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Abstract

In parametric methods, detection criteria of methods are based on one or several domain
dependent values such as numerical averages, standard deviations, and numbers of nearest
neighbours. Thus, certain detection criteria of parametric methods are valid only for
considered data model or considered conditions in the domain. Also, the accuracy of
the outcome of parametric methods depends on the values of variables. In contrast,
non-parametric methods depend on a less number of underlying assumptions and they
are known as distribution-free (data model independent) methods. Because of that,
non-parametric methods are considered as robust methods. Due to the dynamic nature of
biological processes such as biogas plants, it is a big challenge to analyse, control,
and monitor biological processes using parametric methods. When the expected data
model or domain conditions (e.g.: value range of data) change, it is necessary to recalibrate
parameters or develop new models for monitoring, controlling, and analysing. Therefore,
the usage of non-parametric methods is a good solution for overcoming or minimizing

afore-mentioned drawbacks.

In this research, new non-parametric techniques were developed for linear fit identification,
extrema detection, extrema filtering, and knowledge representation as density clusters. In
the linear fit identification method (UniLiFl: Universal linear fit identification) 2/n is used as
the detection criteria, where n is the number of data points. Extrema identification is
performed by comparing two ratios in relation to maximum, minimum, middle point, and sum
(there is no involvement of any external criterion). The threshold criteria for methods
developed for filtering non-dominating extrema (MMS-Window based filter or MMS-WBF)
and sharp and gradual (flat) extrema (MMS-SG filter) are values based on the number of
data points (n). The threshold criterion of the method developed for locating low and
high extrema (MMS-LH filter) is a value between O and 1. In the method for
knowledge representation (GKU: Graphical Knowledge Unit), properties of the marker
(graphical symbol of the data point) such as colour, size, and shape are used as
cluster formation and identification. Thus, all the developed methods are non-parametric.

All the developed methods were evaluated with the automatically captured biogas data.
Results proved that the developed methods are capable of identifying linear fit, identifying
extrema, filtering extrema, and density cluster formation, with a high level of robustness.
In addition, | have very promising expectations that the new methods will open new windows
in the field of data processing, data analysing, process monitoring, and process controlling in

bioprocesses.



Zusammenfassung

In der Prozessanalyse ist die Genauigkeit der Ergebnisse parametrischer Methoden
nur innerhalb eines definierten Wertebereiches gegeben. Damit sind diese Methoden
fur dynamische Bioprozesse ungeeignet. Nichtparametrische Methoden sind
hingegen Modell unabhangig und erfordern nur wenige Grundannahmen. Sie
kénnen daher auch fur sehr dynamische Bioprozesse robuste Ergebnisse liefern. Die
hier vorliegende Arbeit stellt nicht-parametrische Methoden fir die lineare
Approximation, Extremwertermittlung, Extremwertfilterung und Identifikation von

Clustern fur die Bioprozess-Analyse vor.



1. Introduction

1.1 Challenges in data analysis and knowledge mining in biogas plants
Biogas production is a good example of a biological process that converts
organic materials into biogas. The biological process in biogas plants is a
recreation of natural anaerobic (oxygen-free) digestion process, which occurs in
marshes and wetlands. During the digestion process, bacteria (micro-organisms)
in biogas plant produce mainly methane (CH4) and carbon dioxide (CO;) known
as biogas [1-3]. Figure 1.1 shows typical components of an industrial scale
biogas plant and data capturing points.
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Figure 1.1 : Diagram of an industry scale biogas plant

Because of the complex nature, most of the bioprocesses require close and
intensive analysis of all the steps of the entire process cycle. This leads to
capturing huge amounts of data. However, with huge amounts of data, knowledge
discovery, data mining, feature identification, and data processing are considered
as challenges [4-6]. The information extract via knowledge discovery, data mining,
or feature identification is used for monitoring, controlling, and understanding the

process.



In the field of biogas, there are many different types of plant designs and variety
of technologies for biogas production. Thus, biogas industry is considered as
an industry that has very complex bioprocess [7]. Compositions of possible
input materials are diverse are due to the huge range of input materials. Even for a
single biogas plant, the composition of input materials is not constant. For
example, type, amount, and mixing ratio of materials prone to be changed
according to the availability and sometimes due to policy decisions. In an industry
scale biogas plant, in addition to the data directly obtained from the biogas plant
there are data from experiments as well as data from analytical laboratories. As a
result of the aforementioned factors, biogas plants produce huge amounts of
heterogeneous data. This makes the data collection more complicated for
knowledge discovery, data mining, feature identification, and data processing.

Composition and diverse nature of biogas data are shown in Figure 1.2.
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Figure 1.2 : Data diversity in biogas plants.



Since the behaviour of a biogas plant depends on a multitude of different factors, it is
hard to find out all possible combinations of factors. For example, the behaviour of a
certain plant design can be changed by modifying the physical size of the input
material. Still, there are many unidentified factors that directly affect the behaviour of
a biogas plant, particularly chemical and biological factors. Therefore, the accuracy
of simulated models of a biogas plant that is developed based on already known
factors, relations, and dependences totally depends on the underlying assumptions.
As a result of this, there exists a large number of methodologies which are applicable

only to a certain plant design [8-10].

In general, it is impossible to apply one system developed for controlling and
monitoring a certain biogas plant directly to another biogas plant with a different
design. Either a new system has to be developed, or the existing system has to be
modified accordingly. Also, when developing a system, it is being tested with lab
scale digesters with controlled conditions and determining the controlling conditions
and constraints of the system. However, when deploying plant design as an

industrial scale plant, it may not function as it did in the laboratory.

While knowledge of chemical and biological processes in biogas plants is being
extended continuously, existing methodologies are not capable of absorbing new
knowledge and implement it in an easy and cost-efficient manner [4]. This is
reflected by the structure of existing systems that is used to control and monitor
biogas plants. Still, there is no global model for biogas plants, which is capable of
absorbing new knowledge and updating/changing its functionality. Such a system
would be able to deal with different types of plant designs with different
behaviours. It would eliminate the huge effort of creating design-dependent, unique
systems. Deploying such a system in research laboratories and institutes will create
a platform for storing and analysing data about the behaviour of biogas plants with
different designs.

1.2 Non-parametric methods

As aforementioned, knowledge discovery, data mining, feature identification, and
data processing are the main challenges in the whole process of process controlling
and monitoring. Available techniques in afore-mentioned fields can be classified as
parametric and nonparametric methods [11]. Particularly, parametric methods use



one or several domain dependent values as detection criteria. Numerical averages,
standard deviations, and numbers of nearest neighbours are some examples of such
parametric values that are used as detection criteria in parametric methods. These
criteria based on parameter values are valid only for considered data model or
considered conditions in the domain. The major drawback of parametric methods is
that the accuracy of the outcome depends on the values of variables [12]. In
contrast, non-parametric methods are known as distribution-free (data model
independent) methods. Thus, non-parametric methods depend on fewer numbers
of underlying assumptions [11, 13, 14] and considered as robust methods [12, 15].
Because of that, if there are non-parametric (data model independent) methods,

the aforementioned drawbacks can be overcome or minimized.

In this research, linear fit identification, extrema detection, extrema filtering,
andknowledge representation as density clusters were considered. At present,
except extrema detection, all other areas mainly depend on parametric methods.
Thus, in this research, novel non-parametric methods were introduced for identifying
linear fit, extrema filtering (non-dominating extrema filtering, sharp and gradual
extrema filtering, and low and high extrema filtering), and density cluster
formation and identification. Furthermore, another novel non-parametric method
for extrema identification was introduced. The non-parametric properties used in

proposed methods are as follows.

1. In the linear fit identification method (UniLiFI: Universal linear fit identification)
2/n is used as the detection criteria, where n is the number of data points.
Also, the linear fit identification method is totally independent of data, outlier,

and noise distribution models and free of missing/removed data imputation.

2. The extrema detection method is capable of detecting all the local extrema,
and extrema identification is performed after comparing two ratios in

relation to maximum, minimum, middle point, and sum.

3. The threshold criteria for methods developed for filtering non-dominating
extrema (MMS-Window based filter or MMS-WBF) and sharp and gradual
(flat) extrema (MMS-SG filter) are values based on the number of data points
(n). The threshold criterion of the method developed for locating low and

high extrema (MMS-LH filter) is a value between 0 and 1.



4. The knowledge representation is based on properties of the marker (graphical
symbol of the data point) such as colour, size, and shape. The method was
named as “Graphical knowledge Unit” (GKU). GKU is a collection of
continuous learning knowledge cells formed out of pixels in a bitmap. The
GKU is not only a density cluster identification method, but it is also capable of
indicating the density of missing data and out of range data, which
convey an indicator of the quality of the data especially with big data.
Furthermore, GKU can be used as a data cleaning technique, data
visualization technique, and portable database. The GKU is extended for
multivariate versions for representing density clusters in multivariate data

sets.

1.3  Linear fit identification

In any domain, clean data is the data that follows the assumed data distribution
model [16], while noise is the data that follows the assumed probability distribution
[16, 17]. Then, outliers are data that are not in agreement with the assumed clean
data and noise models. In the concept of “linear fit’, the clean data is the data that
agree with y = mx + ¢ model (linear regression model). Statistical and model-based
approaches are two of the most popular linear fit identification techniques. Majority of
the popular statistical and modal based approaches use parametric properties such
as variance, average, median, and standard deviation as construction
components.

In the process of linear regression identification, the best approach is to first remove
outliers / noise with reference to the assumed models and then do the regression
analysis on identified linear fit. Most of the outlier/noise detecting methods depend
on certain data model such as Gaussian (Normal) distribution model. On the other
hand, except methods such as angel based and some cluster based outlier detection
methods [18, 19], most of the outlier/noise detection methods such as Sigma filter,
Grubbs method, and moving average are considered as parametric methods. Sigma
filter usually uses average and multiples of standard deviation as the criteria values.
However, in 2013, Leys et al. [20] showed that the combination of median and
multiples of median absolute deviation provides more robust and reliable results
[20]. Grubbs method uses tabulated significant levels as criteria values. Moving
average uses average of an advancing window as the filtering method.



Besides the major disadvantage in relation to parametric methods, if there is

no standardization (standardization process requires additional computation
time), the values of detection criteria are domain dependent. Therefore, it is not

possible to compare two criteria even if they are numerically the same.

‘Anscombe's quartet” [21] is a good example for identifying the disadvantages of
In 1973, Francis Anscombe [21]

used “Anscombe's quartet” to demonstrate the data sets that have nearly

statistical methods or paramedic methods.

identical statistical properties (Table 1.1) and have considerable variation when
graphed (Figure 1.3). Furthermore, Anscombe demonstrated the importance of the
effect of outliers on nonparametric methods. Despite the distribution dissimilarities
of data sets in “Anscombe's quartet”, “linear regression” is the same for all four

data sets. There are four influencing factors in relation to regression detection:

1. Outliers and noise [22-26].
2. Nature of distribution of the clean data, noise, and outliers [27, 28].
3. Amount of outliers and noise [29-32].
4. Missing data [33, 34].
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Figure 1.3: Anscombe's quartet. All the plots show nearly identical statistical

properties even though they have very clear differences when plotted.



Table 1.1: Statistical properties of plots in Anscombe's quartet. The accuracy of

values is to two decimal points.

Property Plot (a) Plot (b) Plot (c) Plot (d)
Mean of x 9.00 9.00 9.00 9.00
Sample variance of x 11.00 11.00 11.00 11.00
Mean of y 7.50 7.50 7.50 7.50
Sample variance of y 4.13 4.13 412 412
Coefficient of determination (R?) 0.67 0.67 0.67 0.67
Linear regression y = 0.50x + 3.00 for all the plots

The method introduced in this research is a single nonparametric method that is
capable of addressing all the afore-mentioned challenges with very high levels of
robustness, especially with the data sets that are considered as very extreme

situations.

Impact of outliers and noise in the linear fit identification

Least Squares Method” (LSM) is the parametric statistical method that was
employed for determining the linear regression in data sets of Anscombe's quartet.
LSM is the most common and the most popular linear fit identification method that
is used in most popular data analysing packages such as MATLAB, SPSS, Minitab,
r, and Mathematica. There are several versions of LSM and the most common
version is known as generalized LSM (GLSM). The major drawback of GLSM is
that the method demands outliers and noise to be in Gaussian distribution, which
cannot be always guaranteed. The results of using parametric statistical methods
on such data sets were very clearly elaborated in the Anscombe's quartet
(Figure 1.3). As a solution for that, data has been pre-processed and outliers

and noise were removed using suitable methods before applying GLSM.

Among the model-based approaches, Kalman filter [35, 36] is one possible method
that can be used for linear fit identification. Weighted LSM (WLSM) is another

approach for model-based linear fit identification method. When the outliers and



noise are not in Gaussian distribution (heteroscedastic situations), WLSM is applied
by using relevant weighted parameters that depend on the considered domain [37,
38]. The accuracy of model-based approach depends on the accuracy of the
identified clean data model and error data model. If it is not possible to identify

the correct models, the model-based approach is not feasible [17].

Impact of distribution of outliers and noise in the linear fit identification

In any real data capturing, it is usual to observe that sometimes data do not agree
with the considered regression. This occurs mainly due to data capturing error or
sudden change in the process. Sometimes, these data points are considered as
either noise or outliers. In linear regression, when the resultant error of all the data
is zero (error in Gaussian distribution), GLSM provides optimal results [39, 40].
Figure 1.4 elaborates the effect of the distribution of outliers on regression
identification. In plots (a) and (b) clean data are expected to follow y = 0 while in
plots (c) and (d) clean data are expected follow y = x model. However, outliers (2
outliers) in plots (a) and (c) are in Gaussian distribution while in the other two plots
outliers are not in Gaussian distribution. When the outliers are in Gaussian
distribution, detected linear regression is closer to the regression of clean data
than the plots with outliers in non-Gaussian distribution. However, in reality it is
hard to find data sets consisting of errors that are in Gaussian distribution. Therefore,
based on previous results, most of the time, it is assumed that the error

distribution is Gaussian.
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Figure 1.4: Effect of the distribution of outliers. In plots (a) and (b) clean data are
expected to follow y = 0 while in plots (c) and (d) clean data are expected follow y = x
model. In both plots (a) and (c) outliers are in Gaussian distribution and others are
not. When the outliers are in Gaussian distribution, identified linear regression is

optimal (plots (a) and (c)).

Impact of number of outliers in the linear fit identification

Theoretically, if the all the data that do not agree with linear fit are in Gaussian
distribution (resultant error is zero), the identified linear fit is optimal. However, the
degree of optimization depends on the number of outliers. Figure 1.5 shows the
same linear regressions shown in Figure 1.4. . Each plot in Figure 1.4 contains 20%
outliers and each plot shown in Figure 1.5 contains 40% outliers. The first major
observation is that the identified regression in relevant plots in Figure 1.4 and Figure

1.5 are not the same. The reason for this difference is the difference in the



percentage of outliers. This clearly demonstrates that the number of error data

causes an impact on detection of the linear fit.
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Figure 1.5: Effect of the number of outliers. In plots (a) and (b) clean data are
expected to follow y = 0 while in plots (c) and (d) clean data are expected follow y = x
model. In both plots (a) and (c) outliers are in Gaussian distribution and others are
not. All the plots contain two times of outliers than the plots in Figure 1.4. All the plots

show different regression than the equivalent plot in Figure 1.4.

Impact of missing data in the linear fit identification

The next challenge in regression analysis and data cleaning is the influence of
missing data. Even if the original data set is without missing elements, removing
outliers (without replacement) automatically creates a missing data environment. In

the literature, considerable numbers of methods were introduced for handling
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missing values. Filling and reject missing values are the two techniques used to
overcome missing data problems [41, 42]. Among the different missing data filling
methods, hot deck, cold deck, mean, median, k-nearest neighbours, model-based
methods, maximum likelihood methods, and multiple imputations are the most
common methods [42-46]. Usually, filling methods derive the filling value from same
data set or other known existing data. If there are considerable numbers of outliers,
derived data may be biased due to the influence of outliers [47, 48]. Therefore, the
most reliable approach is to remove all outliers and replace the outliers with a
suitable method, if replacement is necessary.

However, the impact of missing values appears, only when the missing data are
clean data and existing data are outliers. Figure 1.6 shows an example for such a
situation. Plots (a) and (b) are the data set shown in plots (a) and (b) of Figure 1.4,
but without the last five data points. The identified regression do not agree with the
regression in the relevant plot in Figure 1.4. This clearly elaborated the impact of

missing data on regression identification.

) ) @ Cleandata (y =x)
1 = @ Cleandata(y=0) 10 o
(@) b) m Outliers O

—#—Outliers 8 © O Missing values
05 -
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Figure 1.6: Effect of the missing data. Plots (a) and (b) show the data sets in plots (a)
and (b) of Figure 1.4 but with the last five data points missing. When the missing

data, identified regression does not agree with equivalent plot in Figure 1.4.

Fortunately, GLSM is not affected by missing data when determining linear
regression with no outliers. Plots (a) and (b) of Figure 1.7 show such a situation. The
identified regression agrees 100% with the regression of clean data. This

observation is the one major idea behind the new linear fit identification method. If it

11



is possible to remove all the data points that do not agree with the regression of
clean data, clean linear fit can be achieved. Using this linear fit, very accurate

regression can be derived.

10 +
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Figure 1.7: Effect of the missing values. If the all remaining data are clean data,
there is no effect on linear regression identification with LSM. Plots (a) and (b)
contain 40% missing data and all the others are clean data and identified regression

agrees 100% with the regression of clean data.

14 Extrema detection

In process optimisation, the process of determining extrema plays an important role.
Extrema in a signal are used to describe and understand properties of a certain
signal. This process is also known as finding out local maxima and minima detection
or peaks and valleys detection. Usage of the first and second derivatives is the most
common maxima identification method. When the first derivative is zero, it implies
that the point has zero gradients (slope). Then this type of point can be a peak,
valley or a saddle point. Therefore, only the first derivative is not useful for
identifying peaks and valleys. This conflict situation is solved by considering the
second derivative. For the second derivative of those points that have zero slopes,
there are three situations:

1. If the second derivative is less than zero, the point is considered as a peak.
2. If the second derivative is greater than zero the point is considered as a
valley.

3. If the second derivative is equal to zero, the point is considered as a saddle.
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Filtering techniques are used to ignore unnecessary peaks and valleys according to
the requirements of the considered domain. The magnitude of prominences (height)
and the widths at half prominence are two properties of a signal used to filter
extrema [49, 50]. Furthermore, baseline correction is another technique used
[51-53].

properties are domain dependent and parametric. Therefore, it is not reliable to

for finding out accurate maxima and minima However, those

define global criteria for filtering extrema.
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Figure 1.8: Plots (a), (b), (c), and (d) show four different types of peaks and plots (e),
(M, (9), and (h) show relevant equivalent types of valleys. Plot (a), (b), (e)and (f)
show symatric plots while plots (c), (d), (g) and (h) are asymatric. However, plot (c)
and (g)are partialy symatric. The amplitude of plot (a) and (e)are considerably higher
than plot (b) and (f).

Plots in Figure 1.8 and Figure 1.9 show different types of extrema that are required
to distinguish. Particularly, the height of the extrema (prominence) and the width of
the extrema at a certain height of the extrema (e.g.: at half prominence) are the

most common properties that used to distinguish those different types of extrema. As
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aforementioned these parametric properties are considered as not  robust.
Therefore, nonparametric methods are necessary, especially for filtering the
extrema. The nonparametric method, introduced in this research, is capable of

locating and filtering extrema with a high level of robustness.
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Figure 1.9: Plots (a), (b), (c), and (d) show four different types of peaks and plots

(e), (M, (g9), and (h) show relevant equivalent types of valleys. Plots (a) and (e) show
small extrema while all other plots show higher extrema. However, plots (b) and (f)
show sharp extrema while plots (d) and (h) show wide extrema. Combination of
the height of the extrema (prominence) and the width of the extrema are the

most common approaches used to distinguish those different types of extrema.

1.5 Density clusters in knowledge representation

Knowledge representation (KR) is the key technique applied in the field of artificial
intelligence, machine learning [54-57]. Data mining, "Knowledge Discovery in
Databases" (KDD), and cluster analysis are some fields that are directly connected
with KR. Data mining is the technique that discovers patterns, especially in big data.
KDD refers to the basic analysis step of data mining. Representation of those

identified information in an understandable structure is the main task of KR. Cluster
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analysis or clustering is an unsupervised (i.e. it requires no trained data sets)
data classification method [58-60] for identifying homogeneous groups of objects
known as clusters [61-63]. Density clustering is one of the most popular techniques,
it is a way of identifying and representing already identified knowledge or
information [64, 65]. Furthermore, density cluster identification is a tool used to
identify the correlation between variables. When dealing with big data clustering,
it is used as a clutter reduction technique [66-69]. This technique provides a way

of representing big data sets by means of a less number of data points.

In cluster visualisation, first, relevant density clusters were identified by means of a
suitable algorithm, usually based on parametric values such as distance or number
of neighbours. Then those identified clusters were visualised by means of suitable
data visualisation technique. As afore-mentioned, parametric methods are less
robust and density cluster analysis methods based on parametric methods suffer
from those born drawbacks in parametric approaches. Plot (a) in Figure 1.10 shows
scatter plot of 35620 data points with a considerable number of overlaps. The
existence of a high number of overlaps implies the existence of high data density
areas. Plots (b) and (c) show heat map and contour plot representation of the data
shown in plot (a). However, those two methods were unable to provide satisfactory
density clusters.
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Figure 1.10: Visualization of 35620 data points with (a): scatter plot, (b): heat map
and (c): contour plot. The scatter plot shows the distribution of data, whereas the
heat map and the contour plot show density clusters. However, compared to the

GKU, the heat map and contour plot do not show density clusters.

In the domain of multi-variable, the situation is more complex and representing
clusters of multiple variables need special techniques. The multi-variable analysis
is a method for depicting the correlation between variables and graphical
representation of data, which are two demanding factors in the field of data
analysis. Graphical representation of data is a very effective tool for abstracting
information in a multi-variable data set. In addition, graphical representation usually
conveys the intended information easier than text or numerical values. However,
when the number of available data is high, it is difficult to represent all the data
points of a scatted data set as a plot due to the high number of overlapping data
points; called occlusion or over-plotting. This is one of the main issues in the field
of data visualisation, which leads to loss of data in projection [70]. On the other
hand, when the number of variables is high, special techniques are required to
represent multi-dimensional on a two-dimensional or a three-dimensional plots. The

highest challenge is to visualise multi-dimensional big data.
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1.6 Thesis outline
The previous chapters gave an introduction to relevant issues in due to usage of
parametric methods in the fields of linear fit identification, extrema filtering, and

density cluster identification.

In this research, linear fit identification, extrema detection, extrema filtering, and
knowledge representation as density clusters were considered. At present, except
extrema detection, all other areas are mainly depending on parametric methods.
Thus, in this research, novel non-parametric methods were introduced for identifying
linear fit, extrema filtering (non-dominating extrema filtering, sharp and gradual
extrema filtering, and low and high extrema filtering), and density cluster formation
and identification. Furthermore, another novel non-parametric method for extrema
identification was introduced. The non-parametric properties used in proposed

methods as follows.

1. In the linear fit identification method (UniLiFI: Universal linear fit identification) 2/n
is used as the detection criteria, where n is the number of data points. Also, the
linear fit identification method is totally independent of data, outlier, and noise
distribution models and free of missing/removed data imputation.

2. The extrema detection method is capable of detecting all the local extrema, and
the extrema detection is performed after comparing two ratios in relation to
maximum, minimum, middle point, and sum.

3. The threshold criteria for methods developed for filtering non-dominating extrema
(MMS-Window based filter or MMS-WBF) and sharp and gradual (flat) extrema
(MMS-SG filter) are values that based on the number of data points (n). The
threshold criterion of the method developed for locating low and high extrema
(MMS-LH filter) is a value between 0 and 1.

4. The method named as “Graphical knowledge Unit” (GKU) is a continuous
learning knowledge representation method based on properties of the marker
(graphical symbol of the data point) such as colour, size, and shape. The GKU is
capable of density cluster identification, indicating density of missing data and out
of range data, especially with big data. Furthermore, GKU can be used as a data
cleaning technique, data visualization technique, and portable database. The
GKU is extended for a multivariate version for representing density clusters

in multivariate data sets.
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2. Summary of results (thesis publications)

2.1 Paper Summary

Paper 1: Universal Linear Fit Identification Method: Independent of Data, Outlier, and
Noise Distribution Model and Free of Missing / Removed Data Imputation

Universal Linear Fit Identification (UniLiFl) method is based on the equation of
the sum of the elements of finite arithmetic progression (AP) with n elements
(Equation (2.1)), which was introduced by Aryabhata [71-73] in 499 CE. Since the
date of introduction, Equation (2.1) is used to achieve its original objective. It
was unableto find direct applications of the original formula for other
objectives. Nevertheless, based on the relation given in Equation (2.1) a

method as MMS was developed to locate outliers in linear regression [74].

Sp=m/2)*(a; + a,), (2.1)

where S, is the sum of the elements of finite arithmetic progression with n elements,

a; is the first element and a, is the last element of the series.

The UniLiFI methodis based on the relation MMS expressed in Equation (2.2) and
the transformation method, which is expressed in Equation (2.3). The method MMS,
which is shown in Equation (2.2) was developed for outlier detection in data that is
expected to follow linear regression [74]. The complete process of deriving Equation
(2.2) is shown in Appendix A (the paper in relation with MMS is not a part of

this dissertation).

In Equation (2.2) there are two ratios as MMSn.x and MMS;,, for locating the

maximum as the outlier and the minimum as the outlier, respectively.

MMS _ Qmax ~ Qmin {> 2/n* (1 + k); Maximum is the outlier
MAX T Sy = Qmin * T <2/n*x(1 + k)
or No decision (2.2)
MMS..... — Amax — amin{ SZ/n*(l + k)
T gk n— Sp>2/nx (1 + k) ; Minimum is the outlier

where amay is the maximum of the series, amin IS the minimum of the series, S, is the
sum of all the terms in the series, n is the current number of terms in the series, and

k (k= n/2-1) is the weight that determines the level of accuracy.
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, (2.3)

where a};Tlris the k™ item of the transformed series with reference to the reference
pointr, a;,, = ak- ar, x} |, =X,— X, X,is the index of data, a, is the Kl term of the
series, (x,a,) is the reference point, k=0,1,...,r,...,n-1, r=0,1,...,n-1, n is the number
of elements in current window, r is the index of the reference data point, G¢,, =

n-1_.T T — n-1.T
k=0 Ak | -and Gxy |, = Xk=o Xi | r-

From Equation (2.2) and Equation (2.3) give the final equation of UniLiFI method as

(afhir — @bl ) >'2/n*'(1ti-lz_ k);tl'
MMS(aTT)max|r _ max|r min | r maximumils e outlier

- TT
(5171‘|Tr - a * 1)

min | r

<2/n*x(1 + k)
or No decision (2.4)

<2/nx(1 + k)
(@max|r = @min|
MMS(@ M min|r =~ —— ot
( )mlnlr (arTngxlr*n_ 51Z|Tr) >2/n*(1 + k);

minimum is the outlier

where MMS(X)max | r is the MMS,a, with reference to reference point r for data set X,

MMS(X)min|r is the MMSp, with reference to reference point r for data set X, S,ff; =

n-1 . TT. cTT TT
k=0ak ;S

o= Qi ¥ <> 0and all,, *n— SpL <> 0.

After applying Equation (2.4) on the transformed data sets with reference to different

reference points, produce candidate data sets with different number of data points as
clean data (linear fit).

Among those candidate sets, the data set with the highest absolute correlation was
selected as the best data set that agree with a linier fit by using Equation (2.5) [75]:

nyxiyi- LxiXYi (2.5)

Tyy = :
[nExt-@x? nzve-@y?

where x is the independent and y is the dependent variable.
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Paper 2: Derivative Independent, Non-Parametric Local Maxima and Minima Finder
with Maxima and Minima Filtering Techniques

The extrema identification method is also in relation with the method MMS that is
based on the equation of sum of arithmetic progression [74]. To generate a peak or
valley, at least three points are required. For three consecutive positive terms
arranging in a line, the ratio (R) of the sum of the maximum and the minimum to the
sum of three terms is always 2/n, where n is the number of termsand 23 <R < 1
when n=3. R>2/3 implies that one term is away from the other two terms.

Applying suitable modifications for the Equation (2.2), gives Equation (2.6).

MMS _ Qmax — Qmin {> 2/3 ; Maximum is away from other two terms.
M S5 — in * 3 <2/3
or No decision (2.6)
MMS.. .. — Amax — amin{ <2/3
T e * 3 — Sz (> 2/3; Minimum is away from other two terms.

