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Abstract— This contribution addresses the problem of com-
puting the probability that a linear system with uncertain inputs
reaches an unsafe region in the state space. The probability
of reaching unsafe states is bounded by an upper limit, by
intersecting enclosing hulls of the probability density function
for time intervals with the specified unsafe regions. Distur-
bances are modeled as white Gaussian noise, whose mean
is modeled as uncertain within specified sets. This allows to
consider white non-Gaussian noise in an over-approximative
manner. The presented approach is efficient in the sense that
high-dimensional systems can be handled.

I. INTRODUCTION

In recent years, the growing complexity of technical sys-
tems together with an increasing demand for the compliance
with system requirements has driven the development of
algorithmic verification methods. A focus was to investigate
techniques for verifying safety properties of systems with
deterministic dynamics. In many applications, however, a
pure yes/no-decision about safety is unsatisfactory, because
a strict safety requirement for a system with partly uncertain
dynamics may severely limit the system’s operability or
availability; examples are scenarios in air traffic [1] or
road traffic [2]. This paper hence investigates stochastic
verification techniques that lead to a probability for the safe
execution of linear systems. The verification is performed
algorithmically by computing enclosing hulls of probability
density functions, and determining the probability of inter-
secting with unsafe sets.
An obvious approach for exploring stochastic systems is
Monte-Carlo simulation [3] – but, a large number of sim-
ulations are necessary to obtain a result that has sufficiently
converged to the exact probability of hitting an unsafe state
set. In addition, this approach is a non-conservative approx-
imative technique and thus does not qualify for verification.
Especially in the hybrid system community, various ap-
proaches towards reachability analysis of stochastic systems
have been developed in recent years. Barrier certificates can
be applied to compute upper bounds for the probability of
entering unsafe sets of hybrid systems without explicitly
computing reachable sets [4]. Algorithmic or numerical tech-
niques for stochastic verification of hybrid systems have been
developed in [5], [6], [7], [8]. These approaches compute
probabilistic reachable sets by performing a discretization
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of the continuous state space, what allows to approximately
compute probabilistic reachable sets using Markov chains.
The advantage of this technique is that a large class of
stochastic hybrid systems can be handled. The main draw-
back is the limitation to relatively low dimension of the
continuous state space (in the range of 4-6 continuous states).
This is due to the exponential growth of the number of
discrete states introduced for partitioning the continuous state
space.
In this paper, the special case of linear continuous dynamics
is addressed in order to circumvent the discretization of the
state space which allows to consider systems of relatively
large scale. The disturbance of the linear system is modeled
as white Gaussian noise whose mean value is uncertain
within a specified set U . As briefly recapitulated in this work,
the probability distribution of linear systems subject to white
Gaussian noise is well-known. Furthermore, the computation
of reachable sets subject to unknown, but bounded distur-
bances U has been computed e.g. in [9], [10], [11], [12], [13].
However, the combination of both, white Gaussian noise with
uncertain inputs of unknown probability distribution is novel
to the authors’ knowledge. Due to the uncertain mean of
the white Gaussian noise within U , there exist infinitely
many probability density functions for this problem. For
this reason, the solution is represented by enclosing hulls
which include all possible probability density functions of
the system. This is also done for the solution of time intervals
(not only time points), such that the probability of reaching
unsafe states can be computed as an over-approximation.

II. SYSTEM MODEL

The system under consideration is defined by the following
linear stochastic differential equation (SDE) which is also
known as the multivariate Ornstein-Uhlenbeck process [14]:

ẋ = Ax(t) + u(t) + Cξ(t), (1)

x(0) ∈ R
n, u(t) ∈ U ⊂ R

n, ξ ∈ R
m

where A and C are matrices of proper dimension and A has
full rank. There are two kinds of inputs: the first input u is
Lipschitz continuous and can take any value in U ⊂ R

n for
which no probability distribution is known. The second input
ξ ∈ R

m is white Gaussian noise. The combination of both
inputs can be seen as a white Gaussian noise input, where
the mean value is unknown within the set U .
Next, the solution of the multivariate Ornstein-Uhlenbeck
process in (1) for a single input trajectory u(t) is recalled,



which is well-known as:

X (t) = eAtX (0) +
∫ t

0

eA(t−τ)u(τ)dτ +
∫ t

0

eA(t−τ)CdW,

(2)
where dW

dt = ξ and W (t) is the Wiener process which
is also called Brownian motion. Due to the superposition
principle of linear systems, the above solution is com-
puted separately for Xd = eAtX (0) +

