
TECHNISCHE UNIVERSITÄT MÜNCHEN 

Lehrstuhl für Brau- und Getränketechnologie 

 

Wissenschaftszentrum Weihenstephan 

für Ernährung, Landnutzung und Umwelt 

 

Non-Parametric Methods for Data Processing and Knowledge Mining in Bioprocesses 

 

 

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für 

Ernährung, Landnutzung und Umwelt der Technischen Universität zur Erlangung des 

akademischen Grades eines  

 

Doktor der Naturwissenschaften (Dr. rer. nat.) 

 

genehmigten Dissertation.  

 

Vorsitzender:    Univ.-Prof. Dr. Klaus Richter 

 

 Prüfer der Dissertation:  

1. Univ.-Prof. Dr. Thomas. Becker  

2. Univ.-Prof. Dr. Andreas Gronauer  

 

Kalutara Koralalage Lasantha Britto Adikaram 

Die Dissertation wurde am 15.01.2018 bei der Technischen Universität München 

eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für 

Ernährung, Landnutzung und Umwelt am 09.04.2018 angenommen.  



 

 

 

  



 

 

Acknowledgements 

Then, I would like to give my thanks to the examining committee, for spending their 

valuable time and effort in reviewing this thesis. I am also very grateful to the German 

Academic Exchange Service (DAAD: Deutsche Akademische Austauschdienst) for 

providing financial assistance for my family and me during our stay in Germany. I must 

also express my thanks to TUM graduate school for the friendly and very professional 

assistance they provided to me; this allowed me to successfully complete my research 

work. I would also like to thank Bayerische Landesanstalt für Landwirtschaft (LfL) for 

providing the data required for my research work. 

I take this opportunity to thank Prof. Andreas Gronauer and Prof. K.D.N. Weerasinghe 

for opening the doors for me to study in Germany. I cannot forget the assistance given 

to me by the University Grants Commission, Sri Lanka and the Faculty of Agriculture, 

University of Ruhuna, Sri Lanka. I would like to thank all the staff members of the 

University Grants Commission and the University of Ruhuna for their support. It is my 

pleasure to give my thanks to Prof. S.G.J.N. Senanayake, Prof. R. Senaratne, Prof. S. 

Subasinghe, Prof. R.T. Serasinghe, Prof. W.M.M.P. Wijeratne, Prof. Champa 

Nawarathna, Prof. P. A. Jayantha, and Dr. M.K.D.K. Piyarathna for kindly supporting 

me to complete my research work in Germany. 

Firstly, I would like to extend my gratitude to Prof. Dr. Thomas Becker for giving me the 

opportunity to conduct my research work at his chair and for his vluaable guidance, 

support, and encouragement that enabled the successful completion of this research.  

My special thanks go to Dr. Mohamed A. Hussein and Dr. Mathias Effenberger for 

their vital feedbacks, which enhanced the scientific quality of this research work. 

Furthermore, I must again be thankful to them for their friendship, support, and  

valuable advice they gave to me, especially during the hard periods of the research 

work. 

I sincerely thank all the kind and helpful people of Germany, especially the anonymous

lady who helped me on my first day (Sunday, 11th April 2010). On that day, I could not

find my apartment in Hans-Sachs-Ring, Manheim. She stopped her car and showed

me the way to my apartment, which was about 300m away. This unexpected

experience on my very first day in Germany gave me great confidence to stay in

Germany and bear any hard situations with a positive attitude. During my stay in

Germany  with my family, I saw this helpfulness  many  times from the German people,



 

 

especially from the friends and colleagues of Bayerische Landesanstalt für 

Landwirtschaft (LfL) in Freising, the friends and colleagues of Brau- und 

Getränketechnologie, TUM Weihenstephan, and the members of Buddhistisches 

Kloster Bodhi Vihara in Freising.  

Finally, I thank my wife Disna, my son Himsara, and my daughter Sandathara for their 

patience during this period of work. I would also like to thank all my friends and 

relatives for their assistance and kindness. And last but not least, I thank my parents 

for everything. 

 

Freising, 01.10.2015 

K.K.L.B. Adikaram 

 

  



Publications

Peer reviewed publications

1. Adikaram, K.K.L.B., Hussein, M.A., Effenberger, M., Becker, T.: Continuous
Learning Graphical Knowledge Unit for Cluster Identification in High Density Data
Sets. Symmetry. 8 (12) (2016). DOI 10.3390/sym8120152.

2. Adikaram, K.K.L.B., Hussein, M.A., Effenberger, M., Becker, T.: Non-Parametric
Local Maxima and Minima Finder with Filtering Techniques for Bioprocess.
Journal of Signal and Information Processing. 7 (2016). DOI
10.4236/jsip.2016.74018.

3. Adikaram, K.K.L.B., Hussein, M.A., Effenberger, M., Becker, T.: Multi-Variable,
Multi-Layer Graphical Knowledge Unit (MVML-GKU) for Storing and
Representing Density Clusters of Multi-Dimensional Big Data. Applied Sciences.
6 (4) (2016). DOI 10.3390/app6040096.

4. Adikaram, K.K.L.B., Hussein, M.A., Effenberger, M., Becker, T.: Universal Linear
Fit Identification: A Method Independent of Data, Outliers and Noise Distribution
Model and Free of Missing or Removed Data Imputation. PLoS ONE 10 (11)
(2015). DOI 10.1371/journal.pone.0141486.

5. Adikaram, K.K.L.B., Hussein, M.A., Effenberger, M., Becker, T.: Data
Transformation Technique to Improve the Outlier Detection Power of Grubbs’
Test for Data Expected to Follow Linear Relation. Journal of Applied Mathematics
(2014). DOI 10.1155/2015/708948.

6. Adikaram, K.K.L.B., Hussein, M.A., Effenberger, M., Becker, T.: Multiple memory
structure bit reversal algorithm based on recursive patterns of bit reversal
permutation. Mathematical Problems in Engineering (2014). DOI
10.1155/2014/827509.

7. Adikaram, K.K.L.B., Hussein, M.A., Effenberger, M., Becker, T.: Outlier detection
method in linear regression based on sum of arithmetic progression.  The
Scientific World Journal (2014). DOI 10.1155/2014/821623.

8. Adikaram, K.K.L.B., Hussein, M.A., Becker, T.: Impact of Microsoft Visual C++
version on the performance of arrays and vectors. Research Journal in
Engineering and Applied Science 3 (2014), 262-266.

.

Technical reports

1. Kissel, R., Adikaram, K.K.L.B., Pohl, A., Gracia, E.R., Effenberger, M.: Betriebs-
Monitoring: Vergleichende Untersuchung für die Einwerbung und Vergärung von
Grünlandaufwüchsen Abschlussbericht - Schwerpunkt Anlagen-Monitoring.
Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten,
München, Germany (2015).



Conference contributions

1. Adikaram, K.K.L.B., Hussein, M.A., Effenberger, M., Becker, T: Non-parametric
high and low extrema filtering method for filtering extrema in dynamic domains.
SAITM 6th Annual International Research Symposium on Engineering
Advancements, Malabe, Sri Lanka; 04/06/2016

2. Adikaram, K.K.L.B., Hussein, M.A., Effenberger, M., Becker, T: Novel
nonparametric extrema identification method. 12th Academic Sessions,
University of Ruhuna, Matara, Sri Lanka; 02/03/2016

3. Adikaram, K.K.L.B., Hussein, M.A., Effenberger, M., Becker, T: A Simple
Reliable Unstructured Data Synchronization Technique for Biogas Data. ISAE
2016, Kamburupitiya, Sri Lanka; 13/01/2016

4. Adikaram, K.K.L.B., Hussein, M.A., Effenberger, M., Becker, T: Outlier
Detection Method for Identifying Outliers that are not in Gaussian
Distribution. 12th Academic Sessions, University of Ruhuna, Matara, Sri Lanka;
04/03/2015

5. Adikaram, K.K.L.B., Hussein, M.A., Effenberger, M., Becker, T: Improving the
performance of an algorithm by using multiple single dimensional memory
structures for index mapping. 2nd Ruhuna International Science and
Technology Conference (RISTCON 2015), Matara, Sri Lanka; 22-23/01/2015

6. Adikaram, K.K.L.B., Hussein, M.A., Effenberger, M., Becker, T: Data
Transformation Technique to Improve the Outlier Detection Power of Grubbs
Test for Data Expected to Follow Linear Relation. International Symposium on
Agriculture & Environment - 2014 (ISAE 2014), Kamburupitiya, Sri
Lanka;
01/11/2014

7. Adikaram, K.K.L.B., Hussein, M.A., Effenberger, M., Becker, T: Data
warehouse framework for unstructured biogas data. International Conference of
Agricultural Engineering, Zurich; 09/07/2014



ii 
 

Contents 

Abstract .................................................................................................................................... iii 

1. Introduction................................................................................................................1 

1.1 Challenges in data analysis and knowledge mining in biogas plants ..............1 

1.2 Non-parametric methods .........................................................................................3 

1.3 Linear fit identification ..............................................................................................5 

1.4 Extrema detection.................................................................................................. 12 

1.5 Density clusters in knowledge representation .................................................. 14 

1.6 Thesis outline ......................................................................................................... 17 

2. Summary of results (thesis publications)........................................................... 18 

2.1 Paper Summary ..................................................................................................... 18 

2.2 Universal Linear Fit Identification: A Method Independent of Data, Outliers 

and Noise Distribution Model and Free of Missing or Removed Data 

Imputation ............................................................................................................... 25 

2.3 Derivative Independent, Non-Parametric Local Maxima and Minima Finder 

with Filtering Techniques for Bioprocess........................................................... 43 

2.4 Continuous Learning Graphical Knowledge Unit for Cluster Identification in 

High Density Data Sets ........................................................................................ 65 

2.5 Multi-Variable, Multi-Layer Graphical Knowledge Unit (MVML-GKU) for 

Storing and Representing Density Clusters of Multi-Dimensional Big Data. 82 

3. Discussion .............................................................................................................. 97 

4. Outlook .................................................................................................................. 111 

Appendix A: ......................................................................................................................... 113 

References .......................................................................................................................... 125 

 

  



 

iii 
 

Abstract 

In parametric methods, detection criteria of methods are based on one or several domain 

dependent values such as numerical averages, standard deviations, and numbers of nearest 

neighbours. Thus, certain detection criteria of parametric methods are valid only for 

considered data model or considered conditions in the domain. Also, the accuracy of 

the outcome of parametric methods depends on the values of variables. In contrast, 

non-parametric methods depend on a less number of underlying assumptions and they 

are known as distribution-free (data model independent) methods. Because of that, 

non-parametric methods are considered as robust  methods.  Due to the dynamic nature of 

biological processes such as biogas plants, it is a big challenge to analyse, control, 

and  monitor  biological  processes  using  parametric  methods.  When  the  expected  data 

model or domain conditions (e.g.: value range of data) change, it is necessary to recalibrate

parameters or develop new models for monitoring, controlling, and analysing. Therefore, 

the  usage  of  non-parametric  methods  is  a  good  solution  for  overcoming  or  minimizing 

afore-mentioned drawbacks. 

All the developed methods were evaluated with the automatically captured biogas data. 

Results proved that the developed methods are capable of identifying linear fit, identifying 

extrema, filtering extrema, and density cluster formation, with a high level of robustness. 

In addition, I have very promising expectations that the new methods will open new windows

in the field of data processing, data analysing, process monitoring, and process controlling in

bioprocesses. 

In this research, new non-parametric techniques were developed for linear fit identification, 

extrema detection, extrema filtering, and knowledge representation as density clusters. In 

the linear fit identification method (UniLiFI: Universal linear fit identification) 2/n is used as 

the detection criteria, where n is the number of data points. Extrema identification is 

performed by comparing two ratios in relation to maximum, minimum, middle point, and sum 

(there is no involvement of  any external criterion).  The threshold criteria for  methods 

developed for filtering non-dominating extrema (MMS-Window based filter or MMS-WBF) 

and sharp and gradual (flat) extrema (MMS-SG filter) are values based on the number of 

data points (n).  The threshold criterion of the method developed for locating low and 

high extrema (MMS-LH filter)  is  a  value between 0  and 1.  In  the  method for 

knowledge  representation  (GKU:  Graphical  Knowledge  Unit),  properties  of  the  marker 

(graphical symbol of  the data point) such as colour, size, and shape are used as 

cluster formation and identification. Thus, all the developed methods are non-parametric. 



Zusammenfassung 

In der Prozessanalyse ist die Genauigkeit der Ergebnisse parametrischer Methoden 

nur innerhalb eines definierten Wertebereiches gegeben. Damit sind diese Methoden 

für dynamische Bioprozesse ungeeignet. Nichtparametrische Methoden sind 

hingegen Modell unabhängig und erfordern nur wenige Grundannahmen. Sie 

können daher auch für sehr dynamische Bioprozesse robuste Ergebnisse liefern. Die 

hier vorliegende Arbeit stellt nicht-parametrische Methoden für die lineare 

Approximation, Extremwertermittlung, Extremwertfilterung und Identifikation von 

Clustern für die Bioprozess-Analyse vor. 
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1. Introduction 

 

Figure 1.1 : Diagram of an industry scale biogas plant 
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Because of the complex nature, most of the  bioprocesses require close and 

1.1  Challenges  in  data  analysis  and  knowledge  mining  in  biogas  plants 

Biogas  production  is  a  good  example  of  a  biological  process  that  converts 

organic  materials  into  biogas.  The  biological  process  in  biogas  plants  is  a 

recreation of natural anaerobic (oxygen-free) digestion process, which occurs in 

marshes and wetlands. During the digestion process, bacteria (micro-organisms) 

in biogas plant produce mainly methane (CH4) and carbon dioxide (CO2) known 

as  biogas  [1-3].  Figure  1.1  shows  typical  components  of  an  industrial  scale 

biogas plant and data capturing points.  

intensive analysis  of  all  the  steps  of  the  entire  process  cycle.  This  leads  to 

capturing huge amounts of data. However, with huge amounts of data, knowledge

discovery,  data  mining,  feature  identification,  and  data  processing  are  considered 

as  challenges  [4-6].  The  information  extract  via  knowledge  discovery,  data mining,

or  feature  identification  is  used  for  monitoring,  controlling,  and  understanding  the 

process.



 

 

Figure 1.2 : Data diversity in biogas plants. 
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In the field of biogas, there are many different types of plant designs and variety 

of technologies for biogas production. Thus, biogas industry is considered as 

an industry that has very complex bioprocess [7]. Compositions of possible 

input materials are diverse are due to the huge range of input materials. Even for a 

single  biogas  plant,  the  composition  of  input  materials  is  not  constant.  For 

example,  type, amount, and mixing ratio of materials prone to be changed 

according to the availability and sometimes due to policy decisions.  In an industry 

scale biogas plant, in addition to the data directly obtained from the biogas plant 

there are data from experiments as well as data from analytical laboratories.  As a

result of  the aforementioned factors, biogas plants produce huge amounts of 

heterogeneous  data.  This  makes  the  data  collection  more  complicated  for 

knowledge  discovery,  data  mining,  feature  identification,  and  data  processing. 

Composition and diverse nature of biogas data are shown in Figure 1.2. 



 

 

Since the behaviour of a biogas plant depends on a multitude of different factors, it is 

hard to find out all possible combinations of factors. For example, the behaviour of a 

certain plant design can be changed by modifying the physical size of the input 

material. Still, there are many unidentified factors that directly affect the behaviour of 

a biogas plant, particularly chemical and biological factors. Therefore, the accuracy 

of simulated models of a biogas plant that is developed based on already known 

factors, relations, and dependences totally depends on the underlying assumptions. 

As a result of this, there exists a large number of methodologies which are applicable 

only to a certain plant design [8-10].  
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In general, it is impossible to apply one system developed for controlling and 

monitoring a certain biogas plant directly to another biogas plant with a different 

design. Either a new system has to be developed, or the existing system has to be 

modified accordingly. Also, when developing a system, it is being tested with lab 

scale digesters with controlled conditions and determining the controlling conditions 

and  constraints  of  the  system.  However,  when  deploying  plant  design  as  an 

industrial scale plant, it may not function as it did in the laboratory.  

1.2 Non-parametric methods 

As aforementioned, knowledge discovery, data mining, feature identification, and 

data processing are the main challenges in the whole process of process controlling 

and monitoring. Available techniques in afore-mentioned fields can be classified as 

parametric and nonparametric methods [11]. Particularly, parametric methods use 

While knowledge of chemical and biological processes in biogas plants is being 

extended continuously, existing methodologies are not capable of absorbing new 

knowledge and implement it in an easy and cost-efficient manner [4]. This is 

reflected  by  the  structure  of  existing  systems  that  is  used  to  control  and  monitor 

biogas plants.  Still,  there is  no global  model  for  biogas plants,  which is  capable of 

absorbing new knowledge and updating /changing its functionality. Such a system 

would  be  able  to  deal  with  different  types  of  plant  designs  with  different 

behaviours. It would eliminate the huge effort of creating design-dependent, unique

systems. Deploying such a system in research laboratories and institutes will create 

a platform for storing and analysing data about the behaviour of  biogas plants with 

different designs. 
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one or several domain dependent values as detection criteria. Numerical averages, 

standard deviations, and numbers of nearest neighbours are some examples of such 

parametric values that are used as detection criteria in parametric methods. These 

criteria based on parameter values are valid only for considered data model or 

considered conditions in the domain.  The major drawback of parametric methods is 

that  the accuracy of  the outcome depends on the values of  variables [12].  In 

contrast,  non-parametric  methods  are  known  as  distribution-free  (data  model 

independent) methods. Thus, non-parametric methods depend on fewer numbers

In  this  research,  linear  fit  identification,  extrema detection,  extrema filtering, 

andknowledge representation as density clusters  were considered.  At  present, 

except extrema detection, all other areas mainly depend on parametric methods. 

Thus, in this research, novel non-parametric methods were introduced for identifying 

linear fit, extrema filtering (non-dominating extrema filtering, sharp and gradual 

extrema  filtering,  and  low  and  high  extrema  filtering),  and  density  cluster 

formation and identification. Furthermore, another novel non-parametric method 

for extrema identification was introduced. The non-parametric properties used in

1. In the linear fit identification method (UniLiFI: Universal linear fit identification) 

2/n is used as the detection criteria, where n is the number of data points. 

Also, the linear fit identification method is totally independent of data, outlier, 

and noise distribution models and free of missing/removed data imputation. 

3. The threshold criteria for methods developed for filtering non-dominating 

extrema (MMS-Window based filter or MMS-WBF) and sharp and gradual 

(flat) extrema (MMS-SG filter) are values based on the number of data points 

(n).  The threshold criterion of the method developed for locating low and 

high extrema (MMS-LH filter) is a value between 0 and 1. 

2. The extrema detection method is capable of detecting all the local extrema,

 and  extrema  identification  is  performed  after  comparing  two  ratios  in 

relation to maximum, minimum, middle point, and sum.  

proposed methods are as follows. 

the aforementioned drawbacks can be overcome or minimized.  

of underlying assumptions  [11, 13, 14] and considered as robust methods [12, 15]. 

Because of that, if there are non-parametric (data model independent) methods,
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1.3 Linear fit identification 

In any domain, clean data is the data that follows the assumed data distribution 

model [16], while noise is the data that follows the assumed probability distribution 

[16, 17]. Then, outliers are data that are not in agreement with the assumed clean 

data and noise models. In the concept of “linear fit”, the clean data is the data that 

agree with y = mx + c model (linear regression model). Statistical and model-based 

approaches are two of the most popular linear fit identification techniques. Majority of 

the popular statistical and modal based approaches use parametric properties such 

as  variance,  average,  median,  and  standard  deviation  as  construction 

components. 

In the process of linear regression identification, the best approach is to first remove 

outliers / noise with reference to the assumed models and then do the regression 

analysis on identified linear fit. Most of the outlier/noise detecting methods depend 

on certain data model such as Gaussian (Normal) distribution model. On the other 

hand, except methods such as angel based and some cluster based outlier detection 

methods [18, 19], most of the outlier/noise detection methods such as Sigma filter, 

Grubbs method, and moving average are considered as parametric methods. Sigma 

filter usually uses average and multiples of standard deviation as the criteria values. 

However,  in  2013, Leys  et  al.  [20]  showed  that  the  combination  of  median  and 

multiples of median absolute deviation provides more robust and reliable results 

[20]. Grubbs method uses tabulated significant levels as criteria values. Moving 

average  uses  average  of  an  advancing  window  as  the  filtering  method. 

4. The knowledge representation is based on properties of the marker (graphical 

symbol of the data point) such as colour, size, and shape. The method was 

named as “Graphical knowledge Unit” (GKU). GKU is a collection of 

continuous learning knowledge cells formed out of pixels in a bitmap. The 

GKU is not only a density cluster identification method, but it is also capable of

indicating  the  density  of  missing  data  and  out  of  range  data,  which 

convey  an  indicator  of  the  quality  of  the  data  especially  with  big  data. 

Furthermore,  GKU  can  be  used  as  a  data  cleaning  technique,  data 

visualization technique, and portable database. The GKU is extended for 

multivariate  versions  for  representing  density  clusters  in  multivariate  data 

sets. 



 

 

(a) (b) 

(c) (d) 
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Besides the major disadvantage in relation to parametric methods, if there is 

no  standardization  (standardization  process  requires  additional  computation 

time),  the  values  of  detection  criteria  are  domain  dependent.  Therefore,  it  is  not 

possible to compare two criteria even if they are numerically the same. 

“Anscombe's quartet” [21] is a good example for identifying the disadvantages of 

statistical methods or paramedic methods. In 1973, Francis Anscombe [21] 

used “Anscombe's  quartet”  to  demonstrate  the  data  sets  that  have  nearly 

identical statistical properties (Table 1.1) and have considerable variation when 

graphed (Figure 1.3).  Furthermore, Anscombe demonstrated the importance of the 

effect of outliers on nonparametric methods. Despite the distribution dissimilarities 

of data sets in “Anscombe's quartet”, “linear regression” is the same for all four 

data sets. There are four influencing factors in relation to regression detection:  

Figure 1.3: Anscombe's quartet. All the plots show nearly identical statistical 

properties even though they have very clear differences when plotted. 

1. Outliers and noise [22-26]. 

2. Nature of distribution of the clean data, noise, and outliers [27, 28].

3. Amount of outliers and noise [29-32]. 

4. Missing data [33, 34].  



 

 

 

 

Property Plot (a) Plot (b) Plot (c) Plot (d) 

Mean of x 9.00 9.00 9.00 9.00 

Sample variance of x 11.00 11.00 11.00 11.00 

Mean of y 7.50 7.50 7.50 7.50 

Sample variance of y 4.13 4.13 4.12 4.12 

Coefficient of determination (R2) 0.67 0.67 0.67 0.67 

Linear regression  y = 0.50x + 3.00 for all the plots 

7

Table  1.1:  Statistical  properties  of  plots  in  Anscombe's  quartet.  The  accuracy  of 

values is to two decimal points. 

Impact of outliers and noise in the linear fit identification 

The method introduced in this research is a single nonparametric method that is 

capable of addressing all the afore-mentioned challenges with very high levels of 

robustness, especially with the data sets that are considered as very extreme 

situations. 

Least Squares Method” (LSM) is the parametric statistical method that was 

employed for determining the linear regression in data sets of Anscombe's quartet. 

LSM is the most common and the most popular linear fit identification method that 

is used in most popular data analysing packages such as MATLAB, SPSS, Minitab,

Among the model-based approaches, Kalman filter [35, 36] is one possible method

that can be used for linear fit identification. Weighted LSM (WLSM) is another

approach for model-based linear fit identification method. When the outliers and

 

r,  and  Mathematica.  There  are  several  versions  of  LSM  and  the  most  common 

version is known as generalized LSM (GLSM). The major drawback of GLSM is 

that the  method demands outliers and noise to be in Gaussian distribution, which 

cannot be always  guaranteed.  The  results  of  using  parametric  statistical  methods

on  such  data  sets  were  very  clearly  elaborated  in  the  Anscombe's  quartet 

(Figure 1.3). As  a  solution  for  that,  data  has  been  pre-processed  and  outliers  

and  noise  were removed using suitable methods before applying GLSM.  
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noise are not in Gaussian distribution (heteroscedastic situations), WLSM is applied 

by using relevant weighted parameters that depend on the considered domain [37, 

38].  The  accuracy  of  model-based  approach  depends  on  the  accuracy  of  the 

identified clean data model and error data model. If it is not possible to identify 

the correct models, the model-based approach is not feasible [17].  

