept at
24 MHz. The simulated time is 100 ms, as the scenario would repeat in a cyclic
fashion afterwards.

3.1.2. Results
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Figure III.16.: Latencies experienced during a flooding of the virtualized CAN
controller within partition 0

Fig. III.16 shows results obtained using no temporal isolation scheme. The base-
line latencies are already increased for the lowest value of IDoS = 100 by around
270 µs. However, only one priority inversion occurred, where the lowest priority
message in v = 1 and the 11-th highest priority message in v = 0 are transmitted
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first. For the next higher intensity, high priority messages have a latency incrcease
around 3.5 ms caused by multiple priority inversions. These occur, when medium
priority messages are already buffered in the priority queue and ready for CAN
transmission, while higher priority messages are stuck at the interface towards the
virtualization layer.

For the highest intensity, priorities are nearly completely inverted, i.e. lower prior-
ity messages have lower latencies than high priority messages. Essentially, the high
amount of malicious requests delays message insertions for so long, that messages
are mainly transmitted in the order they were issued rather than the appropriate
priority ordering. At this point, the latencies of high priority messages are close to
40 µs and thus significantly larger than typical deadlines of such messages.
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Figure III.17.: Latencies experienced during a flooding of the virtualized CAN
controller within partition 0 using temporal isolation through
WTBRR
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The scenario presented shows how flooding a single virtual controller with write
requests can lead to a denial of service in all concurrent partitions. Because all mes-
sages are still successfully transmitted, this attack might not be considered a denial
of service attack in general purpose server systems. However, service in real-time
systems is not only characterized by throughput, but also temporal requirements.
The attack at hand leads to a violation of these temporal requirements and thus
denies the necessary service.

The scenarios were repeated using a WTBRR temporal isolation scheme. The
respective results are presented in Fig. III.17. It is evident that any virtual CAN
controllers not v = 0 are free from priority inversions. In many cases, latencies are
smaller when the attack is run to virtual CAN controller v = 0, because its service
is delayed, leaving more room for other partitions to transmit.

The temporal isolation also leads to a reduced impact of the attack to the trans-
missions of the attacking partition itself. This is because all other partitions are free
from priority inversions. Only for the highest intensity attack, latencies are heavily
increased to a similar order of magnitude as seen in the first scenario.

The simulations results shown here demonstrate the ability of the virtualized
CAN controller to provide isolated performance for each virtual controller using
a temporal isolation scheme. This enables its use in mixed-criticality scenarios,
where partitions with different safety and security requirements are consolidated on
a shared platform.

3.2. Deadline-Aware Interrupt Coalescing

Deadline-aware interrupt coalescing (see Section III.1.5) is a concept intended to
reduce the number of interrupts imposed on a system while being able to guarantee
real-time capability. The concept is generally applicable in real-time communication
an was detailed for CAN. It is most efficient in virtualized systems, where interrupt-
related overheads are greatest. Here, its ability to reduce interrupts in an automotive
CAN setting was evaluated.

3.2.1. Simulation Scenario

Again, the simulation scenario is based on the traffic distribution introduced in
Section III.2. A centralized CAN node is evaluated, which is configured to receive
50% of all messages. The mechanism should not be evaluated using a single traffic
constellation, but rather using a wide range of scenarios. CAN message sets are
randomly generated at predefined bus loads, with the available bandwidth being
500 kbit/s. As deadlines play a central role in this mechanism, multiple more or
less tight deadline configurations will be considered. Message deadlines Dm are
randomly chosen from the range between 50% and 100% of a messages respective
cycle time Tm. The random values used to generate the scenario are uniformly
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distributed.
Using an event based simulation of CAN, the number of interrupts forwarded in

state of the art systems and with variations of deadline-aware interrupt coalescing
was measured. To be able to draw general conclusions independent of single message
set configurations, the simulation was repeated 10,000 times for every bus load. This
gives a realistic estimate on what can be achieved in the average case.

3.2.2. Results

The central measure used throughout this evaluation is the ability of the mechanism
at stake to reduce the total number of interrupts. The IRQ reduction Rcoal . is defined
as a ratio between the number of interrupts forwarded using coalescing IRQcoal and
the number without coalsecing IRQSotA, representing the performance of state of
the art systems. It can be calculated as

Rcoal. =
IRQSotA

IRQcoal .

. (III.10)
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Figure III.18.: Reduction of interrupts using different approximations of
deadline-aware interrupt coalescing [98]

Results of the simulation are shown in Fig. III.18. It compares deadline-aware
interrupt coalescing using the three deadline approximations proposed to an ideal
interrupt coalescing scheme. In ideal interrupt coalescing, all static and dynamic
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information is available to make the interrupt forwarding decision. In actual im-
plementations, this behavior is not achievable, because the release time of messages
can be masked by ongoing transmissions. If no coalescing were to be used, it would
be represented by a horizontal line Rcoal. = 1.

Ideal interrupt coalescing leads to a linear increase in IRQ reduction for increasing
bus loads. This is expected, as an increase in the bus load means that more messages
arrive in the same time interval and therefore can be coalesced. For increasing
bus loads, worst-case latencies increase heavily, which could lead to reduced slack
and limit the efficiency of deadline-aware interrupt coalescing. However, even for
bus loads around 90% the typical latencies are still low and the IRQ reduction
performance is not affected.

Using approximated deadlines, significant degradation from the linear trend is
witnessed for high bus loads around 80%. The reasoning for this degradation differs
between the static approaches, fixed delay and message-based fixed delay, and the
dynamic deadline estimation. For static approaches, high loads mean increasing
WCRTs and thus decreasing worst-case slack. This results a smaller time window,
in which interrupts can be buffered. The fixed delay approach stops working com-
pletely, as soon as one message has slack smaller than a minimum transmission time
of a frame. In this case, the timeout to forward buffered interrupts occurs before a
second message can arrive.

Increasing the granularity of the fixed delay approach to message-based differen-
tiation leads to an IRQ reduction that is nearly double for most loads. Nevertheless,
a performance drop is experienced at a similar load, when single messages reach a
static slack close to zero. However, few messages will still have large enough slack
so that some interrupts can be forwarded together.

The best performance is achieved using dynamic deadline estimation. Generally,
it provides the highest IRQ reduction and maintains close to ideal performance for
bus loads smaller 70%. Past this point, a degradation is also experienced, yet it
is more graceful than with static versions. Even for high bus loads around 90%,
significant interrupt reduction is achieved, where 18 interrupts can be merged into a
single one. Here, the degradation is caused by release time masking on the bus. An
increased bus load means that the probability of an accurate prediction is decreasing,
and the uncertainty increases.

The distribution of deadlines plays a central role in deadline-aware interrupt co-
alescing and directly influences the possible IRQ reduction. To compare the effects
of deadline variations with respect to the proposed approaches, another evaluation
is conducted. The tightness of deadline requirements will be measured as the ratio
between deadline and cycle time

Drel = Dm/Tm. (III.11)

The relative deadlines Drel will be kept constant within each evaluated messages
set. The ability of a mechanism to perform IRQ reduction at a given level of Drel
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will be measured as a weighted IRQ reduction W (Drel). It can be computed as

W (Drel) =

∑
∀U U ·Rcoal.(U,Drel)∑

∀U U
. (III.12)

The weighted IRQ reduction represents a weighted average of Rcoal., where high
bus loads are given more emphasis. This is weighting reflects the importance of high
loads in application scenarios as well as the technical difficulty associated with it.
This approach allows to analyze the influence of Drel over a wide range of bus loads.
It is comparable to a weighted schedulability as introduced by Bastoni et al. [107].
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Figure III.19.: Weighted reduction of interrupts depending on latency require-
ments. A small relative deadline implicates low latency require-
ments. [98]

Fig. III.19 shows that dynamic deadline estimation outperforms the static im-
plementations for any relative deadline Drel. The difference to static approaches is
greater, if deadline requirements are tighter. In the case of implicit deadlines, where
the deadlines equals the cycle time, the IRQ reduction achieved using messages-
based delays approaches the performance of dynamic deadline estimation.

The discrepancy between ideal deadline-aware interrupt coalescing its approxima-
tion using deadline estimation is due to the pessimism in the estimation algorithm.
Throughout the previous experiments, the absolute estimation error and the per-
centage of accurate predictions were recorded.
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Figure III.20.: Percentage of accurate predictions and average error due to
overestimation of deadlines. [98]

Fig. III.20 presents estimation error and prediction ratio as a function of the bus
load. The percentage of accurate predictions decreases linearly with the overall bus
load. An accurate prediction is only possible, if the bus is idle at the time of a
message release. As the probability of the bus being idle is directly related to the
bus load, the results is reasonable. Accurate predictions are goal, but not a necessity
for deadline-aware interrupt coalescing to perform well.

If the prediction error is pessimistic and sufficiently small, the coalescing can still
be performed efficiently. As can be seen in Fig. III.20, the prediction error scales
superlinear with the bus load. At 100% bus load, the prediction error would be
infinite, as the bus could never be idle. Around 85% load, the error exceeds 1 ms.
Because deadlines in CAN are usually greater than 5 ms and range up to 100 ms,
this error still leaves room for interrupt coalescing.

Another important figure to estimate the impact of interrupts with respect to the
overall system performance is the IRQ inter-arrival time. Between two interrupts,
the CPU can execute tasks without being interrupted. Also, if no tasks are to be
executed and long inter-arrival times are expected, the CPU can switch to low-power
modes.

Here, inter-arrival times of interrupts with and without interrupt coalescing were
researched. This evaluation focuses on dynamic deadline estimation as implemen-
tation of deadline-aware interrupt coalescing. The inter-arrival were also evaluated
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Figure III.21.: IRQ inter-arrival time evaluated for different bus loads: The
plots present probability density functions (PDF) and cumula-
tive distribution functions (CDF) with and without interrupt
coalescing [98].

at multiple bus loads. Fig. III.21 presents probability density functions (PDF) and
cumulative distribution functions (CDF) of the IRQ inter-arrival time tirq2irq at
multiple levels of bus utilization.

The PDF of IRQ inter-arrival times without coalescing presented in Fig. III.21a
peaks between 400 and 600 µs. Afterwards, probabilities are monotonically decreas-
ing. For increasing bus load, the arrival times are decreasing. Inter-arrival times
are up to one order of magnitude smaller than those achieved using deadline-aware
interrupt coalescing.

Fig. III.21b demonstrates how the interrupt coalescing affects the IRQ inter-arrival
time distribution. The main peak of inter-arrival time is shifted to around 10 ms.
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As 10 ms is the smallest cycle time in this example, it can be assumed that cyclic
interrupt scenarios emerge, where the release of interrupts is regularly triggered by
the same message. In some low load scenarios, message sets with a smallest cycle
time of 20 ms were randomly generated, leading to the peak around 20 ms. In few
cases, inter-arrival times between 5 ms and 10 ms occur, as these are the smallest
possible deadlines.

Fig. III.21c shows the cumulative distribution of IRQ inter-arrival times. It can
be seen that there is a 50% probability that an IRQ will be followed by another IRQ
with more than in less than 1 ms. For high bus loads of 80%, this point is around
300 µs. By using deadline-aware interrupt coalescing (see Fig. III.21d), this point
can be shifted to 9.5 ms even for high bus loads. A minimum IRQ inter-arrival time
of 5 ms for 80% bus load can be guaranteed with 95% certainty. This predictable
behavior and the long spacing between consecutive IRQs can be used for efficient
and uninterrupted task processing (no VM exits, cache pollution etc.) or to utilized
deep low power states with low probability of wake ups triggered by interrupts from
CAN events.
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4. Implementation and Cost Evaluation
This section presents an HDL implementation of the virtualization extensions pro-
posed for CAN. Additionally, a module to perform deadline-aware interrupt coa-
lescing is introduced, which can be integrated with the virtualized controller. Af-
terwards, the virtualization layer is used to implement a prototype card using a
Virtex-7 based FPGA board with PCIe SR-IOV support. The implementation was
done in Verilog.

4.1. Virtualized CAN Controller
The implementation of the CAN virtualization extensions will be presented in a top-
down fashion on a component basis. The top-level view of the virtualization layer
is shown in Fig. III.22. It directly corresponds to the layered concept presented in
Fig. III.1.

Figure III.22.: Block diagram of the implementation of the architecture layers

The main contribution here is the virtualization layer and it will be the focus of this
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presentation. Signals shown are either associated with Tx or Rx path operations.
This isolation allows full duplex operation. For each part, there is a signal that
selects the current virtual CAN controller (tx vcanc and rx vcanc, respectively). All
operations selected through other signals are performed for the indicated virtual
controller.

For both Tx and Rx, there are configuration signals (setting maximum number of
messages, setting message filters) and data path signals. On the Tx side, messages
coming from the host-controller interface are inserted into the virtualization layer
queues. Later on, messages are issued to the protocol layer in the form of a trans-
mission request. insrt req and tx req follow the same signaling protocol and could
thus be directly connected without the virtualization layer. However, if multiple
partitions were to use this component in a shared fashion, they could override each
others transmission requests. Resolving such conflicts is job of the virtualization
extensions. The Rx side has corresponding signals to read out CAN messages and
an additional interrupt interface. Signal interactions will be discussed in detail in
context of the lower level modules. Generally, reset and clock signals or omitted to
improve clarity of the illustrations.

Figure III.23.: Block diagram of the implementation of the Tx path

The Tx path architecture is depicted in Fig. III.23. It is divided into three stages,
manifested in the three submodules Buffer Control, RAM, and Arbitration. The
Buffer Control is responsible for managing priority queues for each virtual CAN
controller within the RAM. This memory module is implemented as a dual-port
Block RAM. The use of dual-port memory allows concurrent and non-blocking mes-
sage insertions and arbitration. The memory port facing the Arbitration module
is read-only to avoid write conflicts. This is sufficient for the arbitration process.
However, after a successful transmission, the buffer control module has to be no-
tified to remove the corresponding transmitted message. This is done through the
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del req signals. Another signal is driven by the Buffer Control to notify the Arbi-
tration, when the message currently buffered represents a new maximum priority in
the buffer. It can be used to trigger an arbitration in case all buffers were empty.

Figure III.24.: Block diagram of the implementation of the Buffer Control
module

A detailed block diagram of the Buffer Control is depicted in Fig. III.24. It is
the most complex module within the virtualization layer and will thus be discussed
in detail. Generally, the module has to manage the data buffer structures within
the Tx memory and it is the only component with write access to it. Requests to
modify the memory contents are issued from the host-controller interface and from
the Arbitration.

Because requests from multiple sources can lead to memory modifications, the
access towards the RAM has to arbitrated. This is the main task of the Access
Control module. It receives requests for message insertion through the insrt req
signal. It is accompanied by the din signal, which specifies the data input in the
form of a CAN ID, CAN payload length and CAN payload data. The completion
of the insertion request is notified through the insrt req ack signal. Similarly, a
message deletion is requested through del req. Deletion requests are directed towards
concrete message objects indicated by del obj. This signal specifies a pointer which
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can be translated to the memory address of the message. A third source requiring
RAM access is the Mgmt module. Access is provided in non-preemptive fashion.
When multiple sources require access at the same time, management operations are
prioritized before deletions and insertions. The cmd signal is used to indicate that
either a deletion (’1’) or insertion (’2’) has to be performed by the RAM Control.
The Mgmt module is granted direct RAM access.

When an insertion or deletion request is issued, the Context Mgmt module checks
whether the correct context is presented by comparing the currently active vir-
tual CAN controller (valid vcanc) to the one indicated by either host vcanc or
del msg vcan. If a context switch is necessary, it is requested through switch context.
Additionally, the Mgmt module can request a switch through mgmt force switch.

Figure III.25.: Memory layout of the Tx RAM

The functionality of the RAM Control module is directly linked to the memory
layout, which is visualized in Fig. III.25. The layout is divided into two parts. First,
the virtual CAN controller contexts are stored. Each consumes a single RAM line,
which is 64 bit wide. The rest of the memory is used to store message objects.
Within the figure, orange fields specify message object pointers. Blue fields contain
control information and CAN data is stored in green fields. Each message object
requires two RAM lines, with one storing header information and one containing
the payload data.

The context of each virtual CAN controller contains the partition-specific infor-
mation used in the state machines of RAM Control and Arbitration module. It
contains two message object pointers, one to the root of the respective queue and
one to maximum priority message buffered. These pointers are only valid if the buffer
is not empty. Additionally, the number of buffered and sent messages is stored as
well as the maximum amount of buffered messages allowed. Each message object
header contains three pointers. It has a pointer to the parent and both children. In
the same line, the message ID, CAN control bits and the data length code (DLC)
are stored.

When a request for message insertion or deletion is forwarded to the RAM Control,
the Context Mgmt has already made sure that the correct values are loaded into
the registers. The memory resources are managed dynamically. A linked list of
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unallocated objects is maintained. For an insertion, an object is taken from that
list and deleted objects are appended to the list.

A message insertion is performed by parsing the existing priority queue to locate
the proper position. If the queue is empty, the inserted message will be used as
root of the binary tree implementing the priority queue. Otherwise, the tree will
be iterated starting with the root. If the message has higher priority, the iteration
continues with the left child. A child pointer towards the root indicates that no
child object exists. In that case the message can be appended there. If the inserted
message has maximum priority within the buffer, the max prio pointer is redirected
and a flag is raised on the new max signal. Deletion requests are issued directly
towards a message object indicated by the del obj pointer. Here, no iteration is
required to find the object, yet the tree structure has to be adjusted to compensate
for the deletion.

The Mgmt module performs privileged operations. After a reset, it instantiates
the memory contents of the RAM. Each context is written and configured to con-
tain an empty priority queue with zero messages sent. The values of the pointers
are irrelevant at this point, as they will be set when the first message is stored.
Additionally, the list of unallocated message objects is instantiated. This involves
writing pointers within every object to create the linked list. The payload field are
not reset and will first be written, when a message is inserted in the respective ob-
ject. Also, the maximum buffer size can be configured through the Mgmt module
by using the set max msg signal. As this operation directly modifies the context of
a virtual CAN controller, a context switch is forced so that the registers within the
RAM Control are consistent with the memory contents.

The Arbitration module (see Fig. III.23) selects the highest priority message within
the virtualized CAN controller whenever an arbitration on the CAN bus is possible.
This is the case, when either a transmission on the CAN bus just finished (flag in
tx ack), or the CAN bus was idle. Consequently, the module will iterate all virtual
CAN controllers by reading the ID of the message indicated by the max prio pointer.
After comparing all maximum priority messages, the overall highest priority message
will be send to the protocol layer by raising the tx req signal. The successful transfer
to the protocol layer is acknowledged through tx req ack. A pointer to the message
forwarded to the protocol layer has to be saved in order to request its deletion after
successful transmission on the bus indicated by tx ack.

Fig. III.26 presents the architecture of the Rx path of the virtualization layer,
which is structured into three submodules. CAN messages from the protocol layer
are read out by the Filtering module and stored in the RAM if they are accepted.
The reception of messages is signaled through interrupts, which cause the host sys-
tem to trigger a read operation towards the Read-out Protection module, which
guarantees that only reads towards messages associated with the respective virtual
CAN controller can occur.

The memory within the Rx path consists of a series of message objects. According
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Figure III.26.: Block diagram of the implementation of the Rx path

to the concept designed in Section III.1.2.2, each object serves as a message filter
and buffer at the same time. An illustration of an Rx message object is shown in
Fig. III.27. It consists of two 64 bit wide RAM lines, where the first line contains
the filter and control information, and the second line contains the received payload.

Figure III.27.: Memory layout of Rx message objects for V = 4 virtual CAN
controllers [97]

When a received message is buffered in the protocol layer and thus ready to be
processed, it is indicated by a low level in the rx empty signal. By raising a flag
on rx read, the frame is delivered through rx frame. Consequently, it has to be
checked for acceptance. For that, the Filtering module iterates through the list
of instantiated filters. The ID of the received frame is compared to the ID based
filter of each object. If a match is found, the frame is stored. If no matching filter
was found after a number of iterations corresponding to the filter count signal, the
message is discarded.