∫ t

0
eA(t−τ)u(τ)dτ

and Xs(t) =
∫ t

0
eA(t−τ)CdW . Assuming that the initial

state has a Gaussian distribution, Xd(t) = N (μ(t), Σ(t)),
where N (μ, Σ) is a random variable of Gaussian distribution
with expected value μ and covariance matrix Σ: μd(t) =
eAtμ(0)+

∫ t

0 eA(t−τ)u(τ)dτ and Σd(t) = eAtΣ(0)eAtT . The
random variable Xs(t) = N (0, Σs(t)) has also a Gaussian
distribution as shown in [14, p. 109]:

Σs(t) =
∫ t

0

eA(t−τ)CCT eAT (t−τ)dτ.

The integral of Σs(t) can be explicitly evaluated if AAT =
AT A. On that account, the system equation (1) is diago-
nalized by defining x∗ = Q−1x where Q is the matrix of
eigenvectors of A, such that A∗ = Q−1AQ = diag(λ),
C∗ = Q−1C and λ is the vector of eigenvalues. Hence,
Σs(t) = QΣ∗

s(t)Q
T and the solution of Σ∗

s(t) [14, p.109] is:

[Σ∗
s(t)]ij = (C∗C∗T )ij

λi+λj
(1 − e(−λi−λj)t).

III. DEFINITION OF REACHABLE SETS AND ENCLOSING

PROBABILISTIC HULLS

For the case C = 0 in (1), the stochastic differential
equation becomes an ordinary differential equation (ODE).

Definition 1: The exact reachable set Re(r) of (1) is
defined as Re(r) = {x(r)|x(t) is a solution of (1) ∀t ∈
[0, r], C = 0, x(0) ∈ X0 ⊂ R

n}. �
An over-approximated reachable set R(r) is defined as
R(r) ⊇ Re(r) and the over-approximated reachable set for
the time interval t ∈ [0, r] is the union of all sets R(t) within
t ∈ [0, r]: R([0, r]) :=

⋃
t∈[0,r] R(t).

In the probabilistic setting (C �= 0), the probability density
function (PDF) at time t = r of the random process X (t)
defined by (1) for a specific trajectory u(t) ∈ U is denoted
by fX (x, r).

Definition 2: The enclosing probabilistic hull (EPH) of
all possible probability density functions fX (x, r) is denoted
by f̄X (x, r) and defined as: f̄X (x, r) = sup{fX (x, r)|X (t)
is a solution of (1) ∀t ∈ [0, r], u(t) ∈ U , fX (x, 0) = f0}.
�
The enclosing probabilistic hull for a time interval is defined
as f̄X (x, [0, r]) = sup{f̄X (x, t)|t ∈ [0, r]}.

IV. REPRESENTATION OF ENCLOSING PROBABILISTIC

HULLS

The representation of enclosing probabilistic hulls is in-
troduced step-by-step: First, the representation of sets with
zonotopes is introduced. Next, it is shown that random
variables with Gaussian distribution can be represented by

probabilistic zonotopes. Finally, probabilistic zonotopes with
uncertain mean are defined which are used as the represen-
tation for enclosing probabilistic hulls.
Zonotopes Z (see e.g. [13]) are sets that are defined as:

Z =
{

x ∈ R
n
∣∣x = c +

p∑
i=1

β(i)g(i), −1 ≤ β(i) ≤ 1
}

where c, g(1), . . . , g(p) are vectors of R
n, c is referred to as

the center and g(i) are referred to as the generators of Z .
Zonotopes are denoted by Z = (c, g (1...p)), and the order of a
zonotope is p

n . A zonotope can also be seen as the Minkowski
sum1 of the finite set of line segments li = [−1, 1]g(i).
This alternative definition gives a good impression of how a
zonotope is built by adding the line segments, see Fig. 1.
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Fig. 1. Construction of a zonotope: generators are added from left to right.

By replacing the intervals β (i) ∈ [−1, 1] with pairwise in-
dependent Gaussian distributed random variables N (i)(0, 1),
one can define a Gaussian zonotope with certain mean:

Definition 3 (G-Zonotope with Certain Mean): A Gaus-
sian zonotope (G-zonotope) with certain mean is defined as
a random variable Z:

Z = c +
q∑

i=1

N (i)(0, 1) · g(i),

where g(1), . . . , g(q) are the generators, which are underlined
in order to distinguish them from generators of regular
zonotopes. G-zonotopes are denoted by calligraphic letters
Z = (c, g(1...q)). �

For further derivations, it is advantageous to show that G-
zonotopes with certain mean have a multivariate Gaussian
probability density function.

