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ABSTRACT
In recent years the cost for power consumption in HPC sys-
tems has become a relevant factor. One approach to im-
prove energy efficiency without changing applications is co-
scheduling, that is, more than one job is executed simul-
taneously on the same nodes of a system. If co-scheduled
applications use different resource types, improved efficiency
can be expected. However, applications may also slow-down
each other when sharing resources. With threads from dif-
ferent applications running on individual cores of the same
multi-core processors, any influence mainly is due to sharing
the memory hierarchy. In this paper, we propose a simple
approach for assessing the memory access characteristics of
an application which allows estimating the mutual influence
with other co-scheduled applications. Further, we compare
this with the stack reuse distance, another metric to char-
acterize memory access behavior.
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1. INTRODUCTION
Improvements of computational power of HPC systems

rely on two aspects: On the one hand, increased perfor-
mance comes from an increased number of nodes1. On the
other hand, node performance itself is expected to grow with
newer hardware. Since quite some time, the latter can only
be achieved by more sophisticated node designs. General
purpose CPUs consist of an increasing number of cores with
complex multi-level cache hierarchies. Further, the need for
better power efficiency results in increased use of accelera-
tors. Memory modules either have separate address spaces

1A node is one endpoint in the network topology of an HPC
system. It consists of general purpose processors with access
to shared memory and runs one OS instance. Optionally, a
node may be equipped with accelerators such as GPUs).
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(accelerator vs. host) or are connected in a cache-coherent
but non-uniform memory-access (NUMA) fashion. However,
the latter makes it even more difficult to come up with high-
performance codes as it hides the need for access locality in
programs. All these effects result in a productivity problem
for HPC programmers: development of efficient code needs
huge amounts of time which is often not available. In the
end, the large complex HPC systems may have a nice theo-
retical performance, but most real-world codes are only able
to make use of just a small fraction of this performance.

Co-scheduling is a concept which can help in this scenario.
We observe that different codes typically use (and are bound
by) different kinds of resources during program execution,
such as computational power, memory access speed (both
bandwidth or latency), or I/O. However, batch schedulers
for HPC systems nowadays provide dedicated nodes to jobs.
It is beneficial to run multiple applications at the same time
on the same nodes, as long as they ask for different resources.
The result is an increased efficiency of the entire HPC sys-
tem, even though individual application performance may
be reduced.

To this end, the scheduler needs to know the type of re-
source consumption of applications to be able to come up
with good co-scheduling decisions. HPC programs typically
make explicit use of execution resources by using a given
number of processes and threads, as provided by job scripts.
Thus, we assume that co-scheduling will give out dedicated
execution resources (CPU cores) to jobs. However, cores in
the same node and even on the same multi-core chip may be
given to different applications. In this context, co-scheduling
must be aware of the use of shared resources between appli-
cations.

In this paper, we look at different ways to characterize
the usage of the memory hierarchy by applications. Espe-
cially, the results should help in predicting mutual influence
of applications when running simultaneously on the same
node of an HPC system. First, we look at so-called stack
reuse histograms. These histograms provide information on
exploitation of cache levels and main memory. However,
being an architecture-independent metric without time re-
lation, they cannot include information about how much of a
hardware resource is used. However, this is crucial to under-
stand whether an execution gets slowed down when another
application shares resources. Thus, secondly, we propose the
explicit measurement of slowdown effects by running against
a micro-benchmark accessing with a given memory footprint
at highest access rate. We compare slowdown results with
the reuse histograms of two specific real-world applications.



One is an example use-case of the numerical library LAMA
[11], consisting of a conjugate gradient (CG) solver kernel.
The other is MPIBlast [12], an application from bioinfor-
matics, used to search for gene sequences in an organism
database.