Impact of distribution of outliers and noise in the linear fit identification 

In any real data capturing, it is usual to observe that sometimes data do not agree 

with the considered regression. This occurs mainly due to data capturing error or 

sudden  change  in  the  process.  Sometimes,  these  data  points  are  considered  as  

either noise or outliers. In linear regression, when the resultant error of all the data 

is  zero  (error  in  Gaussian  distribution),  GLSM  provides  optimal  results  [39,  40]. 

Figure  1.4  elaborates  the  effect  of  the  distribution  of  outliers  on  regression 

identification.  In plots (a) and (b) clean data are expected to follow y = 0 while in 

plots (c) and (d) clean data are expected follow y = x model.  However, outliers (2

outliers) in plots (a) and (c) are in Gaussian distribution while in the other two plots 

outliers  are  not  in  Gaussian  distribution.  When  the  outliers  are  in  Gaussian 

distribution,  detected  linear  regression  is  closer  to  the  regression  of  clean  data  

than  the  plots  with  outliers  in  non-Gaussian  distribution.  However,  in  reality  it  is 

hard to find data sets consisting of errors that are in Gaussian distribution. Therefore, 

based  on  previous  results,  most  of  the  time,  it  is  assumed  that  the error 

distribution is Gaussian. 



 

 

 

 

(a) (b) 

(c) (d) 
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Figure 1.4: Effect of the distribution of outliers. In plots (a) and (b) clean data are 

expected to follow y = 0 while in plots (c) and (d) clean data are expected follow y = x 

model. In both plots (a) and (c) outliers are in Gaussian distribution and others are 

not. When the outliers are in Gaussian distribution, identified linear regression is 

optimal (plots (a) and (c)). 

Impact of number of outliers in the linear fit identification 

Theoretically, if the all the data that do not agree with linear fit are in Gaussian 

distribution (resultant error is zero), the identified linear fit is optimal. However, the 

degree of optimization depends on the number of outliers. Figure 1.5 shows the 

same linear regressions shown in Figure 1.4. . Each plot in Figure 1.4 contains 20% 

outliers and each plot shown in Figure 1.5 contains 40% outliers. The first major 

observation is that the identified regression in relevant plots in Figure 1.4 and Figure 

1.5 are not the same. The reason for this difference is the difference in the 



 

 

 

Figure 1.5: Effect of the number of outliers. In plots (a) and (b) clean data are 

expected to follow y = 0 while in plots (c) and (d) clean data are expected follow y = x 

model. In both plots (a) and (c) outliers are in Gaussian distribution and others are 

not. All the plots contain two times of outliers than the plots in Figure 1.4. All the plots 

show different regression than the equivalent plot in Figure 1.4. 

. 

The next challenge in regression analysis and data cleaning is the influence of 

missing data. Even if the original data set is without missing elements, removing 

outliers (without replacement) automatically creates a missing data environment. In 

the literature, considerable numbers of methods were introduced for handling 

(a) (b) 

(c) (d) 
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percentage of outliers. This clearly demonstrates that the number of error data 

causes an impact on detection of the linear fit. 

Impact of missing data in the linear fit identification 



 

 

 

Fortunately, GLSM is not affected by missing data when determining linear 

regression with no outliers. Plots (a) and (b) of Figure 1.7 show such a situation. The 

identified regression agrees 100% with the regression of clean data. This 

observation is the one major idea behind the new linear fit identification method. If it 

(a) (b) 
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However, the impact of missing values appears, only when the missing data are 

clean data and existing data are outliers. Figure 1.6 shows an example for such a 

situation. Plots (a) and (b) are the data set shown in plots (a) and (b) of Figure 1.4, 

but without the last five data points. The identified regression do not agree with the 

regression in the relevant plot in Figure 1.4. This clearly elaborated the impact of 

missing data on regression identification. 

Figure 1.6: Effect of the missing data. Plots (a) and (b) show the data sets in plots (a) 

and (b) of Figure 1.4 but with the last five data points missing. When the missing 

data, identified regression does not agree with equivalent plot in Figure 1.4.  

missing values. Filling and reject missing values are the two techniques used to 

overcome missing data problems [41, 42]. Among the different missing data filling 

methods, hot deck, cold deck, mean, median, k-nearest neighbours, model-based

methods, maximum likelihood methods, and multiple imputations  are the most

common methods [42-46]. Usually, filling methods derive the filling value from same

data set or other known existing data. If there are considerable numbers of outliers,

derived data may be biased due to the influence of outliers [47, 48]. Therefore, the

most reliable approach is to remove all outliers and replace the outliers with a 

suitable method, if replacement is necessary.  



 

 

is possible to remove all the data points that do not agree with the regression of 

clean data, clean linear fit can be achieved. Using this linear fit, very accurate 

regression can be derived. 

 

Figure 1.7: Effect of the missing values. If the all remaining data are clean data, 

there is no effect on linear regression identification with LSM. Plots (a) and (b) 

contain 40% missing data and all the others are clean data and identified regression 

agrees 100% with the regression of clean data. 

  

1. If the second derivative is less than zero, the point is considered as a peak. 

2. If the second derivative is greater than zero the point is considered as a 

valley. 

3. If the second derivative is equal to zero, the point is considered as a saddle. 

(a) (b) 
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1.4 Extrema detection 

In process optimisation, the process of determining extrema plays an important role. 

Extrema in a signal are used to describe and understand properties of a certain 

signal. This process is also known as finding out local maxima and minima detection 

or peaks and valleys detection. Usage of the first and second derivatives is the most 

common maxima identification method. When the first derivative is zero, it implies 

that  the  point  has  zero  gradients  (slope).  Then  this  type  of  point  can  be  a  peak, 

valley  or  a  saddle  point.  Therefore,  only  the first  derivative  is  not  useful  for 

identifying  peaks  and  valleys.  This  conflict  situation  is  solved  by  considering  the 

second derivative.  For the second derivative of  those points that  have zero slopes, 

there are three situations: 
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Filtering techniques are used to ignore unnecessary peaks and valleys according to 

the requirements of the considered domain. The magnitude of prominences (height) 

and  the  widths  at  half  prominence  are  two  properties  of  a  signal  used  to  filter 

extrema [49, 50]. Furthermore, baseline correction is another technique used 

for  finding  out  accurate  maxima  and  minima  [51-53].  However,  those 

properties are domain dependent and parametric. Therefore, it is not reliable to 

define global criteria for filtering extrema. 

Figure 1.8: Plots (a), (b), (c), and (d) show four different types of peaks and plots (e), 

(f), (g), and (h) show relevant equivalent types of valleys. Plot (a), (b), (e)and (f) 

show symatric plots while plots (c), (d), (g) and (h) are asymatric. However, plot (c) 

and (g)are partialy symatric. The amplitude of plot (a) and (e)are considerably higher 

than plot (b) and (f). 

 

Plots in Figure 1.8 and Figure 1.9 show different types of extrema that are required 

to distinguish. Particularly, the  height of the extrema (prominence) and the width of 

the extrema at a certain height of the extrema (e.g.: at half prominence) are the 

most common properties that used to distinguish those different types of extrema. As 
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aforementioned  these  parametric  properties  are  considered  as not  robust. 

Therefore,  nonparametric  methods  are  necessary,  especially  for  filtering  the 

extrema. The nonparametric method, introduced in this research, is capable of 

locating and filtering extrema with a high level of robustness. 

Figure 1.9: Plots (a), (b), (c), and (d) show four different types of  peaks and plots 

(e), (f), (g), and (h) show relevant equivalent types of valleys. Plots (a) and (e) show 

small extrema while  all other plots show higher extrema. However, plots (b) and (f) 

show sharp extrema while plots (d) and (h) show wide extrema. Combination of 

the height of the extrema (prominence) and the width of the extrema are the 

most common approaches used to distinguish those different types of extrema. 

 

1.5 Density clusters in knowledge representation 

Knowledge representation (KR) is the key technique applied in the field of artificial 

intelligence, machine learning [54-57]. Data mining, "Knowledge Discovery in 

Databases" (KDD), and cluster analysis are some fields that are directly connected 

with KR. Data mining is the technique that discovers patterns, especially in big data.

KDD refers to the basic analysis step of data mining. Representation of those

identified information in an understandable structure is the main task of KR.  Cluster
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In cluster visualisation, first, relevant density clusters were identified by means of a 

suitable algorithm, usually based on parametric values such as distance or number 

of neighbours. Then those identified clusters were visualised by means of suitable 

data visualisation technique. As afore-mentioned, parametric methods are less 

robust and density cluster analysis methods based on parametric methods suffer 

from those born drawbacks in parametric approaches. Plot (a) in Figure 1.10 shows 

scatter  plot  of  35620  data  points  with  a  considerable  number  of  overlaps.  The 

existence of  a high number of  overlaps implies the existence of high data density 

areas. Plots (b) and (c) show heat map and contour plot representation of the data 

shown in plot (a). However, those two methods were unable to provide satisfactory 

density clusters.  

analysis or clustering  is an unsupervised (i.e. it requires no trained data sets) 

data classification method [58- 60] for identifying homogeneous groups of objects 

known as clusters [61-63]. Density clustering is one of the most popular techniques, 

it  is  a  way  of  identifying  and  representing  already  identified  knowledge  or 

information [64, 65]. Furthermore, density cluster identification is a tool used to 

identify the correlation between variables. When dealing with big data clustering, 

it is used as a clutter reduction technique [66-69]. This technique provides a way 

of representing big data sets by means of a less number of data points. 



 

 

Figure 1.10: Visualization of 35620 data points with (a): scatter plot, (b): heat map 

and (c): contour plot. The scatter plot shows the distribution of data, whereas the 

heat map and the contour plot show density clusters. However, compared to the 

GKU, the heat map and contour plot do not show density clusters. 

(a) (b) 

(c) 
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In the domain of multi-variable, the situation is more complex and representing 

clusters of multiple variables need special techniques. The multi-variable analysis 

is  a  method  for  depicting  the  correlation  between  variables  and  graphical 

representation of  data,  which are two demanding factors  in  the field  of  data 

analysis. Graphical representation of data is a very effective tool for abstracting 

information in a multi-variable data set. In addition, graphical representation usually

conveys the intended information easier than text or numerical values.  However, 

when the number of available data is high, it is difficult to represent all the data 

points of a scatted data set as a plot due to the high number of overlapping data 

points; called occlusion or over-plotting. This is one of the main issues in the field 

of data visualisation, which leads to loss of data in projection [70]. On the other 

hand,  when  the  number  of  variables  is  high,  special  techniques  are  required  to 

represent multi-dimensional on a two-dimensional or a three-dimensional plots. The 

highest challenge is to visualise multi-dimensional big data.  



 

 

1.6 Thesis outline 

The previous chapters gave an introduction to relevant issues in due to usage of 

parametric methods in the fields of linear fit identification, extrema filtering, and 

density cluster identification.    

In this research, linear fit identification, extrema detection, extrema filtering, and 

knowledge representation as density clusters were considered.  At present, except 

extrema detection, all other areas are mainly depending on parametric methods. 

Thus, in this research, novel non-parametric methods were introduced for identifying 

linear fit, extrema filtering (non-dominating extrema filtering, sharp and gradual 

extrema filtering, and low and high extrema filtering), and density cluster formation 

and identification. Furthermore, another novel non-parametric method for extrema 

identification was introduced. The non-parametric properties used in proposed 

methods as follows. 
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1. In the linear fit identification method (UniLiFI: Universal linear fit identification) 2/n 

is used as the detection criteria, where n is the number of data points. Also, the 

linear fit identification method is totally independent of data, outlier, and noise 

distribution models and free of missing/removed data imputation.  

3. The threshold criteria for methods developed for filtering non-dominating extrema 

(MMS-Window based filter or MMS-WBF) and sharp and gradual (flat) extrema 

(MMS-SG filter) are values that based on the number of data points (n).  The 

threshold criterion of the method developed for locating low and high extrema 

(MMS-LH filter) is a value between 0 and 1. 

2. The extrema detection method is capable of detecting all the local extrema, and

the  extrema  detection  is  performed  after  comparing  two  ratios  in  relation  to  

maximum, minimum, middle point, and sum.   

4. The method named as “Graphical knowledge Unit” (GKU) is a continuous 

learning knowledge representation method based on properties of the marker 

(graphical symbol of the data point) such as colour, size, and shape. The GKU is 

capable of density cluster identification, indicating density of missing data and out 

of range data, especially with big data. Furthermore, GKU can be used as a data 

cleaning technique, data visualization technique, and portable database. The 

GKU is extended for a multivariate version for representing density clusters 

in multivariate data sets. 



 

 

𝑀𝑀𝑆𝑚𝑎𝑥 =  
𝑎𝑚𝑎𝑥 −  𝑎𝑚𝑖𝑛

𝑆𝑛 −  𝑎𝑚𝑖𝑛 ∗ 𝑛
 
> 2 𝑛 ∗ (1 +  𝑘) ;𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑢𝑡𝑙𝑖𝑒𝑟

≤ 2 𝑛 ∗ (1 +  𝑘)
 

𝑀𝑀𝑆𝑚𝑖𝑛 =  
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≤ 2 𝑛 ∗ (1 +  𝑘)

> 2 𝑛 ∗ (1 +  𝑘) ;𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑢𝑡𝑙𝑖𝑒𝑟
 

or 
 

2. Summary of results (thesis publications) 

2.1 Paper Summary 

 

Paper 1: Universal Linear Fit Identification Method: Independent of Data, Outlier, and 
Noise Distribution Model and Free of Missing / Removed Data Imputation  

  = ( 2) ∗ (  +    ),  (2.1) 
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Universal  Linear Fit  Identification (UniLiFI)  method is based on the equation of 

where Sn is the sum of the elements of finite arithmetic progression with n elements,

a1 is the first element and an is the last element of the series.

the  sum  of  the  elements  of  finite  arithmetic  progression  (AP)  with  n  elements 

(Equation (2.1)),  which was introduced by Aryabhata  [71-73]  in 499 CE.  Since the 

date of introduction, Equation (2.1) is used to achieve its original objective. It

was  unable to  find  direct  applications  of  the  original  formula  for  other  

objectives.  Nevertheless, based  on  the  relation  given  in  Equation  (2.1)  a  

method  as  MMS  was developed to locate outliers in linear regression [74].  

In Equation (2.2) there are two ratios as MMSmax and MMSmin for locating the

maximum as the outlier and the minimum as the outlier, respectively.

(2.2)  is shown in Appendix A (the  paper  in  relation  with  MMS  is  not  a  part  of

 this dissertation). 

which  is  shown in Equation  (2.2) was developed for outlier detection in data that is

expected to follow linear regression [74]. The complete process of deriving  Equation

The UniLiFI method is  based  on  the  relation  MMS expressed  in  Equation (2.2)  and

the  transformation method, which is expressed in Equation  (2.3). The method  MMS,

where  amax is the maximum of the series,  amin is the minimum of  the series, Sn is the

sum of all the terms in the series, n is the current number of terms in the series, and

k (k ≤ n /2 -1) is the weight that determines the level of accuracy. 

(2.2) 
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where x is the independent and y is the dependent variable. 
 
 

(2.5) 
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> 2 𝑛 ∗ (1 +  𝑘);  
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≤ 2 𝑛 ∗ (1 +  𝑘)

 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑜𝑢𝑡𝑙𝑖𝑒𝑟

≤ 2 𝑛 ∗ (1 +  𝑘)

> 2 𝑛 ∗ (1 +  𝑘);  

,and 𝐺𝑥

=  

where   is the kth item of the transformed series with reference to the reference 

point r,  term of the 

series, (x
r
,a

r
) is the reference point, k=0,1,…,r,…,n-1, r=0,1,…,n-1, n is the number 

of elements in current window, r is the index of the reference data point, 𝐺 

From Equation (2.2) and Equation (2.3) give the final equation of UniLiFI method as 

No decision

where 𝑀𝑀 (𝑋)

After applying Equation (2.4) on the transformed data sets with reference to different

reference points, produce candidate data sets with different number of data points as

clean data (linear fit). 

Among those candidate sets, the data set with the highest absolute correlation was 

selected as the best data set that agree with a linier fit by using Equation (2.5) [75]:

lasa
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≤ 2/3
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𝑎𝑚𝑎𝑥 −  𝑎𝑚𝑖𝑛

𝑎𝑚𝑎𝑥 ∗ 3 −  𝑆3
 

≤ 2/3
> 2/3 ;Minimum is away from other two terms.

 

or 
 

Paper 2: Derivative Independent, Non-Parametric Local Maxima and Minima Finder 
with Maxima and Minima Filtering Techniques 

When there is a peak or a valley, for n=3, always the middle point is the peak 

(maximum) or valley (minimum), respectively. Then, if amid is the middle point of the 

window, by replacing amax of MMSmax and amin of MMSmin by amid gives, 

When there is a peek, 

 

 

𝑀𝑀         =  (     −       ) (   −      (2.7) 

𝑀𝑀         =  (     −       ) (    ∗  −   )⁄ . (2.8) 

𝑀𝑀     =  𝑀𝑀        (2.9) 

𝑀𝑀     = 𝑀𝑀         . (2.10) 
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The extrema identification method is also in relation with  the method MMS that is 

based on the equation of sum of arithmetic progression [74].  To generate a peak or 

valley, at least three points are required. For three consecutive positive terms 

arranging in a line, the ratio (R) of the sum of the maximum and the minimum to the 

sum of three terms is always 2/n, where n is the number of terms and 2/3 ≤ R ≤ 1 

when n=3. R>2/3 implies that one term is away from the other two terms.  

Applying suitable modifications for the Equation (2.2), gives Equation (2.6). 

  

 

(2.6) No decision

⁄ ∗  ) and 

 and 

when there is a valley 

MMS max - min finder. 

Finally, Equations (2.9) and (2.10) can be used for finding out peaks and valleys, 

respectively while advancing the window by one data point  at  a time. The method 

was named as 



 

 

Furthermore, based on the concept of MMS, another three techniques were 

developed for filtering non-dominating extrema (MMS-Window based filter or MMS-

WBF), sharp and gradual (flat) extrema (MMS-SG filter), and low and high extrema 

(MMS-LH filter) by considering different ratios of the maximum, the minimum, and 

the sum of data points in the considered window. 

MMS-Window based filter (MMS-WBF) : For filtering non-dominating extrema 

For the window sizes greater than three (2.9) and (2.10) identify the most dominating 

extremum in the considered window. Thus, by increasing the size of the window the 

usual MMSmax - min finder can be used as a technique for filtering non-dominating 

extrema.  

MMS-SG filter: For filtering sharp and gradual (flat) extrema 

We showed that the ratios MMSmax/MMSmin= n-1 and MMSmin/MMSmax= n-1. By 

setting appropriate threshold value t (0< t ≤ n-1) for the afore-mentioned two ratios 

sharp and gradual peaks can be filtered.  

MMS-LH filter:  For filtering low and high extrema 

We showed that the ratios RLH_min = (amin * n)/ Sn and        =  /((    +  1) ∗  −

   ), where  0<RLH_min ≤1 and 0<RLH_max ≤ 1. RLH_min1, implies that the amin has low 

crater and RLH_min0 implies that the amin has high crater. Consequently, RLH_max1 

implies that the amax has low prominence and RLH_max0 implies that the amax has 

high prominence. 
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Paper 3: Continuous Learning Graphical Knowledge Unit for Cluster Identification in 
High Density Data Sets 
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Figure 2.1: Basic idea of the knowledge representation method.  (a) The marker is a 

circle (radius = n (>1) pixels), and the RGB colour value of the circle is (0, 0, X), 

where 0 ≤ X ≤ 255. The center of the circle represents the data point (highlighted), 

(b) two overlapped markers and (c) several overlapped markers. The data point is 

represented by the pixel in the center of the marker (the data point is highlighted in 

orange). 

In  this  paper,  a  new  density  cluster  formulation  was  introduced  based  on  the 

properties  of  overlapping  data  points.  In  the  proposed  method  a  data  point  is 

represented by a marker (graphical symbol of a data point) that has more than one 

pixel (e.g.: circle) and by plotting on a bitmap ((a) of Figure 2.1). As the markers 

overlap, the RGB colour values of pixels in the shared region are added ((b) and (c) 

of Figure 2.1).This will make the colour of the shared region identical. A higher 

number of  overlap produces the colour of shared region that can be identified by 

the naked eye ((c) and (d) of Figure 2.1). 

The proposed method automatically separates density clusters by automatically 

generated colour lines that can be considered as contour lines. When the lines were 

numbered from outside to inside, lines with the same number get the same value

for  green  channel  and  nearly  the  same  colour  value  (colour  range)  for  the  blue 

channel (Figure 2.2). This is the way to understand the magnitude of the density in 

a certain area. 
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Figure 2.2 : Automatically created contour lines. If the correct maker is selected, 

GKU automatically creates lines that separate different density areas. These lines 

are similar to contour lines on a contour map. When the lines were numbered 

from outside to  inside,  lines with  the same number  get  the same value for  green 

channel and nearly the same colour value (colour range) for the blue channel. 



 

 

Paper 4: Multi-Variable, Multi-Layer Graphical Knowledge Unit (MVML-GKU) for 
Storing and Representing Multi-Dimensional Big Data in Two-Dimensional Plots. 

Figure 2.3: Four variables are (V1, V2, V3 and V4) represented using multiple 

bitmaps of 32-bit RGB pixel format for forming MVML-GKU. Each pixel is divided into 

four equal portions, where each portion consists of eight bits. When the 32-bit RGB 

pixel format is divided into four equal parts, each variable represents alpha, red, 

green and blue sections of the pixel. This provides a vertical array of k*L bits for a 

single variable. 
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In this paper, a method to represent multiple variables using the concept of GKU is 

introduced.  The  usual  GKU  is  capable  of  representing  one  dependent  variable 

against one independent variable. In GKU whole bit series was used for a single

variable. However, it is possible to split the whole bit series into different sections

and assign each section for different variables. Figure 2.3 shows an example 

of such a situation. Here, the whole series were divided into four 8-bit slots 

and four  variables  were  assigned  for  each  slot.  Now  the number  of  bits  per

variable  is limited to   eight  bits  and number of  possible  overlaps are 28.  These 

numbers of overlaps are not enough. As a solution for this, multi-layers of bitmaps

were  used  (Figure  2.3). 

 
V1 V2 V3 V4 
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Abstract 
Typically extrema filtration techniques are based on non-parametric properties such 
as magnitude of prominences and the widths at half prominence, which cannot be 
used with data that possess a dynamic nature. In this work, an extrema identification 
that is totally independent of derivative-based approaches and independent of quan-
titative attributes is introduced. For three consecutive positive terms arranged in a 
line, the ratio (R) of the sum of the maximum and minimum to the sum of the three 
terms is always 2/n, where n is the number of terms and 2/3 ≤ R ≤ 1 when n = 3. R > 
2/3 implies that one term is away from the other two terms. Applying suitable mod-
ifications for the above stated hypothesis, the method was developed and the method 
is capable of identifying peaks and valleys in any signal. Furthermore, three tech-
niques were developed for filtering non-dominating, sharp, gradual, low and high 
extrema. Especially, all the developed methods are non-parametric and suitable for 
analyzing processes that have dynamic nature such as biogas data. The methods were 
evaluated using automatically collected biogas data. Results showed that the extrema 
identification method was capable of identifying local extrema with 0% error. Fur-
thermore, the non-parametric filtering techniques were able to distinguish dominat-
ing, flat, sharp, high, and low extrema in the biogas data with high robustness. 
 