In addition to the ID based filter and the payload, each message object contains
control fields specifying the configuration of the virtual CAN controllers. The active,
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IE, and read-out pending fields are each subdivided into V bits, corresponding to the
number of virtual CAN controllers. The active fields specify, which of the virtual
CAN controllers is supposed to receive CAN messages stored in this object. If
the respective interrupt enabled (IE ) bit is set additionally, an interrupt will be
forwarded whenever a message is stored, unless the read-out pending bit is high.
This bit indicates that a message has not yet been read.

On the other side of the Rx RAM, the Read-out Protection module handles read
accesses towards stored message objects as well as the filter configuration. Filters
can be added through the add filter req signal. When the addition of a filter is
requested for a virtual CAN controller rx vcan, the list has to be checked as to
whether a particular filter already exists. In this case, only the active flag has to
be set and potentially the IE bit. If no filter with the ID exists, a new one will be
installed and the filter cnt is incremented.

Reads from the host system are issued through the read req signal. They are
targeted at a concrete message object specified by read obj. The data will only
be returned, if the corresponding active flag is set and the message has not yet
been read by the respective partition. If the read is not justified according to the
configuration, a flag is issued in the read failed signal. Otherwise, the data is output
using dout and the read-out pending flag is set low.

Table III.1.: Virtualization layer hardware resource requirements

module FFs LUTs as Logic

Tx Path 387 1095

Arbiter 154 227

Buffer Control 233 854

Access Control 2 46

Mgmt 14 32

Context Mgmt 0 6

RAM Control 217 760

Rx Path 52 480

Filtering 30 243

Read-out Protection 22 227

Virtualization Layer 439 1575

Protocol Layer 844 1239

The implementation was synthesized for the VC709 FPGA board using Vivado
2013.3. The implementation provides V = 4 virtual CAN controllers. Hardware
resource requirements are listed in Table III.1. The table lists resource utilization
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in terms of flip-flops (FFs) and lookup tables (LUTs) as logic. Additionally, the
protocol layer uses 12 LUTRAMs and both Tx and Rx path use 2 RAMB36 Block
RAMs.

The protocol layer serves as a baseline for comparison. It was implemented
on the basis of an OpenCores CAN protocol controller1, which is equivalent to a
Philips/NXP SJA 1000. It was adjusted to fit the interfaces as shown in Fig. III.22.

The virtualization layer requires roughly have the FFs of the protocol layer, but
needs 27% more logic resources. The virtualization not only enables multi-tenancy
towards a shared CAN controller, but also provides significantly more advanced
buffering capabilities (e.g. the SJA 1000 only provides a single message Tx buffer).
Despite the added functionality, a break even point is roughly reached when two
virtual CAN controllers are used, with increasing efficiency for higher numbers.

The per module resource consumption presented in Table III.1 allows an in depth
inspection of the resource distribution. Listed are Tx and Rx path overall resource
consumption alongside the submodules. If a top-level module requires more re-
sources than the sum of submodules, it is caused by additional hardware in the top
level module itself. This is e.g. the case for the Buffer Control, where a multiplex
is implemented in the module itself (see Fig. III.24). Within the Rx path, resources
are distributed evenly between the Filtering and the Read-out Protection module.
More resources are used by the Tx path. Here, especially the priority queue ma-
nipulations implemented in the RAM Control require significant resources, which
amount to ca. 50% of the overall virtualization layer. While the virtualization layer
is efficient compared to the use of multiple stand-alone CAN controllers, its HW
overhead could be reduced if simpler buffering mechanisms are sufficient.

4.2. Deadline-Aware Interrupt Coalescing
Deadline-aware interrupt coalescing was proposed as an extension to reduce the
interrupt-associated overhead experienced in the host system. It can be implemented
as an extension to the virtualized CAN controller.

Fig. III.28 presents a virtualized system, in which a virtualized CAN controller
uses an interrupt coalescing module to reduce the number of IRQs. It is integrated
within the Rx path of the virtualization layer.

The concepts presented in Section III.1.5 cover three versions of deadline-aware
interrupt coalescing with varying degrees of granularity. Each version was evaluated
with respects to its ability to reduce IRQs in Section III.3.2. Here, an implementa-
tion will be proposed and evaluated with respect to its resource consumption.

Because the module performing deadline-aware interrupt coalescing was imple-
mented for the virtualized CAN controller, it must be able to perform interrupt
coalescing for multiple virtual CAN controllers. In the case of of V virtual con-
trollers, the same amount of interrupts must be managed by the module.

1http://opencores.org/project,can
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Figure III.28.: Architecture of a virtualized system (left) with virtualized
CAN controller (right) that features interrupt coalescing ex-
tensions [98]

All three versions of deadline-aware interrupt coalescing were implemented in a
conditional Verilog module. The actual version can be selected before synthesis by
setting the corresponding parameter. Based on this, hardware implementation costs
of the module can be compared for all versions.

Fig. III.29 shows the architecture of the interrupt coalescing module. Conditional
components, ports, and signals are drawn dashed or dotted for dynamic deadline
estimation and message-based delays, respectively. The task of the module is to
buffer incoming interrupts and to forward them just before a deadline violation
could occur. An interrupt request is raised after the reception of a frame. It is
notified using the irq in signal. Additionally, irq vcan in indicates which virtual
CAN controllers correspond to the interrupt. While virtual controllers can receive
the same message, they can be expected to receive a different overall subset of
available messages. Thus, separate interrupt coalescing has to be performed for
each virtual controller.

The function of the timeout update module is to maintain a timeout counter indi-
cating the time at which an interrupt has to be forwarded. All timers are regularly
decremented using a clock derived from the CAN bus activity. Every time a bit is
sampled on the CAN bus, can sample point has a positive flag and every timeout
value is decremented by one bit time (2 µs at 500 kbit/s). When a new interrupt is
requested, the timer may have to be updated. If the timeout equals zero, no inter-
rupt is currently buffered and the timer is set to the estimated slack of the message.
Otherwise, the timeout is only updated if the slack of the message just received is
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Figure III.29.: Implementation of the deadline-aware interrupt coalescing ex-
tension. It is illustrated as conditional implementation, cover-
ing all three design alternatives [98].

smaller than the current timeout value.

The slack of a message just received is determined in different ways depending
on the mechanism implemented. Using fixed delay, the slack value is stored in a
register within the module. Otherwise, a slack value is given from other modules.
For message-based delay, the slack determined at design time is input through the
slack signal. In the case of dynamic deadline estimation, the slack is determined at
run-time by the additional deadline estimation module.

The dedicated deadline estimation module relies on two signals taken from the
protocol layer to determine the last time the CAN bus was idle. A rising edge in
can go sof indicates a start of a frame. If the bus was idle previously (can idle is
high), a timestamp is taken. When the next message was received, the last idle time
is assumed to be the release time of the message. Using static deadline information
input to the module, the remaining slack can be calculated.

The irq output module checks the interrupt timeouts and forwards the IRQs ac-
cordingly. The timeout values are checked sequentially for all VCANs. If a timer
reaches zero, a positive flag on irq output as well as the corresponding virtual con-
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troller indicated by irq vcan out are issued to the host controller interface. The
operation is acknowledged through irq ack.

Table III.2.: Interrupt coalescing hardware resource requirements

module FFs LUTs as Logic

Fixed delay 74 160

Message based delay 74 244

Dyn. deadline estimation 108 267

Virtualization Layer 439 1575

Protocol Layer 844 1239

Table III.2 presents synthesis results for the VC709 (Virtex-7) FPGA board using
Vivado 2013.3. The resource utilization of the respective implementations of the
module is compared to protocol and virtualization layer overall resource consump-
tion. The resource consumption of the virtualization layer excludes the interrupt
coalescing extensions.

Implementation costs of deadline-aware interrupt coalescing increase with dead-
line estimation complexity. This is expected and leads to a trade-off between area
overhead and IRQ reduction capabilities. The difference between fixed and message-
based delay is caused by additional logic to check if the currently received message
has smaller slack than the timeout value. This is not possible with fixed delays and
does not have to checked. Dynamic deadline estimation requires additional flip-flops
and LUTs, as it introduces an additional module to estimate the release time and
calculate the remaining slack of a received message. Compared to the message-
based delay implementation, around 45% additional flip-flops 10% additional LUTs
are necessary.

Extensions for deadline-aware interrupt coalescing require less than 10% of the
overall design of the virtualized CAN controller consisting of protocol layer and
virtualization layer.

4.3. Prototypical x86 System Implementation

The virtualization extensions presented so far are platform independent. To validate
the concept on a system level, it has to be integrated with a concrete host system.
As virtualization technology is most matured in x86 systems, it was chosen as a
prototyping platform. At the same time limitations exist, because x86 systems are
designed for general purpose applications and are not tailored to safety critical real-
time applications. System level latency measurements using the prototype presented
here are conducted in Section III.5.
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Figure III.30.: Prototypical Implementation of a System using a virtualized
CAN controller

Fig. III.30 depicts the HW/SW architecture of the prototype. A listing of the
components used is given in Table III.3.

On the software side, KVM version 3.8.13.6 was used as hypervisor. KVM stands
for Kernel-based Virtual Machine and is contained in the Linux kernel. By loading
the KVM kernel module, Linux works as a type-1 hypervisor. As the hypervisor is in
control of the physical function (PF) of the virtualized hypervisor, it also integrates
a character device driver.

The virtual machines are running Ubuntu 13.04 The driver structure uses the
SocketCAN concept [108]. SocketCAN was developed at Volkswagen and integrates
CAN drivers into the Linux networking stack. Applications can send and receive
CAN messages through standardized socket interfaces.
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The software is running on an Intel Core i7 CPU, which features all relevant
state-of-the-art virtualization support including Vt-x and SR-IOV support.

The virtualization layer is integrated with the protocol layer and a host-controller
interface on a Virtex-7 FPGA. The FPGA used here features an integrated and
SR-IOV capable PCIe GEN 3 endpoint. It can thus be used for I/O virtualization
scenarios as presented here. Requests are forwarded to the user logic through AXI
stream interfaces. The protocol layer implements the CAN protocol through the use
of an OpenCores IP core as introduced in Section III.4.1.

Table III.3.: Components of the prototype system

Component Description

CPU Intel Core i7-3770T (Quad-core, 2.5 GHz)

Mainboard Intel DQ77MK

Memory 4x Corsair Vengeance 8 GB

Peripheral Interconnect PCIe 3.0 with SR-IOV capability

FPGA Board Xilinx Virtex 7 VC709 Connectivity Kit

This system prototype comes with some limitations that mainly arise from the fact
that most of the components used are designed for general purpose applications. For
instance, none of the involved components feature virtual channel support for PCIe.
This feature is required for strict temporal isolation in the peripheral interconnect,
but is only available in high-end server systems. Additionally, Xilinx’ PCIe endpoint
does not allow out-of-order processing of non-posted requests is possible. This means
that one request has to be served, before the next can even be accessed. This
limitation makes the implementation of a scheduling scheme for temporal isolation
as introduced in Section III.1.4 impossible. Finally, a general purpose hypervisor
and operating system were used. Nevertheless, the system can be used to verify
general design objectives, like the applicability of direct access to a shared embedded
networking device.

Because no CAN transceiver in integrated on the FPGA board, it has to be added
to the setup using an extension card. The board has a dedicated connector for FPGA
mezzanine cards (FMCs). Certain I/O pins of the FPGA are routed to the FMC
connector and can thus be accessed on a custom hardware board. Here, an FMC
with CAN transceiver was used to enable CAN access from the FPGA.

Fig. III.31 shows a schematic of how the FPGA is connected to the CAN bus.
From the FPGA, to digital signals can tx and can rx are routed across the FMC
connector to the CAN transceiver (PHY). Here, the transceiver receives the digital
Tx signal as input and outputs the digital Rx signal. Communication on the CAN
bus occurs using differential signaling. This means that the difference among the
signals can H and can L determines if the signal is logical high or low. The sampled

87



III. I/O Controller Virtualization for CAN

Figure III.31.: Schematic of the physical setup connecting the FPGA to the
CAN bus

signal of the can bus is output as can rx. If the can tx has a dominant logic level
(logical ’0’), it is broadcasted on the bus. An additional ground output GND is
offered by the transceiver. Its connection to the CAN bus is optional. The CAN
bus signals are connected to a 9-pin DSUB connector.

Figure III.32.: Photograph of the system depicting the key hardware compo-
nents
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Fig. III.32 shows the assembled system. The FPGA board is plugged into a PCIe
slot and the FMC with transceiver is plugged into the FPGA board. The DSUB
connector is integrated into a separate slot bracket.
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5. Experimental System Latency Evaluation

Based on the prototype system presented in Section III.4.3, an experimental latency
evaluation is conducted here. This experiment is designated to evaluate the overall
performance of virtualized system with SR-IOV enabled, virtualized CAN controller
with respect to message transmit and receive latencies. The system performance will
be compared to an equivalent setup without virtualization and a with results from
related work using paravirtualization.

5.1. Experimental Setup

The experimental setup is designed to obtain results regarding latencies of message
releases and transmission in a virtualized setup. The system under test corresponds
to the x86 prototype system detailed in Section III.4.3. To obtain baseline results,
an equivalent experiment was conducted in native conditions.

(a) Native (b) Virtualized

Figure III.33.: Assessment of latencies using an SR-IOV enabled virtualized
CAN controller. The experimented was conducted within the
hypervisor to assess native performance and within a VM [99].

Fig. III.33 depicts the setup for each scenario. In both cases CPU functions
that lead to performance variability are deactivated. This includes hyper-threading,
SpeedStep and Turbo Boost. The hypervisor used is KVM (3.8.13.6) and the VM
is running Ubuntu 13.04. The CAN bus is operating at a bandwidth of 500 kbit/s.

The application level procedure carried out is the same in both experiments. A
CAN message transmission is requested. The virtualized CAN controller is config-
ured to receive this message after its transmission on the CAN bus. By receiving
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the message on the same system, precise timing measurements can be made, as the
very same real-time clock can be used for timing transmission and reception. Af-
ter the application receives the message, it is sent again. This loop of sending and
receiving is repeated 10,000 times, with the time between transmission request and
successful reception being recorded. The experiment is repeated with all possible
payload sizes, with the payload data being set to an alternating pattern of zeros and
ones to avoid bitstuffing.

Fig. III.33a details the setup and experimental procedure in the native case. Only
KVM is running and the virtualized CAN controller is assigned to it. Therefore,
all functions are executed in host mode, providing native performance. During each
measurement, the following actions occur (numbers corresponding to the one in
Fig. III.33a).

(1) A message is issued by an application within KVM for transmission via the
virtualized CAN controller

(2) The message is received after successful transfer on the CAN bus and an inter-
rupt is immediately issued to the host system

(3) The message is read-out by the driver and received within the application.

The corresponding experiment for evaluating virtualized performance is illustrated
in Fig. III.33b. On top of KVM, a VM is running Ubuntu. Within this VM, the
measurement process is executed. Therefore, it is executed in guest mode of the
processor. The sequence of events is similar to the native case and goes as follows:

(1) A message is issued by an application within Ubuntu for transmission via the
virtualized CAN controller

(2) The message is received after successful transfer on the CAN bus and an inter-
rupt is immediately issued to the host system

(3) The interrupt is received within KVM and forwarded to the VM

(4) The message is read-out within Ubuntu by the driver and received within the
application.

The main difference within the sequence is step (3), where the interrupt has to
be forwarded to the VM. x86 CPUs have to be configured to either receive all
interrupts in host or guest mode. Therefore, virtualized systems require a privileged
component running in host mode (here the hypervisor) to forward these interrupts
into the respective VMs. This additional interrupt forwarding is expected to cause
an overhead, even in setups using SR-IOV capable I/O devices.
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Figure III.34.: Latencies measured for a complete transmit-receive loop CAN
communication in a native scenario on from within a VM in
virtualized x86 system [99]

5.2. Results

Fig. III.34 shows minimum and average latencies measured the two experiments out-
lined, showcasing native and virtualized performance. These latencies also include
the transmission time of the CAN frame on the bus. This transmission time is a
theoretical lower bound for the latencies measured here. It is plotted alongside for
reference (can-tx ).

Measured latencies are increasing with the payload size of the CAN frame. This
increase is only due to the transmission time on the bus. CPU as well as the
virtualized CAN controller are able to process the whole payload data in parallel.

The measurements are intended to provide a comparison between latencies in a
native and virtualized scenario. For measurements in a complex system like a vir-
tualized x86 computer, many sources of interference exist, which can take unwanted
influence on the results. This includes cache behavior, interrupts, as well as operat-
ing system and hypervisor scheduling. The hypervisor used lacks real-time support
itself, so that a routine executed within the hypervisor may e.g. delay the release of
a CAN frame within the VM.

The experiment was repeated 10,000 times for each payload. Therefore, little
interference was present during the measurement with the smallest latency. It can
thus be used as an isolated reference for message release latencies. To evaluate

92



5. Experimental System Latency Evaluation

average latencies, a three sigma mean [109] was used. To calculate a three sigma
mean, only values within three standard deviations are used to compute a mean.
In normal distributions, it still contains 99.7% of all values. Outliers, which would
otherwise corrupt the average, can be eliminated.

Minimum latencies excluding the CAN transmission time range around 13 µs in
the native case and between 20 µs and 24 µs in the virtualized scenario. This differ-
ence can be attributed to the additional interrupt forwarding necessary(corresponding
to step (3) in Fig. III.33b). Other data path and control path operations that are
done through memory-mapped I/O requests take the same time in both scenarios.

Mean latencies are around 11 µs larger than the minimum latencies in the native
scenario and 25 µs in the virtualized case. The deviation from minimum latencies
can be explained through competing tasks on the CPU, cache and TLB pollution,
and varying on-chip and peripheral interconnect latencies. Latencies within a VM
are increased more compared to the interference-free case, because tasks within
hypervisor and within the VM are able to block CAN transmission and reception
tasks.

Figure III.35.: Results obtained in related work [88]

Kim et al. developed a paravirtualized CAN communication concept, which they
implemented and evaluated using a comparable platform (Intel i7 2.8 GHz) and
Virtual Box as hypervisor. For reference, their results are shown in Fig. III.35.
The experience differs slightly, as the loop back was done through a second (non-
virtualized) PC. Therefore, the overall latency includes two times the CAN trans-
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mission and the loop back time on the second PC. Nevertheless, the virtualization
overhead (difference between original and virtualized latency) can be directly related
to the experiments at hand. It ranges between 120 µs and 200 µs and therefore ex-
ceed the results achieved here using hardware-assisted virtualization by an order of
magnitude. It should be noted that a hosted (type-2) hypervisor was used in their
experiments so that possible improvements could be achieved using a bare-metal
hypervisor like KVM.
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6. Summary

Scalability limitations of current automotive embedded system architectures require
car manufacturers to consolidate ECUs on shared platforms. Multi-core processors
provide separate processing cores, but still rely on shared hardware resources like
caches, memory, and peripherals. Network-I/O controllers are highly critical with
respect to the overall real-time capability of the system. In a scenario, where multiple
partitions share one network-I/O controller like a CAN controller, safe, secure, and
real-time capable operation must be ensured.

In this chapter, the enablement of multi-tenant communication through a shared
I/O device was researched. An I/O virtualization concept was developed, which
ensures the spatial and temporal isolation of concurrent partitions. A layered ar-
chitecture was proposed, where a virtualization layer extends the capabilities of
a commodity CAN controller to allow multi-tenancy. The architecture facilitates
efficiency and scalability by focusing on resource sharing.

The sharing of resources in the virtualization layer leads to good efficiency, but
makes temporal isolation hard to achieve at the same time. Here, a scheme that en-
ables temporal isolation by scheduling requests towards the virtual CAN controllers
was proposed. A weighted time-based round robin mechanism is used to forward
requests to the virtualization layer. It is configured to minimize the latency of high
priority messages and the number necessary context switches in worst-case scenarios.

