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Abstract 

In upcoming highly automated systems in safety-

critical application domains, such as aerospace and 

industrial machinery, the demand for more 

computational resources per control unit is constantly 

rising, accompanied from a shift in the chip industry 

towards multi-core devices with enormous complexity 

and high levels of feature integration. Current 

regulation and standards for certification does not yet 

consider these devices, or explicitly denying their use 

as a pure single-core processor replacement. Within 

this work, we address the issue of multi-core 

certifiability on the system level, providing two 

possible board-level architectures. In addition, a 

safety case is provided to show how a proper system 

architecture approach can fit multi-core devices in 

current regulation, raise system reliability and solve 

the common failure mode problem in the multi-core on 

the board level. Alongside with the hardware 

architecture, a high level software architecture is 

presented to allow mixed-criticality applications to be 

executed side-by-side on the multi-core with spatial 

and temporal isolation. We follow a requirements-

driven work flow, to first define a set of requirements, 

to be fulfilled by the secondly proposed architectural 

configurations, followed by a safety analysis and the 

presentation of a possible certification argumentation 

for an industrial and aerospace context.  

Introduction 

During the recent years, multi core based System-on-

a-Chips (multi-core SoCs) rose and found a wide 

spread application in general purpose, mobile and high 

performance computing. In the embedded systems / 

real time domain and especially in the field of safety 

critical systems, be it in an industrial, aerospace or 

medical context, multi-core SoCs have not found 

application in certified applications. Usually, these 

domains rely on either special build devices (ASICs) 

or domain specific COTS processors, usually 

generations behind current technology levels for the 

most critical applications. Due to the tremendous 

efforts and development costs associated with multi-

core SoCs, the trend for tailor-made or domain specific 

devices will not be continued broadly with those 

devices. Today’s SoCs are designed for either 

Networking applications (Routers, Switching, 

Baseband), general-purpose- or server-computing 

applications. They generally lack specific architectural 

features for the safety critical domain, for example 

strict core separation at silicon level, special 

monitoring function units or deterministic on-chip 

networks, which render them practically un-useable in 

general for a simple single-core processor 

replacements in current board level architectures. With 

shrinking technology levels and the continuous 

demand for more computational power in a single 

package, multiple cores in a single device are already 

starting to pop up even in small microcontroller 

packages and will certainly be the norm, rather than 

the exception, in future device generations. 

A multi-core based solution for safety applications 

faces a multitude of certification concerns and risks. In 

the light of the ISO/TR 61508 [1] or the ISO 13849 [2] 

for example, an applicant has to derive an FEMA on 

the system and board level, possibly accompanied by 

fault tree analysis, markov analysis or other methods 

in order to approximate the remaining possibility for 

predetermined dangerous hazards during the safety 

assessment. This also requires in depth, silicon level 

information, reaching far into the SoC when internal 

function units guarantee certain safety features, which 

the semiconductor manufacturer usually does not 

provide for multi-core devices. Based on this 

information, one derives the base events for the 

FMEA, in order to compute the respective safety 

metrics. In the aerospace domain, we face an even 
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worse situation. The certification authorities yet lack a 

common position on this new technology and present 

their current view in the CAST-32 [3] and CM-

SWCEH-001/002 [4]. In order to provide a reliable 

platform for future generations of safe systems, one 

has to overcome the inherent problems associated with 

multi-core devices 1 , while designing with existing 

COTS devices to avoid costly custom ASICs. This in 

turn will raise the computational power, available for 

future highly automated or even autonomous systems, 

for current development trends towards unmanned 

aerial vehicles, driverless vehicles or new generations 

of industrial systems. With a steep increase of 

available computational resources per LRU, many 

current system architectures, with largely dedicated 

LRUs per system function, can be reduced and 

centralized to a single, redundant, high-integrity 

platform, instead of providing per-function 

redundancy via dedicated LRU clusters. 

Since the margin and volume of embedded 

applications (despite automotive) is quiet low 

compared to server or telecommunication 

applications, the semiconductor manufacturer may not 

invest in the extremely costly development efforts for 

domain-specific devices with long ROI periods. 

Therefore, we focus solely on applying available 

COTS devices within our proposed architectures. 

Within the next chapters, we will first present possible 

future system architectures for highly automated 

systems with a resulting set of high-level requirements 

for the single LRU. Based on these requirements, we 

derive a board level architecture based on COTS 

multi-core processors as the main computing device. 

In addition, we provide a possible certification 

argumentation to support a safety claim in certain 

domains and certification levels based on current 

regulation. 

When applying multi-core technology to LRUs, the 

system builder may benefit financially by removing 

great portions of currently distributed, function 

specific LRUs from the system and integrate their 

functions on a single LRU, given that the multi-core 

LRU provides enough computational resources and 

communication interfaces. This not only reduces 

weight (LRUs, cabling, mounting, etc.), size, cost but 

                                                      

1 Multi-Master on Shared Bus within SoC, Shared Peripherals, 

Shared Resources, Separation of Cores and Common Mode 

Failures on the SoC, just to name a few 

also, depending on the processors used, also power 

dissipation. If we design the architectural concept and 

board-level architecture of a multi-core based LRU in 

such a way that the overall system safety is not 

affected by a centralized platform or the integration of 

different system functions, the benefits of multi-core 

based LRUs is evident.  

The issues associated with the certification of multi-

core SoC are well known in academia and in the 

industry. We will therefore only present the proposed 

architectural configurations and certification approach 

without further detailing the specific pitfalls, since this 

has been subject to many talks and publications in the 

past. However, one can obtain a first introduction into 

the topic by the study available in [5], conducted to 

provide some guidance for European aviation 

authorities on the topic, outlining potential hazards 

and risks. 

High Level System Architectures 

In current system development processes for safe 

systems, nominal system functionality is subject to 

safety analysis for potential hazards, deriving a notion 

whether a function is safety related or uncritical in the 

context of the system and its environment. In the civil 

aerospace domain, a function design assurance level 

(FDAL, from E to A) describes the criticality of a 

function in relation to the hazard impact and resulting 

target occurrence rate for failures of the function. 

Almost the same methodology is applied in an 

industrial certification process, where a safety 

integrity level (from 1 to 4, IEC 61508) or an 

appropriate category (from B to 4, ISO13849) is 

derived on a per-function basis. In the military 

aerospace domain, functions are classified by their 

“mission criticality”. A mission critical function is not 

directly responsible for a hazard, but compromises the 

system’s ability to fulfill a given task or mission 

successfully.  

While this holds true for classic semi-automated 

systems, heavily relying on a human to provide higher 

level automation functions, cognitive functions to 

master complex situations, or a fallback level in case 

of failure, the classification and system level assurance 
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with highly or fully automated, unmanned or even 

autonomous systems becomes increasingly complex. 

We will therefor further classify higher level system 

functions during the course of this working paper in 

three levels. These classifications are interoperable 

with current regulation, in fact the currently available 

criticality levels can and will be used within the 

context of these meta classes in order to further group 

system functions. Furthermore, these classifications 

will be of importance later on when we enter a more 

detailed LRU board level architecture and safety 

argumentation: 

i. Impact Level 2 (IL2): A critical function in the 

sense that any kind of failure of this function 

leads to potential harm.  

Examples include: Aircraft/Vehicle baseline 

control, Brake control, Motor Control, Low 

level logic for system modes, Movement or 

trajectory Generation, etc. 

ii. Impact Level 1 (IL1): A function which 

directly impacts the system behavior, but 

without direct command authority over 

actuation elements. These functions might fail 

without compromising the safety of the 

system, but disable its ability to complete a 

given task. In this class, a wrong result (wrong 

command to a IL2 function) is a hazard, but a 

complete failure in the sense of unavailability 

is not.  

Examples include: High Level Path and 

Mission Planning, Mission or System 

Behavior Optimization, Context Recognition, 

Nonlinear System Adaption, Remote Control 

Data Links, etc.   

iii. Impact Level 0 (IL0): A non-critical function. 

Failures (unavailable or wrong result) will 

only affect the comfort in using a system or its 

effectiveness but will not influence the 

behavior with regards to safe operation or 

completing a given mission or task. 

