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Abstract 
We present an effective and fast method for static hand gesture recognition. This method is based on 
classifying the different gestures according to geometric-based invariants which are obtained from image 
data after segmentation; thus, unlike many other recognition methods, this method is not dependent on 
skin color. Gestures are extracted from each frame of the video, with a static background. The 
segmentation is done by dynamic extraction of background pixels according to the histogram of each 
image. Gestures are classified using a weighted K-Nearest Neighbors Algorithm which is combined with a 
naïve Bayes approach to estimate the probability of each gesture type. When this method was tested in the 
domain of the JAST human-robot dialog system, it classified more than 93% of the gestures correctly into 
one of three classes. 
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1. Introduction 
When humans interact with one another—and with 
artificial agents—they make extensive use of a range of 
non-verbal behavior in addition to communicating via 
speech. Processing and understanding the non-verbal 
parts of human communication are crucial to supporting 
smooth interaction between a human and a robot.  

We concentrate on the task of hand-gesture 
recognition: recognizing and classifying the hand shapes 
and motions of a human user in the context of a 
cooperative human-robot assembly task. Hand gestures 
play an important role in this type of interaction, both as 
an accompaniment to speech and as a means of input in 
their own right. For example, if a user wants to tell a 
robot to pick up a certain object among many other 
objects, it can be difficult to indicate the desired object 
using only speech. However, if the user combines saying 
“Pick up that object” with a pointing gesture at the target 
object, this can be easier to process. Hand gestures can 
also themselves provide strong indications of the user’s 
intentions in the absence of speech: for example, the user 
might move their hand near an object in preparation for 
picking it up, or may hold out their hand to indicate that 
they need the robot to hand over a particular object. 

In this paper, we introduce and evaluate a method to 
recognize the following three types of gestures in a 
human-robot dialog system: pointing, grasping and 

holding out (Figure 1). The paper is organized as follows. 
We begin by discussing related work in the area of 
gesture recognition: particularly, related approaches to 
the sub-tasks of image segmentation and classification. 
Next, we introduce the JAST human-robot dialog system, 
which supports multimodal human-robot cooperation on 
a joint construction task, and describe how hand gestures 
play a role in interactions with the system. 

In the main part of the paper, we present a fast, robust 
and easy-to-implement gesture recognition algorithm 
which differentiates between three gesture classes 
mentioned above, and which can be extended to other 
similar applications. This algorithm proceeds in three 
main steps. The first step is to segment and label the 
objects of interest and to extract geometric invariants 
from them. Next, the gestures are classified using a K-
nearest neighbor algorithm with distance weighting 
algorithm (KNNDW) to provide suitable data for a 
locally weighted naïve Bayes classifier. The input vector 

 
Figure 1: Pointing, grasping, and holding-out gestures 



for this classifier consists of invariants of each region of 
interest, while the output is the type of the gesture. After 
the gesture has been classified, the final step is to locate 
the specific properties of the gesture that are needed for 
processing in the system—for example, the fingertip for a 
pointing gesture or the center of the hand for a holding-
out gesture. 

After the algorithm has been described in detail, we 
describe an experiment in which gestures from the JAST 
project were recognized and classified with an overall 
accuracy of 93%. At the end of the paper, we draw some 
conclusions and discuss possible extensions of this work. 

2. Related Work 
Many methods have been developed recently to perform 
successful gesture recognition. Most of these systems 
consist of two main steps: segmentation and extraction of 
invariants, and classification of gestures. In this section 
we discuss how similar applications perform these two 
steps. 

2.1. Extracting Invariants 
Invariants are shape descriptors extracted from an image 
that are independent of the viewpoint [16]. Using 
invariants for recognition greatly simplifies the process of 
object recognition because it allows objects to be 
compared with reference models regardless of the 
orientation. Before extracting invariants, it is necessary to 
segment the recognized image to extract the relevant 
objects or regions of interest and to omit the irrelevant 
data. 