Keywords 
Extrema Point, First Derivative, Peak Finder, Peaks and Valleys, Maxima and  
Minima, Second Derivative 

 

1. Introduction 

In process control, the method of determining peaks and valleys of a signal, also known 
as identification of local maxima and minima, is crucial for describing and capturing 
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certain signal properties. Identification of local maxima and minima is particularly 
useful in signal processing, consequently useful in inline/online process control and op-
timization. Thereby, for reliable feature extraction it is necessary to remove redundant 
maxima and minima in a processed signal. The issue has been extensively investigated 
in literature [1]-[4], at which different techniques were reported. Magnitude-based 
methods and gradient-based methods are the most common two of such techniques. In 
magnitude based methods, the nth term of a series is xn; xn is considered as a peak 
(maximum) when xn−1 < xn > xn+1. In the same time, xn is considered as a valley (mini-
mum) when xn−1 > xn < xn+1. In gradient-based methods, extremum can be located by 
considering slope (gradient) of a certain point and acts as the most popular method [1]. 
When the slope is zero (first derivative is zero) at a certain point, the point can be de-
scribed as a peak, valley or a saddle point. However, additional calculations are neces-
sary to distinguish whether it is a peak, valley or saddle point. This encounter is solved 
by analysing the sign of the second derivative at the points of zero slopes [1]. The most 
popular methods of such are Newton Raphson method [2] and Taylor series-based de-
rivatives [3] [4] which evaluate the derivatives numerically for a given data set. 

Once the extrema points are identified, a filtration step is unavoidable to identify the 
dominant or relevant extrema. Magnitude of prominences and the widths at half 
prominence are two properties of signals that are commonly used to filter extrema [5] 
[6]. Furthermore, baseline correction is another technique used for finding out accurate 
maxima and minima [7]-[9]. In addition, there are numbers of methods for filtering 
unnecessary extrema based on template matching or masks [10], such as Kalman filters 
[11] [12] and non-linear filters [13]. Nevertheless, all aforementioned approaches are 
parametric methods [14], which question their robustness. 

One of the main classifications existing in data analysis techniques is whether the 
method is parametric or non-parametric in its nature [15]. As mentioned above, most 
popular extrema filtering methods suffer from parametric concerns. Particularly, para-
metric methods use domain dependent value as detection criteria such as average, 
standard deviation, prominences of an extrema, and the widths at half prominence of 
an extrema. These criteria are based on domain dependent parameters and are there-
fore valid only for the considered data model or considered conditions in the domain. 
Thus, majorly parametric methods’ accuracy inherits the variables’ ranges and the con-
ditions of the domain [16]. In reality, data capturing, especially within dynamic sys-
tems, such as biogas plants, is produced with various alterations. When the model or 
data range alters, whilst using parametric methods, it is necessary to recalibrate para-
meters or develop new models for monitoring, controlling, and data analysis, which is 
not of preference at process line. 

Non-Parametric Methods 

Non-parametric methods, also known as distribution-free methods, depend on fewer 
number of underlying assumptions [15] [17] [18], which progress them more as robust 
methods [16] [19]. In this research a new non-parametric technique for extrema identi-
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fication and filtration are developed. The proposed technique determines maxima and 
minima based on the relation of sum of terms in an arithmetic series. The same relation 
was used as a non-parametric method (MMS: a method based on maximum, minimum, 
and sum) for finding outliers in linear relation [20] and non-parametric linear fit iden-
tification method [21]. 

In some situations outliers, peaks and valleys are the same, when a sudden extremum 
(variation) occurs, additionally extrema can be formed due to gradual increment and 
gradual decrement. The extrema generated in such situations do not behave as outliers 
and cannot be identified using the aforementioned outlier detection method based on 
maximum, minimum, and data series sum (MMS) [20]. Furthermore, MMS can only 
be used for identifying outliers in liner regression and is not suitable for finding outliers 
in non-linear series [20]. This work focuses on modifying the methods of MMS for lo-
cating extrema in non-linear data series. 

The proposed extrema identification method does not involve first or second deriva-
tive, but rather compares, within a considered window, two ratios in relation with 
maximum, minimum, middle point, and the sum of data points. Furthermore, three 
extrema filtration methods were introduced in this work, which are capable of filtering 
extrema independent of the prominences or width of an extremum. All the methods 
introduced in this work are developed for harsh conditions involved in dynamic proc-
esses, especially biogas process data, thus handling: non-linear datasets and based upon 
non-parametric methods. 

2. Materials and Methods 

As mentioned before, the outlier detection method, also by the same authors [20], will 
be modified to locate extrema in non-linear series. The method is based upon the the-
ory of the sum of terms of an arithmetic progression. Having two major relations by 
means of MMSmax and MMSmin and are expressed in Equation (1) and Equation (2). The 
ratio 2/n is used as the detection criteria, where n is the number of terms in the series. 

( ) ( )max max min min       nMMS a a S a n= − − ∗ , and               (1) 

( ) ( )min max min max    nMMS a a a n S= − ∗ − ,                 (2) 

where amin is the minimum element of the series, amax is the maximum element of the 
series, n is the number of terms in the series, and Sn is the sum of terms in the series. 

The complete expression for outlier detection is given by Equation (3). If any series 
expected to follow y = c form and contains data that do not agree with y = c form then: 

( )
( )
( )
( )

max min
max

min

max min
min

max

2 ; maximum is the outlier   
    2 ;

2 ;   
2 ; minimum is the outlier

n

n

n wa aMMS
S a n n w

MMS
n wa aMMS

a n S n w

 > +− = = − ∗ ≤ + −

= = 


 = 
≤ + −−

 ∗ − > +

,    (3) 

where w is the weight. 
The method MMS expressed in Equation (3) can be applied on a window with any 
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number of data points. However, when a window has only three data points it becomes 
a special situation, since the method generates an extremum when points are not in 
agreement with a linear fit, thus, if there is an extrema, always the middle point would 
be the extrema. When the numbers of data points are three (n = 3) and w = 0, Equation 
(3) a special treatment is suggested:  

max min
max

3 min

max min
min

max 3

2 3; Maximum is away from the other two points   
2 3;    3

2 3;   
2 3; Minimum is away from the other two points3

a aMMS
S a

MMS
a aMMS

a S

 >−
= =  ≤ −−


= = 



∗ = 
≤ −−

 >∗ −

(4) 

Equation (4) is a simplified version of Equation (3) for handling three data points, 
where max2 3 1MMS≤ ≤  and min2 3 1MMS≤ ≤ . According to Equation (4),  

max 2 3MMS >  implies that the maximum of the three points is always considerably 
apart from the other two points. In the same manner, min 2 3MMS >  implies that the 
minimum of the three points is always considerably apart from the other two points. 
Plots (a), (b), and (c) of Figure 1 show situations that of max 2 3MMS > , where maxi-
mum is the peak. Plots (e), (f), and (g) in Figure 1 show situations that of  

min 2 3MMS > , where the minimum is the valley. However, Equation (4) does not al-
ways successfully identify extrema, in other words if the identified point is the first or 
last point of a window, theoretically it cannot be considered as an extrema. Plots (d)  
 

 
Figure 1. Plots (a), (b), (c), and (d) show different types of peaks and plots (e), (f), (g), and (h) 
show different types of valleys. For n = 3, value 2/n is 0.67. In all peaks except plot (d) MMSmax > 
2/3 and in all valleys except plot (h) MMSmin < 2/3. “” corresponds to correct detections of ex-
trema when MMS and 2/n are used and “” corresponds to wrong detections of extrema when 
MMS and 2/n are used. Therefore, consideration of MMS and 2/n is not a good method for iden-
tifying extrema. However, in the concept of outlier detection all the detections are correct. 
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and (h) of Figure 1 show situations where neither a maximum nor a minimum repre-
sents an extremum. Figure 1(d) shows a peak that of min 2 3MMS >  (identification of 
a valley), this is a contradicting situation. Also, Figure 1(h) shows another failing situa-
tion, where the plot shows a valley that of max 2 3MMS >  (identification of a peak). 
This occurs because in both considered situations, the point has the highest deviation is 
the first point and not the middle point. Therefore, Equation (4) is not capable of iden-
tifying extrema in such cases, thus handling these situations is required. 

To address the aforementioned drawback, the MMS method was modified by con-
sidering the middle point of the window. To have an exact middle point in a data win-
dow the number of considered data points (n) must be odd. When n = 3 and amid is the 
middle point of the window, substituting amax from Equation (1) by amid retrieves: 

( ) ( )max|mid mid min 3 min 3MMS a a S a= − − ∗ .                 (5) 

Also, by replacing amin of Equation (2) by amid gives,  

( ) ( )min|mid max mid max 33MMS a a a S= − ∗ − .                 (6) 

Consider the situation,  

max max|midMMS MMS= .                        (7) 

( ) ( ) ( ) ( )max min 3 min mid min 3 min3 3a a S a a a S a− − = − − ∗∗ , 

max mida a= .                             (8) 

Therefore, Equation (7) denotes the situation of a maximum at the middle point. 
Thus Equation (7) is a condition, independent of the value of MMS that can be used for 
identifying a peak. 

Consider the situation:  

min min|midMMS MMS= .                         (9) 

( ) ( ) ( ) ( )max min max 3 max mid max 3    3 3a a a S a a a S− ∗ − = − ∗ − , 

min mida a= .                            (10) 

Then Equation (9) denotes the situation of a minimum at the middle point. Thus, 
Equation (9) is a condition, independent of the value of MMS that can be used for iden-
tifying a valley. 

Therefore, when a window satisfies Equation (7) it implies that the middle point is a 
maximum and once a window satisfies Equation (9) it alternatively implies that the 
middle point is a minimum. Advancing the three point window by one data point 
makes it possible to locate all the extrema in a signal (Figure 2). Table 1 shows sample 
calculations of extrema detection procedure according to Equation (7) and Equation 
(9). The first eight value sets shown in Table 1 are the values in relation with the plots 
shown in Figure 1. Examples a, b, c, and d in Table 1 show calculation in relation with 
peak identification. In all these examples max max|midMMS MMS=  (Equation (7)) and 

min min|midMMS MMS≠  (Equation (9)). Examples e, f, g, and h in Table 1 show calcula-
tion in relation with valley identification. In all these examples min min|midMMS MMS=  
(Equation (7)) and max max|midMMS MMS≠  (Equation (9)). The last two examples (i and  
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Figure 2. Extrema detection process of proposed extrema identification method named as MMS max-min 
finder. 

 
Table 1. Sample calculations of peak and valley detection process based new method (MMS max- 
min finder) for window size of three data points. 

Plot Data set 
MMSmax 
(>0.67) 

MMSmax/mid 
MMSmin 
(>0.67) 

MMSmin/mid 
Peak or 
Valley 

MMSmax = 
MMSmax/mid 

MMSmin = 
MMSmin/mid 

(a) 0, 100, 0 1 (Y) 1 0.5 (N) 0 Peak Y N 

(b) 0, 1.001, 0 1 (Y) 1 0.5 (N) 0 Peak Y N 

(c) 0, 100, 40 0.714 (Y) 0.714 0.625 (N) 0 Peak Y N 

(d) 0, 100, 90 0.526 (N) 0.526 0.909 (Y) 0 Peak Y N 

(e) 100, −20, 100 0.5 (N) 0 1 (Y) 1 Valley N Y 

(f) −2, −2.2, −2 0.5 (N) 0 1 (Y) 1 Valley N Y 

(g) 100, 0, 70 0.588 (N) 0 0.769 (Y) 0.769 Valley N Y 

(h) 100, 0, 25 0.8 (Y) 0 0.571 (N) 0.571 Valley N Y 

(i) 0, 100, 50 0.667 (N) 0.667 0.667 (N) 0 Peak Y N 

(k) 0, −100, −50 0.667 (N) 0 0.667 (N) 0.667 Valley N Y 

 
k) show very special situations, where MMSmax, MMSmin, and 2/n are equal. In such 
situations Equation (4) is undefined. However, even then extrema identification is pos-
sible with Equation (7) and Equation (9). Since the proposed extrema detection method 
is based on the maximum, minimum, and sum of the series, the method was named as 
“MMS max-min finder”. 

2.1. Identifying Dominating Extrema (Primary Filtering of Peaks and  
Valleys) 

As above-mentioned, Equation (7) and Equation (9) are independent of the number of 
data points and thus valid for the situations where n is greater than three (n > 3). How-
ever to have an exact middle point, n must be an odd number. When the numbers of 
data points are higher than three, there can be several peaks and several valleys. How-
ever, there is a situation that the highest peak (dominating peak) or lowest valley 
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(dominating valley) coincides with the middle point of an advancing window. Figure 3 
shows an example of detecting dominating peaks in a window with odd number of data 
points (n = 7). When the number of data points per window increases, it allows for the 
possibility of more than one extremum in the considered window. 

The plot in Figure 3 consists of seven data points and contains three peaks named A, 
B, and C. The peak A is the middle point of window Wn while peak B is the dominating 
peak. Because of that point A is not recognise as a peak in window Wn. After advancing 
Wn by two data points, Wn+2 appears. In the window Wn+2 the point B is the highest as 
well as the middle point and the point B is recognized as a peak. Advancing Wn+2 by 
two data points Wn+4 appears, where C becomes the middle point and due to the influ-
ence of point B it will not be recognized as a peak. This illustrates that the dominating 
extrema in a window remains undetected until the middle point of the window coin-
cide with it whilst preventing identification of other small peaks and valleys. 

The usage of windows with higher odd number of data points (e.g.: 5, 7, …) makes it 
possible to filter minor peaks and valleys. In contrast, if the methods in relation with 
height or width are used, the values are domain dependent and relative. Changing 
window size (W) is an absolute parameter and can be applied in any condition, espe-
cially the situations that the domain conditions are unknown. However, this technique 
is not capable of filtering absolute small extrema, because the comparison is based on 
the existing extrema in the considered window. Furthermore, this technique is useful as 
a filter for removing relative small variations. Since the technique is based on the size of 
the window, the technique was named as “MMS-Window based filter” or (MMS-WBF). 
 

 
Figure 3. Application of “MMS max-min finder” with window size of seven for locating maxi-
mum point. In the window Wn the middle point is “A” and due to existence of point “B” in the 
considered window, point “A” is not identified as the maximum point. Also, in the Wn+4 (the 
window found after advancing by four data points) the point “C” is not identified as an extrema, 
due to existence of point “B” in the considered the window. In the Wn+2 the point “B” is the 
maximum as well as middle point and there is no point larger than point “B” in the considered 
window. Thus, point “B” is identified as the dominating maximum. 
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2.2. Sharp and Gradual (Flat) Extrema Filtering 

Extrema with starting and end points which are agreeing with y = c and having the 
middle point as the extremum can be considered as a symmetric extrema case. Plots (a) 
and (b) of Figure 4 show such symmetric extrema, which can be considered as the sim-
plest symmetric form. Extrema shown in plots (c) and (d) of Figure 4 also fulfil the re-
quirements of a perfect symmetric extrema. All the following equations in this section 
are based on the perfect extrema. 

Consider a perfect maxima situation as shown in plot (c) of Figure 4. Here, all points 
are equal to amin (amin = c) except amax. Consider any perfect maximum situation with n 
points, then n − 1 points are equal to amin, and amax ≠ c. The sum of the terms of such a 
series can be expressed as:  

( )min max1nS a n a= ∗ − +                        (11) 

( ) ( )max min 1nS a a n− = −                       (12) 

Consider a perfect minimum situation as shown in plot (d) of Figure 4. Here, all 
points of the series are equal to amax and amax = c except amin. Consider any perfect 
maxima situation with n points. Then n − 1 points are equal to amax, and amin ≠ c. The 
sum of the terms of such a series can be expressed as: 

( )max min1nS a n a= ∗ − +                        (13) 

( ) ( )min max 1nS a a n− = −                       (14) 

If max min MmMMS MMS R= , then from (1) and (2), 

( ) ( )max minMm n nR a n S S a n= ∗ − − ∗ . 

When the maximum is detected as the peak, substituting in Equation (11) retrieves: 

( )( )( ) ( )( )( )max min max min max min1 1MmR a n a n a a n a a n∗= ∗ − ∗ − + + − ∗−  

( )( ) ( )( )max min min max min min max min     MmR a n a n a a a n a a a n= ∗ − ∗ − + ∗ − + − ∗  

( ) ( )( ) ( )max min max min max minMmR a a n a a a a= − ∗ − − −  

 

 
Figure 4. Perfect extrema. A perfect extrema is defined as an extrema that is symmetric extrema. 
Thus, in a perfect extrema both the starting and end points follow the y = c form. Plots (a) and 
(b) show the simplest perfect extrema and plots (c) and (d) show perfect extrema that have more 
points that agree with y = c form. 
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( ) ( )( ) ( )max min max min  1MmR a a n a a= − ∗ − −  

( )1MmR n= −  

( )max min 1MMS MMS n= −                      (15) 

In the same manner, if MMSmin/MMSmax = RmM, then from Equations (1), (2), and 
(12), the minimum is detected as the valley, 

( )1mMR n= −  

( )min max 1MMS MMS n= −                      (16) 

The relations of Equation (15) and Equation (16) are crucial findings, which can be 
used to identify perfect extrema. When the extrema is not perfect, value of Equation 
(15) and Equation (16) is less than n − 1. Therefore, Equation (15) and Equation (16) 
can be used to identify perfect and non-perfect extrema. Also, perfect extrema are sud-
den (sharp) extrema and non-perfect extrema can be considered as gradual extrema. 
Thereby, using Equation (15) and Equation (16) it is possible to filter sharp and gradual 
extrema. 

After identifying a peak, by examining the ratio MMSmax/MMSmin it is possible to de-
termine degree of confidence of other points, the same applies for identifying a valley. 
Assume tMm_mM is the threshold value for determining sharp and gradual maxima, then 
tMm_mM can be expressed as a ( )1k n∗ − , where 0 1k< ≤ . If k is expressed as a function 
of n (e.g.: ( )1 1k n= − ), then tMm_mM is a function of n. By setting the same threshold 
value (tMm_mM) for MMSmax/MMSmin and MMSmin/MMSmax, sudden and gradual maxima 
can be determined. The determination criteria (tMm_mM) of ratios MMSmax/MMSmin and 
MMSmin/MMSmax are non-parametric and depend only on the number of data points in 
the considered window. Since the method is also based on the maximum, the mini-
mum, and the sum, the method was named as MMS-SG filter. 

Figure 5 and Figure 6 show examples in relation with Equation (15) and Equation 
(16), respectively. In plots (a) and (b) of Figure 5, the ratio MMSmax/MMSmin = 6, which 
is exactly equal to n − 1. This proves the correctness of Equation (15). In the same time, 
in plots (a) and (b) of Figure 6, the ratio MMSmin/MMSmax = 6 and proves the correct-
ness of Equation (16). All these plots exhibit either sudden peak or sudden valley. The 
corresponding ratios in relation with the plot (c) of Figure 5 and Figure 6 are not equal 
to n − 1. However, the corresponding ratios are not very small. Therefore, these ex-
trema can be considered as nearly sharp extrema. Nevertheless, corresponding ratios in 
relation with, plots (d) of Figure 5 and Figure 6 are very small and these extrema can 
be considered as gradual extrema. 

2.3. High and Low Extrema Filtering 

MMS-WBF and MMS-SG introduced in this work are capable identifying dominating, 
sharp and gradual extrema. However, these techniques are incapable of distinguishing 
the extrema with very small amplitude as shown in Figure 1(b) and Figure 1(f). 

The valley shown in Figure 7 is a general situation of a perfect valley. When a valley 
has a very small crater, amin ≈ amax. 
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Figure 5. Plots (a), (b), (c), and (d) show four different types of peaks with window size seven (n = 
7) where 2/n = 0.286. Ratios MMSmax/MMSmin and MMSmin/MMSmax are stated along with each 
plot. Peaks in plots (a) and (b) are perfect peaks and the ratio MMSmax/MMSmin = 6 (i.e. n − 1). 
Though, the dominating peak in plot (c) is not a perfect peak, ratio MMSmax/MMSmin is con-
sideribly high. The peak in plot (d) is a gradually developed peak and also not a perfect peak and 
the ratio MMSmax/MMSmin is very small. Therefore, consideration of ratio MMSmax/MMSmin is a 
good criterion to distinguish sudden and gradual peaks. 
 

 
Figure 6. Plots (a), (b), (c), and (d) show four different types of valleys with window size seven (n = 
7) where 2/n = 0.286. Ratios MMSmax/MMSmin and MMSmin/MMSmax are stated along with each 
plot. Valleys in plots (a) and (b) are perfect valleys and the ratio MMSmin/MMSmax = 6 (i.e. n − 1). 
Though, the valley in plot (c) is not a perfect valley, ratio MMSmin/MMSmax is considerably high. 
The valley in plot (d) is a gradually developed valley and also not a perfect valley and the ratio 
MMSmin/MMSmax is very small. Therefore, consideration of ratio MMSmin/MMSmax is a good crite-
rion for distinguishing between sudden and gradual (flat) valleys. 

 
Then, Equation (13) can be expressed as: 

( )min min1nS a n a≈ ∗ − +  

( )min max;nS a n a n≈ ∗ < ∗  

( )_ min min _ min;0 1LH n LHR a n S R= ∗ < ≤                  (17) 
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Figure 7. Two possible ways of existence of extremum for a data point; as a peak or as valley. 
Assume, except the extremum, all the other points are satisfying the y = c relation (perfect ex-
trema). Then, extremum is the peak and all other points are equal to the minimum. In the same 
manner, when the extremum is a valley, valley is the minimum and all other points are equal to 
the maximum. If a peak is small it reaches to the minimum and when the valley is small it reaches 
to the maximum. This is the hypothesis for distinguishing small and high extrema. 
 

If _ min 1LHR → , it implies that the amin is very close to the other points (low crater), 
consequently _ min 0LHR →  implies that the amin is apart from the other points (high 
crater). 

In Equation (17), when the term amin is zero, the ratio RLH_min also becomes zero de-
spite of the influence of magnitude valley. Also, due to the influence of negative values 
Sn can be zero and RLH_min becomes invalid. Both these situations inhibit the determina-
tion of the real condition of the valley. To overcome the effect of negative values, the 
minimum value was deducted from all the terms of the data points in the window as 
expressed in Equation (18). 

_ min .i New ia a a= −                           (18) 

Even now it is possible to have a situation of amin = 0. To overcome this situation a 
constant k, which is greater than zero, was added to each value. This transformation is 
applied in “Min-Max normalization” process [22] [23]. When k = 1 thus Equation (18) 
becomes: 

_ min 1i New ia a a= − +                          (19) 

From Equation (17) and Equation (19), 

( )( ) ( )_ min min min min
1

1 1
n

LH i
i

R a a n a a
=

= − + ∗ − +∑  

_ min min
1 1 1

1
n n n

LH i
i i i

R n a a
= = =

 
= − + 

 
∑ ∑ ∑

 

( )_ min mi _ min n;0 1LHLH nR n S a n Rn= − ∗ < ≤+  
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( )( )min_ min _ min 11 ;0LH LHnR S a Rn n= + − ∗ < ≤              (20) 

Then RLH_min expressed in Equation (20) can be considered as a robust method for 
filtering valleys with low crater. 