IL0 and IL2 are very similar to the current 

understanding by basic regulation, being either 

potentially hazardous or not. IL2 functions normally 

execute control algorithms, state machines or other 

forms of automata, or supervisory tasks of critical 

elements. IL1 functions exist today in mostly non-

critical classifications like in flight management 

systems, aiding for example the pilot in commercial 

and small aircrafts to complete their tasks more 

effectively, for example by directly communicating 

with autopilot systems to reduce cockpit crew 

workload. Due to human oversight, these functions are 

currently not safety critical. This changes considerably 

when a human is no longer present or incapable (due 

to physical limitations like reaction time / precision or 

very limited situational awareness) to control the 

system, making these function equally critical in a 

classical certification classification, or in our case IL1. 

Note also that functions from the IL1 category are 

usually more complex functions and therefor require 

much larger computational power compared to IL2 

functions, which are in most cases control algorithms 

with limited computational requirements in general. 

We’ll address IL1 functions again later in this chapter, 

when we describe system architectures, voting 

strategies and degradation patterns. Before entering a 

more detailed LRU level, applicable system level 

embedded system architectures will now be defined. 

“Small System” Use-Case (UC1) 

Often times in industrial systems, cost is a major factor 

in system development. This also holds for small scale 

unmanned aerial vehicles (UAVs) in the sub 

25kg/50kg MTOW class. Power draw has to be 

minimized for this class of systems, as well as 
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electronics weight, size and also power dissipation in 

order to ease cooling requirements. It is nonetheless 

necessary to provide a high availability and redundant 

system, to cope with board, parts and interconnect 

failures as they appear throughout the lifetime of the 

system, due to harsh environment conditions (high 

vibration, high and fast changing temperature load 

cycles, etc.). Due to these constraints, a high degree of 

availability has to be achieved with very little LRU-

level redundancy in this context, even if not directly 

required by certification criteria, but from a 

commercial and usability standpoint.  

Figure 1 shows an exemplary architecture, where, 

depending on the desired failure rate of the compute 

platform, only a limited number LRUs is used. Instead 

of relying on a distributed computing architecture with 

dedicated LRUs per system function (like base 

control, fallback, higher-level functions), the multi-

core based LRU is powerful enough to complete all 

necessary computations timely. Besides the shown 

compute platform, only smart sensors and actuators, as 

well as optional human control elements or wireless 

data links are present in the system shown. For 

multiple LRUs, voting is either distributed with a 

single command send to the actuators or computed on 

the actuators itself in the case of smart actuation 

elements. A cross-channel datalink (CCDL) 

interconnects each LRU. Further reducing the system 

complexity and cost, one could completely omit 

redundancy for most industrial systems, as long as the 

single LRU is compliant to the applicable certification 

category, which is already the case today in most 

industrial applications with control systems being 

certified up to SIL3/KAT3,PL.d in certain 

applications. 

“Large System” Use-Case (UC2) 

In contrast with the previous example, in large and 

complex systems with eased electronics cost 

constraints, we propose a different architectural 

approach. Also centered on a centralized compute 

platform, as shown in Figure 2, smart actuators, 

sensors and optional control elements are utilized. 

Zonal Safety can be established by physically 

distributing parts of the redundant LRU cluster in 

separate locations in the system, providing resilience 

against environmental hazards like fire or leaks, just as 

with today’s commercial aviation, or military avionics 

concepts.  

In Figure 2, a dual duplex configuration is shown, 

which can be extended as needed to higher orders of 

redundancy, for example in two/three triplex or even 

two/three quadruplex clusters. Note that the cluster is 

interconnected by a dedicated cross-channel datalink 

which allows voting and data exchange over clusters 

and between LRUs in a cluster. As a side effect, with 

increasing numbers or LRUs in the system, there are 

also growing computational resources for IL0 as we’ll 

see in the next chapters, since they can be executed 

without redundancy in a distributed fashion over the 

whole cluster. 

Since the detailed architecture is highly dependent on 

the actual system and not only on the application 

domain, we found it difficult to derive further detailing 

steps as these are by nature strongly coupled with the 

desired nominal and failure mode system behavior. 

Requirements for an LRU 

Stepping from the higher level system architectures 

down into the LRU itself for a board-level 

architecture, one needs a set of derived requirements. 

Table 2 (see Appendix I) list our set of requirements, 

alongside with the applicable use-case from which 

each requirement was derived. 

The first requirements (RQ1-RQ5) mark an important 

point. In essence, we want to achieve up to 

SIL2/KAT2 for a single LRU, or SIL3/KAT3 

classification depending on the surrounding system 

configuration (e.g. secondary safety shut-off paths) for 

the industrial context. Starting from a dual-LRU 

configuration on system level, SIL4/KAT4 shall be 
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possible, again, depending on the surrounding system 

or final level of redundancy. In an aerospace context, 

a single unit should at least reach design assurance 

level C, with an upgrade path to DAL B or DAL A if 

adequate levels of redundancy are provided (at least 

two for DAL B, more units for DAL A). Again, this is 

heavily depending on the system context and possible 

fault mitigation or control system degradation paths 

desired for the final system, depending not only on 

weight and size, but also on the degree of automation, 

presence of emergency operation control and the 

intended operating area of the vehicle in question. 

With current cost structures and upgrades for legacy 

systems coming into play, it is vital that a single LRU 

is able to provide medium certifiability (DAL E-C), 

just like todays LRU designs, so the designer is only 

forced to a redundant configuration for high 

availability and reliability (DAL B-A). RQ6 is derived 

from in order to facilitate cross LRU communication, 

further harden the system architectures and permit 

duplex systems where a LRU may not output wrong 

results but fail silent to simplify the voting between 

LRUs and the interaction on system level. In 

redundant configurations, RQ7 ensures that a unit 

passivates itself if an error has been detected. A unit 

may rejoin the cluster, if permitted by system 

requirements, if the error has been resolved after a 

LRU reboot (transient errors). RQ8 is required for 

systems in a non-transportation domain, like reactors 

or complex machinery which cannot simply stop 

operation at once but require a series of mode 

transitions in order to safely stop, or must remain 

operating in a degraded mode with very basic control 

carried out to prevent substantial financial losses (like 

in chemical reactors, furnaces, etc.). Note that this is 

most likely achieved by system level redundancy, 

however, for future systems, a single remaining unit 

(or in case of common mode component failures) shall 

be able to maintain a safe system state. RQ10-13 deal 

with requirements commonly arising from ISO 13849 

applications with single fault tolerance, translating 

roughly to the “no single point of failure” credo in 

higher aerospace DAL levels.  

RQ15 marks an in important point. A multi-core based 

LRU can only be reasonable from a cost and risk 

perspective, if it replaces multiple legacy LRUs by 

combining their system functions, which are classified 

with different criticality and impact levels by the 

legacy system. It is therefore essential, that those 

functions can be executed side-by-side on the multi-

core without interference, which leads to deadline 

violations of hard real-time, IL2 functions. Note that 

strict electrical isolation in the terms of true freedom 

of interference will most likely not be achievable on 

COTS devices. It is however sufficient, with 

appropriate architectural mitigation techniques in 

place on the board level, to prove (formally or during 

testing) that under normal operating conditions, all 

functions can meet their respective deadlines and a 

misbehavior of a function can be timely detected and 

mitigated. Also note that this in general implies an 

AMP configuration on the multi-core from a software 

perspective, but also leaves the possibility to execute 

a SMP OS for IL0 or IL1 functions along with an AMP 

RTOS if only a subset of the available cores is used in 

the SMP configuration.  

Requirements RQ16-18 constrain the available 

interfaces. “High-Speed”, as well as legacy “low-

speed” interfaces shall be provided in order to enable 

retrofitting and use of proven/qualified sensor and 

actuation units fitted with domain specific legacy data 

busses like CAN, ARINC 429, RS485/Profibus, etc. In 

contrast, recent system architectures already move 

towards more data bus bandwidth by employing 

Ethernet-based sub-standards like AFDX, EtherCAT, 

PowerLink, or the open SpaceWire high speed 

interface standard, as well as other domain specific 

standards and protocols.  Exemplary minimum 

bandwidth requirements are also given, in the sense 

that the LRUs internal architecture should permit 

concurrent full theoretical throughput on all interfaces. 

The cross channel datalink should not bottleneck 

system level data transfers, which entails a higher 

internal interconnect bandwidth, but again this should 

be seen as an example only, since the final data bus 

specifications are depending entirely on the system 

context, application domain and use-case of the 

system. 