When there is a peak or a valley, for n=3, always the middle point is the peak
(maximum) or valley (minimum), respectively. Then, if amig is the middle point of the
window, by replacing amax 0f MMSax and amin of MMSi, by amig gives,

MMSmax|mid = (amid - amin)/(sn - amin*n) and (27)

MMSminlmid = (amax - amid)/(amax *Nn — Sn)- (28)

When there is a peek,
MMSpax = MMSmax|mid and (2.9)

when there is a valley

MMSpin = MMSmin|mid . (2.10)

Finally, Equations (2.9) and (2.10) can be used for finding out peaks and valleys,
respectively while advancing the window by one data point at a time. The method

was named as MMS max - min finder.
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Furthermore, based on the concept of MMS, another three techniques were
developed for filtering non-dominating extrema (MMS-Window based filter or MMS-
WBF), sharp and gradual (flat) extrema (MMS-SG filter), and low and high extrema
(MMS-LH filter) by considering different ratios of the maximum, the minimum, and

the sum of data points in the considered window.

MMS-Window based filter (MMS-WBF) : For filtering non-dominating extrema

For the window sizes greater than three (2.9) and (2.10) identify the most dominating
extremum in the considered window. Thus, by increasing the size of the window the
usual MMSmax - min finder can be used as a technique for filtering non-dominating

extrema.

MMS-SG filter: For filtering sharp and gradual (flat) extrema

We showed that the ratios MMS;.x/MMSin= n-1 and MMSpin/MMSax= n-1. By
setting appropriate threshold value t (0< t < n-1) for the afore-mentioned two ratios

sharp and gradual peaks can be filtered.

MMS-LH filter: For filtering low and high extrema

We showed that the ratios Riy_min = (@min * n)/ Spand Ryy max = n/((Amax + 1) *xn —
Sp), where O<Riy min <7 and O<Ry max £ 1. Riy_min=1, implies that the anmin has low
crater and R.y_min=0 implies that the amin has high crater. Consequently, Ry max=>1
implies that the amax has low prominence and Ry max=>0 implies that the amax has

high prominence.
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Paper 3: Continuous Learning Graphical Knowledge Unit for Cluster Identification in
High Density Data Sets

>

(@) (b) (c)

>

Newly added data
point
RGB = (0,0, Y)

Marker Pre-existing data

point
RGB = (0, 0, X)

Data point
location

Overlapped area
If X +Y < 255 then RGB = (0,0, X +Y)
Else, RGB = (0,1,(X + Y - 255))

Figure 2.1: Basic idea of the knowledge representation method. (a) The marker is a
circle (radius = n (>1) pixels), and the RGB colour value of the circle is (0, 0, X),
where 0 < X < 255. The center of the circle represents the data point (highlighted),
(b) two overlapped markers and (c) several overlapped markers. The data point is
represented by the pixel in the center of the marker (the data point is highlighted in

orange).

In this paper, a new density cluster formulation was introduced based on the
properties of overlapping data points. In the proposed method a data point is
represented by a marker (graphical symbol of a data point) that has more than one
pixel (e.g.: circle) and by plotting on a bitmap ((a) of Figure 2.1). As the markers
overlap, the RGB colour values of pixels in the shared region are added ((b) and (c)
of Figure 2.1).This will make the colour of the shared region identical. A higher
number of overlap produces the colour of shared region that can be identified by
the naked eye ((c) and (d) of Figure 2.1).

The proposed method automatically separates density clusters by automatically
generated colour lines that can be considered as contour lines. When the lines were
numbered from outside to inside, lines with the same number get the same value
for green channel and nearly the same colour value (colour range) for the blue
channel (Figure 2.2). This is the way to understand the magnitude of the density in

a certain area.
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Marker: Circle
Diameter: 20 pixels

Colour: RGB =
mnn1\

Contour line number

Contour Iin! Value of red Value of green
number channel channel Value of blue channel
1 0 0 220-255
2 0 1 220-255
3 0 2 220-255
4 0 3 220-255
5 0 4 220-255
6 0 5 220-255
7 0 6 220-255
8 0 7 220-255

Figure 2.2: Automatically created contour lines. If the correct maker is selected,
GKU automatically creates lines that separate different density areas. These lines
are similar to contour lines on a contour map. When the lines were numbered

from outside to inside, lines with the same number get the same value for green

channel and nearly the same colour value (colour range) for the blue channel.

23




Paper 4: Multi-Variable, Multi-Layer Graphical Knowledge Unit (MVML-GKU) for
Storing and Representing Multi-Dimensional Big Data in Two-Dimensional Plots.

In this paper, a method to represent multiple variables using the concept of GKU is
introduced. The usual GKU is capable of representing one dependent variable
against one independent variable. In GKU whole bit series was used for a single
variable. However, it is possible to split the whole bit series into different sections
and assign each section for different variables. Figure 2.3 shows an example
of such a situation. Here, the whole series were divided into four 8-bit slots
and four variables were assigned for each slot. Now the number of bits per
variable is limited to eight bits and number of possible overlaps are 2°. These
numbers of overlaps are not enough. As a solution for this, multi-layers of bitmaps

were used (Figure 2.3).

Bit-blocks of bitmap 0
(Layeroy — mememeee-
Vi

Bit-blocks of bitmap L-1

L -=-==

(Layer L-1)
Vi V2 V3 V4
R (8 bit) m B (8 bit)
1
il 8*L bits for V4

Figure 2.3: Four variables are (V1, V2, V3 and V4) represented using multiple
bitmaps of 32-bit RGB pixel format for forming MVML-GKU. Each pixel is divided into
four equal portions, where each portion consists of eight bits. When the 32-bit RGB
pixel format is divided into four equal parts, each variable represents alpha, red,
green and blue sections of the pixel. This provides a vertical array of k*L bits for a

single variable.
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Abstract

Data processing requires a robust linear fit identification method. In this paper, we introduce
a non-parametric robust linear fit identification method for time series. The method uses an
indicator 2/n to identify linear fit, where n is number of terms in a series. The ratio R, of
8max — 8min @and S, — amin*n and that of Ry, Of 8max — @min @nd apmax®*n — S, are always equal
to 2/n, where a,,4x is the maximum element, a,,;, is the minimum element and S, is the sum
of all elements. If any series expected to follow y = ¢ consists of data that do not agree with y
= c form, R,ax > 2/n and R, > 2/n imply that the maximum and minimum elements, respec-
tively, do not agree with linear fit. We define threshold values for outliers and noise detection
as2/n* (1 +k;)and 2/n * (1 + ko), respectively, where k; > ko and 0 < k; <n/2 — 1. Given
this relation and transformation technique, which transforms data into the formy = c, we
show that removing all data that do not agree with linear fit is possible. Furthermore, the
method is independent of the number of data points, missing data, removed data points and
nature of distribution (Gaussian or non-Gaussian) of outliers, noise and clean data. These
are major advantages over the existing linear fit methods. Since having a perfect linear rela-
tion between two variables in the real world is impossible, we used artificial data sets with
extreme conditions to verify the method. The method detects the correct linear fit when the
percentage of data agreeing with linear fit is less than 50%, and the deviation of data that do
not agree with linear fit is very small, of the order of +10~*%. The method results in incorrect
detections only when numerical accuracy is insufficient in the calculation process.

PLOS ONE | DOI:10.1371/journal.pone.0141486 November 16,2015
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Universal Linear Fit Identification (UniLFI) Method

Introduction

Usage of parametric statistical methods to identify the behaviour of data is a topic for debate.
In 1973, Francis Anscombe demonstrated that it is possible to have nearly identical statistical
properties even with data sets that have considerable variation when graphed [1]. The four
data sets used to show this phenomenon are known as Anscombe’s quartet [1]. Furthermore,
Anscombe demonstrated the importance of the effect of outliers on statistical properties.
Despite the distribution dissimilarities of the data sets of Anscombe’s quartet, the linear regres-
sion of all four data sets is the same. This implies that the statistical approach might not always
identify the correct regression owing to the influence of outliers. There are four factors influ-
encing regression detection: outliers and noise [2-6]; the nature of the distribution of the clean
data, noise and outliers [7,8]; the number of outliers and the amount of noise [9-12] and miss-
ing data [13,14]. Of these four factors, three factors are related to outliers and noise.

In any domain, clean data are the data that follow the assumed data distribution model [15],
while noise is the data that follow the assumed probability distribution [15,16]. Outliers are
data that are not in agreement with the assumed clean data and noise models. In this paper, we
consider the linear model y = mx + ¢, where m is the gradient and c is the intercept. When the
aforementioned definition is applied to the linear model, clean data are the data that agree with
the model. Noise can be defined as the data that are within a particular tolerance (e.g. +x%
from the correct value). Outliers are the data that agree with neither clean data nor noise. The
most common approach is to remove outliers and noise with reference to the assumed models
and then perform the regression analysis. Thus, outlier detection, noise detection and determi-
nation of regression of clean data are considered as separate, independent tasks. However, in
our method, there is no separate regression analysis for locating linear fit. We first remove out-
liers and then remove noise using the same method, but with different weight parameters.
Finally, the remaining data are the data that agree with linear fit.

Each outlier and noise detection method has a particular level of accuracy. Therefore, it is
impossible to guarantee total outlier- and noise-free data. As a consequence, if the cleaned data
still contain outliers and/or noise, the detected regression can be incorrect. The accuracy of the
outlier detection and noise-removing methods depends on the distribution nature of the outli-
ers and noise, the number of outliers and the amount of noise, which are dependent on the
assumed data model. The most common model is the Gaussian distributions. Incorrect deter-
mination of the model will cause incorrect detection of outliers and noise. In other words, the
accuracy of the selected method is totally dependent on the underlying models. Usually, outli-
ers and noise have been removed, and regression is determined in accordance with the
assumed regression model and remaining data that considered as clean data. The major draw-
back of this approach is that the determined regression is already affected by the influence of
outliers and noise models.

The number of outliers and the amount of noise existing in a data set are critical factors
when detecting outliers or noise. Especially when detecting outliers, their number plays a criti-
cal role. In addition, in a real-world data set, it is very common to have more than one outlier.
Therefore, a robust outlier detection method must be capable of detecting multiple outliers. A
large number of multiple outlier detection techniques have been proposed to accomplish this
aim [17-19]. There are two phenomena, masking and swapping, that have a negative impact
on the robustness of the outlier detection process [17]. Masking classifies detection of an outlier
as a non-outlier, while swapping classifies detection of a non-outlier as an outlier.

As mentioned above, missing data imputation is another challenge. There are different
methods for missing data imputation. These methods are also domain dependent, and there is
no guarantee of accuracy when the data are not in accordance with the assumed models. The
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method we introduce in this paper is totally independent of missing data or removed data
imputation.

Our method is based on the sum of the elements of a finite arithmetic progression (AP),
which was introduced by Aryabhata (476-550 CE) [20,21]. Aryabhata was one of the greatest
early mathematicians and astronomers [20,21] of India. In 499 CE, he introduced a method for
calculating the sum of the elements of a finite AP or arithmetic sequence with n elements [22].
In 2014, we showed that Aryabhata’s equation for the sum of an AP can be used as a non-
parametric method for detecting outliers in linear regression [23]. The method uses a single
point as a reference point, and all detections are conducted with reference to this selected refer-
ence point. The method involves two steps, minimum-maximum-sum (MMS) and enhanced
MMS (EMMS). MMS is used to remove all significant outliers one by one. Removing an outlier
using MMS necessitates recalculating the entire series. After the removal of significant outliers,
EMMS is used to remove non-significant outliers. EMMS uses a transformation technique
before performing the detection of further outliers. MMS and EMMS are capable of locating
outliers correctly when the reference point is not an outlier. When the reference point is an out-
lier, the method reports incorrect identifications of both outliers and non-outliers. This major
drawback resulted in MMS and EMMS being unreliable for identifying outliers. Consequently,
using MMS and EMMS jointly did not provide a reliable and robust method for determining
linear fit.

Using an improved version of the same methodology, we were able to develop the method
presented in this paper for determining linear fit. We expected outlier and noise detection and
determination of regression to be possible using a single process that is independent of outlier,
noise, data models and data imputation. In the existing literature, there is no such method for
identifying a particular linear fit that is independent of models. In this paper, we introduce a sin-
gle method that is capable of determining linear fit; removes outliers and noise; is independent
of the distribution properties of clean data, outliers and noise; is independent of missing or
removed data; is resistant to very high rates of outliers and noise (e.g. 50%) and yields no incor-
rect detections (masking or swapping). The method is suitable for time series or any data series
that can be considered as or converted to time series. The most interesting feature of this method
is that all five critical factors are addressed in one simple method with a very high level of accu-
racy. For this reason, we named it the Universal Linear Fit Identification (UniLiFI) method.

Methodology

According to Aryabhata [22], the sum of the elements of an AP or arithmetic sequence with n
elements is given by

S, = (n/2) x (a, + a,), (1)

where a; is the first element, and a,, is the last element of the series.

Eq 1 has been used to achieve its original objective since its introduction. We have been
unable to find direct applications of the original formula for other purposes. However, we have
been able to use Eq 1 to locate outliers in linear regression [23].

An AP is a sequence of numbers (ascending, descending or constant) such that the differ-
ence between the successive terms is constant. The n™ term of a finite AP with n elements is

given by
a,=dx(n—1)+ a, 2)
where d is the common difference of successive members, and a; is the first element of the
series.
PLOS ONE | DOI:10.1371/journal.pone.0141486 November 16,2015 3/18
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Eq 2 is a function of n, represents an AP and fulfils the requirements of a line (y = mx + ¢).
A straight line is a series without outliers or noise (if there are outliers or noise, the series is not
aline). Therefore, any arithmetic series that fulfils the requirements of an AP can be considered
a series without outliers or noise.

Eq 1 can be represented as

2/n=(a,+ a,)/S,;2/n <1and 2 <n< . (3)

For any AP, the right-hand side (RHS) of Eq 3 is always 2/n, which is independent of the terms
of the series. In other words, if there are no outliers or noise, the value (a;+a,,)/S, will always
equal 2/n. Therefore, the value 2/n can be used as a global indicator to identify any AP with
outliers or noise. There are four facts in connection with Eq 3: 1. for any AP without outliers or
noise, the value (a; + a,,)/S,, is always 2/n, which is independent of the terms of the series; 2. the
converse of statement 1 is not always true (i.e. if the value (a; + a,,)/S,, is 2/n, this does not
imply that the series is free of outliers or noise); 3. if the value (a; + a,,)/S,, is not 2/n, then the
series always contains outliers or noise; 4. the converse of statement 3 is not always true (i.e. if
there are outliers or noise, the value (a;+a,)/S, is not always unequal to 2/n). However, there
are still two situations that are always true (statements 1 and 3), enabling us to use Eq 1 for
identifying outlier- and noise-free series. In real-world processes, it is impossible to have noise-
free data series. Therefore, we ignore the relation in connection with statement 1 and use the
relation in connection with statement 3.

Using statement 3, in 2014 we developed a two-step non-parametric method for identifying
outliers in linear regression with reference to a single reference data point [23]. The two steps,
MMS and EMMS, and their equations are shown as in Eqs 4 and 5, respectively.

If any series expected to follow y = ¢ form consists of data that do not agree with y = ¢ form,

> (2/n 4+ w);
a  —a. maximum is the outlier
MMS, = —mex = Gmin
S, — G, * 1
< (2/n 4+ w); —
MMS = @/ ) (4)
< (2/n + w); -
MMS,,, = max T Omin _
e 211 > (2/n + w):
minimum is the outlier

where a,,,45 Aynins Sy» 11, and w are the maximum term of the series, the minimum term of the
series, the sum of all terms of the series, the number of terms of the series, a weight where
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0<w<1-2/nand R, =2/n + w, respectively.

> (2/n + w);
(a — a'" maximum is the outlier
EMMS — max min —
" (ST = ag, xn)
<2/n+ w); —
EMMS = =2/ ) (5)
< (2/n+ w); —
(alf — a'l)
EMMSWU” — max min —
(@ xn— ST) > (2/n + w);
minimum is the outlier

Where a!™ = |al — x, * (Ga"/ Gx)|, al = a, — a, x; is the index of data, ay is the k™ term of
the series, k=0, 1, ..., n — 1, n is the number of elements in the current window,

Ga" = Y0 tal,Gx = YX,, ST =Y tal" <> 0,2/n + w = R,, and wis the weight,
0<w<1-2/n.

In the abovementioned method, the first value (ay) is used as the reference point. Therefore,
the method gives correct detections when the first point is not an outlier. Furthermore, MMS is
used for removing significant outliers, while EMMS is used for removing non-significant outli-
ers. When using MMS, it is possible to obtain incorrect detections of outliers as the result of
selecting a small value for w [23]. The recalculation process in MMS and the transformation
used in EMMS provide correct transformations only when the reference point is not an outlier
[23]. However, it is impossible to determine the nature of a point in advance.

After considering all drawbacks, we introduced a new method based on the same principle.
The new method contains a new transformation technique using multiple reference points,
shown in Eq 6. The number of reference points can be in the interval [1, n], where n is the total
number of data points in the selected data set. However, the process uses each reference point
separately as the reference point and transforms the data with

agy, — (), (Gay|,/Gx|,)), % —x=0
_(aZM _(xz|r*(GaZ\r/ze\r)))* Xk _'xr<0

Where a7, is the k™ item of the transformed series with reference to the reference point r,

T _ T _ . . . th .
A, = G — QX |, = X — X, X s the index of data, ay is the k™ term of the series, (x,, a,)

is the reference point, k=0, 1, ...,7,...,n—1,r=0,1,...,n — 1, n is the number of elements
. . . . . -1
in the current window, r is the index of the reference data point, Ga;|, = >, 4/, and
T n=1 T
ka\r— k= 0%k | r

The transformation in Eq 6 can convert all data to the form y = c if there are no outliers or
noise. If the data set consists of outliers or noise, the transformed data do not agree with the
form y = c and MMS can locate the outliers or noise. The form y = ¢ is independent of the
occurrence sequence of the data [23]. Therefore, there is no effect from missing or removed
data on the outlier detection process. In addition, w of Eq 5 can be expressed asw=2*k/ n,
where 0 < k < (n/2) — 1 [23]. If MMS(D)max|r refers to MMS,,,,, with reference to reference
point r for data set D and if MMS(D)yn|, refers to MMS,,,;,, with reference to reference point r
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for data set D. Then, Eq 7 provides the application of MMS on a’”

>2/nx (1 + k);
(@ —all ) maximum is the outlier
MMS(aTT)maX L= max | r mm | r —
(Sn\r_ mm|r*n)
<2/nx(1 + k); —
MMS(a'") = _ 2; E ) k) (7)
> nx + y
al? - al? I )
MMS(aTT)mln‘ max | r min | r —
minimum is the outlier

where ST = S lal" ST — " s <> 0,anda’’ xn— ST <> 0.

nlr — njr ‘min ‘max njr
After transformation, outliers or noise are detected using Eq 7. If an outlier or noise is
detected, it is removed from both transformed and original data sets. Then, the transformation
is applied again, and outlier detection is performed until one of the termination conditions is
= 0;2.a

selected reference point is detected as an outlier; or 3. no more outliers are detected.

reached. In general, there are three termination conditions: 1. a'’ == af

max\ r mm| r

Table 1 and S1 File show a complete process cycle for achieving a candidate data set for lin-
ear fit, with reference to the second item of the series.

At the end of the process cycle with reference to a particular reference data point, the
remaining data set is a candidate data set for linear fit. This process is applied for all selected
reference points and yields a candidate data set for linear fit with reference to each reference
point. Then, for each candidate data set, the linear correlation is calculated using

nY Xy, — DX,
r — Z ly! Z Z yz (8)

T T (T ey - (S

where x is the independent variable and y is the dependent variable.

A correlation with 1> |r,,| > 0.8, 0.6 >|r,,| > 0.8,0.3 >|r,,| > 0.6 or 0.0 >|r,,| > 0.3 is gen-
erally described as very strong, moderately strong, fair or poor correlation [24], respectively.
The abovementioned intervals are true for the linear relations that have y = mx + ¢ form, only
when m # 0, where c is a constant. When m = 0, the linear relation is of the form y = ¢. How-

ever, when y = ¢, nZxy; — Zx,Zy; = 0 (numerator of (Eq 8)) and n > x? — (Y x,)° = 0 (part
of denominator of Eq 8), r,, becomes undefined. This situation prevents identification of linear
fits that have the form y = c. Therefore, when Zx;y,-Zx.Xy; = 0and n > x> — (30 x,)° = 0, we
stipulate that r,, = 1.

When considering the accuracy of Eq 8, a data set with fewer points satisfying the equation
will provide better correlation than the best resultant linear fit data set leading to a wrong deci-
sion. For example, a data set with two points will give the best correlation (|r,,| = 1) despite the
best fitting. Therefore, we define a minimum number of data points that must be in the final
linear fit. The best linear fit is defined as the data set with the maximum absolute correlation (|
7y|) and the minimum number of data points. These two criteria can be used in different ways
to determine the best linear fit depending on the requirements. The decision diagrams elabo-
rated in Figs 1 and 2 express two different implementation methods of the new multiple refer-
ence point linear fit algorithm.
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Table 1. A complete process circle for achieving a candidate data set for linear fit with reference to the second item (30) of the data set. Detection
process must be conducted considering each term as a reference point. However, in this example shows calculations only with reference to the second item.
In the first iteration MMS(a7T)maX|2 > 2/n and fulfils the detection condition. Thus, in the first iteration a’” _ is the term that not agrees with the linear fit. There-

max|2

fore, (8, 41.81) was removed and excluded from the calculations in second iteration. This process was continued until the termination condition (a;, , = 0
andall, , = 0)is reached in fourth iteration. Note that in this example, k = 0 and r = 2. Also, see S1 File for better understanding on the calculation process.
Iteration 1 Iteration 2 Iteration 3 Iteration 4
X a xl.’(- 2 a; |2 aﬂz XI.’(- 2 a;’; 2 ap\-z xl.’(- 2 a;’(' |2 ap\-z XI.’(- |2 a;’; 2 ap\-z
6*2 22%2 -1 -8.000 2.42 -1 -8.000 -2.25 - - - - - -
7 30%** 0 0.000 0.00 0 0.000 0.00 0 0.000 0.0E+0 0 0 0
g’ 41.81*" 1 11.810 1.39 - - - - - - - - -
9*3 50.001%2 2 20.001 -0.85 2 20.001 -0.50 2 20.001 7.8E-4 - - -
10 60 3 30.000 -1.27 3 30.000 -0.75 3 30.000 -3.3E-4 3 30 0.0
1 70 4 40.000 -1.69 4 40.000 -1.00 4 40.000 -4.4E-4 4 40 0.0
Sum 9 93.811 8 82.001 9 90.001 7 70
al, 1.39* 0.00 7.8E-4* 0.0
ar, 2.42 -2.25% -4.4E-4 0.0
n 6 5 5 4.0
st -4.85 -4.50 0.00 0.0
Ry =2/n 0.33 0.40 0.40 0.5
MMS(@") maxiz 0.39 (>0.33) 0.33 0.55 (>0.40) -
MMS(@"") iz 0.29 0.50 (>0.40) 0.31 -
Legend:

**: Reference data point.

*: Term identified as the outlier in the relevant iteration.
**. Removed in the relevant iteration and not considered for the next iteration.

doi:10.1371/journal.pone.0141486.t001

Using this method, the data points that do not agree with linear fit can be categorized into
several categories using different Ry values based on different k values, in several steps. After
identifying different k values, the data with the highest k (or highest R) value are first checked,
and then the cleaned data are used as input for the next step with the next highest k value. Fig 3
elaborates the implementation of the multi-step multiple reference linear fit algorithm, based on
the first method elaborated in Fig 1. The second method elaborated in Fig 2 can be improved for
locating linear fit while grouping data that do not agree with linear fit using the same technique.

To check the best linear fit, the algorithm was tested using several synthetic and real data sets
based on zero-based numbering (the first term of a series is assigned the index 0). Among the arti-
ficial data sets, the first three data sets of Anscombe’s quartet [1] can be considered time series.
The real data were from biogas plants and were automatically recorded with a frequency of 12
data points per day (i.e. every other hour) over a period of seven months. With real data, it is
impossible to find a perfect linear relation between two variables. Nevertheless, among the differ-
ent parameters, we selected the NH," content measured in g/kg of fresh matter, which we
expected to maintain linear behaviour during stable operation. We selected seven segments of dif-
ferent sizes for evaluating the algorithm. In some data sets, there were initial missing elements.
Performance of the new method was evaluated using a linear regression model and MMS/EMMS.

Results and Discussion

We used synthetic data sets with different sizes (4 to 1,000 points) and real data sets for evaluat-
ing our new linear fit identification method. Here, we include some data sets with extreme
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Fig 1. The first method of applying the new multiple reference point linear fit algorithm. When terminating conditions are fulfilled with reference to a
particular reference point, outlier detection is terminated. Then, the process continues with the next reference point until all reference points are finished.
Among the different candidate linear fits in relation to different successful reference points, the best linear fit is determined by considering the linear

correlation coefficient and the number of data points.

doi:10.1371/journal.pone.0141486.9001
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Fig 2. The second method of applying the new multiple reference point linear fit algorithm. In this method, the expected number of non-outliers
(ENNOL) is used as a termination condition. When terminating conditions are fulfilled with reference to a particular reference point, outlier detection is
terminated. Then, the process continues with the next reference point until all reference points are finished. Among the different candidate linear fits in

relation to different successful reference points,

the best linear fit is determined by considering the linear correlation coefficient.

doi:10.1371/journal.pone.0141486.9002

conditions. Fig 4 shows six data sets, each consisting of 10 data points, and the data sets that
agreed with linear fit have either a positive gradient, a negative gradient or a constant value. In
all data sets, fewer than 50% of the data points agreed with linear fit. Some of the data not in
agreement with linear fit deviated more than +10* from the correct value. At the same time,
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Fig 3. Improved version of the first method shown Fig 1 for grouping outliers or noise into several groups based on different k values. The method

shown in Fig 2 can also be improved for grouping outliers or noise into several groups in the same manner.

doi:10.1371/journal.pone.0141486.9003
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Fig 4. The gradient of linear fits shown in (a1) and (a2), (b1) and (b2) and (c1) and (c2) are ascending, descending and constant, respectively. In
data sets (a1), (b1) and (c1), all data points that do not agree with linear fit are located on one side (non-Gaussian) of linear fit. In data sets (a2), (b2) and (c2),

all data points that do not agree with linear fit are located on both sides of linear fit. In all data sets, fewer than 50% of the data points agree with linear fit.
Some of the data not agreeing with linear fit deviate more than +10* from the correct value. At the same time, there are data points that have very small
deviation, as small as £107%, from the correct value. Whatever the condition, the new method was capable of identifying robust linear fit. In all plots, the
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reference point is the first data point in linear fit, which was automatically detected during the detection process (all the points were considered as the
reference point). For data set of plots in this figure see S2 File. Fig 5 consists of three data sets of Anscombe’s quartet [1], which can be considered as APs.
As shown in Fig 5, the new method was capable of identifying the nearest data set that agrees with linear fit. We set the number of minimum data points at
five for all examples in Fig 5. In Fig 5(c) and 5(d) represent the third data set of Anscombe’s quartet and use different k values. When the k value changes, the
reference point and number of non-outliers are not the same for the same ENNOL. Furthermore, no masking or swapping occurred in relation to any k value
we used for linear fit identification.

doi:10.1371/journal.pone.0141486.9004

there are data points that have very small deviation, as small as +10™%, from the correct value.
All data points that did not agree with linear fit in data sets (al), (b1) and (c1) shown in Fig 4
are located on one side (non-Gaussian) of linear fit. Whatever the condition, the new method
was capable of identifying a robust linear fit.

The new method showed its ability to identify linear fit with large window sizes as well. Fig
6 shows two data sets consisting of 1,000 data points, each with less than 50% of the data points
agreeing with exact linear fit (regression is unknown). The data points that do not agree with
linear fit are in the range of +107> to +10*. In Fig 6, plot (a) bears four initial missing data
regions, with 50, 100, 100 and 50 data points (total 300 initial missing data), while plot (b)
bears a total of 250 initial missing data, with 100 and 150 missing data regions. In Fig 6 plot (a),
the data that do not agree with linear fit lie on both sides of linear fit, while in plot (b), all data
points that do not agree with linear fit lie on one side of linear fit.

All mentioned properties above are very extreme conditions. However, the new method
identified linear fit with a high level of accuracy. Furthermore, in Fig 6 plot (b), there is a set of
data that have a nearly linear relation and makes the situation more extreme. All results prove
that the new method is capable of locating all data points that agree with linear fit without mask-
ing or swapping. This accuracy cannot be achieved with a conventional least squares method or
with MMS/EMMS. Nevertheless, when the deviation of the value of a data point was less than
+107% from its correct value, sometimes we observed 0.5% swapping and masking with the new
method. However, this is very rare situation and not the result of a failure of the method but of
the limited numerical accuracy of the programming language (Visual C++ 2010) [25]. This is
more visible when the number of data points is large and their deviation is very small. Therefore,
we recommend using a programming platform with high numerical accuracy for better perfor-
mance with the new method. Fig 7 shows eight data windows of data captured automatically
from a biogas plant. Each window consists of 1,000 data points, with results included in relation
to two different conditions. The left side of Fig 7 shows identified linear fits of four different
windows. The right side of Fig 7 consists of linear fits of four windows corresponding to those
shown on the left side with narrower linear fit identification criteria than on the left side. When
considering all eight situations, in plots (al) and (c1), Ry reaches its limit before ENNOL. Fur-
thermore, in all situations, 7, is greater than 0.8 and implies a very strong linear fit [24]. How-
ever, plots on the RHS, which have narrower criteria, showed higher correlation than the
corresponding plot on the left side. As in the artificial data sets, with these actual data, there is
no swapping or masking. This is a major advantage of this method over any other method. The
linear fits in relation to the first data set (plots (al) and (a2)) do not show any exceptionality
and no resistance to acceptance. In contrast, in the second data set (plots (b1) and (b2)), there is
a minimum that clearly shows two potential regions for linear fit. On the other hand, in the
third data set (plots (c1) and (c2)), there are two regions based on the data density.

