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Abstract 

The aim of system-wide molecular profiling studies is to explore the genes or biological molecules of 

an organism on a global scale. These so-called omics data are mainly collected from high-throughput 

technologies, which have swept through the whole area of biological studies over the last decades, 

such as genomics, transcriptomics, proteomics, and metabolomics. Multiple omics datasets that 

characterize the same set of biological samples are increasingly available. The different types of 

information the underlying molecules carry require the integrative analysis of these data to 

understand how different factors interact with one another in diseases. To this end, more 

computational efforts are required to derive useful biological knowledge from these noisy data.  

Multivariate methods represent an old family of statistical methods. These methods account for 

multiple dependent or independent variables at a time and often involve dimension reduction. 

Nowadays, multivariate statistics shows great potential for analyzing noisy high-throughput omics 

data, but the application of these methods to this area is still in its infancy. This thesis explored several 

applications of multivariate methods for the integration and data analysis of multiple omics datasets. 

The thesis, first, describes the application of multiple co-inertia analysis (MCIA) for the integrative 

exploratory of multiple omics data. MCIA simultaneously projects several datasets into the same 

dimensional space; consequently, concordance and discrepancy can be easily highlighted, and the 

most variant markers from each dataset can be extracted. Discovering joint patterns among multiple 

omics data, such as defining subtype models, is another commonly faced task in omics studies. Existing 

methods for this purpose are often compromised by some problems, notably the problem of 

nondeterministic solutions. Therefore, a new algorithm was developed, termed moCluster. The 

moCluster algorithm first employs consensus principal component analysis (CPCA) approaches to 

define a set of latent variables that represent the joint pattern of multiple dataset; next the defined 

latent variables are further subjected to an ordinary clustering algorithm to discover joint clusters. The 

algorithm is computationally efficient (operates 100× to 1000× faster than the competitors); hence, it 

is particularly suitable for analyzing large-scale omics data. Last, but not least, a novel algorithm, 

moGSA, was introduced. It is a multivariate-based gene set analysis method with particular focus on 

the integration of multiple omics data. The method facilitates the detection of concordance and 

discrepancy between datasets on the gene set level. 

All the methods have been evaluated using simulated data. More importantly, the biological 

application of these multivariate methods illustrated that multiple omics data can complement one 

another; therefore, integrative analysis may potentially increase the coverage and power of pathway 

or gene set analysis. Furthermore, in some of the specific applications such as clustering analysis, may 

also discover knowledge that cannot be generated from a single data set. All the results underscore 

the importance of analyzing multiple omics data sets in an integrative scheme.
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Zusammenfassung 

Gene und andere biologische (Makro-)Moleküle können heutzutage System-weit studiert werden. 

Diese sogenannten ‘Omics’-Daten werden mithilfe von Hochdurchsatz-Technologien gewonnen, die 

Tausende von Features gleichzeitig messen. Getrieben durch den kontinuierlichen technologischen 

Fortschritt in den vergangenen Jahrzehnten haben diese Technologien ganze Bereiche biologischer 

Forschung erfasst. 

Die enorme Komplexität der Biologie führt zwangsweise dazu, dass die Analyse einer einzelnen Ebene 

biologischer Information, wie beispielsweise Gene, Transkripte oder Proteine, das biologische System 

nur unvollständig abbildet. Daher gibt es heutzutage eine zunehmende Menge an Studien und 

Datensätzen, die mehrere Omics-Ebenen derselben biologischen Proben abbilden. Es sind gerade 

diese Datensätze, die ungeahnte Möglichkeiten bieten, um die Interaktionen unterschiedlicher 

Faktoren zu studieren, die für das Funktionieren eines Organismus oder die Entstehung von 

Krankheiten verantwortlich sind. Allerings sind dafür enorme Rechnerkapazitäten notwendig, um 

nützliches biologisches Wissen aus diesen verrauschten Datenzu gewinnen. 

Multivariate statistische Methoden können gleichzeitig abhängige und unabhängige Variablen 

analysieren und nutzen häufig Techniken der Dimensionsreduktion. Multivariate Methoden bieten 

großes Potential für die Analyse von verrauschten Hochdurchsatz-Omics-Datensätzen, aber die 

Anwendung diese Methoden steckt noch in den Kinderschuhen. 

Diese Arbeit hat verschiedene Anwendungen multivariater Methoden für die Integration und Analyse 

von Multi-Omics-Datensätzen untersucht. Zunächsten beschreibt diese Arbeit die Anwendung der 

sogenannten multiple co-inertia analysis (MCIA) für die integrative Untersuchung von Multi-Omics-

Datensätzen. MCIA projiziert simultan mehrere Datensätze in den selben mehrdimensionalen Raum, 

wodurch Konkordanz und Diskrepanz gut hervorgehoben und die am stärksten variierenden Marker 

jedes Datensatzes extrahiert werden können. 

Ein weiteres, häufig beobachtetes Problem betrifft die Herausforderung gemeinsame Muster in Multi-

Omics-Daten zu finden, beispielsweise Tumor-Subtypen. Existierende Lösungen dafür sind oft 

eingeschränkt, unter anderem durch das Problem nicht-deterministischer Lösungen. Daher wurde im 

Rahmen dieser Arbeit ein Algorithmus entwickelt, moCluster genannt, der zunächst eine Konsenus-

Hauptkomponentenanalyse (principle component analysis, PCA) nutzt und im Anschluss einen Satz an 

latenten Variablen definiert, die gemeinsame Muster multipler Datensätze definiert. Diese latenten 

Variablen werden schliesslich  mit einem gewöhnlichen Cluster-Algorithmus geclustert, um 

gemeinsame Muster zu entdecken. Der Algorithmus ist effizient (500x bis 1000x schneller als ähnliche 

Algorithmen) und daher besonders geeignete um große Omics-Datensätze zu analysieren. 

Zu guter Letzt wurde ein neuer Algorithmus eingeführt, moGSA genannt – eine multivariate Gen-Set-

Analyse-Methode mit einem besonderen Focus auf multiple Omics-Datensätze. Die Methode 

vereinfacht die Entdecung von Konkordanz und Diskrepanz zwischen Datensätzen auf der Ebene von 

Gen-Sets. 
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Alle drei Methoden wurden mithilfe von simulierten Daten evaluiert. Wichtiger noch, biologische 

Anwendungen dieser multivariaten Methoden haben gezeigt, dass mehrere Omics-Datensätze 

einander kompensieren und die integrative Analyse potentiell die Abdeckung und Power von 

Pathway- und Gen-Set-Analysen verbessern können. Zudem bieten diese Methoden das Potential, 

biologische Information zu gewinnen, die nicht aus einem einzelnen Datensatz gewonnen werden 

kann. Alle diese Ergebnisse unterstreichen die Wichtigkeit, die Ebenen biologischer Information in 

einer integrierten Art und Weise zu analysieren.
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  CHAPTER I 

General Introduction 

1.1 Omics data and cancer research 

Development of cancer is a dynamic and evolutionary process, which involves multiple genetic and 

epigenetic changes. Although some oncogenes (promoting cell growth and reproduction) and tumor 

suppressing genes (inhibiting cell division and survival) were discovered [1], rarely (or even not) a 

certain type of cancer could be completely explained by the mutation of these genes. Researchers 

recognized that multiple tumor sub-clones coexist with a primary clone, and these are driven by tumor 

genetics, epigenetics and the tumor microenvironment [2]. Therefore, a comprehensive 

understanding of cancer biology is required for the personalized treatment of this heterogenic disease.  

Nowadays, the omics studies greatly facilitate cancer studies. Organisms are built upon different 

molecules including DNA, RNA, protein and others. The interplay within and between these molecules 

formulates biological functions. In consequence, the study of a single layer is not enough to 

understand the mechanisms of biological processes. The suffix “-ome” refers to “all constituents 

considered collectively” [3]. With the emergence of omics technologies, biological systems are being 

investigated at an unprecedented heterogeneous and comprehensive fashion. Advances in RNA-

sequencing and mass spectrometry (MS) based proteomics have dramatically improved coverage and 

quality of genomic, transcriptomic and proteomic profiling [1-4]. Recent advances of MS-based 

proteomics provide a complementary approach to genomics and transcriptomic technologies [4, 9] 

and systematic analyses can identify and quantify the majority of proteins expressed in human cells 

[4-6]. Large-scale consortia projects shed light on important biological knowledge that would not be 

revealed by small-scale analysis. For example, The Cancer Genome Atlas (TCGA) project profiles 

multiple layers of omics data over hundreds of patients with tumor from different tissues of origin. 

This project identified cancer or subtype-related mutational drivers from the genomic data. 

Furthermore, potentially related pathways were identified through the integration of mRNA or protein 

data from the same patients [7, 8]. Another project using the same datasets, pan-cancer analysis, 

revealed the subtype similarities between different cancers and a potentially new classification 

scheme of cancers using multiple omics data [9, 10]. These data yielded unprecedented view of 

molecular building blocks and the machinery of cells. However, interpreting these large-scale datasets 
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and deriving fundamental and applicable information about biological system still represent a 

considerable challenge.  

1.2 Omics technologies 

The field of omics studies is strongly influenced by high-throughput technologies such as sequencing, 

microarray or MS-based proteomics. A comprehensive introduction is beyond the scope of this thesis. 

Hence, this section introduces only the basics of the transcriptional profiling using microarray, RNA 

sequencing and MS-based proteomics, with particular emphasis on data processing and quantification. 

The data generated by these methods were intensively used within this project.   

1.2.1 Microarray based transcriptomics profiling 

 

Figure 1.1 A schematic view of a typical printed two-color microarray experiment. (Copied from [11]) 

Starting from late 1990s, gene expression microarray is the first widely used high throughput 

technology [12]. Regardless of the different variants of microarrays, the basic concept is rather similar. 

A typical experimental workflow of complementary DNA (cDNA) array is illustrated in Figure 1.1. A 

microarray experiment consists of preparation of cDNA library and probes and hybridization of the 

two molecules. First, total RNAs are extracted from the samples of interest, followed by a poly-A 

enrichment of mRNAs. Then the isolated mRNAs are reverse transcribed to cDNAs using fluorescently 

labeled nucleotides. A probe consists of a large number of identical oligonucleotide sequences that 

perfectly match a target gene sequence (perfect-matched probes). In addition, some probes that are 

not perfectly matched to any target transcript (mismatched probes) are also used. The signal detected 

from these mismatched probes can be used to control the unspecific binding.  Probes can be derived 

from different sources such as cDNA or pre-synthesized high-density oligonucleotides. The probes are 

then attached to a solid surface (e.g., silicon wafers used by Affymetrix, glass slide used by Agilent 

Technologies or silica beads used by illumina beadarray). During the hybridization step, probes will 
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preferentially bind to the cDNA molecules that are perfectly complementary, whereas the unbound 

or non-perfectly complement molecules will be washed off from the array. Then a laser scanner will 

scan the microarray and record the intensity of the fluorescent dye.  

The microarray data are noisy and therefore require intensive data preprocessing and normalization, 

including filtering background noise, adjustments for cross hybridization (nonspecific binding of cDNA 

and probe), estimation of expression values across appropriate ranges, and removal of unwanted 

variance within or between microarray experiments. Different normalization methods for microarray 

data were proposed; the widely used ones include MicroArray Suite 5 (MAS5) and Robust Multiarray 

Average (RMA) normalization. MAS5 normalizes each individual microarray data and makes use of 

both the perfect-matched and mismatched probes. RMA normalization does not subtract the 

mismatched signals, instead it assumes that most of the genes are not differentially expressed 

between conditions. It normalizes all the arrays simultaneously. Recently, GCRMA, a modification of 

RMA, was proposed. This modification is based on the observation that the binding affinity between 

probe and target is dependent on the sequence of different types of nucleotides (T, C, G, A). The 

inclusion of position-specific effects increased the proportion of explained variance by over 10% in 

comparison with other methods [13]. 

1.2.2 RNA sequencing 

An alternative method of mRNA expression profiling is RNA sequencing (RNA-seq). Similar to the 

microarray experiment, an RNA-seq experiment starts with total RNA extraction and an mRNA 

enrichment (often using the poly-A tail; Figure 1.2). Next, the isolated mRNAs are reverse transcribed 

to cDNA, which are subsequently fragmented to short nucleotide sequences (or first fragment mRNA 

followed by reverse transcription). Then, short DNA adaptors are ligated to the termini of the DNA 

fragments for indexing and deposition on the sequencing platform. The outputs of RNA sequencing 

are millions of short reads with quality scores. Dependent on the technologies, the lengths of reads 

range from several tens (Solexa system) to several hundred (454 Sequencing) [15]. The sequencing 

could be performed from a single end of the fragments or both ends (paired-end sequencing). The 

paired-end sequencing provides high quality sequences for both the sides of a fragment; therefore, it 

is particularly useful for the detection of structural variants such as genomic rearrangement, gene 

fusion or repetitive regions.  

In data analysis, the sequencing reads need to be trimmed to remove the adaptors, poly-A tail and 

low quality regions [16]. Then the reads are used to reconstruct transcript using either de novo method 

or reference genome-guided method. De novo assembly does not require prior knowledge of a 

genome. The genome-guided assembly becomes overwhelming because of its computational 

efficiency and ever-increasing coverage and accuracy of reference genomes. However, the challenge 

of read mapping is from both technological (e.g. short reads and error detection) and biological 
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aspects (e.g., exon-exon junction and mutation). Among these, one of the major challenges is that 

some reads are mapped to multiple genes or isoforms with high quality scores. Frequently, people will 

consider the “law of parsimony” (Ocam’s razor), so that only a minimal set of compatible isoforms 

would be reported, such as Cufflinks [17]; on the contrary, some approaches report all isoforms 

supported by the read data, such as Scripture [18]. Other commonly used methods include bowtie, 

ELAND, MapSplice, and so on [19].  

 

Figure 1.2 A schematic overview of RNA sequencing experiment. (Adapted from [14]) 

For the transcript quantification, a general idea is that the abundance of a transcript in a cell correlates 

with the number of reads measured. However, longer transcripts will contribute to more reads in 

comparison with the shorter ones that have the same abundance. In addition, the total number of 

measured reads may vary among experiments because of artefact reasons. Therefore, the number of 

reads needs to be normalized according to the length of transcripts and total number of reads in an 

experiment. This quantitative approximation of transcripts is called reads per kilobase per million 

(RPKM) [20], which is defined by 

𝑅𝑃𝐾𝑀 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 𝑡𝑜 𝑎 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡

𝑇ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑐𝑖𝑟𝑝𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑖𝑛 𝑘𝑖𝑙𝑜𝑏𝑎𝑠𝑒
×

106

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑎𝑝𝑝𝑒𝑑 𝑟𝑒𝑎𝑑𝑠 𝑖𝑛 𝑏𝑎𝑠𝑒
  

While dealing with paired-end data, one fragment of cDNA could correspond to either one or two 

reads. Therefore, the number of reads in the above formula can be replaced by the number of 

fragments, which results in the fragments per kilobase per million (FPKM). However, the problem of 

read mapping uncertainty also impacts the quantification of transcripts. The simplest way to deal with 

this problem is to discard reads mapped to multiple regions in the genome. However, the fraction of 

non-uniquely mapped reads ranges from 17% (mouse) to 52% (maize) in different organisms [19], 



General Introduction 

13 
 

hence, simply removing these reads may lose significant amount of information. A more sophisticated 

method is to heuristically allocate the non-uniquely mapped reads in proportion to uniquely mapped 

reads originated from the gene. Recently, RNA-seq by expectation maximization (RSEM) was proposed 

to solve uncertainty in read mapping. It employs a statistical model derived from the sequencing 

process, allowing modeling of the non-uniform read distributions. It has been shown that this method 

has more accurate gene expression estimates in comparison to other methods [19, 21]. The RSEM 

method is also used by TCGA (the RNA-seq data processed by this method is referred as RNASeqV2) 

and this thesis. 

1.2.3 Comparison of microarray and RNA-seq data 

Both microarray and RNA-seq are indispensable methods for transcriptomic profiling. Each method 

has its pros and cons. For the microarray platform, the high background noise (from cross 

hybridization) may conceal the true signal from low abundant mRNAs, whereas hybridization between 

highly abundant mRNA species and their probes could be saturated. Therefore, the microarray data 

have a limited dynamic range and yield a relative quantification across conditions, which result in extra 

complexity for cross-experiment and meta-analysis. 

RNA-seq data are less suffering from signal saturation and therefore better represent the dynamic 

range of mRNAs in the samples. The accuracy of RNA-seq has been validated by quantitative 

polymerase chain reaction and spike-in studies [14]. Another advantage of RNA-seq is that it has the 

potential to detect the genomic events that are not known in prior, such as unknown alternative 

splicing, single nucleotide polymorphism (SNP) or gene fusion.  

1.2.4 Mass spectrometry based proteomics and protein quantification 

Proteins are the direct executors of biological functions and the targets of most cancer drugs. The 

abundance of mRNA only has a moderate correlation with the abundance of their translated proteins 

[22]. Therefore, the analysis of proteome is indispensable even transcriptomic analysis has been 

widely used in cancer studies. The development of MS and other instruments such as high-

performance liquid chromatograph (HPLC) allows fast and accurate measurement of complex 

proteomes (such as human proteome) with reasonable costs. Nowadays, MS is the standard method 

for large-scale proteomic studies [23].   

General workflow of MS-based proteomics 

MS-based proteomic studies could be generally classified into bottom-up and top-down approaches. 

The top-down method requires extensive protein purification and is not suitable for large-scale 

proteome profiling. On the contrary, the bottom-up approach (also referred to as shotgun proteomics) 

does not require extensive protein separation but provides higher throughput and more sensitive 
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workflows. This thesis describes only the bottom-up approach, which was also exclusively applied 

within this project. Figure 1.3 is a schematic illustration of a typical shotgun proteomics analysis 

procedure.  

 

Figure 1.3 A schematic view of MS-based proteomics. (Copied from [24]) 

MS-based proteomics can analyze proteins from different sources such as cell lines, tissues, or body 

fluids. Proteins in these samples are first extracted and undergo a series of protein purification and 

separation steps to decrease the sample complexity. For this purpose, sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) is one of the most commonly used techniques. SDS 

bears negative charge and can denature proteins (destroy the structure of proteins). The binding of 

SDS and a protein is proportional to the relative molecular mass of the protein. Therefore, the 

treatment of SDS creates proteins with uniformed mass-to-charge (m/z) ratio, which is further 

separated by PAGE.  

Then the gel-lanes are sliced and the proteins inside are digested by proteases, most often by trypsin. 

Trypsin specifically cleaves the carboxyl-terminal side of arginine and lysine residues. Because of the 

distribution of the two amino acids in proteins, the trypsin-digested peptides are suitable for the MS 

analysis. Other proteases with high specificity of their cleavage sites can also be used in protein 

digestion, including Lys-C, Asp-N, and Glu-C.  

Because of the complexity of the digested peptide mixture, peptide separation is required for the in-

depth identification and quantification of peptides by MS. In a liquid chromatography tandem mass 

spectrometry (LC–MS/MS) experiment, the peptide mixture is further separated by LC, which 

separates the peptides by passing them through fine capillaries or columns. The peptides with 

different properties (such as hydrophilicity) will travel through the columns in different paces. 

Therefore, the composition of samples eluted out at a time (retention time) is less complex. The 

peptides with specific modifications could be enriched before this step as well, for instance, by the 

use of hydrophilic interaction through LC for enriching glycosylated peptides [25] or titanium dioxide 

columns for phosphopeptides [26, 27].  

An MS generally consists of three components: the ionization source (e.g., matrix-assisted laser 

desorption and ionization (MALDI) and electrospray ionization (ESI)), mass analyzer (e.g., time-of-flight 

(TOF) or ion trap (IT)), and detector. The peptides eluting out at a time are ionized and transferred 

into the gas phase by an ionization source. The ionized peptides are then separated according to their 

m/z ratio in a mass analyzer. Finally, the detector in MS results in a full scan of mass spectra (MS1 
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spectra) at a specific retention time. In a tandem MS experiment, a list of peptides (referred as 

“precursors” or “parent” ions) would be selected from the MS1 spectra for further fragmentation, 

most frequently using the collision-induced dissociation (CID), the high energy C-trap dissociation 

(HCD), or the electron transfer dissociation (ETD) [28]. In the conventional data-dependent acquisition 

(DDA) approach, a dynamic inclusion list or exclusion list could be used to ensure that the peptides of 

interest or previously undetected peptides could be preferentially selected. The detection of 

fragmented ions generates the tandem spectra (MS2 or MS/MS spectra; Figure 1.4), which often 

contains the amino acid sequence information and could be used for peptide sequencing and 

identification.  

 

Figure 1.4 A schematic illustration of target-decoy database search approach for peptide identification. A list of spectra are 

compared with target and decoy sequences and assigned with scores, which generates distributions of the correct and 

incorrect scores. The FDR could be estimated from the comparison of the two distributions (see text). (Adapted from [28]) 

Peptide identification – the target decoy approach 

A typical LC-MS/MS experiment produces a large number of mass spectra. These spectra undergo 

preprocessing, including smoothing, noise filtering, deisotoping, and peak picking and in the end are 

converted to peak lists, which are used for peptide sequencing and identification. Peptide sequences 

could be extracted from spectra with or without referring to a protein sequence database, referred as 

de novo approach and database search approach, respectively.  

The database search approach requires a protein database, which includes the peptide sequences of 

all proteins identified in the sample of interest. The frequently used ones include Uniprot, Swissprot, 

or Refseq. For peptide identification, the experimental acquired MS/MS spectra are compared with 
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mass spectra reconstructed from in silicon digestion of all protein sequences in the database in use 

(theoretical spectra), resulting in a list of peptide-spectrum matches (PSMs). The similarities of the 

theoretical and experimental mass spectra are measured with scores, which are often calculated on 

the basis of the cross correlation between these two types of spectra. The database search approach 

is often in conjugation with a target-decoy strategy for assessing the false discovery rate (FDR) of PSMs: 

in addition to the in silico digestion of true peptide sequences in a database (target database), a decoy 

database is constructed through the in silico digestion of the randomly shuffled or reversed peptide 

sequences. Theoretical spectra in the decoy database are subsequently compared with the MS/MS 

spectra from the experiment. The comparison of MS/MS spectra with target and decoy spectra 

generates two score distributions representing the true matches and random matches (Figure 1.4). 

An empirical score cutoff could be determined from the decoy and target score distribution to control 

the FDR of PSMs, which indicates how likely (the probability of) the identifications are potentially 

incorrect. The FDR for a peptide with score s is calculated as 

𝐹𝐷𝑅(𝑠) =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑐𝑜𝑦 ℎ𝑖𝑡𝑠 𝑤𝑖𝑡ℎ 𝑠𝑐𝑜𝑟𝑒 ℎ𝑖𝑔ℎ𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 ℎ𝑖𝑡𝑠 𝑤𝑖𝑡ℎ 𝑠𝑐𝑜𝑟𝑒 ℎ𝑖𝑔ℎ𝑒𝑟 𝑡ℎ𝑎𝑛 𝑠
 

Protein identification  

A confident identification of protein using peptide sequences from MS is challenging. The difficulties 

are from at least two aspects. First is the nonrandom grouping effect of peptides (Figure 1.5A) [29]. In 

practice, the proteins presented in the sample of interest generate multiple different peptides, many 

of which could be identified in an MS experiment (True discoveries). Therefore, although a large 

number of peptides is correctly identified, the number of identified proteins could be rather small. 