Proposition 1 (Gaussian Distribution of G-Zonotopes):
The probability density function of a G-zonotope with
certain mean and of order greater than one (q > n) can be
formulated as a multivariate Gaussian distribution with

fZ = (2π)−
q
2 det(Σ)−

1
2 exp(−0.5(x − c)T Σ−1(x − c)),

Σ = GGT

where Σ is the covariance matrix, c is the mean value
and G =

[
g(1) . . . g(q)

]
is the matrix of probabilistic

generators.

1Minkowski sum of two sets A, B: A + B = {a + b|a ∈ A, b ∈ B};
Minkowski sum is always assumed if two sets are added



Proof: Due to the independence of the random variables
N (i) of the generators, the joint distribution is computed as
the product of the PDFs of each random variable:

f
(1...q)
N (y) :=

q∏
l=1

f
(l)
N =

q∏
l=1

(
√

2π)−1 exp(−0.5y(l)2)

!= (2π)−
q
2 det(Σ)−

1
2 exp(−0.5yT Σ−1y),

(3)

from which follows that Σ = I and I is the identity
matrix. Next, the random variables N (i) of the generators
are mapped to the random vector Z of the zonotope:
Z = c + GN and N =

[N (1) . . . N (q)
]T

, such that
μ∗ = c and Σ∗ = GGT which follows from the addition
and multiplication rule of random variables with Gaussian
distribution.

In order to represent enclosing probabilistic hulls f̄X ,
the multivariate Gaussian distribution is extended by an
uncertain mean as mentioned before:

Definition 4 (G-Zonotope with Uncertain Mean): A
G-zonotope with uncertain mean, denoted by Z , is defined
as a G-zonotope Z , where the center is uncertain and can
have any value within a zonotope Z , which is denoted by:

Z := Z � Z, Z = (c, g(1...p)), Z = (0, g(1...q)).

G-zonotopes with uncertain mean are also denoted by Z =
(c, g(1...p), g(1...q)). If the probabilistic generators can be
represented by the covariance matrix Σ (q > n), one can
also write Z = (c, g(1...p), Σ). �

As Z is neither a set nor a random vector, there does not
exist a probability density function describing Z . However,
one can obtain an enclosing probabilistic hull which is
similarly defined as in Def. 2: f̄Z = sup

{
fZ

∣∣E[Z] ∈ Z
}

,
where E[ ] returns the expectation and Z , Z , Z are defined
as in Def. 4. Combinations of sets with random vectors
have also been investigated, e.g. in [15], [16]. Analogously
to a zonotope, it is shown in Fig. 2 how the enclosing
probabilistic hull (EPH) of a G-zonotope with two non-
probabilistic and two probabilistic generators is built step-
by-step from left to right.
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Fig. 2. Construction of a G-zonotope.

V. OPERATIONS ON STOCHASTIC SETS

The use of zonotopes is motivated by the fact that they
are closed under Minkowski addition and linear transfor-
mation [13]. Given are two zonotopes Z1 = (c1, g

(1...p)),

Z2 = (c2, h
(1...q)) and a matrix L ∈ R

n×n. It follows
that Z1 + Z2 = (c1 + c2, g

(1...p), h(1...q)) and LZ1 =
(Lc1, Lg(1...p)). The multiplication rule is trivial and the
addition rule follows from the fact that a zonotope is defined
as the Minkowski addition of generators. The addition of a
G-zonotope Z1 = (c1, g

(1...p), Σ1) with another G-zonotope
Z2 = (c2, h

(1...q), Σ2) and the linear map is:

Z1 + Z2 = (c1 + c2, g
(1...p), h(1...q), Σ1 + Σ2)

LZ1 = (Lc, Lg(1...p), LΣ1L
T ),

(4)

where the addition and the multiplication rule of zonotopes
and random variables with Gaussian distribution have been
applied. An operator that needs to be defined for further
computations, is the confidence set operator:

Proposition 2 (Confidence set operator): The confidence
set operator η(Z, m) transforms a zero-mean G-zonotope
Z with n (=̂ system dimension) probabilistic generators
to a zonotope Z whose generators are a multiple of the
probabilistic generators:

η(Z, m) = (0, g(1...n)), g(i) = m · g(i), m ∈ R
+ . (5)

The choice of n generators is no loss of generality as they
can represent arbitrary multivariate Gaussian distributions,
see Prop. 1. The obtained set encloses realizations of Z by
a probability of erf( m√

2
)n where erf() is the error function.