We plan to use the prediction for co-scheduling decisions.
Within this larger context, an extension of the batch schedul-
ing system2 is planned which also takes online measurement
from node agents into account (the node agent actually is
an extension of autopin [10], a tool to find best thread-core
bindings for multi-core architectures). The vision is that
the system should be able to train itself and learn from the
effects of its co-scheduling decisions. If there is no char-
acterization of an application yet, the node agent could use
the proposed micro-benchmark to gradually get more knowl-
edge about the application for better co-scheduling. Use of
the micro-benchmark with its known behavior allows us to
obtain such knowledge which depends only on the applica-
tion and node architecture. This is in contrast to observing
slowdowns of arbitrarily running applications.

To get the reuse distance histograms of applications, we
developed a tool based on Pin [13]. This tool allows the
observation of the execution of binary code with the help of
dynamic runtime instrumentation. This way, HPC codes
with complex dependencies (in our case Intel MPI, Intel
MKL, and Boost) can easily be analyzed without recom-
pilation. Thus, the main contributions of this paper is de-
tailed analysis of the relation of reuse distance histograms
and slowdown behavior of applications triggered by a co-
running micro-benchmark with one given reuse-distance.

In the next section, we present measurements about co-
scheduling scenarios for the applications analyzed, provid-
ing motivation and a reference for our discussion. Then we
shortly describe our Pin-based tool and the micro-bench-
mark. Finaly we present detailed slowdown figures for both
the applications and the micro-benchmark itself.

2. CO-SCHEDULING MEASUREMENTS
As reference for later discussion, we first present some

measurements of co-scheduling scenarios with MPIBlast and
LAMA, as already shown in [3]. The system used is equipped
with two Intel Xeon E5-2670 CPUs, which are based on In-
tel’s Sandy Bridge architecture. Each CPU has 8 cores,
resulting in a total of 16 CPU cores in the entire system.
Both L1 (32kB) and L2 (256kB) caches are private per core,
the L3 cache (20MB) is shared among all cores on a CPU
socket. The base frequency of the CPU is 2.6GHz. However,
“Turboboost” is enabled (i. e., the CPU typically changes the
frequency of its cores based on the load of the system). How-
ever, we do not use Hyperthreading. All later measurements
in this paper also were carried out on this system.

For both applications, typical input data is used which
results in roughly the same runtimes if executed exclusively.
Fig. 1 shows performance and efficiency of various co-scheduling
scenarios. From the 16 cores available, the X axis shows the
number of cores given to MPIBlast. The remaining cores
are assigned to LAMA, respectively. Threads are alternat-
ingly pinned to CPU sockets: e.g. for the scenario with 4
LAMA threads, two are running on each socket. The effi-
ciency is given relative to the best dedicated runtimes of the
applications. Note that MPIBlast must be run with at least

2Here we will look at Slurm.

3 processes3. The best co-scheduling scenario (defined as
highest combined efficiency of around 1.2) is with 11 cores
given to MPIBlast and 5 cores to LAMA. This shows that
LAMA and MPIBlast can benefit from being co-scheduled.
In the referenced paper, we also showed energy consumption
benefits are even higher. Section 5 will provide insights into
why the positive effects are possible.

3. REUSE DISTANCE HISTOGRAMS
For the effective use of caches, good temporal locality

of memory accesses is an important property of any appli-
cation. Temporal locality exists when a program accesses
memory cells multiple times during execution. If such ac-
cesses are cached, following accesses to the same location
can be served much faster, speeding up execution.

To better understand how efficiently an application can
exploit caches, a precise definition of temporal locality for
a stream of memory accesses is helpful. The Stack Reuse
Distance, introduced in [1], is the distance to the previous
access to the same memory cell, measured in the number
of distinct memory cells accessed in between4 (for the first
access to an address, the distance is infinity). For a fully
associative cache of size S with least-recently-used (LRU)
replacement, a memory access is a cache hit if and only if
its stack reuse distance is lower than or equal to S. Thus,
if we generate a histogram of distances of all memory ac-
cesses from the execution of a program, we immediately can
see from this histogram how many of these accesses will be
cache hits for any given cache size: looking at the area be-
low the histogram curve, this is the ratio of the area left
to the distance signifying the cache size in relation to the
whole area. Because the behavior of large processor caches
(such as L3) is similar to the ideal cache used in the defini-
tion above, the histogram of stack reuse distances is valuable
for understanding the usage of the memory hierarchy by a
sequential program execution.