However, the false discovered peptides match randomly with the protein sequences in the database, 

hence, each of them are likely uniquely mismatched to a random protein. As a result, the nonrandom 

grouping of peptides lead to an inflation of FDR at the protein level. It is particularly suspect for the 

proteins that are only identified by one peptide. The second problem, similar to the read mapping 

uncertainty problem in RNA-seq, is that many identified peptides correspond to multiple proteins. In 

this case, a minimum of proteins that account for all the observed peptides can be reported (the 

Occam’s razor) or, in contrast, report all the proteins that match to the set of detected peptides (anti-

Occam’s razor; Figure 1.5B).  

Protein quantification  

Considering the difficulty of protein identification, the quantification of proteomic data is even more 

challenging. The protein quantification can use either reporter ion-based approaches or label-free 

approaches (Figure 1.6). Within the reporter ion-based approaches, stable isotope labeling by amino 

acids in cell culture (SILAC) [31] achieves the best accuracy. SILAC requires the cell lines of interest to 
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be cultured with medium containing isotope labeled amino acid. The cell lines will take up the labeled 

amino acid from the growth medium so that all proteins are labeled finally. In an MS measurement, 

samples from different conditions are pooled together and the MS distinguishes proteins from 

different samples or conditions by their different masses. However, the in vivo labeling requires long 

cultivation or feeding times when applying it to multicellular organisms [32], particularly, patient 

tissues cannot be analyzed using this method. Two most popular alternatives of SILAC labeling are 

labeling with tandem mass tags (TMTs) and isobaric tags for absolute and relative quantification 

(iTRAQ). Both the methods use isobaric labeling. In these approaches, peptides from different 

experimental conditions (such as the disease and healthy tissue) are labeled with tags having the same 

mass, but the fragmentation of the tags will produce different reporter ions in MS2, which are used 

for distinguishing samples and quantification. The MS2-based quantification gives the benefit of 

multiplexing capacity without increasing MS1 complexity [33]. Therefore, it is suitable for more 

complicated experimental designs. In addition, it can be used in proteome analysis of samples where 

in vivo labeling cannot be applied, such as patient tissues. Nevertheless, drawbacks are that it is less 

accurate because of contamination of isobaric ions and that it has a limited dynamic range [34].  

 

Figure 1.5 An illustration of problems in protein identification using peptides identified in LC-MS/MS. (A) A toy example 

showing the problem of non-random grouping of peptides. Left side shows 10 identified peptides, two of which are incorrect 

PSMs (false discovery, shown as gray boxes). The eight correct peptides correspond to three proteins in the sample (A, B, 

C), whereas the two incorrect peptides are randomly matched to two other proteins, which are not presented in the sample 

(X1 and X2). Consequently, the FDR is increased from 20% at peptide level to 40% at the protein level. (Adapted from [29]) 

(B) An illustration of different conviction of protein identification using peptides matched to multiple proteins. (Adapted from 

[30]) 

Different from the reporter ion-based approaches, label-free quantification (LFQ) measures samples 

sequentially (not pooled). For the protein quantification, the abundance of a protein could be 
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indicated by the number of MS/MS spectra from that protein (spectra count method) [34, 35]. 

However, several issues are associated with this method. First, the quantification relies on the number 

of MS/MS spectra, which are often acquired in a data-dependent manner. This may affect the 

robustness of quantification results. Second, this method is biased toward the highly abundant 

proteins and suffers the saturation problem [34].  

 

Figure 1.6 A schematic view of common quantitative MS workflows. Blue and yellow boxes represent two experimental 

conditions. Horizontal lines indicate when the samples are combined. Dashed lines indicate points at which experimental 

variation and thus quantification errors can occur. (Copied from [34]) 

Instead of using MS/MS spectra, another class of LFQ methods uses the precursor ion intensity, which 

is represented by the integrated peak area of extracted ion chromatograms (XIC) of a precursor in MS1 

scan. For example, the Top 3 Protein Quantification (T3PQ) method approximates the abundance of a 

protein using the average intensity of the three most abundant peptides originated from the protein 

[36]. To ensure different experiments having a comparable scale, the average intensities are further 

divided by the sum of top 3 intensity values in an entire experiment. Similar to RNA-seq where long 

transcripts produce more reads, long proteins generate more digested peptides in comparison with 

equal amounts of shorter ones. The intensity-based absolute quantification (iBAQ) solves this problem 

by dividing the protein intensity by the number of digested peptides in the length of 6 and 30 amino 

acids [37]. The protein intensity is estimated by the sum of all (unique) peptides originated from it 

(which is used by MaxQuant [38]). Another LFQ method, which is implemented in MaxQuant (maxLFQ), 

is based on the assumption that the abundance of majority of the proteins is constant across samples. 
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Therefore, maxLFQ normalizes the protein intensities using a global optimization procedure that 

minimizes the proteome variation over all samples [39]. The accuracy of LFQ methods is the lowest in 

comparison with reporter ion-based methods, but the data generated by LFQ are increasingly 

available because of the simple sample preparation. The maxLFQ and iBAQ data were frequently used 

in this project.  

1.3 A Multivariate dimension reduction approaches 

1.3.1 Dimension reduction and principal component analysis 

Dimension reduction methods arose in the early 20th century [40, 41] and have continued to evolve 

independently in multiple fields, giving rise to a myriad of associated terminologies. Each of these 

approaches used in the thesis are dimension reduction techniques. Therefore, this thesis starts by 

introducing the central concepts of dimension reduction. 

Boldface uppercase letters are used to denote matrices. In this chapter, the rows of a matrix contain 

the cases or samples while the columns hold the variables. In an omics study, the variables (also 

referred as features) generally measure biological molecules including abundance of mRNAs, proteins, 

or metabolites. Vectors are denoted with boldface lowercase letters. All vectors are column vectors. 

Scalars are denoted by italic letters. Given an omics dataset, X, which is an n×p matrix of n observations 

and p variables, it can be represented by: 

X = (x1, x2, ..., xp) (1) 

where xs are vectors of length n, as it is the mRNA or other biological variable measurements for n 

samples. In a typical omics study, p ranges from several hundred to millions. Therefore, samples are 

represented in a very large dimensional spaces ℝp. The goal of dimension reduction is to identify a 

(set of) new variable(s) using linear combination of the original variables, such that the number of new 

variables is much smaller than p. An example of such a linear combination is shown in equation (2).  

f = q1x1 + q2x2 + ... + qpxp (2) 

or expressed in a matrix form 

f = Xq (3) 

In equations (2) and (3), f is a new variable, which is often called a latent variable or a component. 

q = (q1, q2, …, qp)T is a p-length vector storing the coefficients of the linear combination of original 

variables. These coefficients are also called “loadings.” In dimension reduction analysis, additional 
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constraints are introduced to obtain a meaningful solution. Different optimization and constraints 

criteria underscore the difference between different dimension reduction methods.  

Principal component analysis (PCA) is one of the most widely used dimension reduction methods [42]. 

Given a column centered (zero mean) and scaled (unit variance) matrix X, PCA finds a set of new 

variables fi=Xqi (where i is the ith component and qi is the variable loading for the ith principal 

component (PC) (superscript denotes the component or dimension) so that the variance of fi is 

maximized, that is: 

 (4) 

with the constraints that ||qi||=1 and each pair of components (fi, fj) are orthogonal to each other (or 

uncorrelated, i.e., fiTfj=0 for j≠i). 

PCA can be computed using different algorithms including eigenanalysis, singular value decomposition 

(SVD) [43] or linear regression [44]. Among them, SVD is the most widely used approach. Given X, an 

n×p matrix with rank r, r ≤ min(n, p), SVD decomposes X into three matrices: 

X = USQT subject to the constraint that UTU = QTQ = I (5) 

where U is an n×r matrix and Q is a p×r matrix, and the columns of U and Q are the orthonormal left 

and right singular vectors, respectively. S is an r×r diagonal matrix of singular values, which are 

proportional to the standard deviations associated with r singular vectors. The singular vectors are 

ordered such that their associated variances are monotonically decreasing. In a PCA of X, the PCs 

comprise an n×r matrix, F, which is defined as: 

F = US = USQTQ = XQ (6) 

where the columns of matrix F are the PCs and the columns of matrix Q, which is the loading matrix, 

contains the coefficients of the variables for each PC (q in equation (3)). The above formula also 

emphasizes that Q is a matrix that projects the observations in X onto the PCs.   

PCA can also be calculated using the NIPALS algorithm (algorithm 1.1). It computes PCs in a sequential 

manner (in contrast SVD calculates all PC simultaneously) ─ through regression procedure for each 

dimension (steps 1–3). For a higher order solution, the same procedure is applied on the residual 

matrix calculated from the deflation step (step 5). The residual matrix can be viewed as a result of 

regressing Xi–1 onto fi or removing the variance explained by fi from Xi–1. This algorithm is particularly 

useful in the analysis of omics data because it requires less computational time when only a few PCs 

are of interest, particularly for a large matrix X. In addition, another benefit of calculating PCs through 

)var(maxarg
i

Xqi
q
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a regression approach is that it can handle a small number of missing values, which are often present 

in omics data. Of particular interest in multiple omics data analysis, this algorithm may be generalized 

to discover the correlated structure in more than one dataset (see sections on the analysis of multiple 

omics datasets). 

Algorithm 1.1 – Nonlinear Iterative Partial Least square (NIPALS) algorithm for principal 

component analysis.  

Initialize X0 = X 

for i = 1, ..., r 

    initialize fi as the first column in Xi-1 

    1. qi=Xi-1 fi/(fiTfi)     

    2. qi = qi/(qiTqi)1/2     

    3. fi= Xi-1 qi
     

    4. Check convergence of fi and qi, if not, go back to step 1; otherwise step 5. 

    5. Xi = Xi-1 - fiqiT    # deflation step 

The results of PCA can be easily interpreted by visualizing the samples and variables on the same 

component space using a biplot. For example, PCA was used to analyze mRNA expression data of 

different cell lines from the NCI-60 cell lines panel (Figure 1.7). To simplify this case study, only 20 

genes and cell lines originating from melanoma (ME), leukemia (LE), and central nervous system (CNS) 

tumors were included. Figure 1.7A is a biplot showing the first and second PCs, where samples are 

points and genes are arrows from the plot origin. The relative positions of samples are important, 

since variable profiles that are similar will be projected closer to one another. The lengths of vectors 

are proportional to the squared correlations between the components and variables. Additionally, 

variables with a relatively high expression in a sample will be positioned in the same direction with 

that of the sample, and the greater the distance from the origin, the stronger the association. 

Most analyses plot and examine the first few PCs since they explain the most variant trends in the 

dataset. Generally, the selection of components is subjective and depends on the study purpose. An 

informal elbow test could help to determine the number of PCs to retain [45, 46]. For example, Figure 

1.7B shows the elbow point is the fourth PC because the decrease in PC variance becomes relatively 

moderate from this point. Another approach that is widely used is to include (or retain) PCs that 

cumulatively capture a certain proportion of variance (e.g., 70% of variance is modeled with three 

PCs). If a parsimony model is preferred, the variance proportion cutoff can be as low as 50% [45].  
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Figure 1.7 Output of PCA (A) A biplot of the first two PCs, where genes are arrows and dots are cell lines. (B) The scree 

shows the variance of PCs. 

There are many dimension reduction approaches related to PCA, such as principal coordinate analysis 

(PCoA), correspondence analysis (CA), and nonsymmetrical correspondence analysis (NSCA). Each of 

these may be computed by SVD but differ in how the data are transformed [43, 47, 48]. PCoA (also 

known as classical multidimensional scaling) is an SVD of a distance matrix. CA and NSCA decompose 

a chi-squared matrix [48, 49]. Although designed for contingency tables of nonnegative count data, CA 

and NSCA have been successfully applied to continuous data including gene expression and protein 

profiles [51, 52]. As described previously, gene and protein expression can be seen as an 

approximation of the number of corresponding molecules present in the cell during a certain 

measured condition [52]. Additionally, Greenacre [48] emphasized that the descriptive nature of CA 

and NSCA allows their application on data tables in general, not only on count data. These two 

arguments support the suitability of CA and NSCA as analysis methods for omics data. While CA 

investigates symmetric associations between two variables, NSCA captures asymmetric relations 

between variables.  

1.3.2 Integrative analysis of two datasets 

Some extensions of one-table dimension reduction methods have been described, allowing the 

simultaneous decomposition and integrative analysis of paired data matrices into the same space. 

These include generalized SVD (gSVD) [53], co-inertia analysis (CIA) [54, 55], and sparse or penalized 

extensions of partial least squares (PLS) and canonical correspondence analysis (CCA) and Canonical 

Correlation Analysis (CCA) [56-59]. Given two omics datasets X (dimension n×px) and Y (dimension 

n×py), these methods can be expressed as the following latent component decomposition problem: 
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where Fx and Fy are n×r matrices, the columns of which are components representing the co-structure 

between X and Y. The columns of Qx and Qy are loading vectors for variables in X and Y, respectively.  

CCA searches for a linear combinations of original variables from a pair of matrices so that their 

correlation is maximized, that is,  

for the ith component: 
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In CCA, the components Xqx
i and Yqy

i are called canonical variates and their correlations are the 

canonical correlations. One of the main limitations of applying CCA to omics data is that it requires an 

inversion of the covariance matrix [60-62], which cannot be calculated when the number of variables 

exceeds the sample size [58]. Given the high dimensionality of omics data where p>>n, applying CCA 

to omics data requires a regularization step, which may be accomplished by adding a RIDGE penalty, 

that is adding a multiple of the identity matrix to the covariance matrix.  

PLS is an efficient dimension reduction method and has been used in the analysis of high dimensional 

omics data. Depending on the algorithm, different objective functions with different constraints are 

optimized [see review 63]. In summary, PLS maximizes the covariance rather than the correlation 

between components, which is used in CCA. From the algorithm point of view, PLS components can 

be calculated via kernel-PLS, an iterative local regression algorithm such as PLS2 or the statistically 

inspired modification of PLS (SIMPLS) [63], which do not require the inversion of a correlation matrix. 

For example, the PLS2 algorithm is an extension of the NIPALS algorithm onto two datasets scheme. 

This algorithm calculates the components and loading vectors using the iterative local regression 

procedure. Therefore, it does not suffer from the p>>n problem as in CCA does. Even though PLS can 

be applied to data with p>>n without penalty, a sparse solution is desired. For example, a sparse PLS 

method was proposed for the feature selection purpose by introducing a Lasso-penalization to the 

loading vectors [64]. In a recent comparison, sPLS performed comparably to sparse CCA [57]. For the 

classification purpose, sPLS was combined with discriminant analysis (sPLS-DA) by coding the response 

matrix Y with dummy variables. This method has been applied to classification and variable selection 

of microarray and SNP data [64]. 

CIA is a descriptive non-constrained approach for coupling pairs of data matrices. It was originally 

proposed to link two ecological tables [65, 66], but has been successfully applied in omics data analysis 

[51, 54]. CIA is implemented under the duality diagram framework. In this scheme, CIA analyzes two 

statistical triplets (X,L,D) and (Y,R,D). In physics, the inertia of a set of points relative to one point is 

defined by the weighted sum of squared distances between each considered point and the reference 

point. Correspondingly, the inertia of a centered matrix (zero mean) is simply the sum of the squared 
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matrix elements. The inertia of the matrix X defined by the metrics L and D is the weighted sum of its 

squared values, that is: 

trace(XLXTD). (12) 

The inertia equals the total variance of X when X is centered, L is the Euclidean metric and D is a 

diagonal matrix with li = 1/n. However, the concept of inertia is more flexible since different metrics 

may be used to account for different types of data. For example, if L and T are defined as in CA the 

inertia of X is proportional to the χ2 statistics. When coupling a pair of datasets, the co-inertia between 

two matrices, X and Y, is calculated as  

trace(XLXTDYRYTD). (13) 

CIA decomposes the co-inertia criteria into a set of orthogonal axes. To benefit from the flexible 

weighting, CIA is performed in two steps: 1) application of a dimension reduction technique such as 

PCA, CA or NSCA to the initial datasets depending on the type of data (binary, categorical, discrete 

counts or continuous data) and 2) constraining the projections of the orthogonal axes such that they 

are maximally covariant [55, 65]. CIA does not require an inversion step of the correlation or 

covariance matrix thus can be applied to datasets of genomics data (p>>n) without regularization or 

penalization. 

CIA is closely related to CCA [60], but it maximizes the squared covariance between the linear 

combination of the preprocessed matrix, that is, 

for the ith dimension: 
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Equation (14) can be decomposed as: 

cov2(Xqx
i, Yqy

i) = cor2(Xqx
i, Yqy

i)·var(Xqx
i)·var(Xqy

i) (15) 

The relationship between CIA, Procrustes analysis [66] and CCA [60] have been well described. A 

comparison between sCCA (with elastic net normalization), sPLS and CIA is provided in [57]. CIA and 

sPLS both maximize the covariance between components and efficiently identify both joint and 

individual patterns in the paired datasets. In contrast, CCA maximizes the correlation between 

components and will mainly discover the concordance structure presented in both datasets, but may 

fail to discover strong individual effects [57]. In addition, both sCCA and sPLS are sparse methods and 

variables selected by these methods are similar, whereas, CIA does not integrate a feature selection 

step. Hence, in terms of feature selection, the result of CIA is more redundant in comparison to the 

sparse methods [57].  

1.3.3 Correlation structure across multiple matrices 

Simultaneous decomposition and integration of multiple matrices is the focus of this thesis. It is more 

complex than the analysis of single or paired data, because each dataset may have different numbers 

of variables, different scales, different internal structure or different variance. This might produce 
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components that are dominated by one or a few datasets. Therefore, it is crucial to preprocess the 

datasets before decomposition. The preprocessing is often performed on two levels. On the variable 

level, variables are often normalized as PCA, CA or NSC. This procedure enables all the variables to 

have comparable contribution to the total inertia of a dataset. However, the number of variables may 

vary between datasets. Therefore, a dataset level normalization is required. Frequently, the datasets 

are divided by the square root of their total inertia (sum of squares of all elements) or by the square 

root of the numbers of columns of each dataset [67].  

The multiple matrices analysis methods can be generally expressed as the following model: 
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The matrices Xk (k ranges from 1 to K, representing K omics datasets). For the convenience in 

expression, F is the “component” matrix that integrates information from all datasets, i.e. the common 

pattern defined by all datasets. The matrices Qi, with i ranging from 1 to K are the loadings or 

coefficient matrices. A high positive value indicates a strong positive contribution of the corresponding 

variable to the “Component”. The multivariate analysis methods used in this thesis, including multiple 

co-inertia analysis, multiple factorial analysis and consensus principal component analysis, belong to 

this family.  
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1.4 Objective and outline of this thesis 

Multivariate analysis has a long history but its application to omics data analysis is rising in recent 

years. The objective of this thesis is to explore the application of multivariate methods to omics data 

analysis, particularly for the integrative analysis of multi-omics data. The outline of this thesis is given 

below. 

Chapter II describes the application of multiple co-inertia analysis (MCIA), in combination with non-

symmetric correspondence analysis (NSC), to the analysis of transcriptomic and proteomic data. MCIA 

can be used for the integrative exploratory of multiple omics data. It simultaneously projects several 

datasets into the same dimensional space, transforming features onto the same scale, to extract the 

most variant from each dataset and facilitate biological interpretation and pathway analysis. 

Integrative exploratory analysis is often used for quality control in early stage of data analysis, such as 

detecting outliers or batch effect. In the downstream analysis of cancer omics data, clustering 

methods are often required for the stratification of patients. Traditional clustering methods are 

applicable to single omics data. Chapter III introduces a multiple omics clustering method, moCluster, 

which find the joint pattern across omics data. At the same time, it identified the biomarkers 

associated with each cluster via a sparse operator (L1-penalty). The merits of this method, including 

stable solution and better computational efficiency, have been established through the comparison 

with existing methods, including iCluster and iCluster+. 

Gene-set annotation is widely used in omics data analysis because it provides functional insights for a 

large list of biological molecules. Similar to the clustering analysis, gene-set analysis methods are 

largely confined to the analysis of single datasets. Chapter IV describes an integrative gene-set analysis 

method − moGSA. The application of moGSA to simulated data demonstrates that the integration of 

multiple omics data potentially increases the power to detect permuted gene-sets. 

Chapter IV gives a general discussion about how the multivariate methods are interlinked and can be 

included in a more general framework, Regularized Generalized Canonical Correlation Analysis 

(RGCCA). I will also discuss the challenges of integrative analysis and the merits of multivariate method 

to solve these challenges. Last, the chapter emphasizes emerging requirements of multivariate 

analysis that are particularly important in omics data analysis, such as dealing with missing values and 

more interactive visualization. 
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ABBREVIATIONS 
 

CA Correspondence Analysis 

CCA Canonical Correlation Analysis or Canonical Correspondence Analysis * 

cDNA complementary DNA 

CIA Co-Inertia Analysis 

CID collision induced dissociation 

DDA Data dependent acquisition 

EM Expectation Maximization 

ENCODE Encyclopedia of DNA Elements 

ESI electrospray ionization  

ETD electron transfer dissociation  

FPKM Fragments Per Kilobase Per Million 

gSVD generalized Singular Value Decomposition 

HCD high energy C-trap dissociation  

HPLC High-Performance Liquid Chromatography  

iBAQ Intensity Base Absolute Quantification  

IT Ion-trap   

LC Liquid Chromatography 

LDA Linear Discriminant Analysis 

LFQ Label Free Quantification 

MALDI matrix-assisted laser desorption and ionization 

MAS5 MicroArray Suite 5  

MCIA Multiple Co-Inertia Analysis 

MS Mass Spectrometry 

NSCA Non-Symmetric Correspondence Analysis 

PC Principal Component 

PCA Principal Component analysis 

PCoA Principal Co-ordinate Analysis 

PLS Partial Least Square 
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PSM peptide spectrum match 

RGCCA Regularized Generalized Canonical Correlation Analysis 

RMA Robust Multiarray Average  

RPKM Reads Per Kilobase Per Million 

RSEM RNA-Seq by Expectation Maximization 

SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis  

SILAC Stable Isotope Labeling by Amino Acids in Cell Culture 

SNP single nucleotide polymorphism  

SVD Singular Value Decomposition 

T3PQ Top 3 Protein Quantification 

TCGA The cancer genome atlas 

TOF time of flight  

XIC Extracted Ion Chromatograms  

* Both Canonical Correspondence analysis and Canonical Correlation Analysis are referred to by the 
acronym CCA. Canonical Correspondence analysis is widely used in ecologically statistics, and is a 
constrained form of CA, however it has not been adopted by the genomics community in the analysis 
of pairs of omics data. By contrast several groups have applied extensions of Canonical Correlation 
Analysis to omics data integration. Therefore, this thesis uses CCA to describe Canonical Correlation 
Analysis.  
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CHAPTER II 
Multiple Co-Inertia Analysis: A 

Multivariate Approach to the Integration 

of Multiple Omics Datasets 

SUMMARY 

To leverage the potential of multi-omics studies, exploratory data analysis methods that provide 

systematic integration and comparison of multiple layers of omics information are required. In this 

chapter, an exploratory data analysis method, multiple co-inertia analysis (MCIA), is introduced. It 

identifies co-relationships between multiple high dimensional datasets. Based on a covariance 

optimization criterion, MCIA simultaneously projects several datasets into the same dimensional 

space, transforming features onto the same scale, to extract the most variant from each dataset and 

facilitate biological interpretation and pathway analysis.  