In both data sets, the new method was able to locate the best linear fit, which can be identi-
fied even visually. In the second data set, the new method omitted one potential area and iden-
tified linear fit from the longer half. However, in the third data set, the identified linear fit is
from both regions. This shows the ability of the new method to identify the best linear fit with-
out influence from data density and other data in the considered window. In the fourth data
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Fig 5. Plots (a) and (b) show the first and second data set of Anscombe’s quartet and used the same value of k. Plots (c) and (d) represent the third
data set of Anscombe’s quartet and used different k values. In all detections, ENNOL was set to five. When the k value changes, the reference point and
number of points in linear fit are not the same for the same ENNOL (Plots (c) and (d)). In all plots, the reference point (the first term of the linear fit) was
automatically detected during the detection process (all the points were considered as the reference point). For data set of plots in this figure see S3 File.

doi:10.1371/journal.pone.0141486.9005

set, there are a minimum and a maximum that clearly show three potential linear fit regions.
Furthermore, region 3 has the highest data density. However, the new method was able to iden-
tify linear fit from region 2, which has low data density. Again, this confirms the previous
observation. Plots (c2) and (d2) show another feature of the new method: the identified linear
fits clearly consist of two segments separated by a no-data area.

According to the most popular least squares method, data points that agree with linear fit
are the data points around the trend line. However, our aim is to identify the most potential
data sets that agree with the linear fit. Therefore, that detection of least squares method cannot
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Fig 6. Plots (a) and (b) show two artificial data sets, each consisting of a data set with 100% agreement with unknown linear regression. The
number of data points agreeing with linear fit is less than 50% of total existing data points. In plot (a), data points that do not agree with linear fit lie on both
sides of linear fit and exhibit four initial missing data regions of 50, 100, 100 and 50 data points (total 300 initial missing data). In plot (b), data points that do
not agree with linear fit are located on one side of linear fit and exhibit two initial missing data regions of 100 and 150 data points (total 250 initial missing
data). In both plots, data points that do not agree with linear fit are in the range of £1072 to £10*. Though both data sets represent very extreme conditions, the
method was capable of locating all data points that agreed with linear fit without swapping or masking. Zoomed areas of selected areas that contain very near
values to linear fit demonstrate the ability of the proposed method. In plots (a) and (b) the reference points (the first term of the linear fit) were automatically
detected during the detection process as 20 and 26, respectively (all the points were considered as the reference point). For data set of plots in this figure see

S4 File.
doi:10.1371/journal.pone.0141486.9006
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Fig 7. Plots show four selected windows of data captured automatically from a biogas plant in a three-minute interval (each window consists of
1,000 data points). The left side shows the linear fit detection in relation to a particular criterion, while the right side shows the linear fit detection of the
relevant left-side data set in relation to narrower criteria than the left-side plot. In all cases, the method identified the most suitable linear fit in relation to the
selected window. When the criteria are narrowed, the detection is sharp and there is a sub-set of the linear fit identified in relation to wider criteria. In all plots,
the reference point (the first term of the linear fit) was automatically detected during the detection process (all the points were considered as the reference
point). For data set of plots in this figure see S5 File.

doi:10.1371/journal.pone.0141486.9007
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be considered as good detection according to our requirement. Therefore, the abilities of the
new method are in a better position when identifying linear fit because it is capable of identify-
ing the best fit among the several positive candidate linear fits. This type of detection can be
performed using an appropriate mask. Sometimes it is necessary to use several masks for iden-
tifying different types of linear fit, such as one mask for identifying linear fits with positive gra-
dients, one for identifying linear fits with negative gradients and one for identifying linear fits
that are constant. In contrast, the new method is capable of identifying any type of linear rela-
tion. Therefore, the new method can be considered as very useful for identifying linear fit.
When considering the theoretical environment of the equations used in the method, there
are several situations that must be addressed. Theoretically, there are two situations for which
the method could become invalid. The first situation occurs when Gx; |, = 0in Eq 6. To over-

come this situation, we propose a solution that can be used in normal situations as well. The
proposed method in this paper always suspects the maximum and minimum as the data points
that do not agree with linear fit. If the suspected data points were removed, it is possible to
have better approximation for the gradient as well. However, after removing both suspected
values, it is still possible to have the same situation. Therefore, as a standard, when Gx;|, = 0,
removing one suspected point will guarantee the prevention of an undefined situation. In addi-
tion, if no undefined situation arises, it is better to exclude both suspected points. As we men-
tioned earlier, this technique can be applied throughout the process. However, this requires
additional computational effort. We used the same technique to improve the outlier detection
power of Grubb’s test and obtained significant improvement.

The second invalid situation occurs when S™ — a'" «n = OQora’l *xn— S =0.
Then, according to (7), a’t = all

x| 7 min] (the maximum and minimum of the transformed series
are the same). In addition, the transformed value of the considered reference point is always

M xn— ST = 0 represents the status in which all

max

zero. Therefore, S™" — al «+n = Qora
values of the transformed series are zero. This state also represents a totally outlier and noise
free series and is a termination condition.

In addition to the two abovementioned undefined situations, there is another situation in
which it is not possible to determine the termination point. The situation in which all remain-
ing terms agree with linear fit, with MMS(a™) = MMS(a™),,. ,» can be considered as
the termination point of Eq 7. However, there can be a very rare situation that is in disagree-
ment with the normal situation. For example, if the transformed series is 0, -1.1, -2.1, 2.2, 1,
0.3, then MMS(a™) = MMS(a'™),,, , occurs (both values are equal to 0.33). In this case,
the transformed series does not agree with linear fit, even though it satisfies the termination
condition. Therefore, it is necessary to verify that the situation is a real termination situation.

max| r min|

max| 0

One possible remedy for overcoming this situation is to recalculate the data series by temporar-
ily excluding one data point that is not a suspected point and is not equal to zero. If the same
situation still occurs even after removing the data point, it can be considered as the real termi-
nation point. Otherwise, conduct the calculation without temporarily removing the term, and
add it in the next iteration. If the transformed series 1.1, 1.1, 0, 0, 0, —1.1, —1.1 again satisfies
MMS(a™) = MMS(a™) then the aforementioned method cannot be used. There-

fore, the only possible solution is to consider all non-zero terms as terms that do not agree with
linear fit.

max| 0 min| 0°

Conclusions and Outlook

The new method shows very promising results in the area of linear fit identification. The
method is non-parametric and capable of identifying all data points that agree with linear fit
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without swapping or masking. A particular strength of the new method is that it detects the
most probable linear fit in the selected window despite the influence of data density, missing
data, removed elements, percentage of data agreeing with linear fit and manner of distribution
of data points. In other words, the introduced method can be considered as a universal method
for linear fit identification. In this paper, we focused on identifying a single linear fit. However,
the method could be enhanced for identifying multiple linear fits in the selected window.
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Abstract

Typically extrema filtration techniques are based on non-parametric properties such
as magnitude of prominences and the widths at half prominence, which cannot be
used with data that possess a dynamic nature. In this work, an extrema identification
that is totally independent of derivative-based approaches and independent of quan-
titative attributes is introduced. For three consecutive positive terms arranged in a
line, the ratio (R) of the sum of the maximum and minimum to the sum of the three
terms is always 2/n, where n is the number of terms and 2/3 <R <1whenn=3.R>
2/3 implies that one term is away from the other two terms. Applying suitable mod-
ifications for the above stated hypothesis, the method was developed and the method
is capable of identifying peaks and valleys in any signal. Furthermore, three tech-
niques were developed for filtering non-dominating, sharp, gradual, low and high
extrema. Especially, all the developed methods are non-parametric and suitable for
analyzing processes that have dynamic nature such as biogas data. The methods were
evaluated using automatically collected biogas data. Results showed that the extrema
identification method was capable of identifying local extrema with 0% error. Fur-
thermore, the non-parametric filtering techniques were able to distinguish dominat-
ing, flat, sharp, high, and low extrema in the biogas data with high robustness.

Keywords

Extrema Point, First Derivative, Peak Finder, Peaks and Valleys, Maxima and
Minima, Second Derivative

1. Introduction

In process control, the method of determining peaks and valleys of a signal, also known

as identification of local maxima and minima, is crucial for describing and capturing
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certain signal properties. Identification of local maxima and minima is particularly
useful in signal processing, consequently useful in inline/online process control and op-
timization. Thereby, for reliable feature extraction it is necessary to remove redundant
maxima and minima in a processed signal. The issue has been extensively investigated
in literature [1]-[4], at which different techniques were reported. Magnitude-based
methods and gradient-based methods are the most common two of such techniques. In
magnitude based methods, the n term of a series is x5 x, is considered as a peak
(maximum) when X, ; < X, > X1. In the same time, x; is considered as a valley (mini-
mum) when Xx,; > X, < Xp1. In gradient-based methods, extremum can be located by
considering slope (gradient) of a certain point and acts as the most popular method [1].
When the slope is zero (first derivative is zero) at a certain point, the point can be de-
scribed as a peak, valley or a saddle point. However, additional calculations are neces-
sary to distinguish whether it is a peak, valley or saddle point. This encounter is solved
by analysing the sign of the second derivative at the points of zero slopes [1]. The most
popular methods of such are Newton Raphson method [2] and Taylor series-based de-
rivatives [3] [4] which evaluate the derivatives numerically for a given data set.

Once the extrema points are identified, a filtration step is unavoidable to identify the
dominant or relevant extrema. Magnitude of prominences and the widths at half
prominence are two properties of signals that are commonly used to filter extrema [5]
[6]. Furthermore, baseline correction is another technique used for finding out accurate
maxima and minima [7]-[9]. In addition, there are numbers of methods for filtering
unnecessary extrema based on template matching or masks [10], such as Kalman filters
[11] [12] and non-linear filters [13]. Nevertheless, all aforementioned approaches are
parametric methods [14], which question their robustness.

One of the main classifications existing in data analysis techniques is whether the
method is parametric or non-parametric in its nature [15]. As mentioned above, most
popular extrema filtering methods suffer from parametric concerns. Particularly, para-
metric methods use domain dependent value as detection criteria such as average,
standard deviation, prominences of an extrema, and the widths at half prominence of
an extrema. These criteria are based on domain dependent parameters and are there-
fore valid only for the considered data model or considered conditions in the domain.
Thus, majorly parametric methods’ accuracy inherits the variables’ ranges and the con-
ditions of the domain [16]. In reality, data capturing, especially within dynamic sys-
tems, such as biogas plants, is produced with various alterations. When the model or
data range alters, whilst using parametric methods, it is necessary to recalibrate para-
meters or develop new models for monitoring, controlling, and data analysis, which is

not of preference at process line.

Non-Parametric Methods

Non-parametric methods, also known as distribution-free methods, depend on fewer
number of underlying assumptions [15] [17] [18], which progress them more as robust

methods [16] [19]. In this research a new non-parametric technique for extrema identi-

KD
+%%, Scientific Research Publishing

193

44



K. K. L. B. Adikaram et al.

fication and filtration are developed. The proposed technique determines maxima and
minima based on the relation of sum of terms in an arithmetic series. The same relation
was used as a non-parametric method (MMS: a method based on maximum, minimum,
and sum) for finding outliers in linear relation [20] and non-parametric linear fit iden-
tification method [21].

In some situations outliers, peaks and valleys are the same, when a sudden extremum
(variation) occurs, additionally extrema can be formed due to gradual increment and
gradual decrement. The extrema generated in such situations do not behave as outliers
and cannot be identified using the aforementioned outlier detection method based on
maximum, minimum, and data series sum (MMS) [20]. Furthermore, MMS can only
be used for identifying outliers in liner regression and is not suitable for finding outliers
in non-linear series [20]. This work focuses on modifying the methods of MMS for lo-
cating extrema in non-linear data series.

The proposed extrema identification method does not involve first or second deriva-
tive, but rather compares, within a considered window, two ratios in relation with
maximum, minimum, middle point, and the sum of data points. Furthermore, three
extrema filtration methods were introduced in this work, which are capable of filtering
extrema independent of the prominences or width of an extremum. All the methods
introduced in this work are developed for harsh conditions involved in dynamic proc-
esses, especially biogas process data, thus handling: non-linear datasets and based upon

non-parametric methods.

2. Materials and Methods

As mentioned before, the outlier detection method, also by the same authors [20], will
be modified to locate extrema in non-linear series. The method is based upon the the-
ory of the sum of terms of an arithmetic progression. Having two major relations by
means of MMS,..x and MMS,;, and are expressed in Equation (1) and Equation (2). The
ratio 2/n is used as the detection criteria, where n is the number of terms in the series.

MMSmaX = (amax _amin )/(Sn _amin *n) 4 and (1)
IV”vlsmin = (amax _amin )/(amax * n_sn)’ (2)

where ani, is the minimum element of the series, am. is the maximum element of the
series, nis the number of terms in the series, and S, is the sum of terms in the series.
The complete expression for outlier detection is given by Equation (3). If any series

expected to follow y = cform and contains data that do not agree with y = cform then:

MMS. — 8o 8mn _|” (2/n+w); maximum is the outlier
S Ay, *n|<(2/n+w);-
MMS = > 3)
MMS Qnax ~ Ain 3(2/n+W);—
™. *n-S.  |> (2/n+w); minimum is the outlier

where wis the weight.

The method MAMS expressed in Equation (3) can be applied on a window with any
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number of data points. However, when a window has only three data points it becomes
a special situation, since the method generates an extremum when points are not in
agreement with a linear fit, thus, if there is an extrema, always the middle point would
be the extrema. When the numbers of data points are three (2 =3) and w =0, Equation

(3) a special treatment is suggested:

MMS. = Pmax 8min_ |~ 2/3; Maximum is away from the other two points
MMS "™ S —a. %3 |<2/3;- @
) MMS _ Anax — Amin _ S2/3’_
" a . *#3-S, |>2/3;Minimum is away from the other two points

Equation (4) is a simplified version of Equation (3) for handling three data points,
where 2/3<MMS_, <1 and 2/3<MMS_, <1.According to Equation (4),
MMS,.., >2/3 implies that the maximum of the three points is always considerably
apart from the other two points. In the same manner, MMS_, >2/3 implies that the
minimum of the three points is always considerably apart from the other two points.
Plots (a), (b), and (c) of Figure 1 show situations that of MMS__,, > 2/3, where maxi-
mum is the peak. Plots (e), (f), and (g) in Figure 1 show situations that of
MMS_;, > 2/3, where the minimum is the valley. However, Equation (4) does not al-
ways successfully identify extrema, in other words if the identified point is the first or

last point of a window, theoretically it cannot be considered as an extrema. Plots (d)

120 (a) 1.01 (b) () (d)
100 100
100
90
80 1.005 50 50
60 1.001
40 1 0 0
1 2 3 1 2 1 2 3 1 2 3
MMS,_ =1(>0.67) |MMS, =1 (>0.67) MMS,__ =0.714 (>0.67) [MMS__ = 0.526 (<0.67)
MMS =05 / |MMS =05 MMS,, =0.625 MMS,, =0909 X
120 - (e) (9) (h)
100 ¢ 100 100
80 - 70
60
40 | 50 50 o5
20 -
0 - 0 0
20 1 3 1 2 3 1 2 3
MMS,__ =05 MMS__ =0.5 MMS, , =0.588 /IMMS__ =08
MMS,, =1 (>067) |MMS, =1 (>0.67) MMS,_ =0.769 (>0.67) |[MMS_ = 0.571 (<0.67)

Figure 1. Plots (a), (b), (c), and (d) show different types of peaks and plots (e), (f), (g), and (h)
show different types of valleys. For n = 3, value 2/nis 0.67. In all peaks except plot (d) MMSnax >
2/3 and in all valleys except plot (h) MMSuin < 2/3. “v”” corresponds to correct detections of ex-
trema when MMS and 2/n are used and “%” corresponds to wrong detections of extrema when
MMS and 2/n are used. Therefore, consideration of MMS and 2/ is not a good method for iden-
tifying extrema. However, in the concept of outlier detection all the detections are correct.
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and (h) of Figure 1 show situations where neither a maximum nor a minimum repre-
sents an extremum. Figure 1(d) shows a peak that of MMS_, >2/3 (identification of
a valley), this is a contradicting situation. Also, Figure 1(h) shows another failing situa-
tion, where the plot shows a valley that of MMS_, >2/3 (identification of a peak).
This occurs because in both considered situations, the point has the highest deviation is
the first point and not the middle point. Therefore, Equation (4) is not capable of iden-
tifying extrema in such cases, thus handling these situations is required.

To address the aforementioned drawback, the MMS method was modified by con-
sidering the middle point of the window. To have an exact middle point in a data win-
dow the number of considered data points () must be odd. When 1 =3 and amq is the

middle point of the window, substituting am. from Equation (1) by amq retrieves:

MMS s = (8mia = 8min )/(S3 — 8pip *3).- (5)
Also, by replacing ami, of Equation (2) by amid gives,
MMS, i = (e — g )/ (8 ¥3—S3) - (6)
Consider the situation,
MMS, . = MMS, mia - (7)
(amax -, )/(Ss — i * 3) = (g — Amin )/(83 — i * 3) >
Amax = Amig - (8)

Therefore, Equation (7) denotes the situation of a maximum at the middle point.

Thus Equation (7) is a condition, independent of the value of MMS that can be used for

identifying a peak.
Consider the situation:
MMSmin = IV"vlsmimmid . 9)
(amax ~ B )/(am&x *3- 83) = (amax ~ &g )/(amax *3- 83) >
Anin = g - (1())

Then Equation (9) denotes the situation of a minimum at the middle point. Thus,
Equation (9) is a condition, independent of the value of MMS that can be used for iden-
tifying a valley.

Therefore, when a window satisfies Equation (7) it implies that the middle point is a
maximum and once a window satisfies Equation (9) it alternatively implies that the
middle point is a minimum. Advancing the three point window by one data point
makes it possible to locate all the extrema in a signal (Figure 2). Table 1 shows sample
calculations of extrema detection procedure according to Equation (7) and Equation
(9). The first eight value sets shown in Table 1 are the values in relation with the plots
shown in Figure 1. Examples a, b, ¢, and d in Table 1 show calculation in relation with
peak identification. In all these examples MMS_, =MMS_ i (Equation (7)) and
MMS ., # MMS, ;0 (Equation (9)). Examples e, f, g, and h in Table 1 show calcula-
tion in relation with valley identification. In all these examples MMS, ;= MMS .. .,
(Equation (7)) and MMS_ #MMS__ . (Equation (9)). The last two examples (iand
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Start

l

Use window of
three data points

Apply the extrema  Yes
identification method —»_ End of the series ~—»{ Stop
“MMS max-min finder” —

A lNo

Advance the

window by one
data point

Figure 2. Extrema detection process of proposed extrema identification method named as MMS max-min

finder.

Table 1. Sample calculations of peak and valley detection process based new method (MMS max-
min finder) for window size of three data points.

Plot Data set MMSmex MM Smaximia MMSnin MM Sminmia Peak o MMy = MM Sin =
(>0.67) (>0.67) Valley ~ MMSmaximia  MMSmin/mid

(a) 0,100,0 1(Y) 1 0.5 (N) 0 Peak Y

(b) 0,1.001,0 1(Y) 1 0.5 (N) 0 Peak Y N

(c) 0,100,40  0.714 (Y) 0.714 0.625 (N) 0 Peak Y N

(d) 0,100,900 0.526 (N) 0.526 0.909 (Y) 0 Peak Y N

(e) 100,-20,100 0.5 (N) 0 1(Y) 1 Valley N Y

H -2,-22,-2  05(N) 0 1(Y) 1 Valley N Y

(g) 100,0,70  0.588 (N) 0 0.769 (Y) 0.769 Valley N Y

(h) 100, 0,25 0.8 (Y) 0 0.571 (N) 0.571 Valley N Y

(i) 0,100,50  0.667 (N) 0.667 0.667 (N) 0 Peak Y N

(k) 0,-100,-50 0.667 (N) 0 0.667 (N) 0.667 Valley N Y

k) show very special situations, where MMSy.x, MMSnin, and 2/n are equal. In such
situations Equation (4) is undefined. However, even then extrema identification is pos-
sible with Equation (7) and Equation (9). Since the proposed extrema detection method
is based on the maximum, minimum, and sum of the series, the method was named as
“MMS max-min finder”.

2.1. Identifying Dominating Extrema (Primary Filtering of Peaks and
Valleys)

As above-mentioned, Equation (7) and Equation (9) are independent of the number of
data points and thus valid for the situations where n is greater than three (2> 3). How-
ever to have an exact middle point, 7 must be an odd number. When the numbers of
data points are higher than three, there can be several peaks and several valleys. How-

ever, there is a situation that the highest peak (dominating peak) or lowest valley
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(dominating valley) coincides with the middle point of an advancing window. Figure 3
shows an example of detecting dominating peaks in a window with odd number of data
points (1 = 7). When the number of data points per window increases, it allows for the
possibility of more than one extremum in the considered window.

The plot in Figure 3 consists of seven data points and contains three peaks named A,
B, and C. The peak A is the middle point of window W, while peak B is the dominating
peak. Because of that point A is not recognise as a peak in window W,. After advancing
W, by two data points, W,,, appears. In the window W, the point B is the highest as
well as the middle point and the point B is recognized as a peak. Advancing W, by
two data points W,.s appears, where C becomes the middle point and due to the influ-
ence of point B it will not be recognized as a peak. This illustrates that the dominating
extrema in a window remains undetected until the middle point of the window coin-
cide with it whilst preventing identification of other small peaks and valleys.

The usage of windows with higher odd number of data points (e.g.: 5, 7, ...) makes it
possible to filter minor peaks and valleys. In contrast, if the methods in relation with
height or width are used, the values are domain dependent and relative. Changing
window size (W) is an absolute parameter and can be applied in any condition, espe-
cially the situations that the domain conditions are unknown. However, this technique
is not capable of filtering absolute small extrema, because the comparison is based on
the existing extrema in the considered window. Furthermore, this technique is useful as
a filter for removing relative small variations. Since the technique is based on the size of
the window, the technique was named as “MMS-Window based filter” or (MMS-WBE).

C

Figure 3. Application of “MMS max-min finder” with window size of seven for locating maxi-
mum point. In the window W, the middle point is “A” and due to existence of point “B” in the
considered window, point “A” is not identified as the maximum point. Also, in the W4 (the
window found after advancing by four data points) the point “C” is not identified as an extrema,
due to existence of point “B” in the considered the window. In the Wi the point “B” is the
maximum as well as middle point and there is no point larger than point “B” in the considered
window. Thus, point “B” is identified as the dominating maximum.
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2.2. Sharp and Gradual (Flat) Extrema Filtering

Extrema with starting and end points which are agreeing with y = ¢ and having the
middle point as the extremum can be considered as a symmetric extrema case. Plots (a)
and (b) of Figure 4 show such symmetric extrema, which can be considered as the sim-
plest symmetric form. Extrema shown in plots (c) and (d) of Figure 4 also fulfil the re-
quirements of a perfect symmetric extrema. All the following equations in this section
are based on the perfect extrema.

Consider a perfect maxima situation as shown in plot (c) of Figure 4. Here, all points
are equal to amin (@min = €) €xcept amax. Consider any perfect maximum situation with n
points, then 1 — 1 points are equal to @min, and am. # ¢. The sum of the terms of such a

series can be expressed as:

S, =y, *(N-1)+a,, (11)
(Sn _amax)/amin =(n_1) (12)

Consider a perfect minimum situation as shown in plot (d) of Figure 4. Here, all
points of the series are equal t0 @mex and amex = ¢ except amin. Consider any perfect
maxima situation with n points. Then n — 1 points are equal t0 amax, and amin # ¢ The

sum of the terms of such a series can be expressed as:

S, = *(N-1)+ay, (13)
(S5 = amin )/ =(n-1) (14)
If MMS,, /MMS,,, =R, then from (1) and (2),
Rum = (8na *N=S5,)/(Sy =@y *N).
When the maximum is detected as the peak, substituting in Equation (11) retrieves:
Rym = (amax #N = (A, *(N—1)+a,, ))/((amin *(N=1)+a, )—ay, * n)
Rum = (8rax *N = (@pin *N =8y, + 8y, ))/((amin £N =8 + 8 )~ By *N)

Rym = ((amax — 8nin ) *N— (amax — nin ))/(amax - amin)

120 120 100 100 ¢
100

100
80

80 60
40 %7

60 12345/6 7
20

40 0 0

1 2 3 | 20 3 1234567  -100 -

@) (b) (©) (d)

Figure 4. Perfect extrema. A perfect extrema is defined as an extrema that is symmetric extrema.
Thus, in a perfect extrema both the starting and end points follow the y = ¢ form. Plots (a) and
(b) show the simplest perfect extrema and plots (c) and (d) show perfect extrema that have more
points that agree with y= cform.
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Rum = ((3ax = amin >x<(n—1))/(amaX ~a)
Ry :(n_l)
MMS,,, /MMS,,;, =(n—1) (15)

min
In the same manner, if MMSuin/ MMSmax = Ru then from Equations (1), (2), and
(12), the minimum is detected as the valley,

R =(n-1)

MMS,;, /MMS,,,, =(n—1) (16)

The relations of Equation (15) and Equation (16) are crucial findings, which can be
used to identify perfect extrema. When the extrema is not perfect, value of Equation
(15) and Equation (16) is less than n — 1. Therefore, Equation (15) and Equation (16)
can be used to identify perfect and non-perfect extrema. Also, perfect extrema are sud-
den (sharp) extrema and non-perfect extrema can be considered as gradual extrema.
Thereby, using Equation (15) and Equation (16) it is possible to filter sharp and gradual
extrema.

After identifying a peak, by examining the ratio MMSna/ MMSpin it is possible to de-
termine degree of confidence of other points, the same applies for identifying a valley.
Assume £y ma is the threshold value for determining sharp and gradual maxima, then
fym myr can be expressed asa k*(n—1), where 0<k <1.If kis expressed as a function
of n(e.g: k =ZI7/ (n—1)), then fum mu is a function of n. By setting the same threshold
value (fam_ma) for MMSmad MMSmin and MMSyin/ MMS.x, sudden and gradual maxima
can be determined. The determination criteria (£ym ma) of ratios MMS,./ MMS,;, and
MMSin/ MMS,.ox are non-parametric and depend only on the number of data points in
the considered window. Since the method is also based on the maximum, the mini-
mum, and the sum, the method was named as MMS-SG filter.

Figure 5 and Figure 6 show examples in relation with Equation (15) and Equation
(16), respectively. In plots (a) and (b) of Figure 5, the ratio MMSu.x/ MMSpin = 6, which
is exactly equal to n — 1. This proves the correctness of Equation (15). In the same time,
in plots (a) and (b) of Figure 6, the ratio MMSn/ MMS.x = 6 and proves the correct-
ness of Equation (16). All these plots exhibit either sudden peak or sudden valley. The
corresponding ratios in relation with the plot (c) of Figure 5 and Figure 6 are not equal
to n — 1. However, the corresponding ratios are not very small. Therefore, these ex-
trema can be considered as nearly sharp extrema. Nevertheless, corresponding ratios in
relation with, plots (d) of Figure 5 and Figure 6 are very small and these extrema can

be considered as gradual extrema.

2.3. High and Low Extrema Filtering

MMS-WBF and MMS-SG introduced in this work are capable identifying dominating,
sharp and gradual extrema. However, these techniques are incapable of distinguishing
the extrema with very small amplitude as shown in Figure 1(b) and Figure 1(f).

