
Using a Naïve Bayes Classifier based on K-Nearest
Neighbors with Distance Weighting for Static Hand-

Gesture Recognition in a Human-Robot Dialog System
Pujan Ziaie, Thomas Müller, Mary Ellen Foster, Alois Knoll

Robotics and Embedded Systems Group, Department of Informatics,

Technical University of Munich, Garching, Germany
{ziaie, muelleth, foster, knoll}@in.tum.de

Abstract
We present an effective and fast method for static hand gesture recognition. This method is based on
classifying the different gestures according to geometric-based invariants which are obtained from image
data after segmentation; thus, unlike many other recognition methods, this method is not dependent on
skin color. Gestures are extracted from each frame of the video, with a static background. The
segmentation is done by dynamic extraction of background pixels according to the histogram of each
image. Gestures are classified using a weighted K-Nearest Neighbors Algorithm which is combined with a
naïve Bayes approach to estimate the probability of each gesture type. When this method was tested in the
domain of the JAST human-robot dialog system, it classified more than 93% of the gestures correctly into
one of three classes.

Keywords
Image Processing; Gesture Recognition; K-Nearest Neighbors; Naïve Bayes; Classification; Human-robot
interaction

1. Introduction
When humans interact with one another—and with
artificial agents—they make extensive use of a range of
non-verbal behavior in addition to communicating via
speech. Processing and understanding the non-verbal
parts of human communication are crucial to supporting
smooth interaction between a human and a robot.

We concentrate on the task of hand-gesture
recognition: recognizing and classifying the hand shapes
and motions of a human user in the context of a
cooperative human-robot assembly task. Hand gestures
play an important role in this type of interaction, both as
an accompaniment to speech and as a means of input in
their own right. For example, if a user wants to tell a
robot to pick up a certain object among many other
objects, it can be difficult to indicate the desired object
using only speech. However, if the user combines saying
“Pick up that object” with a pointing gesture at the target
object, this can be easier to process. Hand gestures can
also themselves provide strong indications of the user’s
intentions in the absence of speech: for example, the user
might move their hand near an object in preparation for
picking it up, or may hold out their hand to indicate that
they need the robot to hand over a particular object.

In this paper, we introduce and evaluate a method to
recognize the following three types of gestures in a
human-robot dialog system: pointing, grasping and

holding out (Figure 1). The paper is organized as follows.
We begin by discussing related work in the area of
gesture recognition: particularly, related approaches to
the sub-tasks of image segmentation and classification.
Next, we introduce the JAST human-robot dialog system,
which supports multimodal human-robot cooperation on
a joint construction task, and describe how hand gestures
play a role in interactions with the system.

In the main part of the paper, we present a fast, robust
and easy-to-implement gesture recognition algorithm
which differentiates between three gesture classes
mentioned above, and which can be extended to other
similar applications. This algorithm proceeds in three
main steps. The first step is to segment and label the
objects of interest and to extract geometric invariants
from them. Next, the gestures are classified using a K-
nearest neighbor algorithm with distance weighting
algorithm (KNNDW) to provide suitable data for a
locally weighted naïve Bayes classifier. The input vector

Figure 1: Pointing, grasping, and holding-out gestures

for this classifier consists of invariants of each region of
interest, while the output is the type of the gesture. After
the gesture has been classified, the final step is to locate
the specific properties of the gesture that are needed for
processing in the system—for example, the fingertip for a
pointing gesture or the center of the hand for a holding-
out gesture.

After the algorithm has been described in detail, we
describe an experiment in which gestures from the JAST
project were recognized and classified with an overall
accuracy of 93%. At the end of the paper, we draw some
conclusions and discuss possible extensions of this work.

2. Related Work
Many methods have been developed recently to perform
successful gesture recognition. Most of these systems
consist of two main steps: segmentation and extraction of
invariants, and classification of gestures. In this section
we discuss how similar applications perform these two
steps.