Proof: The probability P [−m < N (0, 1) < m] =
erf( m√

2
) is well known. Choosing n generators, the event

that a value lies in the set spanned by them is erf( m√
2
)n.

The confidence set operator of a stochastic zonotope with
uncertain mean is defined as η(Z , m) := Z + η(Z, m).
A special confidence set is the γ-confidence set (m = γ).
Computations for states outside the γ-confidence set in Ψ =
R

n\η(Z , γ) are not regarded for enclosing probabilistic
hull computations. Instead of computing with probability
distributions within Ψ, only the probability that a state is in
Ψ is preserved, as shown later (

∫
Ψ

fZ dx = 1 − erf( γ√
2
)n).

VI. COMPUTATION OF ENCLOSING PROBABILISTIC

HULLS

First, a procedure for computing reachable sets is recalled,
which is then adopted for the computation of enclosing
probabilistic hulls. The presented basic steps are applied
in many algorithms (e.g. [12], [11], [13], [17]) in order to
compute the reachable set for a time interval t ∈ [0, r]:

1) Computation of the reachable set R̂(r) at time t = r
without input.

2) Generation of an enclosing hull EH(R(0), R̂(r)),
where EH() is the enclosing hull operator.

3) Enlargement of the enclosing hull to enclose all tra-
jectories under the specified disturbances for the time
interval t ∈ [0, r].

These basic steps are illustrated in Fig. 3. In the following,
the steps (1) to (3) are discussed for the probabilistic setting.
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Fig. 3. Computation of reachable sets - overview.

A. Time Interval Solution without Input

For a linear system (1), the reachable set without input is
computed for the time t = r by:

R(r) = eArR(0).

The time interval solution for the enclosing probabilistic hull
is a more complicated issue. The problem is approached
by separating computations for sets and probability density
functions, which is realized by splitting up the G-zonotopes
with uncertain mean R into zonotopes R and G-zonotopes
with zero mean R.
In a first step, the evolution of the PDF value of a point after
a linear mapping is investigated:

Proposition 3 (PDF-value evolution of a point): The
change of a PDF value for a point by a factor e−tr(A)t due
to a mapping eAt is given by :

fR(x′, t) = e−tr(A)tfR(x, 0), x′ = eAtx,

where tr() is the trace of a matrix.

Proof: Given is an infinitesimal parallelotope (zono-
tope of order one) which is spanned by generators of the
generator matrix G. The volume of a parallelotope can
be computed by the determinant of the generators: V =
2n det(G). After the mapping by eAt, the volume is obtained
as V ′ = 2n det(eAtG) = 2n det(eAt) det(G). The ratio
of the value of the probability density function before and
after the mapping is determined by the ratio of the volumes
of the infinitesimal parallelotopes, see e.g. [18, p. 145]:
fR(x′,t)
fR(x,0) = V

V ′ = 1
det(eAt) . Furthermore, it is well known

that det(eAt) = etr(At) such that det(eAt)−1 = e−tr(A)t.

From the monotonicity of e−tr(A)t it follows that the PDF
values have a maximum for t = 0 or t = r if t ∈ [0, r]. The
idea for the computation of an enclosing probabilistic hull is
the following: Pick the probability distribution for the time
point where the PDF-values have a maximum, and assume
this PDF for the whole time interval t ∈ [0, r]. Additionally,
compute a set ΔR in which each point is uncertain within
t ∈ [0, r]. By taking the maximum PDF-values within the
considered time interval and by adding the uncertainty ΔR,
an enclosing probabilistic hull is generated. In order to obtain
a bounded set ΔR, the computation is restricted to the states
originating from the γ-confidence set.
In [17], where the reachability of non-stochastic linear sys-
tems with uncertain parameters has been investigated, the
following over-approximation has been introduced:

Δx(t) = x(t) − x(0) ⊆ t

r
(eAr − I + F )x(0), ∀t ∈ [0, r].