The peak shown in Figure 7 is a general situation of perfect peak. When a peak has a 
very small prominence, amax ≈ amin. Then Equation (11) can be expressed as: 

( )max max1nS a n a≈ ∗ − +  

( )max min;nS a n a n>∗≈ ∗  

( )_ max max ; 0LH nR a n S∗= >                      (21) 

According to Equation (17), the ratio RLH_min has a well-defined upper limit (ceiling) 
and lower limit (floor) because _ min0 1LHR< ≤ . Nevertheless, in Equation (21), RLH_max 
has no upper limit, and subjects only to a lower limit. Therefore, it is difficult to use 
RLH_max as a global criteria as RLH_min. The peak shown in Figure 7 can be considered as 
the mirror image of a valley in Figure 7. Thus, it is possible to transform a peak to a 
valley, for that Equation (17) can be used for determining the peaks with high and low 
prominence using the same criteria Under the assumption that: 

( )_ max min –i New ia a a a= +                      (22) 

According to Equation (22), ( )max min max min–a a a a+ =  and  
( )max min min max–a a a a+ = . The expression in Equation (22) transforms the maximum 
value into the minimum, the minimum value into the maximum and intermediate val-
ues into their complements. If the RLH_max is the corresponding ratio in relation with 
high and low peaks identification, then, from Equation (21) and Equation (22), one can 
reach: 

( )( )( ) ( )( )_ max max min max max min
1

n

LH i
i

R a a a n a a a
=

= + − ∗ + −∑  

( ) ( )( )_ max min max min1

n
LH ii

R a n a a a
=

= ∗ + −∑                (23) 

Even after the aforementioned transformation, it is still possible to have the influence 
of negative values. However, it can be resolved by using Equation (19). Then, from 
Equation (19),  

( )( ) ( ) ( )( )_ max min min max min min min min
1

1 1 1 1
n

LH i
i

R a a n a a a a a a
=

= − + ∗ − + + − + − − +∑  

( )( )_ max max
1

1
n

LH i
i

R n a a
=

= + −∑  

( )( )_ max max _ max1 ;0 1LH LHnR n a n RS <+ ∗ − ≤=              (24) 

_ max 1LHR →  implies that the amax is very close to other points (low prominence). 
Consequently _ max 0LHR →  implies that the amax is apart from the other points (high 
prominence). 

Finally, using Equation (17) and Equation (24) it is possible to determine the high 
and low extrema by defining a threshold value tLH ( 0 1LHt< ≤ ) for RLH_min and RLH_max. 
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Because the method is based on the maximum, minimum and the sum, the method was 
named as MMS-LH. Figure 8 elaborates the functionality of MMS-LH as a filtering 
method. 

The filtration of sudden, gradual, low, and high extrema are derived based on a data 
set which satisfies the y = c relation (perfect extrema). However, in reality it is impossi-
ble to always have perfect extrema. Therefore, by setting the threshold values in appro-
priate situations, it is possible to filter the extrema in non-perfect conditions. 

Extrema identification is performed after comparing two ratios in relation with 
maximum, minimum, middle point and sum. The threshold criteria for MMS-WBF 
and MMS-SG are values that are based on the number of data points (n). The threshold 
criterion for MMS-LH is a value between 0 and 1. Thus, all the determination criteria 
are totally non-parametric. However, combination of these methods leads to harvest 
more robust and reliable output. Figure 9 elaborates one possibility of combining all 
these methods for achieving reliable output. 

All the algorithms were implemented using C++ in Net 2008 platform and tested 
with biogas data which were collected online form a biogas plant using NIR spectros-
copy for a period of seven months with a frequency of twelve data points per day (i.e. 
every second hour). Among the different parameters, the H2 content measured in ppm 
was selected, which has considerable amount of variations during the process. Data of 
each month was considered as a segment, where each segment consists of 350 - 400 
data points. The proposed detection methods were applied on each segment with dif-
ferent criteria. Furthermore, another data set of around 4800 data points, concentra-
tions of volatile fatty acid (VFA), was selected for checking segmenting capabilities of 
the method. 
 

 
Figure 8. High and low extrema detection algorithm for “MMS-LH filter”. Compression of pre- 
defined threshold t for RLH_max and RLH_min allows distinguishing low and high extrema. 
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Figure 9. One possible way of combining all the developed methods for har-
vesting quality output. 

3. Results and Discussion 
3.1. Identifying Extrema 

Each plot (a) and (b) of Figure 10 contains between 350 and 400 data points and shows 
the identified extrema using the proposed “MMS max-min finder”, which is based on 
Equation (7) and Equation (9). In both situations all the extrema were detected with a 
window size of three (W = 3), which is the smallest valid size of the window. Results 
show detection of all the extrema with 0% error. However, there is an interesting fea-
ture about detections, which can be sometimes defined as an incorrect detection as seen 
in Figures 10(c)-(f). Plot (c) and (d) of Figure 10 show the case where two consecutive 
maxima with the same value and two consecutive minima with the same value, respec-
tively. When W = 3, usually both the adjacent extrema of a certain extremum have op-
posite extremum type (e.g.: for a maximum, adjacent members are two minima). If one 
adjacent extremum is with the same type extremum (e.g.: for a maximum, one adjacent 
member is a maximum) implies that the intermediate points of relevant points have the 
same value ((d) of Figure 10). Using the same criteria these detections can be excluded, 
if necessary. 
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Figure 10. Two plots of H2 content of biogas data in two different months are presented meas-
ured in ppm. All the maxima in both the data sets ((a) and (b)) were identified by the new 
method with the window side is three (W = 3). Plots (c), (d), (e), and (f) show identification of 
special situations as extrema, even though they are existing derivative methods not consider as 
extrema situations. 
 

Plot (e) and (f) of Figure 10 show other different situations, where it has consecutive 
minima and maxima of the same value. This also implies that the intermediate points 
have the same value ((f) of Figure 10). If consecutive maxima have same values and the 
order of occurrence is maximum then minimum, it can be considered as a discrete sad-
dle region in an increasing data segment ((e) of Figure 10). In the same manner, if the 
two consecutive extrema have same value and the order of occurrence is minimum then 
maximum, it can be considered as a discrete saddle region in a decreasing data segment 
((f) of Figure 10). Using the same criteria these detections can be excluded, if neces-
sary. 
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3.2. Identifying Dominating Extrema (Primary Filtering of Peaks and  
Valleys) 

The same two data sets shown in Figure 10 were filtered using MMS-WBF (MMS 
Window based filtering) method for identifying the dominant extrema using a window 
size of 9 (W = 9). Results of the detection process are shown in Figure 11 plots (a) and 
(b) demonstrate that the MMS-WBF was capable to identify 50% and 59% of all extrema 
as dominating extrema, respectively. However, out of the identified extrema in plots (a) 
and (b), there are 0.12% and 0.09% of small peaks which are identified as dominating 
extrema. These extrema cannot be visually justified as dominating extrema. Neverthe-
less, numerically they are the dominating extrema in the considered window size. One 
possible option is to increase the window size, thus covering more data which enhances 
the capability of removing more non-dominating extrema. However, when W > 3, all  
 

 
Figure 11. Plots (a) and (b) show the same data as plots (a) and (b) in Figure 10, filtered with 
MMS-WBF with a window size of nine data points (W = 9). MMS-WBF was capable of identify-
ing 53% and 58% of all extrema as dominating extrema. However, MMS-WBF identified 0.12% 
and 0.09% of extrema in plots (a) and (b) as dominating extrema, which cannot be visually justi-
fied as dominating extrema. Though those are cannot be justifies as dominating extrema, 
mathematically they are the dominating extrema in the considered window size. One possible 
option is to increase the window size, thus the window would cover more data points. This will 
remove more non-dominating extrema once a significant dominating extremum exists. 
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the candidate points have not been checked. This is a disadvantage of increasing the 
window size for filtering non-dominating extrema. In plot (d) of Figure 11, at the end 
of the data set shows such an unidentified dominating peak due to W > 3 situation. 

The combination of MMS max-min finder and MMS-WBF can be used in online 
data checking. For that, first the window size (W) has to be defined, and then the win-
dow accumulates the data, after which the desired detection technique is applied and 
eventually the extrema are located. Subsequently, window is advanced by one data 
point and awaits the next data point. After the next point is captured, the extrema- 
check is performed again. This process is propagated throughout the process for locat-
ing extrema in an online environment. 

3.3. Sharp and Gradual (Flat) Extrema Filtering 

Figure 12 shows the results in relation with sharp and gradual extrema detection per-
formed based upon RMm and RmM as defined in Equation (15) and Equation (16), re-
spectively. Value of tMm_mM for RMm and RmM was set as 1 ( ( )1 1k n= − ). Plot (a) and (b) 
of Figure 12 show the filtering of extrema, first with MMS-WBF for W = 3 and then 
with MMS-SG filter. Plot (c) and (d) of Figure 12 shows the filtering of extrema with 
MMS-WBF in the case of a window size of 9 (W = 9) and then with MMS-SG filter. 
When compared, plots (a) and (b) of Figure 12 show 78% and 77% less number of all 
extrema than number of extrema shown in plots (a) and (b) of Figure 10. When the W 
is small (W = 3) filter excludes some extrema seems to be very high (V1, P1, P2, and P3 
shown in plots (a) and (b) of Figure 12), which can be considered as wrong detection. 
However, according to Equation (11) and Equation (13), rejections of those points are 
mathematically correct. This happens due to usage of small window size for extrema 
detection. Thus, one solution for overcoming this situation is to use lager window size. 

Plots (c) and (d) in Figure 12 show identification of V1, P1, P2, and P3 after increasing 
the window size to nine (W = 9). After applying large W (W = 9) almost all the flat ex-
trema have been rejected. Even after increasing the W still extrema such as P4 are re-
maining, because W is not big enough to reject such points (i.e. in the selected window 
size, the extremum point is located significantly away from other points). In general, 
plots (c) and (d) of Figure 12 show 0.46% and 0.75% fewer extrema in comparison with 
plots (a) and (b) of Figure 12 and all the detections and rejections are agreed with the 
developed method. Therefore, the ratios MMSmax/MMSmin and MMSmin/MMSmax can be 
considered as filtering criteria and a reliable technique for filtering sharp and gradual 
(flat) extrema. 

3.4. High and Low Extrema Filtering 

As per the results shown in Figure 10 and Figure 12 it is very clear that the “primary 
filtering” and consideration of MMSmax/MMSmin and MMSmin/MMSmax are not capable 
of filtering extrema based on magnitude of their prominence or crater. The results 
shown in Figure 13 are the results in relation with the method MMS-LH, which is in-
tensively developed focusing on filtering extrema with low prominence or crater. 
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Figure 12. Filtering of sudden and gradually developed (flat) extrema using MMS-SG technique. Data in plots (a) and (b) 
were first checked for extrema with a window of size three with MMS-WBF. Data in plots (c) and (d) were first checked for 
extrema with a window of size nine with MMS-WBF. Then ratios MMSmax/MMSmin and MMSmin/MMSmax considered and all 
the plots were checked for sudden and gradually developed extrema with threshold value tMm_mM = 1. When the window size 
is small, extrema such as V1, P1, P2, and P3 remain undetected. However, increasing the window size let those points to be 
detected (plots (c) and (d)). Even after increasing the window size, points that have very small extrema such as P4 will de de-
tect as an extrema. 

 
Before applying MMS-LH, data points (plots (a) and (b) of Figure 13) were first 

checked for extrema with a window size three with MMS-WBF and data in plots (c) 
and (d) of Figure 13 were first checked for extrema with a window size nine with 
MMS-WBF. Point V1 in Figure 13(a), which seems to be a valley with high crater, yet 
remains as unidentified. To be qualified as an extrema with higher prominence or cra-
ter, first, the extremum must be a perfect extremum. However, with W = 3, V1 is not a 
perfect extremum. Therefore, the rejection is logical as well as mathematically correct. 
Nevertheless, in Figure 13(c), point V1 is identified as a valley, because the large win-
dow size (W = 9) makes V1 a nearly perfect extremum. Therefore, using W > 3 with 
appropriate filter criteria the method can be used for filtering extrema with low and  
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Figure 13. Filtering of low and high extrema using MMS-LH filtering technique. Data in plots (a) and (b) were first 
checked for extrema with a window of size three with MMS-WBF. Data in plots (c) and (d) were first checked for 
extrema with a window of size nine with MMS-WBF. Then RLH_max and RLH_min were considered and all the plots 
were checked for low and high extrema with threshold value tLH = 0.05. When the window size is small, extrema 
such as V1 remain undetected. The reason is for such detection is that the one point (point C) is located very close to 
the extremum (extremum is not a perfect extremum). However, increasing the window size (W = 9) makes V1 a 
nearly perfect extremum and detected in plot (c). 

 
high prominence or crater. 

3.5. Drawbacks of Using Large Window Size for Extrema Filtering 

In Figure 10, Figure 12, and Figure 13 plots with lager window size, (W − 1)/2 points 
from the beginning as well as from the end will not be checked, where W is the window 
size. If there are matching extrema existing in these regions, they also remain as uni-
dentified (Figure 12 and Figure 13). This is disadvantageous when using large window 
size, on the other hand if there are enough data points available, the issue is resolved. 
However, this is a problem for small data sets. Checking unchecked areas with a smaller 
window is one possibility for resolving this issue. However, results from two different 
window sizes will lead to violate the homogeneity of the results. The second method is 
to start the window before a certain number of data points (w/2). Then part of the 
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window is laid on a non-data region. Using a suitable padding, this part can be filled. 
For example, the entire data in non-data region in the start can be padded with starting 
value. Also, at the end suitable padding technique can be used to fill the part of the 
window in the non-data region. 

3.6. Possibility of Use as a Data Segmentation Technique 

Usually, dominating peaks and the valleys can be considered as turning points of a cer-
tain property of a signal, if those dominating extrema are not outliers. Thus, dominat-
ing peaks and valleys are good points for segmenting a signal as well as identifying gen-
eral trends. Figure 14 shows an attempt to accomplish such a segmenting approach 
using the developed method. Figure 14 contains a data set with around 4600 data 
points and only the MMS-WBF (dominating extrema identification technique) tech-
nique was applied as the filtering technique. For testing segmenting capabilities of the 
method, considerably large W was used (W = 155 in plot (a) and W = 255 in plot (b) of 
Figure 14). In both situations segmentation and general trend identification shows 
highly promising capabilities. Existences of more than one adjacent similar types of ex-
trema violate the trend identification and segmentation (i.e. existence of maximum af-
ter a maximum instead of minimum). Circled areas in plot (a) of Figure 14 show two 
such occurrences. However, removing unnecessary adjacent peaks or valleys while 
keeping singular important peaks or valleys, is one solution for overcoming this prob-
lem. Thereby it is necessary to develop a methodology for removing less important ex-
trema. Increasing the W is another way of overcoming the said drawback. Plot (b) of 
Figure 14 shows situation of increased W and detection with less adjacent same type of  
 

 
Figure 14. Usage of “MMSmax-min finder” as a segmentation technique and trend identification technique. Plot (a) 
and (b) use window size 155 and 255, respectively. When the window side is low (W = 155) segmentation and trend 
identification is distracted due to occurrence of adjacent same type extrema. In plot (a) such two occurrences were 
circled. Increasing the window size produces better segmentation as shown in plot (b). However, this leads to ignore 
some trends as circled in plot (b). 
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extrema than plot (a) of Figure 14. However, this technique lead to ignorance of some 
features in the signal as circled in plot (b) of Figure 14. Therefore, determining of 
proper W is an essential factor for better identification of segments as well as trends. 
Nevertheless, the method can be used for at least fast segmentation and trend identifi-
cation method. 

4. Conclusion 

The introduced extrema finding method named as “MMS Max-Min finder” and three 
different extrema filtering methods named as MMS-Window Based Filter (MMS- 
WBF), MMS sharp and gradual extrema filter (MMS-SG), and MMS low high extrema 
filter (MMS-LH) are non-parametric. Therefore, filtering can be done without consid-
ering domain dependent parameters such as height and width of an extremum. Results 
prove that the detection is capable of identifying all the extrema with 0% error. When 
the window size is nine (W = 9) MMS-WBF reported 0.12% and 0.09% wrong detec-
tions. However, a combination of MMS-WBF and MMS-LH filter with window size 
nine (W = 9) was capable of eliminating the error. Despite of the dynamic nature of the 
data, the results were consistent and robust for the same detection criteria. Thus, using 
proper window size, it is possible to achieve robust and consistent outcome with dy-
namic data such as biogas data. Furthermore, MMS-WBF shows promising outcome in 
the direction of segmenting and trend identification of signals. Hence, MMS-WBF can 
be enhanced as a segmenting and trend identification technique. 
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Abstract: Big data are visually cluttered by overlapping data points. Rather than removing, reducing
or reformulating overlap, we propose a simple, effective and powerful technique for density cluster
generation and visualization, where point marker (graphical symbol of a data point) overlap is
exploited in an additive fashion in order to obtain bitmap data summaries in which clusters can be
identified visually, aided by automatically generated contour lines. In the proposed method, the
plotting area is a bitmap and the marker is a shape of more than one pixel. As the markers overlap,
the red, green and blue (RGB) colour values of pixels in the shared region are added. Thus, a pixel
of a 24-bit RGB bitmap can code up to 224 (over 1.6 million) overlaps. A higher number of overlaps
at the same location makes the colour of this area identical, which can be identified by the naked
eye. A bitmap is a matrix of colour values that can be represented as integers. The proposed method
updates this matrix while adding new points. Thus, this matrix can be considered as an up-to-time
knowledge unit of processed data. Results show cluster generation, cluster identification, missing
and out-of-range data visualization, and outlier detection capability of the newly proposed method.

Keywords: big data; clustering; contour lines; data and knowledge visualization; knowledge retrieval;
mining methods and algorithms; missing data; real-time systems

1. Introduction

Plotted data are visually cluttered by overlapping data points. Reducing, avoiding and
reformulating (as a cluster) such overlap are the three major techniques recommended for clutter
reduction in the data visualization field [1–5]. However, especially with large numbers of overlap,
reducing and avoiding techniques are not feasible [4,6] and reformulation is a complex task [4,7].
In contrast, the method we introduce in this paper incorporates overlaps to generate density clusters
without reducing, avoiding or reformulating overlaps. The proposed method requires more overlaps
for better cluster formation and better visualization, which contrasts the general practice. Furthermore,
the proposed method can be considered as an anytime cluster formation technique (without a separate
cluster identification algorithm), which provides faster cluster generation than online methods [8].

Limiting the number of data points on a plot is the most popular technique to avoid overlaps [6].
Typically, when there are few data points, the probability of an overlap occurring is low. Changing
the opacity of data points and displacing data points that address the issue of overlapping are among
overlap reducing techniques [4]. Changing the opacity of data points enables the identification of small
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numbers of underlying or partially overlapping data points [4]. Displacement (agitating or jittering) is
a technique that randomly moves a data point over a small distance to overcome the overlap [4,6,9].
However, when too many overlaps occur, limiting the number of data points, changing the opacity or
displacing data points does not work very effectively. Reformulating overlapped data points as density
clusters is a solution for eliminating the overlap that represents different overlapping density ranges as
different clusters, even with big data. The final output depends on the cluster identification algorithm.

In real-world applications, overlapping increases the colour intensity of a redrawn area in contrast
to other areas of a picture and hence generates a visually identifiable cluster. This phenomenon indicates
that the number of overlaps is proportional to the colour intensity. We have found that step-by-step
increase of the colour value of a pixel in a bitmap resembles the phenomenon of overlapping. This
motivated us to develop a method to overcome overlapping data points by means of a bitmap. To deal
with such a situation, we use bitmaps, clustering techniques, cluster representation techniques and
contour lines.

A bitmap is the major component of our proposed method for plotting data and is a raster graphics
image comprising a rectangular array of pixels [10]. There are different methods to represent the colour
of pixels. The 8-bit RGB and 8-bit red, green, blue, and alpha (RGBA) formats are the most popular
methods [6]. The RGB format uses the red, green and blue colour channels, whereas the RGBA format
uses the red, green, blue and alpha colour channels, where the alpha channel determines the level of
transparency of a colour [11]. In both formats, each colour component has 8 bits representing 256 codes
(values of 0–255) for each of the R, G and B channels. The colour value of a pixel is represented as a
combination of channel values separated by commas (e.g., dark green in RGB: (0, 100, 0) and in RGBA:
(0, 100, 0, 0)). In general, if the total effective bit length of a pixel is n, a pixel can represent 2n colours.
Thus, the 8-bit RGB and 8-bit RGBA formats can represent 224 and 232 different colours, respectively.
If the whole bit series of a pixel is considered as a single channel, then each pixel is a number of base
256 (e.g., dark green in RGB: (0, 100, 0) = 25,600). Thus, a bitmap is a matrix that contains numerical
values. The visual representations of these numbers indicate different colours. If these numbers are
used to represent up-to-time processed data, the bitmap becomes an up-to-time knowledge unit. This
is a different usage of bitmaps for representing data.

As already mentioned, clustering is the most popular technique and is capable of eliminating
overlaps, especially with big data. Overall, the process of cluster identification is comprised of three
components: data (database), algorithm and cluster information (processed data). The processed data
are represented in different forms, primarily as data in a database or as visualized output. In almost
all clustering methods, clusters are first determined by a separate algorithm and then visualized
by a suitable technique. Typically, clusters are represented as a visual output such as a histogram,
scatterplot or scatterplot matrix [12]. The graphical output is used only as a visual aid to facilitate
the understanding of the clusters. The graphical output cannot be used as a source of processed data
for another algorithm. After the cluster analysis process, it is sometimes still possible to find some
unidentified clusters. In this case, the general practice is to modify the existing algorithm or introduce
a new algorithm to identify new patterns. In contrast, the proposed method does not require a separate
algorithm to identify density clusters as it generates clusters on the bitmap while adding data points.

This new approach based on overlapping data points provides a mechanism to access and view
information directly without further processing. Our findings are highly relevant for applications in
fields of big data visualization, process control, data modelling and bit data representation.

1.1. Related Work

As mentioned above, the proposed method is based on clustering. Therefore, clustering techniques
used for clutter reduction are the most related techniques. Clustering or cluster analysis is an
unsupervised (i.e., it requires no training data sets) data classification method [13–15] for identifying
homogenous groups of objects known as clusters [16–18]. Cluster analysis is used in many fields,
such as knowledge discovery in databases (KDD), pattern recognition, image analysis, and machine
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learning and data mining [19–24]. Typically, existing clustering techniques used for clutter reduction
eliminate overlaps by representing a group of data points or a group of lines by means of a single
data point or line [2,3,25,26]. After identifying clusters, these clusters can be used to understand and
identify correlations, patterns, features and outliers in the data set.

There are several special methods based on clustering that are intensively related to elimination
of overlaps such as heat maps [27–29] variable binned scatter plots [30], hierarchical multi-class
sampling [5] and Splatter-plots [31]. A heat map represents data in a matrix using a colour scale
that represents the values in the matrix. The quadrat method is a popular technique for creating
such a matrix [32–34]. The hierarchical multi-class sampling technique is another effective technique
for showing specific feature-clusters by enhancing density contrast by means of different colours.
The visual exploration system developed by Haidong et al. is a good example of such an approach [5].
The variable binned scatter plots technique allows visualization of large amounts of data without
overlaps [30]. This technique incorporates variable size bins [35] and classifies them into different
groups using a colour scheme. The Splatter-plots technique automatically groups dense data points
into contours and samples the remaining points. Colour blending is used to reveal the relationship
between data subgroups after processing the whole data set. Pre-processing of the original data is
a compulsory step for all these cluster visualization techniques to convert the original data into the
desired format. In contrast, the proposed method does not require pre-processing of the original data
prior to visualization.

A contour line is a different technique used to indicate clusters. The term contour line (also known
as isolines, isopleths or isarithms) was originally used in the cartography field. According to Imhof,
“Contour lines are lines on the map depicting the metric locations of points on the Earth’s surface at
the same elevation above sea level” [36]. However, contour lines are also used to map equal values
for other properties such as temperature or pressure. In a contour map, contour lines with a certain
interval display different values. The main feature of a contour map is that each contour line indicates
a certain value, and it is impossible to have crossing contour lines. This technique is used to show the
borders of clusters in kernel identification methods [37,38]. The proposed method creates contour lines
automatically to separate different density clusters.

2. Methodology

In a bitmap, the coordinates of a pixel specify its location. As in a common plot, these coordinates
can be used to represent parameter values (dimensions) that can be considered as data. In addition,
the colour value of the pixel can be mapped with information related to the data, e.g., the number of
overlaps (or data density) in the proposed method. Furthermore, updating the colour value of the pixel
resembles updating the information. An individual pixel is capable of holding 2n number of different
values; thus, a pixel is a memory cell or a knowledge cell. Therefore, we introduce a bitmap that forms
a graphical knowledge unit (GKU) out of knowledge cells to represent data and information.