The valley shown in Figure 7 is a general situation of a perfect valley. When a valley

has a very small crater, amin = amax.
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100 , @ 100 . ¢®) 100 - © 100 - (@)
a A— M
0 609000 | 0¢ 0¢ 04

1234567 1234567 1234567 1234567
MMS, =1(>0.286) |MMS, =1(>0286) |MMS, =0611(>0.286) |MMS, = 0325 (>0.286)
MMS, =0.167 MMS,. = 0.167 MMS, = 0.186 MMS, . = 0.255
MMS__ IMMS, = MMS__/MMS, = MMS, /MMS,, =328 |MMS, /MMS =127
MMS,, IMMS,. = 0.167 | MMS, JMMS,,. = 0.167 | MMS,, /MMS,, = 0305 |MMS,. /MMS,. =0.786

Figure 5. Plots (a), (b), (c), and (d) show four different types of peaks with window size seven (2 =
7) where 2/n = 0.286. Ratios MMSmax/ MMSmin and MMSmin/ MMSmax are stated along with each
plot. Peaks in plots (a) and (b) are perfect peaks and the ratio MMSuax/ MMSmin = 6 (i.e. n — 1).
Though, the dominating peak in plot (c) is not a perfect peak, ratio MMSmax/ MMSmin is con-
sideribly high. The peak in plot (d) is a gradually developed peak and also not a perfect peak and
the ratio MMSmax/ MMSmin is very small. Therefore, consideration of ratio MMSma/ MMSmin is a
good criterion to distinguish sudden and gradual peaks.

100 g o000 | 100 ¢ 100 o
(a) (b) (c) (d)
0 TT T/ T T T 0 | 0 -1 ‘
234567 123 4|56 7 1234 13lab\6l7

-100 - -100 - -100 -100 -

MMS,__=0.167 MMS,__ = 0.167 MMS,_ =0.183 MMS,__ =0.275
MMS|~'=1(>0.286) |MMS|~ =1(>0.286) | MMS., =0.65 (>0.286) | MMS., = 0.298 (>0.286)
MMS. IMMS, —0167 MMS.. /MMS —0167 MMS."/MMS, = 0.282 | MMS - /MMS__=0.923
MMS.JMMS. MMSIMMS," MMS IMMS, = 3.55 | MMS.JMMS " = 1.084

Figure 6. Plots (a), (b), (c), and (d) show four different types of valleys with window size seven (12 =
7) where 2/n = 0.286. Ratios MMSmax/ MMSmin and MMSmin/ MMSmax are stated along with each
plot. Valleys in plots (a) and (b) are perfect valleys and the ratio MMSmin/ MMSnax = 6 (i.e. n —1).
Though, the valley in plot (c) is not a perfect valley, ratio MMSmin/ MMSmax is considerably high.
The valley in plot (d) is a gradually developed valley and also not a perfect valley and the ratio
MM Smin/ MMSmax is very small. Therefore, consideration of ratio MMSmin/ MMSmax is a good crite-
rion for distinguishing between sudden and gradual (flat) valleys.

Then, Equation (13) can be expressed as:

Sn ~ Qi *(n_1)+amin

SrI ~ Ay * (< B *N)
RLH_min =(8pip *N /S ;0< RLH min <1 (17)
201
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Peak /7 \

When the peakis smalla,_ = a_

When the valley issmalla_ = a__

X

S % o — — — — — ——
y=c \ 7/ a_ _=c¢
\ , max
\ /
Valley \ y;
\N/
’amin

Figure 7. Two possible ways of existence of extremum for a data point; as a peak or as valley.
Assume, except the extremum, all the other points are satisfying the y = c relation (perfect ex-
trema). Then, extremum is the peak and all other points are equal to the minimum. In the same
manner, when the extremum is a valley, valley is the minimum and all other points are equal to
the maximum. If a peak is small it reaches to the minimum and when the valley is small it reaches
to the maximum. This is the hypothesis for distinguishing small and high extrema.

If Ry mn —1, it implies that the amn is very close to the other points (low crater),
consequently R, ., — 0 implies that the amn is apart from the other points (high
crater).

In Equation (17), when the term am, is zero, the ratio Rix min also becomes zero de-
spite of the influence of magnitude valley. Also, due to the influence of negative values
S, can be zero and Ry min becomes invalid. Both these situations inhibit the determina-
tion of the real condition of the valley. To overcome the effect of negative values, the
minimum value was deducted from all the terms of the data points in the window as

expressed in Equation (18).
ai_New =8 — Q- (18)

Even now it is possible to have a situation of ami, = 0. To overcome this situation a
constant &, which is greater than zero, was added to each value. This transformation is
applied in “Min-Max normalization” process [22] [23]. When k& = 1 thus Equation (18)

becomes:

A ew =& — Ay, +1 (19)

i_New

From Equation (17) and Equation (19),

Ript min = ((2min — 8y +1) * n)/zr]:(ai —ay, +1)

i=1

RLH_min = r/[iai - n A + ilj
i=1 i=1 i=1

RLHimin:n/(sn_amin*n+n);0<R <1

LH_min —
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RLH_min = n/(Sn + (1_ amin ) * n);o < RLH_min <1 (20)

Then Rz min expressed in Equation (20) can be considered as a robust method for
filtering valleys with low crater.

The peak shown in Figure 7 is a general situation of perfect peak. When a peak has a
very small prominence, an.x = amin. Then Equation (11) can be expressed as:

Sy~ Ay *(N—1)+ 2,
Sn ~ a‘max * n;(> a‘min * n)
RLH_max = (amax * n)/Sn ;> 0 (21)

According to Equation (17), the ratio R,z min has a well-defined upper limit (ceiling)
and lower limit (floor) because 0 <R, ., <1. Nevertheless, in Equation (21), Rz max
has no upper limit, and subjects only to a lower limit. Therefore, it is difficult to use
Rim max as a global criteria as Rrg min. The peak shown in Figure 7 can be considered as
the mirror image of a valley in Figure 7. Thus, it is possible to transform a peak to a
valley, for that Equation (17) can be used for determining the peaks with high and low

prominence using the same criteria Under the assumption that:
ai_New = (amax + 8y ) - (22)

According to Equation (22), (amélx + a0, ) — 8 = A, and
(Bax + amin)— Auin = @pax - The expression in Equation (22) transforms the maximum
value into the minimum, the minimum value into the maximum and intermediate val-
ues into their complements. If the Rz ma is the corresponding ratio in relation with
high and low peaks identification, then, from Equation (21) and Equation (22), one can

reach:

Riyt max = (((arnaX + A )~ A ) * n)/Z((amaX +ay,)-a)

RLH_max = (amin * n)/zin:l((amax + amin ) - ai ) (23)

Even after the aforementioned transformation, it is still possible to have the influence
of negative values. However, it can be resolved by using Equation (19). Then, from
Equation (19),

Rk max = ((amin —a, +1)* n)/in1
Ri max = r/i((amax +1)-a,)

Rin max = /(B +1)*n =S, );0<R

((amax — Qnin +1+ Anin — Anin +1) - (ai — nin +1))

<1 (24)

LH_max —

Ry mex =1 implies that the am.. is very close to other points (low prominence).

Consequently R — 0 implies that the am. is apart from the other points (high

LH_max
prominence).
Finally, using Equation (17) and Equation (24) it is possible to determine the high

and low extrema by defining a threshold value ;5 (0 <t ,; <1) for Rig min and Rz max.
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Because the method is based on the maximum, minimum and the sum, the method was
named as MMS-LH. Figure 8 elaborates the functionality of MMS-LH as a filtering
method.

The filtration of sudden, gradual, low, and high extrema are derived based on a data
set which satisfies the y= crelation (perfect extrema). However, in reality it is impossi-
ble to always have perfect extrema. Therefore, by setting the threshold values in appro-
priate situations, it is possible to filter the extrema in non-perfect conditions.

Extrema identification is performed after comparing two ratios in relation with
maximum, minimum, middle point and sum. The threshold criteria for MMS-WBF
and MMS-SG are values that are based on the number of data points (z7). The threshold
criterion for MMS-LH is a value between 0 and 1. Thus, all the determination criteria
are totally non-parametric. However, combination of these methods leads to harvest
more robust and reliable output. Figure 9 elaborates one possibility of combining all
these methods for achieving reliable output.

All the algorithms were implemented using C++ in Net 2008 platform and tested
with biogas data which were collected online form a biogas plant using NIR spectros-
copy for a period of seven months with a frequency of twelve data points per day (ie.
every second hour). Among the different parameters, the H, content measured in ppm
was selected, which has considerable amount of variations during the process. Data of
each month was considered as a segment, where each segment consists of 350 - 400
data points. The proposed detection methods were applied on each segment with dif-
ferent criteria. Furthermore, another data set of around 4800 data points, concentra-
tions of volatile fatty acid (VFA), was selected for checking segmenting capabilities of
the method.

Yes

Start Peak detected?
Calculate Calculate
RLH_max RLH_min
Peak is low O<R; max<tin Yes Valley is low

No

Peak is high Valley is high
\4
|—> End

A

L

Figure 8. High and low extrema detection algorithm for “MMS-LH filter”. Compression of pre-
defined threshold #for Rrm max and Rrz min allows distinguishing low and high extrema.
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Figure 9. One possible way of combining all the developed methods for har-
vesting quality output.

3. Results and Discussion

3.1. Identifying Extrema

Each plot (a) and (b) of Figure 10 contains between 350 and 400 data points and shows
the identified extrema using the proposed “MMS max-min finder”, which is based on
Equation (7) and Equation (9). In both situations all the extrema were detected with a
window size of three (W = 3), which is the smallest valid size of the window. Results
show detection of all the extrema with 0% error. However, there is an interesting fea-
ture about detections, which can be sometimes defined as an incorrect detection as seen
in Figures 10(c)-(f). Plot (c) and (d) of Figure 10 show the case where two consecutive
maxima with the same value and two consecutive minima with the same value, respec-
tively. When W = 3, usually both the adjacent extrema of a certain extremum have op-
posite extremum type (e.g.: for a maximum, adjacent members are two minima). If one
adjacent extremum is with the same type extremum (e.g.: for a maximum, one adjacent
member is a maximum) implies that the intermediate points of relevant points have the
same value ((d) of Figure 10). Using the same criteria these detections can be excluded,

if necessary.
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Figure 10. Two plots of H. content of biogas data in two different months are presented meas-
ured in ppm. All the maxima in both the data sets ((a) and (b)) were identified by the new
method with the window side is three (W = 3). Plots (c), (d), (e), and (f) show identification of
special situations as extrema, even though they are existing derivative methods not consider as
extrema situations.

Plot (e) and (f) of Figure 10 show other different situations, where it has consecutive
minima and maxima of the same value. This also implies that the intermediate points
have the same value ((f) of Figure 10). If consecutive maxima have same values and the
order of occurrence is maximum then minimum, it can be considered as a discrete sad-
dle region in an increasing data segment ((e) of Figure 10). In the same manner, if the
two consecutive extrema have same value and the order of occurrence is minimum then
maximum, it can be considered as a discrete saddle region in a decreasing data segment
((f) of Figure 10). Using the same criteria these detections can be excluded, if neces-

sary.
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3.2. Identifying Dominating Extrema (Primary Filtering of Peaks and
Valleys)

The same two data sets shown in Figure 10 were filtered using MMS-WBF (MMS
Window based filtering) method for identifying the dominant extrema using a window
size of 9 (W= 9). Results of the detection process are shown in Figure 11 plots (a) and
(b) demonstrate that the MMS-WBF was capable to identify 50% and 59% of all extrema
as dominating extrema, respectively. However, out of the identified extrema in plots (a)
and (b), there are 0.12% and 0.09% of small peaks which are identified as dominating
extrema. These extrema cannot be visually justified as dominating extrema. Neverthe-
less, numerically they are the dominating extrema in the considered window size. One
possible option is to increase the window size, thus covering more data which enhances

the capability of removing more non-dominating extrema. However, when W > 3, all

20| 150 200
10/ .
o} +
0 100 200 300
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140| (b) 4
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20 45
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Figure 11. Plots (a) and (b) show the same data as plots (a) and (b) in Figure 10, filtered with
MMS-WBEF with a window size of nine data points (W = 9). MMS-WBF was capable of identify-
ing 53% and 58% of all extrema as dominating extrema. However, MMS-WBF identified 0.12%
and 0.09% of extrema in plots (a) and (b) as dominating extrema, which cannot be visually justi-
fied as dominating extrema. Though those are cannot be justifies as dominating extrema,
mathematically they are the dominating extrema in the considered window size. One possible
option is to increase the window size, thus the window would cover more data points. This will
remove more non-dominating extrema once a significant dominating extremum exists.
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the candidate points have not been checked. This is a disadvantage of increasing the
window size for filtering non-dominating extrema. In plot (d) of Figure 11, at the end
of the data set shows such an unidentified dominating peak due to W > 3 situation.

The combination of MMS max-min finder and MMS-WBF can be used in online
data checking. For that, first the window size ( W) has to be defined, and then the win-
dow accumulates the data, after which the desired detection technique is applied and
eventually the extrema are located. Subsequently, window is advanced by one data
point and awaits the next data point. After the next point is captured, the extrema-
check is performed again. This process is propagated throughout the process for locat-

ing extrema in an online environment.

3.3. Sharp and Gradual (Flat) Extrema Filtering

Figure 12 shows the results in relation with sharp and gradual extrema detection per-
formed based upon Ry, and R, as defined in Equation (15) and Equation (16), re-
spectively. Value of fm_mus for Rym and R was set as 1 (K = 1/ (n —1) ). Plot (a) and (b)
of Figure 12 show the filtering of extrema, first with MMS-WBF for W = 3 and then
with MMS-SG filter. Plot (c) and (d) of Figure 12 shows the filtering of extrema with
MMS-WBEF in the case of a window size of 9 (W = 9) and then with MMS-SG filter.
When compared, plots (a) and (b) of Figure 12 show 78% and 77% less number of all
extrema than number of extrema shown in plots (a) and (b) of Figure 10. When the W
is small (W = 3) filter excludes some extrema seems to be very high (Vi, Py, P,, and P;
shown in plots (a) and (b) of Figure 12), which can be considered as wrong detection.
However, according to Equation (11) and Equation (13), rejections of those points are
mathematically correct. This happens due to usage of small window size for extrema
detection. Thus, one solution for overcoming this situation is to use lager window size.
Plots (c) and (d) in Figure 12 show identification of V,, Py, P,, and P; after increasing
the window size to nine (W= 9). After applying large W (W = 9) almost all the flat ex-
trema have been rejected. Even after increasing the W still extrema such as P, are re-
maining, because Wis not big enough to reject such points (Ze. in the selected window
size, the extremum point is located significantly away from other points). In general,
plots (c) and (d) of Figure 12 show 0.46% and 0.75% fewer extrema in comparison with
plots (a) and (b) of Figure 12 and all the detections and rejections are agreed with the
developed method. Therefore, the ratios MMSyud MMSmin and MM Sin/ MMSyax can be
considered as filtering criteria and a reliable technique for filtering sharp and gradual

(flat) extrema.

3.4. High and Low Extrema Filtering

As per the results shown in Figure 10 and Figure 12 it is very clear that the “primary
filtering” and consideration of MMSna/ MMSmin and MM S/ MMSr.x are not capable
of filtering extrema based on magnitude of their prominence or crater. The results
shown in Figure 13 are the results in relation with the method MMS-LH, which is in-

tensively developed focusing on filtering extrema with low prominence or crater.
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Figure 12. Filtering of sudden and gradually developed (flat) extrema using MMS-SG technique. Data in plots (a) and (b)
were first checked for extrema with a window of size three with MMS-WBE. Data in plots (c) and (d) were first checked for
extrema with a window of size nine with MMS-WBE. Then ratios MMSmax/ MMSnin and MM Smin/ MMSmax considered and all
the plots were checked for sudden and gradually developed extrema with threshold value fym my = 1. When the window size
is small, extrema such as Vi, P, P2, and P; remain undetected. However, increasing the window size let those points to be
detected (plots (c) and (d)). Even after increasing the window size, points that have very small extrema such as P4 will de de-

tect as an extrema.

Before applying MMS-LH, data points (plots (a) and (b) of Figure 13) were first
checked for extrema with a window size three with MMS-WBF and data in plots (c)
and (d) of Figure 13 were first checked for extrema with a window size nine with
MMS-WBF. Point V, in Figure 13(a), which seems to be a valley with high crater, yet
remains as unidentified. To be qualified as an extrema with higher prominence or cra-
ter, first, the extremum must be a perfect extremum. However, with W= 3, V, is not a
perfect extremum. Therefore, the rejection is logical as well as mathematically correct.
Nevertheless, in Figure 13(c), point V, is identified as a valley, because the large win-
dow size (W = 9) makes V, a nearly perfect extremum. Therefore, using W > 3 with

appropriate filter criteria the method can be used for filtering extrema with low and
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Figure 13. Filtering of low and high extrema using MMS-LH filtering technique. Data in plots (a) and (b) were first
checked for extrema with a window of size three with MMS-WBF. Data in plots (c) and (d) were first checked for
extrema with a window of size nine with MMS-WBF. Then Ri# max and Rizmin were considered and all the plots
were checked for low and high extrema with threshold value ## = 0.05. When the window size is small, extrema
such as Vi remain undetected. The reason is for such detection is that the one point (point C) is located very close to
the extremum (extremum is not a perfect extremum). However, increasing the window size (W = 9) makes Vi a

nearly perfect extremum and detected in plot (c).

high prominence or crater.

3.5. Drawbacks of Using Large Window Size for Extrema Filtering

In Figure 10, Figure 12, and Figure 13 plots with lager window size, (W — 1)/2 points

from the beginning as well as from the end will not be checked, where Wis the window

size. If there are matching extrema existing in these regions, they also remain as uni-

dentified (Figure 12 and Figure 13). This is disadvantageous when using large window

size, on the other hand if there are enough data points available, the issue is resolved.

However, this is a problem for small data sets. Checking unchecked areas with a smaller

window is one possibility for resolving this issue. However, results from two different

window sizes will lead to violate the homogeneity of the results. The second method is

to start the window before a certain number of data points (w/2). Then part of the
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window is laid on a non-data region. Using a suitable padding, this part can be filled.
For example, the entire data in non-data region in the start can be padded with starting
value. Also, at the end suitable padding technique can be used to fill the part of the

window in the non-data region.

3.6. Possibility of Use as a Data Segmentation Technique

Usually, dominating peaks and the valleys can be considered as turning points of a cer-
tain property of a signal, if those dominating extrema are not outliers. Thus, dominat-
ing peaks and valleys are good points for segmenting a signal as well as identifying gen-
eral trends. Figure 14 shows an attempt to accomplish such a segmenting approach
using the developed method. Figure 14 contains a data set with around 4600 data
points and only the MMS-WBF (dominating extrema identification technique) tech-
nique was applied as the filtering technique. For testing segmenting capabilities of the
method, considerably large Wwas used (W= 155 in plot (a) and W= 255 in plot (b) of
Figure 14). In both situations segmentation and general trend identification shows
highly promising capabilities. Existences of more than one adjacent similar types of ex-
trema violate the trend identification and segmentation (Ze. existence of maximum af-
ter a maximum instead of minimum). Circled areas in plot (a) of Figure 14 show two
such occurrences. However, removing unnecessary adjacent peaks or valleys while
keeping singular important peaks or valleys, is one solution for overcoming this prob-
lem. Thereby it is necessary to develop a methodology for removing less important ex-
trema. Increasing the W is another way of overcoming the said drawback. Plot (b) of

Figure 14 shows situation of increased Wand detection with less adjacent same type of

7 7| (b)
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5 5
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3 3
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Data Segment points

Figure 14. Usage of “MMSmax-min finder” as a segmentation technique and trend identification technique. Plot (a)
and (b) use window size 155 and 255, respectively. When the window side is low (W= 155) segmentation and trend
identification is distracted due to occurrence of adjacent same type extrema. In plot (a) such two occurrences were
circled. Increasing the window size produces better segmentation as shown in plot (b). However, this leads to ignore
some trends as circled in plot (b).
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extrema than plot (a) of Figure 14. However, this technique lead to ignorance of some
features in the signal as circled in plot (b) of Figure 14. Therefore, determining of
proper Wis an essential factor for better identification of segments as well as trends.
Nevertheless, the method can be used for at least fast segmentation and trend identifi-
cation method.

4. Conclusion

The introduced extrema finding method named as “MMS Max-Min finder” and three
different extrema filtering methods named as MMS-Window Based Filter (MMS-
WBF), MMS sharp and gradual extrema filter (MMS-SG), and MMS low high extrema
filter (MMS-LH) are non-parametric. Therefore, filtering can be done without consid-
ering domain dependent parameters such as height and width of an extremum. Results
prove that the detection is capable of identifying all the extrema with 0% error. When
the window size is nine (W = 9) MMS-WBF reported 0.12% and 0.09% wrong detec-
tions. However, a combination of MMS-WBF and MMS-LH filter with window size
nine (W= 9) was capable of eliminating the error. Despite of the dynamic nature of the
data, the results were consistent and robust for the same detection criteria. Thus, using
proper window size, it is possible to achieve robust and consistent outcome with dy-
namic data such as biogas data. Furthermore, MMS-WBF shows promising outcome in
the direction of segmenting and trend identification of signals. Hence, MMS-WBF can

be enhanced as a segmenting and trend identification technique.
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Abstract: Big data are visually cluttered by overlapping data points. Rather than removing, reducing
or reformulating overlap, we propose a simple, effective and powerful technique for density cluster
generation and visualization, where point marker (graphical symbol of a data point) overlap is
exploited in an additive fashion in order to obtain bitmap data summaries in which clusters can be
identified visually, aided by automatically generated contour lines. In the proposed method, the
plotting area is a bitmap and the marker is a shape of more than one pixel. As the markers overlap,
the red, green and blue (RGB) colour values of pixels in the shared region are added. Thus, a pixel
of a 24-bit RGB bitmap can code up to 22 (over 1.6 million) overlaps. A higher number of overlaps
at the same location makes the colour of this area identical, which can be identified by the naked
eye. A bitmap is a matrix of colour values that can be represented as integers. The proposed method
updates this matrix while adding new points. Thus, this matrix can be considered as an up-to-time
knowledge unit of processed data. Results show cluster generation, cluster identification, missing
and out-of-range data visualization, and outlier detection capability of the newly proposed method.

Keywords: big data; clustering; contour lines; data and knowledge visualization; knowledge retrieval;
mining methods and algorithms; missing data; real-time systems

1. Introduction

Plotted data are visually cluttered by overlapping data points. Reducing, avoiding and
reformulating (as a cluster) such overlap are the three major techniques recommended for clutter
reduction in the data visualization field [1-5]. However, especially with large numbers of overlap,
reducing and avoiding techniques are not feasible [4,6] and reformulation is a complex task [4,7].
In contrast, the method we introduce in this paper incorporates overlaps to generate density clusters
without reducing, avoiding or reformulating overlaps. The proposed method requires more overlaps
for better cluster formation and better visualization, which contrasts the general practice. Furthermore,
the proposed method can be considered as an anytime cluster formation technique (without a separate
cluster identification algorithm), which provides faster cluster generation than online methods [8].

Limiting the number of data points on a plot is the most popular technique to avoid overlaps [6].
Typically, when there are few data points, the probability of an overlap occurring is low. Changing
the opacity of data points and displacing data points that address the issue of overlapping are among
overlap reducing techniques [4]. Changing the opacity of data points enables the identification of small
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numbers of underlying or partially overlapping data points [4]. Displacement (agitating or jittering) is
a technique that randomly moves a data point over a small distance to overcome the overlap [4,6,9].
However, when too many overlaps occur, limiting the number of data points, changing the opacity or
displacing data points does not work very effectively. Reformulating overlapped data points as density
clusters is a solution for eliminating the overlap that represents different overlapping density ranges as
different clusters, even with big data. The final output depends on the cluster identification algorithm.

In real-world applications, overlapping increases the colour intensity of a redrawn area in contrast
to other areas of a picture and hence generates a visually identifiable cluster. This phenomenon indicates
that the number of overlaps is proportional to the colour intensity. We have found that step-by-step
increase of the colour value of a pixel in a bitmap resembles the phenomenon of overlapping. This
motivated us to develop a method to overcome overlapping data points by means of a bitmap. To deal
with such a situation, we use bitmaps, clustering techniques, cluster representation techniques and
contour lines.

A bitmap is the major component of our proposed method for plotting data and is a raster graphics
image comprising a rectangular array of pixels [10]. There are different methods to represent the colour
of pixels. The 8-bit RGB and 8-bit red, green, blue, and alpha (RGBA) formats are the most popular
methods [6]. The RGB format uses the red, green and blue colour channels, whereas the RGBA format
uses the red, green, blue and alpha colour channels, where the alpha channel determines the level of
transparency of a colour [11]. In both formats, each colour component has 8 bits representing 256 codes
(values of 0-255) for each of the R, G and B channels. The colour value of a pixel is represented as a
combination of channel values separated by commas (e.g., dark green in RGB: (0, 100, 0) and in RGBA:
(0, 100, 0, 0)). In general, if the total effective bit length of a pixel is 1, a pixel can represent 2" colours.
Thus, the 8-bit RGB and 8-bit RGBA formats can represent 224 and 232 different colours, respectively.
If the whole bit series of a pixel is considered as a single channel, then each pixel is a number of base
256 (e.g., dark green in RGB: (0, 100, 0) = 25,600). Thus, a bitmap is a matrix that contains numerical
values. The visual representations of these numbers indicate different colours. If these numbers are
used to represent up-to-time processed data, the bitmap becomes an up-to-time knowledge unit. This
is a different usage of bitmaps for representing data.

As already mentioned, clustering is the most popular technique and is capable of eliminating
overlaps, especially with big data. Overall, the process of cluster identification is comprised of three
components: data (database), algorithm and cluster information (processed data). The processed data
are represented in different forms, primarily as data in a database or as visualized output. In almost
all clustering methods, clusters are first determined by a separate algorithm and then visualized
by a suitable technique. Typically, clusters are represented as a visual output such as a histogram,
scatterplot or scatterplot matrix [12]. The graphical output is used only as a visual aid to facilitate
the understanding of the clusters. The graphical output cannot be used as a source of processed data
for another algorithm. After the cluster analysis process, it is sometimes still possible to find some
unidentified clusters. In this case, the general practice is to modify the existing algorithm or introduce
anew algorithm to identify new patterns. In contrast, the proposed method does not require a separate
algorithm to identify density clusters as it generates clusters on the bitmap while adding data points.

This new approach based on overlapping data points provides a mechanism to access and view
information directly without further processing. Our findings are highly relevant for applications in
fields of big data visualization, process control, data modelling and bit data representation.

1.1. Related Work

As mentioned above, the proposed method is based on clustering. Therefore, clustering techniques
used for clutter reduction are the most related techniques. Clustering or cluster analysis is an
unsupervised (i.e., it requires no training data sets) data classification method [13-15] for identifying
homogenous groups of objects known as clusters [16-18]. Cluster analysis is used in many fields,
such as knowledge discovery in databases (KDD), pattern recognition, image analysis, and machine
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learning and data mining [19-24]. Typically, existing clustering techniques used for clutter reduction
eliminate overlaps by representing a group of data points or a group of lines by means of a single
data point or line [2,3,25,26]. After identifying clusters, these clusters can be used to understand and
identify correlations, patterns, features and outliers in the data set.

There are several special methods based on clustering that are intensively related to elimination
of overlaps such as heat maps [27-29] variable binned scatter plots [30], hierarchical multi-class
sampling [5] and Splatter-plots [31]. A heat map represents data in a matrix using a colour scale
that represents the values in the matrix. The quadrat method is a popular technique for creating
such a matrix [32-34]. The hierarchical multi-class sampling technique is another effective technique
for showing specific feature-clusters by enhancing density contrast by means of different colours.
The visual exploration system developed by Haidong et al. is a good example of such an approach [5].
The variable binned scatter plots technique allows visualization of large amounts of data without
overlaps [30]. This technique incorporates variable size bins [35] and classifies them into different
groups using a colour scheme. The Splatter-plots technique automatically groups dense data points
into contours and samples the remaining points. Colour blending is used to reveal the relationship
between data subgroups after processing the whole data set. Pre-processing of the original data is
a compulsory step for all these cluster visualization techniques to convert the original data into the
desired format. In contrast, the proposed method does not require pre-processing of the original data
prior to visualization.

A contour line is a different technique used to indicate clusters. The term contour line (also known
as isolines, isopleths or isarithms) was originally used in the cartography field. According to Imhof,
“Contour lines are lines on the map depicting the metric locations of points on the Earth’s surface at
the same elevation above sea level” [36]. However, contour lines are also used to map equal values
for other properties such as temperature or pressure. In a contour map, contour lines with a certain
interval display different values. The main feature of a contour map is that each contour line indicates
a certain value, and it is impossible to have crossing contour lines. This technique is used to show the
borders of clusters in kernel identification methods [37,38]. The proposed method creates contour lines
automatically to separate different density clusters.

2. Methodology

In a bitmap, the coordinates of a pixel specify its location. As in a common plot, these coordinates
can be used to represent parameter values (dimensions) that can be considered as data. In addition,
the colour value of the pixel can be mapped with information related to the data, e.g., the number of
overlaps (or data density) in the proposed method. Furthermore, updating the colour value of the pixel
resembles updating the information. An individual pixel is capable of holding 2" number of different
values; thus, a pixel is a memory cell or a knowledge cell. Therefore, we introduce a bitmap that forms
a graphical knowledge unit (GKU) out of knowledge cells to represent data and information.