Board Level System Architectures 

Starting from the requirements presented in the 

previous section, we now derive suitable board level 

architectures for different application scenarios, based 

on a COTS multi-core device. While we will discuss 

some safety matters as we present the proposed 

architectures, a more detailed certification perspective 

for different application domains will take place in the 

next chapter. Note that the concepts are designed to 

allow easy scaling in terms of processors and 

interfaces, limited by physical board / unit constraints 
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and the available high speed interfaces on SoC level. 

Note also that certain high speed interfaces have been 

specifically avoided where applicable, since they 

introduce major issues with certification, for example 

in the aerospace domain. These include for example 

serial high speed interfaces like PCI-Express (PCIe), 

where in most IP implementations, microcode is used 

to implement certain bus functions in hardware. Since 

microcode is considered software in terms of 

certification, it is necessary that the microcode 

development process follows a conformant 

development process for the desired certification level, 

forcing the applicant into substantial involvement with 

the SoC manufacturer with access to design data. Such 

undertakings have not been successful in the past, 

resulting in failed project, greatly exceeding cost 

targets and time schedules. However, depending on 

the application domain, a black-channel approach can 

be applied to justify the use of said interfaces where 

no in-depth insight in these peripherals is required.  

Furthermore, the architectures aim for requiring as 

little detailed SoC manufacturer data as possible to 

lower the actual project risks with COTS devices with 

little financial interest by the IC manufacturer due to 

the low volume of our application domains.  

The software architecture and means to provide spatial 

and temporal isolation between cores or different 

system functions are discussed after presenting the 

proposed board level architectures. 

Non-Distributed Monitoring Configuration 

The first architectural configuration is built upon the 

simplest command-monitor architecture. On the board 

level, a multi-core device is used to compute IL2, IL1 

and IL0 functions, together with a simpler, single-core 

device executing the IL2 monitor functions. A monitor 

function can be algorithmically different to the 

nominal function, but it is also possible to use the same 

algorithm, provided some form of software diversity 

is used to mitigate software related common mode 

failures. As shown in Figure 3, the monitor only 

verifies the IL2 functions before their final results are 

send out via the output stages (FPGA-based, for legacy 

and high speed interfaces). IL1 functions are either not 

present in the system due to the application or are 

being compared on the system level with redundant 

LRUs over the cross-channel data link. IL0 functions 

do not feature any kind of monitoring or fault 

protection.  

This configuration permits to detect if either the 

monitor (MON) or nominal channel (NOM) have 

failed by cross comparison. Since both devices are 

able to provide output data to the data busses, a fail-

silent behavior is easily achieved by bringing the 

system into a safe output state, once a cross 

comparison mismatch has been detected by either the 

NOM or MON. It is also possible to implement a 

fallback operating mode, where the system stays 

operational after detecting a failure, as well as fallback 

strategies, for example in the output stages with simple 

state machines taking over, driving the physical 

system into a safe state. Note that this configuration is 

intended to be used in either a very cost-sensitive 

environment with medium availability demands, since 

there is no hardware fault tolerance provided on the 

board level enabling a true fault masking, or within a 

redundant LRU configuration. A second LRU, 

connected via a cross-channel data link, would then be 

able to keep the critical functions operative while one 

LRU is executing an ordered restart or is deactivated 
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until replacement if the failure is persistent. Note also 

that the MON and NOM must be diverse devices to 

mitigate common mode failures in both channels.  

In order to provide enough processing resources for all 

IL2 functions executed on the multi-core NOM, the 

MON must be a relative high powered single core 

device, or a multi-core device with no more than two 

cores, one handling the SoC peripherals, interrupts and 

SoC supervision, while the other core executes the IL2 

monitoring. The clear partitioning omits the needs for 

complex core-to-core isolation strategies, since the 

timing behavior can be determined during testing or 

through an on-target and formal methods approach 

based on single-core equivalence (see [6]). It is, 

however, more practical to use a simple single core 

device as the MON to ease certification around the 

MON. With future SoCs moving more and more 

towards multi-core, it might the case that fast single 

core devices might become unavailable for the next 

generations of embedded systems, so at least a dual-

core device was chosen for this example, with a clean, 

isolated AMP approach to equal existing single core 

devices with IO accelerator co-processor cores, which 

reduce system load by offloading interrupt processing 

and low level data handling for peripherals from the 

main CPU core to a separate, smaller, less-capable 

core. In most cases however, the IL2 functions require 

very little computational resources and consist mostly 

of control functions which run presently on low power 

microcontrollers or microprocessors in the sub-

500MHz range. Adequate single core controllers with 

more than 1GHz, based on recent core architectures 

will satisfy most computational needs regarding those 

functions easily while they are still available on the 

market for at least another decade. 

In certain use-cases, where IL2 functions are less 

computationally intensive, it is possible to extend this 

configuration to a fail-operating architecture with only 

one LRU by using a self-checking, safety MCU, based 

on a lockstep architecture with internal fault 

detection2. In this case, random or persistent failures 

can be traces in run-time to either the MON or NOM, 

enabling a shut down or restart of the respective 

channel whilst either upholding the IL2 functions on 

the remaining channel, driving the physical system 

into the safe state or executing an emergency operating 

                                                      

2  Note that the manufacturers provide extensive FMEDA and 

failure rate approximation data for certification on those devices  

mode on the NOM (if MON failure has been detected 

on the safety-type MCU) or the MON (if cross check 

failed and the safety-type MCU detects itself as 

operational). Note that this argumentation most likely 

requires in-depth failure mode analysis for the MON 

and on board-level. 

On the board level, the NOM, MON and output stages 

can be easily interconnected via dedicated Ethernet 

links, since most modern SoCs offer at least one 

Ethernet interface, capable of 1Gbit/s link speed. 

Operating on the MAC layer, a black-channel protocol 

(legacy or custom) should be employed to further 

secure the data transfer which does not entail the use 

of higher OSI-level protocols like IP, TCP/IP or 

PowerLink. If one of the MPUs used does not provide 

adequate numbers of interfaces, especially in the case 

that more than two output stages are needed due to 

special application requirements, one can readily 

design in switched networks or a shared bus based on 

COTS MAC and PHY layer networking devices. Note 

that in a switched network, single point of failures can 

be introduced by these switch ASICs. This also holds 

for several available Ethernet-Ring structures based on 

specialized devices [7], which we do not consider in 

this work due to the reduction in MTBF by the added, 

complex device. In a shared bus topology, the 

determinism, available bandwidth allocation and 

collision avoidance can be ensured by a fixed time-

division protocol (either distributed or with a timing 

master) or polling the respective nodes. New 802.1 

standard additions, such as IEEE 802.1Qbu, IEEE 

802.1Qbv, IEEE 802.1CB, and others standards from 

the time-sensitive networking task group [8] might 

lead to new and better suited MAC and PHY devices 

in the future, enhancing real-time and reliability for 

standard Ethernet by a fair amount. In some 

applications, the use of other high speed interconnects 

like PCIe is permitted within certification constrains, 

which enables on-board diverse communication 

between NOM, MON and the output stages.  

Distributed Monitoring Configuration 

As we will discuss in the next chapter, the single-

monitor configuration can present some certification 

pitfalls in certain domains, due to its inherent lack of 

hardware fault tolerance in a single board 
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configuration. Therefore, we propose this second 

configuration, enhancing the previous one with 

hardware fault tolerance, while providing a fallback 

operating mode, on-board error location and masking 

capabilities for very high-reliability applications. As 

with the previous configuration, a single LRU can 

most likely not achieve the desired failure rates and 

availability constraints (due to the component count, 

printed circuit board failures, etc.), implying the use of 

multiple LRUs depending on application 

requirements.  

 

As shown in Figure 4, IL2 functions are executed on 

all on-board devices and are thus voted in each time 

frame. Only a valid computational result is allowed to 

                                                      

3  Note: This is already the case in today’s systems, especially 

where the risk of structural damage is present. In such systems, 

busses are often grouped and routed independently on different 

paths in the system. 

propagate outwards, emitted either on a single output 

MCU with the remaining stages listening for correct 

transfer, or on all output MCUs for redundant transfer 

on the redundant data bus groups3. IL1 functions are 

voted within the redundant LRU cluster via the cross-

channel data link (CCDL), but are not part of the on-

board voting to ease the performance requirements on 

the monitor processors. The distributed monitoring 

MCUs (DMONs) also act as interface devices for 

legacy data bus and discrete interfaces (CAN, 

ARINCx, RS2x/RS4x, Digital I/O, etc.), which are 

grouped to two redundant data bus clusters in Figure 

4, to mitigate physical layer failures occurring on the 

system level. Note that this architectural configuration 

is not limited to two DMONs, but can be further 

extended to provide more legacy interfaces and 

DMON compute power if needed. FPGAs provide 

high-speed CCDL connectivity to other LRUs in the 

cluster or to other system units such as sensors 

(camera, LIDAR, RADAR, IR, etc.) or actuation 

elements with high bandwidth requirements.  