2.1. Extracting Invariants
Invariants are shape descriptors extracted from an image
that are independent of the viewpoint [16]. Using
invariants for recognition greatly simplifies the process of
object recognition because it allows objects to be
compared with reference models regardless of the
orientation. Before extracting invariants, it is necessary to
segment the recognized image to extract the relevant
objects or regions of interest and to omit the irrelevant
data.

For hand-gesture recognition, some researchers have
tried to do the early segmentation process using skin-
color histograms [3, 4, 5, 6]. The problem with these
methods is that they do not work well in cases when there
are some other objects in the scene with the same color as
skin color, or where the hand has other colors. In the
target JAST application, the background is static and can
easily be eliminated, so we concentrate instead on the
geometric characteristics of the objects.

Zhou et al. [3] extracted invariants for gesture
recognition using overlapping sub-windows, and
characterized them with a local orientation histogram
feature description indicating the distance from the
canonical orientation. This makes the process relatively
robust to noise, but very time-consuming indeed.

Kuno and Shirai [9] used seven invariants to do hand-
gesture recognition, including the position of the finger-
tip. This is not practical when we have not only pointing
gestures, but also several other gestures, like grasping.
However, the invariants they extracted inspired us for
some future improvements.

2.2. Classification
Classification is a method to assign a class to a point
(vector in spaces of more than two dimensions) in an N-
dimensional space. The classes may be predefined and
learned beforehand (supervised learning), or may be

extracted automatically based on a similarity metric
(unsupervised learning).

A naïve Bayes classifier assigns the most likely class
to a given example given its feature vector, simplifying
the task greatly by assuming that the features are
independent given a class. Such classifiers are robust,
simple to implement and computationally efficient—and,
despite the often unrealistic assumption of independence,
they are frequently very successful in practice. Many
techniques have been developed to improve the
performance of naïve Base classifiers; Zheng and Webb
[2] provide an overview of efforts in this area.

K-nearest neighbors (KNN) classifiers have a good
performance when the attributes of a system are linearly
separable. It finds the K nearest (already classified)
vectors in the space to the input. The class which has the
most vectors in those K neighbors is chosen to be the
class of the input vector. K-nearest neighbors with
distance weighting (KNNDW) is an improvement which
has been proved to perform better than KNN in many
cases [8]. In this method, the contribution of each
neighbor to the overall classification is weighted by its
distance from the point being classified.

The most relevant work to our method has been
performed by Frank et al. [1] which introduces a locally
weighted naïve Bayes (LWNB) classifier. Their
evaluation on UCI dataset shows that LWNB
outperforms KNN and KNNDW when K is big enough.
Other refinements, like instance cloning local naïve
Bayes (ICLNB) [7], have also been introduced which
manipulate the training data to get a better performance
from the Bayes classifier.

In our implementation, we use a combination of
KNNDW and LWNB to get a better performance without
manipulating the training data or any complicated
modification. The complete explanation can be found in
section 5.

3. The JAST Human-Robot Dialog
System
The overall goal of the JAST project (“Joint Action
Science and Technology”) is to investigate the cognitive
and communicative aspects of jointly-acting agents, both
human and artificial. The human-robot dialog system
being built as part of the project [14, 15] is designed as a
platform to integrate the project’s empirical findings on
cognition and dialog with research on autonomous robots,
by supporting symmetrical, multimodal human-robot
collaboration on a joint construction task.

Figure 2: The JAST human-robot dialog system

The robot (Figure 2) consists of a pair of mechanical

arms with grippers, mounted to resemble human arms,
and an animatronic talking head capable of producing
facial expressions, rigid head motion, and lip-
synchronized synthesized speech. The input channels
consist of speech recognition, object recognition, robot
sensors, and face tracking; the outputs include
synthesized speech, head motions, and robot actions. The
user and the robot work together to assemble a wooden
construction toy on a common work area, coordinating
their actions through speech, gestures, and facial motions.
Joint action can take several forms: for example, the
robot may ask the user to provide assistance by holding
one part of a larger assembly, or by assembling or
disassembling components.

Object and gesture recognition in JAST are both
performed on the output of a single camera which is
installed directly above the table looking downward to
take images of the scene. The output of this process is
sent to the multimodal fusion component [17], where it is
combined with any spoken input from the user to produce
combined hypotheses representing the user’s requests.