The clustering range of influence is defined as the radius around the cluster centre (the highest
density data point of the cluster) [39]. When the clustering range of influence is small, many small
clusters are produced. In contrast, when the clustering range of influence is large, a few large clusters
are produced. When developing the proposed method, we used the size and shape of a marker
(a graphical symbol of a data point) and the position of a data point in the marker to characterize
the clustering range of influence. The shape and size of the marker are used to depict the effective
clustering range of influence. Typically, the marker is comprised of several pixels. From these pixels,
we use one pixel to represent the data point. For example, if the marker is a circle with a diameter of x
pixels, the data point is represented by the pixel in the centre of the circle. Figure 1 shows an example
of such data point. Here we have highlighted the location of the data point using a different colour,
whereas in reality, no distinct colour is used for this.
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Marker ===f Data point
location

Figure 1. Definition of marker in graphical knowledge unit (GKU): The marker is a circle (radius =
10 pixels), and the RGB colour value of the circle is (0, 0, X), where 0 < X < 255. The centre of the circle
represents the data point (highlighted).

2.1. Colour Coding Method

When an overlap occurs, there is always a shared area (intersection) between both existing and
newly added markers. We then update the colour of the overlapping area by adding the colour values
of pre-existing and newly added markers (Figure 2A). When adding colour, the colour of each pixel
in the shared area is updated according to the Equations (1) and (2). We first convert the colour of a
pre-existing pixel in the shared area and the corresponding pixel of the newly added marker using (1).
Subsequently, we add those two values and convert the single value to an RGB value using (2). Finally,
we update the considered pixel in the shared area using the new colour derived from (2). Applying this
technique for all pixels in the shared area updates the colour of the shared area (Figure 2B). The colour
of the new marker is applied if there is no overlap.

Pre-existing data Newly added data
point point
RGB = (0, 0, X) RGB=(0,0,Y)

Overlapped area
If X +Y < 255 then RGB = (0,0, X +Y)
Else, RGB = (0,1,(X + Y — 255))

Figure 2. (A) Two overlapped markers; and (B) overlapped markers. The data point is represented by
the pixel in the centre of the marker (the data point is highlighted in orange).

If Cy is the single integer colour value of a pixel, Ry is the red colour value, Gy is the green colour
value and By is the blue colour value, then

Cy =Ry x 2562 + Gy x 256! + By x 256°. (1)
The function QUOTIENT(<numerator>, <denominator>) performs division and returns only the
integer portion of the result. If C, = Ry, C; = Gy and Cy = By, then
2 . . .
Ci = QUOTIENT( Cy — ) _ (G +j x271),256' |;ie{2,1,0} and Cx = Owhenk >2. (2)

=1

For example, according to Equation (1), a pixel with RGB colour (1, 2, 3) can be represented as
66,051 (1 x 2562 +2 x 256! + 3 x 256°). In addition, when Cy = 66,051, according to Equation (2), C; = 1,
C1 =2and Cp = 3. Because C; = Ry, C; = Gy and Cy = By, the RGB representation of 66,051 is (1, 2, 3).
Note that only these two equations are used for density calculation and density cluster formation.

2.2. Data Preparation

Because the location (coordinates) in a bitmap is a positive integer, it is impossible to depict
decimal and negative values. In addition, it is impractical to represent a very large range of numbers
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with bitmaps, as this would require a very large bitmap. Applying transformation techniques is one of
the ways to overcome these challenges. Base line correction is used to eliminate negative values and
very large values. This gives a value range that begins from zero. Scaling up or down is applied to
overcome very small and very large ranges, respectively. If the data set is a combination of negative,
decimal and large values, the respective transformations must be implemented accordingly. Finally,
a suitable offset is used to shift the data from the origin. Table 1 shows the basic transformation
techniques used for the different value types.

Table 1. Transformation rules used to convert numbers into integers. Depending on the nature of the
data, a combination of two or more techniques may be required to achieve a data set suitable to plot on
a bitmap.

Value Type Transformation Technique

Base line correction. This will convert all negative values to

Negative integer values .. . . .
positive values while maintaining the same regression.

Base line correction. This will convert large numbers to small

Very large values . S -
yarg numbers while maintaining the same regression.

Multiplication by 104 defl,2,3,... }). This will convert decimal

Decimal values . . .
values to integers (we named d as “decimal to integer factor”).

Small or large range Scale up or down. This will change the range.

2.3. Visualization of Missing and Out of Range Values

A method that can show missing data and data that have unexpected (out of range) values would
provide important information for understanding the quality of the data. We have included two border
regions in the GKU for recording missing values and data with out of range values. In these borders,
different regions are defined to identify the nature of the missing or out of range data (Figure 3). If there
are missing or out of range values, these are shown on the relevant border region of the bitmap in the
same manner as regular data points (Figure 3).

xwir- Minimum value of x
Toma- Maximum value of x
Yoir- Minimum value of i
Your- Maximum value of y

D Value out of range border*
- Missing value border®
D GKU specific data area*

—
\{() Border reagion number

GKU specific information as

integers (equal colour)

Figure 3. GKU with borders to record missing and out of range values: (1) ¥ > Ymax at x = x; (2) X > Xmax
and ¥ > Ymax; (3) X > Xmax at y =, (4) X > Xmax and ¥ < Ymin; (5) ¥ < Ymin at x = x; (6) X < Xpin and
Y < Ymins (7) X < Xpin at y = ¥; (8) X < Xmin and ¥ > Ymax; (9) ¥ is missing and x < xpin; (10) y is missing
at x = x; (11) y is missing and x > xmay; (12) both x and y are missing; (13) x is missing and ¥ > Ymax;
(14) x is missing at y = y; and (15) x is missing and y < Ymin. * Shading is used in the figure to highlight
different areas. In the real GKU, there will be no shading.
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2.4. Embed GKU Specific Information into Bitmap

The GKU contains several parameters related to data transformation, marker type (circle, square,
etc.), marker dimensions, marker colour and border information (width of borders of missing and
unexpected values). This GKU information could be stored in a separate file; however, it would be
more convenient if this information was embedded in the same bitmap file as integers (=colour). Thus,
at the bottom (or top) of the bitmap after (or before) the real data points, the GKU specific data are
depicted with the respective colour (Figure 3). The starting location (offset) of the GKU specific data
area is stored in the first unused slot of the bitmap header (Table 2).

Table 2. Bitmap header (example of an m x n pixel bitmap with red, green, and blue (RGB) (24-bit)
colour scheme) * this unused slot is used to store the offset for graphical knowledge unit (GKU) specific
data. BM: a value in Bitmap Header.

Header Section Offset Size/Bytes Value Description
0 2 “BM” Identification (ID) field
2 4 D%ZE:: diyfn}ée?i? . Size of the BMP file
Bitmap (BMP) ' &
Header (14 Bytes) 6 2 Unused * Application specific
2 Unused Application specific

Offset where the pixel array

10 4 54 Bytes (14 + 40) (bitmap data) can be found
12
Device-independent 40 Bytes
bitmap (DIB) header "~~~
50
51

Bitmap data m X n x 4 Bytes

As discussed above, it is necessary to convert GKU specific data into integers to embed this
information into the bitmap. However, certain properties such as marker type or negative values
cannot be mapped directly with the colour value of a pixel. Therefore, a protocol is required to map
this information. The existing 24-bit pixel RGB structure can represent positive numbers. We refer to
this as the unsigned 24-bit pixel format. In addition, using 24 bits, it is possible to represent negative
integers, where the first bit is used to indicate the sign of the value (e.g., 1 = negative and 0 = positive).
We refer to this as the signed 24-bit pixel format. Furthermore, any number can be represented as a
product of an integer and a power of ten (e.g., —123.45 = —12345 x 10~2). Thus, any number can be
represented (one for the integer part and the other for power of ten) with two pixels in the signed 24-bit
single pixel format. Finally, the structure of the GKU specific data is designed as shown in Table 3
using relevant number representation techniques.
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Table 3. Example of GKU specific data layout. The value K is the starting location (offset) of the GKU
specific data area. The value of K is stored in the first unused slot of the bitmap header.

GKU Specific  Offsetof  No. of Content in the Pixels, Pixel Format Used to Example
Data Pixels Pixels According to the Order Store Information P
. Data point = Circle (1 = circle, . .
Prﬁe;iioi K 3 2 =square, ... ), radius of the unsi;glll?drﬁ;)lt 1,10,1
po € circle, colour of the circle. pixelio
Out of range border, missing . .
Border widths K+1 5 value border, GKU specific data unsi;grluzdrf;llilt 10, 10,10, 1, 10
border, border padding, offset. pretto
X value Minimum value, maximum value, 0 | o0 24 bit (65, 0), (90, 0),
. . K+2 8 decimal to integer factor, scale .
information pixel format (10, 0), (2,0)
up/down factor.
Y value K13 g Ic\l/gglmma‘l“gYﬁi‘éeeﬁz’éi‘;“;ﬁa‘l’zme two signed 24-bit (223, —2), (9055, —3),
information & ’ pixel format (10, 0), (3, 0)

up/down factor.

2.5. GKU Evaluation Method

We tested the new method using automatically recorded data from near-infrared (NIR)
spectroscopy at a biogas plant over a period of nearly 75 days with a frequency of 20 values per
hour (35,620 data points). Volatile solid (VS) and volatile fatty acid (VFA) concentrations were selected
as dimensions. The selected data were part of a data set used to develop NIR spectroscopy online
calibration for monitoring VS and VFAs as process indicators during anaerobic digestion [40]. In the
selected data set, there were some missing data. The missing data were ignored in the offline version
of the GKU; however, missing data were considered in the online version. Thus, in the online version,
the total number of data points was 35,864.

The creation of a GKU for an online situation was tested by simulating an online environment.
An out-of-range data environment was artificially created by replacing some of the missing data with
very high and very low values. In the missing data, for some data points, only the x or y parameter
was missing, whereas for others, both parameters were missing. The method was implemented with
Visual Studio 2008 (Net framework version 3.5 SP1) (Microsoft Cooperation, Way Redmond, WA,
USA). MATLAB (Version 7.4.0) (The MathWorks Ins, Natick, MA, USA) was used to create plots that
were required to validate the proposed method.

3. Results and Discussion

Determination of the type, size and colour of the marker strongly influences the visual standard
and cluster formation of the final GKU output. Therefore, it is very important to select the best
combination of those features before creating the real GKU. We determined the best combination
after conducting a series of trials. Figures 4 and 5 show several GKUs for the same data set with two
different markers (circle and square) and different combinations of features such as size and colour.
In Figure 4, the diameter of a circle is equal to the length of one side of a square in the corresponding
plot in Figure 5. When comparing corresponding plots in Figures 4 and 5, it can be seen that visual
notion of clusters in Figure 5 are more intensive than in Figure 4. A square comprises more pixels than
a circle whose diameter is equal to the length of one side of a square. This generates more overlapping
when a square is used. Plot D in both figures is a good example.

In both figures, bitmaps A, B and C do not show adequate numbers of visual clusters. In contrast,
bitmaps F, H and I show too many clusters, especially visually. Bitmaps D, E and, in particular, G show
an appropriate number of clusters. In general, the correct selection of marker size and initial colour will
produce clusters with good visual standards. We selected a circle as the marker for generating GKUs,
because plots with circles produce better overall visual clarity than squares. Therefore, all results are
based on circles with different diameters and colours. We show colours (0, 0, 1) to (0, 0, 10) in this
section; however, plots with other colour values are also presented in this paper.
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Diameter: 5 pixels
Colour: RGB = (0,0,1)|

Marker: Circle
Diameter: 10 pixels
Colour: RGB = (0,0,5)

Marker: Circle
Diameter: 10 pixels
Colour: RGB = (0,0,1)

Marker: Circle
Diameter: 10 pixels

Colour: RGB = (0,0,10)

Colour: RGB = (0,0,10)

Marker: Circle
Diameter: 20 pixels
Colour: RGB = (0,0,5)

Marker: Circle
Diameter: 20 pixels

Marker: Circle
Diameter: 20 pixels
Colour: RGB = (0,0,1)

Figure 4. GKUs for the same data set with 35,620 data points using a circle as the marker with different
sizes and colours. The correct selection of shape, size and initial colour of the data point will produce
clusters that are visually clear and separated by colour borders similar to contour lines. For data set of
plots in this figure, see Supplementary Materials, File S1. (A): GKU for 35,620 data points generated
using a circle as the marker, where diameter is 5 pixels and RGB colour is (0, 0, 1); (B): GKU for 35,620
data points generated using a circle as the marker, where diameter is 5 pixels and RGB colour is (0, 0, 5);
(C): GKU for 35,620 data points generated using a circle as the marker, where diameter is 5 pixels and
RGB colour is (0, 0, 10); (D): GKU for 35,620 data points generated using a circle as the marker, where
diameter is 10 pixels and RGB colour is (0, 0, 1); (E): GKU for 35,620 data points generated using a
circle as the marker, where diameter is 10 pixels and RGB colour is (0, 0, 5); (F): GKU for 35,620 data
points generated using a circle as the marker, where diameter is 10 pixels and RGB colour is (0, 0, 10);
(G): GKU for 35,620 data points generated using a circle as the marker, where diameter is 20 pixels and
RGB colour is (0, 0, 1); (H): GKU for 35,620 data points generated using a circle as the marker, where
diameter is 20 pixels and RGB colour is (0, 0, 5); (I): GKU for 35,620 data points generated using a circle
as the marker, where diameter is 20 pixels and RGB colour is (0, 0, 10).
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e "'llll.ll-.'
Length ||'|l| els
Colour: RGE = (0,0,5)

Marker Scjuart
Length: 20 pixels |
Colour: RGB = (0,0.1) |

Marker Squar
Length: 40 pixels
Colour: RGB = (0,0,5)

Figure 5. GKUs for the same data set with 35,620 data points using a square as the marker with different
sizes and colours. The correct selection of shape, size and initial colour of the data point will produces
clusters that are visually clear and separated by colour borders similar to contour lines. For data set of
plots in this figure, see Supplementary Materials, File S1. (A): GKU for 35,620 data points generated
using a square as the marker, where length is 10 pixels and RGB colour is (0, 0, 1); (B): GKU for 35,620
data points generated using a square as the marker, where length is 10 pixels and RGB colour is (0, 0, 5);
(C): GKU for 35,620 data points generated using a square as the marker, where length is 10 pixels and
RGB colour is (0, 0, 10); (D): GKU for 35,620 data points generated using a square as the marker, where
length is 20 pixels and RGB colour is (0, 0, 1); (E): GKU for 35,620 data points generated using a square
as the marker, where length is 20 pixels and RGB colour is (0, 0, 5); (F): GKU for 35,620 data points
generated using a square as the marker, where length is 20 pixels and RGB colour is (0, 0, 10); (G): GKU
for 35,620 data points generated using a square as the marker, where length is 40 pixels and RGB colour
is (0, 0, 1); (H): GKU for 35,620 data points generated using a square as the marker, where length is
40 pixels and RGB colour is (0, 0, 5); (I): GKU for 35,620 data points generated using a square as the
marker, where length is 40 pixels and RGB colour is (0, 0, 10).

3.1. Reading GKUs

There are two methods for reading or understanding a GKU. The first method relies on an
algorithm (computer-aided method). A GKU is a bitmap and a bitmap is a matrix of pixels; therefore,
the content of a GKU can be converted into a matrix of integers (GKU matrix) using (1) (Figure 6).
In Figure 6, we used the RGB colour (0, 0, 254) for the marker. These integers in GKU matrix represent
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the data density of a particular location and can be used to extract or derive information. This feature
is an advantage of the GKU over existing clustering methods.

Width = n pixels Width = i columns
<
a

W

/
W

oy ﬁ § .
E Q:D g m x n matrix of integer
= =
& || Below shows a matrix of
b Z{| asmall portion of GKU
&= ooy . .
= 3 (10 pixels = 10 pixels).
z T

h 4 W

10 = 10 pixel area

130330 | 130330 | 133874 139484 | 140249 | 138719 | 135659 | [33109 | 131068 | 126989

114749 | 117808 1223909 125714 | 120224 125459 | 12329 123168 | 119849 | 115514
104204 110159 113219 116534 | 115259 114230 | 482958 L1179 | 108620 | 105514
95879 FT04 104039 105824 | 105314 10301% | 103019 100214 | 96899 F1544
4149 BE233 Q0269 92163 Q3077 S04 BT 20 A0 #3129 B1599
74714 7700 FO304 BO324 TETO4 77774 TR029 7229 7199 TRA9

63494 (3454 642549 (3749 (3749 63494 62729 G639 50414 56564
52019 55844 SO0 57119 55589 55584 52784 315089 50234 4849
40raa 41554 43604 J48T 44114 43859 41564 40544 418149 41308
32Ms 35699 3724 3o 36719 353 35189 24 33634 32384

Figure 6. Relation between bitmap and matrix versions of a GKU. A GKU matrix is a simple way to
represent the same GKU. Marker: circle, radius: 10 pixels, marker colour: (0, 0, 254). The table shows
the colour values of 10 x 10 pixels in the bitmap, which is a portion of the GKU matrix.

The second method is reading visual information by considering the presented graphical output
(observation) as a usual plot. The GKU plot does not include a colour scale or legend to aid the
understanding of the clusters. However, clusters and density of clusters can be determined with the
aid of colour boarders that are automatically generated due to sudden change of colour values of
adjacent pixels in the GKU. These colour boarders are identical to contour lines and maintain the same
colour value difference between consecutive borders as in a contour map (Figure 7). For example,
consider the RGB colours (0, 0, 255) and (0, 1, 0). According to Equation (1), colour values (C,) of RGB
colour (0, 0, 255) and (0, 1, 0) are 255 and 256, respectively. The RGB colour (0, 0, 255) is blue and
RGB colour (0, 1, 0), which, next to (0, 0, 255), is visually black and create sudden change in colour
blue to black, even though the difference between colour values is 1. The table in the Figure 7 shows
the RGB values of the inner border (blue side) of each contour line. Usually, all colour borders are
visually the same. However, the green colour values (G) of those lines maintain constant difference of
one between adjacent colour borders; which resembles the contour lines (Figure 7). We numbered the
contour lines from the outside to the inside (i.e., 1,2, 3, ... ) and observed that contour lines with the
same numbers have nearly the same colour values (same green value + nearly the same blue value)
(Figure 7). Thus, it is possible to compare the density of different clusters even without a colour scale
or legend. This is another advantage of the GKU over existing clustering methods.
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Figure 7. Contour lines in a GKU. Representation of 35,620 data points; marker: circle, radius: 20 pixels,
marker colour: (0, 0, 1). This shows clear colour borders that can be considered as contour lines.
Contour lines are numbered from the outside to the inside of the cluster. Contour lines with same
contour line number have the same green channel value. For such contour lines, blue channel values
are in the same range. The higher the number of contour lines, the higher the data density. Therefore, it
is possible to understand cluster density without a colour scale or legend. For data set of plots in this
figure, see Supplementary Materials, File S1.

3.2. Anytime Cluster Formation

Note that the GKU is not a cluster analysis method; it is an anytime cluster formation method.
As above mentioned anytime techniques make an explicit effort to speed up the cluster generation.
The related methods discussed in this paper process all existing data to find clusters. If there are new
data, the data must be processed again to find new clusters or update existing clusters. In contrast,
the GKU shows up-to-time clusters and waits for new data. After adding a new data point, it is not
necessary to process the whole data set again to obtain the current state. Adding a new data point to
the GKU will update only those pixels that are covered by the marker. All other pixels in the bitmap
remain unchanged. This requires a relatively small computational effort. Because the GKU is a matrix
that is continuously updated, it can be seen as a continuous learning database of already processed
data. Usually, the process of knowledge extraction becomes more difficult when dealing with large
data sets because the algorithm needs to check a very large number of data points [41]. In contrast,
with the proposed cluster formation technique, the time for updating is independent of the number
of data points. The bitmaps in Figure 8 show the development of a GKU over time. All the plots in
Figure 8 imply the importance of overlapping in the GKU concept. Initially, the GKU does not show
clear clusters (Figure 8A). As overlap increases, the GKU shows clusters that can be easily identified
by the naked eye (Figure 8C,D).
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Figure 8. Development of a GKU over time. Bitmaps (A-D) show GKUs with 5000, 10,000, 20,000
and 35,620 data points, respectively. Marker: circle, radius: 10 pixels, initial colour of the data point:
(0, 0, 1). For data set of plots in this figure, see Supplementary Materials, File S1.

3.3. Representation of Missing and Out of Range Values and GKU Specific Data

When considering very large data sets, information about missing and out of range data is vital
because it provides a complete overview of the data and its quality. None of the existing clustering
methods is capable of visualizing this information. In contrast, the GKU is capable of indicating density
of out-of-range values as well as missing values (Figure 9). This makes the GKU a very efficient and
effective means of representing big data. The GKU shows the density of out-of-range and missing data
categorized in different regions (Figure 3). Figure 9 illustrates the use of a GKU specific data area to
save feature information such as marker type (circle, square, etc.), colour and dimensions and border
information (width of borders of missing and unexpected values). This information is saved as colours
after converting such feature information according to the standards listed in Table 3. Furthermore,
the initial row of the GKU specific data is encoded in the bitmap header according to the standards
listed in Table 2. Thus, GKU specific data can be identified by reading the bitmap header.

3.4. GKU as an Outlier Detection Method

The GKU can be used to identify outliers in a data set. If data points in low-density areas are
outliers, they will always have low colour values. Therefore, it is possible to define a certain colour
value in the GKU as a border for outliers. Then, all points with colour values below the colour value of
the border can be removed manually or by means of an algorithm. Figure 10 illustrates a very simple
way of identifying outliers in a very large data set using a GKU. If the GKU is visually interpretable,
it is possible to define a border to identify outliers by checking the colour value of the area. A very
simple bitmap reading application can be used to identify the colour values of each pixel and then
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manually define a border for outliers. If higher accuracy is required, this can be done by means of
an algorithm. Because the method is based on knowledge discovery in databases (KDD), this can be
considered an unsupervised outlier detection method [42,43].

Value out of range

< border*

Missing value

<
border*®
[ [ 1)
GKU specific p- ifi
— p GKU  specific
h information as data area*

colours™*

Figure 9. Representation of 35,864 data points in a GKU with borders to record missing values, out
of range values and GKU specific information. Marker: circle, radius: 20 pixels, colour of the data
point: (0, 0, 50). * Refer to Figure 3 for structure information and usage. ** Refer to Table 3 for structure
information about the GKU specific information. For data set of plots in this figure, see Supplementary
Materials, File S2.

Border (RBG = x,y,z)

Outliers (Low
colour value area:
RBG < (x,v,2))

Non-outliers (High colour value
area: RBG > (x,y,z))

Figure 10. Outlier identification using GKU by defining a border manually. Areas with low colour
values are defined as outliers (noise) and vice versa. Shape of the data point: circle, radius: 20 pixels,
colour of the data point: (0, 0, 254). For data set of plots in this figure, see Supplementary Materials,
File S1.

We compared the visual standards of the proposed GKU method with the three most popular data
representation methods: scatter plot, heat map and contour plot. Figure 11A—C show the visualization
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of 35,620 data points with a scatter plot, heat map and contour plot, respectively. All plots were
generated using MATLAB (Version 7.4.0). According to the Figure 11A, scatter plot does not support
for identifying data density in systematic manner. However, scatter plot is useful to illustrate the
nature of data distribution and this is the default usage of scatter plot. Nevertheless, heat map and
contour plot were employed to illustrate data density. The results show that the heat map was unable
to create clusters and the contour plot was unable to generate contour lines. Even after zooming, it
is difficult to identify density clusters with heat map and contour map. In contrast, the GKU could
generate both clusters and contour lines in the same bitmap which help to illustrate the nature of data
distribution in systematic manner, which can be identified by the naked eye (Figure 7). The GKU is
capable of indicating density of out-of-range values as well as missing values (Figure 3). However,
heat map and contour map have no method for representing out-of-range values and missing values.
Therefore, GKU can be considered as a powerful and efficient method for identifying density clusters.

SRS

5 e 5 H.ﬂ% 4} - \-"f‘l
LA P “/”*ﬁ‘?“*;
% &‘wg:cé%@iﬂ;
Figure 11. Visualization of 35,620 data points with: (A) scatter plot; (B) heat map; and (C) contour plot.

The scatter plot shows the distribution of the data, whereas the heat map and the contour plot show
density clusters. However, compared to the GKU, the heat map and contour plot do not show density

clusters. For data set of plots in this figure, see Supplementary Materials, File S1.

With the GKU approach, the marker has particular significance compared to a usual plot. In this
paper, we used the size of the marker to represent the clustering range of influence and the colour to
represent data density. However, the size, type and location of the data point in the marker and the
colour of the marker can be mapped with specific properties such as tolerance, error or minimum or
maximum distance between two data points. In addition, depending on the domain, these properties
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can be mapped with different features such as concentration (chemistry) or the signal strength and
coverage area of a transmitter (networking/electronics). In all GKUs shown in this paper, we used
the same colour for the pixels in the marker. However, using marker colour as a function of a certain
feature will result in different coloured pixels depending on the function. For example, the density
of seed propagation of a plant is not linear over distance. In this situation, the colour of the marker
can be mapped as a function of seed propagation and the area of propagation can be mapped to the
dimensions of the marker. If the propagation covers a certain area such as a sector, then the location of
the plant can be represented by the angular point of the sector.

An existing GKU can be used directly in an online environment as a trained set or template.
In addition, within an online environment, it is possible to recreate new versions of the GKU repeatedly
according to new value ranges. If the number of out of range data points is higher than a certain value
(e.g., more than x% of total data), a new GKU can be created according to the new range. Then, the old
GKU can be replaced with a new GKU and recording can continue.

The proposed method has three major drawbacks. The first is that the GKU cannot be applied to
non-overlapping data. The second is that the GKU is not capable of visualizing high-dimensional data.
The third is that the number of overlapping incidents is limited to 2", where 7 is the total bit length of
the colour format. This drawback can be overcome by using colour formats with higher bit length.

If a GKU is nearly full, red regions that did not occur in any GKU shown in this paper will appear.
This implies that we could handle a much larger number of data points than the maximum number
used in this study (35,620). We employed the three-channel RGB colour format with 8 bits for each
channel. To create larger GKUs, it is possible to use four channel colour formats (ARGB) and more than
8 bits per channel [44,45]. The 16-bit RGBA format provides a maximum of 2%* overlapping incidents.

4. Conclusions

The GKU is a container to process data that is capable of immediately maintaining and displaying
a large number of data points in a small area. The GKU can be seen as a combination of the quadrat
sampling method with contour lines. It is a very effective method for representing density clusters in
offline and online environments. In addition, the GKU is a continuous learning graphical database that
can be used as a direct input for another algorithm or as a trained set, template or signature for a certain
process. Furthermore, the GKU can be used to identify outliers effectively, particularly in data sets
with non-linear relations. In this paper, we presented a GKU with one dependent and one independent
variable. However, it is possible to use a GKU with RGB colour scheme to visualize one dependent
variable with three independent variables by assigning each colour slot for different independent
variables (R for variable 1, G for variable 2, etc.). The major requirement for this is that all independent
variables must be in the same value range. This would enable easy identification of correlations
between variables and would provide a convenient way to visualize multidimensional data in two
dimensions. In addition, compression and integration with swarm intelligence methods such as
monarch butterfly optimization (MBO), earthworm optimization algorithm (EWA), and elephant
herding optimization (EHO) will enhance the outcome of the GKU.

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/2073-8994/8/12/152/s1,
File S1: Data sets of all the plots in Figures 4, 5, 7, 8, 10 and 11, File S2: Data sets of all the plots in Figure 9.
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Abstract: A multi-variable visualization technique on a 2D bitmap for big data is introduced. If A and
B are two data points that are represented using two similar shapes with m pixels, where each shape
is colored with RGB color of (0, 0, k), when A n B # ¢, adding the color of A n B gives higher color as
(0, 0, 2k) and the highlight as a high density cluster, where RGB stands for Red, Green, Blue and k is
the blue color. This is the hypothesis behind the single variable graphical knowledge unit (GKU),
which uses the entire bit range of a pixel for a single variable. Instead, the available bit range of a
pixel is split, and a pixel can be used for representing multiple variables (multi-variables). However,
this will limit the bit block for single variables and limit the amount of overlapping. Using the same
size k (>1) bitmaps (multi-layers) will increase the number of bits per variable (BPV), where each (x, y)
of an individual layer represents the same data point. Then, one pixel in a four-layer GKU is capable
of showing more than four billion overlapping ones when BPV = 8 bits (2(BPYV x number of layers)) Then,
the 32-bit pixel format allows the representation of a maximum of up to four dependent variables
against one independent variable. Then, a four-layer GKU of w width and / height has the capacity
of representing a maximum of (2(BPY x number of layers)y .y « 1y x h overlapping occurrences.