MCIA was applied to two typical scenarios of integrative analysis of omics data. The integration of 

transcriptome and proteome profiles of cells in the NCI-60 cancer cell line panel revealed distinct, 

complementary features, which together increased the coverage and power of pathway analysis. The 

analysis highlighted the importance of the leukemia extravasation signaling pathway in leukemia that 

was not ranked highly when datasets are analyzed individually. Secondly, I compared transcriptome 

profiles of high grade serous ovarian tumors that were obtained on two different microarray platforms 

and next generation RNA-sequencing. The results suggested that the variance of RNA-seq data 

processed using RPKM had greater variance than that with MapSlice and RSEM. In addition, MCIA 

detected novel markers highly associated to tumor molecular subtype combined from four data 

platforms.   
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2.1 BACKGROUND 

Possibly the most straightforward way of integrating multiple omics data is to map identifiers from 

each platform to a common set and analyze the common subset of genes [1, 2]. However, this 

overlooks several fundamental platform and biological biases. Platforms are not universal and target 

different molecules. Filtering genes to their intersection considerably reduces data coverage and 

because correlations between different platforms are probably lower than expected [3], it may not 

provide large gains in data quality or study power. Such filtering may also introduce bias because 

platform discrepancy in molecule quantification could reflect biological variation. Poor correlation 

between a transcript and its translated protein may be a result of biological processes, such as post-

transcriptional repression of genes by miRNA [4, 5]. Correlations between proteins and metabolites 

of pathways can be divergent if proteins are expressed in an inactive form, in which case the 

abundance of a protein does not represent activity. In addition to technological and biological gene 

variance, the many-to-many mapping of gene identifiers from multiple platforms complicates direct 

comparison of genes across multiple levels. 

Ordination methods, such as principal component analysis (PCA) and correspondence analysis (COA), 

are exploratory data analysis approaches that have been applied to analyze omics data including 

transcriptome and proteome studies [6-9]. Graphical representation of measurements (samples) and 

variables (genes, proteins) onto a lower dimensional space facilitates interpretation of global variance 

structure and identification of the most informative (or variant) features across datasets. These 

methods permit visualization of data that have considerable levels of noise and data where the 

number of variables exceeds the number of measurements, which is typical in omics studies. However, 

these approaches do not solve the problem of comparing many datasets simultaneously. Some efforts 

have been done to couple two datasets together. One such approach is co-inertia analysis [CIA; 10]. 

CIA was originally applied to study of ecological and environmental tables, where it was employed to 

link environmental variables with species characteristics [11]. Culhane and colleagues introduced CIA 

in genomics, when they compared data from two microarray platforms [12]. An advantage of this 

method is that it does not require the mapping or filtering of genes to a common set. In addition, CIA 

couples with several dimension reduction approaches, including PCA or correspondence analysis, such 

that it can accommodate both discrete count data (e.g. somatic mutation) and continuous data. 

However, CIA is limited to two datasets, which confines its application in modern multi-omics studies. 

Here, multiple co-inertia analysis (MCIA), an extension to CIA, is described for the analysis of more 

than two omics datasets. The application of MCIA is illustrated by two different examples, and show 

that integrated analysis is more insightful than analysis of the individual datasets. First, I demonstrated 

the power of MCIA via applying it to the integration and comparison of multi-omics data independent 

of data annotation. MCIA is able to identify common relationships among multiple genes and protein 

expression data of the NCI-60 cancer cell line panel of the National Cancer Institute [14-16]. The 

integrated analysis revealed that cell lines are clustered according to anatomical tissue source and 

showed a significant degree of correlation between transcript and protein expression. Second, MCIA 

was employed to assess the concordance in gene expression data obtained from microarray and next 
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generation RNA-sequencing of 266 samples of high grade serous ovarian cancer. Despite the fact that 

the majority of genes exhibit considerable variation between different platforms, MCIA revealed that, 

across all platforms, several biomarkers consistently relevant to ovarian cancer subtypes.  

2.2 METHODS 

2.2.1 Mathematical basis of MCIA 

A typical omic dataset is a matrix where the number of features exceeds the number of measurements 

(row and columns of the matrix, respectively). Prerequisite for MCIA is a set of such matrices where 

the observations are matched. In this study, equal weights were applied to all the observations. MCIA 

is performed in two steps to represent features and observations as points along several axes. In the 

first step, a one matrix ordination method, such as PCA, COA or non-symmetric correspondence 

analysis [NSC; 17] is applied on each dataset separately, which transforms data into the same scale 

and comparable space.  

In the analysis, given an omics data matrix M = [mij] with 1 ≤ i ≤ n and 1 ≤ j ≤ q, where M is a (n x q) 

matrix, i indicates row index and j for column index. Here, the row and column sums of M are denoted 

as mi+ and m+j respectively, and m++ as the grand total. The relative contribution or weight of row i to 

the total variation in the dataset is denoted ri and calculated as ri = mi+/m++. While the relative 

contribution of column j is denoted as cj = m+j/m++. Similarly, the contribution of each individual 

element of M to the total variation pij can be calculated as pij = mij/m++. Then, a new matrix X with the 

values defined above could be calculated as  

j

i

ij

ij
c

r

p
x   (1) 

where xij is the centered row profile, i.e. the relative abundance of selected variable to the 

measurement’s weight. 

The second step is MCIA, which is the analysis of a set of statistical triplet (Xk, Qk, D) where k = 1, …,k,..., 

K and Xk are set of transformed matrices. Qk is a qk × qk matrix with rij in diagonal elements, indicating 

the hyperspace of features metrics. Let D be an n×n matrix with 1 in the diagonal indicating equal 

weight across all columns in all matrices. The matrix Xk can be weighted and concatenated to one 

matrix as X = [ω1X1 |...| ωKXK ], where ω is the weight of each matrix (reverse of sum of eigenvalue for 

each matrix). 

MCIA maximizes the correlation of each individual matrices with a consensus reference structure 

through synthetic analysis, which finds a set of reference axes sequentially. In order to find the 

solution for the first dimension, MCIA determines a single reference axis (referred to as common 

component ν1) and a set of auxiliary axes for each matrix (u11 .. u1K) so as to maximize the sum of the 

co-variances between each of the auxiliary axes u1k and the ν1. The first order solutions of u11 to u1K 

and ν1 are given by the first principal component of the concatenated weighted matrix X. The 

subsequent solutions are found with residual matrices from the calculation of the first order solution 
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with the constraint that the rest order axes are orthogonal with the previous sets. These steps are 

repeated so that the desired number of axes (principal components, dimensions) are generated. As a 

result, MCIA provides a simultaneous ordination of columns (measurements) and rows (features) of 

multiple matrices within the same hyperspace, with features or measurements sharing similar trends 

will be closely projected. The detailed description of MCIA and the proof that these axes are maximally 

co-variant are given in Chessel and Hanafi [18].  

2.2.2 Datasets 

This work analyzes two publicly available datasets: (i) transcriptomic [14, 16, 19] and proteomic [15] 

datasets of the NCI-60 cancer cell lines and (ii) an ovarian cancer dataset generated as part of the 

TCGA project [20]. Both comprise multiple datasets of the same samples. 

NCI-60 data 

The NCI-60 panel is a collection of 59 cancer cell lines originating from leukemia, lymphomas, 

melanomas and carcinomas of ovarian, renal, breast, prostate, colon, lung and CNS origin. The 

transcriptome data were downloaded from Cellminer [21] representing four different platforms: 

Affymetrix HG-U133 plus 2.0, HG-U133, HG-U95 and Agilent GE 4x44K [22]. Affymetrix data were 

normalized using GC robust multichip averaging [GCRMA; 23] and Agilent data were log transformed 

as obtained from the Cellminer. Microarray data were filtered to exclude probes that do not map to 

an official HUGO gene symbol. When multiple probes are mapped to the same gene, the probe with 

highest average value was retained. This filtering produced datasets of 11,051, 8,803, 9,044 and 

10,382 genes on Agilent, HG-U95, HG-U133 and HG-U133 plus 2.0 platforms, respectively. The lung 

cancer cell line NCI-H23 was excluded since its expression profile was not available on the HG-U133 

platform.  

The proteome profiles of cell lines were produced from a conventional GeLC-MS/MS approach and 

label-free quantification, as described in [15]. The international protein index (IPI) identifiers were 

mapped to official gene symbol to facilitate subsequent pathway interpretation. Data were log 

transformed (base 10) and no filtering or additional normalization were performed. This dataset 

represents 7,150 protein expressions across 58 cell line in NCI-60 panel. 

Ovarian cancer datasets 

Gene expression of ovarian cancer tissues were profiled using two microarray platforms (Affymetrix 

customized platform G4502A and HG U133 plus 2.0) and RNA-sequencing (Illumina HiSeq platform). 

Data were downloaded from the NCI-TCGA data portal [07/08/2013; 20]. The Agilent and Affymetrix 

data were normalized and summarized by lowess and multichip averaging respectively [RMA; 24] 

respectively. Two different pre-processing pipelines were applied to the Illumina RNA-sequencing data 

to determine the transcript expression levels, denoted as RNASeq and RNASeqV2. RNASeq used the 

RPKM method [25] for normalization and quantification. RNAseqV2 employed MapSplice for 

alignment and RSEM for gene expression quantification [26, 27]. In this analysis, missing values were 

replaced with a small positive value (10e-15 in RNASeq and 10e-10 in RNASeqV2) and then the 



Multiple Omics Data Exploratory 
 

37 
 

expression values were log10 transformed. 266 out of 489 patient samples were present across all 

four datasets and hence included in the analysis. Only genes mapped to an official HUGO gene symbol 

were retained and duplicated genes were excluded. In the RNA sequencing datasets, 20,657 and 

20,135 genes were detected and those with more than 15 missing values were removed, yielded 

17,814; 12,042; 16,769 and 15,840 gene expressions in Agilent, Affymetrix, RNASeq and RNASeqV2 

respectively.  

2.3 RESULTS AND DISCUSSION 

2.3.1 Integrated analysis of transcriptome and proteome of the NCI-60 cell lines 

The NCI-60 panel, a collection of 59 cancer cell lines derived from nine different tissues (brain, blood 

and bone marrow, breast, colon, kidney, lung, ovary, prostate and skin) have been extensively used in 

in vitro high throughput drug screen assays. Their genetic composition on different levels have been 

extensively profiled, including comparative genomic hybridization array [28], karyotype analysis [29], 

DNA mutational analysis [30, 31], transcripts expression array [14, 32],  microarrays for microRNA 

expression [16] and protein expression [15]. MCIA was applied as an exploratory analysis of four 

transcriptomic studies (Agilent n=11,051; HGU95 n=8,803; HGU133 n=9,044 and HGU133 plus 2.0 

n=10,382) and one proteomic study (GeLC-MS/MS; n=7,150) of the 58 cell lines. Figure 2.1A shows 

the projection of cell lines on the first two components. The MCIA plot of the first two principal 

components (which accounted for 17.4% and 14.2% of the variance) shows similar trends within 

transcriptome as well as between transcriptome and proteome profiles, indicating that the most 

variant sources of biological information were similar in both transcriptome and proteome data. 

Generally, the cell lines originating from the same or closely related anatomical source converged into 

groups. The coordinates of cell lines from each dataset are connected by lines, the lengths of which 

indicate the divergence (the shorter the line, the higher the level of concordance between the mRNAs 

and proteins for a particular cell line). MCIA revealed colon, leukemia, melanoma, CNS, renal and 

ovarian cell lines segregated largely according to their tissue of origin. There was greater divergence 

in the cell lines from tumors with more intrinsic molecular heterogeneity (e.g. breast and NSCLC cell 

lines). The transcriptome and proteome profiles of these cell lines shared a high degree of consensus, 

providing further evidence that the observed spread reflected the tumor cell lines heterogeneity, as 

opposed to technical or other stochastic variance between gene or protein expression profiles. For 

instance, it was observed that the estrogen receptor positive breast cancer cell line MCF7 displays an 

epithelial phenotype and was clustered to colon cancer lines. In contrast, the cell line negative for the 

estrogen receptor, HS578T, clustered with the stromal/mesenchymal cluster of glioblastoma and renal 

tumor cell lines. This suggests that HS578T exhibits more invasive mesenchymal features comparing 

to T47D and MCF7. Seven out of eight melanoma lines clustered together, and the remaining one, 

LOX-IMVI, has been reported to lack melanin production [LOX-IMVI; 33]. These results are in 

consistent with hierarchical clustering analysis (Figure 2.2).   
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Figure 2.1 MCIA projection plot. (A) The first two principal components (PCs) of MCIA representing transcriptomic and 

proteomic datasets of the NCI-60 panel. Different shapes represent the respective platforms and are connected by lines where 

the length of the line is proportional to the divergence between the same cell lines from each dataset. Lines are joined by a 

common point, representing the reference structure which maximizes covariance of multiple datasets. Reference coordinates 

emphasis on the similarity by showing which cell lines are driving this variation and which are responsible for the deformation 

of the common variation. Colors represent the nine NCI-60 cell lines from different tissues. The epithelial and mesenchymal 

features are separated along the first axis (PC1, horizontal). Melanoma and leukemia cell lines were projected on the on the 

negative side of second axis (PC2, vertical). (B) Summarizing the concordance between platforms by representing pseudo-

eigenvalue space of NCI-60 datasets. The pseudo-eigenvalue space represents overall co-structure between datasets and 

shows which platform contributes more to the total variance. 

2.3.2 Overall co-structure comparison using MCIA 

Each principal component (PC) has an associated eigenvalue, which represents its variability. In this 

analysis, the first three PCs of the MCIA accounted for 17.4%, 14.2% and 9.7% of variance respectively. 

Therefore the first two PCs (shown in Figure 2.1A) captured less than a third of the structure in the 

datasets, reflecting the complexity inherent in cell lines of 58 tumors from nine different organs. When 

characterizing the trends or co-relationships between more than two high-dimensional datasets, it is 

useful to probe the contribution of each dataset to overall structure, that is, to what extent each 

dataset deviates or agrees with what the majority of datasets support. This information is shown by 

the MCIA pseudo-eigenvalues. Figure 2.1B shows the pseudo-eigenvalues associated with the first two 

principal components of each dataset. Comparison within microarray data revealed that Affymetrix 

HGU133 Plus 2.0 accounts for the highest variance on axis 1 and 2, possibly because this platform 

contains informative features that are poorly detected or absent on other platforms. As expected, the 
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Figure 2.2 Hierarchical clustering of mRNA and protein expression profiles of NCI-60 dataset. Dendrograms showing the 

average linkage hierarchical clustering using Euclidean distance. The cell lines are colored as in Figure 2.1 (Abbreviations for 

cancer types: LE: Leukemia; NSCLC/LC: Non-small cell lung cancer; CO: Colon cancer; BR: Breast cancer; PR: Prostate 

cancer; OV: Ovarian cancer; ME: Melanoma; CNS: central nervous system (CNS) lymphoma; RE: Renal Cancer) 

results suggested that the similarity within transcriptome datasets is greater than the similarity 

between transcriptome and proteome datasets, which is also consistent with the results shown by 

Figure 2.1A. For instance, there is, in particular, a large variation between the protein and transcript 

expression patterns of melanoma SKMEL2 and ovarian IGROV1. The coordinate of SKMEL2 in the 

proteome was closer to the origin comparing with in the transcriptomic dataset. According to the 

genes and proteins expressed in the corresponding direction, the divergence of SKMEL2 cell line could 

result from the lack of expression of melanin related genes on protein level. Similarly, the divergence 

of the ovarian cell line IGROV1 in the proteome dataset may be due to expression of less epithelial 

markers that projected on the positive direction of axis 2. This is an attractive feature of MCIA that 

can be used to highlight lack or presence of co-structure between datasets, thus it allows selection of 

the strongest features from each datasets for subsequent analysis. 

The overall correlations between pairs of such high dimensional datasets were quantified using RV-

coefficient, a multivariate generalization of the squared Pearson correlation coefficient [34]. For each 

pair of datasets, the RV-coefficient is calculated as the total co-inertia (i.e. sum of eigenvalues of the 

product of two cross product matrices) divided by the square root of the product of the squared total 

inertia from the individual analysis. It has a range 0 to 1 where a high RV-coefficient indicates a high 

degree of co-structure. The overall similarity in the structure of all microarray datasets were very high 



Chapter II 

40 
 

and resulted in RV coefficient of >0.8 whereas the RV coefficients were on average 0.76 across 

microarrays and proteomics data (Figure 2.3). To examine the effect of missing values to the overall 

co-structure between transcriptome and proteome datasets, MCIA was applied to analyze 

transcriptome data and 524 proteins that were quantified across all NCI-60 cell lines (core proteome). 

Interestingly, when filtering out missing values, the similarity between proteome and transcriptome 

data significantly increased (Figure 2.4). Thus, a better correlation between transcriptome and 

proteome could be expected when the coverage of the proteomic data is increased in the future (i.e. 

less missing value presented in the proteomic data). 

 

Figure 2.3 The heatmap shows the RV coefficients between each pair of normalized datasets. The RV coefficients between 

different microarray datastes range from 0.85 to 0.93. The relative high RV coefficients indicates a high degree of overall 

similarity in the structure among datasets. The coefficients between proteomic data and microarray is from 0.73 to 0.79, which 

indicate relative high correlation between transcriptomics and proteomic datasets. 

 

Figure 2.4 The barplots show the pseudo-eigenvalue space of the NCI60 data, representing the contribution of each dataset 

to the first principal component (left) and second principal component (right). In both cases filtering out missing values in the 

proteome data increases the correlated variance between transcriptome and proteome. 

2.3.3 MCIA axes describe biological properties 

In contrast to traditional clustering methods (based on the Euclidian distance or other dissimilarly 

measurement), MCIA projects original data onto a lower dimension space, maximizing the covariance 

of each dataset with a reference structure. In MCIA plots a gene that is highly expressed in a certain 
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cell line will be projected in the direction of this cell line and the greater the distance to the center, 

the stronger the association. In order to identify biomarkers that are highly associated with cancer cell 

lines of different origins, the feature space, onto where the mRNAs from all microarray platforms are 

projected, were explored (Figure 2.5). Epithelial-mesenchymal transition (EMT) plays an important 

role in the malignancy and metastasis of epithelial cells. The first axis (PC1, horizontal axis), which 

explains the largest variance, separated cells with epithelial or mesenchymal characteristics, 

suggesting that EMT is an essential mechanism defining different classes of cancers (Figure 2.5A). 

Epithelial markers, including SLC27A2, CDH1, SPINT1, S100P and EPCAM had high weights on the 

positive side of PC1 (Figures 2.5B-F). At the opposite end mesenchymal and collagen markers, 

including GJA1, which is involved in epicardial to mesenchymal cell transition, and TGFβ2 were 

observed. The second (vertical) axis, PC2, clearly separated melanoma and leukemia from other 

epithelial cancer types. The strongest determinant of the vertical axis is a set of melanoma-related 

genes, namely melanoma-associated antigens (MAGEA), melanogenic enzyme (GPNMB) as well as TYR, 

DCT, TYRP1, MALANA, S100B and BCL2A1. The top 100 genes with greatest weights on PC1 and PC2 

were selected from four microarray datasets. Among 1,377 selected genes, 145 presented in three or 

more datasets (Figure 2.5B-E) as robust markers that could be subjected for further analysis.  

 

Figure 2.5 Detecting robust markers defining major trends using MCIA.  (A) Shows the projection of the respective cell lines 

from the NCI-60. Colors represent tissue types as in Figure 2.1. (B-E) represent the coordinates of genes in transcriptomic 

data. The top 100 genes at the positive or negative ends of MCIA axes (PC1 and PC2) are selected, and those identified in 

at least three platforms are labeled in red in panel (B-E), indicating the robust markers defining axes. (F) shows proteins from 

proteomics dataset. The corresponding protein product of genes labeled in (B-E) are in red color and labeled. 
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2.3.4 Integration of proteomics and transcriptomics complements the biological information 

To further evaluate the biological significance of the features selected by MCIA, the Ingenuity Pathway 

Analysis (IPA: Ingenuity Pathways Analysis, http://www.ingenuity.com) was used to reveal significant 

canonical pathways which discriminate different cell lines (Figure 2.6). In MCIA plots, features strongly 

associated to each tissue type (most extreme) from both transcriptome and proteome datasets can 

be concatenated and mapped to signaling pathways using IPA. For instance, in contrast to microarray 

platforms, there is a clear trend of leukemia associated features in the proteomics dataset (Figure 2.5A 

and F). The most extreme features for leukemia cell lines from all platforms were selected according 

to their coordinates and subjected to the functional and pathway analysis. While numerous over-

expressed genes were co-detected in transcriptome and proteome, a confined number (HCLS1, 

PECAM and two integrins, ITGAL, ITGB2) was identified exclusively in the proteome dataset, indicating 

the complementary nature of the information obtained by integrating available data from different 

platforms. The leukocyte related biological functions including activation of mononuclear leukocyte, 

mobilization of Ca2+ and activation of lymphocyte are strongly associated with these selected features. 

Enrichment analysis suggested that the most enriched pathways are leukemia extravasation signaling 

pathway (p = 1.04e-11; Figure 2.6B), which is known to be responsible for leukocyte migration and 

related to metastasis in leukemia cell lines [35], T cell receptor signaling (p = 5.25e-5) and iCOS-iCOSL 

signaling in T helper cells (p = 8.32e-5). In order to show the advantage of combining multiple layers 

of information in pathway analysis, the identical analysis were performed purely based on 

transcriptome markers. Although leukocyte extravasation signaling was still the most enriched 

pathway, it did not reach the same level of significance (p = 1.14e-4). In addition, the mRNA-based 

analysis detected some pathways that are not strongly associated with leukemia (p < 0.01; e.g. 

hereditary breast cancer signaling and NFAT in Cardiac Hypertrophy). Moreover, pathways that are 

associated with leukemia and detected in the combined analysis were absent in this case, including 

NF-kB pathway and PI3K Signaling in B lymphocytes. 

The analysis was repeated on melanoma associated features identified by MCIA. The selected features 

comprised proteins highly expressed in melanoma cell lines and the biological functions or pathways 

associated with proteins in this group include eumelanin biosynthesis and disorder of pigmentation 

including the melanocyte development and pigmentation signaling pathway (Figure 2.6C). 

Melanocytic development and pigmentation is regulated in large part by the bHLH-Lz microphthalmia-

associated transcription factor (MITF) and MITF activity is controlled by at least two pathways: MSH 

and Kit signaling. BCL2A1 is transcriptionally activated by MITF and serves as an anti-apoptosis factor 

[36]. Interestingly, the upstream regulator of MITF, lEF1, is also consistently identified on the same 

direction in all transcriptome datasets (Figure 2.5). It is of note that, although all five datasets 

contributed to the coverage of this pathway, MITF was solely detected in the Affymetrix data. This 

propensity of MCIA to increase coverage and, hence, power of pathway (and other annotation) 

analyses result form that it does not require mapping or pre-filtering of features to those present in 

all datasets. Thus, it allows easy integration of multiple omics levels to identify classes that are relevant 

in the given biological context. 
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Figure 2.6 Integrative pathway analysis. (A) Shows the protein coordinates from the proteomics dataset, where proteins from 

the leukemia tail are highlighted. In contrast to the microarray data, the leukemia genes are clearly represented in the proteome 

dataset. (B) Represents the leukocyte extravasation signaling pathway significantly enriched by the integration of leukemia 

features from all platforms. Colors indicate the presence of features in different datasets. (C) Melanocyte development and 

pigmentation signaling enriched by the melanoma genes. Genes identified in different platforms are in different colors.  