4. Image Processing
The first step in the gesture-recognition process is to
process the raw images from the overhead camera to
extract the background and to identify Regions of Interest
for the gesture-recognition process. Once those regions

have been identified, we then extract geometric invariants
from them for use in the classification process. In this
section, we describe how these image-processing steps
are carried out.

4.1. Adaptive Segmentation
Within preprocessing of input images, segmentation is
probably one of the most important steps as it is the basis
of any fast recognition approach. Thus we need a robust
and possibly adaptive method to extract Regions of
Interest (ROI) from the image provided by the camera.
Generally speaking, segmentation is done by classifying
each pixel of the input image and organizing them into
groups.

Due to the fact that we have variable lighting
conditions and we also have to deal with changing but
(mainly) uniform background-colors of the table, we need
a segmentation approach that is capable of performing an
adaptive loop when environment parameters are modified
(e.g. switching a light on or using a different table). We
begin by presenting the basis of our segmentation
approach to computing segments from an input image
with objects in the foreground and a basically uncluttered
background. We then describe a segmentation approach
based on high-level abstraction that searches for a
coherent set of ROIs.

The first step in segmentation is applying a threshold
in order to classify each pixel as object or background.
One could use a static or dynamic threshold for this task
as described in [11]. In our case, we have a minimum and
a maximum threshold based on evaluation of a multi-
dimensional color histogram. As a second step, we group
the classified pixels into blobs—the segments that will be
our regions of interest in further analysis. This is done by
connecting neighboring pixels using a search radius with
a recursive algorithm. Some additional information that is
useful in further processing such as the bounding-box,
contour and main-color-components are computed
alongside; note that this adds only a constant factor to the
run-time of the algorithm.

Crucial to the approach is the a priori knowledge of
the threshold, which is usually static as long as
environmental conditions are stable and thus configured
in advance. However, in the JAST setup, the threshold is
not stable in this way, and so has to be computed online.
For this task the system implements an adaptive loop
which is initiated by the system when certain
preconditions are complied with. These constraints are
computed dynamically and include:

Figure 3: Result of the general segmentation process

1. High fluctuation in number of regions
segmented.

2. Perpetual distortion of regions.
3. Highly non-uniform movements of regions

segmented.
Parameters for the preconditions are initiated in advance
and adjusted online in a closed loop. When one or more
of the preconditions is fulfilled, the following adaptive
loop is initiated:

1. Evaluate a multi-dimensional color-histogram of
the image to create a reference value r for the
threshold, typically the peak in the histogram.

2. Randomly choose a set of parameters p
r

 for the

thresholds.
3. Apply thresholds and grouping with a set of

different grouping-search-radii to the original as
well as a set of several downscaled versions of

the image prN
r

, .
4. Compare results for the different images using a

rating function (see below).
5. Perform a gradient descent to find a (locally)

optimal set of parameters to be used
subsequently.

6. Perform a gradient descent to find a (locally)
optimal set of precondition-parameters for
classifying the old segmentation-parameters as
bad and new parameters as good.

7. Save and exit adaptive loop.
Step 4 in this loop makes use of a rating function to
enable a high level quality measure. However this is
obviously not an easy task as we neither know the
number nor size or position of objects or gestures on the
table. For this purpose we propose to raise the level of
abstraction and evaluate results for a set of segmentation
parameters.

First we compute a quadratic error for the selected
parameter-set by comparing the predefined features of a
segment (such as size, position, color, etc.). As we only
want to consider the closest matching region in two

processed images of prN
r

, we have to do a minimum

operation after comparing the features
s

f of a segment

s in an image i to those of another imagej .

(1) 






 ∏ −
∈∈

=
Ff

ssf
Ss j

jj

ffjsi
pr

E 2)(min,)(
,

αr

Within the two best-matching segments of different
versions of the original image, we multiply each segment-
feature error by a feature-specific weighting factor fα .