In an analytic evaluation, the added latencies using temporal isolation were re-
searched. For the highest priority messages, latencies smaller than without isolation
were achieved due to the reduced amount of context switches necessary. In the sce-
nario at hand, added latencies for lower priority messages reach upto around 20 µs.
It was shown that latencies increase linearly with the number of consolidated par-
titions using the shared virtualized CAN controller. For scenarios with 16 virtual
controller, maximum added latencies around 45 µs were witnessed. Such latencies
are multiple orders of magnitude smaller than end-to-end latency requirements and
range around 50% of the transmission time of a minimum sized CAN frame.

A simulated denial-of-service scenario was used to show, how the temporal isola-
tion mechanism can be used to protect the integrity of each virtual CAN controller
against each other. Without temporal isolation mechanism, significant head-of-line
blocking can occur, which leads to complete priority inversions for high injection
rates of malicious requests. The temporal isolation mechanism was shown to limit
performance degradation to the corrupted partition.

Interrupts are a significant source of overhead in virtualized systems. There-
fore, the concept of deadline-aware interrupt coalescing was proposed. This concept
reduces the amount of interrupt requests (IRQs) forwarded to the host system by
buffering and forwarding multiple interrupts at once using a single IRQ. To be appli-
cable in real-time scenarios, knowledge of upcoming deadlines has been incorporated.
Three different versions were researched, which differ in complexity and granular-
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ity. The favored approach uses dynamic deadline estimation, to make pessimistic
assumptions on the upcoming deadline of a message instance.

A simulative assessment was chosen to evaluate the ability of the proposed concept
to reduce interrupts. Using deadline-aware interrupt coalescing, upto 20 interrupts
could be coalesced to a single IRQ. While generally it is possible to accumulate
more interrupts for increasing bus loads, the precision of the deadline estimation
is degrading, so that a maximum efficiency is achieved around 80% bus load. The
approach was shown to work in settings with tight deadlines around half the cycle
time as well as implicit deadlines. Additionally, it was shown that the inter-arrival
time of IRQs at the host is not only increased, but also more deterministic than
without coalescing.

The virtualized CAN controller was implemented at RTL level using Verilog. The
design was synthesized for a Virtex-7 FPGA to evaluate the efficiency with respect to
hardware resource utilization. The baseline implementation is made up of a standard
CAN controller, which is extended by the virtualization layer to provide real-time
capable communication in multi-tenant scenarios. The overhead reaches a break
even point for two virtual CAN controllers, i.e. resource utilization is similar as the
use of two separate CAN controllers. Thus, the virtualization approach leads to a
benefit for three or more virtual CAN controllers. The extensions for deadline-aware
interrupt coalescing can be added at around 10% increased hardware cost.

Based on a prototypical implementation using an Intel Core i7 platform and an
SR-IOV capable FPGA board, system latencies were evaluated. As the goal is to
provide near-native performance with respect to latencies, measurements from vir-
tual machines were compared to ones conducted in a native setting. The experiment
showed that added latencies around 11 µs were measured within the VM. The added
latencies are attributed to the need to forward interrupts from the hypervisor. Nev-
ertheless, these latencies are small compared to ones measured in state of the art
approaches using paravirtualization, which range between 120 µs and 200 µs.
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The trend of centralization and consolidation in automotive embedded systems
requires isolation for concurrent workloads that are executed on a shared hard-
ware platform. However automotive systems are highly networked systems with
diverse communication requirements. The integration of mixed-criticality functions
on shared hardware platforms also poses challenges and opportunities for the net-
works connecting them.

In current architectures, separate communication mediums are used in different
functional domains, thus guaranteeing a physical isolation, but also being inefficient
and providing limited scalability. Consolidating multiple communication flows of
different criticality requires isolation in a sense, that freedom from interference has
to be guaranteed. The only way of guaranteeing performance isolation of mixed-
criticality communication in CAN is to use a robust ID assignment (i.e. messages
with higher criticality have higher priority). This assignment policy is suboptimal
with respect to resource utilization.

Network virtualization (c.f. Section II.2.4) can be used to achieve a logical isola-
tion of communication flows on a shared physical medium. The following sections
present a network virtualization approach applied to CAN.

Fundamentals of this chapter were published in [110]. The concepts were ex-
tended to incorporate traffic shaping (Section IV.3) in addition to policing. Also,
schedulability analysis was introduced for the evaluation.

97



IV. Network Virtualization for CAN

1. Design
Goal of the network virtualization concept presented here is to have multiple virtual
CANs coexisting on a shared physical CAN bus. Figure IV.1 represents an example
scenario, in which network virtualization is used to create virtual subnetworks. The
physical bandwidth is divided among three virtual CANs (VCANs). The nodes
within one VCAN are a subset of all physical nodes and can be overlapping with
other VCANs.
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Figure IV.1.: Virtual Controller Area Networks (VCANs) coexisting on a
shared physical CAN bus [110].

The main requirements for the concept stem from typical automotive requirements
for safety-critical systems:

1. Spatial Isolation: A node within a specific VCAN must not be able to transmit
CAN messages within other VCANs.

2. Performance Isolation: Temporal interference among concurrent VCANs must
be bounded in a way that isolated performance guarantees can be given for
each VCAN.

3. Fault isolation: Faults caused by a node within a node of a specific VCAN
must not be able to cascade into other concurrent VCANs.

Two major design components in the design of a virtualized network are naming
and admission control. They will be outlined in the following sections.
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1.1. Naming within VCANs
When subdividing a physical network into virtual networks, it is important to avoid
collisions with respect to the address space. CAN does not use the concept of
sender/receiver addressing, but uses message IDs to specify the content of a message.
Additionally, this ID also serves as a priority in CAN’s arbitration scheme.

To avoid collisions within the arbitration process, CAN IDs have to be unique
in classic CAN buses. Therefore, CAN IDs must also be unique within VCANs. If
the same CAN IDs should be allowed within multiple concurrent VCANs, it must
be ensured that these VCANs cannot enter arbitration at the same time. The
asynchronous nature of CAN and the lack of a central arbiter make this hard with
reasonable effort.

For the same reasons, for which CAN uses unique IDs, CAN IDs should also be
unique across all concurrent VCANs. Assuming a set of messagesMv is used within
VCAN v, the following condition must hold:

Mv ∩Mu = ∅,∀v 6= u. (IV.1)

While a subdivision of IDs guarantees collision free arbitration, it reduces the
number of available IDs within each VCAN. This is acceptable, because VCANs
are naturally restricted to a fraction of the available physical bandwidth, which is
correlated with the number of unique messages.

To ensure the constraint of spatial isolation, a node within must be restricted to
its own ID space. This can be done either by translating an arbitrary ID space into
the constraint space within the specific VCAN, or by protection mechanisms, which
prevent the transmission of messages with IDs that do not belong the respective
VCAN.
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Figure IV.2.: Possible placement of VCAN tags within the MSG ID field of a
VCAN frame

Figure IV.2 shows two possible solutions for dividing the ID space by placing
a VCAN tag within the MSG ID field of each frame. The solutions use different
positions of the VCAN tag: Placing it within the most significant bits assigns the
highest priority messages IDs to the VCAN with the numerically lowest VCAN
tag. Placing it within the least significant bits does not cause such a strict priority
ordering among VCANs. Rather, the actual IDs used within each VCAN have to
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be considered. This is disadvantageous, because it is contrary to the thought of
performance isolation, where the behavior of a VCAN should not significantly affect
others.

A strict priority arbitration scheme among VCANs is not a feasible approach
to achieve efficient performance isolation, as it unproportionally benefits a single
VCAN. The admission within VCANs has to be additionally constraint, which is
subject of the following section.

1.2. Admission Control towards VCANs

While the naming scheme presented ensures spatial isolation, it is not sufficient to
provide performance isolation. For a CAN communication, the performance mea-
sures are bandwidth and latencies. These measures are closely linked, as increasing
the bandwidth of a bus means decreasing the latencies of all messages. The physi-
cally available bandwidth rphy should be fully distributed among VCANs so that∑

∀v

rv = rphy. (IV.2)

CAN uses a single logical bit line, so that the only resource which can be dis-
tributed along the VCANs is access time towards the bus. The time each VCAN
has access to the physical bus must be proportional to their reserved bandwidth rv.
If this is guaranteed, the bandwidth reservation is automatically guaranteed as well.
A variety of time division multiplex (TDM) methods exist and will be explored in
the following.

Time division multiple access (TDMA) uses a cyclic schedule of time slots with
fixed sized. These time slots are statically assigned to the distributed nodes. How-
ever, such schemes (used e.g. in Time-Triggered CAN (TTCAN) [111]) require
global clock synchronization, which would have to be implemented additionally for
the asynchronous CAN bus. The fixed size of the slots introduces additional over-
head, because the bus will be idle after the transmission of smaller messages. A
time-triggered version of CAN, TTCAN [111], was developed, yet it is not widely
adopted.

Because synchronous schemes like TDMA seem too complex for the problem
at hand, asynchronous admission control schemes might be fit. Statistical TDM
(STDM) is such an asynchrnous TDM method, which enforces bandwidth guaran-
tees by policing and/or traffic shaping based on statistical measures. Token or leaky
bucket concepts are an established concept of STDM, which have been used in net-
working for more than two decades, e.g. for ATM virtual channel arbitration [112].

The operating principle of token bucket policing is analogue to a bucket, into which
tokens are continuously added at a fixed rate proportional to the desired bandwidth.
Upon transmission of data, tokens are removed proportional to the transmission time
of the data unit. The bucket size (here bv) is usually given as a number of bits. It
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cannot be exceeded and therefore limits the size of a possible burst. Consequently,
the rate at which tokens are added corresponds to the designated bandwidth of the
policed traffic flow (here rv).
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Figure IV.3.: Admission control towards the CAN bus is handled by token
buckets for each VCAN, which enforce the reserved bandwidth.
The fill level within each node of a VCAN is consistent [110].

Applied to the concept of CAN network virtualization, token buckets can be used
to constrain the bandwidth used within each VCAN. While on a logical level, only
one token bucket is necessary, an actual implementation has to rely a decentralized
admission control. Therefore, a dedicated token bucket policer is necessary within
each node of the network. The policing operation has to be consistent within in all
distributed nodes of one VCAN, meaning the fill level must be equal at any time to
avoid inconsistent scheduling decisions. Figure IV.3 depicts such an architecture.

A message m within VCAN v will be transmitted on the CAN bus, if the following
conditions are met:

1. The message is currently the highest priority message queued within any node
of VCAN v.

2. VCAN v has sufficient tokens to allow a transmission.

3. No higher priority VCAN wants to transmit a message and is able to do so.

The concept can only work, if information, especially the token bucket fill levels
are consistent in all nodes. However, CAN is asynchronous and CAN nodes can
have significant clock drift. An explicit synchronization of fill levels through CAN
messages seems unfitting, as such synchronization cannot happen continuously and
decreases the available bandwidth. Without explicit synchronization, CAN nodes
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can only rely on information broadcasted on the CAN bus and thus available to all
nodes. This includes any information available from CAN frames including their
transmission time. Also, CAN nodes can derive a clock signal from the CAN bus
during frame transmission. Token buckets must be updated using this clock. During
idle periods, this clock signal is not available. Therefore, messages with the lowest
possible priority will be constantly sent by a dedicated node within the network, thus
guaranteeing a consistent clock signal at all times. These messages do not count
towards the bandwidth quota of any VCAN and do not increase any latencies.

Information, which cannot be derived from the CAN bus and is only available to
single node like the priority or length of a message buffered locally within must not be
used, as it would lead to inconsistent scheduling decisions. Specifically, the following
scenario must be avoided: VCAN v has sufficient tokens for the transmission of short
message but insufficient tokens for long messages. Node A has a short, low priority
message buffered and queues it for CAN arbitration. Node B has a long, high priority
message buffered. In this case, the low priority would get transmitted, meaning
that low priority messages can block high priority messages (priority inversion). To
avoid such situations, transmissions should only be allowed, if sufficient tokens are
available for the transmission of a maximum length message, independent of the
length of the actual message. The corresponding token bucket fill level fltx,v, at
which tokens suffice for transmission of maximum length messages can be derived
as

fltx,v = dCmax,v · (rphy − rv)e , (IV.3)

where Cmax,v is the worst-case transmission time of the longest message within
VCAN v and rphy − rv is the rate at which tokens are reduced during transmission.

1.3. VCAN Delay and Token Bucket Size
The bucket dimensioning is an important design parameter within the VCAN con-
cept. It controls the size of the inital burst a VCAN is allowed to do. This burst
length directly influences the blocking experienced by lower priority VCANs. There-
fore, the bucket size should be minimized to optimize the latencies within VCANs.
However, the bucket must be big enough to guarantee no overflow of tokens occurs
during a blocking by higher priority VCANs. In case of an overflow, the specific
VCAN loses a share of its reserved bandwidth. The duration in which a VCAN v
can be blocked from CAN access will be denoted as Θv. Therefore, an optimal bucket
size is the minimal size, with which no overflow can occur. It can be computed as

bv = fltx,v + dΘvrve. (IV.4)

It is equal to the sum of the minimum fill level necessary for transmission de-
rived in (IV.3) as well as tokens added during a maximum sized blocking by other
VCANs Θv.
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The VCAN delay Θv is the central performance parameter of a VCAN v. It will
be derived in the following by constructing a worst-case scenario for the blocking by
other VCANs. This upper bound for Θv can be used to determine the bucket sizes
as shown in (IV.4). The scenario is constituted by three different phases, which are
illustrated in Figure IV.4:

a) Accumulation b) Depletion c) Normal

v

hp(v)

lp(v)

t

f
l v

fltx,v

Θhp(v)

Θlp(v) Operation

t0

Figure IV.4.: Fill level of VCAN v during a burst scenario by higher priority
VCANs [110]

Accumulation At t = t0, the longest message within a lower priority VCAN has
just started transmission. Its transmission time is Cmax,lp(v). Here, lp(v) is the set of
lower priority VCANs defined as lp(v) = {u ∈ V : prio(u) < prio(v)}, with V being
the set of VCANs. VCAN v reaches a suffient token level for transmission (flv =
fltx,v) an infinitesimal time after t0 and is delayed during the interval (t0, t0 + Θv].
Afterwards, higher priority VCANs are assumed to have maximum number of tokens
available to maximize the blocking. They occupy the bus until their buckets are
completely depleted.

Depletion At the beginning of this phase, higher priority VCANs are not allowed
to transmit, because they consumed their tokens. VCAN v has accumulated tokens
equivalent to its bucket size. The accumulated tokens allow VCAN v to transmit at
an average bandwidth equivalent to

∑
v∪lp(v) rv, the sum of all bandwidths reserved

by VCAN v and lower priority VCANs. This leads to a depletion of the tokens
until no more transmission is possible. The average bandwidth used by VCAN v in
phases a) and b) combined is equivalent to rv

Normal Operation Afterwards, VCAN v and higher priority VCANs are trans-
mitting at their designated bandwidth rv, thus giving room for lower priority VCANs
transmit. For another worst-case scenario to occur, higher priority VCANs need to
accumulate sufficient tokens for the burst to be possible. If the initial conditions are
reestablished, the scenario can be repeated.
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A bound for the VCAN delay Θv can be derived by analyzing the accumulation
phase. It is composed by blocking from lower and higher priority VCANs

Θv = Θlp(v) + Θhp(v), (IV.5)

where Θlp(v) = Cmax,lp(v) and Θhp(v) is the blocking caused by the longest possible
burst from higher priority VCANs. An upper bound for this blocking can be derived
as

Θhp(v) ≤
∑

∀u∈hp(v)

bu + ruΘhp(v)

rphy
. (IV.6)

The right side of this implicit inequality is equivalent to the transmission time of
all data either allowed by the initial bucket fill level bv or of tokens added during
the delay Θhp(v) itself. It is impossible for any high priority VCAN to transmit any
more data, as this is not possible by the means of the admission control.

Equation (IV.6) can solved for Θhp(v). Inserting it into (IV.5) gives an upper
bound for the VCAN delay Θv as

Θv ≤ Cmax,lp(v) +

∑
∀u∈hp(v) bu

rphy −
∑
∀u∈hp(v) ru

. (IV.7)

As shown previouly, the bucket fill level will decay after the initial VCAN delay Θv.
The fill level at the end of the blocking therefore corresponds to the optimal bucket
size. It can be calculated by using (IV.4) with the upper bound for the VCAN
delay Θv as given in (IV.7).

Calculating the VCAN delay Θv requires knowledge about bucket size bv of all
higher priority VCANs to calculate the size of a worst-case burst. Therefore, bv has
to be determined starting with the highest priority VCAN, and iteratively computing
it for lower priority ones as well.
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2. Timing Analysis

CAN timing analysis was presented in Section II.1.3.2. To be applicable in VCAN,
it has to be adapted. Compared to a physical CAN bus, two additional effects have
to be considered. First, communication within a VCAN can be delayed by up to Θv.
This means that the bandwidth assigned to a certain VCAN is only guaranteed to
be usable after this delay. Second, the transmission of messages within VCAN v
is restricted by the admission control mechanism. On average, transmissions are
allowed only with a bandwidth of rv. Following, the worst-case scenario in classic
CAN buses will be extended to incorporate these constraints, thus providing a real-
time analysis for a message m within any VCAN v.

The worst-case scenario is similar to the one used to derive the necessary bucket
size bv. Traffic from other VCANs is assumed in a way that maximized the blocking
inflicted upon VCAN v. Therefore, the scenario assumes that at the beginning, the
maximum amount of tokens is available to higher priority VCANs.

The worst-case scenario for message m within VCAN v starts with a critical
instant, meaning that all higher priority messages are released at the exact same
time. An infinitely small time before, the longest lower priority message within
VCAN v has just started transmitting. Also, the token bucket had the smallest fill
level, at which a transmission is possible. Consequently, the minimum fill level is
only recovered after Bm,v · rphy/rv, where Bm,v is the longest transmission time of
lower priority message within VCAN v.

The transmission of message m can be delayed by other VCANs by up to Θv.
The same blocking scenario, that was presented when deriving the bucket sizes bv,
can be applied again. As shown before, VCAN v can transmit at an increased rate
after such a blocking and will eventually equalize the experienced delay. Therefore,
the blocking is maximized, if other VCANs start delaying VCAN v just before
message m is eligible for transmission, thus giving no chance to recover by using the
accumulated tokens. The VCAN delay Θv poses an upper bound for the interference,
which can be caused by other VCANs. While the burst scenario happens multiple
times, it requires the higher priority VCANs to recover their tokens, giving time for
VCAN v to make up for the delay. Therefore, the increased blocking for message m
in VCAN v is derived as

B̂m,v = Bm,v
rphy
rv

+ Θv. (IV.8)

This blocking is analog to the blocking in classic CAN analysis described by (II.3)
and can be used to iteratively compute the queuing delay

wµ+1
v,m = B̂m,v +

∑
∀k∈hpv(m)

⌈
wµv,m + Jk + τphy

Tk

⌉
Ck
rphy
rv

, (IV.9)
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where hpv(m) describes the set of messages within VCAN v which has higher
priority than message m.

In addition to the increased blocking, the equation also considers the reduced
bandwidth available to VCAN v. It introduces the factor rphy/rv, by which the
transmission time is increased. The physical transmission of individual messages
does not actually take longer, but has to be extended within the timing analysis,
because during this period, admission control prevents immediate transmission due
to insufficient tokens. Finally, the WCRT of message m within VCAN v can be
calculated as

Rm,v = wv,m + Cm + Jm. (IV.10)

In contrast to the queuing delay, where the transmission times of messages are
virtually extended to account for the reduced bandwidth, only the physical trans-
mission time Cm of message m has to be considered here. While tokens might require
additional time to recover, the transmission is completed afterwards.

The presented analysis allows to evaluate individual message delays within any
VCAN. While the delay in bandwidth of VCAN v is given by Θv, this does not
automatically mean messages have the same increased latency. Especially medium
and low priority messages can have significant additional delay, if multiple further
instances of high priority messages get queued during the queuing delay. This effect
will be discussed in detail in the Evaluation (Section IV.4).

