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Abstract-We study the arbitrarily varying wiretap channel 
(AVWC) under average error criterion when external common 

randomness (CR) can be used between the legitimate parties. 
We consider three scenarios: In the first one the CR is known 
to the eavesdropper, in the second it is not known to her and 
in the third there is no CR available. For the second scenario , 
we prove a complete coding theorem. For the third scenario it is 

known that the capacity function is discontinuous. We prove that 
it is nonetheless stable in the sense of being continuous around 
its positivity points. We characterize the points of discontinuity 
in terms of continuous functions. We then give a complete 
characterization of those pairs of AVWCs whose capacity can 
be super-activated in the unassisted third case - in terms of the 
capacity function describing the first case. 

I. INTRODUCTION 

The AVWC is an information-theoretic model on the inter­
section between the two areas of secrecy and robust commu­
nication in information theory. In this model, a sender (Alice) 
would like to send messages to a legitimate receiver (Bob) over 
a noisy channel. Involved into the scenario are two other par­
ties: a jammer (James) who can actively influence the channel 
and a second but illegitimate receiver (Eve). Alice's and Bob's 
goal is to achieve both reliable and secure communication: 
No matter what the input of James is, Bob should be able to 
decode Alice's messages with high probability (with respect 
to the average error criterion) while the mutual information 
between the messages and Eve's output should be close to 
zero. This secrecy criterion is known as strong secrecy. 
We add the option of Alice and Bob having access to perfect 
copies of the outcomes of a random experiment 9 (a source of 
common randomness). In [17] we considered the case where 
Eve gets an exact copy of the outcomes received by Alice and 
Bob, whereas in this work we extend our study to the case 
where Eve remains completely ignorant. 
The only party which has no access to 9 in all the scenarios 
we study is James. We label the capacities which we derive 
from the two scenarios the "CR assisted capacity" if Eve has 
information about 9 and "secret CR assisted capacity" if Eve 
has no information about it. 
We use the label Cd for the capacity when no CR is available 
and Cr if CR may be used. The capacity when secret CR 
is available is labelled Cs. Throughout we assume that Eve 
cannot communicate to James. We study these models in an 

asymptotic scenario by letting the number n of channel uses go 
to infinity. The probabilistic law that governs the transmission 
over n channel uses is 

n 
w0n(ynlxn, sn)v0n(znlxn, sn) = TI w(Yilxi, Si)V(Zilxi, Si). 

i=l 

Here, sn = (Sl, "" sn) are the inputs of James, xn = 

(Xl, ... , xn) those of Alice and zn = (Zl' ... , zn) the outputs 
of Eve, while yn = (Y1, "" Yn) are received by Bob. All 
letters are assumed to be taken from finite alphabets S, X, 
Y and Z. The action of the channel is thus completely 
described by the pair (W,QJ) = ((wCI·, S))SES, (v(·I·, s))SES) 
of collections of probability distributions at the receiver. 
This model has two important restrictions: The case where 
QJ does not convey any information about either one of its 
inputs is the arbitrarily varying channel (AVC). It fits into our 
framework by setting QJ = l' := {t}, where t(zlx, s) := Th 
for all z, X and s. This model has been introduced in [5]. 
In [2], it was proven that the deterministic capacity of an AVC 
(under average error probability criterion) is either zero or 
equals its random coding capacity. A formula for the latter was 
given. In our previous work [17] we found that this dichotomic 
behaviour extends to Cd and Cr. 
It was proven in [11] that the deterministic message trans­
mission capacity under average error of the AVC W being 
zero is equivalent to W being symmetrizable: There is a set 
(u( 'Ix) )XEX of probability distributions on S such that for 
every x, Xl E X we have 

� u(slx)w(Ylxl, s) = � u(slxl)w(Ylx, s). (1) 
sES sES 

In this work, we prove the following: If W is non­
symmetrizable, then Cd(W, QJ) = Cr(W, QJ) for all possible 
QJ. We do not attempt to give a necessary and sufficient 
condition for Cd to be positive - such a characterization is 
not even known for the usual wiretap channel. This model has 
been introduced in [18] and extended in [10]. The performance 
in the presence of a secret key (secret CR) was studied in [13]. 
We extend the latter work to AVWCs. In recent years there has 
been a growing interest in models which combine insufficient 
channel state information with secrecy requirements. Probably 
the earliest publications are [15] and [6]. Later important 
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developments are [3] and [4], among the recent ones is [12]. 
A surprising result that was discovered recently in [8] is that 
of super-activation of AVWCs. This effect was until then only 
known for information transmission capacities in quantum 
information theory. 
The work [8] gave an explicit example of super-activation, 
but a deeper understanding of the effect was not achieved. We 
give a complete characterization of the effect in terms of Cr. 
In [17] it was proven that Cr is a continuous quantity, and 
while the statement may seem trivial at first sight, it becomes 
highly nontrivial when the following are taken into account: 
There is at least no obvious way to deduce this statement 
directly from the definition of capacity, without first proving a 
coding result. The latter route was taken in [17] where it was 
proven and stated in Theorem 8 that 