By substituting x(0) with η(R(0), γ), one obtains

ΔR = (eAr − I + F )η(R(0), γ), (6)

which contains all variations Δx(t) = x(t) − x(0) ∀t ∈
[0, r], such that η(R([0, r]), γ) ⊆ η(R(0), γ) + ΔR. For
details on the computation of F , the interested reader is
referred to [17]. Equation (6) and Prop. 3 allow to formalize
the aforementioned idea for an enclosing probabilistic hull
R̂∗([0, r]) starting in R(0) without input (u = 0):

R̂∗([0, r]) = ΔR � R∗ for x(0) ∈ η(R(0), γ),

ΔR = (eAr − I + F )η(R(0), γ),

R∗ =

{
R(0), if tr(A) > 0
R(r), otherwise.

The reachable set R([0, r]) for the non-probabilistic case
is computed from R(0) as shown in [17]. Due to the
superposition principle, the overall G-zonotope without input
is R̂([0, r]) = R([0, r]) � R̂∗([0, r]).
Numerical examples for the computation of f̄R̂([0, r]) can
be found in Fig. 4 for a one- and two dimensional-case. For
time intervals [kr, (k + 1)r], k ∈ N

+, the G-zonotope is
computed as R̂([kr, (k + 1)r]) = eAkrR̂([0, r]).

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

0

0.4

0.8

1 3 5

f̄R̂([0, r])

fR̂(r)

fR(0)

(a) One dimensional example.

00

0

0.4

0.8

5 5

f̄R̂([0, r])

fR̂(r)

fR(0)

(b) Two dimensional example.

Fig. 4. Enclosure of two Gaussian distributions.

B. Time Interval Solution with Input

Due to the superposition principle of linear systems, the G-
zonotope R̄([kr, (k+1)r]) due to the input can be computed
separately. It is first shown that the input solution R̄([kr, (k+
1)r] for general time intervals t ∈ [kr, (k + 1)r] can be
computed based on a single time interval solution for t ∈
[0, r] combined with the solution for t = kr.

Proposition 4 (Input solution): The enclosing probabilis-
tic hull R̄([kr, (k + 1)r] due to input v = u + Cξ can be
computed as R̄([kr, (k + 1)r]) = eA·krR̄([0, r]) + R̄(kr)

Proof: The input solution in (2) due to the input
v = u + Cξ, can be reformulated as xs((k + 1)r) =
eA·kr

∫ r

0 eA(r−τ)v(τ)dτ +
∫ (k+1)r

r eA((k+1)r−τ)v(τ)dτ =
eA·krxs(r) + xs(kr).

The G-zonotope R̄([0, r]) is over-approximated using the γ-
confidence set η(R̄([0, r]), γ). Without loss of generality, one
can assume that the set of possible inputs u ∈ U contains
the origin, such that the origin is element of η(R̄(t), γ), ∀t.
In case, that U does not contain the origin, one can add an
artificial input ũ, such that v = u + ũ + Cξ and 0 ∈ U . The
solution of the constant input ũ can be separately obtained



and added to the reachable set. As the origin is element of
η(R̄(t), γ), ∀t, the reachable set η(R̄([0, r]), γ) is growing
from the origin, such that the reachable set for t ∈ [0, r]
equals the reachable set at t = r, and the input solution can
be over-approximated by:

η(R̄([0, r]), γ) = η(R̄(r), γ) = R̄(r) + η(R̄(r), γ).

The reachable set R̄(r) for u ∈ U is obtained as presented
in [17] and the covariance matrix Σs(r) of the G-zonotope
R̄(r) = (0, Σs(r)) is computed as shown in Sec. II. Using
the obtained results, Alg. 1 for the computation of enclosing
probabilistic hulls of h time intervals, can be formulated:

Algorithm 1 Compute R.

Input: R̂([0, r]), R̄(r), R̄(r) and γ
Output: R([kr, (k + 1)r])

R̄(r) = R̄(r) � R̄(r)
R([0, r]) = R̂([0, r]) + η(R̄(r), γ)
for k = 1 . . . ζ do

R([kr, (k + 1)r]) = eArR([(k − 1)r, kr]) + R̄(r)
end for

C. Probability of Entering an Unsafe Set

The enclosing probabilistic hulls allow to compute the
probability that the system state is in an unsafe set within
a certain time interval. The over-approximated probability
p̄([kr, (k + 1)r]) of hitting an unsafe set B, which is over-
approximated by a polytope B, is computed in general as:

p̄([kr, (k + 1)r]) =
∫

B

f̄R([kr, (k + 1)r])dx.