106



3. Traffic Shaping Through Dual Token Bucket Admission Control

3. Traffic Shaping Through Dual Token Bucket
Admission Control

Bandwidth and latencies are tightly interconnected in communications. An in-
creased bandwidth usually means that latencies decrease. In CAN, sufficient band-
width is a necessary requirement to guarantee bounded latencies. Whether a mes-
sage set is schedulable (all messages are guaranteed to meet their deadlines) has to
be decided by means of timing analysis. If a message set is not schedulable at a
bandwidth comparable to its requirements, it can only be schedulable by increasing
the bandwidth, as there is no way of decreasing latencies without increasing the
bandwidth.

Using the VCAN concepts presented so far, the same principle applies. However,
an overreservation of bandwidth to meet latency requirements is ineffecient, because
it reduces the maximum possible utilization. This section presents a concept aimed
at decoupling latency from bandwidth, thus increasing the efficiency of the approach.

bbwv

CAN rbwv

Node

t

f
l v

t = bv
rphy−rv

bv

rv

&

−rphy − rbwv
bv

bbwv

−rv − rbwv

Figure IV.5.: Operating principle of dual token bucket policing admission con-
trol

Two buckets are used for admission control. One bucket bucket characterized by
(rv, bv) is equivalent to the one used previously. It is dimensioned to guarantee
schedulability for all messages within VCAN v. A second token bucket is used for
long term bandwidth policing. It is characterized by (rbwv , bbwv ), where rbwv ≤ rv. The
minimum necessary bandwidth rbwv is given as

rbwv =
∑
k∈Mv

Ck
Tk
. (IV.11)

For a transmission to be possible, both token buckets need to have sufficient tokens
(≥ fltx,v). During a worst-case scenario, transmission should be possible at rv. Such
a scenario can be described as a busy-period. Analog to the busy period in classic
CAN buses (II.4) and using the worst-case scenario derived for VCANs (IV.9), the
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maximum busy period of a VCAN can be calculated in the iterative form

tµ+1
busy,v =

∑
∀k∈Mv

⌈
tµbusy,v + Jk

Tk

⌉
Ck
rphy
rv

. (IV.12)

The secondary bucket, designated for long term bandwidth enforcement at rbwv ,
should not interfere in such scenarios to guarantee latencies as expected from a
transmission rate rv. During a busy-period, tokens are taken from the buckets at a
rate equivalent to rv. Accounting for the tokens added, the total of number tokens
reduced from the secondary bucket is equivalent to

⌈
tbusy,v(rv − rbwv )

⌉
. Therefore,

the bucket size bbwv is constrained as

bbwv ≥ flbwtx,v +
⌈
tbusy,v(rv − rbwv )

⌉
, (IV.13)

where flbwtx,v is the minimum fill level of the secondary bucket. It can be calculated
using (IV.3). Another constraint is equivalent to the one formulated for the primary
bucket. The bucket must be big enough, so that no overflow can happen. The
condition is

bbwv ≥ flbwtx,v + dΘvr
bw
v e. (IV.14)

The calculation of the VCAN delay Θv has to be adjusted, as the burst from
higher priority VCANs is now more complex: it starts at line rate, continues at
the higher rate rv and finally continues as rbwv . Depending on the duration of the
blocking by higher priority VCANs, the amount of tokens available during a time t
is equal to

tokensv(t) =

{
bv + rvt, if t ≤ tbusy,v

bv + (rv − rbwv )tbusy,v + rbwv t, otherwise.
(IV.15)

The maximum blocking by higher priority VCANs is constrained by the time it
takes to use up these tokens at line rate rphy

Θhp(v) ≤
∑

∀u∈hp(v)

tokensu
(
Θhp(v)

)
rphy

. (IV.16)

This implicit equation is not well suited to be solved analytically for lower pri-
ority VCANs, as it combines multiple case statements. However, a bound can be
numerically computed through fixed-point iteration:

Θµ+1
hp(v) =

∑
∀u∈hp(v)

ru,avg

(
Θµ
hp(u)

)
·Θµ

hp(u)

rphy
. (IV.17)
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The overall VCAN delay Θv can be computed as previously using (IV.9), thus
enabling a WCRT analysis as described in IV.2. The dual bucket approach leads
to improved results with respect to schedulability, which are at least equal to the
ones obtained with a single bucket, as this is just a special case of the dual bucket
principle. The benefits of dual bucket admission control over single buckets will be
quantified in the following section.
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4. Analytic Evaluation

In real-time applications, analytic methods are used to determine, whether a sys-
tem will meet all required deadlines (schedulability). As part of this evaluation,
real-time analysis will be used to compare the proposed methods to state of the
art approaches. For consistency, the same traffic distribution was used as in the
evaluations of Chapter III. It is used to generate multiple scenarios within this and
the following section.

First, the different behavior among the two proposed solutions will be demon-
strated using the example of a single traffic scenario and configuration. The scenario
uses four different criticality levels. Messages belonging to each criticality level are
assigned to separate VCANs in order to ensure performance isolation among them.
Highest critical messages are assigned to VCAN v = 0. The assignment of bandwidth
to VCANs will be optimized to first ensure real-time capability in high-criticality
VCANs. The lowest priority VCAN is assumed to contain only best effort traffic,
which is only constrained by bandwidth requirements.

The token bucket configuration policy differs for single and dual token bucket
approaches. They are as follows:

• Single Token Bucket (VCAN-S): Every VCAN v is configured through
the parameters rv (token rate) and bv (bucket size). To ensure sufficient band-
width is allocated for every VCAN, it has to be ensured that rv ≥ Uv, where
Uv is the bandwidth utilization of all messages within VCAN v. Remain-
ing bandwidth can be allocated towards VCANs in order to reduce latencies
and ensure real-time capability. For that, starting with the highest priority
VCAN, a real-time analysis is conducted using the minimal bandwidth. If
latency requirements are not met, the bandwidth is increased in steps of 1% of
the physical bandwidth. When the VCAN is schedulable, the procedure is re-
peated with the next highest priority VCAN. The bucket sizes are determined
according to (IV.4).

• Dual Token Bucket (VCAN-D): The dual token bucket approach intro-
duces an additional set of parameters {rbwv , bbwv }. As the purpose of the shaper
defined by these parameters is the enforcement of long term bandwidth avail-
ability, it will be configured to bandwidth requirements of each VCAN. The
latencies for each VCAN can be controlled through the second token bucket.
The assignment of token rates follows a similar iterative approach as for sin-
gle token bucket admission control. Starting with the minimum bandwidth
requirement, rv is increased iteratively if deadlines are missed. For the highest
priority VCAN, rv could be chosen as high as the physical transmission rate
rphy. This would mean that transmissions are possible at line rate for a limited
sized burst. Generally, the highest value for this token rate in any VCAN is
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rv ≤ rphy −
∑
∀u∈hp(v) ru. If, due to this constraint, a VCAN cannot receive a

token rate rv ≥ rbwv its operation is equivalent to that of a single token bucket.
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Figure IV.6.: Worst-case latencies for multiple VCANs with a total of V = 4
VCANs with 85% overall utilization

Fig. IV.6 shows the worst-case latencies in an example scenario using the proce-
dure described above to configure the admission control. Plotted along the latency
are the deadlines of each message. A VCAN is considered schedulable, if all latencies
are smaller than the deadlines, i.e. the plotted line of the latencies is always below
the deadlines.

Using the single token bucket admission control, schedulability can only be guar-
anteed for the highest priority VCAN. The second highest experiences small deadline
violations for medium and low priority messages. For the two lowest priority VCANs,
significant deadline violations can be seen. Because these VCANs have bandwidth
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reservations close to their minimum bandwidth requirement, worst-case latencies of
low priority messages get very large and exceed 100 ms.

The introduction of a second token bucket in the admission control leads to a
significant improvement in schedulability. Three out of four VCANs are deemed
schedulable. The final VCAN is not able to meet any deadline in the worst-case
scenario. Increased latencies in the lowest priority VCANs are the price that has to
be payed in order to lower the latencies in high priority ones.

This example shows the decoupling of bandwidth and latencies using the two
level admission control mechanism. While maintaining bandwidth guarantees for
all VCANs, latencies can be reduced for highly critical VCANs in the favor of best
effort VCANs. This feature combined with the performance isolation provided makes
it desirable technology in mixed-criticality communications.

The results presented in Fig. IV.6 are limited to a single traffic scenario. To eval-
uate the applicability of the approaches to a large set of scenarios, a schedulability
analysis was conducted. Using randomly generated message sets at multiple levels of
overall utilization, real-time analysis is used to determine the level of schedulability
at each utilization level. Utilizations considered here range between 30% and 100%
with increments of 2%. At each level, 10,000 message sets were generated, leading
to a total of 1,400,000 evaluated scenarios. In order to reflect the mixed-criticality
nature of the scenarios, real-time capability is only required for the V − 1 highest
priority VCANs. The schedulability S corresponds to the percentage of scenarios,
in which all real-time constraint messages are deemed schedulable.

The schedulability will be used to compare the VCAN variations to state-of-the-
art approaches. Two approaches will be compared:

• Optimal priority assignment (OPA): In [113], Audsley presented an op-
timal priority assignment policy for fixed priority. Applied to CAN, it ensures
that a message set is schedulable if it is schedulable using any priority assign-
ment. This method does not ensure performance isolation and is therefore not
applicable in mixed-criticality scnenarios.

• Robust priority assignment (RPA): The ID space is partitioned into V
areas. Messages with the highest criticality have the highest priority. Within
each partition, IDs are assigned to Audsley’s assignment policy. While provid-
ing downward performance isolation (low-criticality messages cannot interfere
with high-priority messages), this approach is inefficient, as it provides schedu-
lable message sets only for low network utilization [114].

Fig. IV.7 shows the results of the exploration. Both VCAN approaches provide a
significant advantage with respect to schedulability compared to RPA, while guar-
anteeing performance isolation. Neither approach is able to reach the schedulability
levels of OPA. However, OPA does not provide performance isolation and thus, is
not applicable in mixed-criticality scenarios.
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RPA is only able to provide schedulability for low bus utilizations smaller than
50%. This is inefficient and thus uneconomical. The low possible utilization stems
from the fact that very low latencies can only be achieved in the highest criticality
partition. The more messages are transmitted in the highest criticality partition,
the longer the latencies become in other partitions. The shortest worst-case latency
achievable in a partition is always greater than maximum latency in the next higher
critical partition.

The VCAN approach suffers high degredation around 76% using a single token
bucket (VCAN-S) and around 88% using dual token bucket (VCAN-D) admission
control. VCAN-D is dominant to VCAN-S in terms of schedulability, as a set that
is not schedulable using VCAN-D cannot be schedulable with VCAN-S. This is
guaranteed, as VCAN-S is a special case of VCAN-D (with the two buckets sharing
the same configuration). Of course, VCAN-D has increased implementation and
configuration effort. The significant difference in schedulability indicates that it
might be worthwhile.

OPA achieves the best results regarding schedulability. Even for very high uti-
lizations, around 50% of the sets are still schedulable. This is achieved because the
lowest-critical messages do not need to meet their deadline for schedulability. How-
ever, these results only hold true as long as all senders comply to their specification,
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Figure IV.7.: Schedulability results for V = 5 VCANs using single and dual
token bucket admission control
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which is not guaranteed in mixed-criticality scenarios.
The schedulability shows the applicability of the VCAN approach using a wide

range of scenarios. So far, the evaluation only covered worst-case analysis. While
worst-case latencies are crucial in real-time applications, average or typical perfor-
mance is also important in mixed-criticality scenarios, especially for lower priority
VCANs.
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5. Simulation

To gain information on typical latencies and their distribution, a simulation was
conducted. The evaluation was done using an event-based Matlab simulation and is
cycle and bit accurate. For comparability, the same scenario as depicted in Fig. IV.6
is used. Thus, the simulation also allows a verification of the worst-case analysis.

Two different experiments were conducted. The first experiment represents a typ-
ical traffic scenario in normal operation. The second demonstrates the performance
isolation properties by showcasing a flooding scenario.

Experiment 1: Goal of the simulation is to provide realistic measurements using
an example traffic configuration. The traffic scenario specifies a cycle time Tm for
every message m. In the simulation, messages are always released cyclic. The initial
release of each message is determined randomly and happens in the interval {0...Tm}.
The cyclic behavior of the messages also means that similar traffic scenarios occur in
a cyclic fashion. To improve the coverage of the simulation, it is started 10,000 times
with varying random initial releases. Each configuration is simulated for 200 ms,
leading to an overall simulated time of 2,000 s.

Fig. IV.8 shows the measured average and maximum latencies using single and
dual token bucket admission control. Average latencies are generally around an order
of magnitude smaller than the maximum recorded latencies. The highest priority
VCAN suffers from the least blocking from other VCANs and averages latencies
from around 400 µs up to 2.5 ms. Similar latencies are measured for VCAN v = 1
(500 µs up to 3.5 ms). In the highest priority VCANs, average latencies for single
and dual token bucket implementation are comparable. For VCAN v = 2, significant
differences can be measured. The analytic evaluation indicated that not all deadlines
are guaranteed to be met using a single token bucket and thus, schedulability is not
guaranteed. The increased latencies are also reflected in the measurement, while the
dual token bucket provides latencies similar the highest priority VCANs.

Maximum latencies are essentially equal for the case of the highest priority VCAN.
This stems from the fact that the configuration procedure described above leads to
equal token rates and thus latencies. For VCANs v = 1 and v = 2, the dual token
bucket approach achieves significantly lower latencies, because it is able to increase
the token rate during a burst while maintaining bandwidth guarantees for the lowest
priority VCAN. Two observations can be made regarding the lowest priority VCAN.
First, this is the only VCAN in which the single token bucket solution offers smaller
latencies. This was expected from the analytic evaluation. It is the price that
has to be paid in order to reduce latencies for higher priority VCANs. Secondly,
it can be observed that latencies for VCAN-S are smaller than in the next higher
priority VCAN. This possible, because in the experiment presented, overreservation
was used in higher priority VCANs to reduce latencies. In normal operation, this
bandwidth is not actually consumed and can be used by the lowest priority VCAN.
However, these latencies cannot be achieved, if e.g. erroneous behavior in higher
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Figure IV.8.: Simulated latencies for multiple VCANs with a total of V = 4
VCANs

priority VCANs led to a complete utilization of reserved resources.

The main objective of the network virtualization concept is to provide perfor-
mance isolation among partitions. This means that performance guarantees must
hold independent of the operation in other partitions. The timing analysis from
Section IV.2 already indicated on a mathematical level that timing bounds for a
VCAN v are only dependent on the static VCAN configuration and the traffic sce-
nario within the respective VCAN v. As part of the evaluation, these analytic
assumptions should be verified using simulative measurements.

Experiment 2: Goal of the second experiment is to evaluate the behavior of
VCANs if other partitions behave erroneous or maliciously. The experiment is car-
ried out consecutively for every VCAN. When evaluating a VCAN v, the input traffic
scenario is equivalent to the first experiment. All other VCANs have a modified be-
havior, where as many maximum sized frames as possible are sent. This behavior
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represents a flooding and would lead to total performance degradation in a legacy
CAN bus.
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Figure IV.9.: Simulated latencies for V = 4 VCANs. Depicted are latencies in
flooding conditions and normal operation.

The results of the experiment are illustrated in Fig. IV.9. For reference, the results
in normal operation without flooding as well as the analytic bounds computed in
Section IV.4 are presented alongside.

Measured latencies in both experiments are strictly smaller than the analytic
worst-case latency bounds. This result gives confidence regarding the correctness of
the analysis. Due to the limited coverage of the simulation, which cannot cover an
infinite set of traffic configurations, measured latencies are smaller in the majority of
the cases. Especially low priority messages differ strongly in measured and predicted
worst-case latencies, as the respective worst-cases are more complex in the sense that
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more higher priority messages need to behave in the specified way. Thus, the worst-
case is likely to occur during a simulation for high priority messages.

The difference between normal operation and flooding scenarios varies depending
on the priority of the VCAN. The highest priority VCAN suffers little temporal
interference. Thus, performance in normal operation and flooding are nearly equiv-
alent. Because only little blocking by other VCANs can be inflicted, only small
buffer sizes are needed (c.f. (IV.4)). There, even if all other VCANs are idle, similar
latencies are expected.

Within VCAN v = 1 and v = 2, increased latencies upto 2 ms have been measured
in the flooding scenarios. Nevertheless, latencies remain well within the analytic la-
tency bounds. The lowest priority VCAN on the other hand suffers from significantly
increased latencies, but again, all within the analytic bounds. The increase is due
to the fact that higher priority VCANs completely utilize their bandwidth in the
flooding scenario. Thus, the lowest priority VCAN is constrained to use only the
latencies assigned to it. Bandwidth guarantees held true in all scenarios.

Experiment 2 demonstrated the performance isolation properties of the VCAN
approach. Within each partition, latencies are bounded by an analytic worst-case
latency, which holds true independent of the behavior within other partitions. There-
fore, guarantees regarding bandwidth and latencies can be given for every VCAN in
an isolated fashion, which satisfies the main design objective.
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6. Implementation and Cost Evaluation
The evaluation above showed the applicability of the VCAN approach in mixed-
criticality communication scenarios. Also, the dual token bucket approach signif-
icantly outperformed the one with a single token bucket with respect to schedu-
lability. However, another important aspect is implementation cost. Therefore,
this section discusses how and at what cost the network virtualization extensions
can be implemented in the context of the virtualized CAN controller presented in
Chapter III.

Core to the implementation is the admission control module. It extends the exist-
ing design by adding another layer of network access arbitration. The transmission of
messages is constraint to conform with the virtualization concepts presented above.
This section presents an architectural description as well as implementation results
in terms of FPGA resource utilization.

Figure IV.10.: Block diagram of the admission control module [110]

The architecture of the admission control module is depicted in Fig. IV.10. It
implements the function of the token buckets used for policing and traffic shaping.
As discussed in Section IV.1.2, the admission control is part of a distributed network
of token buckets, which need to be synchronized using information retrieved from
the CAN bus. Accordingly, all input signals are directly related to layer-1 CAN
bus activities. This includes the sampling of a bit on the bus (can sample point),
the start of a frame transmission (transfer start), and the end of a transmission
(transfer end). Additionally, ID and IDE give information regarding the ID of
the frame currently in transmission. These signals show the same behavior for
any controller connected to the same CAN bus. The only output of the module
tx allowed indicates, whether a potential transmission conforms with the admission
control rules.

The overall module is composed of three main functions: The time counter and
vcan lookup provide a time value and the VCAN ID of the frame currently in trans-
mission to the bucket mgmt module. Using these inputs the bucket mgmt module
makes the admission control decision. The VCAN lookup is currently implemented
in a way, that the highest priority bits are interpreted as the VCAN ID. Due to the
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modular nature of the implementation, it could be extended to support other ID
placements. In this exemplary implementation, the vcan signal consists of two bits
and therefore supports 4 VCANs.

The time provided by the time counter module is used to calculate transmission
times of frames on the CAN bus. Therefore, the absolute time is not important,
as it is only used for relative measurements. The timer should be dimensioned in
the most efficient way, which will still provide accurate measurements. The timer
is incremented with each rising edge of can sample point, leading to a resolution
equal to a CAN bus bit time τphy. A worst-case maximum sized CAN messages is
160 τphy for 8 bytes payload and maximum bitstuffing. Using an 8 bit wide counter
(value range {0...255}τphy), an accurate measurement is guaranteed. If the difference
between start and end of frame is positive, it is the actual transmission time. If the
difference is negative, an overrun has occurred and the transmission time is obtained
by adding the maximum counter value 255.

The majority of the admission control is done within the bucket mgmt module,
which implements the token buckets. Depending on the implementation either,
one or two token buckets (VCAN-S/VCAN-D) are provided per VCAN. The token
buckets are updated continuously. Depending on their reserved rate, a token is
added to a bucket after every nv-th sample point, where nv is derived from the
reserved bandwidth as nv = rv/rphy. Tokens are deducted from a bucket after every
transmission within its corresponding VCAN. The procedure involves accurately
measuring the transmission time of a frame. A rising edge in transfer start indicates
the start of a frame transmission on the CAN bus. This point in time is recorded
as a time stamp. It is used to compute the actual transmission time as difference to
the time at the end of the message transmission indicated by transfer end. Finally,
tokens are deducted from the token bucket(s) corresponding to the VCAN indicated
by the vcan lookup module.