Now we have to sum up all minimum quadratic errors to
get a global error-result for all segments extracted with
the current parameter-set p

r
 and reference value r in an

image.

(2) ∑ 






∈
=

i
Ss

jsi
pr

Eji
pr

E),(
,

)(
,

rr

Having computed a global error for the comparison

between an image i and j of the set prN
r

, we now sum

up considering all images of the set.

(3) ()∑
∈

=
pr pr

Nji

i jsE
pr

E
r rr

, ,
,

),(
,

As a final step towards an abstract error measurement,
we need to specify a quality-function in order to get a rate
for the current segmentation parameter choice within

[0,1]. We use the sigmoid function ()xe−+1

1
 as a basis

for this task:

(4) () 




 −+=

−−
2
1

1
,12),(prE

eprq
rr λ

Here the global error is weighted with a factor

]1,0[∈λ that must be chosen carefully, also considering

the feature weight fα . The experimental system in the

JAST setup showed good results for λ less than 0.1.
With this quality function we now can easily perform

gradient descent or any other optimization method such
as Gauss-Newton or Downhill-Simplex [11, 12, 13] to
find a suitable set of parameters in our parameter space
and so adapt our segmentation to variations in
environment conditions.

4.2. Extracting Invariants
Once the regions of interest (ROI) have been identified as
described in the preceding section, the next step is to
extract the geometric invariants from the binary image for
use in classification.

For each ROI we define the following invariants:
1. Number of the points
2. Length of the outer contour
3. Change of gradient in x direction
4. Change of gradient in y direction

Since the user’s hands enter the image from outside
the camera view, we consider for gesture recognition only
those ROIs which end at one of the four sides of the
image (table).

Figure 4: Predefined ROI height

For extracting the invariants, only a specific,

predefined area of the end part of the ROI is processed.
This way a completely stretched hand will be processed
from the wrist to the finger tips. This area is depicted in

Figure 4. Next, the outer contour of the object is extracted
as shown in Figure 5. The length of this contour is the
second invariant.

Figure 5: Extracting the outer contour from the segmented
image

Then we explore the contour to find the x-y gradient
changes, which corresponds to the number of changes in
direction. We refer to these points as gradient points. To
avoid noise, we inspect only the changes in direction
which last for a known number of steps (three steps in our
application).

Supposing that we have m invariants, we have a
vector with m (which is four in our application)
dimensions.

(5) }{ ,..,,)(21 maaamInv =

During the training phase (Section 5.1), the resulting
vector is added to the training pool; during the
classification phase (Section 5.2), it is compared against
the three gesture classes for identification.

5. Gesture Recognition
Before performing classification, a training pool is
created based on a range of gestures produced by
different users, where each training instance is labeled
with its gesture class. The invariants from this pool are
stored for use in the classification process. In Section 5.1,
we describe the training process, while in Section 5.2 we
describe how classification proceeds. In Section 5.3, we
then show how the class-specific reference points are
computed for pointing and grasping gestures.

Note that we are classifying static gestures, while the
user’s hands could be in motion. We therefore wait for
the system to reach a stable state before performing
training or classification. A stable state is detected by
tracking the coordinates of the ROIs and initiating gesture
recognition only once the coordinates remain constant for
several frames.

5.1. Training Phase
For the training phase, the user moves his or her hand in
different positions and angles for each of the gestures,
using both the left and right hands. As stated before, we
have three classes of gestures:

(6) }{)(321 ,, cccmC =

All the extracted invariants are saved in a simple text
file. It is recommended that the training is done with a
couple of users with different hand size and shape so that
the classifier becomes more robust. In our application we
used four users’ hands. For each gesture around 150

samples is sufficient, so at the end of the training process
we have a file consisting of 500 to 600 labeled gestures.

The vectors in the file have one more dimension in
comparison with the invariant vector because of the class-
id. If we assume that there are n vectors in the file (n
samples) then each vector will be:

(7)
Ci

iii mm
n

Tr

⊆

=

0

10 }{)(,...,,

After constructing this pool of labeled invariant vectors,
classification is able to proceed.