Figures 2 and 3 show histogram examples for sequential
runs of the applications analyzed in this paper. Many ac-
cesses at a given distance means that a cache covering this
distance will make the accesses cache hits. Looking e.g. at
the three histograms in Fig. 2, where we marked the L3
cache size, it is obvious that even for a small run with 5002

unknowns, for a large portion of accesses, LAMA has to go
to main memory.

The histogram cannot directly be measured with hardware
support. In the following, we shortly describe our own tool
able to get reuse distance histograms. It maintains an exact
histogram taking each access into account. Due to that, the
runtime of applications is on average around 80 times longer
compared to native execution.

3MPIBlast uses a two level master-worker scheme with one
process being a “supermaster” and at least one other process
being a master. Both supermaster and master distribute
work to at least one worker.
4Papers from architecture research sometimes define the
term reuse distance of an access from the previous access
to the same memory cell as being the number of accesses
in-between. This gives a time-related distance different to
our definition here. A reuse distance in this paper is always
the stack reuse distance.



Figure 1: Runtimes and efficiency of co-scheduling scenarios. The core count used by MPIBlast is given on
the X axis, other cores are used for LAMA/CG solver (from [3]).

PinDist: A Tool for Deriving Reuse Distances
With the use of Pin [13] we developed a tool that is able
to observe all memory accesses from the execution of a pro-
gram to obtain its reuse distance histogram. For this, Pin
is dynamically rewriting binary code in memory directly be-
fore execution similar to just-in-time (JIT) compilers. Our
tool maintains a stack of accesses to distinct memory blocks
of size 64 bytes according to recency of accesses. For each
access observed, the corresponding entry for the accessed
block is moved to the top of the stack, and the depth where
the block was found — this is the distance of the access —
is aggregated in the histogram (on first access, we create a
new entry using distance infinity). More precisely, we use
distance buckets, allowing for a faster algorithm as given in
[9]. As suggested in [15], we ignore stack accesses which can
be identified at instrumentation time.

PinDist is available on GitHub5.

4. DISTGEN: CONTROLLED MEMORY AC-
CESS BEHAVIOR

DistGen is a micro-benchmark written to produce exe-
cutions exposing given stack reuse distances (and combina-
tions). For this, it reads the first bytes of 64-byte memory
blocks in a given sequence as fast as possible. For example,
to create two distances, it allocates a memory block with
the size of the larger distance. The smaller distance is cre-
ated by accessing only a subset of the larger block, contain-
ing the required number of memory blocks corresponding to
the smaller distance. Depending on the required distance
access ratio, the smaller and larger blocks are alternately
accessed. The expected behavior easily can be verified with
our PinDist tool.

DistGen can run multi-threaded, replicating its behavior
in each thread. It can be asked to perform either streaming
access or pseudo-random access, prohibiting stream prefetch-
ers to kick in. The later is not used in this paper, as it re-
duces the pressure on the memory hierarchy and does not
provide any further information for our analysis. Further, it
can be configured to either do all accesses independent from
each other, or via linked-list traversal. The latter enforces
data dependencies between memory accesses, which allows
measuring worst-case latencies to memory. In regular inter-
vals, DistGen prints out the achieved bandwidth, combined
across all threads. DistGen is provided in the same GitHub

5https://github.com/lrr-tum/reuse

repository as PinDist.
In the following, we used DistGen to simulate a co-running

application with a given, simple memory access behavior:
streamed access as fast as possible using exactly one speci-
fied reuse distance. To ensure occupying available memory
bandwidth, we run DistGen on one CPU socket with four
threads.

5. RESULTS
First, we analyzed LAMA and MPIBlast by extracting

the reuse distance histogram from typical executions. In all
histograms, we marked L2 and L3 sizes. All accesses with
distances smaller than L2 size are not expected to influence
other cores as L1 and L2 are private. In the range between
L2 and L3 size, co-running applications may compete for
cache space, and due to benefiting from reuse (accesses in
this range are hits due to L3), slowdowns are expected if data
is evicted by the co-running application. All accesses with
distances larger than L3 size go to main memory, and need
bandwidth resources which also is shared by all cores on a
CPU, and thus a potentially another reason for slowdown.