Using the information of the bucket fill level, the module determines whether a
VCAN is allowed to transmit a frame on the CAN bus. In the single token bucket
implementation, a transmission is allowed if the fill level exceeds the minimum fill
level according to (IV.3). Similarly, in the dual token bucket implementation, both
token buckets need to have sufficient tokens. The signal tx allowed indicates in
parallel the status of every VCAN.

The admission control module was implemented in Verilog, integrated with the
design of the virtualized CAN controller, and prototyped using a Virtex-7 FPGA.
Resource utilization results after place and route are presented in Table IV.1. The
results clearly show that the addition of the network virtualization extensions add
little resource overhead to the overall design. Specifically, even the dual token bucket
implementation (VCAN-D) amounts to less than 5% additional LUTs and 8.5%
additional registers compared to the overall design.

The dual token bucket implementation of the admission control requires 67%
additional LUTs and 66% additional Flip-flops. The two versions only differ in the
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Table IV.1.: Hardware resource requirements of network virtualization exten-
sions

module LUTs FFs

Virtualization Layer 1651 514

Protocol Layer 1151 819

VCAN-S admission control 83 66

VCAN-D admission control 139 110

implementation of the bucket mgmt. Both time counter and vcan lookup are equal
in each case. The overhead is caused by the addition of the second token bucket.
Parts of the update logic are shared among the buckets, namely the calculation of
the amount of tokens to be deducted after a transmission.
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7. Summary

The introduction of multi-core technology within automotive embedded systems
enables the consolidation of ECUs on shared hardware platforms. The consolidated
functions may have different requirements with respect to safety, real-time, security,
etc. Such scenarios are often referred to as mixed-criticality. To enable reliable
operation in mixed-criticality scenarios, proper isolation is required. While platform
virtualization can be used to isolate workloads on ECU level, isolated communication
channels are necessary in addition when dealing with networked systems. Currently
employed networks are not designed to satisfy such requirements.

For that reason, this chapter introduced a network virtualization approach for
controller area network (CAN), which divides the physical network into concurrent
virtual partitions. These virtual partitions are called VCANs and provide isolated
performance, thus enabling mixed-criticality communication scenarios.

The design of the VCAN approach focuses on two aspects. First, a naming scheme
was derived that divides the ID space up into multiple partitions. This is achieved by
addition of a VCAN tag within the ID itself. Secondly, an admission control scheme
was designed that enforces bandwidth restrictions within each VCAN based on a to-
ken bucket policing. The admission control is implemented in a distributed fashion,
but achieves consistent admission decisions through layer-1 clock synchronization.

Two versions of the admission control were implemented using either one or two
token buckets. The dual token bucket uses the second bucket for traffic shaping,
which allows to control the transmission rate during bursts in addition to long term
bandwidth policing. Thus, the two main performance metrics - bandwidth and
latency - can be controlled individually.

Real-time analyses were presented for both approaches. The analytic framework
allows to compute bounded worst-case latencies for a given VCAN configuration
and traffic scenario. Importantly, the computation of latencies within one specific
VCAN does not require any knowledge of the traffic constellation in other partitions.
This demonstrates the temporal isolation property required for mixed-criticality
operation.

The VCAN approaches were compared to state of the art solutions with respect
to their ability to meet deadline requirements. Currently, safe operation can only be
achieved using criticality-monotonic priority assignments. However, this approach is
inefficient and only produces schedulable configurations for low network utilizations
smaller than 50%. Using the VCAN approach with a single token bucket policing,
more than have of all tested message sets were schedulable at 75% utilization. The
addition of a second token bucket further increases the efficiency of the approach, re-
sulting in more than 50% schedulable message sets at 88% utilization. The efficiency
with respect to bandwidth utilization and performance isolation among partitions
make VCAN a suitable approach for mixed-criticality communication scenarios.

Additional measurements were conducted using a cycle accurate simulation to de-
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termine typical behavior as well as to demonstrate the performance isolation prop-
erty. Two experiments were conducted: One using normal operation with cyclic
message transmissions in all VCAN. In another experiment, all but one VCANs
flooded their VCAN partition with messages. During both experiments, analyti-
cally computed latency bounds were not exceeded.

Finally, a Verilog implementation of the VCAN admission control was presented.
This module was implemented for integration with the virtualized CAN controller,
thus enabling virtual CAN controllers to transmit on different VCANs. Using FPGA
prototyping, an additional hardware overhead of ca. 4.5% in logic and 8% in registers
was estimated.
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AVB Ethernet is a new networking technology that combines high bandwidth with
real-time capability. It is an important technology to satisfy the communication
demand of future, multi-core based architectures. Background information regarding
AVB Ethernet was introduced in Section II.1.4.

While many car manufacturers see AVB Ethernet as a promising technology to
serve as a backbone network in future automotive embedded systems, it has not
yet been commercially integrated. Thus, many open questions remain regarding
how AVB Ethernet can be integrated into existing and highly legacy dependent
automotive systems.

In the following, two important questions will be addressed: How to interface
legacy bus systems (specifically CAN) with AVB Ethernet and how to design and
integrate AVB Ethernet controllers into CPU host systems.

125



V. AVB Ethernet Integration

1. CAN to AVB Ethernet Gateway
Ethernet is not expected to unify communication in automotive embedded systems
and to replace all legacy communication buses. This is partly due to the higher cost
of Ethernet compared to simpler technologies like CAN and LIN, but also due to
the high amount of legacy components used in the automotive domain [22]. Thus,
AVB Ethernet will coexist and communicate with existing networking technologies.
In particular, CAN is expected to remain an essential part in automotive electronics
long after the introduction of Ethernet due to its low cost, high reliability, and wide
adoption.

While CAN and AVB Ethernet have to coexist, they differ strongly in nearly
every aspect. Packet size and bandwidth differ in two orders of magnitude. CAN
is a shared bus using a strict priority arbitration scheme - AVB Ethernet is a full-
duplex switched network using a credit-based shaper algorithm at egress ports.

Nevertheless, their coexistence requires an efficient way of interfacing both tech-
nologies while maintaining real-time capability. While no standardized way of for-
warding exists, IEEE P1722 citeieee2015p1722 describes a method of encapsulating
CAN messages within AVB Ethernet frames. Fig. V.1 shows an AVB Ethernet frame
containing multiple CAN frames within its payload.

Figure V.1.: Encapsulation of CAN frames in AVB Ethernet frames [115]

Encapsulation of multiple CAN frames within a single AVB Ethernet frame is an
important aspect in achieving efficient forwarding. The framing overhead depending
on the number of CAN frames within one AVB Ethernet frame Ncan is depicted in
Fig. V.2. As reference, the framing overhead of maximum length CAN frames are
given with maximum and minimum bitstuffing, respectively. The overhead using
a one-to-one mapping of CAN to Ethernet frames exceeds 600%, but decreases
proportional to 1/Ncan and eventually converges to an overhead similar to CAN.

Fig. V.2 assumes that the length of an AVB Ethernet frame encapsulating Ncan

CAN frames is given as

Lavb = (336 + 128Ncan) bit. (V.1)

While the encapsulation method described is useful to reduce framing overheads, it
leaves the challenge of finding an efficient and real-time capable forwarding scheme.
Existing CAN to Ethernet forwarding schemes are either not applicable to AVB
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Figure V.2.: Framing overhead when encapsulating multiple CAN frames
within an AVB Ethernet frame according to IEEE P1722a

Ethernet or inefficient. Therefore, the following sections introduce and evaluate
a concept for a CAN to AVB Ethernet gateway that introduces scheduling as an
important mechanism to improve the efficiency.

Parts of this section have previously been published in [115]. Here, an extended
evaluation as well as a method for optimal gateway configuration using EDF are
presented in addition.

1.1. Concept of the Gateway Forwarding Strategy
The gateway presented here is designed to interface a CAN bus with an AVB Eth-
ernet network. It has to overcome the protocol mismatch between these technolo-
gies and provide efficient and real-time capable forwarding. Main focus here is the
forwarding direction from CAN towards AVB, as this direction poses the most chal-
lenges. In the opposite direction, CAN messages have to be unpacked from the
AVB Ethernet packet and queued for transmission on the CAN bus. Here, the CAN
arbitration scheme dictates the way in which these messages are transmitted on the
bus.

The forwarding mechanism is constraint by the following design goals:

1. Real-time capability: The forwarding of messages must successfully con-
clude a finite amount of time after arriving at the gateway. CAN messages
are send cyclic at rates Tm or equivalently with a minimum inter-arrival time.
The gateway is designed to guarantee implicit deadlines, meaning deadlines

127



V. AVB Ethernet Integration

are equivalent to the respective cycle time of a message Dm = Tm. This guar-
antees that at any time, at most one instance of each message is residing within
the gateway buffers. If the timing constraints for all messages are guaranteed
to be fulfilled, the system is considered schedulable.

2. Efficiency: Schedulability should be achieved using minimal resources. Specif-
ically, CAN over AVB streams should require minimal bandwidth. Key is not
the actual bandwidth usage, but rather the bandwidth reservation. Reserved
bandwidth is not available for other real-time capable streams even if left un-
used. In addition, the bandwidth reservation of a stream directly affects fan-
in delays experienced by same priority streams and blocking of lower priority
streams [46].

The following gateway design is based on the assumption that all CAN messages
arriving from one CAN bus are forwarded in a single stream, which is multi-cast
towards receiving nodes with the AVB Ethernet network. Many of the sensor in-
formation like the cars speed or geolocation are relevant to nearly all functional
domains, thus justifying the multi-cast approach. Additionally, even if each CAN
message was needed at specific nodes only, multi-casting might still be most efficient,
because a single stream allows better accumulation and scheduling of CAN frames
into AVB Ethernet frames.

It should be noted that the design and analyses focus on CAN communication and
gateway forwarding latencies. Additional communication latencies arise within the
AVB network itself. Such latencies can be calculated using the methods described
in Section II.1.4.4.

AVB data transmission happens in the form of streams. These streams are subject
to a rigid traffic policing and shaping. A CAN to AVB Ethernet gateway represents
an AVB talker endpoint. At such talker endpoints, each outgoing stream is shaped
in a way that leads to an essentially cyclic sending behavior. The interval between
two CAN over AVB frames (i.e. the cycle time) will be Tavb .

Fully utilized systems are hardly ever schedulable. Thus, an overprovisioning of
resources is necessary. Therefore, an overreservation factor OR is introduced, which
describes the relative amount of additional bandwidth reservation. This overreser-
vation is realized through a reduction of the sending interval Tavb

Tavb(OR) = Tavb (0) / (1 +OR) . (V.2)

For example, OR = 100% means that the cycle time is equal to have of the
cycle time without overreservation Tavb (0), thus doubling available resources. The
sending interval without overreservation Tavb (0) depending on the number Ncan of
CAN frames encapsulated in a single AVB Ethernet frame can be calculated as

Tavb (0) = Ncan/
∑

∀k∈Mfwd

1

Tk
. (V.3)
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Using the definition of the frame length Lavb from (V.1), the resulting bandwidth
reservation of the CAN over AVB stream is

bwavb,res(Ncan , OR) = Lavb/Tavb . (V.4)

The two principles of aggregation of CAN frames within a shared AVB Ethernet
frame and overreservation represent an important trade-off within the design space
of the gateway. Increasing Ncan at a constant level of OR reduces framing overheads
and thus the necessary bandwidth reservation, but leads to increased latencies. On
the other hand, overreservation behaves the opposite way. An increase in overreser-
vation decreases latencies due to the decreased release interval Tavb , but increases
the bandwidth reservation. For a given traffic scenario, the optimal configuration
of these two parameters must be found with respect to the previously stated design
goals of real-time capability and efficiency.

In efficient configurations, overreservations might not be high enough to guarantee
that all frames, which arrive within one cycle, can be forwarded all the time. This
means that not all CAN messages buffered within the gateway can be forwarded
when an AVB Ethernet frame is released. Therefore, a method is needed to deter-
mine a subset from the set of buffered messages, which should be forwarded. This
task will be done by scheduler, for which FIFO, strict priority and earliest deadline
first will be evaluated in the following sections.

1.1.1. FIFO Forwarding

FIFO is the simplest forwarding principle researched here. Messages arriving from
the CAN bus are stored within the buffers of the gateway. When a CAN over
AVB Ethernet frame is about to be released, it may not be possible to forward all
buffered CAN messages. FIFO selects the Ncan messages which have been stored
the longest waiting for transmission. These will be merged into an Ethernet packet
and released towards the AVB Ethernet network. Because messages can be stored
for multiple forwarding cycles, determining the forwarding latency is non-trivial. It
will be discussed below.

Forwarding latencies are analyzed based the queuing model depicted in Fig. V.3.
It shows the release of CAN messages for CAN bus transmission, the arrival of CAN
messages at the gateway, and the departure of Ethernet frames. The analysis is based
on network calculus [41], with which worst-case arrival and departure patterns of
the traffic are computed. Once these patterns are derived, the worst-case latency is
given as the maximum vertical deviation between the curves.

To cover the worst-case for the arrival of messages at the gateway queue, a crit-
ical instant is assumed to occur at t = 0, i.e. all CAN messages are released syn-
chronously at this time. This way, the cumulative amount of messages that are
queued for transmission on the CAN bus within the interval [0, t) is maximized.
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Figure V.3.: Queuing model of the CAN-AVB gateway [115]

This includes all message instances, which are either released or transmitted during
this interval. It is computed as

rcan(Mfwd , t) =
∑

∀k∈Mfwd

d(t+Rk) /Tke . (V.5)

The equation assumes cyclic release of CAN messages. The amount of CAN
messages released or transmitted in the interval [0, t) is maximized, if the CAN
messages transmitted at the beginning of the interval have experienced a worst-
case delay. This means, that a second instance of such messages is queued for
CAN transmission shortly afterwards. The reduction of the inter-arrival time of the
first two instances of each CAN message m is thus equal to its worst-case response
time Rm.

While messages are assumed to be released synchronously, they arrive one after
another at the gateway. On the CAN bus, only one message can be transmitted
at a time. The limited transmission speed thus has to be considered in the overall
model. The maximum amount of message arrivals in the interval [0, t) is given as

βcan(t) = dt/Cmine . (V.6)

Using network calculus [41], (V.5) and (V.6) can be used to determine a worst-case
egress pattern from the CAN bus and therefore a worst-case arrival pattern at the
gateway. Equation (V.6) represents a service curve, which can be convoluted with
the arrival curve represented by (V.5) to determine the corresponding departure
curve. Network calculus is based on min-plus algebra, and thus the convolution
is also a min-plus convolution [41]. According to the definition of this min-plus
convolution, an upper bound for the cumulative arrival of messages at the gateway
queue can be calculated as
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1. CAN to AVB Ethernet Gateway

rcan2q(t) = (rcan (Mfwd)⊗ βcan) (t) (V.7)

= inf
0≤τ≤t

{rcan (Mfwd , τ) + βcan (t− τ)}. (V.8)

On the egress side of the gateway, Ncan messages are removed from the queue
and transmitted across the AVB Ethernet network in cyclic fashion in an interval of
Tavb . In the worst-case scenario, the last frame has been sent an infinitesimal time
before t = 0. Therefore, the cumulative number of messages removed until time t is

rq2avb(t) = bt/TavbcNcan . (V.9)

Equations (V.5), (V.7), and (V.9) are illustrated in Fig. V.4 for an exemplary
configuration. In this configuration, 50% of messages from a CAN bus with a band-
width of 500 kbit/s are forwarded to the AVB network. The gateway packsNcan = 10
CAN frames within each AVB Ethernet frame and uses 50% overreservation. To al-
low fair comparison, the same scenario and configuration will also be used for the
other scheduling mechanisms. The distribution of cycle times corresponds to the
scenario introduced in Fig. III.13.
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Figure V.4.: FIFO forwarding: Ncan = 10, OR = 50% [115]

The vertical discrepancy between rcan2q and rq2avb in Fig. V.4 translates to the
backlog observed in such a worst-case scenario. The horizontal discrepency is often
called a virtual delay. The maximum horizontal derivation between cumulative
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inflow and outflow of messages therefore corresponds to the maximum delay. Within
this worst-case scenario, a message engueued at time t is forwarded after

dfifo(t) = inf
∀t≥0
{td : rcan2q (t)− rq2avb (t+ td) ≤ 0} . (V.10)

Therefore, the forwarding delay of any message is guaranteed to be bounded as

dmax
fifo = sup

∀t≥0
{dfifo(t)} . (V.11)

Equation (V.11) is not message specific, but rather gives the same latency guar-
antee to all messages independent of their priority or deadlines. This makes sense,
because the FIFO scheme used does not prioritize certain messages. Therefore, it
has to be dimensioned to cater the timing requirements of the highest priority mes-
sages. The lack of differentiation means that the scheduler is inefficient. In the
example shown in Fig. V.4, the delay is around 20 ms, despite having 50% over-
reservation. However, high priority messages often have latency requirements that
involve deadlines smaller than 10 ms. To overcome the efficiency issues in FIFO
scheduling that stem from a lack of differentiation, scheduling approaches that use
static and dynamic prioritization are the focus of the following sections.

1.1.2. Strict Priority (SP) Forwarding

Strict priority is a scheduling mechanism, which uses static priorities determined
at design time to make scheduling decisions. It is used e.g. in CAN arbitration.
Applied to the gateway at hand, it can be used to select the subset of buffererd
CAN messages, that should be forwarded in an AVB Ethernet frame. When a CAN
over Ethernet frame is about to be sent, the scheduler must determine the Ncan

highest priority messages. Ideally, these messages are already stored in a priority
sorted list.

In contrast to FIFO forwarding, no dynamic information is included in the for-
warding decision. However, SP uses static information about each message’s priority.
This means that the forwarding delay is message dependent. It will be denoted as
dm,sp . To find an upper bound for this delay, the blocking by higher priority messages
within the gateway has to be considered. Any higher priority message arriving while
a message m is buffered will overtake this message and thus increase the queueing
delay. The worst-case amount of higher priority message instances which block the
forwarding of message m can be derived as

Im =
∑

∀k∈hp(m)

⌈
dm,sp +Rk

Tk

⌉
, (V.12)

with hp(m) ⊂ Mfwd being the set of forwarded higher priority messages. This
equation makes the same assumption on the arrival of CAN messages as (V.5).
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Using the definition of (V.12), the queuing delay can be calculated. First, it is as-
sumed that a CAN over AVB Ethernet frame has just been released when message m
arrives at the gateway. While message m is buffered, higher priority messages can
arrive and delay its forwarding. Once less than Ncan higher priority messages are
buffered when an Ethernet frame is released, message m will be forwarded. Thus,
the queueing delay is given by the implicit formulation

dm,sp = Tavb

(
1 +

⌊
Im(dm,sp)

Ncan

⌋)
. (V.13)

Because this equation cannot be solved analytically, a numeric solution is required.
This can be achieved e.g. using fixed-point iteration. Using a starting value of
dµ=0
m,sp = Tavb and substituting (V.12), a solution can be obtained through

dµ+1
m,sp = Tavb

1 +

∑∀k∈hp(m)

⌈
dµm,sp+Rk

Tk

⌉
Ncan

 . (V.14)

The equation above can be used to calculate queuing latencies within the gateway
for a given configuration. This includes the assignment of priorities towards mes-
sages. Yet, the question of how to assign such priorities is not yet addressed. The
simplest way of priority assignment is to use CAN priorities. These are assigned to
maximize the schedulability of the message set at hand during CAN communica-
tion. Messages with small deadlines have high priorities and vice versa. However,
using CAN priorities also within the gateway may lead to an over-prioritization of
high priority messages. Reassigning priorities within the gateway may improve the
overall schedulability of CAN communication and gateway forwarding combined.