The example shown in Figure 1 originates mainly 

from small UAV avionics, where a high availability 

and error mitigation will be necessary for future 

systems, whilst minimizing weight and size, and 

therefore board space and number or redundant LRUs 

in the cluster. In such systems, the baseline control 

together with some automation functions (for example 

trajectory control, autopilot, waypoint navigation) do 

not require vast computational resources 4  and fit 

inside small safety MCUs, which allows for internal 

fault monitoring if the DMONs itself. Each DMON 

therefor execute extensive internal error detection and 

mitigation without compromising on computational 

resources. In general, the choice of DMON MCUs is 

depending on the IL2 function workload, since all 

functions must be run at least at three different nodes 

on the board to enable proper voting algorithms in a 

triplex configuration and cannot be executed on a 

single DMON and the NOM. In addition, the need for 

legacy interfaces, or the lack thereof if they are 

implemented within the FPGAs, limits the range of 

available MCUs or MPUs by a fair amount (CAN 

usually only found in great numbers on automotive 

MCUs). If, however, more than two DMONs are 

4 Estimation on current implementations at the institute, subject to 

industry projects, exact functions and requirements cannot be 

disclosed publicly 
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employed, the issue might be resolved by further 

dividing interface groups and allocating them to the 

added devices, also providing addition common mode 

failure isolation. 

The interconnects between NOM, DMONs, and the 

FPGAs must be able to cope with single, or even multi 

device failures in order to enable a fault tolerant 

system. As shown in Figure 4, all devices are thus 

interconnected by dedicated high-speed links from the 

NOM to the DMONs and the FPGAs, and separate 

links from DMON to DMON, via the FPGAs. This 

arrangement even allows for a double failure of 

dissimilar devices (NOM/DMON) in the system, 

which does not lead to any loss of IL2 functions, since 

the LRU can perform a fallback to an emergency 

operating mode with at least one DMON operational. 

With a single failure, full operating capability for IL2 

functions is assured, which also holds for IL1 and IL0 

if a DMON is affected and the NOM is still 

operational. Note that different IL0 function can be 

processed at each note in a redundant LRU cluster, 

while IL1 functions are executed depending on their 

desired degree of fault tolerance on different LRUs in 

a cluster, for example IL1_F{0..2} on LRUs A and B, 

IL1_F{3..5} on LRUs C and D for a per-function, 

single fault tolerant scenario. 

Like in the single monitor architecture, NOM and 

DMONs are interconnected via dedicated high-speed 

links via Ethernet (100Mbit/s or 1Gbit/s, depending on 

the capabilities of the DMONs, large multi-core SoCs 

usually provide enough dedicated interfaces). Note 

that this can also be substituted by half-duplex links to 

save on high speed interfaces or compensate for the 

lack of Ethernet MACs on DMONs for a fast 

interconnect between the FPGAs and the DMONs. 

The bidirectional DMON-FPGA interconnect must be 

present, in order to allow access to high-speed data bus 

links from the DMONs to uphold IL2 output data in 

case of NOM failures and CCDL connectivity. Note 

that the designer is free to choose an appropriate 

interconnect at this level, considering the available 

DMON interface features. Usually, fast serial 

interfaces like Ethernet, SIPI via LFAST (inter-

processor interconnect), or standard SPI/UART 

connections might be adequate if they offer enough 

                                                      

5 Transient failures can usually only be resolved to a deterministic 

state when a device reset is issued to resolve SEU-based upsets in 

bandwidth. However, parallel FIFO-type interfaces 

are implemented easily at the FPGA and the DMON 

to compensate for already allocated serial 

interconnects. Further hardening at the data links 

between NOM, DMONs and the FPGAs should be 

considered, in the form of black-channel protocols, in 

order to mitigate/detect random errors or failed board 

infrastructure.  

Since this architecture already provides on board fault 

tolerance and error masking, it is applicable to low 

redundancy system configurations that require high 

availability with limited cost budget for physical units. 

In addition, added layers of degradation can be 

introduced to a redundant system with per-unit 

degradation paths. For example, a degraded LRU with 

a failed NOM or DMON might still participate in the 

inter-LRU voting for IL2 functions, provide output 

data to smart actuation units or conduct advanced error 

detection to gracefully recover a degraded LRU by 

restarting and resyncing specific processors. Again, 

this is dependent on the targeted certification context, 

the physical system architecture, other safety 

precautions, safe state type or reachability, etc. and 

must be discussed early on with the respective 

certification authorities, especially when different 

levels or system function degradation strategies are 

within the scope of development. The ability to 

degrade along such paths is not supported by current 

generations of LRUs in the field, and offer a 

significant improvement for availability and multi-

point fault tolerance for future system architectures. 

Note that we do not use the multi-core to achieve 

multiple, redundant compute channels on a single 

device, since common mode failure scenarios via the 

SoC busses, memories and peripherals effectively 

deny such designs, while heavily relying on an in-

depth SoC analysis and test during certification. We 

also do not advocate redundancy by multiple 

executions of a function within a single time frame, 

due to the persistence 5  of transient failures. All 

functions are executed once per system time frame on 

the device, allowing maximum device utilization 

without sacrificing performance to the overhead of 

redundant executions.  

internal circuitry. Memory is protected by ECC or spatial 

redundancy. Since device restarts are non-critical, a clean device 

state via restart is preferred. 
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Software Architecture Considerations, Common 

Circuitry and Interconnects 

Since we must provide a software infrastructure on the 

multi-core which provides the means for mixed 

criticality functions running in parallel on the device, 

we propose an AMP architecture on the multi-core, 

with one dedicated master core, carrying out 

supervisory tasks as well as IO handling. 

As shown in Figure 5, the master core in in control of 

the device’s peripherals, manages their configuration 

and periodically checks their status (health, status, 

configuration). The master core (c0) also manages the 

internal inter-core communication framework (ICC, 

via shared memory), slave core software watchdogs, 

external MON watchdog communication and system 

supervision, as well as the resource separation 

between the slave cores for temporal isolation of 

mixed critically functions. Spatial separation and 

access right control is ensured by core-local and SoC 

level functions such as MMUs, privilege levels, 

System-Memory Protection Units, and a dedicated 

peripheral controller core, which is c0.  The external 

watchdog, implemented by the MON or each DMON6, 

should be a windowed, challenge-response signature 

watchdog, with a random challenge computed by the 

                                                      

6 A true, separate watchdog only reduces availiability and does not 

contribute to error detection or effectiveness of the watchdog 

action. We re-use the already present dissimilar device for this 

purpose. 

MON. The challenge is issued each system time 

frame, to check the status of the multi-core device and 

the MON (bidirectional verification). On master (c0) 

and slave cores (ci), a real-time operating system is 

instantiated, to control the allocated tasks via a per-

core task list, which can also be managed or modified 

dynamically7 by the master to further supervise the 

execution of tasks in degradation scenarios. Within 

each slave, a watchdog instance embedded in the 

RTOS ensures the detection of a stuck program 

execution, managed by c0, typically executed via a 

challenge issued at each system time frame via ICC. If 

the application requires specific control of dedicated 

hardware features, like video ports or accelerators for 

image or video processing applications, a slave core 

may contain a subset of the peripheral driver authority. 

Sharing of peripherals may be permissible in special 

cases, but separation on a per-peripheral basis of 

different functions (e.g. cores they are executed on) 

may not be achievable with current generations of 

devices (fine graded permission control or 

prioritization not supported on the SoC).  