. 1 CrUID,QJ) = hm - max max (2) 
n->OO n pEP(Un) UEc(un,xn) 

( min I(p; w; 0 U) - max I(p; Vqn 0 U)) . 
qEP(sn) qEP(sn) 

holds. Here, Un denotes a finite set. For further notation see 
Section II. We are now able to go beyond this result: By 
utilizing an approach which is based on the work [11] we are 
able to prove continuity results even for Cd. As was argued 
in [7], the continuous dependence of the performance of a 
communication system on the relevant system parameters is 
of central importance. 
In contrast to Cr, Cd is not a continuous function of the 
channel. This casts a flashlight on the importance of distributed 
resources in communication networks - in this case the use 
of small amounts of CR. One may now be tempted to think 
that the transmission of messages over AVWCs without the 
use of CR is an adventurous task. We prove here that such a 
perception is wrong: Our analysis shows that Cd is continuous 
around its positivity points, and we are able to give an exact 
characterization of the discontinuity points which relies purely 
on the computation of functions that are continuous them­
selves. Thus, positivity of Cd is stable under small variations 
of the system. 
Concerning super-activation we give a characterization of pairs 
(Wi, QJi) (i = 1,2) for which it is possible only in terms 
of Cr. We take the space for a short explanation here: For 
any two given AVWCs (WI, QJI) and (W2' QJ2), we define 
(WI (8)W2,QJI (8)QJ2) to equal 

where two channels w, w' with input alphabets A, A' and 
output alphabets H, H' define w(8)w' with input alphabet A x A' 
and output alphabet H x H' via its transition probabilities 
(w (8) w')((b, b')I(a, a')) := w(bla)w'(b'la') for all possible 
in-and output letters. Since all state alphabets are assumed to 
be finite, there is no loss of generality in this definition. Then, 

follows trivially from the definition of C(1) . In contrast, if 

holds, we speak of super-additivity and if even 

Cd(WI, QJI) = Cd(W2, QJ2) = 0, 

Cd(WI (8) W2, QJI (8) QJ2) > 0 

(3) 

(4) 

we speak of super-activation. It turns out via our Theorem 11 
that the effect is connected to the super-activation of Cr, if 
the latter occurs. 
As mentioned already, we also extend earlier research to the 
case where a linear amount of secret bits of CR can be used. 
Our restriction to positive rates of CR allows us to give an 
elegant formula for the corresponding capacity Cs as follows: 
For every G > 0, it holds 

This formula is generally 'hard to compute' in the sense that 
it requires one to calculate the limit in the formula (2) - as 
long as G < Cr (W, '1') - Cr (W, QJ) . If this condition is not 
met, then Cs(W, QJ) = Cr(W, '1'). Since the latter is the usual 
capacity of the AVC W, we conclude that if enough secret 
CR is available, the capacity of the system can be much more 
efficiently described - by a formula which does not require 
regularization anymore! 