Keywords: knowledge representation; continuous learning; cluster identification; big data

1. Introduction

Multi-variable analysis and graphical representation of data are two demanding factors in the
field of data analysis. Multi-variable analysis is a method for depicting the correlation between
variables, while graphical representation of data is a very efficient tool for abstracting information in a
multi-variable dataset. In addition, graphical representation usually conveys the intended information
more easily than text or numerical values [1]. However, when the numbers of available data are high,
it is difficult to represent all of the data points of a scattered dataset as a plot due to the high number of
overlapping data points, also called occlusion or over-plotting. This is one of the main issues in the
field of data visualization, which leads to the loss of data in projection [2]. On the other hand, when
the numbers of variables are high, special techniques are required to represent multi-dimensions on a
two-dimensional or three-dimensional space. The biggest challenge is to visualize multi-dimensional
big data.
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Density cluster identification is a technique that is used in the field of knowledge discovery in
databases (KDD) [3-6]. Furthermore, density cluster identification is a tool that is used to identify the
correlation between variables. In cluster visualization, first, relevant density clusters were identified
by means of a suitable algorithm, and then, those identified clusters were visualized by means of a
suitable data visualization technique. Therefore, data visualization is usually a representation method,
but not a cluster identification method [7]. The real cluster identification is done by algorithms.
Of course, good visualization techniques allow viewers to identify clusters easily. However, this does
not imply that these data visualizations are made for identifying clusters. As in multi-dimensional
data analysis, cluster visualization also suffers when the numbers of data points are high, especially
due to overlapping.

The term “big data” refers to datasets for which the size is beyond the capabilities of current
database technology [6,8,9]. According to Karimi, big data is a “collection of databases so large or
complex that it becomes difficult to process using regular database management tools or traditional
data processing applications” [10]. In this work, big datasets are addressed from the perspectives of
processing and representation. In data visualization techniques, it is hard to identify a specific method
that is capable of visualizing big data [6]. The major and most practical reason for this is that there
is no adequate space in a plot to visualize all of the data points. In the domain of a scattered dataset,
overlapping data are another barrier for visualizing big data. On the other hand, according to the
definition, big data are data requiring extreme methodologies for processing, as well as storage [11].

2. Related Work

Scatterplot matrices [12], parallel coordinates [13], Andrews’ curves [14,15], Radviz [16] and star
coordinates [17] are the most popular techniques used for visualization of multi-dimensional data.
Except for star coordinates, all of the other mentioned methods display the multi-dimensional data
on a lower-dimensional space in a way that additional effort is needed for understanding the original
number of dimensions [17]. In contrast, star coordinates directly visualize dimensions as groups in
the form of high density clusters in a two-dimensional plot [17]. Overlapping and a higher number of
scatter plots in a scatterplot matrix convey poor visualization [18]. Parallel coordinates are not suitable
for visualizing a higher number of records [2]. When there are higher numbers of overlapping points,
Radviz does not provide the expected output [2,17]. Andrews’ curves do not support visualizing clusters
of multidimensional space even though they support a large number of data points [2] and require
higher computational time for generating curves [19]. The star coordinates suffer from overlapping of
clusters of variables [17,20]. These facts imply that all of the above-mentioned techniques are facing
the lack of capabilities for visualizing multi-dimensional big data, in most cases due to overlapping
data points.

In reality, it is normal to observe missing data [21,22] and out of range data or outliers [23,24]
in most data acquisition systems. It is not always necessary to impute missing and out of range
data. However, it is good to visualize the amount of missing and out of range data, to understand
the magnitude and the nature of the distribution of such data. In the domain of big data, it is very
important to know the quantity and the nature of such data for better comprehension of the quality of
the data. When dealing with big data, missing and out of range data identification requires considerable
computational effort. Nevertheless, in all of the mentioned methods, there is no standard mechanism
included for showing missing and out of range data.

3. Concept of the Graphical Knowledge Unit

In 2015, a new way of representing density clusters was introduced for one dependent and
one independent variable using a bitmap. The method was named the “graphical knowledge unit”
(GKU) [25]. Overlapping data points are the main features that are used for creating a GKU. A higher
number of overlapping ones makes a GKU more meaningful and understandable. From its origin, a

GKU does not suffer from overlapping data failures. Mainly, a GKU visualizes data in the form of
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density clusters. Mostly, it is possible to identify high density visually and by means of an algorithm,
depending on the color density. In addition, a GKU provides a mechanism for visualizing the
amount and nature of the distribution of both missing and out of range data points along with the
density clusters. Thus, the GKU is sought as a reliable approach for big data visualization, especially
overlapping types.

Nevertheless, the GKU is not a solution for visualizing multi-variable environments. An extended
usage of the GKU for representing multi-variables using the same concept of the overlapping of
data points is investigated in this work. As in the GKU, the success of multi-variable multi-layer
(MVML)-GKU depends on having high data density for clustering purposes. Figure 1a shows a GKU
used for representing 35,864 data points, and Figure 1b, c show the 3D representation and heat map
representation of the GKU. Usually, for plotting 3D maps or heat maps, it is necessary to process the
data for creating the required matrix. In contrast, while using a GKU, it is not necessary to create such
a matrix and when adding data points. A GKU gradually forms the density areas by incrementing the
color intensity in overlapped regions.

(b)

700 700

Figure 1. (a) Representation of 35,864 data points a graphical knowledge unit (GKU); (b) representation
of the processed data of the same data in 3D; (c) representation of the processed data of the same data
in a heat map.

In the proposed method, the concept of the GKU is used to represent a multi-variable big data
environment in 2D space. Furthermore, the proposed method generates density clusters of all variables
on the same bitmap, which can be identified by the naked eye. Most importantly, the proposed method
does not suffer from overlapping data points and requires more overlapping for better visualization
of density clusters. Thus, the proposed method is a robust density cluster representation and data
visualization technique for multi-variable big data. Due to the very flexible nature of the proposed
method, it will help to represent big data captured from dynamic bioprocesses.
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4. Methodology

A GKU with a 24-bit bitmap, the RGB pixel format, is used for representing data points.
Furthermore, it is possible to use a 32-bit bitmap with the alpha-RGB (ARGB) pixel format for
representing the GKU. In both situations, a maximum of 24 bits or 32 bits can be allocated for
representing a single variable against another variable.

Instead of allocating the whole bit range of a pixel to a single variable, it is possible to divide
the bits among several variables. Figure 2 shows an example of the equal allocation of bits of a
32-bit bitmap with the ARGB pixel format for four variables. Furthermore, unequal allocation is
possible depending on the requirements. Here, the equal allocation of bits for the variables was mainly
considered. Figure 2 elaborates on the allocation of alpha, red, green and blue portions for representing
four variables, where eight bits per variable (BPV) are used. However, when the numbers of variables
are high, BPV is low.

Vi V2 V3 V4

R (8 bit) | G (8bit) B (8 bit)

Figure 2. A single pixel of a 32-bit RGB format is split into four equal portions for representing four
variables (V1, V2, V3 and V4). A, R, G and B represents the alpha, red, green and blue portions of the
pixel, respectively.

When the BPV is low, it leads to fewer numbers of overlapping data points. If BPV = 8 bits,
it supports the representation of the maximum of 256 overlaps and will not allow the representation
of a higher number of data points. This will discourage the usage of multiple variables in the GKU.
As a solution, a multi-layer bitmap GKU is proposed, which consists of several equal-sized bitmaps
(Figure 3). In the GKU, when one block is full (e.g., blue), it is possible to use the adjacent block
(green) to represent overlapping [25]. In contrast, in a multi-layer GKU, when an allocated block is
full, it uses the relevant pixel block of another bitmap of the same size (Figure 3), which is named a
layer. If the number of layers is L and the number of bits allocated for a variable is k, this technique
provides k x L bits for one variable. In the GKU, the whole bit range of a pixel is allocated for one
variable, which can be considered as a horizontal array. In contrast, in the MVML-GKU concept,
a single variable is a vertical array with k x L bits (Figure 3). Depending on the requirement, it is
possible to decide the number of layers in the MVML-GKU.

Bitmap 0

(Layer0) V1 V2 V3 1 V4
\% R (8 bit) m B (8 bit)
Bit-blocks of bitmap 0
(Layer 0)

<_____
<_-__-

Bitmap L-/

V4

(Layer[ 1)

Bit-blocks of bitmap L-1
(Layer L-1)

_________

8*L bits for 2]

Figure 3. Four variables (V1, V2, V3 and V4) are represented using multiple bitmaps of a 32-bit RGB
pixel format for forming a multi-variable multi-layer graphical knowledge unit (MVML-GKU). Each
pixel is divided into four equal portions, where each portion consists of eight bits. When the 32-bit
RGB pixel format is divided into four equal parts, each variable represents the alpha, red, green and
blue sections of the pixel. This provides a vertical array of k x L bits for one variable.
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Furthermore, each layer is numbered starting from 0, and the “place-value” is assigned for each
layer according to the layer number. This assigns the same “place-value” for each bit in the relevant
layer. The base of the “place-value” is in relation to the number of assigned bits for one variable, as
shown in Equation (1).

pv! = 2—r+1) _ 1)l €))

where PV is the positional value of a bit in the layer /, p is the index of the starting bit of the bit block
and g is the index of the ending bit of the bit block; thus,p=0,1,2,... and¢=0,1,2,.

If the c("] ) ‘| represents the color value of the variable, it corresponds to bit block [p, ] of the pixel
(i, j) of the layer I (Figure 4). Therefore:

p

o Gl 5 gk

C[p{q]|l = kZ: by DIE 01 )
=q

where b,(:’j )I'is the bit value (0 or 1) of the bit k of the bit block of a variable of pixel (i, j) of the layer I.

Bits of a pixel with # bits

Bitmap

T e T e R T e
number =/

Bit-block of a parameter with ¢ - p + [ bits

Figure 4. Bit numbering method of a pixel in a layer.

If the total color value in relation to a certain variable corresponding to the bit block [p, q] is
C E;;];] , then:

il
Z pfq"lxpvl 3)

Substituting from Equation (1):

2 l])|l q—p+1) _1>l (4)

We reserved the last number of the bit block for representing the initial color of the bitmap.
Therefore, we used (2777*1 — 1) instead of using (247*V)! as the place-value of a certain layer.
For example, in the case of equal bit block allocation, if the BPV are eight, we used 255' as the
place-value of the layer ! instead of 256!. This will reserve the last value “255” for the initial color of
the bit block. Whenever the whole pixel is considered, “white” is the initial color of the pixel and
the bitmap.

In the concept of the GKU, one data point is represented by a shape that consists of more than
one pixel (e.g., a circle) [25] as a data point shape (DPS). While adding a data point, the existing color
value of all of the pixels that are overlapped by the new data point need to be updated by adding the
color of the newly-added data point. In a multi-variable environment, separate data points are used
for each variable. It is possible to use different DPSs for different variables. However, in this paper, the
usage of the same DPS (e.g., circle) for all of the variables is discussed. In every new data addition,
the color increment of the intersected area needs to be updated with a previously decided value and
named the “color increment” (CI) [25]. When there is more than one variable, it is possible to use the
same or different CI values for variables. In all of the DPSs, the bit block that is assigned for a certain
variable is set to its initial color value while keeping all of the bits that do not belong to the considered
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bit block at value 1. For example, consider the situation of representing data points of four variables
(V1, V2, V3 and V4) on the MVML-GKU by means of circles (radius = # > 0), which has a 32-bit RGB
pixel format. Then, in the equal bit allocation, each variable is assigned eight bits as alpha, red, green
and blue, respectively. Four separate circles are used to represent V1, V2, V3 and V4 and are colored
using different “shape colors” (SC) as (CI, 255, 255, 255), (255, CI, 255, 255), (255, 255, CI, 255) and
(255, 255, 255, CI), respectively. Furthermore, using (Cl, 0, 0, 0), (0, CL, 0, 0), (0, 0, CI, 0) and (0, 0, 0, CI)
is another possible way of implementing the four different variables. If bit block [p, g] represents the
(i,j

A

CI of variable P, then P can be represented as P}, .- Then, P )] represents the pixel color of pixel (i, )

_ [p
of the DPS, where (i, ]) is the pixel of the DPS, which coincides with the pixel (7, j) of the MVML-GKU.

When updating the MVML-GKU, first, the C E;’% is calculated using Equation (4), and then, P[(;jq)] is
added. Therefore:

(@) _ ) (i)
a1 = St ) ©)
Finally, the value C E;]li)] is used to update the layers of the MVML-GKU using Equation (6).
(i) () 0 G pmprn) g
’ = (- ’ q—p+1) _
pan = QUOTIENT (C[w] 2, Clpalln @ D ) (©)
m=

where 251_:11+1 CE;Z]‘T; =0whenm >L

When using Equation (6), it updates the MVML-GKU starting from the last layer and ends with
the first layer (layer 0). However, depending on the requirements, it is also possible to update the
MVML-GKU starting from Layer 0 with different approaches.

Variables with different scales or different value ranges require a larger bitmap for representing
the actual value ranges of the variable values. This is not peaceable, and it is necessary to transform all
of the values of different variables to one scale. To accomplish the transformation, a normalization
technique known as “min-max normalization” is used. Min-max normalization performs a linear

transformation on the original data mapped into a new range using Equation (7) [26,27].

v = ((v—minyg)/ (max, —miny)) x (new_max, — new_min 4) + new_min (7)
where v’ is the transformed value of v, ming4 is the minima among all of the data points, max is the
maxima among all of the data points, new_max, is the ceiling value of the new range and new_min 4 is
the floor value of the new range.

If the pixel at coordinates (0, 0) of a bitmap is the origin, then new_ming = 0. Then,
Equation (7) becomes:

v = ((v—miny)/ (maxs —ming)) x new_max (8)

The width of the bitmap is used for representing the independent variable, while the height of

the bitmap is used for representing multiple dependent variables. Thus, the width of the bitmap is

proportional to the range of independent variables, and the height is proportional to the maximum

range among the ranges of all dependent variables. If the height and the width of the bitmap is & and
w, respectively, then:

h = Ryaxp % FnaxD )

w:R[XFI (10)

where R;;4xp is the maximum range among the ranges of all dependent variables, R; is the range of the
independent variable, F,,,p is the scaling factor of the dependent variable that has the maximum range
among all ranges of all dependent variables and Fy is the scaling factor of the independent variable.
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In the concept of the GKU, it always uses the integer part of a number for mapping on the GKU.
Because of that, it is a must to scale up data that have a small range and decimal values to minimize the
influence due to truncation. Selecting appropriate values for new_max, for Equation (8) will establish
the new set of transformed data. The method of selecting a suitable value for new_max,4 is mentioned
in the next paragraph. Furthermore, min-max normalization transforms the data series into a positive
series, which is another requirement of the GKU. These transformation data are saved in the “GKU
specific data area” as a color [25].

With multiple variables, there are two possible ways of scaling. The first method is to scale all of
the parameters using a single scaling factor (F). This will change all of the values of the variables while
keeping the original ratio between variable values. The name “absolute scaling” will refer to such a
scaling technique, from now onwards. In “absolute scaling”, new_max, for all dependent variables
is not the same, but F;p is the same for all dependent variables, where F;p is the scaling factor of i-th
dependent variable. The scaling factor of the variable with the height range can be considered as the
common scaling factor for all of the dependent variables. Define R;p as the range of the i-th dependent
variable, and new_max,; is the new maximum of the i-th dependent variable. Then,

Fip = FnaxD (11)

From Equation (9):
Fip = h/RmaxD (12)
new_max 4; = R;p x Fip (13)

The second method is to scale all of the variables in a manner such that the maximum and
minimum of all of the variables coincide with each other. The name “relative scaling” will refer to such
scaling techniques, from now onwards. In “relative scaling”, new_max4 for all dependent variables is
the same, but F;p is not the same for all dependent variables. “h”, which is the previously decided
height of the image, can be considered as the common value for new_max ;. Thus, for “relative scaling”:

new_maxs; = h (14)

Depending on the scaling method, a compatible new_max, can be calculated using either
Equation (13) or Equation (14).

To have a visually meaningful GKU, it is necessary to have a higher number of overlapping
clusters. If there are adequate numbers of overlapping clusters, the GKU shows different density areas
separated by automatically-generated “contour lines”. If the number of data points is smaller, it is
still possible to have more overlapping using two techniques: (1) use a bigger shape as the DPS and
(2) use a higher number as the CI in SC. Using either technique, it is possible to generate higher color
values in pixels and to create visible clusters. However, these techniques are important only for better
visualization of the clusters. The absence of visual clusters has no effect on understanding the content
of the GKU.

5. Datasets

Two online datasets are used, which are recorded from NIR spectroscopy at a biogas plant.
The first dataset is recorded over a period of nearly 25 days with a frequency of 115 values per day,
giving a total of 2885 data points. The second dataset is recorded over a period of 75 days with a
frequency of 20 values per hour, giving a total of 21,591 data points. In both datasets, the concentration
of volatile solids (VS) was selected as the independent variable, and the concentrations of total volatile
fatty acids (TVFA), acetic acid (AA) and propionic acid (PA) were selected as the dependent variables.
The selected data were part of a dataset that was used to develop a near-infrared (NIR) spectroscopy
online calibration for monitoring volatile solids (VS) and volatile fatty acids (VFA) as process indicators
during anaerobic digestion [28].
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We omitted the alpha portion of the pixel, because it is not visible. Therefore, we used three
dependent variables against the independent variable. A circle of a radius of 10 pixels is selected as the
DPS for three dependent variables. Three different colors were used as the CI for DPSs. All algorithms
in relation to the MVML-GKU were programmed and implemented in the validation process.

6. Results and Discussion

The results included in this section represent different forms of the MLMV-GKU representations,
which were obtained using different techniques. Furthermore, this section deliberates the methods
and interpretation of the MLMV-GKUs. Figure 5 shows a conventional scatter plot, which presents the
2885 occurrences of three dependent variables (TVFA, AA and PA) against the independent variable
(VS). Effective value ranges of TVFA, AA and PA are [0, 8], [0, 5] and [0, 5], respectively. The plot
itself does not convey strong evidence on data clustering or data density. On the other hand, due to
overlapping, it is difficult to identify some of the data points that may lie under other data points.

®- TVFA (Total Volatile Fatty Acid)
= AA (Acetic Acid)
®=-p4 (Propionic

[>]

Concentrations of TVFA, AA, and PA

61 Concentrations of Volatile Solid 94

Figure 5. A conventional scatter plot for representing the data of three dependent variables (concentrations
of total volatile fatty acids (TVFA), acetic acid (AA) and propionic acid (PA)) against the concentration
of volatile solids. Each dependent variable consists of 2885 data points. The ranges of TVFA, AA and
PA are [0, 8], [0, 5], and [0, 5], respectively. Due to over-plotting, the large number of data points and
the multi-variable environment, this plot itself does not provide direct useful information about data
clusters. This is the major drawback of using a scatter plot for representing multi-variable big data.

Plots in Figure 6 show the plotting of the same dataset shown in Figure 7, on the MLMV-GKU of
two layers using “relative scaling”. The MLMV-GKU was implemented using a circle with a ten-pixel
radius DPS and CI = 20. Three different RGB colors, (255, 255, 20), (255, 20, 255) and (20, 255, 255), were
used for representing TVFA, AA and PA, respectively. The effective width and height of the bitmap
is 400 and 400 pixels, respectively. Since “relative scaling” is used for scaling the values of variables,
according to the Equation (14), new_max,4 for each dependent variable is 400 pixels. Based on this, all
existing ranges of all of the variables ([0, 8], [0, 5] and [0, 5]) were transformed. In Layer 0 of Figure 6,
the formation of clusters that belong to different variables can be identified with the naked eye. This is

one advantage of using the concept of the GKU, because it creates visibly dense clusters when there is
an adequate amount of overlapping.
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Figure 6. The MLMV-GKU of two layers. (a) Layer 0 of the MLMV-GKU; (b) Layer 1 of the MLMV-GKU.
The effective bitmap width and height are 400 and 400 pixels for representing the data of three
dependent variables (concentrations of total volatile fatty acids (TVFA), acetic acid (AA) and propionic
acid (PA)) against the concentration of volatile solids where each dependent variable consists of
2885 data points. All of the data are normalized using the max-min normalization method and used
400, 250 and 250 pixels as new_max, for TVFA, AA and PA, respectively (relative scaling). The initial
color of each variable is (255, 255, 20), (255, 20, 255) and (20, 255, 255). A circle of a radius of 10 pixels
is used as the data point shape (DPS). The MLMV-GKU shows density clusters of both high and low
density areas of each variable by means of automatically-generated contour lines, which can be easily
identified by the naked eye.
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61  Concentrations of Volatile Solid 94 61  Concentrations of Volatile Solid 94

v value: for TVFA =8, for AA=5, forPA=5

Figure 7. The MLMV-GKU of two layers. (a) Layer 0 of the MLMV-GKU; (b) Layer 1 of the MLMV-GKU.
The effective bitmap width and height are 400 and 400 pixels for representing the data of three
dependent variables (concentrations of total volatile fatty acids (TVFA), acetic acid (AA) and propionic
acid (PA)) against the concentration of volatile solids where each dependent variable consists of
2885 data points. All of the data are normalized using the max-min normalization method using
400 pixels as new_max for all dependent variables (absolute scaling). The initial color of each variable
is (255, 255, 20), (255, 20, 255) and (20, 255, 255). A circle of a radius of 10 pixels is used as the
data point shape (DPS). The MLMV-GKU shows the density clusters of each variable by means of
automatically-generated contour lines, which can be easily identified by the naked eye.
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Furthermore, Figure 6 shows a considerable amount of clusters between different variables.
If there are clusters due to two or more variables, the color in the shared area is mixed and shows the
clusters with a different color. With the basic knowledge of color formation theory, it is possible to
identify those areas easily with the naked eye. Additionally, with image processing, it is also possible
to identify these areas by analyzing the color values of pixels. When “Layer 1” is considered, there
are no contour lines due to less overlapping. However, in Layer 1, clusters due to different variables
can be easily identified due to the different color of the shared regions (e.g., the shared area of TVFA
and AA). Furthermore, it is possible to distinguish clusters belonging to different variables. Since the
place value of Layer 1 is higher than the place value of Layer 0, the presence of color in a higher layer
implies the existence of higher density in the position in relation to the respective pixel. Therefore, the
examination of higher layers makes higher density area identification much simpler.

Changing parameter values opens new ways of identifying new relations between different
variables [27]. This technique is used as a very efficient tool in most data mining techniques.
The MLMV-GKU also supports this feature and easily seeks relations by changing the overlapping
between different variables. Figure 6 shows layers of the MLMV-GKU of the same dataset (scaled
with the relative scaling technique), which is used in Figure 7, and scaled using “absolute scaling”.
The highest range among all of the dependent variables belongs to TVFA. Since R;;,xp = 8, according
to Equation (12), Fip = 50 for TVFA, AA and PA. Then, according to Equation (13), new_max, for TVFA,
AA and PA is 400, 250 and 250, respectively.

Both layers in Figures 6 and 7 show overlapping areas of different variables. However, due to
different scaling methods, the overlapping areas belong to different variables in Figures 6 and 7 which
are not identical. This is a very useful feature when the GKU is used as a knowledge unit. When there
is overlapping between variables, it is easy to identify color values of multiple parameters by analyzing
a single pixel. This will reduce the overhead of computing. However, to interpret the meaning of a
shared area due to one or more variables, sealing factors must be decided after properly investigating
the domain requirements. Otherwise, only creating overlap areas between variables may not provide
useful information.

Selecting different color schemes for representing the shape color of DPSs has considerable impact
on the visual representation ability of GKU. In general, there are two available color schemes for
representing three dependent variables using the 24-bit RGB pixel format as (255, 255, CI), (255, CI, 255),
(CI, 255, 255) and (0, 0, CI), (0, CI, 0), (CI, 0, 0). Each color in the first version is near to the white color,
which is represented as (255, 255, 255), and each color in the second version is near to the black color,
which is represented as (0, 0, 0).

Figure 8 elaborates the impact of using the color scheme for the color of DPSs. Figure 8 contains
the same data used in Figure 6 with the same scaling parameters. However, (0, 0, 20), (0, 20, 0) and
(20, 0, 0) were used as colors of DPSs instead of (255, 255, 20), (255, 20, 255) and (20, 255, 255). The colors
(255, 255, 20), (255, 20, 255) and (20, 255, 255) are not identical and are visually identifiable. Though
colors (0, 0, 20), (0, 20, 0) and (20, 0, 0) are numerically identical, they are not visually identifiable
because all of these colors are equivalent to the black color. The major drawback of this scheme is that
the shape colors of DPSs cannot be visually identifiable, though they are different colors. This leads to
difficulties in identifying clusters visually, especially in low density areas. When examining Layer 1 of
Figure 8, this phenomenon is more visible. In Layer 1, neither clusters between different variables nor
density clusters of individual variables are possible to identify. Furthermore, in Layer 0 of Figure §,
except high density areas, all of the other areas are in black or nearly black color, and this prevents
visual identification of low density areas in relation to different variables. This phenomenon can
be easily identified when considering the points P5 and Pg, as shown in Figure 8. It is not possible
to distinguish between P and Pg visually due to the colors of the DPSs. However, Figure 6, these
two points can be easily identified. Nevertheless, in reality, all black areas contain different colors
(e.g., (0,0, 40), (0,40, 0) and (40, 0, 0)), which is visible only to an algorithm. Thus, selection of this
type of color is not a problem for identifying clusters in low density areas with a computer. As a
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recommendation, it is stated that the different colors close to white are the best selection for the
MLMV-GKU for visually capturing clusters between different variables, as well as density clusters of
individual variables.

@ - (0.0.20) Total Volatile Fatty Acid (TVFA)

@ - 0.20.0) Acctic Acid (AA)
- (0,0,20) Total Volatile Fatty Acid (TVFA)

(a) Layer 0 (b) Layer 1
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Figure 8. The MLMV-GKU representation of the same data shown in Figure 6 with a different color
scheme. (a) Layer 0 of the MLMV-GKU; (b) Layer 1 of the MLMV-GKU. As in Figure 6, the effective
bitmap width and height are 400 and 400 pixels for representing the data of three dependent variables
(concentrations of total volatile fatty acids (TVFA), acetic acid (AA) and propionic acid (PA)) against
the concentration of volatile solids where each dependent variable consists of 2885 data points. All of
the data are normalized using the max-min normalization method and used 400, 250 and 250 pixels as
new_max, for TVFA, AA and PA, respectively. The initial color of each variable is (0, 0, 20), (0, 20, 0)
and (20, 0, 0). A circle of a radius of 10 pixels is used as the DPS. The MLMV-GKU shows visual density
clusters only in high overlapping areas. When there is low overlapping, it is not possible to distinguish
points in relation to variables, such as P4, Pg and Layer 0.

Plot (a) of Figure 9 shows the compression of the conventional scattered plot for one independent
and three dependent variables and plot (b) of Figure 9 the MLMV-GKU of two layers for the same
variables. The plots represent 21,951 data points, where the effective bitmap width and height are
400 and 625 pixels, respectively. Plots represent data in relation to three dependent variables (TVFA,
AA and PA) against the concentration of volatile solids (VS). All of the data are normalized using the
max-min normalization method and used 625, 550 and 225 pixels as new_max4 for TVFA, AA and
PA, respectively. In the MLMV-GKU, the initial color of each variable is (255, 255, 10), (255, 10, 255)
and (10, 255, 255). A circle of a radius of 10 pixels is used as the DPS. The MLMV-GKU shows
density clusters of each variable by means of automatically-generated contour lines, which can be
easily identified by the naked eye. This is a special feature of the GKU, which is not possible with a
scatter plot.

As mentioned in Section 1, star coordinates directly visualize dimensions as groups in a form
of high density clusters in a two-dimensional plot. It is one of the better visualization techniques.
However, star coordinates suffer from cluster overlapping of clusters of variables [17,20]. This is the
major drawback of the star coordinates. If there are no overlapping regions, star coordinates can be
used to visualize high density data clusters. However, the data we used have overlapping regions and
cannot be visualized using star coordinates.
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The nature of the MLMV-GKU allows the usage of a higher number of layers for representing
variables. Unfortunately, this will lead to problems in understanding the whole picture. This is a
very common problem in understanding scatterplot matrices [12]. To prevent this problem, it is
recommended to use the maximum of four layers where the visual representation is important. Using
four layers, it is possible to show 255 x 255 x 255 x 255 (more than four billion) overlaps using eight
bits per variable, in the 32-bit pixel format. When using the 32-bit pixel format, basically, it is possible
to show four dependent parameters against one independent parameter. This will provide space for
more than 16 billion cases of overlapping (four billion x four variables) in a certain pixel coordinate
of the four-layer GKU. If the width and height of the data plotting area are w pixels and & pixels,
respectively, then it is possible to visualize the maximum of x x y x 16 billion cases of overlapping
in the four-layer GKU. This is a huge amount of overlapping occurrences, and none of the existing
graphical visualization techniques are capable of visualizing this amount of overlapping. Although it
is recommended to use a maximum of four layers, there is no mathematical restriction to using more
than four layers, depending on the requirement.