Note that an ICC client is executed on each slave core, 

to process/issue ICC request which can also be 

embedded in the RTOS layer. Static task allocation 

may be necessary to meet determinism requirements, 

but in certain circumstances, a SMP operating system 

spanning multiple cores can be used for IL0 or IL1 

functions, if c0 still has full authority and the SMP OS 

can be super- or hyper-vised on the respective cores by 

build-in privilege level.  Under all circumstances, core 

and task level separation must be guaranteed to meet 

certification requirements. While spatial separation is 

guaranteed like stated before, and can be analyzed and 

tested during validation phase and run-time, temporal 

isolation of cores and tasks is not straight forward and 

requires special precautions. We propose to use the 

available core or SoC level performance counters, to 

isolate the last remaining shared resource in the 

system, the memory subsystem. Shared cache should 

be partitioned or allocated to resolve determinism 

issues, arising from the interference by other cores. In 

most core architectures, this feature is implemented in 

the form of cache line/cache way lockdown or totally 

separated core caches (L1 and L2 per core), but 

7 If permitted by applicable certification constraints, in general, a 

static, tested and deterministic scheduling is preferred for IL2 

functions. Requirements for IL1 and IL0 functions may vary and 

permit a dynamic scheduling. 
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controlling the number of memory transactions per 

core within a given timeslot requires constant 

monitoring due to the lack of specific function units 

working on the performance counter data. Using the 

performance counters (PMUs), an application is 

profiled based on its required nominal memory 

transactions, on a per OS-tick time scale, which is 

usually available at a high frequency, allowing fine 

graded failure detection8. In the local OS-tick, each 

slave core collects its performance counters, and 

transfers their content via ICC to c0. The master core 

than processes these counter values, comparing them 

to a predefined worst-case or a static resource 

allocation lookup-table built during test and 

verification phase, based on debug trace data or formal 

techniques. If an overconsumption is detected for the 

past tick period, the respective core is signaled to 

temporarily schedule out the task, to reduce memory 

transactions until conformance to the predetermined 

profile is again established9. This can also result in a 

deactivation of the task in question for a system time 

frame, to allow for deterministic computation of IL2 

and IL1 functions. An appropriate action for IL2 

function failures must be defined, because a failure is 

critical in the single monitor configuration. The non- 

distributed monitor configuration offers additional 

protection due to the availability of two other 

redundant output results from the DMONs and 

possible system level LRU redundancy. A similar 

approach has been applied in [9], [10] or [11] why we 

spare the formal background at this point and refer to 

these references. While the temporal isolation is 

essential for WCET guarantees, the containment also 

serves as an excellent mean to control rouge cores with 

crashed tasks who issue memory transactions in an 

uncontrolled, faulty manner due to transient, 

permanent, or programmatic design errors. An in 

depth investigation is future work on actual hardware. 

Exemplary sequence diagrams can be found in 

Appendix II for the single and distributed monitor case 

together with an exemplary failure mode behavior for 

each configuration for an overall overview of internal 

and external communication steps. Note that we 

specifically do not recommend a specific hypervisor 

or RTOS architecture in this work, since the overall 

                                                      

8 Very Important: Most RTOS already offer OS-tick hooks for 

easy and practical insertion of custom routines, without modifying 

an already certified kernel, which is no option at all for a live 

project. 

architectural configurations, especially with 

distributed monitors, allow for a multitude of possible 

detailed architectures, which are out of scope due to 

their system and application domain specific 

parameters. Further mitigation strategies, like core 

restarts of detected transient core failures on the multi-

core NOM, or deactivation of such cores are also 

subject to project specific architectures.   

Shifting focus, other board level subsystems are also 

of great importance, especially for the distributed 

monitoring architecture. In order to allow fault 

isolation if a processor exhibits a permanent fault in 

form of a latch up, the possibility exists that the device 

fails in a “short to ground” manner, driving a power 

supply circuit into current limit and shut off in worst-

case conditions. To isolate these failures on the board 

level, local power supply for each critical subsystem 

(NOM, MON, etc.) must be established, with as few 

common circuitries as possible for maximum 

separation. In addition, power inputs to the unit must 

be redundant to remove power input single point of 

failures from the system (connectors, wiring, fuses, 

filters, etc.). Equally, bus transceivers should not be 

re-used on the board level, and need to be laid out fully 

redundant for each output stage, being FPGAs or 

DMONs peripheral outputs, in order to avoid common 

mode failure scenarios, especially in the distributed 

monitor configuration. 

Outside the LRUs, high-speed data bus interconnects 

are used for the CCDL and high bandwidth sensors. 

While different options exist, high-speed 

interconnects are usually domain specific like AFDX, 

TTP, and FireWire (USAF F-35) in the aerospace or 

PowerLink, EtherCAT, etc. in the industrial domain. 

The use of such standards also entails the availability 

of sensor and actuation units capable of these 

interconnect standards, which is while we will not 

focus on a specific design based on those standards in 

this work. With the CCDL, however, the designer is 

usually free to choose with a higher degree of freedom 

since the CCDL is seldom exposed outside the 

compute platform. The requirements for a CCDL 

differ based on the bandwidth needs to for the nominal 

data transfers (voting, supervision), LRU resync speed 

9 Due to no execution on the respective core, no further memory 

transactions are generated by the task/function. 
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in case a LRU requires state data, mostly for IL2 and 

IL1 algorithms after a fault-triggered reboot, or a time 

synchronization requirement for synchronous 

systems. Bandwidth requirements for 

resynchronization reach from a few states (a few 

hundreds of bytes), but may easily exceed thousands 

even for baseline control (Megabyte region) in the 

case of sophisticated control architectures. New types 

of CCDLs are subject to ongoing research, but a viable 

candidate already exists in the form of SpaceWire 

(SpW, [12]). SpW offers a robust, high-bandwidth 

physical layer with minimum constraints on the upper 

protocol implementations, while providing 

sophisticated time synchronization, on-line fault 

tolerance when multiple routes to connected units are 

possible and the ability to operate in ring, switched, or 

peer-to-peer networks. Figure 6 shows an exemplary 

LRU cluster, interconnected by a fault tolerant SpW-

CCDL. In case of an interconnect failure between two 

nodes, data packages can be re-routed by using 

intermediate, redundant physical connections or 

traversing the ring in another direction. Since SpW is 

an open standard, open-source implementations are 

available free of charge, offering a cost-effective 

solution to be implemented in the FPGAs in form of 

three or five port bus interfaces. Due to the specific 

design for harsh space environments and the 

requirement-based standard, SpW is well suited and 

will be part of the future demonstrator platform. 

 In the previous chapter, we derived a set of 

requirements for the individual LRU (Table 2, 

Appendix I), which we will now compare against the 

proposed architectural configurations. RQ1-5 will be 

discussed in the next chapter within their specific 

context. 

 

 

 

  

Table 1: Requirements fulfilled by presented 

configurations. X: fulfilled, (x): fulfilled under 

certain conditions.  

RQ 

ID 

SMA DMA Remarks 

6 X X SMA only detection, DMA 

with mitigation 

7 X X Passivates itself if number of 

allowable errors exceeded 

(SMA=1, DMA>=2) 

8 (x) X SMA: Possible with special 

monitor for error localization 

9 X X Shutoff possible with power 

removal 

10 (x) X See RQ8 

11  X  

12 X X  

13 (x) X SMA: Only with special 

monitor to detect latent monitor 

faults ahead of time 

14 X X Possible with both 

configurations 

15 X X NOM/MON Watchdog, Inter-

Core Watchdog, Spatial and 

Temporal Isolation 

16 X X SMA: Via FPGA, DMA: 

primarily via DMON, also 

possible via FPGA 

17 X X Via FPGA 

18 (x) X NOM/(D)MON are dissimilar 

by design, DMONs may be 

dissimilar. LRUs can be 

constructed with dissimilar 

parts in a cluster. This is 

pointless since on-board 

dissimilarity between NOM 

and MON is already given. 

SMA might not be suited as 

good as DMA, since no true 

fallback operating mode is 

provided when a non-safety 

type MCU is used for the 

monitor. 
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Figure 6: CCDL via SpaceWire. Minimum 

interconnects (black), ring closure (blue), and 

optional failover links (purple) via minimalistic 3 

port routers (FPGA-based) 
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Safety and Certification Aspects 

In this chapter, we are going to discuss certain aspects 

of certification concerning the presented architectures. 

After domain specific considerations, we focus on 

common issues such as WCET. Note that we will use 

the terms defined by the respective standards without 

further definition. The reader is referred to [4], [1], 

[13], [14], [2] and [15] for the terms and abbreviations 

used in this section. 