For hand-gesture recognition, some researchers have 
tried to do the early segmentation process using skin-
color histograms [3, 4, 5, 6]. The problem with these 
methods is that they do not work well in cases when there 
are some other objects in the scene with the same color as 
skin color, or where the hand has other colors. In the 
target JAST application, the background is static and can 
easily be eliminated, so we concentrate instead on the 
geometric characteristics of the objects. 

Zhou et al. [3] extracted invariants for gesture 
recognition using overlapping sub-windows, and 
characterized them with a local orientation histogram 
feature description indicating the distance from the 
canonical orientation. This makes the process relatively 
robust to noise, but very time-consuming indeed. 

Kuno and Shirai [9] used seven invariants to do hand-
gesture recognition, including the position of the finger-
tip. This is not practical when we have not only pointing 
gestures, but also several other gestures, like grasping. 
However, the invariants they extracted inspired us for 
some future improvements. 

2.2. Classification 
Classification is a method to assign a class to a point 
(vector in spaces of more than two dimensions) in an N-
dimensional space. The classes may be predefined and 
learned beforehand (supervised learning), or may be 

extracted automatically based on a similarity metric 
(unsupervised learning). 

A naïve Bayes classifier assigns the most likely class 
to a given example given its feature vector, simplifying 
the task greatly by assuming that the features are 
independent given a class. Such classifiers are robust, 
simple to implement and computationally efficient—and, 
despite the often unrealistic assumption of independence, 
they are frequently very successful in practice. Many 
techniques have been developed to improve the 
performance of naïve Base classifiers; Zheng and Webb 
[2] provide an overview of efforts in this area. 

K-nearest neighbors (KNN) classifiers have a good 
performance when the attributes of a system are linearly 
separable. It finds the K nearest (already classified) 
vectors in the space to the input. The class which has the 
most vectors in those K neighbors is chosen to be the 
class of the input vector. K-nearest neighbors with 
distance weighting (KNNDW) is an improvement which 
has been proved to perform better than KNN in many 
cases [8]. In this method, the contribution of each 
neighbor to the overall classification is weighted by its 
distance from the point being classified. 

The most relevant work to our method has been 
performed by Frank et al. [1] which introduces a locally 
weighted naïve Bayes (LWNB) classifier. Their 
evaluation on UCI dataset shows that LWNB 
outperforms KNN and KNNDW when K is big enough. 
Other refinements, like instance cloning local naïve 
Bayes (ICLNB) [7], have also been introduced which 
manipulate the training data to get a better performance 
from the Bayes classifier. 

In our implementation, we use a combination of 
KNNDW and LWNB to get a better performance without 
manipulating the training data or any complicated 
modification. The complete explanation can be found in 
section 5. 

3. The JAST Human-Robot Dialog 
System 
The overall goal of the JAST project (“Joint Action 
Science and Technology”) is to investigate the cognitive 
and communicative aspects of jointly-acting agents, both 
human and artificial. The human-robot dialog system 
being built as part of the project [14, 15] is designed as a 
platform to integrate the project’s empirical findings on 
cognition and dialog with research on autonomous robots, 
by supporting symmetrical, multimodal human-robot 
collaboration on a joint construction task. 



 
Figure 2: The JAST human-robot dialog system 

 
The robot (Figure 2) consists of a pair of mechanical 

arms with grippers, mounted to resemble human arms, 
and an animatronic talking head capable of producing 
facial expressions, rigid head motion, and lip-
synchronized synthesized speech. The input channels 
consist of speech recognition, object recognition, robot 
sensors, and face tracking; the outputs include 
synthesized speech, head motions, and robot actions. The 
user and the robot work together to assemble a wooden 
construction toy on a common work area, coordinating 
their actions through speech, gestures, and facial motions. 
Joint action can take several forms: for example, the 
robot may ask the user to provide assistance by holding 
one part of a larger assembly, or by assembling or 
disassembling components. 

Object and gesture recognition in JAST are both 
performed on the output of a single camera which is 
installed directly above the table looking downward to 
take images of the scene. The output of this process is 
sent to the multimodal fusion component [17], where it is 
combined with any spoken input from the user to produce 
combined hypotheses representing the user’s requests. 