II. NOTATION AND DEFINITIONS 

All alphabets in this work are finite. Let A be a set. Its 
cardinality is denoted IAI, P(A) denotes the set of probability 
distributions on it. The one-norm distance between p, p' E 
P(A) is lip - p'lil = 2..:aEA Ip(a) - p'(a)l. The expectation 
of ! : A -+ 1Ft is written IE! (the underlying distribution will 
always be clear from the context). Each an E An defines an 
n-type N( 'lan) E P(A) via N(alan) := I{i : ai = a}1 and 
N( 'lan) := �N(·lan). The set of all n-types is PQ'�A). Each 
p E PQ'(A) defines the typical set Tp := {an : NClan) = 
p(.) }. Given A' c A, the indicator function on A' is written 
liA" We set [N] := {I, ... , N}. The set of channels mapping 
elements from A to H is denoted C (A, H). Every channel w is 
uniquely represented by its set {w(bla)}aEA,bEB of transition 
probabilities. For w, w' E C(A, H) we set Ilw - w'll := 
maxaEA Il w( 'la) - w'Cla)III' If p E P(A) and q E P(H), 
p(8)q E P(A x H) is defined by (p(8)q)(a, b) := p(a)q(b) and 
p®n E p(An) via p®n(an) := n�1 p(ai). If WE C(A x H, C) 
and pE P(H) then wp(cla):= 2..:bp(b)w(cla, b). 
The Shannon entropy of p E P(A) is denoted by H(p), 
the relative entropy between two probability distributions 
p, q E P(A) by D(pll q). Both exp and log are defined with 
respect to base 2. Every p E P(A) and wE C(A, H) defines a 
random variable (A, B) via JP'((A, B) = (a, b)) = p(a)w(bla) 
I:j a E A, b E H). We set I(p; w) := I(A; B). Throughout, 
o : [0, 1/2] --> 1Ft+ is a symbol for any function satisfying 
limx->o o ( x ) = O. We now define codes, rates and capacities. 
Throughout, (W, QJ) denotes an AVWC. 
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Definition 1. A CR assisted code Kn for (W,9J) consists of 
two natural numbers K and r, a set of encoders {E'Y}'YEr C 

C([K], xn) and a collection (Dn��=l of subsets Dl of 

yn satisfying Dl n Dl, = 0 for all "! E [r], whenever 
k ¥= k'. Every such code defines the random variables 
5s" := (.!tn, Ji�, bn, .tn, �s'" 3s") (sn E sn) via 

JP'(5s" = (k,k',,,!,xn,yn,zn)) 
1 

:= r . KE'Y(xnlk)ll.D�, (yn)wl8in(ynlsn, xn)vl8in(znlsn, xn). 

The average error of Kn is 

1 
K,r 

e(Kn) = 1 - min - " "E'Y(xnlk)wl8in(D'Ylsn, xn). s"ES" Kr i...J i...J k 
k,'Y=l x" 

For every sn, the average success probability is 

1 
K,r 

dsn(Kn) = Kr � � E'Y(xnlk)wl8in(Dllsn, xn). 
k,'Y=l xn 

Definition 2. A secure CR assisted coding scheme for (211, 9J) 
operating at rate R consists of a sequence (Kn)nEN of CR 
assisted codes such that 

lim e(Kn) = 0, n-+CI) 
1 lim inf -log(Kn) = R, n-+CI) n 

and lim sup max J(.!tn; 3sn Ibn) = O. 
n-+CfJ snES'n 

If r n = 1 for all n E fil, (Kn)nEN is called deterministic. 

Definition 3. A secure coding scheme Kfor (211, 9J) operating 
at rate R and using an amount G.n > 0 of secret CR consists 
of a sequence (Kn)nEN of CR assisted codes satisfying 

1 1 lim -log r n = G.n, lim inf - 10g(Kn) = R, n-HfJ n n-HX) n 
lim sup max J(Jin; 3sn) = O. 
n-+CfJ snES'n 

Remark 4. The amount of CR is only quantified when it is 
kept secret from Eve. The reason for this becomes clear from 
[ 17 j, where it is proven that already a logarithmic number of 
bits of CR is sufficient to achieve the full capacity Cr. 
Definition 5. Let (W,9J) be an AVWC. Let G > O. 
Cs(W, 9J, G) is the supremum over all R � 0 such that there 
is a secure coding scheme K for (W,9J) operating at rate R 
and using an amount G of secret CR. 
F urther, Cd (211, 9J) is the supremum over all R � 0 such that 
there is a secure deterministic coding scheme K at rate R. 
Finally, Cr (W,9J) is the supremum over all R � 0 such that 
there exists a secure CR assisted coding scheme K at rate R. 

Let Mr be the set of all finite sets of elements of C(X, Y). 
Define F : Mr ---> 1R+ by setting, for each 211 = (w( '1" s)) SES, 

F (W) := max min II � (u(slx)wCls,x) -u(slx)wCls,x))lll 
U x#x' SES 

Then ' F (W) = 0' is equivalent to 'the AVC 211 is 
symmetrizable'. As a metric on the set of AVWCs 
we use the Hausdorff-distance, defined by setting for 

AVCs 211,211', g (W, 211') := maXsES minsEs Ilw(·ls,·) -
w'('ls, ')11 and for AVWCs (W,9J) , (W',9J') 
d((W, 9J),(W', 9J')) := 

max{g (W, 211'), g(W', 211), g (9J, 9J'), g(9J', 9J)}. 
III. MAIN RESULTS 

Throughout this section, let (W,9J) denote an AVWC. 