Industrial Certification (IEC/TR 61508, EN ISO 

13849) 

In our requirements, we defined SIL2/KAT2,PL.d as 

the certification level for the single unit, with the 

possibility for SIL3/KAT3,PL.d in certain 

arrangements. This leads to 90% ≤ DCavg ≤ 99% in 

order to comply with SIL3/PL.d levels or DCavg ≥ 99% 

for PL.e. We followed the common procedure of 

completing a fault tree analysis (FTA) as well as a 

markov analysis (MA) for DU-failures (see Appendix 

III). Both analysis were conducted in FuSaSu v3.3.1 

[16]. 

As the markov analysis shows, the calculated DC is 

above 99% in both configurations, resulting from the 

cross-verification which only fails in case of an 

already present or latent fault in the MON if also the 

NOM fails, while the fault is still present or not yet 

detected. Since this already involves two distinct 

failures in dissimilar hardware devices, which, if 

different core architectures (ARM, PowerPC, MIPS, 

etc.) are used, also entails software dissimilarity at the 

binary level10, is extremely unlikely as shown in the 

markov analysis and the fault tree. When distributed 

monitoring is employed, the system is further 

hardened, as shown by the slight increase in DC for 

the distributed monitoring architecture. A HFT of one 

is given in any case by the distributed monitoring 

configuration (DMONC), while HTF=2 can be 

claimed when certain assumptions hold on the system 

level (multi-core can still access some IO via a bypass 

in case of complete monitor failure). The non-

distributed monitoring configuration (SMONC) can 

only be considered as HFT=1, if a MCU with 

integrated error detection to unveil latent and transient 

faults is used, in order to provide the described 

                                                      

10 Note that N-version programming is also a viable option when 

within project budget limits and can lead to common cause 

software error mitigations 

degraded/fallback operating mode with reduced 

operational capabilities.  

In IEC 61508-2, several tables are listed to guide the 

applicant with adequate measures for diagnostic 

techniques, testing techniques, controlling systematic 

faults, etc. In Table A.3, “Monitored Redundancy” and 

“Comparator” apply to both configurations, while the 

“Majority Voter” technique applies to the DMONC. In 

Table A.7, for I/O units, “multi-channel output”, 

“monitored outputs” and “input comparison/voting” 

apply in both configurations. While Table A.8 is deals 

with internal device elements, one could argue that 

transmission, information and complete hardware 

redundancy (due to the separate interconnects between 

the I/O elements and the NOM/MON(s)) is already 

present on the board level, and is therefore 

accomplished for the function executed on both the 

NOM and MON. The program execution, either on a 

NOM or MON is permanently monitored, which leads 

in conjunction with the cross verification to the 

“Combination of temporal and logical monitoring of 

program sequences” in Table A.10 being fulfilled. The 

program sequence is not only monitored by the 

NOM/MON combination (watchdog), but also by an 

internal watchdog on each device itself, either in 

hardware or by a hardware/software combination 

when the multi-core is considered (to detect stuck 

cores). This is required by Table A.15, where also 

“Failure detection by on-line monitoring”, “Tests by 

redundant hardware” and “Diverse hardware” is 

satisfied by our architecture. The nature of the 

presented on-line tests and techniques leads to a high 

effectiveness for detecting errors, according to Table 

A.18. Moving on to Table B.5 for validation 

techniques, no method is explicitly excluded due to 

technical reasons in the proposed architectures. “Fault 

insertion testing” might provide an adequate method 

to extensively validate the error detection and masking 

functionality, alongside a multiple condition / decision 

coverage for the associated software.  

In terms of the ISO 13849, we provide single fault 

tolerance with both configurations to satisfy one of the 

central KAT3 requirements, while DMONC also 

provides the means to mitigate certain multi-point 

faults, which must be considered for a KAT4 approval. 
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Interestingly enough, SMONC provides the standard’s 

proposed architecture for KAT4 for IL2 functions, 

since we conduct a true cross verification between 

NOM and MON. DMONC extends this approach 

further, in a tipple modular redundancy fashion. Like 

shown based on the IEC 61508 tables, the measures 

inherent to the proposed configurations justify a high 

DCavg ≥ 99%.  

During a standard certification of single core SoCs, a 

device-level FMEDA usually provides the necessary 

failure modes at chip level for higher certification 

levels. While a device-level FMEDA is obtainable 

from the chip vendor for certain devices specially 

targeted at the safety market, no or very limited data is 

provided for COTS devices, especially multi-core 

SoCs, due to their origin in other domains like 

telecommunication or server computing. This data is 

necessary however, if the device is used explicitly to 

provide a safety function and must therefore be 

analyzed accordingly to the desired SIL/KAT. In our 

proposed configurations, every possible device failure 

mode, manifesting in either wrong output data, no 

output data or untimely output data from the multi-

core SoC, is detected by the cross comparison with a 

second device in each system time frame, or by the 

even more trustworthy voting with more than one 

DMON. Under these conditions, a true FMEDA can 

be omitted (saving the effort with/by the chip vendor), 

if transient and permanent failure rates can be 

provided, which are nonetheless required to compute 

the standard specific metrics (MTBF, MTTFd, DC, 

etc.), in conjunction with a FTA and/or markov 

analysis to show the dangerous detected and 

dangerous undetected system states. This resembles 

more or less a grey box approach11.  

Graceful degradation in case of failures can be argued, 

if the desired application permits for example the 

classification of system functions in the presented 

impact levels, and is vital for the distributed 

monitoring configuration, where different degradation 

paths can be designed depending on the final 

application. This is especially useful to provide 

conservative mitigation paths, where for example only 

IL2 functions are upheld when for example an error on 

the multi-core has been detected, while disabling IL1 

                                                      

11 Note: To define the application context in current standards, 

device internal function units used must not only be described in 

and IL0 functions until the system arrives at a safe 

state. 

One reason, why hardware redundancy (cross 

verification) is preferred over simple on-line 

monitoring, is the occurrence of latent faults in devices 

or systems. The potential presence of latent faults also 

denies a degraded, single device operating mode with 

an SMONC. Latent faults can be detected either by 

special on-line tests, consisting of software and/or 

integrated hardware (special hardware included in the 

SoC, like with safety MCUs). If adequate hardware 

support is present, as with safety MCUs, on-line tests 

for latent faults can be triggered periodically, which 

may be destructive (in order to trigger all software and 

also hardware elements involved in the error reaction 

path) in the MON. This potentially involves a restart 

of the device and therefore unavailability for the on-

line cross verification during the MON downtime. 

DMONC can be tested while always providing 

redundancy for IL2 functions when the NOM is 

restarted, or one of the DMONs is tested, while IL1 

and IL0 functions become unavailable on the LRU 

when the NOM is shut-down or rebooted. This enables 

non-destructive run-time tests on the DMONs, 

resulting in a great benefit of this architecture, since 

unavailability is reduced, even in the case that only a 

single LRU is present in the system. Furthermore, if 

safety MCU type DMONs have been selected with 

special internal hardware units to test internal units or 

detect errors at run-time, a processor or SoC-wide 

BIST can be executed periodically, resulting in a SoC 

restart and loss of internal state (destructive test). 

These tests are usually executed at startup in current 

applications, mainly in the automotive domain, but can 

be used in our configuration in a non-destructive 

fashion during runtime, greatly enhancing the 

detection of latent faults in the DMONs. 

Common cause failure scenarios are mitigated 

effectively by hardware dissimilarity between the 

NOM and the MON/DMON devices, as required in the 

highest certification levels. Note that the potential for 

CCFs exist in the DMONC, if both DMONs consist of 

the same devices, which could in theory lead to a 

double failure and an associated DU board level 

failure. Proper isolation of the DMONs is therefore 

the aerospace domain, but also for industrial certification. If they 

are used to detect/mitigate errors/failures, they must be analyzed 

and tested accordingly.  
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critical, in terms of power supply, physical board 

location, cooling, etc. to reduce common effects on 

those devices if possible. To eliminate this concern 

entirely, dissimilar devices should be used for each 

DMON, but this leads to additional development effort 

and project complexity and should be discussed very 

early in the design process with certification 

authorities. 

Aerospace Certification (ARP 4761/4754, DO-

254/178) 

Compared to the industrial standards, the respective 

aerospace guidance for hardware (DO-254) and 

software (DO-178) are rather vague on COTS items. 