4. Image Processing 
The first step in the gesture-recognition process is to 
process the raw images from the overhead camera to 
extract the background and to identify Regions of Interest 
for the gesture-recognition process. Once those regions 

have been identified, we then extract geometric invariants 
from them for use in the classification process. In this 
section, we describe how these image-processing steps 
are carried out. 

4.1. Adaptive Segmentation 
Within preprocessing of input images, segmentation is 
probably one of the most important steps as it is the basis 
of any fast recognition approach. Thus we need a robust 
and possibly adaptive method to extract Regions of 
Interest (ROI) from the image provided by the camera. 
Generally speaking, segmentation is done by classifying 
each pixel of the input image and organizing them into 
groups. 

Due to the fact that we have variable lighting 
conditions and we also have to deal with changing but 
(mainly) uniform background-colors of the table, we need 
a segmentation approach that is capable of performing an 
adaptive loop when environment parameters are modified 
(e.g. switching a light on or using a different table). We 
begin by presenting the basis of our segmentation 
approach to computing segments from an input image 
with objects in the foreground and a basically uncluttered 
background. We then describe a segmentation approach 
based on high-level abstraction that searches for a 
coherent set of ROIs. 

The first step in segmentation is applying a threshold 
in order to classify each pixel as object or background. 
One could use a static or dynamic threshold for this task 
as described in [11]. In our case, we have a minimum and 
a maximum threshold based on evaluation of a multi-
dimensional color histogram. As a second step, we group 
the classified pixels into blobs—the segments that will be 
our regions of interest in further analysis. This is done by 
connecting neighboring pixels using a search radius with 
a recursive algorithm. Some additional information that is 
useful in further processing such as the bounding-box, 
contour and main-color-components are computed 
alongside; note that this adds only a constant factor to the 
run-time of the algorithm. 

Crucial to the approach is the a priori knowledge of 
the threshold, which is usually static as long as 
environmental conditions are stable and thus configured 
in advance. However, in the JAST setup, the threshold is 
not stable in this way, and so has to be computed online. 
For this task the system implements an adaptive loop 
which is initiated by the system when certain 
preconditions are complied with. These constraints are 
computed dynamically and include: 

 
Figure 3: Result of the general segmentation process 



1. High fluctuation in number of regions 
segmented. 

2. Perpetual distortion of regions. 
3. Highly non-uniform movements of regions 

segmented. 
Parameters for the preconditions are initiated in advance 
and adjusted online in a closed loop. When one or more 
of the preconditions is fulfilled, the following adaptive 
loop is initiated: 

1. Evaluate a multi-dimensional color-histogram of 
the image to create a reference value r  for the 
threshold, typically the peak in the histogram. 

2. Randomly choose a set of parameters p
r

 for the 

thresholds. 
3. Apply thresholds and grouping with a set of 

different grouping-search-radii to the original as 
well as a set of several downscaled versions of 

the image prN
r

, . 
4. Compare results for the different images using a 

rating function (see below). 
5. Perform a gradient descent to find a (locally) 

optimal set of parameters to be used 
subsequently. 

6. Perform a gradient descent to find a (locally) 
optimal set of precondition-parameters for 
classifying the old segmentation-parameters as 
bad and new parameters as good. 

7. Save and exit adaptive loop. 
Step 4 in this loop makes use of a rating function to 
enable a high level quality measure. However this is 
obviously not an easy task as we neither know the 
number nor size or position of objects or gestures on the 
table. For this purpose we propose to raise the level of 
abstraction and evaluate results for a set of segmentation 
parameters. 

First we compute a quadratic error for the selected 
parameter-set by comparing the predefined features of a 
segment (such as size, position, color, etc.). As we only 
want to consider the closest matching region in two 

processed images of prN
r

,  we have to do a minimum 

operation after comparing the features 
s

f  of a segment 

s  in an image i  to those of another imagej . 
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Within the two best-matching segments of different 
versions of the original image, we multiply each segment-
feature error by a feature-specific weighting factor fα . 