In order to be able to efficiently over-approximate the
above integral, the enclosing probabilistic hulls are over-
approximated by polytopes, see Fig. 5. This is done by com-
puting the maximum values hmax

1 , hmax
2 , . . . of the enclos-

ing probabilistic hulls for corresponding confidence regions
Q1 = η(R, γ)\η(R, m1), Q2 = η(R, m1)\η(R, m2), . . .
and γ > m1 > m2 > . . . > 0, see Fig. 5.

The enclosure by polytopes Pi allows to compute an over-
approximated probability for entering the unsafe set B. The
probabilities outside the γ-confidence set are considered with
the probability 1 − erf( γ√

2
)2n which is squared in contrast

to Prop. 2 in order to account for the homogeneous and the
particulate solution:

p̄ = 1 − erf(
γ√
2
)2n +

∑
i

V (Qi ∩ B), (7)

where V () is an operator that returns the volume of a
geometric object.

D. Extension for non-Gaussian and (Un-)Bounded Proba-
bilistic Initial Sets and Inputs

The presented approach can be extended to non-Gaussian
initial sets and white non-Gaussian noise by enclosing them
with enclosing probabilistic hulls R(0) and R̄(r), see Fig.
6. Additionally, if the sets N of non-zero PDF-values are
bounded and lie within γ-confidence sets (see Fig. 6), it is
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distributions.

possible to guarantee the safety of a system (N ⊆ γ-set for
initial state and the disturbance). In this case, the exact PDF-
values are only non-zero within the γ-confidence set of the
reachable sets as these are invariant sets. From this follows
that the probability of hitting an unsafe set according to (7)
changes to p̄ =

∑
i V (Qi ∩ B) which is possibly 0.
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VII. NUMERICAL EXAMPLES

For the illustration of the presented techniques, the exam-
ples in [13] are enhanced with white noise. The first example
is two dimensional:

ẋ =

»−1 −4
4 −1

–
x +

»
[−0.01, 0.01]
[−0.01, 0.01]

–
+

»
0.7 0
0 0.7

–
ξ.

Several simulations with the specified distribution of initial
values are illustrated in Fig. 7(a). The corresponding enclos-
ing probabilistic hulls f̄R([kr, (k + 1)r]) are plotted in Fig.
7(b) for k = 1 . . . 250, where the sampling time is chosen
to r = 0.01. Note that the values of f̄R([kr, (k + 1)r]) are
visualized by the colorbar on top of the plot.
The second example is of dimension 5, and with a system
matrix as specified in [13]:

ẋ = Ax + u + 0.5 · I · ξ,

A =

⎡
⎢⎣
−1 −4 0 0 0
4 −1 0 0 0
0 0 −3 1 0
0 0 −1 −3 0
0 0 0 0 −2

⎤
⎥⎦, u ∈ U =

⎡
⎣[−0.1, 0.1]

...
[−0.1, 0.1]

⎤
⎦

T

.

The projections (R ′ = PR, P ∈ R
2×n) of the enclosing

probabilistic hulls for a sampling time of r = 0.04 are
presented in Fig. 8 together with the unsafe set x2 < −1.5.
The over-approximated probability that the state is in an



unsafe set, is shown in Fig. 9 for time points and time
intervals and also for different time step sizes, such that
the over-approximation due to the enclosure of probability
distributions for time intervals can be seen.
Additionally, G-zonotopes R([kr, (k + 1)r]) for 500 time
intervals for higher order systems with randomly generated
matrices A and C have been computed (the order of zono-
topes has been limited to 5). The computation times are
presented in the table below and are obtained by a desktop
computer (3.7 GHz) in Matlab.

Dimension n 5 10 20 50 100
CPU-time [sec] 0.72 1.29 2.61 8.97 29.1

VIII. CONCLUSION

The computation of enclosing probabilistic hulls for linear
stochastic differential equations with white noise and uncer-
tain inputs has been presented for high dimensional systems.
The combination of Gaussian noise with uncertainties spec-
ified by sets allows to over-approximate the probability of
entering unsafe sets for non-Gaussian initial distributions and
non-Gaussian white noise. For the extension to nonlinear or
hybrid systems, one would have to apply a Gaussian-mixture
approach for which the underlying algorithms could benefit
from the results presented here.
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