Theorem 6. With l' as defined in the introduction, it holds 

Corollary 7. For every G > 0, the function (211, 9J) � 

Cs(W, 9J, G) is continuous. 

Theorem 8 (Symmetrizability properties of Cd). 
1) If 211 is symmetrizable, then Cd(W, 9J) = o. 
2) If 211 is non-symmetrizable, then Cd(W, 9J) = Cr (W, 9J). 
Theorem 9 (Stability of Cd). If (211, 9J) satisfies Cd(W, 9J) > 
o then there is E > 0 such that for all (211', 9J') with 

d((W, 9J), (211', 9J')) :( E we have Cd (W', 9J') > O. 

Theorem 10 (Discontinuity properties of Cd). 
1) Cd is discontinuous in the point (W,9J) if and only if it 
holds: Cr (W,9J) > 0 and F (W) = 0 but for all E > 0 there 
is WE such that d(W, WE ) < E and F (WE ) > O. 
2) If Cd is discontinuous in the point (W,9J) then it is 
discontinuous for all sir for which Cr (W, sir) > O. 

It has been proven by explicit example in [9], Section V, 
that the function (211, 9J) � Cd(W, 9J) can have discontinuity 
points. 
Our next result is probably the most interesting in this work, 
since it sheds additional light on a new phenomenon: the super­
activation of 'the' secrecy capacity of AVWCs: 

Theorem 11 (Characterization of super-activation of Cd). Let 

(Wi,9Ji)i=1,2 be AVWCs. 
1) If Cd (W1,9Jd = Cd (W2,9J2) = 0, then Cd(W1 ® 
W2,9J1 ® 9J2) > 0 iff Wi ® 2112 is not symmetrizable and 
Cr(W1 ® 2112, 9J1 ® 9J2) > O. 
2) There exist AVWCs which exhibit the above behaviour. 
3) If Cr shows super-activation for (Wi, 9J1) and (2112, 9J2) , 
then Cd shows super-activation for (Wi, 9J1) and (W2,9J2) 
if and only if at least one of Wi or 2112 is non-symmetrizable. 
4) If Cr shows no super-activation for (W1,9Jd and 
(W2,9J2) then super-activation of Cd can only happen if 
Wi is non-symmetrizable and 2112 is symmetrizable and 
Cr (W1,9Jd = 0 and Cr (W2,9J2) > O. The statement is 
independent of the specific labelling. 

While Theorem 11 offers a complete characterization, it 
does not give any explicit examples - fortunately an example 
has already been given in [8]. Theorem 11 now allows the 
systematic construction of such examples. 

A. Technical definitions and facts 

An important part of our results concerning Cd1) builds 
on the mathematical structure that was developed in [11]. 
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The codes developed there are based on i.i.d. sampling of 
codewords which are all taken from one and the same set Tp. 
We use the same distribution for sampling our codewords. This 
ensures seamless connectivity to the results of [11]. 
Our notion of typicality is as follows: for arbitrary finite sets 
A, B, every p E P(A), v E C(A, B), 0 > 0 and an E An we 
define PAB E P(A x B) via PAB(a, b) := N(alan)v(bla) and 

T;:'o := {an E An: D(N(·lan)llp) :::; a}, (7) 

Tv,o(an) := {bn : D(NClan, bn)llpAB) :::; a}. (8) 

We also set, for every P E P(X) and AVWC ('211, s.tJ) 

E(p):= max I(Pi vq) and B(p):= min I(Pi wq ) . (9) 
qEP(S) qEP(S) 

Our most important tool is the Chernoff-Hoeffding bound: 

Lemma 12. Let b > 0, E E [0,1/2] and Zl, . . .  , ZL be i.i.d. 
random variables with values in [0, b] and v := IE(Zl). Then 

P { ± � Zi $ [( 1 ± E ) v] } :::; 2 exp ( -L . 
E; .. :) , (10) 

where [(1 ± E)V] denotes the interval [(1 - E ) V, (1  + E)V] . 

I V. PROOFS 

We only give brief sketches of the main ideas behind 
our proofs here. The full proofs may be found in the 
accompanying paper [16]. 