Now we have to sum up all minimum quadratic errors to 
get a global error-result for all segments extracted with 
the current parameter-set p

r
 and reference value r  in an 

image. 
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Having computed a global error for the comparison 

between an image i  and j  of the set prN
r

, we now sum 

up considering all images of the set. 
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As a final step towards an abstract error measurement, 
we need to specify a quality-function in order to get a rate 
for the current segmentation parameter choice within 

[0,1]. We use the sigmoid function ( )xe−+1

1
 as a basis 

for this task: 
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Here the global error is weighted with a factor 

]1,0[∈λ  that must be chosen carefully, also considering 

the feature weight fα . The experimental system in the 

JAST setup showed good results for λ  less than 0.1. 
With this quality function we now can easily perform 

gradient descent or any other optimization method such 
as Gauss-Newton or Downhill-Simplex [11, 12, 13] to 
find a suitable set of parameters in our parameter space 
and so adapt our segmentation to variations in 
environment conditions. 

4.2. Extracting Invariants 
Once the regions of interest (ROI) have been identified as 
described in the preceding section, the next step is to 
extract the geometric invariants from the binary image for 
use in classification. 

For each ROI we define the following invariants:  
1. Number of the points 
2. Length of the outer contour 
3. Change of gradient in x direction 
4. Change of gradient in y direction 

Since the user’s hands enter the image from outside 
the camera view, we consider for gesture recognition only 
those ROIs which end at one of the four sides of the 
image (table). 
 
 

 
Figure 4: Predefined ROI height 

 
For extracting the invariants, only a specific, 

predefined area of the end part of the ROI is processed. 
This way a completely stretched hand will be processed 
from the wrist to the finger tips. This area is depicted in 



Figure 4. Next, the outer contour of the object is extracted 
as shown in Figure 5. The length of this contour is the 
second invariant. 

 
Figure 5: Extracting the outer contour from the segmented 
image 

Then we explore the contour to find the x-y gradient 
changes, which corresponds to the number of changes in 
direction. We refer to these points as gradient points. To 
avoid noise, we inspect only the changes in direction 
which last for a known number of steps (three steps in our 
application). 

Supposing that we have m invariants, we have a 
vector with m (which is four in our application) 
dimensions. 

(5) }{ ,..,,)( 21 maaamInv =  

During the training phase (Section  5.1), the resulting 
vector is added to the training pool; during the 
classification phase (Section  5.2), it is compared against 
the three gesture classes for identification. 

5. Gesture Recognition 
Before performing classification, a training pool is 
created based on a range of gestures produced by 
different users, where each training instance is labeled 
with its gesture class. The invariants from this pool are 
stored for use in the classification process. In Section  5.1, 
we describe the training process, while in Section  5.2 we 
describe how classification proceeds. In Section  5.3, we 
then show how the class-specific reference points are 
computed for pointing and grasping gestures. 

Note that we are classifying static gestures, while the 
user’s hands could be in motion. We therefore wait for 
the system to reach a stable state before performing 
training or classification. A stable state is detected by 
tracking the coordinates of the ROIs and initiating gesture 
recognition only once the coordinates remain constant for 
several frames. 

5.1. Training Phase 
For the training phase, the user moves his or her hand in 
different positions and angles for each of the gestures, 
using both the left and right hands. As stated before, we 
have three classes of gestures: 
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All the extracted invariants are saved in a simple text 
file. It is recommended that the training is done with a 
couple of users with different hand size and shape so that 
the classifier becomes more robust. In our application we 
used four users’ hands. For each gesture around 150 

samples is sufficient, so at the end of the training process 
we have a file consisting of 500 to 600 labeled gestures. 

The vectors in the file have one more dimension in 
comparison with the invariant vector because of the class-
id. If we assume that there are n vectors in the file (n 
samples) then each vector will be: 
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After constructing this pool of labeled invariant vectors, 
classification is able to proceed. 