As a result, with more and more requests from the 

industry, two documents have been issued by the 

EASA and the FAA in order to provide additional 

guidance on COTS parts and especially on complex 

COTS devices. These documents, the CAST-32 by 

FAA and the CM-SWCEH-001 (hardware aspects) 

and CM-SWCEH-002 (software aspects) by EASA, 

either present their current position on on multi-core 

processors (CAST-32 is limited to two cores, more 

than two cores not recommended) or provide 

additional guidance on highly complex COTS parts in 

general. We will therefore examine the architecture in 

the light of the CM-SWCEH-001 (SWCEH from here 

on). The certification memorandum defines 16 

activities which are applicable depending on the DAL 

and the product service experience (PSE). Since our 

goal is to justify the use of a single board up to DAL 

C, a LRU cluster of two units up to DAL B and a LRU 

cluster of more than two units up to DAL A, resulting 

from potential FDAL A functions being executed on 

the multi-core, all SWCEH-activities must be 

executed and documented, since low/none PSE can be 

provided for any multi-core SoC and highly-complex 

classification (see CM-SWCEH-001, Section 9.3.13, 

device classification acc. to activity 1). Relevant from 

a technical point of view are activities 1, 4, 5, 12, 13, 

15 and 16. We will ignore process and documentation 

activities within this work.  

Besides the hardware and software specific guidance, 

the ARP4754 and ARP4761 must be followed for 

                                                      

12 SWCEH activity 13, sufficient PSE for DAL A after >105 hours 

in aircraft use 

13 Base events in the FTA and markov analysis 

14  Identification and justification of these units required by 

SWCEH activity 4 

most certification efforts to achieve compliance to the 

specific certification specification. Extending the 

ARP4754 FDAL/IDAL classification, we added the 

impact level definition, which also allows the use of 

the standard FDAL and IDAL definitions within each 

category to remain compliant to existing regulation. 

SMONC and DMONC do not contain a single point of 

failure, as shown by the FTA and markov analysis in 

Appendix III. Again, neither the multi-core SoC, nor 

the MON or a single DMON is on a critical failure 

path. Nevertheless, harsh environment conditions 

entail at least two LRUs from DAL B onwards, due to 

the possibility for mechanical printed circuit board or 

component failures under vibrations, shock or thermal 

stress. The derived board level FTA and markov graph 

can further be used to extend the system/function fault 

trees. While it is possible to show with these analysis, 

that any failure of the multi-core is non-critical in 

general, a black-box approach to avoid certain 

activities for the multi-core is only permitted when 

field-based evidence12 on failure rates and the failure 

modes13 is available, or can be estimated in form of an 

FMEA of the device. The device level FMEA should 

provide transient and permanent failure rates, for each 

function unit of the SoC, in order to calculate a 

resulting total event probability in the application 

environment, based on the used functions14. In this 

context, a very pessimistic assumption is required to 

justify activity 12, in which we assume that every 

internal failure in the multi-core will lead to a wrong 

result, no result, or untimely result condition of this 

complex device. This is necessary, because sufficient 

independence of internal function units within the 

multi-core cannot be claimed under any 

circumstances, due to the extreme complexity 15  of 

these SoCs by the semiconductor manufacturer. 

Likewise, deactivated units must be checked 

periodically, to ensure that they remain disabled, by 

disabling power, clock or both and restrict bus access 

for those units16 when possible and applicable.  

Extensive architectural mitigation is performed on the 

board level, as suggested by activity 15, removing the 

multi-core device from any direct failure path in the 

15 Multi-layer routing on the die; no isolation substrates between 

function units, cores, busses due to timing constraints; etc. 

16 Internal, complex function unit can access memory as a bus-

master, for example complex communication peripherals or 

graphic processor units 
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case of single faults. Multi-point failures can be 

mitigated by DMONC, if both DMONs do not fail 

simultaneously, as shown by the FTA and markov 

analysis. Note that it is possible to mitigate common 

mode failure scenarios by dissimilar multi-core or 

monitoring devices within each LRU in a redundant 

cluster. We will not explore this path any further in this 

work.   

Activity 5 results in a great impact on documentation 

and analysis, in order to comply with the described 

actions. The first part, out of three, of activity 5 is 

accomplished by not relying on any internal function 

units to ensure safe operation of the multi-core device. 

Note that internal units will be used to ensure 

determinism and partitioning on the multi-core, but 

not on the board level, effectively canceling their 

effect on the safety of the LRU. The second part 

recommends that extensive validation should be 

performed, which is possible in the proposed 

architecture with fault injection, run-time trace 

(offered by most modern multi-core SoCs) and other 

test strategies. The third and fourth paragraph of 

activity 5 require a substantial development effort. The 

exact use case must be documented with great depth, 

accompanied with an in-depth device documentation 

and analysis. However, this can be achieved, given our 

proposed architecture and architectural mitigation 

strategy, with very little impact on overall system 

safety and certification outcome, since the multi-core 

is no longer in a critical failure path and only degrades 

the overall availability of the system in a realistic 

worst-case scenario. The exact nature of the 

assessment of activity 5, will most likely be subject to 

extensive discussions with the authorities in a live 

project, but could be reduced to a documentation task 

with limited certification risk given the architectural 

precautions and mitigations.  

 

WCET and Mixed-Criticality Partitioning on the 

Multi-Core SoC 

Common to both the industrial and aerospace domain 

is the need for strong determinism and partitioning on 

the multi-core device, especially with applications 

with mixed criticality levels running concurrently on 

the same device17.  

                                                      

17 SWCEH activity 5 and activity 16, IEC 61508-3 Annex A and 

F 

In order to overcome the WCET and partitioning issue 

in the certification context, we suggest the method 

proposed in [6], [9] and [10] , which uses a single core 

equivalence approach to determine WCET in the 

contention scenario on the shared bus, and temporal 

isolation via software-driven, per-core memory 

bandwidth management. [6] and [9] provide a good 

overview of related work and techniques explored. 

Partitioning is especially needed in the mixed 

criticality scenario, where less well tested applications 

with lower SIL/DAL levels execute alongside highly 

critical functions, due to the failure mode of non-

critical functions contending the shared memory or 

shared interconnect of other cores for critical 

functions18 . In terms of internal function units, the 

proposed method only relies on the core local 

performance counters, which become safety relevant 

if used for this purpose. Therefor these counters have 

to be verified for correct operation during design, with 

the associated documentation provided. Likewise, to 

detect latent faults, a dynamic run-time validation 

must be conducted in regular intervals (depending on 

the application domain). This check is rather simple 

and non-destructive, by logging the current event 

counter value, conducting a defined number of events 

to be logged (e.g. memory transactions, cache misses 

by accessing non-cached regions, etc.) and comparing 

the resulting counter value with the expected result. 

When augmenting the proposed method in [10], with 

a per-function execution profile like we proposed, 

tighter bounds can be placed on the detection time, 

much like with [17], where this approach is used to 

detect malicious instructions for a security reason, 

where we propose this method to also provide 

unspecified program flow detection for safety reasons. 

In [6], the properly isolated cores are then used to 

derive a WCET analysis, conducted on the single core 

under the assumption that a pre-allocated memory 

bandwidth is available per core which bounds the 

WCET in the contented SoC. In previous generations 

of safe systems, WCET analysis was either conducted 

statically by formal methods and verified during test 

(tool support available) while triggering the identified 

worst case memory consumption or timing path on the 

real system within a measurement/trace setup or 

hardware-in-the-loop arrangement. Likewise, WCET 

18 Not only due to SEU, but also related to undiscovered design 

errors on less well tested, non-critical functions. 
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analysis can be conducted using the single core 

equivalence approach in the same manner, while 

worst-case profiles on each core are generated during 

the validation phase. These profiles ensure 

determinism in the field, even in the case of SEU 

introduced rogue cores or undiscovered software 

design errors in less stringent certified software on 

other cores, by allowing the RTOS instance to suspend 

the execution of non-critical tasks on a core or 

prematurely detecting abnormal program execution 

symptoms for critical functions. Note that, current 

generations of multi-core SoC already feature 

extensive time and data trace capabilities via dedicated 

interfaces (Nexus AURORA, ARM ETM/ITM, etc.) 

which can be exploited to conduct precise on-target 

measurements with an unmodified binary image to 

provide further confidence during validation of the 

design. 

Conclusion 

Although no guidance is currently provided on the 

certification of high-complex, COTS multi-core SoCs, 

a suitable architecture can be derived, which fits into 

current regulation and builds on the simplest concept 

possible. If one cannot be sure, that a part, device or 

system can function without any failures under any 

conditions, another system, or group of such, must 

provide the means necessary to detect the failure and 

mitigate its effects. The failed complex system itself 

cannot under any circumstances be used to detect his 

own failure, since it has already failed19. Note that this 

approach also denies all possible pathways to use 

different cores of the COTS multi-core as redundant 

compute channels to mitigate errors outside another 

core’s local elements, due to the common failure 

modes.  