The clustering range of influence is defined as the radius around the cluster centre (the highest
density data point of the cluster) [39]. When the clustering range of influence is small, many small
clusters are produced. In contrast, when the clustering range of influence is large, a few large clusters
are produced. When developing the proposed method, we used the size and shape of a marker
(a graphical symbol of a data point) and the position of a data point in the marker to characterize
the clustering range of influence. The shape and size of the marker are used to depict the effective
clustering range of influence. Typically, the marker is comprised of several pixels. From these pixels,
we use one pixel to represent the data point. For example, if the marker is a circle with a diameter of x
pixels, the data point is represented by the pixel in the centre of the circle. Figure 1 shows an example
of such data point. Here we have highlighted the location of the data point using a different colour,
whereas in reality, no distinct colour is used for this.
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Figure 1. Definition of marker in graphical knowledge unit (GKU): The marker is a circle (radius =
10 pixels), and the RGB colour value of the circle is (0, 0, X), where 0 ≤ X ≤ 255. The centre of the circle
represents the data point (highlighted).

2.1. Colour Coding Method

When an overlap occurs, there is always a shared area (intersection) between both existing and
newly added markers. We then update the colour of the overlapping area by adding the colour values
of pre-existing and newly added markers (Figure 2A). When adding colour, the colour of each pixel
in the shared area is updated according to the Equations (1) and (2). We first convert the colour of a
pre-existing pixel in the shared area and the corresponding pixel of the newly added marker using (1).
Subsequently, we add those two values and convert the single value to an RGB value using (2). Finally,
we update the considered pixel in the shared area using the new colour derived from (2). Applying this
technique for all pixels in the shared area updates the colour of the shared area (Figure 2B). The colour
of the new marker is applied if there is no overlap.

Symmetry 2016, 8, 152  4 of 17 

 

 

Figure 1. Definition of marker in graphical knowledge unit (GKU): The marker is a circle (radius = 10 

pixels), and the RGB colour value of the circle is (0, 0, X), where 0 ≤ X ≤ 255. The centre of the circle 

represents the data point (highlighted). 

2.1. Colour Coding Method 

When an overlap occurs, there is always a shared area (intersection) between both existing and 

newly added markers. We then update the colour of the overlapping area by adding the colour values 

of pre‐existing and newly added markers (Figure 2A). When adding colour, the colour of each pixel 

in the shared area is updated according to the Equations (1) and (2). We first convert the colour of a 

pre‐existing pixel in the shared area and the corresponding pixel of the newly added marker using 

(1). Subsequently, we add those two values and convert the single value to an RGB value using (2). 

Finally, we update the considered pixel in the shared area using the new colour derived from (2). 

Applying this technique for all pixels in the shared area updates the colour of the shared area (Figure 

2B). The colour of the new marker is applied if there is no overlap. 

 

Figure 2. (A) Two overlapped markers; and (B) overlapped markers. The data point is represented by 

the pixel in the centre of the marker (the data point is highlighted in orange). 

If CV is the single integer colour value of a pixel, RV is the red colour value, GV is the green colour 

value and BV is the blue colour value, then 

CV = RV × 2562 + GV × 2561 + BV × 2560.  (1)

The function QUOTIENT(<numerator>, <denominator>) performs division and returns only the 

integer portion of the result. If C2 = RV, C1 = GV and C0 = BV, then 

௜ܥ ൌ QUOTIENT൫ܥ௏ െ	∑ ሺܥ௜ ା ௝ ൈ 2௜ ା ௝ሻଶ
௝	ୀ	ଵ , 256௜൯; i � {2,1,0} and Ck = 0 when k > 2.  (2)

For example, according to Equation (1), a pixel with RGB colour (1, 2, 3) can be represented as 

66,051 (1 × 2562 + 2 × 2561 + 3 × 2560). In addition, when CV = 66,051, according to Equation (2), C2 = 1, 

C1 = 2 and C0 = 3. Because C2 = RV, C1 = GV and C0 = BV, the RGB representation of 66,051 is (1, 2, 3). 

Note that only these two equations are used for density calculation and density cluster formation. 

2.2. Data Preparation 

Because  the  location  (coordinates)  in a bitmap  is a positive  integer,  it  is  impossible  to depict 

decimal and negative values. In addition, it is impractical to represent a very large range of numbers 

with bitmaps, as this would require a very large bitmap. Applying transformation techniques is one 

Figure 2. (A) Two overlapped markers; and (B) overlapped markers. The data point is represented by
the pixel in the centre of the marker (the data point is highlighted in orange).

If CV is the single integer colour value of a pixel, RV is the red colour value, GV is the green colour
value and BV is the blue colour value, then

CV = RV × 2562 + GV × 2561 + BV × 2560. (1)

The function QUOTIENT(<numerator>, <denominator>) performs division and returns only the
integer portion of the result. If C2 = RV, C1 = GV and C0 = BV, then

Ci = QUOTIENT

(
CV −

2

∑
j = 1

(Ci + j × 2i + j), 256i

)
; i ε {2, 1, 0} and Ck = 0 when k > 2. (2)

For example, according to Equation (1), a pixel with RGB colour (1, 2, 3) can be represented as
66,051 (1× 2562 + 2× 2561 + 3× 2560). In addition, when CV = 66,051, according to Equation (2), C2 = 1,
C1 = 2 and C0 = 3. Because C2 = RV, C1 = GV and C0 = BV, the RGB representation of 66,051 is (1, 2, 3).
Note that only these two equations are used for density calculation and density cluster formation.

2.2. Data Preparation

Because the location (coordinates) in a bitmap is a positive integer, it is impossible to depict
decimal and negative values. In addition, it is impractical to represent a very large range of numbers
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with bitmaps, as this would require a very large bitmap. Applying transformation techniques is one of
the ways to overcome these challenges. Base line correction is used to eliminate negative values and
very large values. This gives a value range that begins from zero. Scaling up or down is applied to
overcome very small and very large ranges, respectively. If the data set is a combination of negative,
decimal and large values, the respective transformations must be implemented accordingly. Finally,
a suitable offset is used to shift the data from the origin. Table 1 shows the basic transformation
techniques used for the different value types.

Table 1. Transformation rules used to convert numbers into integers. Depending on the nature of the
data, a combination of two or more techniques may be required to achieve a data set suitable to plot on
a bitmap.

Value Type Transformation Technique

Negative integer values Base line correction. This will convert all negative values to
positive values while maintaining the same regression.

Very large values Base line correction. This will convert large numbers to small
numbers while maintaining the same regression.

Decimal values Multiplication by 10d (d ε {1, 2, 3, . . . }). This will convert decimal
values to integers (we named d as “decimal to integer factor”).

Small or large range Scale up or down. This will change the range.

2.3. Visualization of Missing and Out of Range Values

A method that can show missing data and data that have unexpected (out of range) values would
provide important information for understanding the quality of the data. We have included two border
regions in the GKU for recording missing values and data with out of range values. In these borders,
different regions are defined to identify the nature of the missing or out of range data (Figure 3). If there
are missing or out of range values, these are shown on the relevant border region of the bitmap in the
same manner as regular data points (Figure 3).
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2.4. Embed GKU Specific Information into Bitmap

The GKU contains several parameters related to data transformation, marker type (circle, square,
etc.), marker dimensions, marker colour and border information (width of borders of missing and
unexpected values). This GKU information could be stored in a separate file; however, it would be
more convenient if this information was embedded in the same bitmap file as integers (=colour). Thus,
at the bottom (or top) of the bitmap after (or before) the real data points, the GKU specific data are
depicted with the respective colour (Figure 3). The starting location (offset) of the GKU specific data
area is stored in the first unused slot of the bitmap header (Table 2).

Table 2. Bitmap header (example of an m × n pixel bitmap with red, green, and blue (RGB) (24-bit)
colour scheme) * this unused slot is used to store the offset for graphical knowledge unit (GKU) specific
data. BM: a value in Bitmap Header.

Header Section Offset Size/Bytes Value Description

Bitmap (BMP)
Header (14 Bytes)

0 2 “BM” Identification (ID) field

2 4 Size of BMP header,
DIB header, and Image Size of the BMP file

6 2 Unused * Application specific

8 2 Unused Application specific

10 4 54 Bytes (14 + 40) Offset where the pixel array
(bitmap data) can be found

Device-independent
bitmap (DIB) header

12
40 Bytes. . .

50

Bitmap data
51

m × n × 4 Bytes. . .

. . .

As discussed above, it is necessary to convert GKU specific data into integers to embed this
information into the bitmap. However, certain properties such as marker type or negative values
cannot be mapped directly with the colour value of a pixel. Therefore, a protocol is required to map
this information. The existing 24-bit pixel RGB structure can represent positive numbers. We refer to
this as the unsigned 24-bit pixel format. In addition, using 24 bits, it is possible to represent negative
integers, where the first bit is used to indicate the sign of the value (e.g., 1 = negative and 0 = positive).
We refer to this as the signed 24-bit pixel format. Furthermore, any number can be represented as a
product of an integer and a power of ten (e.g., −123.45 = −12345 × 10−2). Thus, any number can be
represented (one for the integer part and the other for power of ten) with two pixels in the signed 24-bit
single pixel format. Finally, the structure of the GKU specific data is designed as shown in Table 3
using relevant number representation techniques.
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Table 3. Example of GKU specific data layout. The value K is the starting location (offset) of the GKU
specific data area. The value of K is stored in the first unused slot of the bitmap header.

GKU Specific
Data

Offset of
Pixels

No. of
Pixels

Content in the Pixels,
According to the Order

Pixel Format Used to
Store Information Example

Properties of
point marker K 3

Data point = Circle (1 = circle,
2 = square, . . . ), radius of the
circle, colour of the circle.

unsigned 24-bit
pixel format 1, 10, 1

Border widths K + 1 5
Out of range border, missing
value border, GKU specific data
border, border padding, offset.

unsigned 24-bit
pixel format 10, 10, 10, 1, 10

X value
information K + 2 8

Minimum value, maximum value,
decimal to integer factor, scale
up/down factor.

two signed 24-bit
pixel format

(65, 0), (90, 0),
(10, 0), (2, 0)

Y value
information K + 3 8

Minimum value, maximum value,
decimal to integer factor, scale
up/down factor.

two signed 24-bit
pixel format

(223, −2), (9055, −3),
(10, 0), (3, 0)

2.5. GKU Evaluation Method

We tested the new method using automatically recorded data from near-infrared (NIR)
spectroscopy at a biogas plant over a period of nearly 75 days with a frequency of 20 values per
hour (35,620 data points). Volatile solid (VS) and volatile fatty acid (VFA) concentrations were selected
as dimensions. The selected data were part of a data set used to develop NIR spectroscopy online
calibration for monitoring VS and VFAs as process indicators during anaerobic digestion [40]. In the
selected data set, there were some missing data. The missing data were ignored in the offline version
of the GKU; however, missing data were considered in the online version. Thus, in the online version,
the total number of data points was 35,864.

The creation of a GKU for an online situation was tested by simulating an online environment.
An out-of-range data environment was artificially created by replacing some of the missing data with
very high and very low values. In the missing data, for some data points, only the x or y parameter
was missing, whereas for others, both parameters were missing. The method was implemented with
Visual Studio 2008 (Net framework version 3.5 SP1) (Microsoft Cooperation, Way Redmond, WA,
USA). MATLAB (Version 7.4.0) (The MathWorks Ins, Natick, MA, USA) was used to create plots that
were required to validate the proposed method.

3. Results and Discussion

Determination of the type, size and colour of the marker strongly influences the visual standard
and cluster formation of the final GKU output. Therefore, it is very important to select the best
combination of those features before creating the real GKU. We determined the best combination
after conducting a series of trials. Figures 4 and 5 show several GKUs for the same data set with two
different markers (circle and square) and different combinations of features such as size and colour.
In Figure 4, the diameter of a circle is equal to the length of one side of a square in the corresponding
plot in Figure 5. When comparing corresponding plots in Figures 4 and 5, it can be seen that visual
notion of clusters in Figure 5 are more intensive than in Figure 4. A square comprises more pixels than
a circle whose diameter is equal to the length of one side of a square. This generates more overlapping
when a square is used. Plot D in both figures is a good example.

In both figures, bitmaps A, B and C do not show adequate numbers of visual clusters. In contrast,
bitmaps F, H and I show too many clusters, especially visually. Bitmaps D, E and, in particular, G show
an appropriate number of clusters. In general, the correct selection of marker size and initial colour will
produce clusters with good visual standards. We selected a circle as the marker for generating GKUs,
because plots with circles produce better overall visual clarity than squares. Therefore, all results are
based on circles with different diameters and colours. We show colours (0, 0, 1) to (0, 0, 10) in this
section; however, plots with other colour values are also presented in this paper.
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Figure 4. GKUs for the same data set with 35,620 data points using a circle as the marker with different
sizes and colours. The correct selection of shape, size and initial colour of the data point will produce
clusters that are visually clear and separated by colour borders similar to contour lines. For data set of
plots in this figure, see Supplementary Materials, File S1. (A): GKU for 35,620 data points generated
using a circle as the marker, where diameter is 5 pixels and RGB colour is (0, 0, 1); (B): GKU for 35,620
data points generated using a circle as the marker, where diameter is 5 pixels and RGB colour is (0, 0, 5);
(C): GKU for 35,620 data points generated using a circle as the marker, where diameter is 5 pixels and
RGB colour is (0, 0, 10); (D): GKU for 35,620 data points generated using a circle as the marker, where
diameter is 10 pixels and RGB colour is (0, 0, 1); (E): GKU for 35,620 data points generated using a
circle as the marker, where diameter is 10 pixels and RGB colour is (0, 0, 5); (F): GKU for 35,620 data
points generated using a circle as the marker, where diameter is 10 pixels and RGB colour is (0, 0, 10);
(G): GKU for 35,620 data points generated using a circle as the marker, where diameter is 20 pixels and
RGB colour is (0, 0, 1); (H): GKU for 35,620 data points generated using a circle as the marker, where
diameter is 20 pixels and RGB colour is (0, 0, 5); (I): GKU for 35,620 data points generated using a circle
as the marker, where diameter is 20 pixels and RGB colour is (0, 0, 10).
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Figure 5. GKUs for the same data set with 35,620 data points using a square as the marker with different
sizes and colours. The correct selection of shape, size and initial colour of the data point will produces
clusters that are visually clear and separated by colour borders similar to contour lines. For data set of
plots in this figure, see Supplementary Materials, File S1. (A): GKU for 35,620 data points generated
using a square as the marker, where length is 10 pixels and RGB colour is (0, 0, 1); (B): GKU for 35,620
data points generated using a square as the marker, where length is 10 pixels and RGB colour is (0, 0, 5);
(C): GKU for 35,620 data points generated using a square as the marker, where length is 10 pixels and
RGB colour is (0, 0, 10); (D): GKU for 35,620 data points generated using a square as the marker, where
length is 20 pixels and RGB colour is (0, 0, 1); (E): GKU for 35,620 data points generated using a square
as the marker, where length is 20 pixels and RGB colour is (0, 0, 5); (F): GKU for 35,620 data points
generated using a square as the marker, where length is 20 pixels and RGB colour is (0, 0, 10); (G): GKU
for 35,620 data points generated using a square as the marker, where length is 40 pixels and RGB colour
is (0, 0, 1); (H): GKU for 35,620 data points generated using a square as the marker, where length is
40 pixels and RGB colour is (0, 0, 5); (I): GKU for 35,620 data points generated using a square as the
marker, where length is 40 pixels and RGB colour is (0, 0, 10).

3.1. Reading GKUs

There are two methods for reading or understanding a GKU. The first method relies on an
algorithm (computer-aided method). A GKU is a bitmap and a bitmap is a matrix of pixels; therefore,
the content of a GKU can be converted into a matrix of integers (GKU matrix) using (1) (Figure 6).
In Figure 6, we used the RGB colour (0, 0, 254) for the marker. These integers in GKU matrix represent
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the data density of a particular location and can be used to extract or derive information. This feature
is an advantage of the GKU over existing clustering methods.
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Figure 6. Relation between bitmap and matrix versions of a GKU. A GKU matrix is a simple way to
represent the same GKU. Marker: circle, radius: 10 pixels, marker colour: (0, 0, 254). The table shows
the colour values of 10 × 10 pixels in the bitmap, which is a portion of the GKU matrix.

The second method is reading visual information by considering the presented graphical output
(observation) as a usual plot. The GKU plot does not include a colour scale or legend to aid the
understanding of the clusters. However, clusters and density of clusters can be determined with the
aid of colour boarders that are automatically generated due to sudden change of colour values of
adjacent pixels in the GKU. These colour boarders are identical to contour lines and maintain the same
colour value difference between consecutive borders as in a contour map (Figure 7). For example,
consider the RGB colours (0, 0, 255) and (0, 1, 0). According to Equation (1), colour values (Cv) of RGB
colour (0, 0, 255) and (0, 1, 0) are 255 and 256, respectively. The RGB colour (0, 0, 255) is blue and
RGB colour (0, 1, 0), which, next to (0, 0, 255), is visually black and create sudden change in colour
blue to black, even though the difference between colour values is 1. The table in the Figure 7 shows
the RGB values of the inner border (blue side) of each contour line. Usually, all colour borders are
visually the same. However, the green colour values (Gv) of those lines maintain constant difference of
one between adjacent colour borders; which resembles the contour lines (Figure 7). We numbered the
contour lines from the outside to the inside (i.e., 1, 2, 3, . . . ) and observed that contour lines with the
same numbers have nearly the same colour values (same green value + nearly the same blue value)
(Figure 7). Thus, it is possible to compare the density of different clusters even without a colour scale
or legend. This is another advantage of the GKU over existing clustering methods.
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Figure 7. Contour lines in a GKU. Representation of 35,620 data points; marker: circle, radius: 20 pixels,
marker colour: (0, 0, 1). This shows clear colour borders that can be considered as contour lines.
Contour lines are numbered from the outside to the inside of the cluster. Contour lines with same
contour line number have the same green channel value. For such contour lines, blue channel values
are in the same range. The higher the number of contour lines, the higher the data density. Therefore, it
is possible to understand cluster density without a colour scale or legend. For data set of plots in this
figure, see Supplementary Materials, File S1.

3.2. Anytime Cluster Formation

Note that the GKU is not a cluster analysis method; it is an anytime cluster formation method.
As above mentioned anytime techniques make an explicit effort to speed up the cluster generation.
The related methods discussed in this paper process all existing data to find clusters. If there are new
data, the data must be processed again to find new clusters or update existing clusters. In contrast,
the GKU shows up-to-time clusters and waits for new data. After adding a new data point, it is not
necessary to process the whole data set again to obtain the current state. Adding a new data point to
the GKU will update only those pixels that are covered by the marker. All other pixels in the bitmap
remain unchanged. This requires a relatively small computational effort. Because the GKU is a matrix
that is continuously updated, it can be seen as a continuous learning database of already processed
data. Usually, the process of knowledge extraction becomes more difficult when dealing with large
data sets because the algorithm needs to check a very large number of data points [41]. In contrast,
with the proposed cluster formation technique, the time for updating is independent of the number
of data points. The bitmaps in Figure 8 show the development of a GKU over time. All the plots in
Figure 8 imply the importance of overlapping in the GKU concept. Initially, the GKU does not show
clear clusters (Figure 8A). As overlap increases, the GKU shows clusters that can be easily identified
by the naked eye (Figure 8C,D).
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Figure 8. Development of a GKU over time. Bitmaps (A–D) show GKUs with 5000, 10,000, 20,000
and 35,620 data points, respectively. Marker: circle, radius: 10 pixels, initial colour of the data point:
(0, 0, 1). For data set of plots in this figure, see Supplementary Materials, File S1.

3.3. Representation of Missing and Out of Range Values and GKU Specific Data

When considering very large data sets, information about missing and out of range data is vital
because it provides a complete overview of the data and its quality. None of the existing clustering
methods is capable of visualizing this information. In contrast, the GKU is capable of indicating density
of out-of-range values as well as missing values (Figure 9). This makes the GKU a very efficient and
effective means of representing big data. The GKU shows the density of out-of-range and missing data
categorized in different regions (Figure 3). Figure 9 illustrates the use of a GKU specific data area to
save feature information such as marker type (circle, square, etc.), colour and dimensions and border
information (width of borders of missing and unexpected values). This information is saved as colours
after converting such feature information according to the standards listed in Table 3. Furthermore,
the initial row of the GKU specific data is encoded in the bitmap header according to the standards
listed in Table 2. Thus, GKU specific data can be identified by reading the bitmap header.

3.4. GKU as an Outlier Detection Method

The GKU can be used to identify outliers in a data set. If data points in low-density areas are
outliers, they will always have low colour values. Therefore, it is possible to define a certain colour
value in the GKU as a border for outliers. Then, all points with colour values below the colour value of
the border can be removed manually or by means of an algorithm. Figure 10 illustrates a very simple
way of identifying outliers in a very large data set using a GKU. If the GKU is visually interpretable,
it is possible to define a border to identify outliers by checking the colour value of the area. A very
simple bitmap reading application can be used to identify the colour values of each pixel and then
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manually define a border for outliers. If higher accuracy is required, this can be done by means of
an algorithm. Because the method is based on knowledge discovery in databases (KDD), this can be
considered an unsupervised outlier detection method [42,43].
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Figure 9. Representation of 35,864 data points in a GKU with borders to record missing values, out
of range values and GKU specific information. Marker: circle, radius: 20 pixels, colour of the data
point: (0, 0, 50). * Refer to Figure 3 for structure information and usage. ** Refer to Table 3 for structure
information about the GKU specific information. For data set of plots in this figure, see Supplementary
Materials, File S2.
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Figure 10. Outlier identification using GKU by defining a border manually. Areas with low colour
values are defined as outliers (noise) and vice versa. Shape of the data point: circle, radius: 20 pixels,
colour of the data point: (0, 0, 254). For data set of plots in this figure, see Supplementary Materials,
File S1.

We compared the visual standards of the proposed GKU method with the three most popular data
representation methods: scatter plot, heat map and contour plot. Figure 11A–C show the visualization
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of 35,620 data points with a scatter plot, heat map and contour plot, respectively. All plots were
generated using MATLAB (Version 7.4.0). According to the Figure 11A, scatter plot does not support
for identifying data density in systematic manner. However, scatter plot is useful to illustrate the
nature of data distribution and this is the default usage of scatter plot. Nevertheless, heat map and
contour plot were employed to illustrate data density. The results show that the heat map was unable
to create clusters and the contour plot was unable to generate contour lines. Even after zooming, it
is difficult to identify density clusters with heat map and contour map. In contrast, the GKU could
generate both clusters and contour lines in the same bitmap which help to illustrate the nature of data
distribution in systematic manner, which can be identified by the naked eye (Figure 7). The GKU is
capable of indicating density of out-of-range values as well as missing values (Figure 3). However,
heat map and contour map have no method for representing out-of-range values and missing values.
Therefore, GKU can be considered as a powerful and efficient method for identifying density clusters.Symmetry 2016, 8, 152  14 of 17 
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Figure 11. Visualization of 35,620 data points with: (A) scatter plot; (B) heat map; and (C) contour plot.
The scatter plot shows the distribution of the data, whereas the heat map and the contour plot show
density clusters. However, compared to the GKU, the heat map and contour plot do not show density
clusters. For data set of plots in this figure, see Supplementary Materials, File S1.

With the GKU approach, the marker has particular significance compared to a usual plot. In this
paper, we used the size of the marker to represent the clustering range of influence and the colour to
represent data density. However, the size, type and location of the data point in the marker and the
colour of the marker can be mapped with specific properties such as tolerance, error or minimum or
maximum distance between two data points. In addition, depending on the domain, these properties

78



Symmetry 2016, 8, 152 15 of 17

can be mapped with different features such as concentration (chemistry) or the signal strength and
coverage area of a transmitter (networking/electronics). In all GKUs shown in this paper, we used
the same colour for the pixels in the marker. However, using marker colour as a function of a certain
feature will result in different coloured pixels depending on the function. For example, the density
of seed propagation of a plant is not linear over distance. In this situation, the colour of the marker
can be mapped as a function of seed propagation and the area of propagation can be mapped to the
dimensions of the marker. If the propagation covers a certain area such as a sector, then the location of
the plant can be represented by the angular point of the sector.