Sketch of proof for the converse part of Theorem 6: 
Let (JCn)nEN be a secure coding scheme which is assisted 
by secret CR and operating at rate R � 0 and satisfying 
lim suPn-+w * log fn = G � O. We have H(RnIJt�,bn) "'" 0 
from Fano's inequality and maxsn I(Rni 3sn) "'" 0 by as­
sumption. Thus 10gR "'" I(RniJt�lbn) - I(Rni3sn). Since 
H(RnI3sn) :::; H(Rn13sn, bn) + H(bn) we get 

V sn: nR"", I(Rni Jt�lbn) - I(Rni 3sn Ibn) + n . G, (11) 

In [17] it was proven that there is (asymptotically) no loss in 
replacing bn with a b� that has at most polynomial support. 
This and an application of the data processing inequality yields 

This estimate allows us to derive the multi-letter converse. A 
second (single letter) upper bound arises if one forgets about 
the secrecy requirements. Taking the minimum over both upper 
bounds establishes the converse. • 

An intermediate result: 
For the direct part of Theorem 6 and statement 2) in Theorem 
8 we make a random selection of codewords. Let P E 
PO'(A) , q E PO'(S). Throughout, we will express asymptotic 
quantities as functions of the random variables (S, X, Z) 
defined via P((S, X, Z) = (s, x, z)) := p(x)q(s)v(zlx, s). 
The distribution of (S, X, Z) is labelled Psx z. 
We define the i.i.d. random variables Xklr by setting 
P(Xklr = xn) := lipl .D.rp(xn) for all k E [K] , IE [L] ,E 
[f] , xn E xn, where K, L, f E N. Their realizations are 

written Xklr. We write x for the realizations of the variable 

X = (Xklr )�l���l. An additional random variable xn is 

distributed according to p(xn = xn) = lipl D.Tp(Xn) as well. 

For any 0 > 0, sn E sn and zn E zn we define E>sn,zn : 
xn --> [0, b] (where b = 2-n(H(ZIX,S)-o(o))) by 

Msn,zn := {xn E Tp : D(N(·lsn, xn, zn)llpsxz) :::; o} (12) 

E>sn,zn(xn) := v0n(znlsn, Xn)D.M(sn,zn)(xn). (13) 

The coding theorem for Cs needs a definition of decoder: For 
every n E N, set 3n := PO'(S). For every xn, define Dxn := 
U�E:::: TW< ,o(xn) and for a collection xl' := (Xklr)�l�l of 
codewords set 

(14) 

This defines the code JC(xI'). We define the following events: 

where E := 2-nT/4. We can then state that 

Lemma 13. Let K, L, fEN, 7 > 0 and (3 > O. There are 
0 >  0 and N E N such that for all n � Nand P E PO'(X): 
1) If * 10g(L· f) � E(p) + 7 and minx p(x»o p(x) � (3, 
then P(E1) � 1 - 2 . IS x X x Zln . exp( _2n.T/6). 
2) There is JL depending only on 0 such that 
* 10gKL :::; B(p) - JL implies P(E�) :::; ISl

n exp( _fTno). 

3) It holds limT-+o 0(7) = 0 and limo-+o JL( 0) = O. 

Sketch of Proof For every xn, sn and zn, write 

v0n(znlsn, xn) = 2-n(D(Nsxzllpsxz)-D(Nxsllpxs)+H(ZIS,X)) 

where N sx z is the type of sn, xn, zn and N sx that of 
sn, xn and SXZ is distributed according to Nsxz. With 
m(sn, zn) = 1 if lVI(sn, zn) =F 0 and m(sn, zn) = 0 else it 
follows for all xn, sn and zn 

E> (xn) <: 2-n.(H(ZIXS)-o(o)) sn,Zn -....:::: , 
""E> . >- m(sn zn) ·2-n(H(ZIS)-o(o)) 
.ll2.t sn,zn y , . 

(15) 

(16) 

This implies 1) via the Chernoff bound Lemma 12. The 
proof of 2) is based on the use of Ahlswede's robustification 
technique [1] and a random choice of codewords: Associate 
to every xl' = (Xklr)�l�l a code JC(xI') via (14). For every 
sn and " standard arguments prove that for all large enough 
n it holds IEdsn (XI') � 1 - 2-n.o/2• Then, 2) follows from 
Lemma 12. 3) is implicit in the proof of 1). • 