5.2. Classification: Combining KNNDW & 
LWNB 

To classify the extracted invariant, we first find the K 
nearest neighbors which are calculated based on the 
weighted distance of each training vector to the input 
invariant. Formally, we define the distance-weighting 
vector as: 
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The distance from the extracted invariant to training 
vector n can then be computed in Euclidean space as 
follows: 
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We also normalize the distance so that all the values will 
be between 0 and 1. 

Next, we choose the K vectors from the training pool 
which have the shortest distance to the given invariant. 
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A normal naïve Bayes probability for the class of the 
given invariant will then be 
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where j is the index of each class (type of gesture). 
To improve the result, we add weights to the 

neighbors. This weight )()( d xfxwB =  is a function of 

the Euclidian distance of each vector )(d x , which can be 

any monotonically decreasing function. In our 
application, we experimented with function 

like d xd xf −= 1)(  or 
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1
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d x
p

d xf =  for various p 



 
Figure 6: Localization results for gestures 

and the function which produced the best classification 
performance was: 
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Using these weights, we define our locally weighted 
naïve Bayes probability by weighting equation (11) as 
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Then we can simply choose the class with the highest 
probability. 
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The classification algorithm can be summarized as 
follows: 
 
Classification Algorithm 

1. Find the k-nearest neighbors with weighted 
distance from the training pool 

2. Find the naïve Bayes probability of each, while 
weighted disproportional to their distance 

3. Choose the class of the vector with the highest 
probability 

5.3. Localization of gesture 

Once the class of the gesture has been selected as 
described above, the next step is to identify the location 
of the important position of the gesture that is, the part of 
the gesture that is most important for determining the 
meaning of the gesture in the context of the system. 
Figure 6 shows the relevant points for the three gestures 
considered in this system. 

For the holding-out gesture, all that is needed is the 
center of the hand, which is very easy to obtain. 
However, for pointing and grasping gestures, it is more 
complicated: for pointing gestures, what the system needs 
is the position of the finger-tip plus the angle of pointing-
finger; for grasping gestures, it is the position between 
two grasping fingers. In the following sections we 
describe how we locate these positions in these types of 
gestures. 

5.3.1. Pointing Gesture  
A pointing gesture with its gradient points (see section 
4.2) is depicted in Figure 7. As it can be seen, the furthest 
gradient point from the starting or ending of the contour 

is in fact the finger-tip we are looking for. Thus, if we 
have G gradient points, the gradients vector will be 

(16) }{)( ,...,, 21 GpppgP =  

Considering bp as base-point to be the point in the 
middle of starting and ending points of the outer-contour 
and d as the Euclidean distance between two points, the 
finger-tip, tip, will be 
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In the old version, the finger-tip was assumed to be 
the "highest" point of the outer contour. While this 
assumption is true for upward pointing gestures, it does 
not hold when the point is to the right or the left. We 
therefore improved the algorithm by using gradient 
points. 

5.3.2. Grasping Gesture 
In the grasping gesture, finding interesting location 
(between the grasping fingers) is not as simple as finding 
the finger tip in the pointing gesture. We can observe that 
the  
 

 
Figure 8: A grasping gesture with its gradient points 

 
space between two grasping fingers is actually the area 
where most of the gradient points occur. Therefore, the 
goal is to find the center of the smallest area which has 
the maximum number of gradient points. 

To find the coordinate of this center, we do the 
following steps. First we weight each point according to 
its distance from the other points. The value of each point 
will be the sum of the reciprocal of the normalized 
distance of it to the other points. Based on (9), (12) and 
(16) it will be 
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To avoid noise, we ignore points which are very close to 
the base-point. 

Then the center of the area between grasping fingers, 
gc, can be estimated by calculating the center of the 
gravity of all these weighted points, which is 

 
Figure 7: A pointing gesture with its gradient points 



 
Figure 9: LWNB and KNN results without distance 

weighting 
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This method works well and can estimate the location 
of grasping center with an acceptable precision. 