2.3.5 Integrated analysis of microarray and RNA-sequencing ovarian cancer datasets 

In the ovarian cancer datasets, MCIA was carried out on the dataset containing 17,814; 12,042; 16,769 

and 15,840 genes denoted as Agilent, Affymetrix, RNASeq, RNASeqV2 datasets respectively. In the 

MCIA space, the first PC (horizontal axis) accounted for 19.6% of the total variance and the second PC 

(vertical axis) accounted for 10.6% of variance. After filtering genes with more than 15 missing values 

in RNA-seq data, the four datasets comparably contributed to the total variance (Figures 2.7). RNASeq 

and RNASeqV2 represented two different pre-processing approaches applied to the same Illumina 

RNA-sequencing data. MCIA result indicated that normalization and quantification with the RPKM 

method (RNASeq) outperforms MapSplice and RSEM (RNASeqV2). The variance in RNA sequencing 

data tended to be sensitive to pre-processing and filtering algorithms which is expected given that 

methods for processing these data are still emerging. In addition, Affymetrix profiles were generally 

more variant than Agilent ones, which is shown by the greater pseudo-eigenvalues on PC1-4. 

Comparison of microarray to RNASeq data, MCIA detected several outlier genes that were highly 

variant on PC1 and PC2 on RNASeq that are absent on the microarray platforms. These include CDHR4 

and HESRG which were suggested highly expressed by the differentiated subtype (Figure 2.7) [37]. 

2.3.6 MCIA identified ovarian subtypes 

In order to compare consistency and discrepancy of ovarian samples obtained from RNA-sequencing 

and microarray data, the samples were projected onto the MCIA space (Figure 2.7A). The results 
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revealed that the overall similarity in the structure of four platforms were high. Recent studies have 

reported four subtypes of ovarian cancer (proliferative, immunoreactive, mesenchymal and 

differentiated) based on microarray data [20, 38]. The MCIA resulted suggested that the previously 

reported subtypes of HGS-OvCa can be clearly distinguished by MCIA along the first two axes. 

Generally, the first axis separated samples with immunoreactive versus proliferative characteristics, 

whereas the second axis distinguished mesenchymal and differentiated ovarian cancer samples, 

suggesting that proliferative and immunoreactive subtypes were mutually exclusive, much like the 

mesenchymal and differentiated subtypes. Moreover, it has been shown that different subtypes have 

distinct survival characteristics [39]. Mesenchymal features have been implicated in invasiveness and 

metastasis for numerous carcinomas. As expected, in contrast to the differentiated subtype, the 

mesenchymal subtype shows a short survival time [39]. Consistent with other studies, the MCIA also 

identified a large overlap between the four subtypes, indicating that most samples exhibit features of 

multiple subtype signatures [39]. In order to find whether this classification correlates with clinical 

factors, I compared the first two PCs with clinical records provided in TCGA data portal and [39]. This 

comparison revealed that the percentage of stromal cells is positively correlated with PC2 (Pearson 

correlation test p = 1.79e-3), which is in consensus with the mesenchymal subtype having greater 

percentage of stromal cells. Age at diagnosis is significantly negatively correlated with PC1 and 

positively correlated PC2 (Pearson correlation test p = 1.29e-3 and p = 3.56e-4 respectively), with 

differentiated and immunoreative patients tending to present at younger age. Other clinical factors, 

such as somatic mutation, drug treatment and tumor stages did not significantly correlate with neither 

axis.  

2.3.7 MCIA suggests robust subtype biomarkers 

Both microarray and RNA sequencing data resulted in a similar ordination of samples in the MCIA 

space. In order to identify which genes contribute significantly to the divergence of samples, the gene 

expression variables were superimposed onto the same space. Figures 2.7B-E show the projection of 

transcripts into the feature space. The top 100 genes from the end of each axis were selected. Of the 

total 9,755 genes common between these four datasets, 27 were projected within the top 100 genes 

at the ends of the first two axes in all datasets and 82 genes present in at least three platforms, which 

are identified as robust markers. Of these robust markers, some have been suggested previously [20, 

39]. These include many T-cell activation and trafficking genes, such as CXCL9, CD2 and CD3D that 

were projected onto the positive end of the first axes, indicating that they are highly associated with 

the immunoreactive subtype. In addition, MCIA suggested new markers associated to the 

immunoreactive subtype, most of them related to the immune system, such as SH2D1A, RHOH, SAA1, 

SAA2 and GNLY. This is further corroborated by numerous GO terms significantly associated with 

genes on this end of the axis [DAVID functional annotation; 40]. For instance, the significantly enriched 

gene set includes, glycoprotein, chemotaxis, defense and immune response (BH corrected p < 0.01). 

The genes at the opposite end of the MCIA axes included transcriptional factors SOX11, HMGA2, along 

with several cell cycle promoters, such as BEX1, MAPK4 as well as nerve system development 

regulators (TBX1, TUBB2B), which characterize the proliferative subtype. Genes that are expressed on 
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the positive end of axis 2, such as POSTN, CXCL14 and HOXA5, define the mesenchymal cluster. Other 

potential mesenchymal subtype markers for ovarian cancer include ASPN, homeobox alpha genes as 

well as collagens. ASPN is a critical regulator of TGF-beta pathway that induces the epithelial 

mesenchymal transition. Gene set analysis revealed that mesenchymal genes are enriched in GO 

terms including cell adhesion, skeletal system development, collagen and ECM receptor interaction 

pathway.  

 

Figure 2.7 Cross-platform comparison of transcriptional expression profiles of ovarian cancer using MCIA. (A) Visualization 

of the concordance of patients from multiple platforms. The samples are colored according to four subtypes of patients [53]. 

PC 1 clearly separates the proliferative and immunoreactive subtypes, whereas the mesenchymal and differentiated subtypes 

are separated by PC 2. The inset represents the pseudo-eigenvalues of each dataset on the first two PCs. (B-E) Shows the 

coordinates of genes from each platform. Top consensus genes of all platforms from the end of each axis are colored and 

labeled. 

The robust markers at the differentiated end include oviductal glycoprotein 1 (OVGP1/MUC9), SPDEF, 

KIAA1324, GJB1 and ALPPL2, some of which have already been reported as ovarian biomarkers. For 

instance, OVGP1 has been suggested as a possible serum marker for the detection of low grade 

ovarian cancer [41]. According to this analysis, this gene was highly expressed in differentiated 

subtype. Human SPDEF protein plays a significant role in tumorigenesis in multiple cancers, including 

ovarian cancer and has been reported suppress prostate tumor metastasis. A recent study based on 

prostate cancer demonstrated that SPDEF suppresses cancer metastasis through down-regulation of 

matrix metalloproteinase 9 and 13 (MMP9, MMP13), which are required for the invasive phenotype 

of cells [42]. This analysis implied that SPDEF and matrix metalloproteinase plays a similar role in the 

development of ovarian cancer. In addition, it has been shown that, in a mouse model, POSTN down-

regulates ALPP mRNA [43]. POSTN and ALPPL2 were projected onto the diametral ends of axes 2, 

which implies that the same mechanism of regulation exists in ovarian cancer and can be exploited to 
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distinguish subtypes of ovarian. Interestingly, the DAVID gene set analysis of markers for the 

differentiated phenotype did not reveal as strong GO term enrichments as described for the other 

subtypes (lowest BH corrected p = 0.0022 vs. 10-47 to 10-9) indicating that this subtype exhibits a 

considerably higher degree of heterogeneity. 

2.4 CONCLUSIONS 

In the present study, I described multiple co-inertia analysis (MCIA), an exploratory data analysis 

method that can identify co-relationships between multiple high dimensional datasets. MCIA projects 

multiple none or only partially overlapping features onto the same dimensional space and provides a 

simple graphical representation for the efficient identification of concordance between datasets. By 

transforming multiple sources of data onto the same scale, the most variant features are scaled and 

concatenated, which significantly facilitates biological interpretation. The integrative analysis of the 

NCI-60 cell line panel indicated that, although both transcriptome and proteome clustered cell lines 

according to their lineage, integration of these two different layers of data provide complementary 

insights suggesting their combined use yields more information than a single one alone. MCIA analysis 

highly ranked the leukemia extravasation signaling pathway that was overrepresented by features 

predominantly identified in the proteomics dataset with the most enriched biological functions of 

activation of mononuclear leukocyte and lymphocyte. The MCIA analysis of high grade serous ovarian 

cancer revealed four previously described subtypes of ovarian cancer as well as provided novel 

markers highly associated to different tumor subtypes. An advantage of this method is that MCIA 

couples multiple matrices at the data level rather than the annotation level, thus it does not require 

prior mapping or filtering of genes/proteins to common matched set. Therefore, it is not limited by 

the immaturity of annotations, and there is no subsequent loss of information, considerably increasing 

data coverage and quality. 
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ABBREVIATIONS 
 

BH corrected p  Benjamini-Hochberg Procedure corrected p value 

CIA  Co-Inertia Analysis 

CNS  Central Nervous System 

COA  Correspondence Analysis 

CPCA  Consensus Principal Component Analysis 

EMT  Epithelial-Mesenchymal Transition 

ENCODE  The Encyclopedia of DNA Elements 

GCCA  Generalized Canonical Correlation Analysis 

gcRMA  GC Robust Multichip Averaging 

GeLC-MS/MS In-Gel Digestion and Liquid Chromatography Tandem 
Mass Spectrometry 

HGS-OvCa High Grade Serous Ovarian Cancer 

IPA  Ingenuity Pathways Analysis 

IPI  International Protein Index 

MFA  Multiple Factorial Analysis 

MCIA  Multiple Co-Inertia Analysis 

MS  Mass Spectrometry 

NCI  the National Cancer Institute 

NSC  Non-Symmetric Correspondence Analysis 

NSCLC  Non-Small-Cell Lung Carcinoma 

PAGE  Polyacrylamide Gel Electrophoresis 

PC  Principal Component 

PCA  Principal Component Analysis 

RPKM  Reads Per Kilo base per Million 

RMA  Robust Multichip Averaging 

RSEM  RNA-Seq by Expectation Maximization 

TCGA  The Cancer Genome Atlas 
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CHAPTER III 
moCluster: Identifying Joint Patterns 

across Multiple Omics Datasets 
 

SUMMARY 

This chapter describes a novel algorithm, termed moCluster, which discovers joint patterns among 

multiple omics data. The method first employs a multi-block multivariate analysis to define a set of 

latent variables representing joint patterns across input datasets, which is further passed to an 

ordinary clustering algorithm in order to discover joint clusters. Using simulated data, it is shown that 

moCluster performance is not compromised by issues present in iCluster/iCluster (notably the 

nondeterministic solution), and operates 500x to 1000x faster. In addition, moCluster was applied to 

cluster proteomic and transcriptomic data from the NCI-60 cell line panel. The resulting cluster model 

revealed different phenotypes across cellular subtypes, such as doubling time and drug response. 

Applying moCluster to methylation, mRNA and protein data from a big study on colorectal cancer 

identified four molecular subtypes, including one characterized by microsatellite instability and high 

expression of genes/proteins involved in immunity such as PDL1, a target of multiple drugs currently 

in development. The other three subtypes have not been discovered before using single datasets, 

which clearly underscores the complexity of oncogenesis and the importance for holistic, multi-data 

analysis strategies.  
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3.1 BACKGROUND  

Cancer is a heterogeneous disease. Even when originating from the same tissue, the underlying 

molecular mechanisms of cancer development can vary dramatically between patients. Therefore, 

every patient or patient subgroup should motivate a personalized treatment strategy. Broad profiling 

of genetic mutations, mRNAs, proteins and other biological molecules are valuable sources for the 

stratification of cancer patients into such molecular subgroups. However, due to the complexity of the 

underlying biology, a study focusing only on one of the different molecular levels (e.g. genome, 

transcriptome or proteome) may fail to reveal important factors contributing to oncogenesis. 

Conversely, an integrated analysis using multiple levels of information may provide a much more 

detailed picture not readily available from a single dataset [1]. Therefore, an increasing number of 

projects like the Cancer Genome Atlas (TCGA), the cancer cell line encyclopedia (CCLE) and the 

Encyclopedia of DNA elements (ENCODE) aim to systematically measure multiple levels of “omics” 

data from a large number of samples in an attempt to derive a comprehensive understanding of the 

oncogenesis mechanisms. Recently, researchers used the clustering of cluster algorithm (COCL) and 

identified 13 integrative subtypes (including copy number variation, DNA methylation, mRNA, miRNA 

and protein expression data) from thousands of cancer samples originating from 12 different tumor 

sites [2]. The COCL algorithm is a simple method involving two steps of clustering. First, a clustering 

algorithm is performed on each individual omics dataset. Next, the clustering results are represented 

by dummy matrices that contain binary vectors indicating the cluster assignments for each subtype. 

Last, the dummy matrices for all omics data are concatenated and passed to a clustering method (such 

as consensus clustering [3]) to identify the joint pattern of multiple omics data. However, this study 

failed to detect the common pathways or mechanisms shared by cancers from different origins. Hence, 

there is an increasing need for methods capable of integrative clustering of multiple datasets.  

Traditional methods for analyzing two datasets rely on the analysis of a correlation matrix [4]. Shen et 

al. criticized that the correlation matrix based methods aim for identifying the correlated pattern, 

which is insufficient for the identification of unique or complementary patterns in each dataset [5]. 

Therefore, the same authors proposed the "iCluster" algorithm in attempts to address this issue [5]. 

In the iCluster framework, multiple high-dimensional datasets are represented by a low number of 

common variables, called "latent variables". The latent variables may account for distinct molecular 

subtype related biological molecules in each dataset. Therefore, a clustering of the latent variables is 

able to represent the integrated patterns of multiple datasets [5]. The method was already 

successfully applied in several studies. For example, an integrative analysis of copy number and gene 

expression data of 2,000 breast cancer tissues resulted in a novel subtype model with distinct clinical 

relevance [6]. Recently, an extension of the iCluster algorithm, named iCluster+, was developed to 

cluster a more diverse range of data types [7]. In iCluster+, different models are used to account for 

diverse data types, for example, logistic regression for binary variables (mutation data); the multi-logit 

regression model for multi-category variables (copy number variation) or Poisson regression for count 

variables (sequencing data) [7]. Despite their widespread application, there are limitations for these 

methods. For example, they use an iterative expectation-maximization algorithm, which does not 
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necessarily converge to a deterministic optimal solution. In addition, these algorithms are 

computational intensive, which is a particular limitation for nondeterministic algorithms since the 

usual remedy for nondeterministic results is to run the algorithm multiple times and select a consistent 

output.  

In this study, I introduce a new method termed “moCluster”, which is based on a multiple-table 

multivariate analysis. I evaluated the iCluster/iCluster+ algorithms and compared them to the novel 

algorithm using simulated datasets. The results demonstrated that moCluster outperforms 

iCluster/iCluster+ since moCluster defines a subspace that distinguishes subtypes more clearly and 

always converges to a deterministic solution. At the same time, moCluster is 500x to 1000x faster than 

the other two algorithms. The method was also applied to the transcriptomic and proteomic dataset 

of the NCI 60 cell line panel and to methylation, transcriptomics and proteomics data from the TCGA 

colorectal cancer study. The later analysis resulted in a four-subtype model, one of which was 

previously known, while the others could only be discovered on the basis of the integrated data. 

Therefore, this work does not only provide a novel method for the integration of multiple levels of 

omics data, it also forms the starting point for future research on the newly discovered molecular 

subtypes.  

3.2 METHODS 

3.2.1 moCluster algorithm 

The first step of the moCluster algorithm is defining Joint Latent Variables (JLV) using the modified 

consensus PCA (CPCA). CPCA can be calculated using a multiple-block extension of the NIPALS 

algorithm. I describe the algorithm using notations by [8]. The input of the algorithm is a set of 

matrices (X1, X2, ..., Xk, ..., XK). In the algorithm, t is the joint latent variables; pk and tk are the feature 

coefficients vector and the Block Latent Variable (BLV) for matrix k, respectively: 

Transform, center and scale all matrices  
For each latent variable:  

    1. Randomly choose start t   

    2. loop until convergence of t :  

        2.1 tttXp
TT

kk
/   

        2.2 normalize
k

p to 1|||| 
k

p   

        2.3 )soft(
kk

pp   # soft-thresholding operator, introduce sparsity 

        2.4 
kkk

pXt          

        2.5 ]...[
1 K

ttT    

       2.6 tttTw 
T

T
/  # wT is the linear combination coefficients of BLV 

to construct the JLV 

      2.7  normalize
T

w to 1|||| 
T

w   

      2.8  
T

wTt    

    end  

   3. tttXp 
TT

kk
/  # final coefficients for features in matrix k 
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   4. T

kkk
ptXX   # deflation by global score 

end  

In addition to the centering and scaling of features in each dataset, the integrative analysis of multiple 

datasets requires a normalization on dataset level because the one with more features (columns) 

often has more overall variance. In this study, this issue was solved by weighing each data matrix by 

the reverse of its first eigenvalue, allowing different matrices to contribute comparable variance to 

the first (few) JLV(s). After proper normalization of datasets, the algorithm calculates JLVs in a 

sequential manner. First, a random JLV t is initialized (step 1), which is further iteratively updated until 

convergence is reached (step 2.1-2.8). In each iteration, the coefficient vector pk (loading) of each 

individual matrix Xk is derived by regressing Xk to the initialized t (step 2.1). Then, the Block Latent 

Variable (BLV) for dataset k is calculated by regressing Xk to the coefficient vector pk (2.2-2.4). This 

work modified the CPCA approach for feature selection by introducing a soft-thresholding operator in 

this process (step 2.3). The soft(·) is defined as "soft(x, a) = sign(x)(|x|- a)+". By tuning parameter a 

one can explicitly control the number of non-zero coefficients in pk. Steps 2.5-2.8 show that JLV t is 

updated according to the weights computed from the BLVs tk. Steps 2.1 to 2.8 are iterated until 

convergence is reached. It has been shown that this algorithm is convergent [9]. The higher order JLVs 

are based on the residual matrices, which are calculated in step 4. The different ways of calculation of 

residual matrices underscore the difference between CPCA, GCCA and MCIA: GCCA deflates matrices 

with respect to BLVs, (tk; i.e. step 4 is T

kkkk
ptXX  ), which do not need to be directly related to the 

variation of the global variation pattern; MCIA deflates matrices with respect to coefficient vectors (pk; 

step 4 is T

kkkkk
ppXXX  ) [9]. The advantage of deflation matrices with respect to JLV t, as in CPCA, 

is that this strategy guarantees the orthogonality of JLVs. At the same time, the coefficient vectors pk 

can incorporate a sparse operator. 

Next, the latent variables can be clustered by conventional clustering algorithms, such as K-means or 

consensus clustering [3]. In this study, I used the hierarchical clustering algorithm because of its 

simplicity (the Euclidean distance measurement and Ward linkage method [10]). The optimal number 

of clusters was evaluated by the gap statistic [11]. 

3.2.2 iCluster 

The "iCluster/iCluster+" algorithms were called from the CRAN package "iCluster" (version 2.1.0) and 

the bioconductor R package "iClusterPlus" (version 1.2.0), respectively. The "iCluster" function in the 

iCluster package implement the method described in [5, 7].  

3.2.3 Data acquisition and processing 

NCI-60 data  

The NCI-60 drug sensitivity data (DTP NCI60 Z-scores) and mRNA data (average Z-score from five 

microarray platforms) were downloaded from CELLMINER (download date: 2014-06-23) [12]. The 

proteomics data were downloaded from the supplementary table of [13]. The proteome data were 
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quantified and normalized using the iBAQ method [14]. Because the proteomics data for the 

melanoma cell line MDAN and the mRNA data for the CNS cell line SNB19 were not available, the two 

cell lines were excluded from the analysis, resulting in 58 cell lines. The mRNA expression data were 

filtered based on the standard deviation of a gene across the 58 cell lines − genes with standard 

deviation greater than 0.8 were retained. In the proteomics data, proteins with total intensity across 

the panel greater than 10 were retained. Then, the iBAQ values were transformed by

)1(log
10


ii

iBAQx .  

TCGA Colorectal cancer data  

To evaluate the integrative subtypes of colorectal cancers, the mRNA expression (RPKM) matrix and 

methylation matrix were downloaded from the cBio cancer genomics portal [15]. The spectral count 

proteomics data and related subtypes, oncogene mutation and clinical information were downloaded 

from the supplementary information of [16].  Patients with all three types of data (mRNA, methylation, 

proteomics) were retained in the analysis, resulting in 83 patients. The association between each 

integrated subtype and other factors was evaluated by two-sided Fisher’s exact test. 

The methylation level was represented by the beta-value. Beta-values were transformed to M-values 

as )
1

(log
2

i

i

i

Beta

Beta
M


 [17]. The RPKM values were transformed by )1(log

10


ii
RPKMx . Then, 

all data underwent an unspecific filtering. For each methylation point in the methylation data, the sum 

of M-values across the 83 patients was calculated. Methylation sites with a sum of M-values lower 

than -300 were excluded. In addition, due to the distinct methylation status of the X chromosome 

between genders, all methylation sites located on the X chromosome were also removed. For the 

mRNA expression data, genes with median absolution deviation (MAD) greater than 0.1 were retained. 

Due to the presence of missing values in the proteomics data, only proteins with less than 60 missing 

values across the whole panel were retained. As a result, 11282, 12503 and 5708 sites/genes/proteins 

were retained in the methylation, mRNA and proteomics datasets, respectively. 

3.2.4 Data simulation 

In order to simulate data that mimic the true variance level of real data and at the same time have a 

clearly defined cluster pattern, the following procedure was used: 

TCGA bladder cancer transcriptomic and copy number variation (CNV) data were downloaded using 

TCGA assembler (Date: 26/09/2014). The transcriptome data (RNAseqV2) were quantified by the 

MapSplice and RSEM approach and were subsequently logarithm transformed. The gene level CNV is 

estimated by the mean copy number of the genomic region corresponding to a gene (retrieved by 

TCGA assembler directly [18]). I randomly selected 3000 genes and 240 matched patients in the two 

datasets, referred to as Xcnv and Xmrna, where rows are patients and columns are genes. Then, the two 

matrices underwent singular value decomposition (SVD) 

T

cnvcnvcnvcnv
VDUX   and T

mrnamrnamrnamrna
VDUX   
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U and V are orthogonal matrices known as left and right singular matrix, respectively; the columns of 

them are singular vectors. D is the diagonal matrix, where the diagonal elements represent the 

standard deviation of the corresponding singular vector.  

The study planned to clearly define two subtypes in each of the datasets, which should be described 

by the first left singular vector. In order to reflect its exceptional importance, the diagonal elements 

of D were modified – the first diagonal elements in D was kept and the other diagonal elements were 

replaced by their means, that is, 
1

1

)mean(

ˆ

1











i

i

d

d
d

i

i

i
if

if
 for the ith diagonal elements di. 

Therefore, the pattern defined by the first singular vector represents the "true" signal and remaining 

singular vectors are "noise". The modified diagonal singular value matrices were denoted as 
cnv

D̂ and

mrna
D̂ . 