In preemptive SP systems, optimal priority assignment corresponds to monotonic
assignment of priorities with respect to ”deadline minus jitter” (D−J) [116]. However,
this is not generally true in non-preemptive SP systems (e.g. CAN) if message or
tasks can vary in lengths [32].

With the forwarding mechanism of the gateway, each CAN message occupies a
fixed part of an Ethernet frame independent of its length. Thus, the individual
message length does not have to considered when calculating blocking times. Ac-
cordingly, a (D−J) monotonic priority assignment will be considered the optimal
priority assignment (OPA).

To assign optimal priorites, the deadline and jitter of messages arriving at the
gateway has to be determined. Messages arrive at the gateway queue and therefore
at the SP scheduler earliest after their minimum transmission time Cmin

m and latest
after their WCRT Rm. Thus, the deadline of messages is reduced to Dm−Cmin

m with
a jitter of Rm−Cmin

m . (D−J) monotonic priority assignment therefore translates into
a priority assignment inversely proportional Dm − Rm (small value, high priority).
The calculation is as follows, assuming Dgw

m to be the deadline remainging at the
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gateway and Jgw
m the jitter of the message arrival at the gateway

Dgw
m − Jgw

m = (Dm − Cmin
m )− (Rm − Cmin

m ) = Dm −Rm. (V.15)

A timing analysis was conducted for the same configuration as presented for FIFO
forwarding. The results are illustrated in Fig. V.5. Presented are the cycle time Tm,
the WCRT on the CAN bus Rm and the combined delay of CAN bus and gateway
forwarding queuing delays for an example message set using CAN priorities and
optimal priorities (OPA), respectively.
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Figure V.5.: Strict priority forwarding delays with CAN and optimal (OPA)
priorities, respectively: Ncan = 10, OR = 50% [115]

The difference in the two priority assignment schemes is evident. Using CAN
priorities, latencies increase monotonically. While most messages have significant
slack towards their cycle time (and thus deadline assuming implicit priorities), the
latency of the lowest priority message exceeds the cycle time. This indicates an
inefficient configuration. Using optimal priorities means that messages which had
low priority during CAN arbitration can have increased priority in the forwarding
to compensate. The result is a latency distribution, which is significantly smoother
with respect to the slack messages have to their deadline. Finally, it guarantees all
messages to meet their deadlines, therefore improving the overall efficiency of the
forwarding scheme. Of course it should be mentioned, that the priority modification
adds complexity to the forwarding mechanism, as it requires a look-up table to
determine the respective priorities.
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1.1.3. Earliest Deadline First (EDF) Forwarding

Using dynamic scheduling methods, it is possible to overcome the efficiency of static
schedulers. By using run-time information, scheduling decisions can be optimized.
Within this gateway, the time for which a message has been buffered can be used to
optimize the scheduling decision. While previously introduced SP scheduling uses no
dynamic information, the FIFO forwarding scheme is actually a dynamic scheduling
mechanism, even if a simple one. In FIFO forwarding, the decision is only made on
basis of the time the messages are queued.

Earliest Deadline First (EDF) is a dynamic scheduling mechanism, which selects
the message with the closest upcoming deadline, thus minimizing deadline misses. In
the context of the gateway, the forwarding mechanism has to find the Ncan messages
which fit this criterion.

The biggest challenge is to accurately determine the time td, at which a message
has to be forwarded to meet its deadline. At design time, the overall deadline Dm is
known for each message. It describes the time span available after messages initiation
until its successful forwarding towards the AVB network. Also available within
the gateway is the information, how long a message instance has been buffered.
Unfortunately, it is not possible for the receiver of a CAN message to determine
when it was queued for transmission. This problem already occurred during the
design of the deadline-aware interrupt coalescing scheme presented in Section III.1.5.
This lack of information has to be dealt with through a pessimistic approximation.
Assuming that td is the accurate deadline and a message arrived at the gateway
at time tgw, it can be approximated by assuming the CAN message arrived after a
worst-case delay Rm on the bus

t̂d = Dm − (tgw +Rm) ≤ td. (V.16)

To determine whether a gateway configuration is schedulable, existing analysis for
EDF has to be modified. Baruah et. al [117] showed that a task set is schedulable
on a uniprocessor, if the so called processor demand h(t) is smaller or equal to t.
Additionally, a processor demand function is formulated, which equals the added
execution time of all jobs that have a deadline until t. To analyze the demand
at the gateway, let h(t) be the communication demand function, which describes
the number of CAN frames that must be forwarded until t in order to meet their
deadline. It can be formulated as

h(t) =
∑

∀m∈Mfwd

max

{
0, 1 +

⌊
t− (Dm −Rm)

Tm

⌋}
. (V.17)

The equation assumes that deadlines Dm are reduced by the WCRT on the CAN
bus Rm as described by (V.16).

In addition, let g(t) be the communication service function, which describes the
number of CAN frames guaranteed to be forwarded via AVB Ethernet at t. As this
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function describes a guaranteed service, a worst-case scenario has to be considered.
It is assumed that an Ethernet frame has been released an infinitesimal amount of
time before t = 0. Afterwards, a constant flow of Ethernet frames containing Ncan

CAN frames is forwarded cyclic at a rate corresponding to the cycle time Tavb . The
cumulative service function is this given as

g(t) = Ncan bt/Tavbc . (V.18)

The condition for schedulability is simply that the communication service has to
be greater than the demand at all times. Thus, the system is considered schedulable,
if the following condition holds

h(t) ≤ g(t). (V.19)
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Figure V.6.: EDF forwarding schedulability test: Ncan = 10, OR = 50% [115]

Using the analysis presented above, a schedulability test was conducted using
the same scenario and gateway configuration as in the examples for FIFO and SP
forwarding. The results are presented in Fig. V.6.

The offered communication service g(t) is a step function, where the height of
the step is equivalent to the number of CAN frames within an AVB frame and
the width corresponds to the cycle time. Because the demand is lower than the
service at any time, schedulabiltiy can be guaranteed. In fact, it can be seen that
communication service could be reduced in order to improve the efficiency of the
system. This can be done by decreasing the step height or increasing the step length
of the communication service.
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1.2. Evaluation
The design of the gateway is targeted at the timely forwarding of messages before a
designated deadline using minimal resources. Specifically, the necessary bandwidth
reservation for the outgoing AVB stream containing CAN frames should be minimal.
Thus, the main objective of this evaluation is to determine the efficiency of various
configurations with respect to their ability to provide sufficient schedulability. The
design space covers the number of CAN frames encapsulated in an Ethernet frame,
the amount of overreservation used, the ratio of forwarded CAN messages, and all
of the forwarding mechanisms introduced above (FIFO, SP with CAN priorities and
with optimal priorities, and EDF). First, the exploration scenario is introduced,
followed by the respective results.

1.2.1. Scenario

The scenario used here is based on the same statistical distribution of CAN messages,
which was used in the previous chapters. In summary, CAN messages are released
cyclic towards the CAN bus with cycle time Tm. Cycle times are chosen from
harmonic sets corresponding to Tm ∈ {10, 20, 50, 100}ms. These cycle times are
selected randomly for each message with probability 4.8%, 14.3%, 33.3% and 47.6%,
respectively. The overall utilization of the CAN bus is fixed at U = 80% throughout
all of the evaluation. The CAN bus is operating at a bandwidth of 500 kbit/s.
The share of forwarded messages (not all messages may require forwarding to the
Ethernet backbone) will be called Qfwd . In the initial evaluation, it is assumed that
half of the CAN traffic is forwarded to the CAN bus. Later on, the effect of Qfwd

is analyzed. The subset of forwarded messages is Mfwd ⊂ M. The quotient of
forwarded traffic can be calculated as

Qfwd =
U(Mfwd)

U(M)
, (V.20)

which corresponds to the relative part of the bandwidth forwarded to the AVB
network using the definition of the CAN utilization U in (II.2). How much of the
CAN data is forwarded depends on its relevance to other functional domains. Values
for this quotient are chosen as Qfwd ∈ {30, 40, ..., 70}%.

Four different forwarding techniques are considered including first in, first out
(FIFO), strict priority based on CAN IDs (SP-CAN) and with optimal priority
assignment (SP-OPA), and earliest deadline first (EDF). For comparison to state-
of-the-art forwarding mechanisms, a scheme adapted from [54] will also be included
in the analysis. In contrast to the gateway presented here, this work uses a forward-
ing scheme that guarantees forwarding of all frames every time a CAN over Ethernet
frame is released. It is thus referred to as complete release (CR).

The number of CAN frames encapsulated in one AVB Ethernet frame is explored
in the range of Ncan ∈ {1, 2, ..., 35}. In addition, overreservation of bandwidth is
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allowed in the range of OR ∈ {0, 10, ..., 400}%.

1.2.2. Schedulability Results

A message set is considered schedulable, if and only if all forwarded messages m ∈
Mfwd are guaranteed to be forwarded before their deadline Dm. To provide results
that cover a wide range of traffic scenarios, 10,000 message sets were generated and
tested for their schedulability within different configurations. The schedulability S
for each configuration is defined as the ratio of message sets deemed schedulable
using the analyses developed in Section V.1.1. The schedulability is a function of
the gateway configuration and thus dependent on the scheduling algorithm used for
forwarding, the number of CAN frames encapsulated within an AVB Ethernet frame
Ncan , and the overreservation OR of the outgoing Ethernet stream.

Fig. V.7 presents all Pareto optimal configurations found in the exploration differ-
entiated by the schedulers used for forwarding. Here, a Pareto optimal configuration
achieves the highest level of schedulability S at a specific bandwidth reservation. No
other configuration of Ncan and OR achieved higher schedulability using less or an
equal amount of bandwidth. Therefore, a scheduling mechanism is most efficient,
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Figure V.7.: Schedulability for optimal gateway configurations with frame ag-
gregation (solid lines, Navb > 1) and without (dashed lines,
Navb = 1) [115]
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if the area under schedulability curve is maximal. It can be used to compare the
schedulers ability in real-time capable forwarding. For reference, the schedulabil-
ity of configurations restricted to Ncan = 1 is included. In these cases, no frame
aggregation is used.

The results clearly indicate a significant improvement in efficiency over state-of-
the-art gateway forwarding mechanisms (CR), where even a simple FIFO forwarding
is able to reduce the necessary bandwidth reservation for real-time forwarding. This
is expected, as CR uses a level of overreservation that guarantees that the gateway
buffer is completely released every time an Ethernet frame is sent. Using such
overreservation, the scheduling algorithms are effectively irrelevant, as all messages
are selected for forwarding anyway. The advantage of the approach here is that
because not all buffered messages have to be forwarded, more efficient configurations
at lower levels of OR are available.

Additionally, it can be seen that bandwidth efficiency is directly linked to the
complexity of the scheduler. The scheduling mechanisms provide increasing results
for increasing scheduler complexity. Specifically, EDF is the dominant scheduler,
which offers best performance at any bandwidth level. This is expected, as EDF
is optimal schedule in non-preemptive single resource systems [118], i.e. if a con-
figuration is not schedulable using EDF, it is not schedulable at all. Similarly, the
optimality of reordered priorities in SP forwarding guarantees that performance is
equal or better than the use of CAN priorities.

Throughout the evaluation, SP forwarding has outperformed FIFO. In theory,
FIFO could provide better performance SP in a few unrealistic scenarios, where
messages arrive at the gateway with similar deadlines. Then,it makes sense to for-
ward messages in the order of their arrival. Because automotive latency requirements
are usually diverse with typical deadlines ranging between 10 ms and 100 ms, the
lack of message specific prioritization leads to bad real-time performance in FIFO
forwarding.

The results can be interpreted in a quantitative manner by considering the band-
width reservation necessary to achieve schedulability S ≥ 50%. Compared to CR,
FIFO forwarding is already able to achieve 33 % bandwidth reduction compared
to CR. Using the most complex scheduler, EDF, a total reduction around 72.21%
is achieved compared to CR. In fact, it can be seen that scheduling of messages
within the gateway has a similar effect as the accumulation of CAN messages within
a single Ethernet packet.

While EDF has shown the best performance in the evaluation, it is also the most
complex mechanism. In certain scenarios, e.g. when the gateway is implemented in
hardware, a FIFO scheduler might be preferred due to its low resource requirements.
Also, other non-functional requirements may be important in certain application sce-
narios. In error scenarios, where the CAN load is increased due to retransmissions,
SP scheduling can be more robust than EDF scheduling.

Complex real-time systems can not always be modeled perfectly in a sense that
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the derived timing bounds are tight. To avoid false positive results in real-time
analyses, they have to be pessimistic. In this gateway scenario, worst-case scenarios
for the CAN bus and gateway forwarding are considered. The analyses are derived
in a similar fashion and therefore also introduce a similar degree of pessimism. For
example, it is assumed for all mechanisms that one message instance can experi-
ence both worst-cases (CAN and gateway) during one transmission. Because such
assumptions are made for all schedulers, comparability among them is guaranteed.
Also, despite pessimism, significant improvements in schedulability are achieved.

FIFO SP-CAN SP-OPA EDF

200 400 600 800

0

50

100

bwavb,res (kbit/s)

S
ch

ed
u
la

b
il
it

y
S

(%
)

(a) Qfwd = 30%

400 600 800

0

50

100

bwavb,res (kbit/s)

(b) Qfwd = 50%

400 600 800

0

50

100

bwavb,res (kbit/s)

(c) Qfwd = 70%

Figure V.8.: Schedulability for optimal gateway configurations with different
ratios of forwarded CAN traffic

Fig. V.8 shows schedulability results for multiple levels of Qfwd . The results gen-
erally indicate that real-time capability is easier to achieve when large fractions
of the CAN traffic Qfwd are forwarded. Because lower levels of Qfwd require less
bandwidth, the sending interval of AVB frames is larger without overreservation.
This can be coped with by sending smaller frames but more often, or by increased
overreservation. Both measures increase the necessary bandwidth.

The rate at which CAN frames can arrive at the gateway in a short time is
independent of Qfwd , yet the outgoing bandwidth is not. Reducing a backlog that
occurred due to back to back arrival of CAN frames is therefore harder to deal with
at small values of Qfwd . Because FIFO forwarding lacks the ability to prioritize
messages in such scenarios with high backlog, it suffers more from small values of
Qfwd than the other forwarding mechanisms.

Another interesting parameter is the number of accumulated CAN frames within
an AVB Ethernet frame Ncan and its influence towards the schedulability of the sys-
tem. To evaluate the schedulability at a constant value of Ncan for multiple levels
of overreservation OR, a weighted schedulability [107] can be used. Here, a greater
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weight is given to configurations with low bandwidth, as this is more demanding for
the scheduler and more desirable in application scenarios. The weighted schedula-
bility is computed as

wS(Qfwd , Ncan) =

∑
∀OR∈ORwS

S(OR)

bwavb,res(OR)∑
∀OR∈ORwS

1/bwavb,res(OR)
. (V.21)

The weighted schedulability wS represents a weighted average along multiple
values of reserved bandwidth. The maximum bandwidth in this evaluation is limited
to

bwmax = bwavb,res(Qfwd , N
max
can , ORmax ) (V.22)

This allows fair comparison among different values of Ncan . Accordingly, levels of
overreservation, which provide bandwidth smaller than bwmax are included in the
set

ORwS (Qfwd) = {OR : bw(OR) ≤ bwmax(Qfwd)}, (V.23)

which is used in (V.21).
Fig. V.9 shows weighted schedulabilities for each scheduling mechanism. Also,

curves for multiple ratios of forwarded traffic are included. The results indicate that
there is not a single optimum with respect to Ncan . Rather, scheduling algorithms
and the traffic configuration have to be considered. FIFO forwarding is different
to all other schedulers, as the optimal value of Ncan does not significantly depend
on the ratio of forwarded traffic. Encapsulating 10 CAN frames within a single
Ethernet frame seems to provide consistent results.

1.3. Optimal EDF Configuration

An optimal forwarding configuration guarantees real-time capability using minimal
resources. Within the evaluation above, optimal configurations were found with
respect to a discrete set of configurations analyzed in the exploration. While the
number of CAN frames encapsulated within an AVB Ethernet frame is discrete,
the overreservation of a stream is a continuous parameter, which was quantized to
enable the exploration.

In a real-world setting, it would be useful to analytically determine an optimal
configuration for a given traffic scenario. A configuration is considered to be opti-
mal here, if it guarantees schedulability and there is no other configuration, which
uses less resources and still provides schedulability. The resource considered in this
context is the bandwidth reserved for the AVB stream carrying CAN frames. The
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Figure V.9.: Weighted Schedulablity of the gateway at multiple ratios of for-
warded traffic Qfwd between 30% and 70%

two parameters which can be tuned are the number of CAN frames fitted into an
AVB Ethernet frame Ncan and the overreservation of the stream OR.

Section V.1.1.3 introduced a schedulability analysis for EDF forwarding. For a
given traffic scenario and gateway configuration, it allows to determine whether all
messages are guaranteed to meet their deadline. According to (V.19), real-time
forwarding is guaranteed if the communication demand h(t) is smaller or equal the
communication service g(t) at all times. While h(t) is given, g(t) can be tuned using
Ncan and OR.

Figure V.10 visualizes the part of a schedulability test, which contains the commu-
nication demand at the edge of schedulability. The communication demand function
h(t) is equal to the one shown in Figure V.6. Additionally, the communication service
without overreservation g0(t) and an optimal configuration gOR(t) are presented.

If a configuration is not schedulable for a given Ncan , the overreservation can
be increased to reduce the sending interval of AVB Ethernet frames. First, the
horizontal deviation between demand and available service for points at which the
schedulability analysis fails will be observed (see Figure V.10). The next point in
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Figure V.10.: Detail of EDF forwarding schedulability test without and with
optimal overreservation (here: OR = 5.11%) using Ncan = 10

time, which offers sufficient service to satisfy the demand at th is

tg(th) = inf {t : g0 (t) ≥ h (th)} =

⌈
h (th)

Ncan

⌉
Tavb , (V.24)

for any time th with h(th) > g0(th).

The minimal overreservation, which will guarantee the schedulability test to suc-
ceed at th, has to provide the service g0(tg) already at th. Therefore, it should hold
that

gOR(th)
!

= g0(tg). (V.25)

Substituting the definition of g(t) from (V.19), it can be concluded that⌊
th(1 +OR)

Tavb

⌋
=

⌊
tg
Tavb

⌋
. (V.26)

The floor function on the right side of (V.26) can be neglected, because tg is the
first point in time after a jump in service. In order to just satisfy the communication
demand at th, the floor function of gOR must also have a jump at th. Therefore, the
ceil functions can be neglected to derive an optimal value for OR.

The optimal overreservation to satisfy communication requirements at all times
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Figure V.11.: Statistical distribution of configurations in EDF forwarding at
Qfwd = 50%. At every level of Ncan , 50 message sets were eval-
uated.

can be determined as

OR = sup

{
tg − th
th

}
. (V.27)

This level of overreservation is optimal, as any smaller value would cause the
configuration to be unschedulable.

Using the scenarios from Section V.1.2, the necessary bandwidth to guarantee
schedulability using optimal overreservation is evaluated. Figure V.11 shows statis-
tical results obtained from 50 different message sets with 50 % of the CAN traffic
getting forwarded. The evaluation was restricted to 50 message sets to allow a clear
presentation of the results.

Optimal configurations are found for values of Ncan between 13 and 19. Aggre-
gating less CAN frames in one AVB Ethernet frame causes an increase in framing
overhead that proves inefficient. Further increasing Ncan introduces delays between
two forwarding events, which can only be coped with through higher overreservation.

The statistical distribution shows a high value spread for large values of Ncan .
When forwarding many CAN frames aggregated in a single AVB frames, the sending
interval Tavb should be large. Because of the bursty nature of the forwarding, small
changes in a traffic configuration can require big adjustments of the configuration.