6. Experimental Results 
To testing the recognition algorithm we constructed a 
training pool with less than 200 samples for each of the 
gestures, for a total of 580 samples in the training pool. 
These samples were made by three persons in different 
lighting conditions. Then we created a testing pool with 
about 40 samples for each gesture by a person other than 
those three whose gestures were represented in the 
training pool. 

The performance without weighting the invariants for 
identification of each of the gesture types, along with the 
overall performance, are shown Figure 9.  

The x axis of this graph represents the value of K for 
the K-nearest neighbor selection, while the y axis shows 
the percentage of  gesture instances of each type that 
were correctly classified. The highest overall 
performance 91.3% correct classification at K=4. 

After trying many combinations of weights on the 
members of invariants, we found the best weighting 
vector (wDist) to be }{)( 1,1,6.0,6.0=m

dist
W . That is, the 

gradient changes are both weighted at 1.0, while the 
number of points and contour length are weighted at 0.6. 
This result is intuitively acceptable: the range of object-
points and length of contour is much wider than the 
number of changes in gradients. 

Testing the recognition system with distance 
weighting, we achieved the results shown in Figure 10. It 
is quite obvious that after applying distance weighting the 

performance increases and the fluctuation decreases. We 
observed that when K is bigger than 7-8 is the 
performance starts to sink. 

 
The best performance seemed to be around K between 

4 and 7. Table 1 shows detailed results classification 
results for values of K between 4 and 6. 

 

 
Running the full gesture-recognition process on a 

frame takes less than 50 msec on average. Of this time, 
segmentation takes 20-30 msec, while the recognition 
process takes 10-20 msec. 

7. Conclusions and Future Work 
We have described a static gesture recognition method to 
distinguish between three gestures types: pointing, 
grasping and holding out. The process is based on 
classifying invariants of image blocks using a locally 
weighted naïve Bayes and K-nearest neighbors classifier. 

The segmentation (pre-processing) is done by an 
adaptive method of extracting the background, which is 
considered to be static (the color of the surface of the 
table), and segmenting the remaining pixels into regions 
of interest afterwards. 

Four invariants of each ROI are then extracted. These 
invariants are: Number of pixels, length of the outer-
contour and changes in x and y gradients. 

The extracted invariants are then compared against 
the invariants in a pool of labeled examples created 
during a training phase for each type of the gestures. The 
best suitable type of gesture is then given by using a 
locally weighted naïve Bayes classifier which is fed by 
the K-nearest neighbors of each invariant in the invariants 
pool. 

 
Figure 10: Classification result with distance weighting 

Table 1: Performance results of classification for different K 
 K=4 K=5 K=6 

Average 

No weighting 91.29 89.81 91.25 

Average (DW) 93.47 93.47 92.73 

Pointing 88.88 88.88 88.88 

Grasping 97.77 97.77 95.55 

Holding out  93.75 93.75 93.75 

 



After classification, an appropriate algorithm is 
applied according to the obtained type of the gesture to 
get the important information of that certain gesture. This 
required information is the finger-tip and its angle for 
pointing gestures, area of grasping for grasping gestures 
and the center of hand-pit for holding out type. 

In an experiment, the whole process takes less than 50 
msec in total and has an overall performance of about 
93% at identifying the correct gesture type. 

There are several improvements we intend to work on 
in the future. First, we will make the K-nearest neighbor 
algorithm adaptive. This means that we will modify the 
value of K in cases where the probabilities of two gesture 
types are very close in order to produce better 
classification in these difficult cases. 

Another improvement will be add and test more 
invariants, for example like those used in [9]. The method 
to extract change in gradient by following the contour 
should also be improved to be more precise and robust 
under noisy conditions. 

We are also contemplating exploring the performance 
of other methods such as genetic algorithms to help in 
determining the best weighting vector. 

The performance of the full JAST system will shortly 
be tested through a user evaluation. The results of this 
study will provide a useful indication of how the gesture-
recognition component performs in practice. In future 
versions of the system, we may incorporate information 
from other input-processing components of JAST—for 
example, face and gaze tracking—to help make a better 
decision under uncertain conditions. 
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