So far, the first singular vectors in Ucnv and Umrna are exceptional more variant than others but do not 

have a clear cluster structure. Therefore, Ucnv and Umrna need to be simulated as well to including clear 

subtype pattern. To do so, two matrices Xsim1 and Xsim2 were defined, which have the same dimensions 

as Xcnv and Xmrna, by a simple linear additive model: 

ijijij
xx 
~  

where )1,0(~ N
ij

 represents random noise; ),0(~
~

signalij
sdx N is the pseudo gene expression 

level, 
21

~~
ijij

xx  if 1
j and 2

j belongs to the same cluster. In Xsim1, the two clusters are samples 1-120 

and 121-240, whereas in Xsim2, the two clusters are samples 1-60/121-180 and 61-120/181-240. 

Therefore, the two datasets define four subtypes as samples 1-60, 61-120, 121-180 and 181-240. In 

order to create orthogonal matrices to replace Ucnv and Umrna, I calculated the SVD of Xsim1 and Xsim2: 

T

1111 simsimsimsim
VDUX   and T

2222 simsimsimsim
VDUX   

Finally, the simulated CNV and mRNA data were generated by  

T

1
ˆ

cnvcnvsimsimCNV
VDUX   and T

2
ˆ

mrnamrnasimsimMRNA
VDUX   

Therefore, the first left singular vectors in Usim1 and Usim2 capture the two-cluster structure in each 

dataset; the four-cluster structure defined by XsimCNV and XsimMRNA could be represented by exactly two 

latent variables. To simulate different signal-to-noise ratios, I defined sdsignal = 1, 0.5 and 0.2 for high, 

medium and low signal-to-noise ratio, respectively. 

In addition, to simulate data with sparsity, 1000 genes were randomly selected in the first column of 

Vcnv
T and Vmrna

T as non-sparse genes. All other values were set to 0. Then, the vectors were rescaled so 

that the sum of square of all values equals one. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 moCluster approach 

The idea behind and the steps taken in the moCluster algorithm can be summarized as follows (Figure 

3.1): 

1. Using sparse consensus PCA to find latent variables 

2. Permutation and elbow test to determine the number of latent variables 

3. Clustering of latent variables (using e.g. hierarchical or K-means clustering) 

4. Selection of the best subtype model 

When multiple omics datasets are available for the same set of observations, the data can be 

represented by a set of matrices (X1, X2, ..., XK). The columns of the matrices refer to the same set of 

observations (e.g. samples, cell lines or patients) while the rows refer to different features such as 

genes, mRNAs or proteins (Figure 3.1A). The core idea of moCluster is similar to iCluster. Both use 

linear combinations of original features to define a set of joint latent variables, which represent the 

most important patterns as defined by multiple omics data [5]. This can be expressed as 

K

T

KK

T

T

ETPX

ETPX

ETPX









222

111

 
(1) 

where T =|t1, …, ts, …, tS| is a matrix that comprises the Joint Latent Variables ts (JLVs) in columns; (P1, 

P2, ..., PK) are the matrices of coefficients for features in each datasets (also known as loading matrices). 

In contrast to iCluster, which uses an expectation-maximization algorithm to optimize a log-likelihood 

function derived from this model, the moCluster algorithm employs the consensus PCA (CPCA) 

approach to estimate the latent variables. In this study, the CPCA algorithm was modified to introduce 

sparsity in feature coefficient vectors (columns of Pk; see methods) in order to facilitate the biological 

interpretation of clustering results. For a single matrix, principal component analysis (PCA) models the 

high dimensional data with a lower number of variables (principal components; PC). The PCs 

discovered by PCA are the optimal representation for a single matrix and are widely used in 

conjunction with clustering or regression methods, such as spectral clustering. CPCA is an extension 

of PCA for the analysis of multiple matrices. In order to calculate the first latent variable, CPCA finds a 

set of "suboptimal" latent variables for each individual matrix 1

k
t  (denoted as Block Latent Variable; 

sss

321
,, ttt in Figure 3.1B) by regressing individual matrices to the their respective feature coefficient 

vectors (see methods). The Block Latent Variables (BLV) are "suboptimal" because they are not 

necessarily the "best representation" of the matrix itself. Instead, CPCA aims at finding a Joint Latent 

Variable (JLV; ts in Figure 3.1B) via linear combination of BLVs so that the summed covariance between 

BLVs and JLV, i.e. 


K

k

k

1

112
),(cov tt , is maximized.[9] As a result, the JLVs represent the joint patterns 

of multiple datasets. To calculate a subsequent (higher order) JLV, CPCA first computes the residual 
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matrices from each original matrix by removing the variance that accounted for the previously 

calculated JLV. This procedure is called "deflation". Next, the JLV and feature coefficients are 

calculated from the residual matrices using the same procedure as before. These processes are 

repeated until the desired number of JLVs is calculated. Figure 3.1C shows an example of a two 

dimensional JLV space and the detailed algorithm is described in the methods section.  

 

Figure 3.1 A schematic view of the moCluster algorithm. The input of the CPCA algorithm is a set of matrices that have 

matched observations, such as genomic, transcriptomics and proteomics data describing the same patient cohort (A). (B) For 

a latent variable s, CPCA uses a linear combination of original features to define a set of block scores ( s

1
t , s

2
t and s

3
t  in the 

figure) and a global score (ts), so as to maximize the summed correlation between each block score and the global score. The 

global score is termed “joint latent variable” in this study. To derive the higher order solution, the variance accounted for by 

the global score is removed from the input matrices (deflation step) and the same process reiterated until all the latent variables 

are defined (C) A scatter plot showing the space defined by two joint latent variables (t1 and t2). (D) A clustering algorithm can 

be applied on the latent variables to find the joint patterns across datasets. 

Like PCA, the relevance of a JLV can be measured by its pseudo-eigenvalue (explained variance). The 

pseudo-eigenvalues are monotonically decreasing by definition, but an "elbow" point can be found 

from a scree plot of pseudo-eigenvalues where the slope of its decreasing goes from steep to flat. I 

used this method to determine the number of JLVs that should be included in the cluster analysis (see 

below in the application studies). In addition, a permutation test can be used to evaluate the 

concordant or divergent structures between datasets. To this end, moCluster permutes samples in 

each of the datasets and passes the permuted datasets to the CPCA. An empirical confidence interval 

for each eigenvalue is derived by repeating the permutation for a specified number of times. The 

permutation analysis provides a further reference for choosing the JLV. Eigenvalues significantly 

higher than the permutation eigenvalues represent the concordant structures across the datasets, 

while including extra JLVs enables the detection of divergent structures in multiple datasets. In 

practice, an elbow test in combination with the permutation test is used to determine the necessary 

number of JLVs.  

With the principle of parsimony in mind, CPCA algorithm was modified by introducing a soft-

thresholding operator to ensure sparsity of the features' coefficients (Qk in equation 1) for each of the 

JLVs (see methods). The sparsity of the coefficient matrix leads to the violation of the maximized 
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covariance criteria (i.e. will explain less variance), but greatly improves the interpretability of the 

results. In the last step, an ordinary clustering algorithm is applied on the JLVs (Figure 3.1D).  

 

Figure 3.2 Comparison of moCluster to iCluster and iCluster+ using simulated data. (A) Two datasets were simulated, each 

of them consisting of two clusters (indicated by the dark and gray bars on the left side of the heatmaps). The combination of 

them resulted in four clusters as shown in different colors. (B) The space defined by the two latent variables discovered by 

moCluster, iCluster and iCluster+ using high signal-to-noise ratio data. Different colors indicate samples of different simulated 

clusters. The horizontal and vertical axes are the JLV1 and JLV2 respectively. (C-D) The same as in (B) but the three 

algorithms were applied to data with different signal-to-noise ratios (S/N). R indicates the Pearson correlation coefficient, 

showing that only moCluster returns uncorrelated latent variables.  

A robust estimation of the JLVs is crucial for integrative clustering and this is the essential difference 

between the moCluster and the iCluster/iCluster+ approaches. Several other generalizations of PCA 

for multiple-table problems have been proposed and applied to omics data analysis. Two other 

methods use algorithms that are similar to CPCA. These are the generalized canonical correlation 

analysis (GCCA) and multiple co-inertia analysis (MCIA) [1, 9]. However, they use different deflation 

strategies during the calculation of JLVs [5]. The deflation step in the GCCA relies on the block scores. 

As a result, the JLVs (global scores) derived by GCCA can be un-orthogonal, which is unfavorable since 

it indicates different JLVs that can be driven by the same or a subset of correlated features (e.g. genes 

or proteins). In the MCIA approach, the residual matrices are calculated based on the coefficient 

matrix (Qk in equation 1). Subsequently, when sparsity is introduced into the feature coefficients, it 

dramatically influences the JLVs and may further lead to sparse and correlated JLVs. Therefore, the 

CPCA approach is particularly suitable for the integrative clustering problem. 
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3.3.2 Comparison of moCluster to iCluster/iCluster+ using simulated data 

In order to have exact control of a putative molecular subtype pattern in molecular profiling data of 

say cancer patients, I first used simulated data to compare moCluster to iCluster and iCluster+. Two 

datasets (Figure 3.2A), each consisting of 240 samples, were generated to represent two omics 

datasets (referred as Data 1 and Data 2). Data 1 was further divided into two sub-clusters: the first 

sub-cluster contained samples 1-120, while the second cluster consisted of samples 121-240. Data 2 

also consists of two sub-clusters: the first cluster is composed of samples 1-60 and 121-180, while the 

second cluster consists of samples 61-120 and 181-240. Thus a combination of Data 1 and Data 2 

results in 4 different integrated subtypes, namely samples 1-60, 61-120, 121-180 and 181-240 (the 

light blue, orange, blue and red color bars in Figure 3.2A). In order to facilitate comparison and 

visualization, these datasets were simulated in a way that the four-cluster pattern could be captured 

within two joint latent variables (JLV; see methods). In order to determine the sensitivity of each 

method, the data were simulated three times with varying signal-to-noise ratios (see methods). Then 

the three algorithms (modified CPCA, iCluster and iCluster+) were applied to calculate two JLVs. The 

corresponding results are shown in figure 3.2B-D, which shows that the moCluster algorithm can 

always distinguish the four clusters defined by the two datasets. In line with the expectation, as soon 

as the signal-to-noise ratio becomes lower, the samples are more disperse in their defined clusters. 

The iCluster algorithm can also roughly separate the four subtypes of simulated samples, however it 

does not benefit from increasing the signal-to-noise ratio. Interestingly, the iCluster+ algorithm was 

more likely to discover the two subtypes defined by Data 1. Apart from a better discovery of the joint 

patterns, the moCluster algorithm also runs 500x to 1000x times faster than the other two algorithms 

(Table 3.1). The long computation time is particularly problematic for iCluster+. This is because 

iCluster+ uses a Monte Carlo Newton-Raphson algorithm, which provides nondeterministic results due 

to the Monte Carlo sampling procedure (Figure 3.3) [7]. To address this problem, the algorithm should 

be performed multiple times and the best result can then be selected according to a defined criterion. 

However, the long computation time requirement may impair the application of iCluster+ to the 

analysis of very large omics datasets. 

Table 3.1 - computation time comparison of different algorithms 

  time (second)* 

Data Description** moCluster iCluster*** iCluster+*** 

S/N high 0.8 713.4 1042.4 

S/N mid 1.0 712.5 1016.6 

S/N low 1.0 711.9 992.7 

* 1 core; Intel(R) Core(TM) i5 CPU 650 @ 3.20GHz 16 GB RAM.  
** Two datasets, each of them have 240 samples and 3000 variables. 
*** The number of maximum iterations is 10 

In this study, a maximum of 10 iterations was initially allowed for iCluster/iCluster+, but these 

algorithms do not necessarily converge after 10 iterations. To evaluate the impact of the allowed 

iteration number, the maximum number of allowed iterations was increased from 10 to 50 for both 
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methods. The result suggested that iCluster with maximum 50 iterations resulted in highly correlated 

latent variables; even more problematically, the algorithm converged to a solution which only 

distinguishes two subtypes (Figure 3.4). In fact, although both methods try to define orthogonal latent 

variables [5, 7], the results can still correlate with each other (Figure 3.2B). For the iCluster+ algorithm, 

the increase of the number of iterations did not affect the results at all, while the result from iCluster 

may be strongly influenced by the number of iterations. In practice, a proper number of iterations may 

need to be determined so that results represent a good trade-off between processing time and 

confidence in the results.  

 

Figure 3.3 Two replicates of iCluster+ algorithm. Identical datasets and parameters were used but it resulted in different 

solutions. The datasets are the same with ones used in Figure 3.2. The color code is the same with Figure 3.2. The horizontal 

and vertical axes are the JLV1 and JLV2 respectively. 

 

Figure 3.4 The iCluster with maximum 50 iterations resulted in highly correlated latent variables and only distinguished two 

clusters. The datasets are the same with ones used in Figure 3.2. The color code is the same with Figure 3.2. The horizontal 

and vertical axes are the JLV1 and JLV2 respectively. R indicates the Pearson correlation coefficient.  

3.3.3 Application of moCluster to molecular profiling data of NCI-60 cell line panel 

Simulated data are valuable for initial benchmark tests of an algorithm, but tend to over-simplify a 

biological system and may therefore not reflect its true complexity. Hence, I applied moCluster to 
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cluster the mRNA and proteomics data of the NCI-60 cell line panel [13]. The NCI-60 cell line panel 

consists of 60 cancer cell lines originating from 9 different tissues (skin, breast, lung, ovary, prostate, 

blood, central nervous system, colon and kidney) and has been extensively studied, for example in the 

context of drug sensitivity [12].  

The microarray transcriptomic and mass spectrometry-based proteomic data consist of 11,826 and 

8,069 genes/proteins, respectively. I had to exclude two of the cell lines because of data availability, 

resulting in 58 cell lines (see methods). Due to the inherent complexity of cancer, neither the 

transcriptomic nor the proteomic data necessarily distinguished all the cell lines with respect to their 

tissue origin. However, the melanoma cell lines and leukemia cell lines were significantly different 

compared to others due to the expression of genes related to melanogenesis and the immune 

response [1]. Therefore, the evaluation of moCluster focused on distinguishing these two types of cell 

lines from the others. As a result, the latent variable space defined by moCluster (using transcriptomic 

and proteomic data) showed that most of the melanoma and leukemia cell lines clustered according 

to their tissues of origin and are clearly separated from other cell lines (Figure 3.5). Next, the 

permutation test and scree plot were used to determine the number of latent variables that should 

be included in the analysis. The permutation test showed that the top four joint latent variables (JLV) 

account for significantly correlated structures. The eigenvalue scree plot does not show a clear elbow 

point and the top four JLVs are significantly higher than the rest (Figure 3.6A). Therefore, this analysis 

included four JLVs in the subsequent analysis. 

In order to derive a model based on sparse feature coefficients, a gradient of non-sparse feature 

coefficients in each of the datasets were evaluated, i.e. 10%, 20% and 40%. The latent variables with 

as low as 10% sparse coefficients are well correlated with the ones from non-sparse coefficients. 

Therefore, I chose 10% non-sparse coefficients (the most parsimonious model) and hypothesized that 

JLVs with sparse coefficients capture essentially the same biological information like their non-sparse 

counterparts. Then, hierarchical clustering was employed to cluster the 4 latent variables. In order to 

determine the optimal number of clusters, the gap statistic was employed [11]. For a given cluster 

model, the gap statistic calculates the difference (gap) between the within-cluster dispersion of 

models being evaluated and the model derived from a proper null reference distribution. The within-

cluster dispersion is measured as the pooled within-cluster sum of square to the center of each cluster. 

A high gap statistic indicates that a certain cluster model outperforms a random model generated 

from the null distribution. In the analysis of the NCI-60 panel, the gap statistic kept increasing until a 

number of 10 clusters was reached. However, from 7 clusters onwards, the increase of the gap statistic 

became moderate (Figure 3.6B). Therefore, a 7-cluster model (C1-C7) was selected, resulting in a good 

compromise between accuracy and parsimony.  

The seven resulting subtypes are shown in Figure 3.6C, with most of the leukemia and melanoma cell 

lines converging to the same cluster. The heatmap of latent variables depicts that leukemia cell lines 

have high values of the first latent variable whereas melanoma cell lines are showing high values in 

the second JLV.  



Multiple Omics Data Clustering 

63 
 

 

Figure 3.5 The latent variables space defined by moCluster (NCI60 data; two latent variables). The melanoma cell lines are 

projected onto the positive end of the second latent variable; whereas the leukemia cell lines are located on the positive end 

of the first latent variable. (Abbreviations for cancer types: LE: Leukemia; LC: Non-small cell lung cancer; CO: Colon cancer; 

BR: Breast cancer; PR: Prostate cancer; OV: Ovarian cancer; ME: Melanoma; CNS: central nervous system (CNS) lymphoma; 

RE: Renal Cancer) 

In order to better understand the underlying biological processes driving the subtypes, genes and 

proteins with non-zero coefficients were extracted and passed to a gene set over-representation 

analysis (DAVID functional annotation) [19]. This analysis revealed that genes and proteins positively 

associated with the first latent variable are related to DNA replication, lymphocyte/T cell activation 

and DNA repair processes (Table 3.2). The over-representation of lymphocyte/T cell activation is in 

concordance with leukemia cell lines showing high values of this latent variable. It is noteworthy that 

the leukemia cell line SR clustered together with the melanoma cell lines due to its protein but not its 

mRNA expression profile. This might indicate a miss labelling of the cell line in the proteomics data. 

The result also suggested that other clusters with high values of the first JLV ─ including C2 (mainly 

comprising the colon) and C3 (leukemia cell lines) ─ possess the shortest doubling times (ANOVA p = 

0.030; Figure 3.6D). This is in agreement with the over-representation of DNA replication genes and 

proteins in this latent variable.  

Cell adhesion and motions are associated with negative values of latent variables 1 and 2 as well as 

positive values of JLV 3. These three JLVs mainly drive one big cluster C1 and two small clusters C5 and 

C6. This is in concordance with the epithelial nature of these subtypes. High values of the second latent 

variable, a defining characteristic of melanoma cell lines, are strongly associated with genes and 

proteins related to melanogenesis and pigmentation function. One of the melanoma cell lines, 

LOXIMVI, known to lack the proteins/genes for melanogenesis was therefore correctly clustered away 

from the other melanoma cells and was associated with the Non-small cell lung cancer cells, both 

being epithelial cells.  
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Figure 3.6 Application of moCluster to NCI-60 mRNA and proteomics data. (A) Permutation test to determine the number of 

latent variables that should be included in the clustering. The light gray boxplot shows the eigenvalues for 30 permutation test. 

The first four latent variables represent the concordant structure in the two datasets and are significantly higher than the others. 

Therefore, this analysis included the first four latent variables. (B) Gap-statistic for the clustering of the top 4 latent variables. 

From 2 clusters onwards, the gap statistic continuously increased until reaching saturation at approximately 7 clusters. (C) 

Clustering of the top 4 latent variables using hierarchical clustering. Color-bars indicate the subtypes,  tissue of origin and 

latent variables. The abbreviations for cancer types are the same as in Figure 3.5. (D) The cell doubling time of different 

clusters. (E) Different sensitivity to the HSP90 inhibitor Gamitrinib across different subtypes of cancer cell lines.  

The mRNAs associated with high values of the fourth JLV (LV4) are also enriched in "T cell activation" 

and "lymphocyte activation". Apart from the leukemia subtypes, high values of this latent variable 

additionally defined a subgroup in the C1 subtype. This subgroup includes two Claudin low breast 

cancer cell lines, BT549 and MDAMB231. It was shown before that Claudin low cancers have a higher 

expression of genes related to T-cell, B-cell and granulocyte function [20]. Interestingly, three other 

cell lines, the CNS cell line SF268, the ovarian cell line OVCR 8 and the melanoma cell line LOXIMVI 

were also found in this this subgroup, which implies that these cancer cell lines may possess 

characteristics comparable with the Claudin low breast cancer cell lines (JLV4 in Figure 3.6C).  

Other functions enriched by selected genes and proteins (gene/proteins with non-zero coefficients) 

are closely related to GTPase regulation (Table 3.2) and mitochondrial activity, including the electron 

transport chain, protein oxidative phosphorylation (protein data with negative values of JLV3) and 

oxidative reduction (proteins on negative end of JLV4). Therefore, this cancer subtype may show a 

distinct drug sensitivity profile for drugs targeting the mitochondrion [21]. In an attempt to validate 

this hypothesis, I compared the growth inhibition effect (GI50) of Gamitrinib, a mitochondrial HSP90 

ATPase inhibitor, between different subtypes (ANOVA p = 0.010; Figure 3.6E). This analysis suggested 

that different subtypes indeed show different sensitivity towards this drug, with the subtypes C2, C4 

and C5 being more resistant to this compound. In summary, moCluster successfully captures the 

important joint pattern defined by both proteomic and transcriptomic data. The biological 

interpretation of the clusters was facilitated by exploring the features associated with latent variables.  
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Table 3.2 - The enrichment analysis of features positively and negatively associated with each 
latent variables (NCI-60 data) 

 positive Negative 
latent 

variable Term data* BH p-value Term data BH p-value 

1 

DNA replication R 2.92E-11 
regulation of cell 
motion R 2.31E-14 

T cell activation R 5.86E-10 cell adhesion R 8.42E-13 

DNA replication P 0.00019 biological adhesion P 2.46E-17 

lymphocyte activation P 0.001392 cell adhesion P 7.95E-17 

2 

pigmentation R 9.32E-12 
regulation of cell 
motion R 4.81E-06 

melanocyte 
differentiation R 2.82E-06 cell adhesion R 1.45E-04 

pigmentation P 2.99E-07 cell adhesion P 3.48E-07 
phosphatidylinositol 
binding P 6.82E-06 

regulation of cell 
motion P 2.44E-05 

3 

skeletal system 
development R 2.51E-09 

GTPase regulator 
activity R 0.000323 

cell adhesion R 4.70E-08 
electron transport 
chain P 1.51E-25 

cell adhesion P 4.31E-06 
oxidative 
phosphorylation P 2.71E-20 

4 

T cell activation R 2.24E-19 
GTPase regulator 
activity R 5.44E-08 

lymphocyte activation R 7.62E-18 

nucleoside-
triphosphatase 
regulator activity R 1.01E-07 

cytoskeleton 
organization P 3.10E-08 oxidation reduction P 1.15E-18 
actin cytoskeleton 
organization P 5.87E-06 cofactor binding P 4.93E-10 

* P - protein, R - RNA 

3.3.4 Application of moCluster to molecular profiling data of colorectal cancer patients 

The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) recently 

published multidimensional, genome-scale and proteome-scale analyses on colon and rectum 

carcinoma [7, 22]. Several different subtype models were proposed by clustering individual omics data 

from methylation, transcriptomic and proteomic studies: Four subtypes were discovered in the 

methylation dataset, including two subtypes with elevated methylation, designated "CIMP high" and 

"CIMP low" and the non-CIMP clusters, Cluster 3 and Cluster 4 [22]; three transcriptomic subtypes 

were designated “microsatellite instability/CpG island methylater phenotype” (MSI/CIMP), “invasive”, 

and “chromosomal instability” (CIN) [22];  Zhang et al. reported five proteomic subtypes, designated 

subtype A – E [16]. However, the proteomics study observed a limited correlation between mRNA and 

protein levels [16]. Therefore, it is interesting to evaluate whether colorectal cancer subtypes can be 

better represented with an integrative clustering based on the three types of data. For this purpose, 
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this study applied the moCluster algorithm to a subset of 83 tumors that had all three types of data 

available.  