An existing GKU can be used directly in an online environment as a trained set or template.
In addition, within an online environment, it is possible to recreate new versions of the GKU repeatedly
according to new value ranges. If the number of out of range data points is higher than a certain value
(e.g., more than x% of total data), a new GKU can be created according to the new range. Then, the old
GKU can be replaced with a new GKU and recording can continue.

The proposed method has three major drawbacks. The first is that the GKU cannot be applied to
non-overlapping data. The second is that the GKU is not capable of visualizing high-dimensional data.
The third is that the number of overlapping incidents is limited to 2n, where n is the total bit length of
the colour format. This drawback can be overcome by using colour formats with higher bit length.

If a GKU is nearly full, red regions that did not occur in any GKU shown in this paper will appear.
This implies that we could handle a much larger number of data points than the maximum number
used in this study (35,620). We employed the three-channel RGB colour format with 8 bits for each
channel. To create larger GKUs, it is possible to use four channel colour formats (ARGB) and more than
8 bits per channel [44,45]. The 16-bit RGBA format provides a maximum of 264 overlapping incidents.

4. Conclusions

The GKU is a container to process data that is capable of immediately maintaining and displaying
a large number of data points in a small area. The GKU can be seen as a combination of the quadrat
sampling method with contour lines. It is a very effective method for representing density clusters in
offline and online environments. In addition, the GKU is a continuous learning graphical database that
can be used as a direct input for another algorithm or as a trained set, template or signature for a certain
process. Furthermore, the GKU can be used to identify outliers effectively, particularly in data sets
with non-linear relations. In this paper, we presented a GKU with one dependent and one independent
variable. However, it is possible to use a GKU with RGB colour scheme to visualize one dependent
variable with three independent variables by assigning each colour slot for different independent
variables (R for variable 1, G for variable 2, etc.). The major requirement for this is that all independent
variables must be in the same value range. This would enable easy identification of correlations
between variables and would provide a convenient way to visualize multidimensional data in two
dimensions. In addition, compression and integration with swarm intelligence methods such as
monarch butterfly optimization (MBO), earthworm optimization algorithm (EWA), and elephant
herding optimization (EHO) will enhance the outcome of the GKU.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/8/12/152/s1,
File S1: Data sets of all the plots in Figures 4, 5, 7, 8, 10 and 11, File S2: Data sets of all the plots in Figure 9.

Acknowledgments: This work was supported by the German Research Foundation (DFG) and the Technical
University of Munich (TUM) in the framework of the Open Access Publishing Program. In addition, we are
grateful to the German Academic Exchange Service (Deutscher Akademischer Austauschdienst, DAAD) for
providing a scholarship to K.K.L.B. Adikaram during the research period.

Author Contributions: K.K.L.B.A. conceived and designed the experiments and algorithms; K.K.L.B.A. performed
the experiments; K.K.L.B.A., M.A.H., and M.E. analysed the data; K.K.L.B.A., M.A.H., M.E., and T.B. contributed
reagents/materials/analysis tools; and K.K.L.B.A. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

79

http://www.mdpi.com/2073-8994/8/12/152/s1 


Symmetry 2016, 8, 152 16 of 17

References

1. Stone, M.C.; Fishkin, K.; Bier, E.A. The Movable Filter as a User Interface Tool. In Proceedings of the
ACM SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 24–28 April 1994;
pp. 306–312.

2. Woodruff, A.; Landay, J.; Stonebraker, M. Constant density visualizations of non-uniform distributions of
data. In Proceedings of the 11th Annual ACM Symposium on User Interface Software and Technology, San
Francisco, CA, USA, 1–4 November 1998.

3. Yang, J.; Ward, M.O.; Rundensteiner, E.A. Visual hierarchical dimension reduction for exploration of
high dimensional datasets. In Proceedings of the Eurographics/IEEE TCVG Symposium on Visualization,
Grenoble, France, 26–28 May 2003.

4. Ellis, G.; Dix, A. A Taxonomy of Clutter Reduction for Information Visualisation. IEEE Trans. Vis.
Comput. Graph. 2007, 13, 1216–1223. [CrossRef] [PubMed]

5. Chen, H.; Chen, W.; Mei, H.; Liu, Z.; Zhou, K.; Chen, W.; Gu, W.; Ma, K.L. Visual Abstraction and Exploration
of Multi-class Scatterplots. IEEE Trans. Vis. Comput. Graph. 2014, 20, 1683–1692. [CrossRef] [PubMed]

6. Cleveland, W.S. Visualizing Data; Hobart Press: Hobart, Australia, 1993.
7. Bachthaler, S.; Weiskopf, D. Efficient and Adaptive Rendering of 2-D Continuous Scatterplots.

Comput. Graph. Forum 2009, 28, 743–750. [CrossRef]
8. Mai, S.T.; He, X.; Feng, J.; Plant, C.; Böhm, C. Anytime density-based clustering of complex data.

Knowl. Inform. Syst. 2015, 45, 319–355. [CrossRef]
9. Hoffman, P.; Grinstein, G. Visualizations for High Dimensional Data Mining-Table Visualizations. 1997.

Available online: http://web.simmons.edu/~benoit/infovis/MIV-datamining.pdf (accessed on 28 January 2014).
10. Salomon, D. Raster Graphics. In The Computer Graphics Manual; Springer: Berlin/Heidelberg, Germany, 2011;

pp. 29–131.
11. Salomon, D. Graphics Standards. In The Computer Graphics Manual; Springer: Berlin/Heidelberg, Germany,

2011; pp. 947–972.
12. Everitt, B.S.; Landau, S.; Leese, M.; Stahl, D. Index. In Cluster Analysis; John Wiley & Sons, Ltd.: New York,

NY, USA, 2011; pp. 321–330.
13. Lee, R.C.T. Clustering Analysis and Its Applications. Adv. Inform. Syst. Sci. 1981, 8, 169–292.
14. Næs, T.; Brockhoff, P.B.; Tomic, O. Cluster Analysis: Unsupervised Classification. In Statistics for Sensory and

Consumer Science; John Wiley & Sons, Ltd.: New York, NY, USA, 2010; pp. 249–261.
15. Okun, O.; Priisalu, H. Unsupervised data reduction. Signal Process. 2007, 87, 2260–2267. [CrossRef]
16. Anderberg, M.R. Cluster Analysis for Applications; Academic Press: New York, NY, USA, 1973.
17. Chui, C.K.; Filbir, F.; Mhaskar, H.N. Representation of functions on big data: Graphs and trees. Appl. Comput.

Harmon. Anal. 2015, 38, 489–509. [CrossRef]
18. Avramenko, Y.; Ani, E.-C.; Kraslawski, A.; Agachi, P.S. Mining of graphics for information and knowledge

retrieval. Comput. Chem. Eng. 2009, 33, 618–627. [CrossRef]
19. Yu, H.; Yang, J.; Han, J.; Li, X. Making SVMs Scalable to Large Data Sets using Hierarchical Cluster Indexing.

Data Min. Knowl. Discov. 2005, 11, 295–321. [CrossRef]
20. De Vito, E.; Rosasco, L.; Toigo, A. Learning sets with separating kernels. Appl. Comput. Harmon. Anal. 2014,

37, 185–217. [CrossRef]
21. Galluccio, L.; Michel, O.; Comon, P.; Hero, A.O., III. Graph based k-means clustering. Signal Process. 2012, 92,

1970–1984. [CrossRef]
22. Sebzalli, Y.M.; Li, R.F.; Chen, F.Z.; Wang, X.Z. Knowledge discovery from process operational data for

assessment and monitoring of operator’s performance. Comput. Chem. Eng. 2000, 24, 409–414. [CrossRef]
23. Barbará, D.; Chen, P. Using Self-Similarity to Cluster Large Data Sets. Data Min. Knowl. Discov. 2003, 7,

123–152. [CrossRef]
24. David, G.; Averbuch, A. Hierarchical data organization, clustering and denoising via localized diffusion

folders. Appl. Comput. Harmon. Anal. 2012, 33, 1–23. [CrossRef]
25. Zhang, L.; Tang, C.; Song, Y.; Zhang, A.; Ramanathan, M. VizCluster and its Application on Classifying Gene

Expression Data. Distrib. Parallel Databases 2003, 13, 73–97. [CrossRef]
26. Johansson, J.; Ljung, P.; Jern, M.; Cooper, M. Revealing structure in visualizations of dense 2D and 3D parallel

coordinates. Inform. Vis. 2006, 5, 125–136. [CrossRef]

80

http://dx.doi.org/10.1109/TVCG.2007.70535
http://www.ncbi.nlm.nih.gov/pubmed/17968067
http://dx.doi.org/10.1109/TVCG.2014.2346594
http://www.ncbi.nlm.nih.gov/pubmed/26356882
http://dx.doi.org/10.1111/j.1467-8659.2009.01478.x
http://dx.doi.org/10.1007/s10115-014-0797-0
http://web.simmons.edu/~benoit/infovis/MIV-datamining.pdf
http://dx.doi.org/10.1016/j.sigpro.2007.02.006
http://dx.doi.org/10.1016/j.acha.2014.06.006
http://dx.doi.org/10.1016/j.compchemeng.2008.10.023
http://dx.doi.org/10.1007/s10618-005-0005-7
http://dx.doi.org/10.1016/j.acha.2013.11.003
http://dx.doi.org/10.1016/j.sigpro.2011.12.009
http://dx.doi.org/10.1016/S0098-1354(00)00430-0
http://dx.doi.org/10.1023/A:1022493416690
http://dx.doi.org/10.1016/j.acha.2011.09.002
http://dx.doi.org/10.1023/A:1021517806825
http://dx.doi.org/10.1057/palgrave.ivs.9500117


Symmetry 2016, 8, 152 17 of 17

27. Wilkinson, L.; Friendly, M. The History of the Cluster Heat Map. Am. Stat. 2009, 63, 179–184. [CrossRef]
28. Niida, A.; Tremmel, G.; Imoto, S.; Miyano, S. Multilayer Cluster Heat Map Visualizing Biological Tensor Data.

In Proceedings of the 2013 8th Brazilian Symposium on Advances in Bioinformatics and Computational
Biology, Recife, Brazil, 3–7 November 2013; Setubal, J., Almeida, N., Eds.; pp. 116–125.

29. Weinstein, J.N. A Postgenomic Visual Icon. Science 2008, 319, 1772–1773. [CrossRef] [PubMed]
30. Hao, M.C.; Dayal, U.; Sharma, R.K.; Keim, D.A.; Janetzko, H. Variable binned scatter plots. Inform. Vis. 2010,

9, 194–203. [CrossRef]
31. Mayorga, A.; Gleicher, M. Splatterplots: Overcoming Overdraw in Scatter Plots. IEEE Trans. Vis.

Comput. Graph. 2013, 19, 1526–1538. [CrossRef] [PubMed]
32. Nievergelt, J.; Widmayer, P. Spatial data structures: Concepts and design choices. In Algorithmic Foundations

of Geographic Information Systems; van Kreveld, M., Nievergelt, J., Roos, T., Widmayer, P., Eds.; Springer:
Berlin/Heidelberg, Germany, 1997; pp. 153–197.

33. Yoo, J.; Bow, M. Mining spatial colocation patterns: A different framework. Data Min. Knowl. Discov. 2012,
24, 159–194. [CrossRef]

34. Gross, M.; Pfister, H. Point-Based Graphics; Morgan Kaufmann Publishers Inc.: San Mateo, CA, USA, 2007;
p. 248.

35. Carr, D.B.; Littlefield, R.J.; Nicholson, W.L.; Littlefield, J.S. Scatterplot Matrix Techniques for Large N. J. Am.
Stat. Assoc. 1987, 82, 424–436. [CrossRef]

36. Imhof, E. Cartographic Relief Presentation; ESRI Press: Redlands, CA, USA, 2007; p. 111.
37. Bowman, A.; Foster, P. Density based exploration of bivariate data. Stat. Comput. 1993, 3, 171–177. [CrossRef]
38. Lampe, O.D.; Hauser, H. Interactive visualization of streaming data with Kernel Density Estimation.

In Proceedings of the 2011 IEEE Pacific Visualization Symposium (PacificVis), Hong Kong, China,
1–4 March 2011.

39. George, G.R. New Methods of Mathematical Modeling of Human Behavior in the Manual Tracking Task.
Ph.D. Thesis, University of New York, Binghamton, NY, USA, 2008; p. 190.

40. Krapf, L.C.; Heuwinkel, H.; Schmidhalter, U.; Gronauer, A. The potential for online monitoring of short-term
process dynamics in anaerobic digestion using near-infrared spectroscopy. Biomass Bioenergy 2013, 48,
224–230. [CrossRef]

41. Huang, Z. Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values.
Data Min. Knowl. Discov. 1998, 2, 283–304. [CrossRef]

42. Angiulli, F.; Fassetti, F. Exploiting domain knowledge to detect outliers. Data Min. Knowl. Discov. 2014, 28,
519–568. [CrossRef]

43. Akoglu, L.; Tong, H.; Koutra, D. Graph based anomaly detection and description: A survey. Data Min.
Knowl. Discov. 2015, 29. [CrossRef]

44. Salomon, D. The Computer Graphics Manual; Springer: Berlin/Heidelberg, Germany, 2011; p. 967.
45. Van Verth, J.M.; Bishop, L.M. Essential Mathematics for Games and Interactive Applications: A Programmer’s

Guide, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; p. 264.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

81

http://dx.doi.org/10.1198/tas.2009.0033
http://dx.doi.org/10.1126/science.1151888
http://www.ncbi.nlm.nih.gov/pubmed/18369130
http://dx.doi.org/10.1057/ivs.2010.4
http://dx.doi.org/10.1109/TVCG.2013.65
http://www.ncbi.nlm.nih.gov/pubmed/23846097
http://dx.doi.org/10.1007/s10618-011-0223-0
http://dx.doi.org/10.2307/2289444
http://dx.doi.org/10.1007/BF00141773
http://dx.doi.org/10.1016/j.biombioe.2012.10.027
http://dx.doi.org/10.1023/A:1009769707641
http://dx.doi.org/10.1007/s10618-013-0310-5
http://dx.doi.org/10.1007/s10618-014-0365-y
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.


applied  
sciences

Article

Multi-Variable, Multi-Layer Graphical Knowledge
Unit for Storing and Representing Density Clusters
of Multi-Dimensional Big Data

K. K. L. B. Adikaram 1,2,3,*, Mohamed A. Hussein 1,†, Mathias Effenberger 2,† and Thomas Becker 4,†

1 Group Bio-Process Analysis Technology, Technische Universität München, Weihenstephaner Steig 20,
Freising 85354, Germany; hussein@wzw.tum.de

2 Bavarian State Research Center for Agriculture, Institute for Agricultural Engineering and Animal
Husbandry, Vöttinger Straße 36, Freising 85354, Germany; mathias.effenberger@lfl.bayern.de

3 Computer Unit, Faculty of Agriculture, University of Ruhuna, Mapalana, Kamburupitiy 81100, Sri Lanka
4 Lehrstuhl für Brau- und Getränketechnologie, Technische Universität München, Weihenstephaner Steig 20,

Freising 85354, Germany; tb@bgt.wzw.tum.de
* Correspondence: lasantha@daad-alumni.de; Tel.: +94-412292200
† These authors contributed equally to this work.

Academic Editor: Antonio Fernández-Caballero
Received: 25 October 2015; Accepted: 15 March 2016; Published: 5 April 2016

Abstract: A multi-variable visualization technique on a 2D bitmap for big data is introduced. If A and
B are two data points that are represented using two similar shapes with m pixels, where each shape
is colored with RGB color of (0, 0, k), when A X B ‰ F, adding the color of A X B gives higher color as
(0, 0, 2k) and the highlight as a high density cluster, where RGB stands for Red, Green, Blue and k is
the blue color. This is the hypothesis behind the single variable graphical knowledge unit (GKU),
which uses the entire bit range of a pixel for a single variable. Instead, the available bit range of a
pixel is split, and a pixel can be used for representing multiple variables (multi-variables). However,
this will limit the bit block for single variables and limit the amount of overlapping. Using the same
size k (>1) bitmaps (multi-layers) will increase the number of bits per variable (BPV), where each (x, y)
of an individual layer represents the same data point. Then, one pixel in a four-layer GKU is capable
of showing more than four billion overlapping ones when BPV = 8 bits (2(BPV ˆ number of layers)) Then,
the 32-bit pixel format allows the representation of a maximum of up to four dependent variables
against one independent variable. Then, a four-layer GKU of w width and h height has the capacity
of representing a maximum of (2(BPV ˆ number of layers)) ˆ m ˆ w ˆ h overlapping occurrences.

Keywords: knowledge representation; continuous learning; cluster identification; big data

1. Introduction

Multi-variable analysis and graphical representation of data are two demanding factors in the
field of data analysis. Multi-variable analysis is a method for depicting the correlation between
variables, while graphical representation of data is a very efficient tool for abstracting information in a
multi-variable dataset. In addition, graphical representation usually conveys the intended information
more easily than text or numerical values [1]. However, when the numbers of available data are high,
it is difficult to represent all of the data points of a scattered dataset as a plot due to the high number of
overlapping data points, also called occlusion or over-plotting. This is one of the main issues in the
field of data visualization, which leads to the loss of data in projection [2]. On the other hand, when
the numbers of variables are high, special techniques are required to represent multi-dimensions on a
two-dimensional or three-dimensional space. The biggest challenge is to visualize multi-dimensional
big data.

Appl. Sci. 2016, 6, 96; doi:10.3390/app6040096 www.mdpi.com/journal/applsci

82

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
http://www.mdpi.com/journal/applsci


Appl. Sci. 2016, 6, 96 2 of 15

Density cluster identification is a technique that is used in the field of knowledge discovery in
databases (KDD) [3–6]. Furthermore, density cluster identification is a tool that is used to identify the
correlation between variables. In cluster visualization, first, relevant density clusters were identified
by means of a suitable algorithm, and then, those identified clusters were visualized by means of a
suitable data visualization technique. Therefore, data visualization is usually a representation method,
but not a cluster identification method [7]. The real cluster identification is done by algorithms.
Of course, good visualization techniques allow viewers to identify clusters easily. However, this does
not imply that these data visualizations are made for identifying clusters. As in multi-dimensional
data analysis, cluster visualization also suffers when the numbers of data points are high, especially
due to overlapping.

The term “big data” refers to datasets for which the size is beyond the capabilities of current
database technology [6,8,9]. According to Karimi, big data is a “collection of databases so large or
complex that it becomes difficult to process using regular database management tools or traditional
data processing applications” [10]. In this work, big datasets are addressed from the perspectives of
processing and representation. In data visualization techniques, it is hard to identify a specific method
that is capable of visualizing big data [6]. The major and most practical reason for this is that there
is no adequate space in a plot to visualize all of the data points. In the domain of a scattered dataset,
overlapping data are another barrier for visualizing big data. On the other hand, according to the
definition, big data are data requiring extreme methodologies for processing, as well as storage [11].

2. Related Work

Scatterplot matrices [12], parallel coordinates [13], Andrews’ curves [14,15], Radviz [16] and star
coordinates [17] are the most popular techniques used for visualization of multi-dimensional data.
Except for star coordinates, all of the other mentioned methods display the multi-dimensional data
on a lower-dimensional space in a way that additional effort is needed for understanding the original
number of dimensions [17]. In contrast, star coordinates directly visualize dimensions as groups in
the form of high density clusters in a two-dimensional plot [17]. Overlapping and a higher number of
scatter plots in a scatterplot matrix convey poor visualization [18]. Parallel coordinates are not suitable
for visualizing a higher number of records [2]. When there are higher numbers of overlapping points,
Radviz does not provide the expected output [2,17]. Andrews’ curves do not support visualizing clusters
of multidimensional space even though they support a large number of data points [2] and require
higher computational time for generating curves [19]. The star coordinates suffer from overlapping of
clusters of variables [17,20]. These facts imply that all of the above-mentioned techniques are facing
the lack of capabilities for visualizing multi-dimensional big data, in most cases due to overlapping
data points.

In reality, it is normal to observe missing data [21,22] and out of range data or outliers [23,24]
in most data acquisition systems. It is not always necessary to impute missing and out of range
data. However, it is good to visualize the amount of missing and out of range data, to understand
the magnitude and the nature of the distribution of such data. In the domain of big data, it is very
important to know the quantity and the nature of such data for better comprehension of the quality of
the data. When dealing with big data, missing and out of range data identification requires considerable
computational effort. Nevertheless, in all of the mentioned methods, there is no standard mechanism
included for showing missing and out of range data.

3. Concept of the Graphical Knowledge Unit

In 2015, a new way of representing density clusters was introduced for one dependent and
one independent variable using a bitmap. The method was named the “graphical knowledge unit”
(GKU) [25]. Overlapping data points are the main features that are used for creating a GKU. A higher
number of overlapping ones makes a GKU more meaningful and understandable. From its origin, a
GKU does not suffer from overlapping data failures. Mainly, a GKU visualizes data in the form of
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density clusters. Mostly, it is possible to identify high density visually and by means of an algorithm,
depending on the color density. In addition, a GKU provides a mechanism for visualizing the
amount and nature of the distribution of both missing and out of range data points along with the
density clusters. Thus, the GKU is sought as a reliable approach for big data visualization, especially
overlapping types.

Nevertheless, the GKU is not a solution for visualizing multi-variable environments. An extended
usage of the GKU for representing multi-variables using the same concept of the overlapping of
data points is investigated in this work. As in the GKU, the success of multi-variable multi-layer
(MVML)-GKU depends on having high data density for clustering purposes. Figure 1a shows a GKU
used for representing 35,864 data points, and Figure 1b, c show the 3D representation and heat map
representation of the GKU. Usually, for plotting 3D maps or heat maps, it is necessary to process the
data for creating the required matrix. In contrast, while using a GKU, it is not necessary to create such
a matrix and when adding data points. A GKU gradually forms the density areas by incrementing the
color intensity in overlapped regions.
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in a heat map.

In the proposed method, the concept of the GKU is used to represent a multi-variable big data
environment in 2D space. Furthermore, the proposed method generates density clusters of all variables
on the same bitmap, which can be identified by the naked eye. Most importantly, the proposed method
does not suffer from overlapping data points and requires more overlapping for better visualization
of density clusters. Thus, the proposed method is a robust density cluster representation and data
visualization technique for multi-variable big data. Due to the very flexible nature of the proposed
method, it will help to represent big data captured from dynamic bioprocesses.
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4. Methodology

A GKU with a 24-bit bitmap, the RGB pixel format, is used for representing data points.
Furthermore, it is possible to use a 32-bit bitmap with the alpha-RGB (ARGB) pixel format for
representing the GKU. In both situations, a maximum of 24 bits or 32 bits can be allocated for
representing a single variable against another variable.

Instead of allocating the whole bit range of a pixel to a single variable, it is possible to divide
the bits among several variables. Figure 2 shows an example of the equal allocation of bits of a
32-bit bitmap with the ARGB pixel format for four variables. Furthermore, unequal allocation is
possible depending on the requirements. Here, the equal allocation of bits for the variables was mainly
considered. Figure 2 elaborates on the allocation of alpha, red, green and blue portions for representing
four variables, where eight bits per variable (BPV) are used. However, when the numbers of variables
are high, BPV is low.
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pixel, respectively.