During the course of this paper, we presented two 

architectural configurations to accomplish compliance 

with current regulatory frameworks for certification of 

COTS multi-core SoCs. The first approach utilizes a 

simple centralized command-monitor pattern, with 

redundant output paths, to detect failures via cross 

comparison and is especially useful when the 

application already requires more than one LRU, or 

even higher numbers of units distributed throughout 

the physical system. The second approach distributes 

the monitoring and incorporates the low-speed 

                                                      

19 Special safety MCUs excluded 

interfaces into these units, providing on-board voting, 

error masking and a hardware fault tolerance build in 

on the LRU level. It is designed for physical systems 

with stringent size, weight and power requirements, 

where a large number of LRUs is either not feasible or 

cannot be justified due to commercial constraints.  

System functions have been categorized into separate 

impact levels, to reflect their impact on the system 

behavior in case of wrong computation results and 

complete loss of functions. This classification is used 

to distribute functions according to their level to the 

on-board cross comparison or voting for on-board 

error detection, localization and masking, or to inter-

LRU voting in a cluster of redundant units.  

The proposed high-level software architecture 

provides fast error detection within the multi-core 

device and to separates functions of different 

criticality levels executing on different cores, with 

little computational overhead and complexity. 

Associated software and measurements are future 

work on actual hardware. 

With a FTA and markov analysis, we showed that no 

LRU failure mode could directly be associated with an 

error inside the multi-core device, resulting from the 

board level architecture, while addressing certain 

requirements by domain specific standards and 

guidance. As a result, we propose that certification of 

systems based on COTS multi-core processors is 

possible, even with current regulatory frameworks and 

the inherent hesitation of certification authorities. 

Related Work 

Academic contributions to the topic mainly focus on 

either custom function unit integration into multi-core 

ASICs or entirely purpose build devices, like [18], 

[19] or [17], in order to either enforce, monitor or 

enhance determinism and core decoupling. While they 

provide guidance for future generations of multi-core 

SoC design, these works do not explicitly address 

certification strategies and shortcomings of their 

designs, and are also of scope for almost any 

application, due to high cost of custom ASICs. Other 

academic works focus on WCET calculus ( [20], [6], 

[10], [11], [9]), while also not explicitly considering 

design constraints due to certification, in terms of 

possible common failure scenarios, where the correct 
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function of any core in the SoC can no longer be 

guaranteed by a line of code, and the certification 

aspects when internal function units are used to 

guarantee certain safety claims. 

Future Work 

In our future work, we will assemble a testbed for the 

DMONC and conduct measurements on the error 

detection and mitigation methods described, as well as 

the watchdog implementation. A certifiable, industry 

standard RTOS microkernel will be used on the multi-

core in multiple instances to implement the proposed 

the software architecture. The institute of flight 

dynamics will provide a certifiable flight control 

application suite with baseline control, autopilot 

software, on-line flight path planning and automatic 

landing based on augmented visual data to serve as a 

benchmark with a certifiable, model-based developed 

application collection. The final timing and validation 

verification example will be integrated in one of the 

existing hardware-in-the-loop aircraft system 

simulations existing at the institute. 
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Appendix I 

ID UC1 UC2 Description 

RQ1 x  The compute platform shall satisfy a safety claim of up to SIL2 / KAT3 (Pl.a-d) with a 

single LRU, Safety Claim of SIL3-4/KAT4 (Pl.d-e) depending on system architecture 

and other failure mitigation means on system level  

RQ2 x x The compute platform shall satisfy a safety claim of SIL4/KAT.4 (Pl.e) with two LRUs 

or more 

RQ3 x  The compute platform shall be certifiable in accordance with DAL C using one single 

LRU   

RQ4 x  The compute platform shall be certifiable in accordance with DAL B with two LRUs 

maximum 

RQ5  x The compute platform shall be certifiable in accordance with DAL A with at least three 

or four LRUs (1oo3/1oo4/2oo5/2oo6, etc.) 

RQ6 x x The LRU shall provide on-board fault detection / diagnosis / functional monitoring to 

detect wrong results of critical functions (IL2). A faulty computation result of any IL2 

function shall not be distributed by the LRU. 

RQ7  x The LRU shall provide a fail-passive / fail-silent safe state in a redundant configuration. 

RQ8 x  The LRU shall provide means to reach a safe state via separate system mode transitions 

requiring complex actions. 

RQ9 x x The LRU shall be able to maintain the safe state. 

RQ10 x  The LRU shall provide a fail-operational fallback operating mode, in order to execute 

complex system mode transitions required to reach a system safe state. 

RQ11 x  The LRU shall satisfy ISO13849 KAT3 single fault tolerance. 

RQ12 x x The LRU shall detect latent faults in its nominal compute channels by online monitoring 

or cross comparison. 

RQ13 x x Fault accumulation may only lead to a unsafe LRU state if multiple, physically 

independent subsystems of the LRU are subject to failures (nominal and monitoring 

failing at the same time). 

RQ14 x x Complex, multi failure scenarios which disrupt the nominal and monitoring compute 

channels of an LRU shall be mitigated on the system level via redundancy. 

RQ15 x x The LRU shall be designed such that system functions of different criticality and impact 

level can be executed side by side on the multi-core platform in a safe way. The 

partitioning of different functions must be guaranteed at all times. 

RQ16 x x The LRU shall provide legacy interfaces such as CAN, RS232/485, ARINC429 or 

similar databus communication interfaces to support existing infrastructure, sensors or 

actors. 

RQ17 x x The LRU shall provide at least two pairs of redundant modern high-speed interfaces 

such as Ethernet (AFDX, EtherCAT, Powerlink, etc.), TTP, SpaceWire, with at least 

50Mbit/s average throughput per interface, as well as a redundant, high-speed cross 

channel interconnect with at least 100Mbit/s average throughput per interface. 

RQ18 x x The LRU shall be designed to mitigate common mode failure, with regards to common 

complex COTS parts used within the LRU.  

Table 2: Requirements for a LRU for the presented use-cases. Columns UC1 and UC2 signify if the 

requirement originates from the respective use-case 
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Appendix III 

Base Events 

 

 

 

Name Description Model λop λsb D WBk Trep Tchk Dt t0 β 

MC transient failure SEU (Estimation, at 40kft, 

5.00E-05 on Ground,  best  
conservative guess based on 

NDA data) 

Repairable 5,00E-03 0.0 1.0 1.0 0.000278 0.0001 0.0 0.0 0.1 

MC permanent failure Latch-Up (Estimation based on 
QoiQ P2020 NDA data,  best 

conservative guess) 

Non 
repairable 

1,50E-08 1,00E-13 1.0 1.0 0.0 1.0 0.0 0.0 0.1 

SMON transient failure SEU (Estimation, best  

conservative  guess) 

Repairable 5,00E-05 0.0 1.0 1.0 0.000278 0.0001 0.0 0.0 0.1 

SMON permanent failure Latch-Up (Estimation, best  

conservative guess) 

Non 

repairable 

1,50E-08 1,00E-13 1.0 1.0 0.0 1.0 0.0 0.0 0.1 

DMON permanent failure Latch-Up (MPC5744 
estimation, NDA data) 

Non 
repairable 

1,00E-08 0.0 1.0 1.0 0.0 1.0 0.0 0.0 0.1 

DMON transient failure SEU (MPC5744 Estimation 

based on NDA FMEDA Data, 

40kft) 

Repairable 3,00E-03 0.0 1.0 1.0 0.000278 0.0001 0.0 0.0 0.1 

FPGA transient failure SEU (based on Artix-7A50T 

estimation on 40000ft above 

New York (600x flux), 100% 
device utilization with 50% 

ciritical bits)  

Repairable 2,00E-04 0.0 1.0 1.0 0.000278 0.0001 0.0 0.0 0.1 

FPGA permanent failure Latch-Up (based on 7-series 

Tj=55°C estimate) 

Non 

repairable 

1,50E-08 1,00E-13 1.0 1.0 0.0 1.0 0.0 0.0 0.1 
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First Aggregate to Device Level 
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LRU Fault Trees and Markov Diagrams 
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Resulting System Reliability Calculation with different Redundancy Levels 
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Markov Models 
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