 

Figure 3.7 Application of moCluster to the TCGA colorectal cancer dataset. (A) The variance of the top three latent variables 

are significantly higher than the others. Two of them represent the concordant structure across the three datasets as suggested 

by the permutation test (the error bars represent the 95% confidence interval). (B) The gap statistic with respect to 1 to 12 

subtypes indicates that a 4-subtype model is the optimal choice. (C) Cluster assignment of patients. (D) Comparison of the 

integrative subtype model with other subtype models derived from individual datasets. (E) Comparison of the integrative 

subtype model with clinical and genomic information. (F) Mutation patterns of colorectal cancer related genes in different 

subtypes. (G) Heatmap showing the latent variable expression pattern. (H) The number of mutations of patients in different 

subtypes. Subtype C1 harbors significantly more mutations than the others.  (I) Different distribution of cytolytic scores across 

subtypes. Subtype C1 is significantly more cytolytic than others. (J) Different PDL1 expression in different subtypes. 

A permutation test suggested that the first two JLVs represent a significant coherent structure among 

the datasets. In conjunction with the eigenvalue plot, three JLVs were selected for the clustering 

(Figure 3.7A). 10% non-zero coefficient (the same selection procedure as for the NCI-60 example) in 

each dataset were retained and there was a good correlation between sparse and non-sparse JLVs. 

Then, top three latent variables were clustered using hierarchical clustering algorithm (Euclidean 

distance with Ward method) and four robust integrative subtypes were suggested based on the gap 
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statistic (Figure 3.7B), denoted as C1 to C4. Each of them consists of 15, 33, 13, 22 cases, respectively 

(Figure 3.7C).  

Table 3.3 - association between subtype and other subtype/clinical factors.  

subtype  C1 C2 C3 C4  

  15** 33 13 22 BH P-value* 

low grade 
FALSE 7 19 3 9 0.61 

TRUE 8 14 10 13 0.70 

TP53 mutation 
0 11 9 6 12 0.29 

1 0 18 6 6 0.025 

BRAF mutation 
0 6 26 12 16 0.57 

1 5 1 0 2 0.040 

X18Q mutation 
0 14 7 7 8 0.049 

1 1 26 6 13 0.032 

Proteome 
subtype 

A 0 7 4 2 0.17 

B 7 1 0 1 0.0019 

C 3 4 3 14 0.035 

D 2 1 5 2 0.043 

E 0 16 0 1 6.4E-4 

methylation 
subtype 

CIMP.H 12 0 4 0 7.27E-07 

CIMP.L 3 7 3 6 0.98 

Cluster3 0 16 4 6 0.052 

Cluster4 0 10 2 10 0.065 

mRNA subtype 

CIN 1 14 0 9 0.029 

Invasive 0 11 5 6 0.12 

MSI/CIMP 11 4 3 7 0.037 

methylation 
status 

Hyp 12 2 1 2 3.9E-4 

Non-Hyp 2 29 12 18 0.047 

MSI status 

MSI-H 13 1 0 1 3.95E-06 

MSI-L 0 4 4 5 0.19 

MSS 2 28 9 16 0.072 

Site 

1 - right colon 14 5 4 8 0.017 

2 - transverse colon 1 1 2 1 0.46 

3 - left colon 0 13 3 6 0.11 

4 - rectum 0 14 4 7 0.087 
* Fishers exact test (two sided) was used. Red indicates BH corrected p value lower than 0.05.   
** Number of patients  

Next, this study tested the association between the integrated subtype model with other established 

subtype models using Fisher’s exact test (Figure 3.7D, Table 3.3). Integrated subtype C1 is significantly 

enriched with microsatellite instable patients and ones from proteomics subtype B; methylation 

subtype CIMP.H (Figure 3.7E, Table 3.2). In addition, this subtype is significantly associated with the 

absence of the P53 mutation, absence of chromosome 18q and is moderately enriched in patients 

with BRAF mutations (Figure 3.7F, Table 3.3). The independent discovery of this subtype in several 

different studies suggests that this subtype is very different from the other subtypes on several 

regulatory levels. In this analysis, the dendrogram suggested this subtype is most distinct from the 
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remaining subtypes (Figure 3.7C), which is specifically characterized by low values in the first JLV 

(Figure 3.7G). 

Noteworthy, the other three integrative subtypes were not discovered in previous studies. Particularly 

the mRNA subtype “chromosome instability (CIN)”, a well-accepted genetic property of colorectal 

cancer, can be subdivided into the subtypes C2 and C4. This result implies that different mechanisms 

of oncogenesis may be present in tumors of the mRNA CIN subtype. The C2 subtype also included 

most of the proteome subtype E, which is characterized by HNF4A amplification and in consequence 

by higher protein levels of the HNF4alpha protein [16]. Furthermore, there are only weak associations 

present between the proteomics subtype D and C3, as well as proteome subtype C and the integrative 

cluster C4 (Table 3.3).  

 

Figure 3.8 The different mRNA expression levels of four immune checkpoints across subtypes. The four genes are highly 

expressed in C1 subtype. 

Colorectal cancers are generally divided into two main groups microsatellite unstable (MSI) or 

microsatellite stable (MSS) but chromosomally unstable tumors [22]. MSI tumors are also 

characterized as being primarily located to the right colon, harboring the CpG island methylator 

phenotype (CIMP) and being hyper-mutated [22]. In the integrative model, C1 patients have a higher 

mutational frequency (t-test p = 1.85×10-7; Figure 3.7H). Therefore, this subtype corresponds to the 

integrative subtype C1. An enrichment analysis of the associated features (features with negative 

coefficients in LV1) suggested low values of the first latent variable are associated with immune 

related genes and proteins (Table 3.4). This implies that this subtype may also represent an immune 

infiltrated subtype. In order to quantify the degree of immune-activation of samples, I used the 

cytolytic activation score from Rooney and colleagues [23]. The result confirmed that C1 tumors have 

the highest degree of immune activation (t-test p = 3.35×10-9; Figure 3.7I). An increasing mutational 

load is thought to increase the number of cancer associated antigens presented by tumor cells, thus 

eliciting an enhanced immune response. These cancers are thought to elude immune surveillance and 

eradication through the expression of PDL1 and in early clinical trials, cancers with high levels of 



Multiple Omics Data Clustering 

69 
 

mutational heterogeneity have responded well to anti-PD-1 therapy [24, 25]. Specifically, Llosa et al. 

reported that a specific immune microenvironment is associated with MSI colorectal cancer and 

suggested five immune checkpoint genes, including PD-1, PD-L1, CTLA-4, LAG-3, and IDO as potential 

drug targets [26]. Of note, all of these checkpoints were significantly (t-test p = 5.05×10-11) elevated in 

the integrative subtype C1 (MSI and immune activation subtype; Figure 3.7J and3.8). This is 

particularly interesting since there are several colorectal cancer drugs targeting immune checkpoints 

in early clinical trials, including anti-PD-1 antibodies Nivolumab (NCT02060188), MEDI0680 

(NCT02118337; NCT02013804) and pembrolizumab (NCT01876511); anti-CTLA-4 antibodies 

ipilimumab (NCT02060188) and tremelimumab (NCT02205333); an anti-CD27 antibody varlilumab 

(NCT01460134) and a LAG-3 antibody BMS-986016 (NCT01968109). Therefore, the C1 subtype 

identified by this analysis may represent a subset of colorectal cancers, which might be well 

susceptible to drugs targeting these immune checkpoint genes. Conversely, the other three subtypes 

may be less sensitive to this treatment. 

Subtype C2-C4 were not described before, hence, the integrative subtype model provides a new basis 

to study the mechanisms driving these colorectal cancers. In particular, C2 subtype tumors are 

characterized by negative weight on the third JLV, while subtypes C3 and C4 are distinct on the second 

JLV. To understand the related functions, enrichment analysis was used to analyze the features 

associated with the second and third latent variables. The results indicated that, although a limited 

correlation between mRNA and protein was reported [16], a relatively good correlation was observed 

between them on the gene set level, namely, the selected non-zero weight mRNAs and proteins seem 

to be enriched in the same gene sets (Table 3.4). The result suggested that C2 tumors have an elevated 

ribosome biogenesis activity, the associated gene sets include functions related to "ribosome 

biogenesis" and "RNA processing". An increased demand for ribosome biogenesis has been associated 

with tumorigenesis and an increased risk of neoplastic transformation [27]. The C3 subtype has high 

values of the second JLV; the associated genes include collagens, integrins and cadherins, which are 

functionally involved in cell adhesion and immune related processes. These molecules play a role in 

the attachment of malignant cells in their original site, while the downregulation of these genes may 

support the metastasis of cancer cells to foreign tissues in colon cancer [28]. Therefore, C2 might be 

a subtype with more advanced neoplastic transformation whereas C3 may represent a subtype with 

a more epithelial phenotype and less metastatic potential. This analysis provides a hypothesis that 

may be further tested in the future. 
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Table 3.4 - the enrichment analysis of variables positively and negatively associated with each latent 
variables (colorectal data) 

 positive Negative 

latent 
variable Term data* p-value Term data p-value 

1 

response to drug R 1.27E-07 neuron differentiation M 2.08E-22 

digestion R 9.54E-05 neuron development M 8.29E-16 

inorganic anion transport R 1.15E-04 
sequence-specific DNA 
binding M 6.88E-13 

translation P 3.69E-17 immune response R 2.12E-72 

structural constituent of 
ribosome P 5.42E-13 defense response R 2.96E-44 

ligase activity, forming 
carbon-carbon bonds P 4.31E-08 response to wounding R 1.01E-31 

structural molecule activity P 2.42E-07 defense response P 4.31E-36 

      immune response P 7.42E-34 

      response to wounding P 2.90E-31 

2 

neuron differentiation M 4.08E-35 cell adhesion R 1.41E-41 

neuron development M 8.07E-23 biological adhesion R 1.70E-41 
neuron projection 
development M 1.34E-17 response to wounding R 1.66E-33 

RNA binding P 4.36E-09 
extracellular matrix 
structural constituent P 8.35E-37 

ribosome biogenesis P 4.40E-08 response to wounding P 6.75E-30 

ribonucleoprotein complex 
biogenesis P 6.47E-08 cell adhesion P 3.59E-23 

3 

regionalization M 2.55E-06 
second-messenger-
mediated signaling M 1.47E-06 

pattern specification 
process M 9.95E-06 

elevation of cytosolic 
calcium ion concentration M 2.98E-06 

response to hormone 
stimulus R 2.62E-06 

negative regulation of 
transport R 6.32E-05 

oxidation reduction R 1.91E-05 regulation of apoptosis R 1.13E-04 

oxidation reduction P 1.36E-14 ribosome biogenesis P 4.17E-13 

      ncRNA metabolic process P 3.06E-12 

      RNA processing P 5.52E-12 

 * R - mRNA, P - protein, M - methylation. 

3.4 CONCLUSIONS 

This chapter presents a new method - moCluster - to identify the joint molecular patterns in multiple 

omics data. The applications of the method showed that the algorithm can generate clustering models 

that cannot be obtained by single data analysis alone. Harnessing the benefits of multiple-table 

multivariate analysis, moCluster identifies robust latent variables and runs hundreds of times faster 

than alternatives such as the iCluster algorithm. At the same time, a sparse operator is incorporated 

enabling the selection of important features associated with each joint latent variable. This greatly 

facilitates the biological interpretation of latent variables and therefore aid in the identification of 

novel biological hypothesis which can subsequently tested by further experiments.  
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However, moCluster, like other computational methods, should not be used blindly. Our previous 

work in this area (the MICA approach) showed that the concordance between transcriptomic and 

proteomic data is increased when filtering out missing values in the proteomics data [1]. Therefore, 

differences in results between omics data could result from technical artifacts (e.g. missing values), 

which may lead to further artifacts in joint patterns across datasets. Thus, careful quality control of 

each individual dataset is required before any integrative analysis. Furthermore, this study mainly 

considered data that can be modeled using normal distributions (such as log-transformed microarray 

normalized intensity, RPKM and normalized intensity protein expression data). Appling moCluster to 

other types of data requires different normalization steps. For example, count data encountered in 

RNA-Seq (read count) or mass spectrometry (spectrum count) may be converted to a chi-square matrix 

as in correspondence analysis (CA) or non-symmetric correspondence analysis (NSCA) [1, 29]. It worth 

noting that because of their descriptive nature, the normalization methods in CA or NSCA could also 

be used for other data types [30]. Hence, in some cases, such normalization methods may lead to 

better clustering results [31]. 
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ABBREVIATIONS 
 

CCLE   the Cancer Cell Line Encyclopedia  

CNV   Copy Number Variation 

COCL   the Clustering of Cluster 

ENCODE   the Encyclopedia of DNA elements 

iBAQ   intensity Base Absolute Quantification 

JLV   Joint Latent Variable 

RPKM   Reads Per Kilobase per Million Mapped Reads 

TCGA   the Cancer Genome Atlas 
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CHAPTER IV 

moGSA: A Multivariate Approach for 

Integrative Gene-Set Analysis of Multiple 

Omics Data 

SUMMARY 

Gene-set analysis (GSA) greatly facilitated the biological functional interpretation of the omics data. 

However, there is a lack of GSA methods that annotate multiple-omics data in an integrative manner. 

This chapter introduces moGSA, a multivariate gene-set analysis based method aims to address this 

challenge. The application of moGSA to simulated data demonstrated that integrating multiple omics 

data potentially increases the power to detect subtle changes in a predefined set of genes. Comparing 

with single sample GSA based methods, integrative analysis by moGSA outperforms existing methods 

on simulated data.  In the analyses of biological data, moGSA was first applied to examine mRNA, 

protein and phosphorylation profiling of four pluripotent cell lines. The results showed that by using 

the information in multiple datasets, moGSA not only discovers the gene-set that was identified in 

single data gene-set analysis, but also identifies the concordance and discrepancy between datasets. 

Encourage by these results, moGSA was used to analyze larger scale datasets ─ the copy number 

variation and mRNA profiling data of 308 bladder cancer from The Cancer Genome Atlas (TCGA). The 

method, in conjunction with a simple eigenvector based clustering approach, discovered three 

integrative subtypes of bladder cancer (C1 to C3). The gene-set annotation suggested biological 

processes associated with subtypes, most of them could be confirmed by other literature. In addition, 

the gene influential scores provided by moGSA can help selecting potentially interesting markers for 

further studies.  

  



Chapter IV 

76 
 

4.1 INTRODUCTION 

Technological innovations have enabled the acquisition of unprecedented amount of multi-scale 

molecular, genotype and phenotype information. Advances in high-throughput sequencing allow 

quantification of global DNA variation and RNA expression in tissue or blood samples [1, 2]. Mass 

spectrometry (MS)-based proteomics has undergone rapid progress in recent years, and systematic 

MS analyses can now identify and quantify the majority of proteins expressed in a human cell line [3]. 

Increasingly, studies report comprehensive molecular profiling of the same set of biological samples 

using multiple different experimental approaches. These data can potentially yield insights into the 

molecular machinery of biological systems. However, integrating, interpreting and generating 

biological hypothesis from such complex datasets is a considerable challenge. 

Multivariate analysis (MVA) approaches have been used to uncover the latent correlated structure 

within and between omics datasets [4-6]. In MVA, data are projected onto a lower dimensional space 

so that trends or relationships between multiple datasets, observations (cases) and features (e.g. 

genes) can be identified. One attractive feature of these methods is that supplementary information 

such as gene-set (e.g. Gene Ontology annotations) can be projected onto the MVA to aid 

interpretation [5, 7, 8]. In addition, MVA methods do not require that gene identifiers in each dataset 

to be matched to a common intersecting subset of features (genes/proteins), which may lead to 

information loss particularly when experimental platforms use identifiers that are difficult to be 

mapped uniquely.  

Gene-set analysis (GSA) is widely used in the analysis of genome scale data and is often the first step 

in the biological interpretation of lists of genes or proteins that are differentially expressed between 

phenotypically distinct groups [9]. These methods use external biological information to reduce 

thousands of genes or proteins into short lists of functional related gene-sets (e.g. cellular pathways, 

subcellular localization, transcription factors or miRNA targets), thus facilitating hypothesis generation. 

The simplest GSA based methods rely on over-representation analysis and only require a list of genes 

as input. Hypergeometric tests or Fisher’s exact test are often used to identify statistically significant 

overlap between a shortlist of genes or proteins and a database of gene-sets [10]. Gene-set 

enrichment analysis (GSEA) and significance analysis of function and expression (SAFE) not only 

require a list of genes, but also take advantage of quantitative information in omics data [11, 12]. 

More recently, pathway topology approaches also consider the network structure of biological 

pathways in over-representation analysis [13]. However, these methods are supervised tests that 

depend on discriminate predefined groups of experimental clinical, phenotypic or conditional data 

(e.g. tumor vs. normal cases).  

Modern omics studies frequently explore a panel of experimental conditions or tissue samples with 

multiple phenotypes, illustrated by e.g., The Cancer Genome Atlas (TCGA), ENCyclopedia of DNA 

Elements (ENCODE) projects [14] and many other studies (see review [15]). Studies frequently aim to 

discover new molecular subtypes beyond known conditions and thus traditional GSA methods which 

require known subsets of conditions have limited application in such cases. To address this issue, 
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several unsupervised, single sample GSA methods have been developed [16-19]. These methods do 

not require prior availability of phenotypic or clinical data. One of the most popular approaches is the 

single-sample GSEA (ssGSEA), which ranks genes according to the empirical cumulative distribution 

function and calculates a single sample-wise gene-set score by comparing the scores of genes that are 

inside and outside a gene-set [18]. Another recently described method, gene-set variation analysis 

(GSVA), uses a similar Kolmogorov-Smirnov-like random statistics to assess the enrichment score, but 

genes are ranked by the statistics calculated through the kernel estimation of a cumulative density 

function [16]. Each of these unsupervised GSA methods may generate valuable biological information 

on a single dataset, but none is designed for the analysis of two or more datasets simultaneously.  

This chapter presents a novel unsupervised gene-set analysis method for the integrated analysis of 

multiple datasets of omics information, termed multiple omics GSA (moGSA). Using simulated data, it 

was suggested that moGSA has greater sensitivity and specificity for detecting altered gene-sets 

compared to GSA of individual datasets. In addition, moGSA outperforms existing unsupervised GSA 

methods when applied to simulated data. To further demonstrate the power of moGSA, it was also 

applied to a small scale and a large scale biological datasets in this study.  

4.2 METHODS 

4.2.1 moGSA algorithm 

Input data and gene-set annotation matrix 

The inputs of moGSA are pairs of multiple matrices (XK, GK). XK is a set of matrices, denoted X1, … XK, 

where K is the total number of quantitative matrices each collected on the same n observation. The 

matrices X1, … XK will each have a corresponding annotation matrices, G1, …, Gk. The matrix Xk is a pk x 

n matrix of quantitative omic data which contains pk rows of features (genes) measured over the same 

n observations. The gene-set annotation matrix Gk is a pk x m binary incidence matrix of gene to gene-

set membership associations called the gene-set annotation matrix, where m is the number of gene-

sets and pk is the number of rows of Gk that match with the original omic data Xk. An element in Gk 

has the value 1 if the feature pi is a member of the gene-set mj and 0 otherwise. Gk is constructed 

according to predefined gene-set information such as the Gene Ontology [20], GeneSigDb [21] or 

MSigDB [12]. In this paper, “gene” or “feature” is used to indicate rows and “observation” is used to 

indicate columns without loss of generality. 

moGSA step 1 multivariate integration 

The first step of the moGSA involves the data integration with a multiple-table multivariate analysis 

method. In this study, multiple factorial analysis (MFA) [22] was employed because of its simplicity 

and computational efficiency. MFA can be viewed as a generalization of principal component analysis 

(PCA) for a multiple-table problem. Here I briefly describe MFA using the nomenclature in [22].  

Similar to the integrative clustering problem in Chapter III, one of the most significant issues when 

applying PCA on a concatenated matrix is that the analysis may be dominated by the matrix or 

matrices with largest variance or more features. MFA circumvent this problem via dividing all the 
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matrices by their first eigenvalues, so that each individual matrix contributes almost equal variance to 

the first principal component. Therefore, the weight of each table is expressed as 

1

1

k

k


   (1) 

Where i

k
  is the first eigenvalue of matrix Xk

TXk. For convenience, the weights of matrices are stored 

in a diagonal matrix A, whose diagonal elements are  
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The transpose of a matrix is denoted by superscript T. 1k
T is a vector of 1 in the length of pk. Similarly, 

the weight of each observation is a n×n diagonal matrix, M. In the present study, uniform weighting 

of samples (i.e. mii=1/n) were used.  

A grand matrix X (pxn where 
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pp ) is constructed through concatenating all individual matrices: 

TTTT

1
]|...||...|[

Kk
XXXX   (3) 

After deriving the matrices’ weights (A), observation weights (M) and the concatenated matrix (X), 

MFA is reduced to a problem of analyzing the triplet (X, A, M). The solution is given by generalized 

singular value decomposition (GSVD): 

TT
QPX   with the constraint that IAQQMPP 

TT  (4) 

 X is transposed so that the PC or factor scores for observations, F, are given by 

PΔF   (5) 

In the PCA framework, the matrix P contains the PCs or latent variables, which is also called sample 

space in this chapter. The matrix Q is the loading matrix or gene space. Because X is a concatenation 

of multiple tables, the gene space matrices Q1 to Qk may also be concatenated or partitioned in the 

same manner, namely,  

TT
QQQQ ]||||[

TT

1 Kk
  (6) 

moGSA step 2 project gene-set annotation matrix as supplementary data 

Next, moGSA projects the annotation matrices as supplementary tables [23] to generate the gene-set 

space Wk, which is calculated as a product of the gene annotation matrix Gk and Qk  

kkk
QGW

T
  (7) 

The annotation matrices may be concatenated in the same way as data matrices 

TTTT

1
]||||[

Kk
GGGG   (8) 

Therefore, the overall gene-set space is 
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T
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moGSA step 3 reconstruction of gene-set-observation matrix 

The main output of moGSA is a gene-set score (GSS) matrix, denoted by Y, whose rows are m gene-

sets and columns are n observations. The GSS matrix is reconstructed with single PCs over single 

dataset manner so the contribution of single dataset or PC could be evaluated separately. For 

examples, the GSS matrix for dataset Xk, principal component t is calculated as 

Tt

k

t

k

t

k
FWY   (10) 

Where Wk,t denotes the gene-set space of tth PC in matrix Xk and Fk,t is the sample space of tth PC. The 

outer product of the two vectors results in a GSS matrix for a specific PC and dataset. Consequently, 

the overall gene-set score for tth PC (i.e. PC-wise decomposed gene scores) is the sum of the gene-set 

score matrix of the PC across all datasets, that is, 
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FWYY  (11) 

Similarly, the overall gene-set score matrix by a single dataset (i.e. data-wise decomposed gene scores) 

is the sum of the matrices by all the axes retained. 






T

t

t

k

t

k

t

t

kk

1

T

FWYY  (12) 

Finally, the complete gene-set score matrix is given by 
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which is the sum of all contributions by individual PC and dataset. In practice, only the PCs with 

greatest variances (highest eigenvalues) should be retained in the analysis. If all PCs are retained, the 

result would be similar or the same as naïve matrix multiplication (NMM, see later in the Methods 

section).  

Gene-sets contain different numbers of genes. Therefore in order to compare the dataset contribution 

across genes, gene-sets should be normalized by the number of their candidate genes. The 

“normalized gene-sets score” is the gene-set score divided by the number of candidate genes in the 

gene-set.  