Reuse Distances
The CG solver from LAMA is running sequentially in 3 con-
figurations solving a system of equations with different num-
ber of unknown. Figure 2 shows the resulting histograms
with markers for L2 and L3 cache sizes. It is interesting
to observe spikes with heavy access activity at 3 distances
which move upwards in the same fashion with higher num-
ber of unknowns. The solver does a sparse-matrix vector
operation and multiple vector operations per iteration.

1. The large distance corresponds to the total size of the
matrix in memory in CSR (compressed sparse row)
format.

2. The middle spike corresponds to the vector length (e.g.
8 million doubles for the 10002 case).

3. The lower spike comes from re-referencing parts of
the vector in the SpMV operation due to the sparsity
structure (the example uses a 2D 5-point stencil).

In all LAMA cases, stream-accessing the sparse matrix
cannot exploit caches and results in heavy memory access
needs. From measurements we observed that LAMA perfor-
mance does not improve beyond 8 threads with dedicated
hardware. The reason is that 4 LAMA threads on each



Figure 2: Reuse Distance Histogram for LAMA with
5002 (top), 10002 (middle), and 20002 (bottom) un-
knowns.

CPU socket obviously saturate the available bandwidth to
memory. Thus, LAMA performance is memory bound at
that point.

Figure 3 shows two histograms of one MPIBlast run. The
master MPI-task only has one spike, most probably cor-
responding to buffer sizes for reading input data and dis-
tributing data to workers. The supermaster process is doing
nothing in this configuration and therefor not shown. Fur-
ther, we show the histogram of an MPI worker (we run this
with 32 MPI tasks in total, resulting in 30 worker processes).
Histogram of all workers are similar. Apart from quite some
activity below and around L2 cache size, there is a spike at
the distance of L3 size. However, from measurements, we did
not really see much traffic to main memory. The solution to
this mystery lies in the fact that we do not show the number
of accesses for the bucket with the lowest distances (from 0
to 31K). For almost all reuse histograms shown, the spike
“skyrockets” the visualized range. E.g. for each MPIBlast
workers, it is more than 15 billion accesses.

Figure 3: Reuse Distance Histogram for MPIBlast.
Master (top) is distributing chunks of workload
to workers (bottom) which all have the same his-
togram.

This shows a drawback not only of our visualization, but
for such histograms in general. Even if 100% of accesses
were represented by area in the histogram, we cannot see the
frequency of accesses. The histogram may hint at memory
boundedness, but the frequency of accesses may be so low
that the hint is misleading. For more details, we have to look
at real measurements showing the influence in co-running
applications.

Slowdown Behavior
To predict the slowdown of applications being co-scheduled,
we need to co-run it with a benchmark for which we know
the behavior. Measurements are done using one CPU socket.
DistGen is always running with 4 threads. That is, the
1 MB memory usage point in the figures actually means that
each thread is traversing over its own 256 kB. While in this
point mostly private L2 is used by DistGen, due to the strict
inclusiveness property of the L3 cache in Intel processors,
this still requires 1 MB space from L3.

Figure 4 shows the performance of the LAMA CG solver
while being co-scheduled with DistGen with different dis-
tances. The reuse distance histograms predicted that the
CG solver for both 5002 and 10002 unknowns partially use
L3 cache, whereas with 20002 unknowns there is hardly any
benefit for L3 accesses. This can be seen clearly in Fig. 4.
The performance with 20002 unknown gets severely reduced
once DistGen starts consuming main memory bandwidth,
whereas with 5002 and 10002 unknowns we already see a per-
formance degeneration when DistGen starts to consume L3
cache. Furthermore, the maximum overall performance hit
is higher with 5002 and 10002 unknowns as they benefited



Figure 4: Slowdowns perceived by LAMA with 1
(top) and 4 threads (bottom), running against Dist-
Gen with 4 threads.

from L3 cache. The maximum overall performance hit is
higher when using 4 threads compared to 1 one thread. This
results from the fact that a single thread cannot consume
the whole bandwidth provide by a CPU socket, whereas 4
threads can. Interestingly, the maximum slowdown with
four CG solver threads is already reached with 16 MB Dist-
Gen usage. This shows the mutual influence between appli-
cations. We attribute this to the CG solver threads evicting
cache lines from DistGen such that DistGen starts to use
main memory bandwidth.