(a) (b)
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Figure 9. Scatter plot (a) and MLMV-GKU of two layers (b) representation of 21951 data points where
effective bitmap width and height are 400 and 625 pixels. Plots representing the data of three dependent
variables (concentrations of total volatile fatty acids (TVFA), acetic acid (AA) and propionic acid (PA))
against the concentration of volatile solids. All of the data points are normalized using the max-min
normalization method and used 625, 550 and 225 pixels as new_max 4 for TVFA, AA and PA, respectively.
In the MLMV-GKU, the initial color of each variable is (255, 255, 10), (255, 10, 255) and (10, 255, 255).
A circle of a radius of 10 pixels is used as the DPS. The MLMV-GKU shows density clusters of both
high and low density areas of each variable by means of automatically-generated contour lines, which
can be easily identified by the naked eye, which is not possible with scatter plots.

The major drawback of MLMV-GKU is the influence of outliers, which leads to artificial high
density areas on the GKU. Once these outliers are mixed with non-outlier values of other variables,
this leads to incorrect decision making. Furthermore, due to the influence of outliers, the actual scaling
cannot be achieved. P4 in Figure 8 can be considered as an example for such an outlier. Because of the
influence of this outlier, it was considered as the maximum of the dataset, even though it is an outlier.
Therefore, before plotting the MLMV-GKU, it is essential to remove outliers. The other disadvantage
of the MLMV-GKU is that it cannot be directly used to find the correlation between variables, though
sometimes, it helps to identify some trends between variables. Nevertheless, domain-related correlation
can be defined after considering individual situations. For example, in the considered domain, the
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concentration of TVFA is proportional to the concentration of AA [29]. In Figure 6, clusters in relation
to TVFA and AA have nearly the same shape and reveal the domain conditions more convincingly.

Dividing the 32 bits into small portions will facilitate using more variables in the MLMV-GKU.
For example, if four bits are used per variable, it will provide room for eight dependent parameters to
be clustered in the 32-bit format. Then, it is necessary to increase the number of layers to accommodate
the higher number of data points. As previously mentioned, this is not always a good solution,
especially if the aim is to use the MLMV-GKU for visualization. Therefore, the best solution is to use
pixel formats that provide a higher number of bit ranges. There are different ARGB color formats that
provide up to 128 bits per color channel (total 512 bits) [30,31]. Nevertheless, still, the limit of eight bits
per variable and four layers for the MVML-GKU can be maintained.

The GKU is itself a database and knowledge unit that can be used as the input values for an
algorithm; thus all of these properties are inherited by the MLMV-GKU, as well. The meaning of the
content can be altered by changing three parameters of the DPS: firstly, the type of shape; secondly,
the color of the shape; and thirdly, the position of the data point in the shape. The type of shape that
is used in all of the plots in this article is circular. Furthermore, it is possible to use a suitable shape
(e.g., square, polygon) instead of a circle. Furthermore, using different types of DPSs for different
variables, it is possible to identify /show the effect/influence of a variable on other variables in a more
meaningful manner. When a circle is selected with a single color as the DPS, this implies that the effect
of the data point is equally valid for all of the pixels inside the circle. However, if the color of the circle
is selected in a way that the color is proportional to a certain property (e.g., distance to the data point),
this can be used to represent the functional influence of a data point. In the examples shown in this
article, the data points were located in the center of the circle. By applying those property changes, the
meaning of the MLMV-GKU can be enhanced according to different domain requirements.

If there is a dataset scheduled to be collected for a time period of T, at a time f; (t < T), all of
the data placed on the MLMV-GKU are processed up to time f;_1. Therefore, at any time, the data in
the MLMV-GKU can be used to understand the current situation with or without further processing.
If further processing is required, a copy of current bitmaps can be used for processing, while the
original MLMV-GKU keeps updating. Because each layer is an independent bitmap, each layer can be
individually analyzed using a separate process without depending on other layers. This feature enables
the MLMV-GKU to be a parallel-processing-ready technique. After analyzing, the final decision can
be obtained by summarizing the results of each layer. This could reduce the total processing time to
below the usual single process analysis time.

7. Conclusions and Outlook

The MLMV-GKU is a technique that facilitates the visualization of multiple variables with a big
amount of data. It does not show each data point individually and shows abstracted information
as density clusters. Furthermore, the MLMV-GKU is a highly enhanced version of the GKU, which
inherited all of the features of the GKU. The MLMV-GKU is an ideal tool for visualizing big data and
fulfils a highly demanding requirement in the field of big data visualization. Using a four-layer GKU,
it is possible to show more than four billion instances of overlapping using eight bits per variable, in
the 32-bit pixel format. This will provide space for more than 16 billion different overlapping situations
in a certain pixel coordinate. Thus, the MLMV-GKU will provide a fast means of decision making,
which will be one of the major factors in process control. None of the existing graphical visualization
techniques is capable of visualizing this amount of overlapping.

As an outlook for further developing the MLMV-GKU for the online environment, the usage of
the 3D bitmap will facilitate the usage of another additional variable, the z-axis, in contrast to the
current concept of the 2D bitmap, which facilitates (1 + n) variables.
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3. Discussion

| have very promising expectations about the positive impact of the developed
non-parametric methods for uplifting and opening new doors in the fields of
knowledge discovery, data mining, feature identification, and data processing. All the
concepts and methods presented in this thesis are totally new to science and have
proven accuracy. Therefore, researchers and scientists could apply those methods

for uplifting the standards of their research findings.

The Universal Linear Fit Identification (UniLiFlI)

The Universal Linear Fit Identification (UniLiFl) method showed ability of identifying
all the linear fits (regression is initially unknown) contaminated with all possible

maximum combinations of the following conditions:

Size of data points (range 4 to 1000)
Nature of outliers/noise distribution (Gaussian and non-Gaussian distribution)
Amount of outliers/noise (50% - 55%)

Range of deviation of outliers / noise (+10* % to +10%)

o~ w0 D PRE

Existence of initial missing data

Combinations of the above mentioned conditions produce heterogeneous data sets.
Particularly, identifying a linear fit in such data sets requires a combination of
different methods that is identical to the nature of each data set. However, it may be
possible to locate nearly correct linear fit with a certain level of error, which is
the maximum. As afore-mentioned, this is the one major disadvantage of
parametric methods. In contrast, UniLiFl was able to identify all the linear fits in
different forms (with positive gradient, with negative gradient and constant) in all

heterogeneous datasets without swapping or masking.

In the real world, certain models can be applied for certain domains, assuming that
the domain conditions remain unchanged. When domain conditions change, the
model may not give a correct output. The strength of the UniLiFl method is
that it is capable of identifying all the linear fits in all the data sets with 0% error,
without depending on the domain conditions. It is a very hard task to locate all (or

almost all) data points that agree with the linear fit when the number of outliers is
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around 50% and deviation is in the range of +10* to +10™. Therefore, there are very
promising expectations towards the possible positive gain to science from the new
method “UniLiFI”.

One of the main disadvantages of the linear least squares method is that it is
not capable of identifying linear regression when the number of data points is high
[76]. In contrast, our results showed that the accuracy of Linear Fit Identification
method UniLiFl is independent of the number of data points. UniLiFI method
showed the same level of accuracy for locating existing linear fit by identifying linear
fit from data sets with 4 to 1000 data.

The UniLiFI method introduced in this work is not only a linear fit identification
method. The UniLiFI method can also be used as outlier/noise detection
method in linear regression. Not only detecting outliers and noise, but also the
method is capable of grouping those outliers/noise into several subgroups
according to the k value. However, itis possible to increase the number of
outlier/noise groups by defining several k values. For single k value there are
amaximum of up to three groups as linear fit (cleandata) and two outlier (and/or
noise) groups; one above the clean data and other below the clean data. For
two k values, there are maximum of up to five groups as linear fit and four
outlier (and/or noise) groups as two above and two below the linear fit. Thus, if
there is p number of k values, maximum of up to 2p outlier (and/or noise)
groups can be achieved (Figure 3.1). Furthermore, borders of regions are nearly

parallel (Figure 3.1).
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Figure 3.1: If there are p numbers of k values, a maximum of up to 2p outliers (and/
or noise) groups can be achieved. Setting two k values gives four regions of outlier/

noise regions (Regions 1 to 4). Also, borders of regions are nearly parallel.

The plot in Figure 3.2 shows a data set of original size 1000 data points, which
initially agrees with a linear fit. Data of two regions containing 150 and 100 (total 250)
data points were removed for creating initial missing data environment. Out of the
rest 750 points, 421 data points (more than 50%) were replaced with data that
deviated +10%% to +10™% from the original value. The replaced data do not totally
agree with the Gaussian distribution. Furthermore, there is a nearly linear fit also
existing in the data set. All those conditions made the identification of a correct linear
fit very difficult. The trend linein Figure 3.2 shows the identified linear regression
using GLSM. Determination of the linear fit based on GLSM will remove the majority

of data points belonging to both the near linear fit as well as the exact linear fit.
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Figure 3.2: Data of two regions containing 150 and 100 (total 250) data points that
were removed to create an initial missing data environment. Out of the rest 750
points, 421 data points (more than 50%) were replaced with data that deviated

+10%% to +10™% from the original value.

Figure 3.3 shows identification of linear fit for the same data set using UniLiFI
method. This elaborated the capacity of the UniLiFI method. Firstly, it was capable of
identifying all the data points that agreed with the linear fit, without swapping or
masking them. Secondly, it divided the data points that do not agree with the linear fit
into two groups based on the two k values, k=0 and k=0.15. Identifying data deviated
by very high percentages is not a challenge. The most interesting factor is that the
UniLiFI method is capable of identifying even a data point that is deviated by a very

small percentage such as +10%.
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Figure 3.3: Firstly, it was capable of identifying all the data points that agreed with
the linear fit, without swapping or masking them. Secondly, it divided the data points
that do not agree with linear fit into two groups based on the two k values, k=0 and
k=0.15. Identifying data deviated by very high percentages is not a challenge. The
most interesting factor is that the UniLiFI method is capable of identifying even a

data point that is deviated by a very small percentage such as +10%.

UniLiFl method is suitable for time series or any data series and can be considered
as time series. This feature can be considered as a limitation of UniLiFl. However,
most of the data captured in the real world are time series. If not, some situations
can be assumed or converted to time series by stamping certain sequence
numbers for each data point. The gap between two data points must be equal
or must be multiples of the minimum gap. Then, by using the UniLiFl method, it is
possible to find the best existing linear fit.

When detecting linear fit, UniLiFI identified the best linear fit in the given window.

Most of the time, the best fit is the dominating linear fit in the given window (Figure

101



3.4). However, sometimes UniLiFI identifies data from two or more linear segments
as the linear fit (Figure 3.5). This detection cannot be rejected, because it totally
agrees with the calculations and is visually justifiable. On the other hand, this can be
considered as a drawback of UniLiFIl. If the method is capable of identifying all the

possible linear fits in a certain window that would be the best.
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Figure 3.4: There are three potential linear fits as 1, 2, and 3. UniLiFlI method
identified the most dominating linear fit in the given window, according to the given
criteria. Since the dominating linear fit is linear fit 2. UniLiFI identified it as the best fit,
according to the given values of the k (k=0.05 and k=0.0001).

One possible remedy for overcoming the aforementioned problem is to manage the
nature of input data window by splitting it into several portions from extrema points
(Figure 3.6). This will input data window with one potential linear fit and will not
cause ambiguous situations. Furthermore, this approach can be considered as

applying UniLiFI for cleaning data in non-linear data.
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Figure 3.5: There are three potential linear fits as 1, 2, and 3. UniLiFI method
identified a line that representing data points belong to fits 1, 2, and 3 as the most
dominating linear fit in the given window, according to the given values of the k
(k=0.05 and k=0.0). Even though, the dominating linear fit is linear fit 2, UniLiFI
did not identify it as the best fit.

Figure 3.6: If it is possible to split a data set in a manner such that each data window

contains only one potential linear fit, UniLiFI can be used to clean non-linear data.

When considering the computation time, the original UniLiFI algorithm is not a one-
pass method. For one full circle algorithm, remove only one outlier and again
perform the same calculation to detect the next outlier in next iteration. Therefore,
this is not an efficient algorithm. There are several places where possible
improvements can be done. The original algorithm we introduced and coded, always
calculates the sum, checks for the new maximum, and checks for the new minimum

after removing an outlier. Instead of that, it is possible to use results of previous
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iterations in next coming iterations. This will save a lot of computational time,

especially with large amounts of data.

The major challenge in using UniLiFI is the numerical accuracy of the programming
language [77]. Visual C++ 2010 version was used for coding the algorithms.
Sometimes, calculation errors arise due to numerical accuracy (due to precision
error), causing wrong identification of termination point of the algorithm execution.
When working with decimal values, it is necessary to use either float or double type.
Sometimes, the precision error can be considered as a simple and easily corrected
error or a scenario that can be ignored. However, it is not a simple and ignorable
scenario; in fact, it is the most critical scenario according to our experience. |
spent huge amounts of time verifying the accuracy of UniLiFI due to precision errors.
Sometimes very simple calculations did not give the expected results due to a
precision error. Table 3.1, Table 3.2, and Table 3.3 show three very simple
calculations that elaborate the behaviour of precision errors, when working on Excel
2010 in Windows 7 platform. Note that the real values are visible after formatting the
cells to be able to see at least fourteen decimal points. Otherwise, all the values
appear to be correct due to round off. In Table 3.1 the sum is influenced by error
accumulation. However, in other situations, sums are not influenced by the
precision errors. This unpredictable nature causes problems for handing and
managing precision errors in a global manner. Figure 3.7 shows a situation that
experienced with Visual C++ (Visual Studio 2010) in Windows 7 platform, which was

affected by precision errors.

For detecting linear fit in data sets with a large number of data points, numerical
accuracy is a very important factor. The linear fit determination criteria are based on

2/n and k, and when n (number of data points) is high, 2/n becomes very small. Thus,
the determination is based on decimal values after the 4™ decimal point of data sets

that have more than 10000 data points is not reliable. Therefore, if the numerical
accuracy is not good enough, most of the time the reliability of UniLiFI will be lower.
Usage of results contaminated with precision errors for checking termination
conditions in “if” clauses or loops give wrong termination points. | faced such
situations when determining the exact terminating point after identifying linear fit.
Also, sometimes the value of linear correlation coefficient (rxy) is shown incorrect due
to precision error (Table 3.1, Table 3.2, and Table 3.3).
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Table 3.1: Precision error, when calculating with Excel 2010 in Windows 7 platform.
In column Y; - Yy, lines 3, 4, and 5 contain an error of 10™*. However, finally, this
affects the sum. To see the correct values, it is compulsory to format the cells to be

able to see at least fourteen decimal points.

Xi Yi Yi- Yy Expected Value
1 101.10000000000000 0.00000000000000 0.00
2 102.10000000000000 1.00000000000000 1.00
3 103.01000000000000 1.91000000000001 1.91
4 104.01000000000000 2.91000000000001 2.91
5 105.01000000000000 3.91000000000001 3.91
Sum 9.73000000000003 9.73

Table 3.2: Precision error, when calculating with Excel 2010 in Windows 7 platform.
In column Y; - Yy lines 2, 3, 4, and 5 contain an error of +10™**. However, finally, this
does not affect the sum. To see the correct values it is compulsory to format the cells

to be able to see at least fourteen decimal points.

Xi Yi Yi-Ys Expected Value
1 101.00000000000000 0.00000000000000 0.00
2 102.10000000000000 1.09999999999999 1.10
3 103.01000000000000 2.01000000000001 2.01
4 104.01000000000000 3.01000000000001 3.01
5 105.01000000000000 4.01000000000001 4.01
Sum 10.13000000000000 10.13

Table 3.3: Precision error, when calculating with Excel 2010 in Windows 7 platform.
In column Y; - Y1 lines 2, 3, 4, and 5 contain an error of -10™*. However, finally, this
does not affect the sum. To see the correct values it is compulsory to format the cells

to be able to see at least fourteen decimal points.

X; Y Yi-Y; Expected Value
1 101.00000000000000 0.00000000000000 0.00
2 102.10000000000000 1.09999999999999 1.10
3 103.10000000000000 2.09999999999999 2.10
4 104.10000000000000 3.09999999999999 3.10
5 105.10000000000000 4.09999999999999 4.10
Sum  10.40000000000000 10.40
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4 { dm_InitialX=2.0000000000000000 dm_Initialy=102.

—8 43 [3] { dm_InitialX=3,0000000000000000 dm_Initialy=103. c_Point
[} o dm_InitialX 3.0000000000000000 double
i dm_InitialY 103.01000000000001 double

“— @ dm_NewX 3.0000000000000000 double

' @ dm_NewY 103.01000000000001 double

@ dm_¥T 3.0100000000000051 double

@ dm_¥TT 0.0071428571426606702 double

Figure 3.7: Precision error, when programming with Visual C++ (Visual Studio 2010)
in Windows 7 platform. The correct value of variable dm_NewY must be 103.01.
However, the variable contains 103.01000000000001. The value of variable dm_YT
based on dm_NewY and must be 3.01. However, it contains 3.01000000000051.

One solution is to use programming techniques that will help to overcome such
situations. One such technique is to use a range instead of using single values for
conditional checking. However, this will scale down the computation ability of the
algorithm. The best solution is to use a programming platform that gives more

numerical accuracy.

Extrema identification

In the research in relation with extrema, the findings of this work be categorised into
two groups. The first one is the extrema identification and the second one is the
extrema filtering. Both are non-parametric approaches. As a concept, extrema
identification is a good alternative method for conventional derivative based
approach, which is also a non-parametric method. However, according to my
understanding, the most important part is the extrema filtering because all the non-
parametric methods introduced in this work fulfilled the needed requirement in the

field of data analysing.

The three non-parametric methods introduced in this work for filtering non-dominating
extrema, sharp and gradual (flat) extrema, and low and high extrema were named as
MMS-Window based filter (MMS-WBF), MMS-SG filter, and MMS-LH filter,
respectively. Results showed that applying only one method for extrema filtering may
not provide the expected outcome. The reason for that is some extrema have a

combination of features (multiple feature extremum) (Figure 3.8).
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Figure 3.8: Data in plots (a) were first checked for extrema with a window of size
nine with MMS-WBF. However, there is still a considerable amount of such extrema
with low prominence visible in the plot (a), because in the considered window size
they are still dominating extrema. Data in plots (b) were first checked for extrema
with a window of size nine. Then Riy max and Ry min Were considered and the
extrema were checked for low and high extrema with threshold value ty = 1.
Combination of two methods was capable of totally removing extrema with low
prominence. However, due to the usage of window size greater than three,
dominating maxima at the beginning as well as at the end of the window will not be

detected.

For example, an extremum withvery small prominence can be either a sharp or a
gradual extremum as well as the dominant extremum in the region. Therefore, to
have a fully filtered data set, it is necessary to apply a combination of filters in a
certain order according to the requirements (Figure 3.8). This will guaranty a
fully filltered data, because if extremum cannot be identified by one method,

it will be identified by another method, when the extremum has multiple features.

The major drawback inthe method is that the method is not capable of detecting
dominating maxima at the end as well as at the beginning of the data set, when the
advancing window side is greater than three (Figure 3.8). Exactly the dominating
extrema between data points first and (WS + 1)/2 (at the beginning) and between
data points n-(WS + 1)/2 and n (at the end), where WS is the size of advancing
window and n is the number of data points in the data set. One possible solution is to
add (WS + 1)/2-2 numbers fordata points as filling at the beginning and at the end
of the data set. The value of the filling at the beginning is the value of the first data
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point and the value of the filling at the end is the value of the last data point.
Usage of such an approach will help to minimise the impact due to large WS.

Graphical knowledge unit

Particularly, data processing requires a separate algorithm specified for fulfilling the
required outcome. The output of the algorithm is a set of numerical values. These
values are represented using a suitable visualisation technique (Figure 3.9). In
contrast, the concept Graphical Knowledge Unit (GKU) we introduced is a method
that is capable of visualising processed data as well as holding processed data. Not
only that, GKU is a combination of many methods, where it is usually required to
achieve different algorithms. In the same time, the algorithm of GKU is very
easy to understand and has no complex calculations or definitions. Furthermore,
GKU can be expressed as a method that is beyond the concept of
non-parametric density cluster identification; can be considered as a package

of solutions that is has following benefits.

Method of generating density clusters without a special complicated algorithm.
A good density cluster visualization technique.

Suitable for both online and offline applications.

One-pass (single-pass) method.

Method of visualizing missing data and out of range data density.

Automatic contour line generation method.

A good multivariable visualization method.

A good technique for representing big data.

© © N o g bk~ w0 NP

Tool for outlier detecting in non-linear data.

10.Database for processed data / direct input for another algorithm.
11.Processed data and visual representation are in the same place.
12.Easy portability as a bitmap.

13.Bivariate as well as multivariate trained data set.

14.Can be maintained as a bitmap or as a matrix of integers.

15.Visually as well as programmatically readability.

108



O -
2 -
ST Processed data = A
'O'Oro /)/}o % (Information - > Inéormﬁy%qn:
DD deaa S Sy Numerical) raphic
id BIGINT (20)
‘ VFADOUBLE Algorithm
(Data) X Bitmap
O\(\Oac,‘(\
o Processed data

Density and graphical
Clusters representation.

Figure 3.9: Typical data processing and visualising approach and GKU approach. In
the conventional approach first process and visualise later using a suitable
method. In GKU approach, the density of certain location is placed as a

colour-coded value on the respective coordination of a bitmap.

One-pass algorithms are considered as fast algorithms because they read all inputs
only once [78, 79]. GKU is also a one pass algorithm because it reads each data
point only one time. Therefore, concept GKU is more suitable for online big data.
This will allow online systems to represent existing status without further processing
and without delay. Furthermore, the ability of processing and visualising
multi-variables will be helpful to enhance online process monitoring and controlling
environment. In our experiments, we used maximum one independent and three
dependent variables with GKU. However, it is possible to use more dependent
variables using pixel with a higher number of bits (e.g.: 64-bit,128-bit) and multi-layer

concepts.

Findings of this research work showed that the overlapping of data in the
multi-variable environment is no longer a problem with the concept of GKU.

With the basic knowledge of colour formation theory, the contributed variables
in a variable overlapped area can easily be identified, even with the naked eye.
The plot in relation with layer O in Figure 3.10, most of the areas are overlapped
areas of either two or three variables. Also, in layer 1 the overlapped areas
can be identified easily. However, in this research | haven't tried to give a
meaning for overlapped areas. Nevertheless, depending on the domain environment

overlapping areas can be used to convey meaningful messages. In this research,
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it was shown that the amount ofoverlapping could be controlled by setting uitable
scaling factors for variables. Thus, setting overlapping environment must be done

by considering the domain requirements by setting appropriate overlapping
environment.

= (255,255,20) Total Volatile Fatty Acid
@ = (255,20,255) Acetic Acid (AA)
= (20,255,255 Propionic Acid (PA)
Layer O Layer 1

®W

 canhl

Concentrations of TVFA, AA, and PA <

o Concentrations of TVFA, AA, and PA «

0 [ ] [ X ) L]
61 Concentrations of Volatile solid 94 61 Concentrations of Volatile solid 94
y value: TVFA = 8, AA =5, PA =5

Figure 3.10: MLMV-GKU of two layers where effective bitmap width and height are
400 and 400 pixels for representing data of three dependent variables
(Concentrations Total Volatile Fatty Acid (TVFA), Acetic Acid (AA), and Propionic
Acid (PA)) against concentration of Volatile Solids, where each dependent variable
consists of 2885 data points. A circle of radius 10 pixels is used as a marker. MLMV-
GKU shows inter-variable clusters of both high and low-density areas of each
variable by means of automatically generated counter lines and overlapped variables

with different colours, which can be easily identified by naked eye.

The current research focused only on 2D GKUs that support one independent and
one or many dependent variables. However, using 3D GKUs will allow the use of
two independent variables and one or many dependent variables. Thus, 3D GKU will
bethe next generation of GKU concept.
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4. Outlook

| am very confident that our findings will open new doors in the fields of data/
signal processing, process controlling, knowledge mining, and data visualisation
individually in each field. Our major objective is to deploy those methods as a
combined package for process controlling and process monitoring. Figure 4.1 shows

diagram of such a system.

Application areas of

new findings e
Create / Update
Graphical
v Knowledge Units
f \ for two variables
Data Cleaning using | \_
Data extrema
(online identification and
or universal linear fit ,
offline) methods or cleaning
\by means of GKU J Create / Update
A Graphical Control and
Knowledge Units > monitoring

for three/four or module(s)
more variables

T [

%[ Information Management System

Figure 4.1 : Data / Information flow of proposed system

In real world data capturing, almost all the data in relation to a certain variable can
be expressed as time series by plotting such data against time. Then, the regression
can be linear or non-linear. If the regression is linear (or expected to be linear),
universal linear fit identification method can be used to locate clean data. When
the regression is non-linear, any nonlinear relation can be represented as a
combination of straight lines. Different techniques can be found for signal
segmentation depending on the considered domain, as for example in the field of
electroencephalogram (EEG) [80, 81] and speech recognition [82]. If the frequency
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of the data is sufficient, segmentation of a signal can be accomplished by using
extrema detection method as a segmentation technique (Figure 4.2). This will split
any nonlinear signal into a combination of nearly-linear segments. Finally using
universal linear fit identification method, a linear fit of each individual segment can
be found. This technique will allow cleaning linear or non-linear data by

removing unnecessary data.

The data that cannot be represented as time series can be cleaned by means of
GKU. After cleaning the data, this data can be sent to an information management
system (IMS) or can be represented as GKUs in a suitable number of variables.
These GKUs represent knowledge as density clusters. Basically, there are two types
of GKUs, two variable and more than two variable GKUs. Using two variable GKU
versions, it is possible to represent knowledge of dependent and independent
variables. Finally, these totally cleaned data can be transferred into GKUs with one
independent and many dependent variables. Well-developed GKUs are real trained

sets and can directly be used for monitoring and controlling processes.

-

=000 =, 500 1,000 =1

Figure 4.2: Split a nonlinear signal into several linear fits by means of suitable

segmentation technique.
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We introduce a new nonparametric outlier detection method for linear series, which requires no missing or removed data
imputation. For an arithmetic progression (a series without outliers) with # elements, the ratio (R) of the sum of the minimum
and the maximum elements and the sum of all elements is always 2/n : (0, 1]. R# 2/n always implies the existence of outliers.
Usually, R < 2/n implies that the minimum is an outlier, and R > 2/n implies that the maximum is an outlier. Based upon this,
we derived a new method for identifying significant and nonsignificant outliers, separately. Two different techniques were used
to manage missing data and removed outliers: (1) recalculate the terms after (or before) the removed or missing element while
maintaining the initial angle in relation to a certain point or (2) transform data into a constant value, which is not affected by
missing or removed elements. With a reference element, which was not an outlier, the method detected all outliers from data sets
with 6 to 1000 elements containing 50% outliers which deviated by a factor of £1.0e — 2 to £1.0e + 2 from the correct value.

1. Introduction

Outlier detection and management of missing data are the
two major steps in the data cleaning/cleansing process [1-
3]. For achieving a training set, data mining, and statistical
analyses, it is very important to have data sets that have no
(or as few as possible) outliers and missing values. Except for
model-based approaches, outlier detection and replacing of
detected outliers or replacing missing values are two separate
processes.

The existing outlier detection methods are based on
statistical, distance, density, distribution, depth, clustering,
angle, and model approaches [1, 4-7]. The nonparametric
outlier detection methods are independent of the model. For
the data without prior knowledge, nonparametric methods
are known as a better solution than the statistical (parametric)
methods [8-10]. The most common nonparametric methods
are based on distance, density, depth, cluster, angle, and res-
olution techniques. Among various methods/techniques are
least square method (LSM) [4] and the sigma filter [11] which

have been used frequently to remove the outliers of linear
regression. These methods require data in Gaussian or near
Gaussian distribution, which cannot be always guaranteed. If
the correct model can be identified, model-based approaches
like the Kalman filter [12-14] are suitable for removing and
replacing outliers. However, if it is not possible to identify the
correct model, the model-based approach is not feasible [15].

In addition to the noise, missing data is another challenge
in the data cleaning/cleansing process. Even if the original
data set is without missing elements, removing outliers
(without replacement) automatically creates a missing data
environment. The most common two techniques to recover
this situation are (1) filling the missing data with an estimated
value (filling) or (2) using the data without missing val-
ues (reject missing values). Complete-case analysis (listwise
deletion) and available-case analysis (pairwise deletion) are
the most common missing data rejection methods [16-18].
The mentioned methods are under the assumption that they
yield unbiased results. Among the different missing data
filling methods hot deck, cold deck, mean, median, k-nearest
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neighbours, model-based methods, maximum likelihood
methods, and multiple imputation are the most common
methods [18-22]. Filling methods derive the filling value
from the same or other known existing data. If there are a
considerable number of outliers, derived data may be biased
due to the influence of outliers [23, 24]. Therefore, the best
way is to remove all outliers and replace the outliers with a
suitable method.

In this paper, we introduce a new nonparametric outlier
detection method based on sum of arithmetic progression,
which used an indicator 2/n, where # is the number of terms
in the series. The properties used in existing nonparametric
methods such as distance, density, depth, cluster, angle, and
resolution are domain dependent. In contrast, the value 2/n,
which we used in our new method, is independent of the
domain conditions.