5.2. Classification: Combining KNNDW &
LWNB

To classify the extracted invariant, we first find the K
nearest neighbors which are calculated based on the
weighted distance of each training vector to the input
invariant. Formally, we define the distance-weighting
vector as:

(8) }{)(,..,, 21 mwDistwDistwDistm
dist

W =

The distance from the extracted invariant to training
vector n can then be computed in Euclidean space as
follows:

(9) ∑
=

−
=

m

i wDistm

mInvmTr nInvTrdistn
1

))()((2
),(

We also normalize the distance so that all the values will
be between 0 and 1.

Next, we choose the K vectors from the training pool
which have the shortest distance to the given invariant.

(10)
}..1{

})1({)(,

Kx

Trxc xx dist

=

=

A normal naïve Bayes probability for the class of the
given invariant will then be

(11)
K

xcjC
xjCp

K

x
∑

== 1
~

))(),((
)|)((

δ

(12)






 =
=

otherwise

baif

ba
0

)(1

),(δ

where j is the index of each class (type of gesture).
To improve the result, we add weights to the

neighbors. This weight)()(d xfxwB = is a function of

the Euclidian distance of each vector)(d x , which can be

any monotonically decreasing function. In our
application, we experimented with function

like d xd xf −= 1)(or
)(

1
)(

d x
p

d xf = for various p

Figure 6: Localization results for gestures

and the function which produced the best classification
performance was:

(13)
d x

d x
d xfxwB

+

−
==

1

1
)()(

Using these weights, we define our locally weighted
naïve Bayes probability by weighting equation (11) as

(14)

∑

∑

=

==
K

y

K

x

ywB

xcjCxwB
xjCp

1

1
~

)(

))(),(()(
)|)((

δ

Then we can simply choose the class with the highest
probability.

(15))|)((maxarg)(
~

3..1

xjCpInvc
j=

=

The classification algorithm can be summarized as
follows:

Classification Algorithm

1. Find the k-nearest neighbors with weighted
distance from the training pool

2. Find the naïve Bayes probability of each, while
weighted disproportional to their distance

3. Choose the class of the vector with the highest
probability

5.3. Localization of gesture

Once the class of the gesture has been selected as
described above, the next step is to identify the location
of the important position of the gesture that is, the part of
the gesture that is most important for determining the
meaning of the gesture in the context of the system.
Figure 6 shows the relevant points for the three gestures
considered in this system.

For the holding-out gesture, all that is needed is the
center of the hand, which is very easy to obtain.
However, for pointing and grasping gestures, it is more
complicated: for pointing gestures, what the system needs
is the position of the finger-tip plus the angle of pointing-
finger; for grasping gestures, it is the position between
two grasping fingers. In the following sections we
describe how we locate these positions in these types of
gestures.

5.3.1. Pointing Gesture
A pointing gesture with its gradient points (see section
4.2) is depicted in Figure 7. As it can be seen, the furthest
gradient point from the starting or ending of the contour

is in fact the finger-tip we are looking for. Thus, if we
have G gradient points, the gradients vector will be

(16) }{)(,...,, 21 GpppgP =

Considering bp as base-point to be the point in the
middle of starting and ending points of the outer-contour
and d as the Euclidean distance between two points, the
finger-tip, tip, will be

(17)),(maxarg)(
..1

j
Gj

j pbpdistptip
=

=

In the old version, the finger-tip was assumed to be
the "highest" point of the outer contour. While this
assumption is true for upward pointing gestures, it does
not hold when the point is to the right or the left. We
therefore improved the algorithm by using gradient
points.

5.3.2. Grasping Gesture
In the grasping gesture, finding interesting location
(between the grasping fingers) is not as simple as finding
the finger tip in the pointing gesture. We can observe that
the

Figure 8: A grasping gesture with its gradient points

space between two grasping fingers is actually the area
where most of the gradient points occur. Therefore, the
goal is to find the center of the smallest area which has
the maximum number of gradient points.