Gene influential score 

Gene-sets are composed of genes, therefore the contribution of each feature (gene) to the GSS need 

to be evaluated. Genes with greatest contributions are of interesting from a biological point of view 

as they could be the “driver” genes for a gene-set. In moGSA, feature contribution, denoted by gene 

influential score (GIS), is calculated via a leave-one-out procedure. The GSS of gene-set i, 
][ i

Y , for all 

the observations are  

T

rrrii ][][][][][
PΔQGY   (14) 
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where G[i] is the gene-set annotation vector for gene-set i. Q[R] and P[R] are the gene space and 

observation space with top r axes. ][ r
Δ  is the diagonal matrix that top r singular values. 

Correspondingly, the gene-set score for ith gene-set excluding gene g is  

T

][][][][][
ˆ

rrr

g

i

g

i
PΔQGY


  (15) 

where
g

i



][
G is the gene-set annotation vector for gene-set i but without gene g. The GIS of gene g is 

measured by 
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

  (16) 

where 
][ i

Y  is the gene-set scores of gene-set i over all observations and g

i



][
Ŷ is the gene-set score of 

gene-set i without the gene g. )(sd stands for the function of calculating standard deviation. For 

convenience, the feature influential score then is rescaled so that gene with maximum influence is 1. 

Therefore, a positive
g

i
E

][ suggests that gene g tends to have a positive correlation with gene-set 

scores of gene-set i, whereas a gene with a negative value tends to have a negative correlation. 

Statistical inferential aspect 

The gene-set score of gene-set i observation j is  

][

T

][],[
ˆ

jiji
XGY   (17) 

where 
][

ˆ
j

X is the jth observation in matrix reconstructed with top r axes 

T

][][][
ˆ

rrr
QΔPX   (18) 

Hence, for each observation, a gene-set score could be viewed as the sum of reconstructed expression 

values of genes in the particular gene-set. If all candidate genes are randomly selected (null 

hypothesis), the distribution of the means of selected genes is given by central limited theorem (CLT), 

),(~
x

Nx   with 
n

c
x


   (20) 

Where   is the mean of each observation and x
  is the sampling standard deviation of means. 

)1/()(  NnNc  is the finite population correction factor. It is used since each of the genes could 

be only selected once. Finally, the gene-set score, calculated as the sum of gene in a particular gene-

set, follows a normal distribution under null hypothesis, that is, 
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4.2.2 Data simulation 

Multiple omics data were simulated as matrix-triplet (K=3), each containing three data matrices of 30 

matched observations (n=30). Whilst the number of features in each matrix can be different, in this 

simulation, each matrix comprised of 1,000 features. The annotation matrix was a binary matrix with 

dimensions 1,000 features (genes) with 20 non-overlapping “gene-sets” (m=20). Each “gene-set” 

contains 50 different genes. There were 6 clusters in the 30 observations (n=30). This study 

hypothesized that observations within the same cluster are driven by a set of differentially expressed 

(DE) gene-sets. To fulfill this assumption, I and co-workers defined the observations in the same cluster 

shares the same DE gene-sets. In each of the observations, 5 out of 20 gene-sets were selected as 

differentially expressed (DE). Within each cluster, the same set of DE gene-sets were randomly 

selected. Among DE gene-sets, 5, 10 and 25 out of 50 genes were randomly selected as DE genes (DEG) 

in each of the three simulated data matrix, denoted as DEGj. 

The following linear addictive model adapted from [16] was used, the expression or abundance of 

gene on ith row and jth column is simulated as 

ijijjiij
y    (22) 

where )1,0N(~  
i

 with i = 1, …, n is gene specific effect. ),0N(~ s
j

   is the cluster 

effect so
12 jj

  if observation j1 and j2 belong to the same cluster. The cluster effect factor 

(categorical variable) is introduced following the hypothesis that observations from the same clusters 

are driven by some common pathways or “gene-sets” and ensures that observations from the same 

cluster have a higher within than between cluster correlation. The six correlated clusters in the 

simulated data are captured by top five PCs. The cluster effect ),0N(~ s
j

   is sampled 

from a distribution with a mean of 0 and standard deviation s. The standard deviation (s) adjusts the 

correlation between observations in the same cluster, and thus each cluster can have different 

variance. In this study, s equals 0.3, 0.5 and 1.0, which lead to 25%, 30% and 50% of total variance are 

captured by the top 5 PCs. )1,0N(~    is the noise factor. γij is a factor, if a gene is differentially 

expressed (DE): 









otherwise

DEGiifm
j

ij
0

)1,N(~ 
  (23) 

Apart from the retained variance, two other parameters are tuned in the simulation study. First is the 

number of DEGs in a DE gene-set (5, 10 and 25 out of 50 DEGs). The second parameter is different 

signal-to-noise ratio, which is tuned through modifying m in (23). The candidate m are 0.3, 0.5 and 0.8 

standing for low, medium and high signal-to-noise ratio. In total, 100 triplets were generated and 

analyzed by moGSA. NMM, GSVA and ssGSEA, only accept one matrix as input; therefore the three 

simulated matrices in one triplet-set were concatenated before passing to these methods. The 

performance was assessed by the area under the ROC curve (AUC) of identifying DE gene-sets.  
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4.2.3 Preprocessing of Bladder Cancer TCGA data 

Normalized gene expression, copy number variation (CNV), microRNA (miRNA) expression data and 

clinical information of BLCA were downloaded from TCGA (Date: 26/09/2014) using TCGA assembler 

[24]. Gene expression was profiled with Illumina HiSeq platform. The MapSplice and RSEM algorithm 

were used for the short read alignment and quantification (Referred as RNASeqV2 in TCGA) [25, 26]. 

The gene level CNV is estimated by the mean of copy number of genomic region of a gene (retrieved 

by TCGA assembler directly). Patients that were present in both gene expression and the CNV data 

were included in the analysis (n=308).  

Before applying moGSA, non-specific filtering was performed on both datasets. RNA sequencing data 

(normalized count + 1) were logarithm transformed (base 10). Genes were filtered to retain those with 

a total sum greater than 300 and median absolute deviation (MAD) greater than 0.1, which retained 

14,692 unique genes (out of 20.531 genes). Then, RNA-seq gene expression data were median 

centered. For the CNV data, genes with standard deviation greater than the median were retained, 

resulted in 12,469 unique genes. There were 7,644 genes presented in both datasets.  

4.2.4 Gene-set annotation 

MSigDB (version 4) [12] categories online pathway database (C2), GO gene-set (C4) and TFT target 

gene-set (C3) and GO gene-sets (C5, including BP, CC and MF) were used in this study. Gene-set 

annotations of more than five genes in both of the datasets were retained for the analysis.  

4.2.5 Other GSA methods (including NMM) 

Single gene-set method, including GSVA and ssGSEA methods were implemented using the 

R/Bioconductor package GSVA [16]. Default settings were used for these methods.  

Naïve gene-set score Ynaive was calculated through matrix multiplication (NMM) 

XGY
T


naive

 (24) 

Therefore, the result of NMM is the same as moGSA when all of the axes are retained. 

4.2.6 Clustering latent variable 

Consensus clustering was used [27, 28] to cluster the latent variables with Pearson correlation 

distance and Ward linkage for the inner loop clustering. Eighty percent of patients were used in the 

re-sampling step of clustering. Average agglomeration clustering was used in the final linkage (linkage 

for consensus matrix) [27].  

4.2.7 Prediction strength to determine the optimal number of subtypes 

The “prediction strength” algorithm was used to assess the number of subtypes [29]. In prediction 

strength method, all samples were assigned a “true” subtype label, based on those predicted by one 

subtype model. Then, the patients were then divided into “training” and “testing” sets. KNN classifier 
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(9 nearest neighbors) was used to classify the patients in test set. For each test, the proportion of 

consensus in assignment between predicted and true labels were computed. The prediction strength 

was defined by the lowest proportion among all the subtypes and indicates the similarity between the 

true and predicted labels. The prediction values ranges from 0 to 1, where a value of at least 0.8 

suggests a robust subtype classification [29]. Therefore, the prediction with both a prediction strength > 

0.8 and the most subtypes can be considered “optimal”. In this study, 100 random sampling of training 

and testing sets were performed and the corresponding prediction strength of each randomized 

samples was calculated. 

4.2.8 Processing of the iPS ES 4-plex data 

The transcriptomic (RNA-sequencing), proteomic and phoshphoproteomics data were downloaded 

from Stem Cell-Omic Repository (Table S1, S2 and S5 from http://scor.chem.wisc.edu/data.php) [30]. 

The 4-plex data were used in this study, which consists of 17347 genes, 7952 proteins and 10499 sites 

of phosphorylation. For the transcriptomics data, the expression levels of genes were represented by 

RPKM values. Three replicates were available and the mean of the three replicates were used. Genes 

with duplicated symbols and low expression (summed RPKM < 12) were removed. The iTRAQ 

quantification of protein and phosphorylation sites were performed by TagQuant [31], as describe in 

[30]. The protein and sites of phosphorylation with low intensity (summed intensity values <20) were 

removed. In the proteomics data, proteins that are not mapped to an official symbol were removed. 

Finally, all the data were logarithm transformed (log10(value+1)). After filtering, a few missing values 

still present and replaced with zero. The enrichment analysis was done on the gene symbol levels, the 

specific phosphorylation site were not considered.  

4.2.9 Subtype calling and comparison with integrative clustering of bladder cancer 

This study considered four recently reported bladder cancer subtypes [32-35]. The mRNA markers of 

each subtype model were selected according to the recent review [36]. Sjödahl et al. firstly defined 

five major subtypes termed urobasal A (UroA), UroB, genomically unstable (GU), squamous cell 

carcinoma-like (SCCL) and ‘infiltrated’. The Cancer Genome Atlas (TCGA) study defined four expression 

clusters (I–IV). In other study, the two subtype model, consists of the basal-like and luminal subtypes, 

were defined by Damrauer et al.; in a study of Choi et al., researcher defined a ‘p53-like’ luminal 

subtype apart from basal-like and luminal subtype.  

4.2.10 Exam of somatic mutations of patients 

GISTIC2.0 [37] data for copy number gains/deletion were downloaded from TCGA firehouse 

(http://gdac.broadinstitute.org/; download date 2015-03-09). In total, 24776 unique genes were 

downloaded. The GISTIC code -2, -1, 1 and 2 represent homozygous deletion, heterozygous deletion, 

low-level gain and high-level amplification respectively. The four types of events were counted for 

each of the patients. The total number of events were calculated by sum all four types of events.  

http://scor.chem.wisc.edu/data.php
http://gdac.broadinstitute.org/
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4.3 RESULTS AND DISCUSSION 

4.3.1 Overview of the moGSA algorithm 

A typical omics study generates multiple data matrices representing molecular profiles on different 

levels. In each, the number of features frequently exceeds the number of observations (rows and 

columns of the matrix, respectively). Data matrices may be RNA sequencing counts of gene expression, 

measurements of proteins, metabolites, lipids, DNA copy number variations or other biological 

molecules that can be mapped to gene-sets. moGSA discovers permuted gene-sets that are defined 

by features from two or more omics data matrices (Figure 4.1). An attractive feature of moGSA is that 

each omics data matrix can contain different or unmatched features. The method only requires an 

incidence matrix of gene to gene-set membership associations called “gene-set annotation matrix” for 

each data matrix. In the gene-set annotation matrix, a value of 1 indicates that a feature (e.g. gene) is 

a member of a gene-set.  

 

Figure 4.1 Schematic view of the moGSA algorithm. The algorithm requires two set of matrices as input data, multiple omics 

data matrices and corresponding gene-set (GS) annotation matrices. In step 1, the multiple matrices are analyzed with a 

multivariate analysis (MVA) method resulting in the observation space and gene space. Next, the gene-set annotation matrices 

are projected on the same space, the result is called gene-set space. The last step is to reconstruct gene-set-observation 

matrix through multiplying the observation and gene-set spaces. 

The algorithm consists of three steps (Figure 4.1). In the first step, input quantitative data matrices 

are integrated using multiple factor analysis (MFA) [5, 22]. MFA is a multiple-table extensions of 

principal component analysis (PCA) that discover a small number of latent variables (referred as 

principal components (PCs) below) capturing the most prominent correlated structure among 

different datasets [22]. Similar to PCA, the first PC in MFA explains the highest variance for the 

common structures in multiple data tables. In the next step, the gene-set annotation matrices are 

projected as additional information into the gene-set space, generating a score for each gene-set in 
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the same space. The PCs that explain the largest proportion of the variance in the gene-set and 

observation spaces are selected and, in the final step, moGSA generates a gene-set score (GSS) for 

each gene-set in every observation. A high absolute value of GSS indicates that the gene-set is up- or 

down-regulated. Furthermore, the GSS matrix may be decomposed with respect to each dataset or 

PC so that the contribution of individual dataset or PC to the overall score can be evaluated (see 

methods).  

4.3.2 moGSA outperforms single sample GSA methods  

 

Figure 4.2 Comparison of moGSA with NMM, GSVA and ssGSEA. The performance of the methods were accessed by their 

ability to identify differentially expressed gene-sets over 100 simulations (as indicated by the area under the ROC curve; AUC). 

(A) Comparison of GSA methods using data with different signal-to-noise ratios. (B) Comparison of data with different number 

of differentially expressed (DE) genes in each of the DE gene-set. From left to right, 5, 10 and 25 of total 50 genes are 

differentially expressed in each of the three simulated data matrices if a gene-set is defined as DE gene-sets. (C) Scree plots 

show representative eigenvalues of the datasets used in (D). Different proportions of variance are captured by the top 5 PCs, 

which are selected and included in the analysis. The darker bars represent the top 5 PCs. (D) AUCs with different proportion 

of variance are capture by top 5 PCs. From left to right, 25%, 30% and 50% of total variance are captured.  

The moGSA method is compared with naïve matrix multiplication (NMM) and other widely used single 

sample GSA methods (GSVA and ssGSEA) [16, 18] using simulated datasets. In the data simulation, 

matrix-triplets (mimics three omics data) contain 1,000 features and 30 observations; their 

corresponding gene-set annotation matrices (see methods section) consist of 1,000 features with 20 



Chapter IV 

86 
 

gene-sets. In each of the observations, 5 out of 20 gene-sets were defined as differentially expressed 

(DE). Within DE gene-sets, 5, 10 and 25 out of 50 genes were randomly selected as DE genes (DEG). 

Specificity and sensitivity of the methods detecting the DE gene-sets (measured as the area under the 

receiver operating characteristic curve; AUC) were evaluated. The triplets were analyzed by moGSA 

directly, however, these matrices were concatenated for NMM, GSVA and ssGSEA because these 

methods can only accept one matrix as input.  

 

Figure 4.3 Comparison of the results from analyzing single data (referred as 1 dataset) and concatenated datasets (referred 

as 3 datasets) by GSVA and ssGSEA. The conditions and evaluation methods are the same with conditions in Figure 4.2. The 

results show that the simple concatenation of multiple datasets did not improve the performance of GSVA and ssGSEA. 

Simulations were performed to explore 1) the effect of signal-to-noise ratios (low, medium and high), 

2) different numbers of DE genes in DE gene-sets (5, 10 and 25 genes) and 3) different levels of 

variance captured by the axes used in the matrix reconstruction step in moGSA (25%, 30% and 50%, 

see method section for details). Figure 4.2 shows the performance of each method applied to 100 

simulated datasets. As expected, the performance of all methods improved when signal-to-noise ratio 

or the number of DE genes in DE gene-sets increased (Figure 4.2A-B). moGSA consistently 

outperformed the other methods and the difference were even more apparent when the signal to 

noise was low or when there were few DE genes (5 or 10 of 50 genes; Figure 4.2B). Last, I examined 

the performance of each method when different levels of variance are captured by retained PCs. The 

datasets were simulated in a way that six clusters could be captured by top five PCs, which were 

simulated to explain 25%, 30% and 50% of the total variance (Figure 4.2C). Again, moGSA 

outperformed the other methods and was relatively robust to changes in the variance retained (Figure 

4.2D). The performance (AUC) for all the methods decreased when greater variance was captured by 
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the kept axes. This can be explained by the higher intra-cluster correlation that leads to a lower signal-

to-noise ratio (see methods). 

In GSVA and ssGSEA, concatenating multiple data matrices did neither improve nor decrease the 

performance when comparing to the analysis of single datasets, most likely because the signal-to-

noise ratio increased proportionally with concatenation (Figure 4.3). Data integration with moGSA 

may be especially powerful at identifying altered gene-sets in heterogeneous or noisy data because, 

within moGSA, only a subset of the most informative PCs (n=5) are selected which enables noise-

filtering by excluding PCs which may potentially account for noise. 

4.3.3 Application of moGSA to IPS and ES cell line data 

Next I applied moGSA to a simple dataset consisting of mRNA, protein and phospho-protein profilings 

of four cell lines − two embryonic stem cell lines (ESC; H1 and H9), one induced pluripotent cell line 

(iPSC; DF19.7) and one fibroblast cell line (newborn foreskin fibroblast; NFF).  

After filtering low quality measurements, the mRNAs, proteins and phosphorylation sites have 10,961; 

5,817; and 7,912 unique features (see method). The three datasets were annotated with gene 

ontology (GO) biological processes (BP) terms. MFA shows that the first PC clearly describes the 

difference between NFF and other cell lines, which account for most of the variance in the data (Figure 

4.4). The second and third PCs represent the differences between iPSC or ESC lines, which may 

represent important biological information, thus top 3 PCs were retained in the analysis. 

 

Figure 4.4 moGSA of the iPS ES 4-plex data. (A) The eigenvalues resulted from MFA. Colors indicates the contribution of 

each individual dataset. The first axis represent of the variance. (B) The first two PCs from MFA, the first PC accounts for the 

difference between NFF and pluripotent cell lines. (C) The third PC (The veritical axis)) represents the difference between 

iPSC and ESC lines. 

The analysis resulted in 228 GO BP terms (out of 825) that are significantly up- or down-regulated in 

at least one of the cell lines (BH corrected p < 0.01). The 228 GO BP terms are generally classified into 

19 categories. The gene-set scores of the representative GO BP terms for each category are shown in 

Figure 4.5A. Integrative analysis suggested that BP terms up-regulated in ES cell lines (H1, H9 and 

DF19.7) are enriched in functions related to RNA processing, cell cycle related processes and DNA 

metabolic process, whereas NFF cell line has relative hyper-activation of wounding, cell adhesion and 
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tissue development processes (Figure 4.5A). These observations agree with previous findings [30]. 

More importantly, moGSA enabled us to evaluate the relative contribution (either concordant or 

discrepant) of each dataset to the overall gene-set score. Here, each gene-set score was decomposed 

with respect to the corresponding dataset (see method). Data-wise decomposition of gene-set scores 

is shown in Figure 4.3B. The results suggest that the three types of data have concordant contributions 

to most of the GO terms, including vesicle mediate transport, cell matrix adhesion, cell cycle processes 

in NFF line; chromosome organization and biogenesis in H9 and NFF cell lines. However, the down-

regulation of wound healing in H9 cell line was mainly contributed by the mRNA data, whereas the 

other two datasets represent a limited role in this function. In addition, the up or down-regulation of 

“chromosome organization and biogenesis” is mostly contributed by phosphorylation data. 

Noteworthy, moGSA suggested that “glycoprotein metabolic process” is up-regulated in NFF and 

mainly resulted in the up-regulation on the protein level. However, the down-regulation of this term 

in DF19.7 ascribes the low expression of related mRNAs. For the H1 cell lines, the mRNA and proteins 

suggested strong controversial roles. These results suggest that moGSA in comparison with single data 

GSA is more sensitive in detecting gene-sets that have subtle but consistent changes in multiple 

datasets. More importantly, the contribution of individual gene-set can be evaluated by the 

decomposition of gene-set score with respect to datasets.  

 

Figure 4.5 integrative gene-set analysis of iPS ES 4-plex data. (A) A heatmap shows the gene-set score (GSS) for significantly 

regulated gene-sets in the cell lines, the white colored blocks/cells indicates the change of gene-sets are non-significant. (B) 

Data-wise decomposition of the GSS for some of the gene-sets. The contribution of each of the data is represent by a bar. 

The Y-axis is the data-wise decomposed gene-set score. 
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4.4.4 Application of moGSA to TCGA Bladder cancer data analysis 

Encouraged by these results, moGSA was applied to integrate and annotate copy number variation 

(CNV) and mRNA data from 308 muscle invasive urothelial bladder cancer (BLCA) patients (obtained 

as part of the TCGA project). After filtering out low variance genes (see methods), CNV and RNA-seq 

data contained 12,447 and 14,710 genes respectively, in which 7,644 genes were common to both 

datasets.  Because of the large number of patients, it is hard to analyze the gene-set score of an 

individual patient. Therefore, the analysis first defined a subtype model of BLCA using a clustering 

method based on top-k principal components. Figure 4.6A shows the eigenvalues of resulting PCs. The 

top five PCs captured a quarter of the total variance and were not dominated by either CNV or mRNA 

(CNV 50.6%, mRNA 49.4%). In addition, these PCs are not correlated with batches (TCGA batch ID), 

plates, shipping date or tissue source sites. Next, consensus clustering, in conjugation with prediction 

strength [29] resulted a three-subtype model from the five PCs (Figure 4.6B). The respective three 

subtypes of bladder cancer consisted of two larger subtypes C1, C2 containing 148 and 103 patients 

respectively, and a smaller group, C3 of 57 patients. The smaller subtype, C3, was the most robust 

(highest silhouette width in Figure 4.6C). In general, subtypes identified in previous studies correlated 

well with the three subtypes identified in the integrative analysis (Table 4.1). Specifically, the 

integrative subtype C1 harbored most patients of the type III and IV of the TCGA subtypes, the 

infiltrated and SCCL subtypes of the Sjödahl study and the basal-like subtype identified by Damrauer 

(BH corrected p < 0.05, Table 4.1). Subtypes C2 and C3 were more similar to the Damrauer luminal 

subtype. In particular, the C3 subtype shows a strong overlap with the UroA subtype of the Sjödahl 

study and type I of the TCGA subtype model. Finally, subtype C2 contains patients classified into the 

genomically unstable subtype defined by Sjödahl (Table 4.1). Accordingly, there is a higher mutation 

rate in the C2 patients (Figure 4.6D).  

Table 4.1: The Chi square test of association between integrative subtypes and previously 
published subtypes.  