Contrary to the existing nonparametric methods men-
tioned earlier this work addressed identifying outliers in a
dataset that is expected to have linear relation. The method is
capable of identifying significant and nonsignificant outliers,
separately. Moreover, until all the outliers were removed,
the new method requires no missing or removed data
imputation. This will eliminate the negative influence due
to wrongly filled data points. This is an advantage over the
methods, which require filling the removed data points. The
outlier detection method we introduced showed its best per-
formances when the significant outliers are in non-Gaussian
distribution. This is an advantage over existing methods such
as LMS and sigma filter. The method uses a single data point
as a reference data point. The reference point is assumed to be
nonoutlier. Therefore, accuracy of the outcome is depending
on the reference point, especially when locating nonsignifi-
cant outliers. If the selected reference point is not an outlier,
the method was capable of locating outliers from a data set
containing very high rate of outliers, such as 50% outliers.

In this work, data from biogas plants were used for
evaluating the new method. Since the biogas process is
very sensitive, these data contain a considerable amount of
noise even during apparently stable conditions. This provides
suitable data set for evaluating our method. We were able to
get the best outlier-free macroscale data set which agrees with
linear (increasing, decreasing, or constant) regression from
selected segments of a data set.

2. Methodology

2.1. Arithmetic Progression. An arithmetic progression (AP)
or arithmetic sequence is a sequence of numbers (ascending,
descending, or constant) such that the difference between the
successive terms is constant [25]. The nth term of a finite AP
with 7 elements is given by

a,=dn-1)+a, @

where d is the common difference of successive members and
a, is the first element of the series. The sum of the elements
of a finite AP with n elements is given by

S,=(5) (@ +a), @)
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TaBLE 1: Sample calculations for illustrating the relation between 2/n
and (a, + a,)/S,,.

a, Dataset1 Dataset2 Dataset3 Dataset4 Dataset5
a 100 100 100 99.99 1

a, 101 101 101 101 101

a, 102 102 102 102 102

a, 103 103 103 103 103

as 104 104.01 204 104 104
(a, +a5)/S; 0.4 0.40001 0.498 0.399 0.255
2/n 0.4 0.4 0.4 0.4 0.4
Outlier? — Yes-a. Yes-a- Yes-a, Yes-a,

where g, is the first element and g, is the last element of the
series.

Equation (1) is a f(n) and fulfils the requirements of a
line. In other words, finite AP is a straight line. In addition, a
straight line is a series without outliers. If there are outliers,
the series is not a finite AP. Therefore, any arithmetic series
that fulfils the requirements of an AP can be considered a
series without outliers. Equation (2) can be represented as

2 a, +a 2
—=M; co>n>2,0<—-<1. (3)
n S n

n

For any AP, the right-hand side (RHS) of (3) is always 2/n,
which is independent of the terms of the series. In other
words, if there are no outliers, the value (a, +a,,)/S,, will always
be equal to 2/n. If the RHS of (3) is not 2/n, it always implies
that the series contains outliers. Therefore, the value 2/n can
be used as a global indicator to identify any AP with outliers.

Since we use the relation of AP, we define that elements
lying on or between two lines (linear border) are nonoutliers,
and others are outliers. When the distance between two
lines is zero, they represent a single line. In relation to the
method presented in this paper, the term nonoutlier implies
an element that lies within a certain linear border, and the
term outlier implies an element that does not lie within the
linear border.

Primary investigations showed that the method is capable
of not only indicating the existence of outliers but also
locating the outlier. (a;, + a4,)/S, < 2/n indicates that the
maximum element is the outlier. (4, + a,))/S,, < 2/n indicates
that the minimum element is the outlier. However, (a, +
a,)/S, = 2/n does not imply that the series is free of
outliers. Furthermore, primary investigations showed that
the method is capable of locating both large and small
outliers. Table 1 shows sample calculations for illustrating the
relation between 2/n and (a, + a,)/S,,

As a principle, the relation of (3) is capable of identi-
fying and locating the outliers. However, we found seven
drawbacks, which made relation (3) unusable for identifying
outliers in actual data. In Sections 2.1 to 2.7, we address the
challenges for making the relation usable.

2.2. Challenge I: Notation of the Equation. The symbols used
in (3), especially a,, a,,, create a logical barrier. For example,
if there are outliers, the minimum and the maximum can be
other elements rather than a,,a,. Therefore, it is necessary
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Outliers Qutliers
/_L\ A
%/ )

2/n = no outliers 1

0
FIGURE 1: Distribution of criteria range (0, 1].
to use meaningful symbols that reflect the purpose of the

method. The first and the last elements are either the mini-
mum or the maximum. Therefore, it is possible to replace g,

and a,, by the minimum (a,,;,,) and the maximum (a,,,,) of
the series. Then (3) can be represented as
% — (amin + amax) (4)

n S

n

Since the RHS of (4) consists of minimum, maximum, and
sum of the series, RHS was named MMS with the meaning of
minimum, maximum, and sum:

MMS = (aminS (5)

n

2.3. Challenge 2: Set a Range for the Outlier Detection
Criterion. According to (3), outlier detection criterion is 2/n
and can be used to check the elements that exactly agree with
a line (Figure 1). To identify elements in a certain range, it is
necessary to have a criteria range rather than a single value
2/n.

The left-hand side of (4) is the ratio 2: n and named as R,
by adding a weight “w” to “R.” Then,

2
R,=— +w;, 0<w<1--. (6)
n n
The status w = 0(R,) represents a single line, and w >

0 represents a line with a certain width (linear border).
The outlier criteria range is a range with both floor (0)
and ceiling (1), and standardization is not required. This
is an additional advantage over the most common average,
variance, and slandered deviation based approaches, which
require a separate standardization process.

2.4. Challenge 3: Influence of Negative Values. Due to negative
values, the numerator or both the numerator and the denomi-
nator of RHS of (5) canbe 0 (e.g., -4, —1,0, 1, 4), even without
outliers. When there are outliers, RHS of (5) can be negative,
which cannot be accepted as valid values for 2/n,0 < 2/n < 1,
must always hold.

Subtracting the first element (a; .., = @& — ) from
each element of any AP creates a new transformed AP where
Amin = 0 and guarantees a series without negative values.

= a; — A, (7) is derived, which is

From (5) and q; .,

more robust. Another advantage of (7) is that it performs the
transformation, automatically:

((amin B amin) + (amax B amin))
Z?:l (ai - amin)

(amax - amin)

(Sn = Omin * I’l) -

MMS =

)
MMS =

2.5. Challenge 4: Uneven Distribution of Criteria Range. The
ranges (0,2/n) and (2/n, 1] are to identify outliers, which
are minimums and maximums, respectively (Figure 1). When
n — ooand R, — 0, then R, : (0,1] is not equally
distributed, which provides a large range for maximum
outliers and a small range for minimum outliers. This is a
problem when locating minimum outliers.

To solve this, we used the idea of complement. For
any series, this will convert the maximum value into the
minimum, the minimum value into the maximum, and inter-
mediate values into their complements. Most importantly,
now the minimum value represents the maximum value of
the original series and vice versa, while still representing the
original series. The complement of an element in a series
can be defined as g, . = (G5 + Gmin) — 4;- From (5) and
a; ¢ = (Amax + Amin) — g; this gives

Amin ) )

>

((amax + Amin — amax) + (amax + Apin —
Z?:l (amax + Amin ~ ai)
((amin) + (amax))

z;l:l (amax + Amin ~ ai) '

MMS =

(8)

MMS =

Apply a; 1o = & — Ay, (to remove effect from negative

values):
((amin - amin) + (amax - amin))

Z:’lzl ((amax - amin) + (amin - amin) - (ai - amin))

MMS =

>

(amax B amin)

Z?:l (amax - ai) ’

(amax - amin)
MMS = ——~—,
(amax *n-—= Sn)

MMS =

©)

Consequently, the range R, > 2/n represents the range for
minimum outliers related to the original series and vice versa
(Figure 2), and it is possible to ignore the range (0,2/n). In
addition, (9) automatically performs the transformation.

Now there are two equations for MMS, (7) and (9), to
check whether the maximum or the minimum of the series
is an outlier. We named the two versions of MMS as MMS
(10) and MMS,..;,, (11)

max

_ (amax B amin)

MMS = >
e (Sn ~ Omin * 1’1)

(10)

MMS. . = (amax B amin) ) (11)
o (amax *Nn- Sn)
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TaBLE 2: Sample calculations for illustrating the relation between 2/n

and MMS, . and MMS ;.

a, Data set 1 Data set 2 Data set 3 Data set 4 Data set 5
a 100 100 100 99.99 1

a, 101 101 101 101 101

a, 102 102 102 102 102

a, 103 103 103 103 103

as 104 104.01 204 104 104
MMS (Max) 0.4 0.401 0.945 0.399 0.254
MMS (Min) 0.4 0.399 0.254 0.401 0.945

2/n 0.4 0.4 0.4 0.4 0.4
Outlier? — Yes-Max Yes-Max Yes-Min Yes-Min

R,, for original series

Minimum outliers Maximum outliers

( : ]
0 R, =L2/n 1 J

Maximum outliers
(represent the minimum outliers of original series)

Minimum
outliers

R, for complement series

FIGURE 2: Range of R,, for original series and complement of original
series.

The following equation shows the overview of the MMS
process:

M ((2)-w)
n bl

Aoy — O \ . .
= —max min J maximum is the outlier

Sp = Qpin * 1 2
S((—) + wl)

n
or B (12)

()

— Amax ~ %min ) 2
amax*n_sn >((;>+w1>,

minimum is the outlier

MMS,.in

and Table 2 shows sample calculations using (10) and (11) for
the same data sets in Table 1.

2.6. Challenge 5: How to Deal with Removed Outliers/Missing
Values. In a series, there can be initial missing values. In
addition, if there is no replacement after removing an outlier
it also creates a missing value environment. If there is no
filling, it would transform the elements after the element is
removed into another value and destroy the original relation-
ship of elements (Figure 3). These transformed values become
outliers in relation to the original data. Therefore, for using
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the relation of AP, it is compulsory to maintain the original
relation of the data even after removing an outlier. Thus, any
rejection technique is not feasible. To maintain the original
relation, one possible way is replacing the missing value.
However, the data we are considering contain a considerable
amount of outliers. Therefore, we cannot guarantee that an
element derived from existing elements is not an outlier.

To overcome this problem, we considered two different
options: (1) recalculate only the data points after (or before)
the removed or missing element, thereby maintaining the
initial angle in relation to a certain point or (2) transform the
elements into a new series where the missing value has no
effect.

2.6.1. Recalculate the Data Points after (or before) Removed
and Missing Elements. If there is a missing element, the next
elements will be shifted horizontally and transformed into
wrong values in relation to the current index of the elements
(Figure 3). However, angular shifting will not introduce such
an error (Figure 3).

In Figure 4, the plot consists of elements a, to a,,,
(r € R"), and element a, at r needed to be removed. After
removing element r, element 7+ 1 becomes element r, element
r+2 becomes element r+1, and so on. However, shifting while
maintaining the same angle with respect to a certain reference
element (e.g., the first element), the same form of the series
can be maintained. Equation (13) shows the new value after
angular shifting. We used this technique with MMS algorithm
to recalculate the series after (or before) missing values or
removed elements:

BT, = <Br+1Cr+1 ) « AB, = <(“r+1 - ao)) 7
ABr+1 (1" + 1) (13)
(ar+1)new =4, + BrTr'

2.6.2. Transformation of Data to a Constant Value. A series
with a constant value (y = ¢ form, where ¢ is a constant) is a
series that has no effect of missing values. Because of that, if
it is possible to transform any linear series to y = ¢ form, the
transformed series is free of any effect of missing values. After
that, the transformed series can be used for outlier detection.

If y” is a linear series, where v = y, — y;, x{ = x; — X1,
Xy, is the initial index of elements and y; is the kth element of
the series, k = 1,2,...,n. The gradient of the line (m) is given
by >, i/ Yoy Xk If one element (e.g., the first element) is
(0,0), this relation is always true even with missing values.
The element (0, 0) can be considered as the reference element.
The yT is a series with first element (0,0) and m that can
be calculated even with missing values. Also, it is possible
to derive a new series as y' where y, = x, * m. If there
are no outliers, both y” and y' coincide and y* — ' = 0.
If y'7 = yT — 3/, 9T is in the form of y = ¢ without
any influence from missing values. Therefore, this is another
method to overcome missing values without replacing them
(Figure 5).

2.7. Challenge 6: Locate Outliers That Are Neither the Max-
imum Nor the Minimum of the Series. When the outlier is
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FIGURE 3: (a) Data set with an outlier at index r. (b) Value autotransformation effect after removing the outlier at index r without replacement,
where circle corresponds to elements after removing the outlier, red triangle corresponds to expected (correct) elements, and square
corresponds to initial values of the shifted elements after removing the outlier.

TABLE 3: “Bad Detection” identified wrong (minimum) element as
the outlier.

a, Data set 6

a, 100

a, 101 MMS, ... 0.377
a, 102 MMS ., 0.425
a, 103.6 2/n 0.4

as 104 Outlier? Yes-Min

neither the maximum nor the minimum, MMS is unable to
locate the outlier (Table 3). We named this phenomenon as
“Bad Detection” When R,, reaches “Bad Detection Level,
MMS cannot be applied. To overcome this situation, we
introduced an improved version of MMS as enhanced MMS
(EMMS) based on the missing data imputation technique in
Section 2.6.2.
EMMS is expressed as

(aTT _aTT)

‘max ‘min T
EMNISmax = m; Apax () 0, (14)
n ‘min
T T
(amax - amin) T
EMMSmjn = m; Aax () 0, (15)
‘max n

where a,?T = IakT - xk(GaT/Gx)I, a,f = a; — ay, X, is the index
of data, gy is the kth term of the series,k = 0,1,...,n—1,nis
the number of elements in current window, Ga® = Z;(l) akT ,

Gx = Y1t X, and ST = Y1t alT()0.

FIGURE 4: Solution for value autotransformation phenomenon. Use
angular shifting instead of horizontal shift, where (x) corresponds
to horizontal shift and (v') corresponds to angular shift.

Always the term a”” > 0. Thus, the term ] = 0. Then
(14) and (15) are simplified as

aTT T
EMMS,_ ., = S“;‘T"; a,.. ()0, (16)
n
aTT T
EMMS, ;) = —— 2% g 0. (1)
w5

If there are outliers, EMMS ;. > 2/n or EMMS,_ .. > 2/n
and the greater value represents the outlier. Table 4 shows
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6
TaBLE 4: EMMS for identifying an outlier.

X(n-1)  ya,) y'(a,~ay) Y y" - x,(GyIGI)
0 100 0.000 0
1 101 1.000 0.06
2 102 2.000 0.12
3 103.6 3.600 0.42
4 104 4.000 0.24
G, =2 G' =2.120

EMMS (Max) 0.500

EMMS (Min) 0.333

2/n 0.4
Outlier? Yes-Max

FIGURE 5: Transformation of data to a constant value to overcome
the missing data problem, where red diamond corresponds to y =

f(x) form, yellow square corresponds to yT = f(x) - f(x,) form,

cross corresponds to y' = m x x, form (m = Y y[ /YL x]),

red circle corresponds to "7 = y” — 3’ and circle corresponds to
missing values.

an example calculation of EMMS and the following equation
shows an overview of EMMS process:

o | (3)+e2)

EMMS, .« = Sr?;f 1 maximum is the outlier

()

or _ (18)

2
S<<—) +w2)

T n

_ “r{l—ax‘ 2
G| ~((2) )

minimum is the outlier.

EMMS,,;,

However, EMMS uses derived information from existing
data. If there are biased values, it may lead to biased infor-
mation. Because of that, direct application of EMMS is not a
good practice. Hence, significant outliers should be removed
first using MMS, before applying EMMS.
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« n = number of elements
ok =kl
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series « n = number of elements
™ ok = k2
Recalculate
the series
\L Rw:2/n*(l+k2)e
Yes use EMMS
R, = 2/n*(1+kl)

use MMS

Outlier
detected

Outlier
detected

« Remove the outlier
en=n-1

« Remove the outlier
en=n-1

FIGURE 6: Implementation of MMS and EMMS. Initially algorithm
checks for the significant outliers using MMS. After removing all
significant outliers, then remove the nonsignificant outliers using
EMMS. There is no removed data imputation in relation to both
MMS and EMMS.

2.8. Challenge 7: Determining of Outlier Detection Criteria
(R,,). The value R,, is the factor that determines the outliers,
when w = 0 (R, = 2/n) represents exactly a line and w > 0
represents a linear border with certain width. In this section,
we propose several possible methods that can be used to
determine the outlier detection criteria.

2.8.1. Express the Value “w” as f(1/n). Ifthe value wis f(1/n)
thenw = 2 * k/m; k < (n/2) — 1;and k € R*. Then R, =
2/n+2 x k/n:
Ry =2+ (1+K),

n

w

(19)
—% =1+ k(= constant) .

Ry
When the MMS or the EMMS is greater than R, of (19), this
implies the existence of outliers. Because R,,/R, is constant
and gives standards to R,,, determination of k still depends
on the knowledge of the domain. Figure 6 shows an algorithm
based on this technique.

2.8.2. When the First and the Last Items Are Nonoutliers.
In the total process, the “Bad Detection level” is the most
important criteria. If R, of MMS is less than the “Bad
Detection Level” it is possible to identify nonoutliers as
outliers as mentioned in Section 2.7. If there is preknowledge
about outliers, it is possible to use a safe value for MMS.
Otherwise, there is no 100% guarantee on “Bad Detection
Level”
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TaBLE 5: Different environments used to validate the new method.

Type of the original dataset ~ Number of elements

Type of outliers

Reference (first) element

is an outlier? Initial missing values?

Increment, constant, and

decrement. 10 to 1000

Non-Gaussian, Gaussian

Yes, no Yes, no

» Get window with the first and the last terms being

nonoutliers
« n = number of elements Start
ek=kl

N Consef:utive « n = number of elements
series ek=k2
Recalculate the
series R, = 2/n* (1+k2)
J/ use EMMS N
R, = 2/n* (1+kl) (
use MMS
Yes

Outlier
detected

detected

First
or last term

First
or last term

» Remove the outlier
en=n-1

« Remove the outlier
en=n-1

FIGURE 7: Outlier detection method including the “Bad Detection
Level” detection technique. The first and the last data points of the
window must be nonoutliers. If the first or the last element was
identified as an outlier, it will become a contradictory situation.
Thus, this point can be considered as the terminating point of MMS
and EMMS.

However, when the first and the last elements are not out-
liers, the “Bad Detection Level” can be detected automatically.
If the first or the last element was identified as an outlier, it
will become a contradictory situation. Thus, this point can be
considered as the terminating point of MMS and EMMS. The
decision diagram elaborated in Figure 7 expresses the new
outlier detection method including the “Bad Detection Level”
detection technique.

2.9. Validate the Method. We implemented the MMS (with
recalculation after an outlier is removed) and EMMS with
C++ and conducted the validation process. For the recalcu-
lation process, the existing first element of the window was
the reference element and always used the original value of
the element (not the current updated value of the element).
To validate the method, we used artificial data sets of different

sizes (10 to 1000) of a line representing increasing, decreasing,
and constant line. Then 50% of items of those data sets were
replaced with very small and very large outliers (+1.0e — 2 to
+1.0e + 2 times of correct value). We checked the data sets
for all the environment combinations shown in Table 5. The
outlier detection criteria were determined based on (19). For
all data sets, the same k value was used (for MMS, k = 0.5,
and for EMMS, k = 0.01). Then the percentage of correctly
and falsely detected nonoutliers in relation to the number of
actual nonoutliers and the percentage of correctly and falsely
detected outliers from the total number of outliers (small and
large outliers) were determined.

2.10. Evaluation Using Real Data. To check the best linear
fitting identification capability, the algorithm was tested using
several real data sets which were automatically recorded
with a frequency of twelve data points per day (i.e., every
other hour) from a biogas plant, over a period of seven
months. Among the different parameters, we selected the H,
content measured in ppm, which we expected to maintain
linear behaviour during stable operation. We selected seven
segments of different size for evaluating the algorithm. In
some data sets, there were initial missing elements. We set
the R, for MMS and EMMS by analysing the first and the
third data sets. For the recalculation process, the existing
first element of the window was the reference element, and
we always used the original value of the elements (not the
current updated value of the element). Then the percentage of
correctly falsely detected nonoutliers in relation to the total
number of nonoutliers and the percentage of correctly and
falsely detected outliers from the total number of outliers
(small and large outliers) were determined.

We decided to use the LSM, Sigma filter, and Grubb’s
test [26-29] also known as maximum normed residual test
or “extreme studentized deviate” (ESD) test to compare our
results. We selected Grubb’s test since it has nearly the same
formulation as our method. We checked all the biogas data
using abovementioned methods. We used each of the data
segments as a single window. First, we checked the ability
of each method to identify the general trend of the series.
Then, we checked the amount of correctly and falsely detected
outliers and nonoutliers for each method in relation to the
general trend.

3. Results and Discussion

Results related to validation show that when the reference
element (the first element) was not an outlier, the algorithm
was capable of identifying all outliers with 0% error despite of
the type of outliers (Gaussian or non-Gaussian) (Figure 8). If
the outliers were Gaussian, there were no significant outliers
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FIGURE 8: Outlier detection from data sets with ten elements. The first element is the reference element, which is not an outlier, where red
triangle corresponds to outliers detected by MMS, yellow circle corresponds to outliers detected by EMMS, and green square corresponds to
nonoutliers. Value of k for MMS and EMMS is 0.5 and 0.01, respectively. When the reference (first) element is not an outlier, the new method
is capable of locating all outliers. When the outliers are Gaussian, MMS automatically becomes inactive (now no significant outliers) ((d), (e),

(£)).

and MMS automatically became inactive (Figures 8(d), 8(e),
and 8(f)). When the first few elements were outliers and
outliers were non-Gaussian, MMS detected the significant
outliers correctly (Figures 9(a), 9(b), and 9(c)). However,
EMMS was unable to locate the nonsignificant outliers, when
the first element for EMMS was an outlier (Figures 9(a) and

9(c)). If the reference element for EMMS was not an outlier,
it was still possible to achieve correct results (Figure 9(b)).
Though it was impossible to locate all nonoutliers, the
detected nonoutliers were 100% correct detections. These
values can be used to estimate the other values using methods
like LSM since now all the existing data are cleaned. In
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FIGURE 9: Outlier detection from data sets with ten elements. The first element is the reference element, which is an outlier, where red triangle
corresponds to outliers detected by MMS, yellow circle corresponds to outliers detected by EMMS, green square corresponds to nonoutliers,
and black arrow corresponds to wrong detections. Value of k for MMS and EMMS is 0.5 and 0.01, respectively. When the reference (first)
element is an outlier and outliers are non-Gaussian, the new method identifies only the significant outliers ((a), (b), (c)). When the outliers
are Gaussian, MMS automatically becomes inactive (now no significant outliers) ((d), (e), (f)).

general, it is fair to state that (1) when the reference element is
not an outlier, the method is capable of identifying all outliers
and (2) when the first few elements of the series are outliers
and the outliers are non-Gaussian, the method is capable of
identifying only the significant outliers and part of correct
elements.

When the first few elements (reference elements for
both MMS and EMMS) were outliers and the outlier dis-
tribution was Gaussian, outlier detection was poor (Figures
9(d), 9(e), and 9(f)). Due to the Gaussian distribution of
outliers, MMS was inactive and it was not possible to identify
the large outliers. Most importantly, the results highlighted
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FIGURE 10: Two artificial data samples with 1000 elements each, including 50, 100, 100, and 50 (total 300) missing value regions. The first
element is the reference element, which is not an outlier, where (a) corresponds to a data set with outliers in non-Gaussian, (b) corresponds
to a data set with outliers in nearly Gaussian, red triangle corresponds to outliers detected by MMS, yellow circle corresponds to outliers
detected by EMMS, and green square corresponds to nonoutliers. The value of k for MMS and EMMS is 0.5 and 0.01, respectively. The new
method was able to identify all the elements related to the line with 0% error.

the importance of the reference element. If the reference
element for MMS and EMMS was not an outlier, it guaranteed
good results despite of other factors.

In the methodology, we derived the method based on
the first element. However, it is also possible to use any
other element as reference point and modify the method.
We considered the simplest situation, where the first element
is not an outlier. Therefore, if it is possible to segment the
data excluding extreme outliers at the beginning, it provides
accurate outlier detection. Another possibility is to replace
the first element with an already known element. This leads
to another possibility for applying the method: if we know
only a single correct element, the use of that element as
reference element and of the modified method according to
the reference element can yield very accurate results.

Some model-based approaches demand a trained data
set for correct output. In contrast, this method requires only
one correct element to produce a correct output. In addition,
it is possible to use multiple reference points and consider
the best fitting. For example, (a) consider each point in first
x% (e.g., 10%) of data points as reference point and (b)
consider all data points as the reference point. Furthermore,
it is important to distinguish the purpose of MMS and
EMMS. MMS removes only the significant outliers, while
EMMS removes nonsignificant outliers. Depending on the
requirement, MMS or/and EMMS can be used to remove
outliers.

The results show that the new method is a good solution
for managing missing values. Figure 10 shows two data sets
with 1000 elements each. Each data set consists of 50, 100,
100, and 50 (total 300) missing value regions. When the first
element was not an outlier, the new method was able to
identify all the elements related to the line with 0% error.

In real world, it is not possible to find nonoutliers that
exactly agree with linear regression. Therefore, 100% accuracy
is inapplicable. However, it is very important to have a

significant outlier-free data set. The new method guaranteed
a significant outlier-free data set when the outliers were non-
Gaussian. Furthermore, in real world situations, data/outliers
are not always in Gaussian distribution. Due to that, we hope
the new method can be applied to the majority of outlier
detection applications. Our new method is an effective solu-
tion for most common LSM and sigma filter need Gaussian
outliers. Some methods like sigma filter cannot be applied
directly to a certain data segment, and further segmentation
(windowing) is required for better results. In contrast, the
new method is capable of locating nonoutliers automatically
in increment, decrement, or constant form, regardless of the
size of the window.

Results related to biogas data proved the abovementioned
idea and showed that the algorithm clearly identifies three
regions as significant outliers (outliers from MMS), non-
significant outliers (outliers from EMMS), and nonoutliers
within a data segment (Figure 11). In addition, the results
showed that the nonoutliers follow a linear path. Further-
more, the width of the regions can be tuned by changing the
relevant R, values. Figure 11 shows some selected results of
biogas data for a k value of 0.2 for MMS and a k value of 0.1
for EMMS.

One of the interesting observations was the ability of the
algorithm to continue linear detection even with the noncon-
tinuous clusters (Figures 11(b) and 11(e)). In all data segments,
there occurred no false detection (there were no outliers in
nonoutlier regions and vice versa). Most importantly, the new
method required no further windowing and nonoutliers were
detected independent of the window size.

When the general trend was constant and elements were
in Gaussian distribution, the Sigma filter and LSM were able
to identify the linear trend. However, for series with biased
elements, both methods failed to identify the general trend.
When the general trend was increment or decrement, the
Sigma filter failed to identify the general trend (a further
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FIGURE 11: Results related to real biogas data with different size of data sets. The first element is the reference element, which is assumed not
to be an outlier. Results showed that the algorithm clearly identifies three regions as significant outliers (outliers from MMS), nonsignificant
outliers (outliers from EMMS), and nonoutliers within each data segment. Most importantly, all the nonoutliers lied within a linear border,
where red triangle corresponds to outliers detected by MMS, yellow circle corresponds to outliers detected by EMMS, and green square
corresponds to nonoutliers. The value of k for MMS and EMMS is 0.2 and 0.1, respectively.

segment would give better result, but we used the whole
window). The new method was capable of locating 4% to 45%
of elements as outliers with 0% error. Grubbs’ test was capable
of identifying very small amount of elements as outliers
(0%-17%), even with the significance level of 0.05. However,
all outliers were significant and no wrong detections were
reported.

4. Conclusions and Outlook

This paper introduced a new outlier detection method using
the relation of the sum of the elements of an arithmetic
progression. The results of this work prove that the new
method is a robust solution for outlier detection in a data set
with missing elements. The method is capable of identifying
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both significant and nonsignificant outliers, when the first
value of the data set is not an outlier. Most importantly,
the method is a solution for identifying significant outliers
in a series with outliers in non-Gaussian distribution. In
addition, the outlier detection is nonparametric, has floor and
ceiling values, and does not require standardization. When
the reference elements are unknown, the method can be used
with multiple reference elements to gain optimal output.

If the frequency of the data is sufficient, any nonlinear
relation can be represented as a combination of straight lines.
Therefore, by using a suitable segmentation technique, it is
possible to identify outliers in any data series. This will allow
for detecting outliers in a process-oriented data set. Therefore,
to bring a data series into a form that is suitable for our
method, an intelligent segmentation technique is necessary.
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