To find the coordinate of this center, we do the
following steps. First we weight each point according to
its distance from the other points. The value of each point
will be the sum of the reciprocal of the normalized
distance of it to the other points. Based on (9), (12) and
(16) it will be

(18)
),(

1
*)),(1()(

1
j

g

G

g ppdist
pppweight ∑ =

−= δ

To avoid noise, we ignore points which are very close to
the base-point.

Then the center of the area between grasping fingers,
gc, can be estimated by calculating the center of the
gravity of all these weighted points, which is

Figure 7: A pointing gesture with its gradient points

Figure 9: LWNB and KNN results without distance

weighting

(19)

∑

∑

∑

∑

=

=

=

=

=

=

G

g

G

g
y

G

g

G

g
x

gweight

gpgweight

gweight

gpgweight

y
gc

x
gc

1

1

1

1

)(

)()(

)(

)()(

This method works well and can estimate the location
of grasping center with an acceptable precision.

6. Experimental Results
To testing the recognition algorithm we constructed a
training pool with less than 200 samples for each of the
gestures, for a total of 580 samples in the training pool.
These samples were made by three persons in different
lighting conditions. Then we created a testing pool with
about 40 samples for each gesture by a person other than
those three whose gestures were represented in the
training pool.

The performance without weighting the invariants for
identification of each of the gesture types, along with the
overall performance, are shown Figure 9.

The x axis of this graph represents the value of K for
the K-nearest neighbor selection, while the y axis shows
the percentage of gesture instances of each type that
were correctly classified. The highest overall
performance 91.3% correct classification at K=4.

After trying many combinations of weights on the
members of invariants, we found the best weighting
vector (wDist) to be }{)(1,1,6.0,6.0=m

dist
W . That is, the

gradient changes are both weighted at 1.0, while the
number of points and contour length are weighted at 0.6.
This result is intuitively acceptable: the range of object-
points and length of contour is much wider than the
number of changes in gradients.

Testing the recognition system with distance
weighting, we achieved the results shown in Figure 10. It
is quite obvious that after applying distance weighting the

performance increases and the fluctuation decreases. We
observed that when K is bigger than 7-8 is the
performance starts to sink.

The best performance seemed to be around K between

4 and 7. Table 1 shows detailed results classification
results for values of K between 4 and 6.

Running the full gesture-recognition process on a

frame takes less than 50 msec on average. Of this time,
segmentation takes 20-30 msec, while the recognition
process takes 10-20 msec.

7. Conclusions and Future Work
We have described a static gesture recognition method to
distinguish between three gestures types: pointing,
grasping and holding out. The process is based on
classifying invariants of image blocks using a locally
weighted naïve Bayes and K-nearest neighbors classifier.

The segmentation (pre-processing) is done by an
adaptive method of extracting the background, which is
considered to be static (the color of the surface of the
table), and segmenting the remaining pixels into regions
of interest afterwards.

Four invariants of each ROI are then extracted. These
invariants are: Number of pixels, length of the outer-
contour and changes in x and y gradients.

The extracted invariants are then compared against
the invariants in a pool of labeled examples created
during a training phase for each type of the gestures. The
best suitable type of gesture is then given by using a
locally weighted naïve Bayes classifier which is fed by
the K-nearest neighbors of each invariant in the invariants
pool.

Figure 10: Classification result with distance weighting

Table 1: Performance results of classification for different K
 K=4 K=5 K=6

Average

No weighting 91.29 89.81 91.25

Average (DW) 93.47 93.47 92.73

Pointing 88.88 88.88 88.88

Grasping 97.77 97.77 95.55

Holding out 93.75 93.75 93.75

After classification, an appropriate algorithm is
applied according to the obtained type of the gesture to
get the important information of that certain gesture. This
required information is the finger-tip and its angle for
pointing gestures, area of grasping for grasping gestures
and the center of hand-pit for holding out type.

In an experiment, the whole process takes less than 50
msec in total and has an overall performance of about
93% at identifying the correct gesture type.

There are several improvements we intend to work on
in the future. First, we will make the K-nearest neighbor
algorithm adaptive. This means that we will modify the
value of K in cases where the probabilities of two gesture
types are very close in order to produce better
classification in these difficult cases.