Sketch of proof of the direct part of Theorem 6: Let 
G > 0 be given. Set p := argmaxpEP(x)(B(p) - E(p)), 
G' := max{E(p), G}. Choose 7 such that G > 0(7) with 0(7) 
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from Lemma 13 and sequences (Kn)�=l ' (Ln)�=l ' (f n)�=l 
of natural numbers such that 

lim .llogfn = G', (17) n---tOC) n 
lim .1 log Ln = E(p) - G' + 27, (18) 
n---tOCJ n 

lim .llogKn = B(p) - E(p) + G' - 2(7 + p,(7)). (19) 
n---t(f) n 

Continuity of B(·) - EO and Lemma 13 ensure that for all 
large enough n there is a type p E Pf}(X) and x E El n E2 
such that the corresponding codes satisfy for all sn E sn: 

� � 
K�n 

_l_ wrzm(D"{ Isn 
x ) >- 1 _ 2 -n,v(T) 

L.J f L.J K L kl ' kl"{ Y , 
"(=1 n k,l=l n n 

1 
Ln,rn 

max 11 -- � v®n('lsn,xkl"{) - Tsnlll ,,; Tn,v(T) 
kE[Knl Lnf n 1,,,{=1 

for some 1/(7) > 0 and Tsn := IEVsn(·lxn). This yields reli­
able communication. That we also get secure communication 
follows from [17, Lemma 20] via (20). Thus for each 7' > 0, 

max ( min J(p; Wq) - max J(p; Vq)) + G' - 7' (20) 
pEP(X) qEP(S) qEP(S) 

is an achievable rate. The remaining part of the proof uses 
standard blocking and prefixing arguments. • 

For the proofs of Theorems 8, 9 and 10 we refer the reader 
to the accompanying paper [16]. 

Proof of Theorem 11: 1. If Wi (8) 2212 is symmetrizable 
then Cd(W1 (8) 2212, SUi (8) SU2) = O. If Wi (8) 2212 is not 
symmetrizable and Cr(W1 (8) 2212, SUi (8) SU2) > 0 then from 
Theorem 8, part 1, we know that Cd(W1(8)W2, SUi (8)SU2) > O. 
2. In [8, Section IV], an example of a pair (Wi, SUi)i=1,2 
was given where Wi is symmetrizable, but 2212 is not. Thus 
Wi (8) 2212 is non-symmetrizable. Then Theorem 8, part 1, 
shows that Cd(W1 (8)2212, SUi (8)SU2) = Cr(W1 (8)2212, SUi (8)SU2). 
In [8] it was further shown that Cr(W1, SUi) > 0 and 
Cd(W2, SU2) = o. 
3. By assumption, Cr(Wi, SUi) 0 (i 1,2) but 
Cr(W1 (8) SU1,W2 (8) SU2) > O. The former implies 
Cd(Wi, SU;) 0 (i 1,2). If Wi and 2212 were 
symmetrizable then Wi (8) 2212 would be symmetrizable, thus 
Cd(W1 (8)2212, '1') = 0, implying Cd(W1 (8)2212, SUi (8)SU2) = O. 
If either Wi or 2212 are not symmetrizable then 
Wi (8) 2212 is not symmetrizable and this implies 
Cd(W1 (8) SUi, 2212 (8) SU2) = Cr(W1 (8) SUi, 2212 (8) SU2) > 0, 

by Theorem 8, part 1, and by assumption. 
4. Let both Wi and 2212 be symmetrizable. Then Wi (8) 2212 
is symmetrizable. Since by assumption Cr shows no super­
activation on the pair (Wi, SUi) (i = 1,2) it follows that 
Cd cannot show super-activation as well. Thus at least 
one of the two AVCs has to be non-symmetrizable. Let 
w.l.o.g. this channel be Wi. If in addition 2212 would 
be non-symmetrizable, then Cd(Wi, SUi) = Cr(Wi, SUi) 
would hold for i = 1,2 and since Wi (8) 2212 would 
be non-symmetrizable as well, we would additionally have 
Cd(W1 (8)2212, SUi (8)SU2) = Cr(W1 (8)2212, SUi (8)SU2). But since 

Cr shows no super-activation on the pair (Wi, SUi) (i = 1,2) 
by assumption, this cannot be. Thus again w.l.o.g. 2212 is 
symmetrizable. If super-activation of Cd would take place, it 
would be necessary that Cd (Wi , SUi) = 0 (i = 1,2). But since 
Wi is non-symmetrizable this requires that Cr(W1, SUi) = 0 
holds. If in addition Cr(W2, SU2) = 0 would hold than 

Cd could not be super-activated since cJ�� cannot be 

super-activated by assumption. Thus d1) (W2, SU2) > O. • 
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