When the BPV is low, it leads to fewer numbers of overlapping data points. If BPV = 8 bits,
it supports the representation of the maximum of 256 overlaps and will not allow the representation
of a higher number of data points. This will discourage the usage of multiple variables in the GKU.
As a solution, a multi-layer bitmap GKU is proposed, which consists of several equal-sized bitmaps
(Figure 3). In the GKU, when one block is full (e.g., blue), it is possible to use the adjacent block
(green) to represent overlapping [25]. In contrast, in a multi-layer GKU, when an allocated block is
full, it uses the relevant pixel block of another bitmap of the same size (Figure 3), which is named a
layer. If the number of layers is L and the number of bits allocated for a variable is k, this technique
provides k ˆ L bits for one variable. In the GKU, the whole bit range of a pixel is allocated for one
variable, which can be considered as a horizontal array. In contrast, in the MVML-GKU concept,
a single variable is a vertical array with k ˆ L bits (Figure 3). Depending on the requirement, it is
possible to decide the number of layers in the MVML-GKU.
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Figure 3. Four variables (V1, V2, V3 and V4) are represented using multiple bitmaps of a 32-bit RGB
pixel format for forming a multi-variable multi-layer graphical knowledge unit (MVML-GKU). Each
pixel is divided into four equal portions, where each portion consists of eight bits. When the 32-bit
RGB pixel format is divided into four equal parts, each variable represents the alpha, red, green and
blue sections of the pixel. This provides a vertical array of k ˆ L bits for one variable.
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Furthermore, each layer is numbered starting from 0, and the “place-value” is assigned for each
layer according to the layer number. This assigns the same “place-value” for each bit in the relevant
layer. The base of the “place-value” is in relation to the number of assigned bits for one variable, as
shown in Equation (1).

PV l “ p2pq´p`1q ´ 1q
l

(1)

where PVl is the positional value of a bit in the layer l, p is the index of the starting bit of the bit block
and q is the index of the ending bit of the bit block; thus, p = 0, 1, 2, . . . and q = 0, 1, 2, . . .

If the cpi,jq|l
rp,qs|l represents the color value of the variable, it corresponds to bit block [p, q] of the pixel

(i, j) of the layer l (Figure 4). Therefore:

cpi,jq|l
rp,qs|l “

p
ÿ

k“q

bpi,jq|lk ˆ 2q´k (2)

where bpi,jq|lk is the bit value (0 or 1) of the bit k of the bit block of a variable of pixel (i, j) of the layer l.
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If the total color value in relation to a certain variable corresponding to the bit block [p, q] is

Cpi,jq
rp,qs, then:

Cpi,jq
rp,qs “

L´1
ÿ

l“0

cpi,jq|l
rp,qs|l ˆ PV l (3)

Substituting from Equation (1):

Cpi,jq
rp,qs “

L´1
ÿ

l“0

cpi,jq|l
rp,qs|l ˆ p2

pq´p`1q ´ 1q
l

(4)

We reserved the last number of the bit block for representing the initial color of the bitmap.
Therefore, we used (2(q´p+1) ´ 1)l instead of using (2(q´p+1))l as the place-value of a certain layer.
For example, in the case of equal bit block allocation, if the BPV are eight, we used 255l as the
place-value of the layer l instead of 256l. This will reserve the last value “255” for the initial color of
the bit block. Whenever the whole pixel is considered, “white” is the initial color of the pixel and
the bitmap.

In the concept of the GKU, one data point is represented by a shape that consists of more than
one pixel (e.g., a circle) [25] as a data point shape (DPS). While adding a data point, the existing color
value of all of the pixels that are overlapped by the new data point need to be updated by adding the
color of the newly-added data point. In a multi-variable environment, separate data points are used
for each variable. It is possible to use different DPSs for different variables. However, in this paper, the
usage of the same DPS (e.g., circle) for all of the variables is discussed. In every new data addition,
the color increment of the intersected area needs to be updated with a previously decided value and
named the “color increment” (CI) [25]. When there is more than one variable, it is possible to use the
same or different CI values for variables. In all of the DPSs, the bit block that is assigned for a certain
variable is set to its initial color value while keeping all of the bits that do not belong to the considered
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bit block at value 1. For example, consider the situation of representing data points of four variables
(V1, V2, V3 and V4) on the MVML-GKU by means of circles (radius = r > 0), which has a 32-bit RGB
pixel format. Then, in the equal bit allocation, each variable is assigned eight bits as alpha, red, green
and blue, respectively. Four separate circles are used to represent V1, V2, V3 and V4 and are colored
using different “shape colors” (SC) as (CI, 255, 255, 255), (255, CI, 255, 255), (255, 255, CI, 255) and
(255, 255, 255, CI), respectively. Furthermore, using (CI, 0, 0, 0), (0, CI, 0, 0), (0, 0, CI, 0) and (0, 0, 0, CI)
is another possible way of implementing the four different variables. If bit block [p, q] represents the

CI of variable P, then P can be represented as Prp,qs. Then, Ppi,jq
rp,qs represents the pixel color of pixel

`

i, j
˘

of the DPS, where
`

i, j
˘

is the pixel of the DPS, which coincides with the pixel (i, j) of the MVML-GKU.

When updating the MVML-GKU, first, the Cpi,jq
rp,qs is calculated using Equation (4), and then, Ppi,jq

rp,qs is
added. Therefore:

Cpi,jq
rp,qs “ Cpi,jq

rp,qs ` Ppi,jq
rp,qs (5)

Finally, the value Cpi,jq
rp,qs is used to update the layers of the MVML-GKU using Equation (6).

cpi,jq|l
rp,qs|l “ QUOTIENT

˜

Cpi,jq
rp,qs ´

L´1
ÿ

m“l`1

cpi,jq|m
rp,qs|m, p2pq´p`1q ´ 1q

l
¸

(6)

where
řL´1

m“l`1 cpi,jq|m
rp,qs|m = 0 when m > L

When using Equation (6), it updates the MVML-GKU starting from the last layer and ends with
the first layer (layer 0). However, depending on the requirements, it is also possible to update the
MVML-GKU starting from Layer 0 with different approaches.

Variables with different scales or different value ranges require a larger bitmap for representing
the actual value ranges of the variable values. This is not peaceable, and it is necessary to transform all
of the values of different variables to one scale. To accomplish the transformation, a normalization
technique known as “min-max normalization” is used. Min-max normalization performs a linear
transformation on the original data mapped into a new range using Equation (7) [26,27].

v1 “ ppv´minAq{ pmaxA ´minAqq ˆ pnew_maxA ´ new_minAq ` new_minA (7)

where v’ is the transformed value of v, minA is the minima among all of the data points, maxA is the
maxima among all of the data points, new_maxA is the ceiling value of the new range and new_minA is
the floor value of the new range.

If the pixel at coordinates (0, 0) of a bitmap is the origin, then new_minA = 0. Then,
Equation (7) becomes:

v1 “ ppv´minAq{ pmaxA ´minAqq ˆ new_maxA (8)

The width of the bitmap is used for representing the independent variable, while the height of
the bitmap is used for representing multiple dependent variables. Thus, the width of the bitmap is
proportional to the range of independent variables, and the height is proportional to the maximum
range among the ranges of all dependent variables. If the height and the width of the bitmap is h and
w, respectively, then:

h “ RmaxD ˆ FmaxD (9)

w “ RI ˆ FI (10)

where RmaxD is the maximum range among the ranges of all dependent variables, RI is the range of the
independent variable, FmaxD is the scaling factor of the dependent variable that has the maximum range
among all ranges of all dependent variables and FI is the scaling factor of the independent variable.
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In the concept of the GKU, it always uses the integer part of a number for mapping on the GKU.
Because of that, it is a must to scale up data that have a small range and decimal values to minimize the
influence due to truncation. Selecting appropriate values for new_maxA for Equation (8) will establish
the new set of transformed data. The method of selecting a suitable value for new_maxA is mentioned
in the next paragraph. Furthermore, min-max normalization transforms the data series into a positive
series, which is another requirement of the GKU. These transformation data are saved in the “GKU
specific data area” as a color [25].

With multiple variables, there are two possible ways of scaling. The first method is to scale all of
the parameters using a single scaling factor (F). This will change all of the values of the variables while
keeping the original ratio between variable values. The name “absolute scaling” will refer to such a
scaling technique, from now onwards. In “absolute scaling”, new_maxA for all dependent variables
is not the same, but FiD is the same for all dependent variables, where FiD is the scaling factor of i-th
dependent variable. The scaling factor of the variable with the height range can be considered as the
common scaling factor for all of the dependent variables. Define RiD as the range of the i-th dependent
variable, and new_maxAi is the new maximum of the i-th dependent variable. Then,

FiD “ FmaxD (11)

From Equation (9):
FiD “ h{RmaxD (12)

new_maxAi “ RiD ˆ FiD (13)

The second method is to scale all of the variables in a manner such that the maximum and
minimum of all of the variables coincide with each other. The name “relative scaling” will refer to such
scaling techniques, from now onwards. In “relative scaling”, new_maxA for all dependent variables is
the same, but FiD is not the same for all dependent variables. “h”, which is the previously decided
height of the image, can be considered as the common value for new_maxAi. Thus, for “relative scaling”:

new_maxAi “ h (14)

Depending on the scaling method, a compatible new_maxA can be calculated using either
Equation (13) or Equation (14).

To have a visually meaningful GKU, it is necessary to have a higher number of overlapping
clusters. If there are adequate numbers of overlapping clusters, the GKU shows different density areas
separated by automatically-generated “contour lines”. If the number of data points is smaller, it is
still possible to have more overlapping using two techniques: (1) use a bigger shape as the DPS and
(2) use a higher number as the CI in SC. Using either technique, it is possible to generate higher color
values in pixels and to create visible clusters. However, these techniques are important only for better
visualization of the clusters. The absence of visual clusters has no effect on understanding the content
of the GKU.

5. Datasets

Two online datasets are used, which are recorded from NIR spectroscopy at a biogas plant.
The first dataset is recorded over a period of nearly 25 days with a frequency of 115 values per day,
giving a total of 2885 data points. The second dataset is recorded over a period of 75 days with a
frequency of 20 values per hour, giving a total of 21,591 data points. In both datasets, the concentration
of volatile solids (VS) was selected as the independent variable, and the concentrations of total volatile
fatty acids (TVFA), acetic acid (AA) and propionic acid (PA) were selected as the dependent variables.
The selected data were part of a dataset that was used to develop a near-infrared (NIR) spectroscopy
online calibration for monitoring volatile solids (VS) and volatile fatty acids (VFA) as process indicators
during anaerobic digestion [28].
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We omitted the alpha portion of the pixel, because it is not visible. Therefore, we used three
dependent variables against the independent variable. A circle of a radius of 10 pixels is selected as the
DPS for three dependent variables. Three different colors were used as the CI for DPSs. All algorithms
in relation to the MVML-GKU were programmed and implemented in the validation process.

6. Results and Discussion

The results included in this section represent different forms of the MLMV-GKU representations,
which were obtained using different techniques. Furthermore, this section deliberates the methods
and interpretation of the MLMV-GKUs. Figure 5 shows a conventional scatter plot, which presents the
2885 occurrences of three dependent variables (TVFA, AA and PA) against the independent variable
(VS). Effective value ranges of TVFA, AA and PA are [0, 8], [0, 5] and [0, 5], respectively. The plot
itself does not convey strong evidence on data clustering or data density. On the other hand, due to
overlapping, it is difficult to identify some of the data points that may lie under other data points.
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Figure 5. A conventional scatter plot for representing the data of three dependent variables (concentrations
of total volatile fatty acids (TVFA), acetic acid (AA) and propionic acid (PA)) against the concentration
of volatile solids. Each dependent variable consists of 2885 data points. The ranges of TVFA, AA and
PA are [0, 8], [0, 5], and [0, 5], respectively. Due to over-plotting, the large number of data points and
the multi-variable environment, this plot itself does not provide direct useful information about data
clusters. This is the major drawback of using a scatter plot for representing multi-variable big data.

Plots in Figure 6 show the plotting of the same dataset shown in Figure 7, on the MLMV-GKU of
two layers using “relative scaling”. The MLMV-GKU was implemented using a circle with a ten-pixel
radius DPS and CI = 20. Three different RGB colors, (255, 255, 20), (255, 20, 255) and (20, 255, 255), were
used for representing TVFA, AA and PA, respectively. The effective width and height of the bitmap
is 400 and 400 pixels, respectively. Since “relative scaling” is used for scaling the values of variables,
according to the Equation (14), new_maxA for each dependent variable is 400 pixels. Based on this, all
existing ranges of all of the variables ([0, 8], [0, 5] and [0, 5]) were transformed. In Layer 0 of Figure 6,
the formation of clusters that belong to different variables can be identified with the naked eye. This is
one advantage of using the concept of the GKU, because it creates visibly dense clusters when there is
an adequate amount of overlapping.
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Figure 6. The MLMV-GKU of two layers. (a) Layer 0 of the MLMV-GKU; (b) Layer 1 of the MLMV-GKU.
The effective bitmap width and height are 400 and 400 pixels for representing the data of three
dependent variables (concentrations of total volatile fatty acids (TVFA), acetic acid (AA) and propionic
acid (PA)) against the concentration of volatile solids where each dependent variable consists of
2885 data points. All of the data are normalized using the max-min normalization method and used
400, 250 and 250 pixels as new_maxA for TVFA, AA and PA, respectively (relative scaling). The initial
color of each variable is (255, 255, 20), (255, 20, 255) and (20, 255, 255). A circle of a radius of 10 pixels
is used as the data point shape (DPS). The MLMV-GKU shows density clusters of both high and low
density areas of each variable by means of automatically-generated contour lines, which can be easily
identified by the naked eye.
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Figure 7. The MLMV-GKU of two layers. (a) Layer 0 of the MLMV-GKU; (b) Layer 1 of the MLMV-GKU.
The effective bitmap width and height are 400 and 400 pixels for representing the data of three
dependent variables (concentrations of total volatile fatty acids (TVFA), acetic acid (AA) and propionic
acid (PA)) against the concentration of volatile solids where each dependent variable consists of
2885 data points. All of the data are normalized using the max-min normalization method using
400 pixels as new_maxA for all dependent variables (absolute scaling). The initial color of each variable
is (255, 255, 20), (255, 20, 255) and (20, 255, 255). A circle of a radius of 10 pixels is used as the
data point shape (DPS). The MLMV-GKU shows the density clusters of each variable by means of
automatically-generated contour lines, which can be easily identified by the naked eye.
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Furthermore, Figure 6 shows a considerable amount of clusters between different variables.
If there are clusters due to two or more variables, the color in the shared area is mixed and shows the
clusters with a different color. With the basic knowledge of color formation theory, it is possible to
identify those areas easily with the naked eye. Additionally, with image processing, it is also possible
to identify these areas by analyzing the color values of pixels. When “Layer 1” is considered, there
are no contour lines due to less overlapping. However, in Layer 1, clusters due to different variables
can be easily identified due to the different color of the shared regions (e.g., the shared area of TVFA
and AA). Furthermore, it is possible to distinguish clusters belonging to different variables. Since the
place value of Layer 1 is higher than the place value of Layer 0, the presence of color in a higher layer
implies the existence of higher density in the position in relation to the respective pixel. Therefore, the
examination of higher layers makes higher density area identification much simpler.

Changing parameter values opens new ways of identifying new relations between different
variables [27]. This technique is used as a very efficient tool in most data mining techniques.
The MLMV-GKU also supports this feature and easily seeks relations by changing the overlapping
between different variables. Figure 6 shows layers of the MLMV-GKU of the same dataset (scaled
with the relative scaling technique), which is used in Figure 7, and scaled using “absolute scaling”.
The highest range among all of the dependent variables belongs to TVFA. Since RmaxD = 8, according
to Equation (12), FiD = 50 for TVFA, AA and PA. Then, according to Equation (13), new_maxA for TVFA,
AA and PA is 400, 250 and 250, respectively.

Both layers in Figures 6 and 7 show overlapping areas of different variables. However, due to
different scaling methods, the overlapping areas belong to different variables in Figures 6 and 7 which
are not identical. This is a very useful feature when the GKU is used as a knowledge unit. When there
is overlapping between variables, it is easy to identify color values of multiple parameters by analyzing
a single pixel. This will reduce the overhead of computing. However, to interpret the meaning of a
shared area due to one or more variables, sealing factors must be decided after properly investigating
the domain requirements. Otherwise, only creating overlap areas between variables may not provide
useful information.

Selecting different color schemes for representing the shape color of DPSs has considerable impact
on the visual representation ability of GKU. In general, there are two available color schemes for
representing three dependent variables using the 24-bit RGB pixel format as (255, 255, CI), (255, CI, 255),
(CI, 255, 255) and (0, 0, CI), (0, CI, 0), (CI, 0, 0). Each color in the first version is near to the white color,
which is represented as (255, 255, 255), and each color in the second version is near to the black color,
which is represented as (0, 0, 0).

Figure 8 elaborates the impact of using the color scheme for the color of DPSs. Figure 8 contains
the same data used in Figure 6 with the same scaling parameters. However, (0, 0, 20), (0, 20, 0) and
(20, 0, 0) were used as colors of DPSs instead of (255, 255, 20), (255, 20, 255) and (20, 255, 255). The colors
(255, 255, 20), (255, 20, 255) and (20, 255, 255) are not identical and are visually identifiable. Though
colors (0, 0, 20), (0, 20, 0) and (20, 0, 0) are numerically identical, they are not visually identifiable
because all of these colors are equivalent to the black color. The major drawback of this scheme is that
the shape colors of DPSs cannot be visually identifiable, though they are different colors. This leads to
difficulties in identifying clusters visually, especially in low density areas. When examining Layer 1 of
Figure 8, this phenomenon is more visible. In Layer 1, neither clusters between different variables nor
density clusters of individual variables are possible to identify. Furthermore, in Layer 0 of Figure 8,
except high density areas, all of the other areas are in black or nearly black color, and this prevents
visual identification of low density areas in relation to different variables. This phenomenon can
be easily identified when considering the points PA and PB, as shown in Figure 8. It is not possible
to distinguish between PA and PB visually due to the colors of the DPSs. However, Figure 6, these
two points can be easily identified. Nevertheless, in reality, all black areas contain different colors
(e.g., (0, 0, 40), (0, 40, 0) and (40, 0, 0)), which is visible only to an algorithm. Thus, selection of this
type of color is not a problem for identifying clusters in low density areas with a computer. As a
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recommendation, it is stated that the different colors close to white are the best selection for the
MLMV-GKU for visually capturing clusters between different variables, as well as density clusters of
individual variables.
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Figure 8. The MLMV-GKU representation of the same data shown in Figure 6 with a different color
scheme. (a) Layer 0 of the MLMV-GKU; (b) Layer 1 of the MLMV-GKU. As in Figure 6, the effective
bitmap width and height are 400 and 400 pixels for representing the data of three dependent variables
(concentrations of total volatile fatty acids (TVFA), acetic acid (AA) and propionic acid (PA)) against
the concentration of volatile solids where each dependent variable consists of 2885 data points. All of
the data are normalized using the max-min normalization method and used 400, 250 and 250 pixels as
new_maxA for TVFA, AA and PA, respectively. The initial color of each variable is (0, 0, 20), (0, 20, 0)
and (20, 0, 0). A circle of a radius of 10 pixels is used as the DPS. The MLMV-GKU shows visual density
clusters only in high overlapping areas. When there is low overlapping, it is not possible to distinguish
points in relation to variables, such as PA, PB and Layer 0.

Plot (a) of Figure 9 shows the compression of the conventional scattered plot for one independent
and three dependent variables and plot (b) of Figure 9 the MLMV-GKU of two layers for the same
variables. The plots represent 21,951 data points, where the effective bitmap width and height are
400 and 625 pixels, respectively. Plots represent data in relation to three dependent variables (TVFA,
AA and PA) against the concentration of volatile solids (VS). All of the data are normalized using the
max-min normalization method and used 625, 550 and 225 pixels as new_maxA for TVFA, AA and
PA, respectively. In the MLMV-GKU, the initial color of each variable is (255, 255, 10), (255, 10, 255)
and (10, 255, 255). A circle of a radius of 10 pixels is used as the DPS. The MLMV-GKU shows
density clusters of each variable by means of automatically-generated contour lines, which can be
easily identified by the naked eye. This is a special feature of the GKU, which is not possible with a
scatter plot.

As mentioned in Section 1, star coordinates directly visualize dimensions as groups in a form
of high density clusters in a two-dimensional plot. It is one of the better visualization techniques.
However, star coordinates suffer from cluster overlapping of clusters of variables [17,20]. This is the
major drawback of the star coordinates. If there are no overlapping regions, star coordinates can be
used to visualize high density data clusters. However, the data we used have overlapping regions and
cannot be visualized using star coordinates.
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The nature of the MLMV-GKU allows the usage of a higher number of layers for representing
variables. Unfortunately, this will lead to problems in understanding the whole picture. This is a
very common problem in understanding scatterplot matrices [12]. To prevent this problem, it is
recommended to use the maximum of four layers where the visual representation is important. Using
four layers, it is possible to show 255 ˆ 255 ˆ 255 ˆ 255 (more than four billion) overlaps using eight
bits per variable, in the 32-bit pixel format. When using the 32-bit pixel format, basically, it is possible
to show four dependent parameters against one independent parameter. This will provide space for
more than 16 billion cases of overlapping (four billion ˆ four variables) in a certain pixel coordinate
of the four-layer GKU. If the width and height of the data plotting area are w pixels and h pixels,
respectively, then it is possible to visualize the maximum of x ˆ y ˆ 16 billion cases of overlapping
in the four-layer GKU. This is a huge amount of overlapping occurrences, and none of the existing
graphical visualization techniques are capable of visualizing this amount of overlapping. Although it
is recommended to use a maximum of four layers, there is no mathematical restriction to using more
than four layers, depending on the requirement.
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Figure 9. Scatter plot (a) and MLMV-GKU of two layers (b) representation of 21951 data points where
effective bitmap width and height are 400 and 625 pixels. Plots representing the data of three dependent
variables (concentrations of total volatile fatty acids (TVFA), acetic acid (AA) and propionic acid (PA))
against the concentration of volatile solids. All of the data points are normalized using the max-min
normalization method and used 625, 550 and 225 pixels as new_maxA for TVFA, AA and PA, respectively.
In the MLMV-GKU, the initial color of each variable is (255, 255, 10), (255, 10, 255) and (10, 255, 255).
A circle of a radius of 10 pixels is used as the DPS. The MLMV-GKU shows density clusters of both
high and low density areas of each variable by means of automatically-generated contour lines, which
can be easily identified by the naked eye, which is not possible with scatter plots.

The major drawback of MLMV-GKU is the influence of outliers, which leads to artificial high
density areas on the GKU. Once these outliers are mixed with non-outlier values of other variables,
this leads to incorrect decision making. Furthermore, due to the influence of outliers, the actual scaling
cannot be achieved. PA in Figure 8 can be considered as an example for such an outlier. Because of the
influence of this outlier, it was considered as the maximum of the dataset, even though it is an outlier.
Therefore, before plotting the MLMV-GKU, it is essential to remove outliers. The other disadvantage
of the MLMV-GKU is that it cannot be directly used to find the correlation between variables, though
sometimes, it helps to identify some trends between variables. Nevertheless, domain-related correlation
can be defined after considering individual situations. For example, in the considered domain, the
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concentration of TVFA is proportional to the concentration of AA [29]. In Figure 6, clusters in relation
to TVFA and AA have nearly the same shape and reveal the domain conditions more convincingly.

Dividing the 32 bits into small portions will facilitate using more variables in the MLMV-GKU.
For example, if four bits are used per variable, it will provide room for eight dependent parameters to
be clustered in the 32-bit format. Then, it is necessary to increase the number of layers to accommodate
the higher number of data points. As previously mentioned, this is not always a good solution,
especially if the aim is to use the MLMV-GKU for visualization. Therefore, the best solution is to use
pixel formats that provide a higher number of bit ranges. There are different ARGB color formats that
provide up to 128 bits per color channel (total 512 bits) [30,31]. Nevertheless, still, the limit of eight bits
per variable and four layers for the MVML-GKU can be maintained.