While some configurations give good results over a wide range of setups, there
is no clear optimum. Specifically, the only outliers observed exist for the three

144



1. CAN to AVB Ethernet Gateway

8 10 12 14 16 18 20 22 24 26 28

4

6

8

10

12

14

Ncan

O
ve

rr
es

ev
at

io
n
O
R

(%
)

30%
40%
50%
60%
70%

Figure V.12.: Optimal configurations for EDF forwarding and different levels
of Qfwd

values of Ncan , which provide schedulability with minimum resources. An optimal
configuration must therefore be derived for every setup.

For each of the 50 scenarios, the optimal pair of Ncan and OR at every level of Qfwd

was determined. Figure V.12 shows these configurations along with linear regression
lines. Efficient configurations have small OR and large Ncan . With increasing Qfwd ,
less overreservation is necessary and more CAN frames can be aggregated in a single
AVB frame. Values of Ncan in optimal configurations range between 8 and 30.
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2. AVB Ethernet Controller Design and Integration

Because AVB Ethernet is not yet a commercially wide-spread technology, there
is a lack of AVB-capable hardware as detailed in Section II.1.4.5. Thus, the vast
majority of current research is theoretical. To fill the lack of architectural and exper-
imental experience with AVB Ethernet controllers, the objective was formulated to
design and implement an AVB-capable Ethernet controller. This controller should
be integrated into an SoC to enable an evaluation of the system performance, thus
providing hands on experience and reliable data.

The design is mainly constrained by the respective set of IEEE specifications,
which specify the protocols for traffic shaping/policing and time-synchronization.
Nevertheless, degrees of freedom exist in the HW/SW partitioning of the pro-
tocol components and the implementations themselves. For example, the time-
synchronization could be implemented either in software or hardware, leading to a
trade-off between precision and chip area cost. The following design is targeted to
minimize the area cost (here estimated through FPGA resource consumption) while
providing sufficient performance for automotive applications.

The design was implemented in VHDL using Xilinx Zynq 7000, a SoC with in-
tegrated FPGA fabric. This method combines the benefits of FPGA prototyping
and SoC design. It allows time and bit accurate system evaluation of hardware
extensions considering all aspects like memory and interconnect interference, cache
behavior, etc. that are hard to fully cover using traditional system level simulation
approaches. The design decisions taken within the next section will be evaluated in
Section V.2.2 on system level.

2.1. Design & Implementation

This section presents a HW/SW partitioning targeted to comply with automotive
application requirements while minimizing resource usage. The design is closely
integrated with the processing and memory subsystem of the SoC. Because design
decisions are directly affected by the system architecture of the Zynq 7000, the ar-
chitecture will be introduced first. Following, the hardware and software extensions
to realize the AVB Ethernet endpoint are presented.

2.1.1. System

The system used for the implementation is a Xilinx Zynq 7000 SoC. It consists of two
parts: a processing system (PS) and programmable logic (PL). Because processing
system and programmable logic are integrated on a single chip, it is possible to
tightly interconnect hardware extensions with on chip resources. A prototyping
board called ZedBoard was used for implementation. Besides the Zynq 7000 it
features various connectors including and FPGA Mezzanine Card (FMC) connector.
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It can be used to connect extensions boards to the FPGA. Linux based operating
systems are ported to the Zynq 7000 SoC. The OS used here uses kernel version
3.14.

Figure V.13.: System overview of the prototype system including a de-
tailed presentation of the AVB Ethernet controller implemen-
tation [119]

A simplified representation of the system is depicted in Fig. V.13. The majority
of peripheral modules included in Zynq are omitted, as they are not used by the
AVB endpoint implementation here. Processing within Zynq is done using a dual
ARM Cortex-A9, which is running at 533 MHz. Part of the SoC are also controllers
for DDR RAM and Flash memory. They provide access to off-chip resources placed
on the ZedBoard: an SD card (4 GB) storing the boot image and the main memory
(512 MB DDR3).

The integrated PL is equivalent to a Xilinx Artix-7 FPGA fabric with 85K overall
logic cells. The PL is integrated alongside the PS within the SoC and can access
its resources using AXI interfaces. These AXI buses are all clocked with 100 MHz.
The ARM processors are connected to the PL with a 32 bit bus to perform memory
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mapped I/O accesses. Additionally, up to four AXI buses can be used for DMA
operations by the PL. Two physical ports of the DDR controller are reserved for
transactions from the PL. The PL can be connected to the outside world trough
the FMC connector located on the ZedBoard. Here, a networking specific breakout
board called ISM Networking FMC module featuring a 10/100 Ethernet PHY is
used. This PHY can be connected through an Media Independent Interface (MII)
interface.

2.1.2. AVB Ethernet Controller

An AVB Ethernet controller is a layer-2 hardware device. It is intended to provide
medium access according to the AVB specification. The AVB controller does not
have to provide a complete implementation of the AVB protocols, as some may be
possible to be implemented in software. Highly time-critical subsets of the specifica-
tion like flow control and traffic shaping must be implemented in hardware, because
software scheduling granularities are insufficient for the precision needed. For other
parts like time-synchronization, a software implementation is possible but provides
lower precision compared to a hardware implementation.

A schematic of the AVB Ethernet controller is presented in the lower half of
Fig. V.13. It uses three interfaces towards the processing system: The control
path is realized through the AXI directly connected to the computing cores. The
driver can thus configure the controller through memory mapped I/O writes towards
the AXI slave interface. Two additional AXIs are used to connect transmit (Tx)
and receive (Rx) data path to the DDR controller. All data path operations are
performed through direct memory access (DMA) to minimize software overheads.

One design objective is to achieve a composable architecture. Basis of this ar-
chitecture is he Xilinx Tri-Mode Media Access Controller (TEMAC). It is a full-
duplex Ethernet MAC supporting 10/100/1000/2500 Mbit/s operation. Here, 100
Mbit/s will be used exclusively as this is the only speed at which automotive grade
transceivers are available. It is interconnected with the PHY through MII. Several
configuration and interrupt lines are not shown within the figure for presentation
reasons.

The HW/SW partitioning of has to be optimized to fit the setting and require-
ments of an automotive application scenarios. Multiple applications in an automo-
tive setting require time-synchronization at different levels of precision. In video
systems, frame accuracy at 30 fps can be achieved with around 30 ms synchroniza-
tion precision. For audio signals at sampled 44.1 kHz, sample accuracy is achieved
at 20 µs. In control applications, synchronous sensor sampling is an important
objective. Sensors are usually connected with a LIN bus, which operate at up to
20 kHz (equivalent to a bit time of 50 µs). Thus, the precision is anyway bounded
as larger than 50 µs.

As mentioned in Section II.1.4.3, Mahmood et al. [38] showed that synchronization
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precisions within microsecond range can be achieved with a software-based time-
synchronization. While a pure HW implementation can offer nanosecond precision,
it is not achievable in real-world scenarios. This is because the synchronization
protocol used in AVB is only error-free if networking delays are symmetrical. Based
on related work, which showed around 1 µs synchronization errors due to asymmetric
networking delays in a symmetric setting [40], the increased precision of a hardware-
based implementation does not seem to be worthwhile.

To enable a software-based implementation of the time-synchronization protocol,
a real-time clock (RTC) with read and write capabilities is needed. Because no
internal clock of the PS satisfied the requirements, an RTC was implemented within
the AVB Ethernet controller. It can be read and written through the AXI slave
interface. When used as a master clock, it also needs to generate interrupts to
trigger the synchronization process. The interrupts are generated in a configurable
interval between 125 ms and 1 s (as required by the specification).

Outgoing traffic has to be buffered within the AVB Ethernet controller and po-
liced according to the Credit Based Shaper (CBS) defined in the AVB protocol.
Within a talker endpoint, the CBS maintains a credit value for each traffic class and
stream. This credit value has to be updated frequently. During transmission, it is
reduced for every bit transmitted. Additionally, credits proportional to the reserved
bandwidth of the stream or traffic class are constantly added. Because Ethernet
frames are quantized as multiples of octets, it is sufficient to update the credit score
after a time that corresponds to the transmission time of an octet on the physical
medium. For 100 Mbit/s, this time corresponds to 80 ns. Maintaining accurate
credit scores is essential, because it decides which stream or traffic class is able to
transmit (c.f. Section II.1.4.1). A software implementation of the traffic shaping
would be inadequate, because software scheduling granularities are usually multiple
orders of magnitude larger (e.g. Linux’ minimum scheduling granularity is 75 ms).
Thus, a hardware implementation of the CBS protocol is required.

The architecture of the stream and class buffers as well as the traffic shaping
and flow control is depicted in Fig. V.13. As the trend in automotive ECUs is
going towards consolidation and centralization of functions, it is foreseeable that an
endpoint requires to send more than one stream, e.g. a combination of video, audio,
and control streams. To enable such applications, the design allows offers multi-
stream support. The number of streams supported is configurable at design-time.
During run-time, the streams can be assigned to one of the traffic classes A & B.

The buffering strategy was implemented in order to minimize resource consump-
tion while avoiding buffer underruns. To achieve this, Ethernet packets are buffered
as DMA descriptor as long as possible. These descriptors consist of a memory
address and the packet length. However, DMA operations take a finite and also
variable amount of time to fetch the data from the main memory. Because a trans-
mission from a class egress buffer has to happen instantly e.g. when a sufficient
credit level is reached, it is essential that at least one frame is already buffered for
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each class. Therefore, a data buffer able to contain one complete maximum sized
frame was implemented for each traffic class. During every packet transmission, a
DMA operation for the transmitting class is initiated just in time to avoid underruns.

An additional traffic class for legacy traffic is provided, which is not subjected
to credit based shaping. Outgoing AVB traffic is prioritized over legacy traffic.
However, only 75% of the overall bandwidth may be reserved of AVB traffic, thus
guaranteeing that legacy traffic is not subject to starvation.

Reception of frames (the listener portion of the endpoint) is simpler, because no
traffic shaping or flow control has to be applied here. The bandwidth for DMA
operations is significantly larger than the one of incoming frames (6.4 Gbit/s com-
pared to 100 Mbit/s). Therefore, a frame is always completely transferred before
the next one arrives, even with back-to-back frames. This means that no additional
buffers are needed, and data can directly be transferred from the internal Rx buffer
of the TEMAC. After the complete transfer of data to the main memory, the PS
will be notified through an Rx interrupt. To minimize interference among Tx and
Rx DMA transactions, Tx and Rx DMA engines are connected through separate
AXI interconnects to different ports on the DDR controller. During the evaluation,
this approach will be compared to one using a shared bus and DDR controller port.

2.1.3. Linux Driver

A driver for the AVB Ethernet controller was developed that serves two main pur-
poses: First, it provides access to the hardware component. Secondly, it implements
portions of the AVB specification which are not covered by the hardware imple-
mentation introduced above. It was implemented as a character device driver in
Linux’ kernel space. The main tasks performed include descriptor and data buffer
management, interrupt handling and time-synchronization.

AVB data transmissions are achieved through DMA transfers. When a user ap-
plication initiates a data transmission, it uses a system call to notify the kernel
module. It passes along the stream ID, the packet length and a data pointer to-
wards the driver. The kernel module has to copy this data into kernel space. The
driver maintains separate ring buffers for each stream. DMA descriptors are issued
towards the AVB Ethernet controller and enqueued in the respective stream buffer.
Once a packet has entered the traffic class data buffer, i.e. it has been copied from
the main memory, the driver is notified through an interrupt and deallocates the
memory.

Upon the reception of a message, the AVB Ethernet controller initiates a DMA
transfer of the data into the main memory. It uses a DMA descriptor that was
issued previously by the device driver and that is pointing towards the next empty
slot within a ring buffer. The completion of the transfer is notified through an
interrupt. Received packets are sorted towards stream-specific buffers. These buffers
are descriptor-based ring buffers. Thus, no data copy operations are necessary when
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sorting.

Another important part of the driver is the time-synchronization. AVB speci-
fies a time-synchronization protocol called 802.1AS. It was presented in detail in
Section II.1.4.3. As discussed above, an RTC was implemented within the AVB
Ethernet controller, which can be read/written and triggers interrupts in a config-
urable interval. The synchronization itself has to be implemented in software. It
differs for master and slave nodes.

The task of a master endpoint is to periodically initiate a synchronization proce-
dure. For that, an interrupt is issued at a configurable interval by the RTC within
the AVB Ethernet controller. This triggers the beginning of a synchronization se-
quence through a Sync message containing a current timestamp T1. A second time
stamp is taken by the master upon the reception of the reply from the slave node.

Slave nodes participate in the synchronization sequence initiated by the master
node. Upon receiving the initial Sync message, a timestamp T1′ is recorded. An-
other timestamp T2 corresponds to the sending of the so called Delay Req message
replied to the master node. Upon reception of the final message at the slave node,
the value of the RTC has to be adjusted. Based on the recorded timestamps, an
updated time value is calculated using (II.11). The slave can adjust the RTC by
writing to the corresponding register within the AXI slave interface of the AVB
Ethernet controller.

If and only if communication delays are equal in master-slave and slave-master di-
rection, this scheme provides error-free synchronization. Asymmetries with respect
to communication delays. Such delays can occur on a network level, but also within
the SoC itself. Delays within the SoC are implementation specific. A major contrib-
utor to such delays within the SoC are variable interrupt latencies [38], contributing
to errors upto 1 µs. Thus, the synchronization scheme is approximate in real-world
settings, and non-perfect endpoint implementations are acceptable, as long as the
error contributed is small compared the errors from other sources. The accuracy
of the actual implementation will be researched within the scope of the following
section.

2.2. Experiments & Results

To evaluate central performance and cost metrics of the overall system, a series of
experiments was conducted. As the contribution under research is the AVB end-
point and the AVB controller, networking effects are kept minimal throughout the
experiments. The general experimental setup consists of two endpoints directly in-
terconnected. No switches and therefore no cross traffic are present in this setting.
This controlled environment allows to access isolated measurements of the endpoint
performance. The following sections present results regarding latencies, synchro-
nization precision, and the hardware resource utilization by the AVB controller.
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2.2.1. Endpoint-Related Latencies

Because AVB Ethernet will be used in time-sensitive applications, low-latency mes-
sage transmission is a central target of the design. The real-time analyses presented
in Section II.1.4.4 neglect endpoint-related latencies and only focus on networking
delays. For this approach to be valid, latencies within the endpoint have to signifi-
cantly smaller than networking delays. The real system implementation introduced
here is constrained by finite processing times and on-chip communication delays.
The following set of experiments is targeted at assessing the corresponding laten-
cies associated with AVB Ethernet packet transmission. Separate experiments are
conducted to evaluate latencies within the soft- and hardware portions of the system.

Experiment 1: Hardware latencies are measured by extending the AVB Ethernet
controller using an additional timer with 10 ns resolution. At the beginning of
the experiment, the endpoint is idle. No packets are buffered and streams have
default credit score of 0. When the driver indicates the start of a transmission by
writing to the AXI slave interface, the timer is started simultaneously. The DMA
descriptor of the packet is forwarded through the buffers and traffic shaping. A DMA
transfer is triggered and the complete packet is fetched from the main memory. The
packet is afterwards forwarded to the MAC. The completion of this transaction
(last word written to the MAC) stops the timer. The timer is read out at the end
of the measurement routine depicted in Fig. V.14. To make sure any transmission
is finished by the time the timer is read, it waits 500 µs after the initiation of the
transmission until reading out the final timer value.

Figure V.14.: Measurement setup to determine latencies within the AVB Eth-
ernet controller (Experiment 1) [119]

Several parameters were modified throughout the experiment. It was conducted
using various packet sizes to evaluate the scalability of the architecture with data
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size. This mainly affects the DMA packet fetch and the copy operation towards the
MAC, as only they involve the actual payload data. Additionally, two different ways
of interconnecting the DMA engines to the DDR controller were used. One uses a
shared AXI and DDR controller port, the other uses completely separate interfaces.
This configuration is especially important in the presence of simultaneous trans-
mission and reception of frames, as the DMA operation is subject to interference.
Therefore, optional receive side traffic was also included within the experiments.
The traffic is generated by injecting 8000 packets/s with 1500 B (96 Mbit/s) using a
second endpoint B. For every configuration, the experiment is repeated 1000 times.

Experiment 2: In the second experiment, delays within the software parts of
the AVB endpoint are evaluated. For measurement, a counter within the processing
system can be used. It is incremented at 200 MHz providing a resolution of 5 ns.
The physical setup is equivalent to that of experiment 1 depicted in Fig. V.14.

Figure V.15.: Measurement flow to determine software latencies (Experiment
2) [119]

To determine software delays, the measurement flow depicted in Fig. V.15 was
used. The measurement starts after initiating the packet data. After recording
a timestamp t1, the AVB packet header is created. Following the kernel module
is called, which causes the core to switch from user to kernel mode. This context
switch is associated with an additional latency. Afterwards, the kernel module copies
the data into kernel space and subsequently notifies the AVB controller, signaling
the location and size of the packet within the main memory. The measurement is
stopped at t2 after the final write towards the AXI slave interface of the AVB Eth-
ernet controller. This is the same write operation that triggers the beginning of the
measurement in experiment 1. A user space application will save the measurement,
with the latency being equivalent to the difference of the timestamps t2 − t1.

Similar parameters are varied as in experiment 1. The experiment is done with
multiple packet sizes and uses optional receive side traffic to evaluate potential
interference effects. However, this time, minimum sized packets are used in the
receive traffic to maximize the number of interrupts and thus context switches. The

153



V. AVB Ethernet Integration

104 404 704 1,004 1,304

0.5

1

1.5

2

2.5

3

3.5

4

Packet Size (B)

L
at

en
cy

(µ
s)

SW lat. wo/ Rx traffic
SW lat. w/ Rx traffic
HW lat. wo/ Rx traffic
HW lat. w/ Rx traffic

Figure V.16.: SW and HW transmit latencies observed in experiment 1 and
2 [119]

experiment is repeated 5000 times for every configuration. The increased number
compared to experiment is necessary, as software latencies are subject to greater
variations.

The combined results of experiment 1 (hardware latencies) and 2 (software laten-
cies) are illustrated in Fig. V.16. Generally, it can be seen that latencies in hard-
and software are similar for small packet sizes. Latencies increase with packet size in
both cases, yet the increase is significantly larger for hardware latencies. Precisely,
latencies increase by 0.23 ns/B for the software part and 2.42 ns/B for the hardware
part. The ratio of these rates thus equals 10.52 and can be explained by observing
the on-chip interconnects involved. From Fig. V.13 it can be seen that the process-
ing cores access the main memory with 34.11 Gbit/s (64 bit × 533 MHz). On the
other hand, the hardware part is facing a bottleneck in the interface of the MAC.
It provides only 3.2 Gbit/s (32 bit × 100 MHz). The ratio among the interfacing
bandwidths is 10.6 and thus closely resembles the ratio of the latency scaling with
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data size. Thus, the scaling can solely be attributed to the respective interconnect
bottlenecks.

The latencies for a packet transmission are increased when the AVB endpoint is
subjected to concurrent receive traffic. This is expected, as transmit and receive path
share on-chip resources, e.g. interconnects, memory, or computing resources. The
results show that the software part of the AVB endpoint is more sensitive to receive
side interferences. This is expected, because the hardware part has isolated buffering
and forwarding mechanisms for receive and transmit operations. On the software
side, a transmission can be significantly delayed e.g. by a receive interrupt. This
leads to an average increase in transmit latencies by 30% in the interference case.
Hardware latencies only increase by 2.09% on average using separate connection
for transmit and receive side towards the DMA controller. If an AXI interface and
DMA controller port is shared, this increase is around 6.57%. The use of separate
interfaces is advisable if a strong isolation and predictability is required. This is the
case for safety-critical embedded applications.

Generally, the latencies observed were in a microsecond range. The complete
release of an AVB Ethernet frame can be expected to be completed in less than
10 µs. Latency requirements in the automotive domain can go as low as 2.5 ms
in FlexRay-based chassis systems. This still leaves multiple orders of magnitude in
comparison. However, the experiments also showed that software-based latencies
are subject to large variations. In part, this problem could be overcome by using a
real-time operating system or a real-time patched Linux kernel.