Figure 5 shows the performance of four MPIBlast pro-
cesses when being co-run with DistGen with different dis-
tances. Again, the results of this measurement closely re-
sembles the ones shown in the reuse distance histogram.
MPIBlast mostly relies on its private L2 cache and there-
fore hardly reacts to DistGen consuming L3 cache. Once
DistGen consumes main memory bandwidth we see a slow-
down of MPIBlast, as it was predicted by the reuse distance
histogram. We assume the initial 5% performance hit of
MPIBlast when being co-run with DistGen to be the result
of reduced CPU clock frequency. With four idle cores Intels
Turboboost can notably increase the CPU clock frequency.
But when DistGen is running, all 8 cores are active and the
CPU temperature is increased leaving less opportunities to
increase the CPU frequency. Overall, the maximum perfor-

Figure 5: Slowdowns perceived by MPIBlast with 4
threads, running against DistGen with 4 threads.

Figure 6: Slowdowns perceived by our micro-
benchmark DistGen when running against various
applications.

mance hit of MPIBlast (≤ 20%) is far lower than that of
the CG solver (≥ 90%). We cannot obtain this information
from the reuse distance histograms.

Figure 6 shows the performance of DistGen when being
co-run with the various applications. We can gather almost
the same information from these figures as we did from the
previous ones, but our tool reacts much more apparent (up
to 500%). All variations of the CG solver slow down Dist-
Gen when it uses main memory bandwidth, whereas MPI-
Blast hardly results in a slowdown. The single threaded CG
solver requires less resources compared to the versions using
4 threads, where the slowdown perceived by DistGen peaks
already at 16 MB. This confirms our assumption from above
that DistGen is forced to go to main memory at this point.

Overall, we observe that the performance of DistGen when
being co-run with an unknown application can provide valu-
able insights into the other application. Such information
will definitely be useful to automatically determine if appli-
cations benefit from co-scheduling.

6. RELATED WORK
The stack reuse distance histogram has shown to be very



helpful in analysing memory usage and hinting at tuning
opportunities [2]. There are quite some papers suggesting
fast methods for its determination in software-based tools,
as exact measurement is impossible using hardware. How-
ever, authors of [6] propose a statistical approximation using
hardware measurements which is extended to multi-cores in
[16]. We note that these methods, being statistical, only
work well with regular memory usage patterns. None of the
papers use the reuse distance histogram in the context of
analyzing co-scheduling behavior.

Characterizing co-schedule behavior of applications by mea-
suring their slowdown against micro-benchmarks is proposed
by different works. MemGen [5] is focussing on memory
bandwidth usage, similar to Bandwidth Bandit [7] which is
making sure not to additionally consume L3 space. Bubble-
Up [14] is very similar to our approach in accessing memory
blocks of increasing size. However, we vary the number of
threads co-run against our benchmark.

7. CONCLUSION
In this paper, we studied various ways of a-priori analysis

of applications for suitability to improve system throughput
via co-scheduling. Reuse distance histograms combined with
slowdown measurements proved very useful in this context.
We will use these methods in a modified job scheduler.

To avoid slowdown effects of co-running applications on
the same multi-core CPU, recent hardware (some versions
of Intel Haswell-EP CPUs) allows to configure L3 cache par-
titions for use by subsets of cores on the chip [8]. Instead of
avoiding specific co-schedulings, one can dynamically con-
figure resource isolation to avoid slowdown effects. In [4]
it was shown that this can be helpful. We will extend our
research in this direction.
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