Another improvement will be add and test more
invariants, for example like those used in [9]. The method
to extract change in gradient by following the contour
should also be improved to be more precise and robust
under noisy conditions.

We are also contemplating exploring the performance
of other methods such as genetic algorithms to help in
determining the best weighting vector.

The performance of the full JAST system will shortly
be tested through a user evaluation. The results of this
study will provide a useful indication of how the gesture-
recognition component performs in practice. In future
versions of the system, we may incorporate information
from other input-processing components of JAST—for
example, face and gaze tracking—to help make a better
decision under uncertain conditions.

Acknowledgements
We thank the members of the Cognitive Robotics Lab at
TUM for useful discussions and suggestions, particularly
Thomas Rückstieß, and Christian Osendorfer.

This research was supported by the EU project JAST
(FP6-003747-IP), http://www.euprojects-jast.net/.

References
[1] E. Frank, M. Hall, and B. Pfahringer, "Locally Weighted

Naïve Bayes" Nineteenth Conference on Uncertainty in
Artificial Intelligence (UAI2003), 2003

[2] Z. Zheng and G. I. Webb, “Lazy learning of Bayesian
rules”, Machine Learning, 41(1), 53-84, 2000

[3] H. Zhou, D. J. Lin and T. S. Huang, "Static Hand Gesture
Recognition based on Local Orientation Histogram
Feature Distribution Model", Proc. IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition Workshop, 2004

[4] H. Hongo, M. Ohya, M. Yasumoto, K. Yamamoto, “Face
and hand gesture recognition for human-computer
interaction”, Proc. IEEE 15th Int. Conf. Pattern
Recognition, 2000

[5] H. Wu, T. Shioyama and H. Kobayashi, “Spotting
Recognition of Head Gestures from Color Image Series”,
Proc. ICPR’98, pp.83-85, 1998

[6] H. Boehme, et al., “User Localization for Visually-based
Human-Machine-Interaction”, Proc. FG’98, pp.486-491,
1998

[7] L. Jiang, H. Zhang and J. Su, “Learning K-Nearest
Neighbor Naïve Bayes for Ranking”, Lecture Notes In
Computer Science, Springer, 2005

[8] R. L. Morin, D. E. Raeside, “Reappraisal of Distance-
Weighted k-Nearest Neighbor Classification for Pattern
Recognition With Missing Data”, IEEE TRANS. SYS ,
MAN, AND CYBER. Vol. SMC-11, no. 3, pp. 241-243,
1981

[9] K. Kuno, Y. Shirai, “Manipulative hand gesture
recognition using task knowledge for human computer
interaction”, Proc. Third IEEE International Conference
on Automatic Face and Gesture Recognition, 1998

[10] A. McIvor, “Background subtraction techniques”, Proc.
Of Image and Vision Computing, Auckland, New
Zealand, 2000

[11] D. W. Marquardt, “An Algorithm for Least-Squares
Estimation of Nonlinear Parameters”, SIAM Journal on
Applied Mathematics. SIAP, 1963, Vol. 11, 2.

[12] J.A. Nelder, and R. Mead, "A Simplex Method for
Function Minimization", Computer Journal 7 (4), p308-
313, Jan. 1965.

[13] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E.
Wright, "Convergence Properties of the Nelder-Mead
Simplex Method in Low Dimensions," SIAM Journal on
Optimization 9 (1): p112-147, 1998.

[14] M. E. Foster, T. By, M. Rickert, and A. Knoll, “Human-
robot dialogue for joint construction tasks”, Proc. ICMI
2006.

[15] M. Rickert, M. E. Foster, M. Giuliani, T. By, G. Panin,
and A. Knoll, “Integrating language, vision, and action
for human robot dialog systems”, Proc. HCI International
2007.

[16] I. Weiss, “Geometric invariants and object recognition”,
International Journal of Computer Vision 10(3), pp. 207-
231, 1993.

[17] M. Giuliani and A. Knoll, “Integrating multimodal cues
using grammar based models”, Proc. HCI International
2007.