2.2.2. Synchronization Errors

The synchronization protocol used in AVB Ethernet leads to unprecise results, if
the communication between two nodes has asymmetrical delays. This cannot only
happen on a network level, but also within the chip due to variable interrupt la-
tencies, cache hit rates etc. Within the following experiment, the error caused by
system variances will be quantified.

Experiment 3: To get an isolated measurement on endpoint-related synchroniza-
tion errors, all other sources of errors must be minimized. Therefore, no background
traffic is present during the experiment, guaranteeing symmetric networking delays.
Another important factor is temperature, as it directly influences the oscillating fre-
quency of the clocks. The temperature cannot be influenced in the measuring setup,
it remains as a source of error.

The measurement setup is illustrated in Fig. V.17. Two endpoints are directly
interconnected, where endpoint A serves as master an endpoint B as slave. To
evaluate the synchronization precision, the RTCs within each AVB controller must
be read out and compared simultaneously. To enable such a measurement, the
AVB controller had to be slightly modified. The RTC of endpoint A is routed
towards parallel I/O pins and connected to endpoint B. Within endpoint B, the

155



V. AVB Ethernet Integration

Figure V.17.: Measurement setup to determine synchronization errors (Exper-
iment 3) [119]

time values of tA and tB are subtracted. The result is readable from the processing
system end corresponds to the clock synchronization error. Right after completing
a synchronization sequence and adjusting the RTC within the slave, this error value
is sampled. In case of an error-free synchronization, this error should be zero.
Reading the value at this time thus gives the error, that was caused by system non-
idealities. In addition, the error due to clock drift can be assessed by considering
the difference between the error before the current synchronization and after the
last synchronization.

The experiments were conducted for varying synchronization intervals. In total,
eight different intervals were chosen between 125 ms and 1000 ms. The measurement
was repeated 1000 times for every respective synchronization interval.

Fig. V.18 shows the root mean square (RMS) synchronization errors contributed
system non-idealities as well as the general clock drift. Root mean square error was
chosen as it is used in related work and thus allows fair comparison.

The results show a trend of linear increasing clock drift for increasing synchroniza-
tion intervals, ranging between 0.61 µs for 125 ms and 2.44 µs for 1 s. The scaling is
not perfectly linear due to variations in the oscillator frequency (not measurement
errors). A reason for this can be temperature variations between the measurements.

Focus of this evaluation is the error, that is directly related to the system and
protocol implementation. This system error exists because of variable interrupt
latencies, memory access times, cache behavior etc. RMS errors between 1.98 µs
and 3.37 µs were measured. While there is no clear linear relation between the
system error and synchronization intervals, a slight tendency of larger errors for
larger synchronization intervals can be observed. It can be attributed to cache
pollution, which increases with the time in which the synchronization protocol was
not called.
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Figure V.18.: Synchronization error from system non-idealities as well as clock
drift in experiment 3 [119]

In comparison with related work [38], the errors witnessed here are larger. De-
pending on the synchronization interval and CPU type, Mahmood et al. determined
errors between 409 ns and 1.78 µs. They used a simulative approach relying on ex-
perimental data for interrupt latency distributions. Thus, interrupt latencies were
the only non-ideality considered, which explains added errors in this case. Error
sources like cache pollution were neglected.

The maximum system error measured throughout the experiment was 8 µs. To ob-
tain a realistic view of the synchronization performance within a networked system,
errors due background traffic on the network and clock drift have to be considered
in addition.

2.2.3. Hardware Overhead

An important aspect for vendors of automotive SoCs is the hardware cost associ-
ated with an AVB Ethernet controller. Low cost means that an adoption of this
technology comes at a lower economic risk, which accelerates the availability of
AVB-capable SoCs. To quantify the resource utilization of the design presented in
Section V.2.1, a comparison between the cost of a simple legacy Ethernet design and
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the AVB-enabled on will be made. The legacy design includes a MAC, DMA engine
and AXI interface. The designs were synthesized and implemented using Xilinx Vi-
vado 2013.4 and evaluated for resource consumption with respected to logic as look
up tables (LUTs) and flip flops (FFs). The results presented in Fig. V.19 are valid
for a design with four streams.
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Figure V.19.: Hardware resources used by the AVB Ethernet controller com-
pared to a legacy controller [119]

Compared to the legacy Ethernet design, the AVB Ethernet controller has in-
creased hardware utilization by 54% in LUTs and 28% in FFs. The majority of
added resources is consumed by the stream descriptor buffering and traffic shaping.
The added RTC for the time synchronization requires less than 1% of resources
within the AVB Ethernet controller.

In the implemented design, two separate DMA engines were used for transmit
and receive path. The TEMAC uses AXI stream interfaces, which can be directly
connected to the AXI DMA module for receive side transfers. AXI stream does
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not use and addressing scheme. This is troublesome in the transmit operations,
because transfers are executed towards different class FIFOs. To ease the design, a
Central DMA (CDMA) was used, where a DMA transfer can be directed towards
a specific FIFO. The increase in resource utilization due to the use of two DMA
engines constitutes around 4.8% of the total overhead.

A 40% increase in resource consumption is significant, yet it was compared to
the most simple Ethernet solution possible. Commercial Ethernet controllers have
many advanced features and accelerators like TCP offload engines etc. Extending
such a controller would lead to much smaller overheads.
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3. Summary

The bandwidth demand of automotive embedded systems is steadily increasing.
Multi-core processors can provide the necessary computing power for applications
like advanced driver assistance and autonomous driving. However, to deliver suffi-
cient communication resources in such architectures, new interconnect technologies
like AVB Ethernet are required. Within this chapter, key challenges for the integra-
tion of AVB Ethernet into existing automotive embedded systems were researched.
It was addressed, how AVB Ethernet can be interconnected with existing networking
technologies in automotive embedded systems like CAN. Additionally, a HW/SW
partitioning and a composable hardware architecture of an AVB Ethernet controller
was designed and integrated into a dual-core ARM SoC to determine performance
an cost of such an extension.

To enable the coexistence of AVB Ethernet and the most prevalent legacy inter-
connect Controller Area Network (CAN), a CAN to AVB Ethernet gateway
that interfaces both protocols was presented. Two main objectives constrained the
design: First, the forwarding must happen in real-time capable manner. Secondly,
minimal resources should be used. In the case of an AVB network, this means that
minimal bandwidth should be reserved for the CAN over AVB Ethernet stream.

The framing overhead is minimized by using a frame aggregation technique, which
encapsulate multiple CAN frames within a single AVB Ethernet frame. To provide
real-time conforming latencies, overreservation is employed. Finding an optimal
combination of these two parameters - the number of CAN messages within one AVB
Ethernet frame and the amount of overreservation - is the central design trade-off.
Different scheduling mechanisms were explored to select a subset of buffered CAN
messages for forwarding. These include FIFO, strict priority (SP), and earliest
deadline first (EDF). An analytic framework was derived for each mechanism.

In a design space exploration, it was shown that EDF is the most efficient mech-
anism with respect to the formulated design goals. Optimal configurations usually
encapsulate around 15 CAN frames within one AVB Ethernet frame. Compared to
state of the art gateway designs, a reduction of the necessary bandwidth reserva-
tion by 72.21% was achieved. Additional, an algorithm to determine the optimal
configuration for a given scenario using EDF forwarding was presented.

The lack of commercially available AVB Ethernet hardware means that there is
little to no experimental data available. By designing and implementing an AVB
Ethernet endpoint using a Zynq-based prototyping platform, data on HW/SW
partitioning, communication latencies, synchronization precision and hardware con-
sumption was gained. The proposed design extends a conventional MAC with AVB
capabilities at the cost of 53% additional logic and 28% additional flip flops.

Due to precision constraints within the traffic shaping algorithm, queuing and
forwarding was implemented in hardware. The overall latency when transmitting
an AVB Ethernet frame consists of driver delays (creating and moving a packet from

160



3. Summary

user to kernel space) and delays within the hardware (forwarding throughout the
buffers, fetching data from main memory). Hardware latencies within the design
range between 1 µs to 4 µs, depending on packet size. These latencies are robust
to interfering receive side traffic with deviations of less than 25 ns. Combined with
driver delays, latencies smaller than 6 µs can be expected. To put this number into
context, it can be compared to the transmission time of a minimum sized Ethernet
frame at 100 Mbit/s (5.12 µs). On the other hand, end-to-end networking delays
are usually expected in the order of multiple milliseconds.

Another important performance metric is the synchronization precision within the
endpoint. AVB Ethernet uses an approximate synchronization protocol that is error-
prone if communication latencies are asymmetrical. Within the endpoint, variances
are caused by variable interrupt latencies, cache pollution etc. In an experiment, it
was shown that these non-idealities within the endpoint cause errors smaller than
8 µs. This accuracy is sufficient for the majority of automotive application scenarios
like synchronous sensor sampling. If future applications require increased precision,
the synchronization protocol could be offloaded into hardware.

The contributions presented in this chapter significantly extend related work in
the field of AVB Ethernet. The combination of AVB capable SoCs and gateways
interfacing legacy fieldbuses allows an integration of this new networking technology
into existing automotive embedded networks. Nevertheless, many challenges are yet
to come, when AVB Ethernet is implemented in automotive embedded systems on a
large scale. With the emergence of real-world application scenarios and data, further
optimzation and innovation is possible.

Additionally, requirements towards the networking infrastructure are expected to
continue increasing. This may reach a point, where AVB Ethernet alone might not
be sufficient anymore. While AVB Ethernet could be scaled further to 1 Gbit/s Eth-
ernet, it has certain limitations when it comes to very low latency communication
for advanced control applications. For that reason, AVB’s successor called Time-
Sensitive Networking (TSN) is in development. The pre-standard extends AVB
Ethernet by time-gated admission control. This allows highly predictable commu-
nication, but also changes requirements towards endpoints and gateways.
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1. Conclusion
The contributions of this thesis are target the enablement of multi-core processors in
automotive embedded systems, focusing on I/O and networking aspects. The ever-
growing demand for computational power and the need to consolidate functions on
shared platforms can be coped with through the introduction of multi-core processors
within embedded systems.

Challenges arising from this scenario are efficient sharing of peripherals and net-
works, real-time capability, and spatial and temporal isolation among tenants in
mixed-criticality scenarios. To fulfill these requirements, virtualization methods are
researched in the context of embedded systems. An architecture for a virtualized
CAN controller is derived, which enables concurrent access to the CAN bus for multi-
ple tenants. To enable isolated communication among nodes, network virtualization
is applied to the CAN bus itself.

In-vehicle networks need to be scaled along with the computing power of single
nodes. Further contributions address the integration of real-time capable AVB Eth-
ernet into automotive embedded systems through a proposed gateway mechanism
for CAN and an AVB endpoint design.

To enable low-latency access to a CAN controller for multiple tenants in a vir-
tualized setup, an I/O virtualization concept was developed that is based on a
layered architecture. Through hardware extensions in the CAN controller itself,
overheads that go along with paravirtualized state-of-the-art solutions were mini-
mized. Through a prototypical FPGA implementation in an Intel Core i7 system,
it was shown that added latencies can be reduced by 91% to 96%. The hardware
resources required by the virtualization extensions are similar to that of a non-
virtualized controller so that a break-even in terms of chip area efficiency is reached
for only two virtual controllers.

The efficiency of the virtualization extensions can only be achieved, if underly-
ing hardware modules are shared by all virtual CAN controllers. This introduces
challenges with respect to temporal isolation of concurrent partitions, especially
in mixed-criticality scenarios. Using real-time analysis and an automotive traffic
scenario, it was shown that head-of-line blocking within the virtualization layer is
bounded to 45 µs even in a configuration with 16 virtual CAN controllers. However,
these bounds are only valid when all partitions behave according to their specifica-
tion. To ensure that every partition receives guaranteed performance, a temporal
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isolation scheme based on a weighted and time-based round-robin is introduced. In a
simulated scenario, where one partition behaves as a ’babbling idiot’, the feasibility
was verified.

Virtualized systems are subject to high overheads associated with interrupts, as
these are required to be handled within a privileged component and therefore force
exits in the VMs. The overhead can be limited through interrupt throttling mech-
anisms. However, state of the art approaches are not designed to protect real-time
capability at the same time. This problem is overcome by the deadline-aware inter-
rupt coalescing approach presented here. Applied to CAN, it was shown that upto
20 interrupts can be reduced to a single one while maintaining real-time capabil-
ity. The virtualization layer of the virtualized CAN controller was extended with
deadline-aware interrupt coalescing at the cost of around 10% increased hardware
resources.

While the virtualized CAN controller provides isolated access towards the CAN
bus, it does not prevent interference on the shared bus itself. Traditionally, com-
munication flows with different criticality levels are mapped to separate physical
buses. However, when mixed-criticality functions are consolidated on multi-core
platforms, it is increasingly inefficient to pursue this physical segregation approach.
Network virtualization is researched and applied to the CAN bus to allow concurrent
mixed-criticality communication through isolated virtual sub-networks.

Key to the concept is the admission control towards virtual CANs, which needs
to provide bandwidth and latency guarantees. This is done with a combination
of a strict prioritization enforced through ID space partitioning of the CAN bus
and a token bucket policer. As this approach led to bad scalability with respect
to latencies in low priority VCANs, a second token bucket was added to perform
traffic shaping. Thus dual token buckets allow to tune the latencies within a VCAN
without adjusting its bandwidth reservation.

Schedulability analysis showed that the network virtualization approach enables
real-time capability for mixed-criticality communication in high load scenarios. While
a normal CAN with criticality-monotonic partitioning of mixed-criticality traffic is
only real-time capable for bus loads smaller 50%, the single token bucket and dual
token bucket approaches are still working efficiently at loads around 75% and 88%,
respectively. The virtualized CAN controller was extended with support for network
virtualization at the cost of around 6% increased hardware resources compared to
the virtualization layer.

The currently favored candidate for high bandwidth real-time communication
is AVB Ethernet. Therefore, its integration into automotive embedded systems
is another key step towards highly integrated and multi-core based architectures.
Within the scope of this thesis, it is facilitated through research regarding gateways
between CAN and AVB Ethernet as well as HW/SW architectures of AVB Ethernet
endpoints.

A tight integration of AVB Ethernet into legacy dominated embedded systems
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is only possible if an efficient way of interfacing existing networking technologies is
available. A gateway between two networking technologies like AVB Ethernet and
CAN has to overcome significant differences in terms of protocol, framing, band-
width, arbitration etc. A concept for such a gateway was proposed, which is op-
timized to guarantee real-time capable forwarding while using minimal bandwidth
resources.

To minimize the framing overhead, it is common practice to encapsulate mul-
tiple CAN messages within one Ethernet frame. In contrast to state of the art
approaches, the concept here does not require the gateway’s buffer to be emptied
completely when an Ethernet frame is transmitted. This has the potential to reduce
bandwidth, but also requires to select a subset of buffered CAN messages for for-
warding. Multiple schedulers were considered including FIFO, strict priority, and
earliest deadline first (EDF). Throughout the evaluation, EDF proved to be the best
choice, leading to a bandwidth reduction of 72% compared to related work.

Currently, there is hardly any practical research ongoing regarding AVB Ether-
net, which can be attributed to the lack of commercially available AVB Ethernet
hardware. Here, architecture and HW/SW partitioning of AVB Ethernet endpoints
were researched through a prototypical implementation. The design focuses on the
relevant protocol components in automotive use cases, namely time-synchronization
and traffic shaping.

The traffic shaping is highly time-critical and has to be carried out at a time
granularity of 80 ns. It was thus implemented in hardware only. The design space
for the time-synchronization allows hardware and software implementations. Here,
a software-based implementation was chosen, which leads to a lower hardware over-
head but reduced synchronization precision. The proposed design extends a conven-
tional MAC with AVB capabilities at the cost of 40% increased hardware resources.

The performance of the prototype was assessed using system level experiments.
The expected latency for a packet release from the invocation at the driver until
the start of the transmission was determined to be smaller than 6 µs for maximum
sized packets. Variable interrupt latencies and cache behavior introduce an error in
the synchronization process. The experiments showed that this error is smaller than
8 µs.

The contributions and corresponding results are key steps towards an enablement
of multi-core processors in automotive embedded systems. Nevertheless, further
research can be done to improve the approaches presented here and to tackle further
challenges, which were not addressed in the scope of this thesis. They will be outlined
in the following section.
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2. Outlook

The virtualization extensions presented here have been shown to fulfill necessary re-
quirements for safe operation like temporal isolation as single components. However,
their integration into a real-world system also showcased their reliance on the rest
of the system. For example, isolated performance on the peripheral interconnect
is necessary to safely use virtualized I/O controllers in mixed-criticality systems.
Enablement of virtualization and resource sharing is required on all relevant parts
of a multi-core platform including caches, interconnects, memory, storage, and co-
processors. If temporal or spatial isolation is not guaranteed within a single part of
the system, efforts within the rest of the system may be rendered ineffective.

The virtualization concepts presented here focus on single components, e.g. a
CAN communication controller. In future efforts, holistic separation concepts could
be researched. Isolation is usually traded off with increased latencies. Using separate
isolation stages within each component leads to accumulated added latencies and
performance variations. Cross-component coordination with respect to resource
sharing and isolation could optimize the system-level efficiency in mixed-criticality
multi-core systems. For example, temporal isolation was achieved in the context
of this thesis on CAN controller and on CAN bus level. Coordination could be
improved, if the temporal isolation mechanism prioritizes virtual CAN controllers
attached to VCANs, which are able to transmit during the next arbitration phase,
thus reducing added latencies experienced in the virtualized CAN controller. On
the other hand, a potential isolation mechanism within the peripheral interconnect
should also be considered.

Schedulers provide a deep design space that could be explored further and tailored
to concrete application scenarios. For virtual CAN controller schedulers, configu-
rations for differentiated service levels could be used to improve latencies of highly
critical partitions in mixed-criticality scenarios. The admission control mechanism
towards VCANs provides low latency for high priority VCANs. However, scalability
is limited as worst-case latencies of low priority VCANs in scenarios with four or
more partitions are too high in real-time applications. While the addition of a sec-
ond token bucket layer is able to improve the scalability, non-prioritized round-robin
based admission control might be required to balance the performance of VCANs.

Network virtualization is powerful technique to improve the flexibility of net-
worked system. While physical communication resources have to be planned in the
early stages of a design process, logical communication resources can still be par-
titioned later on. Combined with the ability to provide isolated communication
channels on a shared physical, it enables new network architectures. Currently, net-
works are directly associated with a functional domain. A more efficient architecture
could be achieved by employing physical networks throughout the car and dividing
it into isolated logical partitions using network virtualization. To enable an easier
introduction of the network virtualization approach without the need to replace all
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CAN controllers, a software-only version could be researched, which guarantees the
same isolation at the cost of potentially increased worst-case latencies.

The virtualization solutions here focused on CAN, the most widely used network-
ing technology in an automotive context. Nevertheless, consolidated control units
will require shared access towards I/O controllers of other technologies like FlexRay
or real-time capable Ethernet. The architectural extensions shown here need to be
adapted to address the specific requirements of each technology like time-triggered
network arbitration or high throughput.

Research with respect to AVB Ethernet is currently gated by a lack of industrial
implementation data. If future car generations lead to a large scale employment of
AVB Ethernet, analyses and design can be refined using real-world typologies and
network configurations. The gateway concept proposed here focused on delays on
the CAN bus and within the gateway itself. Further optimization would possible if
latencies in the AVB network would be included in the analysis.

The design of the AVB Ethernet endpoint provides low latency communication.
Further research could be conducted to explore HW/SW partitioning possibilities.
The time-synchronization is currently mainly located in the host system, only with
an RTC implemented in the AVB controller. Other options include the use of an
embedded processor to implement the protocol as well as a full hardware implemen-
tation.

At the time of writing, AVB’s successor, Time-Sensitive Networking (TSN), is un-
der development. It extends the current standard by methods to improve the real-
time capability of the network, e.g. through frame preemption and time-gated ad-
mission control. These additions extend the design space of endpoints and switches.
The modularity of the endpoint architecture presented here facilitates an integration
of these extensions associated with TSN.
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