    Integrative subtypes   

  C1 C2 C3  

  48.1 (148)*  33.4 (103)  18.5 (57) 
BH corrected 

p value  

Sjodahl 
subtype 

Infiltrated 85.71 (12) 14.29 (2) 0 (0) 2.3x10-2 

Genomic 
Unstable(GU) 

25.00 (21) 53.57 (45) 21.43 (18) 7.8x10-4 

UroA 23.81 (20) 36.90 (31) 39.29 (33) 4.3x10-5 

UroB 54.55 (30) 36.36 (20) 9.09 (5) 2.2x10-1 

SCCL 91.55 (65) 7.04 (5) 1.41 (1) 2.3x10-9 

TCGA 
subtype 

I 11.54 (9) 43.59 (34) 44.87 (35) 4.7x10-9 

II 35.40 (40) 46.02 (52) 18.58 (21) 4.2x10-2 

III 84.78 (78) 14.13 (13) 1.09 (1) 4.7x10-9 

IV 84.00 (21) 16.00 (4) 0 (0) 2.4x10-3 

Damrauer 
subtype 

Luminal 31.63 (68) 42.79 (92) 25.58 (55) 1.3x10-3 

Basal 86.02 (80) 11.83 (11) 2.15 (2) 2.7x10-9 

* entries are: percentage (number of patients) 



Chapter IV 

90 
 

To gain further functional insights into the different subtypes of BLCA, moGSA was applied to annotate 

tumors with Gene Ontology (GO) gene-sets (Figure 4.7A). Gene-sets (n=1,454) were filtered to exclude 

those with less than 5 genes in a list of the concatenated features of CNV and mRNA data resulting in 

1,125 retained gene-sets. The number of significant gene-sets per patient ranged from 183 to 595 and 

these contained both gene-sets with positive and negative GSS. Only 73 gene-sets had significantly 

positive or negative GSS in more than 200 patients (out of 308 in total) and these were selected for 

further analysis. Almost half of the gene-sets with high GSS variance are related to the “immune 

response” (n=31/73). The remaining 42 gene-sets could broadly be defined by biological processes of 

“cell cycle” (n=9), “mitochondrion” (n=4), “DNA and chromosome related” g (n=7) and other cancer 

related gene-sets, including “apoptosis” (n=2), and “G protein coupled receptor” (n=6). Most of these 

gene-sets have been associated with subtype of bladder cancer. For example, in consistent with 

findings in this work, the strong up-regulation of immune-associated signatures was observed in basal-

like/SCC-like bladder cancer (C1 in the integrative model) [32], and the cell-cycle up-regulation is 

correlated with “genomically Unstable” (C2 in the integrative model) [38]. The mitochondrial 

component has been described in bladder cancer and other cancers previously [38, 39], this analysis 

particularly associates this function with C3 subtype in BLCA. 

Next, the importance of an individual gene in a gene-set is determined by gene influential score (GIS), 

which is calculated using a leave-one-out procedure (see methods). The maximum GIS value for a gene 

in a gene-set is one, which indicates that gene contributes a high proportion of variance to the overall 

variance of the gene-set scores. At the same time, a GIS close to one often suggests a high correlation 

between the gene expression value and gene-set score. The most significant gene-set, “immune 

response” and “immune system process” have significant positive or negative GSS in 270 and 265 of 

308 patients respectively. The scores clearly distinguished subtypes C1-C3 (Figure 4.7A). The median 

GSS for the gene-set “immune system process” was 0.82, -0.75, -0.61 in C1, C2 and C3 respectively, 

representing immune related processes are up-regulated in the C1 subtype. Gene influential score 

(GIS) suggested that the top ranked genes included ITGB2, SPI1, DOCK2, LILRB2 and LAT2. Other highly 

ranked genes included drug target genes such as CD4, IL6, the interferon induced proteins IFITM2 and 

IFITM3 and the G protein coupled receptors GPR183 and CMKLR1. Top positive influencers in 

“regulation of apoptosis” were also related to the immune response, such as STK17A, ANXA5 and 

BCL2A1, STAT1, Serpin B, TGFB and ANXA1. Moreover, several epithelial to mesenchymal transition 

(EMT) related gene-sets, such as “collagen” (including COL6A3, COL1A1, COL5A1 and COL3A1), 

“extracellular matrix proteins” (e.g. glycoproteins SRGN and FBN1) and mesenchymal gene-sets were 

elevated in C1.  

The C3 subtype tumors had higher gene-set scores in mitochondrial related gene-set and lower 

expression of genes are related to cell cycle process and DNA replication. The GIS suggested that two 

families of genes, NADH dehydrogenases (NDUFs) and mitochondrial ribosomal proteins (ABCC1/MRP) 

influenced the mitochondrial proteins. The relative over expression of mitochondrial genes in the C3 

subtype of tumors may imply a different metabolic status than the C1 or C2 subtypes. 
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To identify transcription factors (TF) that may regulate gene expression in the three tumor subtypes, 

transcriptional factor target (TFT) gene-sets were used to annotate the tumors. Similar to the selection 

of GO terms, this study focused on TFT gene-sets with more than 200 significant gene-set scores (GSSs) 

across 308 patients. The GSSs of the E2F family target gene-set were significantly different in most of 

the tumors and are particularly low for the C3 tumors. The rest of the four identified TFs were highly 

elevated in the C1 subtype, including an MADS (MCM1, Agamous, Deficiens, and SRF) box superfamily 

member, SRF and several TFs associated with transactivation of cytokine and chemokine genes, e.g. 

NFkB1, ETS1 and IRF1 (Figure 4.7B). The genes exhibiting the largest GIS in the IRF1 and NFkB1 target 

gene-sets include ACTN1, CXorf21, ICAM1, MSN, TNFSF13B, IL12RB1 and CDK6. Furthermore, I 

examined the correlations between gene-set scores and the mRNA expression. All five TFs showed 

that the TF mRNA and gene-set scores are significantly correlated (Figure 4.7C).  

 

Figure 4.6 Data integration with moGSA and integrative subtype defined by latent variables. (A) Bar plot showing the 

eigenvalues of principal components (PCs, also known as latent variable). The top 5 PCs were selected in the analysis. (B) 

Prediction strength was used to evaluate the robustness of classification into two to eight subtypes. The boxplot shows the 

prediction strength of 100 randomizations. Two and Three are relative robust subtype models (prediction strength > 0.8). (C) 

Silhouette plot representing the stability of the identified clusters. The plot suggests there might be unstable patients in C1 

and C2, whereas C3 is highly robust. (D) Genomic instability are different in subtypes. C2 subtype have higher number of 

mutation events.  
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Figure 4.7 (A) Gene ontology (GO) and transcriptional target (TFT) gene-sets annotation of tumors. Heatmap showing the 

GSSs for selected gene-sets. The gene-sets “immune-related”, “apoptosis”, “G protein receptor”, “collagen”, “extracellular 

region” and “cell migration” are strongly associated with the C1 (basal-like) subtype, whereas the mitochondrial related gene-

sets are over represented in the C3 (luminal A-like) subtype of tumors. (B) The most significant transcriptional factor (TF) 

target gene-sets. The gene-set scores suggest that 4 out of the 5 TFs are hyperactive in the C1 subtype, except E2F family 

is active in the C2 subtype of cancer. The white spaces in (A) and (B) denote non-significant GSSs. (C) The scatter plots 

display the correlation between gene-set scores and the mRNA level of selected TFs. The expression of selected TFs is highly 

correlated with their gene-set scores. 

In order to identify the contribution of each dataset or PC to the overall gene-set score, a gene-set 

score could be decomposed with respect to the datasets (referred as data-wise decomposition; see 

methods). Figure 4.8A shows the normalized means (see methods) of data-wise decomposed GSSs in 

each subtype for "cell cycle process". The result suggested that mRNA expression strongly influenced 

the GSS, particularly the low GSS of the C3 subtype patients. The gene influential score (GIS) analysis 

supports this as the top 30 most influential genes are all from mRNA expression (Figure 4.8B), including 

RACGAP1, DLGAP5, FBXO5, AURKA, KERA (CNA2) and CDKN3 (Figure 4.8C). By contrast, both CNV and 

mRNA data influenced the gene-set “G protein coupled receptor activity” (Figure 4.8D) and the GIS 

analysis shows that the most influential genes include those from both mRNA and CNV data (Figure 

4.8E). However, the CNV and mRNA expression patterns in the C3 subtype shows a clear difference 

for this gene-set (Figure 4.8F). Top gene influencers of “G protein couple receptor activity” included 

CNV of GRM6, NMUR2, PDGFRB and adrenergic receptors, the gene expression of ADGRL4 (ELTD1), 

CMKLR1 and PDGFRB (Figure 4.8F).  
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Figure 4.8 CNV and mRNA data contribute unequally to defining subtype and gene-set scores. (A) Data-wise decomposition 

of gene-set scores for “cell cycle process”. The bar plot shows the normalized mean of data-wise decomposed GSSs in each 

subtype (the black vertical line on the bars show the 95% confidence interval of the mean). (B) The bar plot shows the gene 

influential scores (GISs) of genes in the “cell cycle process” gene-sets. The expression of the top 30 most influential genes in 

the gene-set are shown in (C). (D-F) Same as (A-C) for “G protein couple receptor activity”. Gene names in (F) with asterisks 

indicate genes from CNV data. 

4.4 CONCLUSIONS 

This chapter introduced a new multivariate single sample gene-set analysis approach, moGSA that 

enables discovery of biological pathways with correlated profiles across multiple complex datasets. 

moGSA uses multivariate latent variable analysis to explore correlated global variance structure across 

datasets and then extracts the set of gene-sets or pathways with highest variance and most strongly 

associated with this correlated structure across observations. The combining multiple data types can 

compensate for missing or unreliable information in any single data type so there is a greater potential 

to find gene-sets that cannot be detected by single omics data analysis alone [4]. 

moGSA uses the maximum variance of the concordant structure across of datasets to calculate the 

gene-set scores for each observation. This is fundamentally different from other gene-set enrichment 

analysis methods which use a ‘within observation summarization’ such as the mean or median of gene 

expression of genes in a gene-set. It has several characteristics that make it attractive for data 

integration. First moGSA uses MFA, a multiple-table extension of PCA, to reduce the complexity of the 

original data by transforming high dimensional data to a small number of PCs (latent variables). The 

PCs with highest eigenvalues (largest variance) capture the most prominent structure among the 
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different datasets. Noise or artifact variance in the datasets can be filtered by excluding PCs with low 

variance or those that potentially exhibit noise, which strengthens the signal-to-noise ratio in the data 

[40, 41]. In moGSA, the entire set of features from each platform is decomposed onto a lower 

dimension space. The linear combination of feature loadings is used in the calculation of the gene-set 

scores. Features that contribute low variance contribute little to the score and thus the dimension 

reduction within moGSA comes with an intrinsic filtering of noise. The advantages of intrinsic variance 

filtering of features could be clearly seen in the application of moGSA to the simulated data. moGSA 

outperformed other single sample GSA approaches including ssGSEA and GSVA which do not include 

a noise-filtering component. Second, data integration of features is achieved at the gene-sets level 

rather than scoring individual features. This greatly facilitates the biological interpretation of the 

integrated data. There is no requirement to pre-filter the features in a study or map features from 

different datasets to a set of common genes. Therefore, it can be used to compare technological 

platforms that have different or missing features. 

There is great potential for applying multiple-table unsupervised GSA approaches for discovery of new 

subtypes and pathways in integrated data analysis of complex diseases such as cancer. Chapter 3 

introduced a latent variable based interactive clustering method. In this study, moGSA was also 

combined with clustering method. Dimension reduction approaches such as moGSA and MFA are well 

suited to cluster discovery data because these approaches consider the global variance in the data 

and as such are complementary to hierarchical or k-means clustering approaches which focus on the 

pair-wise distance between observations [41-43].  

There are a few considerations when applying moGSA for gene-set analysis or cluster discovery. First, 

the variance of retained PC should not be dominated by one or few of the datasets. This could occur 

when there is low correlated structure among datasets or a very different number of features 

presented in each dataset. This problem could be solved by the normalization step before the data 

integration step in moGSA [22]. Second, issues might arise with clustering latent variables if the PCs 

with the largest variance do not capture cluster structures [40], for example if technical artifacts (such 

as batch effects) dominate the top PCs. Therefore, application of the method requires careful batch 

effect control, especially for the large scale omics study. For example, PCA or clustering methods 

should be applied on each individual dataset to check effects of potential artifact factors. Batch effects 

are likely to present if the correlation of PCs with artifact factors is high. A more detailed description 

of batch effect detection is described in [44]. Similar approaches could be also applied to the PC from 

MFA. Finally, the method is most efficient in detecting gene-sets resulting from broadest correlation 

patterns in dataset; and might disregard some gene sets with few genes, particularly when their 

variances are not captured by the selected PCs. Therefore, the method is more useful as a supportive 

or descriptive approach in early step data analysis.  
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ABBREVIATIONS 

 

ANOVA   Analysis Of Variance 

AUC   Area Under the ROC Curve 

BLCA   Bladder Cancer 

BP   Biological Process 

CC   Cellular Component 

CCA   Canonical Correlation Analysis 

CIA   Co-Inertia Analysis 

CLT   Central Limited Theorem 

DE   Differentially Expressed 

DEGS   Differentially Expressed Gene-Set 

EMT   Epithelial-to-Mesenchymal Transition 

GIS   Gene Influential Score 

GO   Gene Ontology 

GS   Gene-Set 

GSA   Gene-Set Analysis 

GSEA   Gene-Set Enrichment Analysis 

GSS   Gene-Set Score 

KNN   K-Nearest Neighbors 

MAD   Median Absolute Deviation 

MCIA   Multiple Co-Inertia Analysis 

MF   Molecular Function 

MFA   Multiple Factorial Analysis 

MVA   Multivariate Analysis 

NMM   Naïve Matrix Multiplication 

PCA   Principal Component Analysis 

ROC  Receiver Operating Characteristic 

SVD   Singular Value Decomposition 

TCGA   The Cancer Genome Atlas 

TF   Transcriptional Factor 

TFT   Transcriptional Factor Target 
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CHAPTER V 

General Discussion 

With the development of omics technologies, biological systems are being investigated at an 

unprecedented heterogeneous fashion. The methods that enable the integrative analysis of multiple 

omics data nowadays attract more attentions of bioinformaticians or even the entire life science 

community. The European Commission funded two FP7 projects, MIMOmics 

(http://www.mimomics.eu) and STATegra (http://www.stategra.eu), which aimed to develop 

statistical methods and software for the integration of omics data. This thesis describes some 

applications of multivariate methods for the integrative omics data analysis ─ MCIA, an attractive 

method for integrative exploratory and visualization of multi-omics data which contain the same 

samples; the moCluster solves integrative clustering problem and moGSA provides a powerful yet 

simple tool to perform integrative gene-set analysis. All these approaches make use of different 

multivariate methods such as multiple co-inertia analysis (MCIA), consensus principal analysis (CPCA) 

and multiple factorial analysis (MFA). One of the advantages of these methods is that they do not 

require pre-filtering of features or mapping features from different datasets to a set of common 

features, therefore, these methods can extract important features even when they are not presented 

across all datasets. During the period of this study, Tenenhaus et al. proposed regularized generalized 

canonical correlation analysis (RGCCA), which provides a unified framework of multiple-table 

multivariate methods [1] and includes many such methods as its special cases, including CPCA and 

MCIA. The RGCCA introduces two extra parameters ─ a shrinkage and a linkage parameter. The linkage 

parameter is defined so that the connection between matrices could be customized. As a special case, 

MCIA and CPCA (used in Chapters II and III) utilize the full linkage between matrices, that is, the 

covariance between all pairs of matrices is considered and optimized. On the other hand, the 

shrinkage parameter ranges from 0 to 1. Setting this parameter to 0 will force the correlation criterion 

whereas a shrinkage parameter of 1 will apply the covariance criterion (used by MCIA and CPCA). A 

value in between leads to a compromise between the two options. In practice, the correlation criterion 

is better in explaining the correlated structure across datasets, thus discarding the variance within 

each individual dataset. The introduction of the above two parameters makes RGCCA highly versatile 

and has great potential to be modified and applied to different study purposes and data types (further 

discussed later). Despite the great potential, the application of this method is just rising. In one of its 

applications, RGCCA has been combined with a feature selection procedure and is applied to integrate 
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and select markers from gene expression, comparative genomic hybridization and qualitative 

phenotype data measured on 53 children with glioma [2].  

The challenges of data integration analysis are from both conceptual and practical aspects. The most 

fundamental conceptual or statistical challenge is inherited from the high dimension of omics data ─ 

a single omics dataset often consists of thousands of variables (dimensions), and the combination of 

them exacerbates the problem further. Although the research studies hope to derive a more accurate 

and comprehensive picture of the system under study by adding more layers of data, in some 

particular cases, the inflated dimension and noise make the overall prediction weaker [3]. 

Conventional univariate analysis methods, such as t-test or analysis of variance (ANOVA), are well 

accepted and widely used in omics data analysis. However, increasing the number of variables may 

also reduce the power of univariate analysis [4-6]. In contrast, the multivariate analysis methods used 

in this thesis circumvent this problem by dimension reduction. These methods identify the coherent 

or complementary pattern across datasets and represent main variance within a lower dimensional 

space, whereas the variance potentially reflecting the artifact factors or noise could be removed. In 

the moGSA method described in Chapter IV, this is particularly important in increasing the sensitivity 

of integrative gene-set analysis.  

In another family of un-supervised data analysis methods, cluster analysis has been widely applied to 

omics data analysis [7]. Cluster analysis generally investigates pairwise distances or similarities 

between objects. However, cluster methods have limitations when applied to data without discrete 

clusters, including unimodal data, data with complex phenotypes, gradients, or overlapping clusters. 

For example, Șenbabaoğlu et al. (2014) applied consensus clustering to the randomly generated 

unimodal data (i.e. no cluster structure) and found that consensus clustering divides the data into 

apparently stable sub-groups. However, principal component analysis (PCA) was unable to identify the 

subtypes found by the consensus clustering [8], which suggests that this clustering method is prone 

to discover clusters even if these are not well separated. Moreover, overlapping clusters have been 

identified in many tumor types analyzed by the TCGA including glioblastoma and serous ovarian cancer 

[8, 9]. However, most widely used clustering methods, including k-means and hierarchical cluster 

analysis (HCA), fail to uncover complex data structures such as sub-clusters or overlapping clusters, 

which are intrinsic to multiple omics datasets.  Gusenleitner and colleagues applied k-means and HCA 

to simulated data with seven overlapping clusters of different sizes. Neither of the approaches could 

identify the correct cluster structure. Because HCA cannot assign an observation to more than one 

clusters, it identified either two large clusters or five smaller clusters depending on how the 

dendrogram was cut. These limitations were observed recently when the cluster-of-cluster 

assignment algorithm was applied to TCGA Pan-cancer multiple omics data of 3,527 specimens from 

12 types of cancer sources [10]. The resulted cluster model was driven largely by anatomical origin 

and failed to identify any cluster associated with one of the many known cancer pathways. In contrast, 

dimension reduction or latent variable methods consider the global variance of datasets and will thus 

highlight general gradients or patterns in the data [11]. The resultant latent variables capture different 

variation sources of the data. The moCluster approach (Chapter III) combines the clustering analysis 
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and multivariate dimension reduction analysis. On the one hand, the clustering analysis considers the 

joint pattern of omics data and each patient has a unique cluster assignment, which facilitates the 

stratification of cancer patients; on the other hand, the latent variables discover multiple sources of 

variation, which is often associated with direct biological mechanisms, between different clusters.  

Despite these advantages, multivariate method is less applied in the omics data analysis, in part 

because most of them are descriptive approaches, that is, they do not test any hypothesis and do not 

return a significance level (p-value), which is familiar to scientists and has an universal interpretation. 

One of the solutions of this problem is to include parse or penalty factors in the multivariate methods. 

Therefore, the dimension reduction is integrated with a feature selection function, that is, only a small 

subset of features are associated with each latent variables. In this thesis, moCluster includes a sparse 

factor in the CPCA algorithm. The selected features can be passed to gene-set analysis to facilitate the 

interpretation of latent variables. Other studies also introduce methods combining multivariate 

analysis and feature selection procedures, such as penalized CCA [12], sparse CCA [13], CCA-l1, CCA 

elastic net (CCA-EN) [14] and CCA-group sparse [15]. Witten et al. [16] provided an elegant comparison 

of various canonical correlation analysis (CCA) extensions accompanied by a unified approach to 

compute both penalized CCA and sparse PCA. They used a fast and efficient implementation of the 

regularized SVD [16]. In addition, Witten and Tibshirani [17] extended the sparse CCA into a supervised 

framework. The supervised CCA selects variables from two datasets that are not only highly correlated 

but also associated with a dependent variable. This method is useful to integrate two datasets with a 

quantitative phenotype, for example, selecting variables from both genomics and transcriptomics data 

and linking them to drug sensitivity data.  

Furthermore, the problem of dimensionality while integrating multiple omics data could also be 

relieved by using prior biological knowledge [18]. For example, moGSA combines multiple factorial 

analysis (MFA) with gene-set information so that the high dimensional feature space is reduced to the 

lower dimensional gene-set space. The uniformed framework RGCCA has a great potential to include 

extra biological knowledge. For instance, while integrating genomics, transcriptomics and proteomics 

data, a linkage parameter could be specified to describe the known relationships between different 

layers of data (i.e., central dogma). Therefore, one can specifically model the correlation of "genome 

to transcriptome" and "transcriptomic to proteomic" whereas the correlation of "genome to proteins" 

is excluded. Consequently, the complexity of the model is lower than modeling all pairwise 

relationships and the result is more intuitively understandable.  

One of the challenges of omics data integration from a practical perspective is the missing value 

problem ─ more than thousands of features are potentially targeted in one measurement of an omics 

experiment, but the actually detected features are always not perfectly matched across 

measurements because of either technological or biological reasons. Therefore, the combination of 

multiple measurements results in missing values in the matrix. Simply removing missing values ignores 

their biological significance since missing values may indicate a low expression, particularly lower than 

the detection threshold, of such features. Therefore, features with some missing values are often the 

ones of much interest, that is, up- or down-regulated features across experimental conditions. 
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Unfortunately, statistician community largely overlooked this problem; and most multivariate 

methods cannot handle missing values directly. In practice, the missing values can be replaced with a 

low constant (the method used in this thesis). Imputation methods, underlying either on the global or 

local structure, have been developed to solve this problem. A recent review comparing different 

imputation methods has suggested that local structure-based approaches generally yield better 

results than others do. However, no single method has an overwhelming superiority than others. 

Because of the complex underlying mechanism of missing values, the selection of the imputation 

method should be dataset-dependent [19].  

In addition, visualization is another challenge that needs to be solved for the interpretation of results 

of multivariate analysis. Dimension reduction methods have the advantage of data visualization in 

nature. Nevertheless, most traditional visualization approaches are suitable for datasets with fewer 

variables. The visualization of thousands of variables and observations simultaneously is complex. For 

example, the interpretation of MCIA plot (Chapter II) would be significantly faster and easier if an 

observation and its associated variables can be interactively linked, highlighted and selected through 

visualization. The interactive plot provides a promising solution to this problem. There are several 

projects, such as D3.js (http://d3js.org), which aim to provide an easy framework to create interactive 

plots. In addition, some new R package “rCharts” and “ggvis” provide tools to create and share 

beautiful, interactive plots online. It can be foreseen that the user-friendly interactive figures will 

greatly facilitate the application of multivariate analysis and the interpretation of result in the near 

future.  

Last, but not least, the development of new methods is an active area in omics data analysis, yet there 

is a lack of golden standard data that can be used to evaluate newly created methods. In this thesis, I 

used simulated data to benchmark the methods, but the simulated data cannot represent the 

complexity of real biological data. In an attempt to solve this problem, the STATegra project generated 

multiple omics data, including RNA-seq, proteomics, metabolomics and other sequencing data 

(http://www.stategra.eu/the-b3-system), under well-controlled conditions. The generation of such 

dataset would accelerate computational method development and comparison. However, the 

systematical evaluation of methods designed for different experimental types and study purposes 

requires more benchmarking data, which would need the long-term efforts in the future.   
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ABBREVIATIONS 
 

CCA   Canonical Correlation Analysis 

CPCA   Consensus Principal Component Analysis 

HCA   Hierarchical Clustering Analysis 

MCIA   Multiple Co-Inertia Analysis 

PCA   Principal Component Analysis 

RGCCA   Regularized Generalized Canonical Correlation Analysis 

TCGA   The Cancer Genome Atlas  
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