The GKU is itself a database and knowledge unit that can be used as the input values for an
algorithm; thus all of these properties are inherited by the MLMV-GKU, as well. The meaning of the
content can be altered by changing three parameters of the DPS: firstly, the type of shape; secondly,
the color of the shape; and thirdly, the position of the data point in the shape. The type of shape that
is used in all of the plots in this article is circular. Furthermore, it is possible to use a suitable shape
(e.g., square, polygon) instead of a circle. Furthermore, using different types of DPSs for different
variables, it is possible to identify/show the effect/influence of a variable on other variables in a more
meaningful manner. When a circle is selected with a single color as the DPS, this implies that the effect
of the data point is equally valid for all of the pixels inside the circle. However, if the color of the circle
is selected in a way that the color is proportional to a certain property (e.g., distance to the data point),
this can be used to represent the functional influence of a data point. In the examples shown in this
article, the data points were located in the center of the circle. By applying those property changes, the
meaning of the MLMV-GKU can be enhanced according to different domain requirements.

If there is a dataset scheduled to be collected for a time period of T, at a time tk (tk < T), all of
the data placed on the MLMV-GKU are processed up to time tk´1. Therefore, at any time, the data in
the MLMV-GKU can be used to understand the current situation with or without further processing.
If further processing is required, a copy of current bitmaps can be used for processing, while the
original MLMV-GKU keeps updating. Because each layer is an independent bitmap, each layer can be
individually analyzed using a separate process without depending on other layers. This feature enables
the MLMV-GKU to be a parallel-processing-ready technique. After analyzing, the final decision can
be obtained by summarizing the results of each layer. This could reduce the total processing time to
below the usual single process analysis time.

7. Conclusions and Outlook

The MLMV-GKU is a technique that facilitates the visualization of multiple variables with a big
amount of data. It does not show each data point individually and shows abstracted information
as density clusters. Furthermore, the MLMV-GKU is a highly enhanced version of the GKU, which
inherited all of the features of the GKU. The MLMV-GKU is an ideal tool for visualizing big data and
fulfils a highly demanding requirement in the field of big data visualization. Using a four-layer GKU,
it is possible to show more than four billion instances of overlapping using eight bits per variable, in
the 32-bit pixel format. This will provide space for more than 16 billion different overlapping situations
in a certain pixel coordinate. Thus, the MLMV-GKU will provide a fast means of decision making,
which will be one of the major factors in process control. None of the existing graphical visualization
techniques is capable of visualizing this amount of overlapping.

As an outlook for further developing the MLMV-GKU for the online environment, the usage of
the 3D bitmap will facilitate the usage of another additional variable, the z-axis, in contrast to the
current concept of the 2D bitmap, which facilitates (1 + n) variables.
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3. Discussion 

 

The Universal Linear Fit Identification (UniLiFI) 

The Universal Linear Fit Identification (UniLiFI) method showed ability of identifying 

all the linear fits (regression is initially unknown) contaminated with all possible 

maximum combinations of the following conditions: 

97

1. Size of data points (range 4 to 1000) 

2. Nature of outliers/noise distribution (Gaussian and non-Gaussian distribution)

I have very promising expectations about the positive impact of the developed 

non-parametric methods for uplifting and opening new doors in the fields of 

knowledge discovery, data mining, feature identification, and data processing. All the

concepts and methods presented in this thesis are totally new to science and have

proven accuracy. Therefore, researchers and scientists could apply those methods

for uplifting the standards of their research findings. 

Combinations of the above mentioned conditions produce heterogeneous data sets.  

Particularly,  identifying  a  linear  fit  in  such  data  sets  requires  a  combination  of 

different methods that is identical to the nature of each data set. However, it may be 

possible  to  locate  nearly  correct  linear  fit  with  a certain  level  of  error,  which  is  

the  maximum.  As  afore-mentioned,  this  is  the  one  major  disadvantage  of 

parametric methods.  In  contrast,  UniLiFI  was  able  to  identify  all  the  linear  fits  in 

different  forms  (with  positive  gradient,  with  negative  gradient  and  constant)  in  all 

heterogeneous datasets without swapping or masking. 

 

3. Amount of outliers/noise (50% - 55%) 

4. Range of deviation of outliers / noise (±104 % to ±10-4%) 

5. Existence of initial missing data 

In the real world, certain models can be applied for certain domains, assuming that 

the  domain  conditions  remain  unchanged.  When  domain  conditions  change,  the 

model may not give a correct output. The strength of the UniLiFI method is 

that  it  is  capable  of  identifying  all  the  linear  fits  in  all  the  data  sets  with  0% error, 

without  depending on the domain conditions.  It  is  a  very hard task to  locate  all  (or 

almost all)  data  points  that  agree  with the linear fit when the number of outliers  is
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around 50% and deviation is in the range of ±104 to ±10-4. Therefore, there are very

promising expectations towards the possible positive gain to science from the new 

method “UniLiFI”. 

One of the main disadvantages of the linear least squares method is that it is 

not  capable of  identifying linear regression when the number of  data points is  high 

[76]. In contrast, our results showed that the accuracy of Linear Fit Identification 

method  UniLiFI  is  independent  of  the  number  of  data  points.  UniLiFI  method 

showed the same level of accuracy for locating existing linear fit by identifying linear

fit from data sets with 4 to 1000 data.  

The UniLiFI  method introduced in  this  work is  not  only a  linear  fit  identification 

method.  The  UniLiFI  method  can  also  be  used  as  outlier/noise  detection 

method in  linear  regression.  Not  only  detecting  outliers  and  noise,  but  also  the 

method  is  capable  of  grouping  those  outliers/noise  into  several  subgroups 

according to the k  value.  However, it is  possible  to  increase  the  number  of  

outlier/noise  groups  by  defining  several  k values.  For  single  k  value  there  are  

amaximum  of  up  to  three  groups  as  linear  fit (cleandata)  and  two  outlier  (and/or  

noise)  groups;  one  above  the  clean  data  and  other  below  the  clean  data.  For  

two  k  values,  there  are  maximum  of  up  to  five  groups  as linear  fit  and  four  

outlier  (and / or  noise)  groups  as  two  above  and  two  below  the linear  fit.  Thus,  if  

there  is  p  number  of  k  values,  maximum  of  up  to  2p  outlier  (and /or  noise)

groups  can be achieved  (Figure  3.1).  Furthermore,  borders of  regions are  nearly 

parallel (Figure 3.1).  
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Figure 3.1: If there are p numbers of k values, a maximum of up to 2p outliers (and/ 

or noise) groups can be achieved. Setting two k values gives four regions of outlier/ 

noise regions (Regions 1 to 4). Also, borders of regions are nearly parallel. 

 

The plot in Figure 3.2 shows a data set of original size 1000 data points, which

initially agrees with a linear fit. Data of two regions containing 150 and 100 (total 250)

data points were removed for creating initial missing data environment. Out of the

rest 750 points, 421 data points (more than 50%) were replaced with data that

deviated ±104% to ±10-4% from the original value. The replaced data do not totally

agree with the Gaussian distribution. Furthermore, there is a nearly linear fit also

existing in the data set. All those conditions made the identification of a correct linear

fit very difficult. The trend linein Figure 3.2 shows the identified linear regression

using GLSM. Determination of the linear fit based on GLSM will remove the majority

of data points belonging to both the near linear fit as well as the exact linear fit.



 

 
 

±104% to ±10-4% from the original value. 

Figure 3.3 shows identification of linear fit for the same data set using UniLiFI 

method. This elaborated the capacity of the UniLiFI method. Firstly, it was capable of 

identifying all the data points that agreed with the linear fit, without swapping or 

masking them. Secondly, it divided the data points that do not agree with the linear fit 

into two groups based on the two k values, k=0 and k=0.15. Identifying data deviated 

by very high percentages is not a challenge. The most interesting factor is that the 

UniLiFI method is capable of identifying even a data point that is deviated by a very 

small percentage such as ±10-4%. 

150 missng data 

points 

100 missng data 

points 

Near linear 
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Liner regression  

(y= -347.97x + 255571) 

Exact linear fit 
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Index 

100

Figure 3.2: Data of two regions containing 150 and 100 (total 250) data points that 

were removed to create an initial missing data environment. Out of the rest 750 

points, 421 data points (more than 50%) were replaced with data that deviated 



 

 
 

Figure 3.3: Firstly, it was capable of identifying all the data points that agreed with 

the linear fit, without swapping or masking them. Secondly, it divided the data points 

that do not agree with linear fit into two groups based on the two k values, k=0 and 

k=0.15. Identifying data deviated by very high percentages is not a challenge. The 

most interesting factor is that the UniLiFI method is capable of identifying even a 

 

When detecting linear fit, UniLiFI identified the best linear fit in the given window. 

Most of the time, the best fit is the dominating linear fit in the given window (Figure 

Linear fit Outliers (k=0.15) Noise (k=0.0) 

Not incorrect detections. 

Noise that have very small 

deviations such as 10
-2

% to 

10
-4

%. 
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UniLiFI method is suitable for time series or any data series and can be considered 

as time series. This feature can be considered as a limitation of UniLiFI. However, 

most of the data captured in the real world are time series.  If not, some situations 

can  be  assumed  or  converted  to  time  series  by  stamping  certain  sequence 

numbers for each data point. The gap between two data points must be equal 

or must be multiples of the minimum gap. Then, by using the UniLiFI method, it is 

possible to find the best existing linear fit. 

data point that is deviated by a very small percentage such as ±10-4%. 



 

 
 

3.4). However, sometimes UniLiFI identifies data from two or more linear segments 

as the linear fit (Figure 3.5). This detection cannot be rejected, because it totally 

agrees with the calculations and is visually justifiable. On the other hand, this can be 

considered as a drawback of UniLiFI. If the method is capable of identifying all the 

possible linear fits in a certain window that would be the best.  
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One possible remedy for overcoming the aforementioned problem is to manage the 

nature of input data window by splitting it into several portions from extrema points 

(Figure 3.6). This will input data window with one potential linear fit and will not 

cause ambiguous situations. Furthermore, this approach can be considered as 

applying UniLiFI for cleaning data in non-linear data. 

Figure 3.4: There are three potential linear fits as 1, 2, and 3. UniLiFI method 

identified the most dominating linear fit in the given window, according to the given 

criteria. Since the dominating linear fit is linear fit 2. UniLiFI identified it as the best fit, 

according to the given values of the k (k=0.05 and k=0.0001).  



 

 
 

When considering the computation time, the original UniLiFI algorithm is not a one-

pass method. For one full circle algorithm, remove only one outlier and again 

perform the same calculation to detect the next outlier in next iteration. Therefore, 

this is not an efficient algorithm. There are several places where possible 

improvements can be done. The original algorithm we introduced and coded, always 

calculates the sum, checks for the new maximum, and checks for the new minimum 

after removing an outlier. Instead of that, it is possible to use results of previous 
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Figure 3.5: There are three potential linear fits as 1, 2, and 3. UniLiFI method 

identified a line that representing data points belong to fits 1, 2, and 3 as the most 

dominating linear fit in the given window, according to the given values of the k 

(k=0.05 and k=0.0). Even though, the dominating linear fit is linear fit 2, UniLiFI 

did not identify it as the best fit. 

Figure 3.6: If it is possible to split a data set in a manner such that each data window 

contains only one potential linear fit, UniLiFI can be used to clean non-linear data. 



 

 
 

iterations in next coming iterations. This will save a lot of computational time, 

especially with large amounts of data.  
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For detecting linear fit in data sets with a large number of data points, numerical

accuracy is a very important factor. The linear fit determination criteria are based on

2/n and k, and when n (number of data points) is high, 2/n becomes very small. Thus,

The major challenge in using UniLiFI is the numerical accuracy of the programming 

language  [77].  Visual  C++  2010  version  was  used  for  coding  the  algorithms. 

Sometimes, calculation errors arise due to numerical accuracy (due to precision 

error), causing wrong identification of termination point of the algorithm execution. 

When working with decimal values, it is necessary to use either float or double type. 

Sometimes, the precision error can be considered as a simple and easily corrected 

error  or  a  scenario  that  can  be  ignored.  However,  it  is  not  a  simple  and  ignorable 

scenario; in fact,  it  is  the most critical  scenario according to our experience. I 

spent huge amounts of time verifying the accuracy of UniLiFI due to precision errors.

Sometimes very simple calculations did not give the expected results due to a 

precision error. Table 3.1, Table 3.2, and Table 3.3 show three very simple 

calculations that elaborate the behaviour of precision errors, when working on Excel 

2010 in Windows 7 platform. Note that the real values are visible after formatting the 

cells to be able to see at least fourteen decimal points. Otherwise, all the values 

appear to be correct due to round off.  In Table 3.1  the sum is influenced by error 

accumulation.  However,  in  other  situations,  sums are not  influenced by the 

precision  errors.  This  unpredictable  nature  causes  problems  for  handing  and 

managing  precision  errors  in  a  global  manner.  Figure  3.7  shows  a  situation  that 

experienced with Visual C++ (Visual Studio 2010) in Windows 7 platform, which was 

affected by precision errors.  

the determination is based on decimal values after the 4th decimal point of data sets

that  have  more  than  10000  data  points  is  not  reliable. Therefore,  if  the  numerical

accuracy is not good enough, most of the time the reliability of UniLiFI will be lower.

Usage of results contaminated with precision errors  for checking termination

conditions in “if”  clauses or loops give wrong termination  points. I faced such

situations when determining the exact terminating  point after identifying linear fit.

Also, sometimes the value of linear correlation coefficient (rxy) is shown incorrect due

to precision error (Table 3.1, Table 3.2, and Table 3.3).



 

 
 

Xi Yi Yi - Y1 Expected Value 

1 101.10000000000000 0.00000000000000 0.00 

2 102.10000000000000 1.00000000000000 1.00 

3 103.01000000000000 1.91000000000001 1.91 

4 104.01000000000000 2.91000000000001 2.91 

5 105.01000000000000 3.91000000000001 3.91 

Xi Yi Yi - Y1 Expected Value 

1 101.00000000000000 0.00000000000000 0.00 

2 102.10000000000000 1.09999999999999 1.10 

3 103.01000000000000 2.01000000000001 2.01 

4 104.01000000000000 3.01000000000001 3.01 

5 105.01000000000000 4.01000000000001 4.01 

Xi Yi Yi - Y1 Expected Value 

1 101.00000000000000 0.00000000000000 0.00 

2 102.10000000000000 1.09999999999999 1.10 

3 103.10000000000000 2.09999999999999 2.10 

4 104.10000000000000 3.09999999999999 3.10 

5 105.10000000000000 4.09999999999999 4.10 

  Sum 10.40000000000000 10.40 
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Table 3.1: Precision error, when calculating with Excel 2010 in Windows 7 platform.

In column Yi - Y1, lines 3, 4, and 5 contain an error of 10-14.  However, finally, this

affects the sum. To see the correct values, it is compulsory to format the cells to be

able to see at least fourteen decimal points.

  Sum 9.73000000000003 9.73 

Table 3.2: Precision error, when calculating with Excel 2010 in Windows 7 platform.

In column Yi - Y1, lines 2, 3, 4, and 5 contain an error of ±10-14.  However, finally, this

does not affect the sum. To see the correct values it is compulsory to format the cells

to be able to see at least fourteen decimal points.

  Sum 10.13000000000000 10.13 

 

Table 3.3: Precision error, when calculating with Excel 2010 in Windows 7 platform.

In column Yi - Y1, lines 2, 3, 4, and 5 contain an error of -10-14.  However, finally, this

does not affect the sum. To see the correct values it is compulsory to format the cells

to be able to see at least fourteen decimal points.



Figure 3.7: Precision error, when programming with Visual C++ (Visual Studio 2010)

in Windows 7 platform. The correct value of variable dm_NewY must be 103.01.

However, the variable contains 103.01000000000001. The value of variable dm_YT

based on dm_NewY and must be 3.01. However, it contains 3.01000000000051.

One solution is to use programming techniques that will help to overcome such

situations. One such technique is to use a range instead of using single values for

conditional checking. However, this will scale down the computation ability of the

algorithm. The best solution is to use a programming platform that gives more

numerical accuracy.

Extrema identification

In the research in relation with extrema, the findings of this work be categorised into

two groups. The first one is the extrema identification and the second one is the

extrema filtering. Both are non-parametric approaches. As a concept, extrema

identification is a good alternative method for conventional derivative based

approach, which is also a non-parametric method. However, according to my

understanding, the most important part is the extrema filtering because all the non-

parametric methods introduced in this work fulfilled the needed requirement in the

field of data analysing.

The three non-parametric methods introduced in this work for filtering non-dominating

extrema, sharp and gradual (flat) extrema, and low and high extrema were named as

MMS-Window based filter (MMS-WBF), MMS-SG filter, and MMS-LH filter,

respectively. Results showed that applying only one method for extrema filtering may

not provide the expected outcome. The reason for that is some extrema have a

combination of features (multiple feature extremum) (Figure 3.8).
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Figure 3.8: Data in plots (a) were first checked for extrema with a window of size 

For example, an extremum withvery small prominence can be either a sharp or a 

gradual extremum as well as the dominant extremum in the region. Therefore, to 

have a fully filtered data set, it is necessary to apply a combination of filters in a

 certain order according to the requirements (Figure 3.8). This will  guaranty a 

fully filtered data, because if  extremum cannot be identified by one method, 

it will be identified by another method, when the extremum has multiple features. 

The major drawback inthe method is that the method is not capable of detecting 

dominating maxima at the end as well as at the beginning of the data set, when the 

advancing window side is greater than three (Figure 3.8). Exactly the dominating 

extrema  between  data  points  first  and  (WS +  1)/2  (at  the  beginning)  and  between 

data points  n-(WS + 1)/2  and n  (at  the end),  where WS  is  the size  of  advancing 

window and n is the number of data points in the data set. One possible solution is to

add (WS + 1)/2-2 numbers fordata points as filling at the beginning and at the end 

of the data set. The value of the filling  at  the  beginning  is the  value of the first data

nine with MMS-WBF. However, there is still a considerable amount of such extrema 

with low prominence visible in the plot (a), because in the considered window size 

they are still dominating extrema. Data in plots (b) were first checked for extrema 

with a window of size nine. Then RLH_max and RLH_min were considered and the 

extrema  were  checked  for  low  and  high  extrema  with  threshold  value  tLH  =  1. 

Combination of two methods was capable of totally removing extrema with low

prominence.  However,  due  to  the  usage  of  window  size  greater  than  three, 

dominating maxima at the beginning as well as at the end of the window will not be 

detected. 
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point and the value of the filling at the end is the value of the last data point.

Usage of such an approach will help to minimise the impact due to large WS. 

Particularly, data processing requires a separate algorithm specified for fulfilling the 

required outcome. The output of the algorithm is a set of numerical values. These 

values are represented using a suitable visualisation technique (Figure 3.9). In 

contrast, the concept Graphical Knowledge Unit (GKU) we introduced is a method 

that is capable of visualising processed data as well as holding processed data. Not 

only that, GKU is a combination of many methods, where it is usually required to 

achieve different algorithms. In  the same time, the algorithm of  GKU is very 

easy to understand and has no complex calculations or definitions. Furthermore, 

GKU  can  be  expressed  as  a  method  that  is  beyond  the  concept  of 

non-parametric density cluster identification; can be considered as a package 

of solutions that is has following benefits.  

1. Method of generating density clusters without a special complicated algorithm. 

2. A good density cluster visualization technique.  

3. Suitable for both online and offline applications. 

4. One-pass (single-pass) method. 

5. Method of visualizing missing data and out of range data density. 

6. Automatic contour line generation method. 

7. A good multivariable visualization method. 

8. A good technique for representing big data. 

9. Tool for outlier detecting in non-linear data. 

10. Database for processed data / direct input for another algorithm. 

11. Processed data and visual representation are in the same place. 

12. Easy portability as a bitmap. 

13. Bivariate as well as multivariate trained data set. 

14. Can be maintained as a bitmap or as a matrix of integers. 

15. Visually as well as programmatically readability. 
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Figure 3.9: Typical data processing and visualising approach and GKU approach. In 

the  conventional  approach  first  process  and  visualise  later  using  a  suitable 

method.  In  GKU  approach,  the  density  of  certain  location  is  placed  as  a 

colour-coded value on the respective coordination of a bitmap. 

overlapping areas can be used to convey meaningful messages. In this research, 

 

Findings  of  this research  work  showed that the overlapping of data in  the

multi-variable environment is no longer a problem with the concept of GKU.  

With the basic knowledge of colour formation theory, the contributed variables 

in a variable overlapped area can easily be identified, even with the naked eye. 

The plot in relation with layer 0 in Figure 3.10, most of the areas are overlapped 

areas of  either two or three variables. Also, in layer 1 the overlapped areas 

can  be  identified  easily.  However,  in  this  research  I  haven’t  tried  to  give  a 

meaning for overlapped areas. Nevertheless, depending on the domain environment

One-pass algorithms are considered as fast algorithms because they read all inputs 

only once [78, 79]. GKU is also a one pass algorithm because it reads each data 

point only one time. Therefore, concept GKU is more suitable for online big data. 

This will allow online systems to represent existing status without further processing 

and  without  delay.  Furthermore,  the  ability  of  processing  and  visualising 

multi-variables will be helpful to enhance online process monitoring and controlling 

environment.  In  our  experiments,  we  used  maximum  one  independent  and  three 

dependent  variables  with  GKU.  However,  it  is  possible  to  use  more  dependent 

variables using pixel with a higher number of bits (e.g.: 64-bit,128-bit) and multi-layer

concepts. 
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it was shown that the amount ofoverlapping could be controlled by setting uitable

one or many dependent variables. However, using 3D GKUs will allow the use of 

two independent variables and one or many dependent variables. Thus, 3D GKU will

bethe next generation of GKU concept. 

Figure 3.10: MLMV-GKU of two layers where effective bitmap width and height are 

400 and 400 pixels for representing data of three dependent variables 

(Concentrations Total Volatile Fatty Acid (TVFA), Acetic Acid (AA), and Propionic 

Acid (PA)) against concentration of Volatile Solids, where each dependent variable 

consists of 2885 data points. A circle of radius 10 pixels is used as a marker. MLMV-

GKU shows inter-variable clusters of both high and low-density areas of each 

variable by means of automatically generated counter lines and overlapped variables 

with different colours, which can be easily identified by naked eye. 

 

The current research focused only on 2D GKUs that support one independent and

scaling factors for variables. Thus, setting overlapping environment must be done

by  considering  the  domain  requirements  by  setting  appropriate  overlapping 

environment. 



 

 
 

4. Outlook 

 
Figure 4.1 : Data / Information flow of proposed system 
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I am very confident that our findings will open new doors in the fields of data / 

signal processing, process controlling, knowledge mining, and data visualisation 

individually in each field. Our major objective is to deploy those methods as a 

combined package for process controlling and process monitoring. Figure 4.1 shows

diagram of such a system. 

In real world data capturing, almost all the data in relation to a certain variable can 

be expressed as time series by plotting such data against time. Then, the regression 

can be linear or non-linear. If the regression is linear (or expected to be linear), 

universal linear fit identification method can be used to locate clean data. When 

the  regression  is  non-linear,  any  nonlinear  relation  can  be  represented  as  a 

combination of straight lines. Different techniques can be found for signal 

segmentation depending on the considered domain, as for example in the field of

electroencephalogram (EEG) [80,  81]  and speech recognition [82].  If the frequency
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of the data is sufficient, segmentation of a signal can be accomplished by using 

extrema detection method as a segmentation technique (Figure 4.2). This will split

any nonlinear signal into a combination of nearly-linear segments. Finally using

universal linear fit identification method, a linear fit of each individual segment can 

be  found.  This  technique  will  allow  cleaning  linear  or  non-linear  data  by 

removing unnecessary data.  

The data that cannot be represented as time series can be cleaned by means of 

GKU. After cleaning the data, this data can be sent to an information management 

system (IMS) or can be represented as GKUs in a suitable number of variables. 

These GKUs represent knowledge as density clusters. Basically, there are two types 

of GKUs, two variable and more than two variable GKUs. Using two variable GKU 

versions, it is possible to represent knowledge of dependent and independent 

variables. Finally, these totally cleaned data can be transferred into GKUs with one 

independent and many dependent variables. Well-developed GKUs are real trained 

sets and can directly be used for monitoring and controlling processes.  

Figure  4.2:  Split  a  nonlinear  signal  into  several  linear  fits  by  means  of  suitable 

segmentation technique. 
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