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Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Gordon Cheng, Ph.D.
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Abstract

Autonomous robotic systems are nowadays the key technology in a variety of indus-

trial, logistic and domestic applications. The increasing demand for performance leads

successively to task specifications which exceed the capacity of a single robot. A team

of cooperating robots outperforms naturally the functionality of a single robot due to the

intrinsic redundancy and the potentially heterogeneous team member skills. Typical ex-

amples include industrial robots manipulating cooperatively large metal profiles or loading

heavy cargo between different carriers as well as transportation tasks conducted by means

of cooperating aerial robots. When employing several robots, the core challenge is the

coordination of the robotic team while incorporating the distributed sensing and actua-

tion capabilities of the individual robots. This holds true, in particular, for cooperative

manipulation tasks in which a direct physical interaction between the robots takes place.

The present thesis addresses the major issues arising in cooperative manipulation tasks

when autonomous robots with distributed sensing and actuation capabilities cooperate

and no global coordinate system is available for accomplishing the task. To this end,

the central manipulation task objective is distributed to the manipulator ensemble by

computing suitable setpoints, which in turn are tracked by the robots’ local force/motion

controllers. At this stage, even small errors in the kinematic coordination may result

in large interaction forces damaging the object and thus missing the task objective. In

this thesis, the cooperative manipulation task is reformulated as a robust force/motion

tracking problem under uncertain kinematic parameters. Careful attention is paid to the

fact that in general each robot has only access to its local sensing and actuation capacities

while interacting globally through the object with the rest of the manipulator ensemble.

The distributed character of the robotic system needs to be properly addressed in the

modeling, the analysis and the control design in order to achieve the manipulation task

objective when no precise global coordination is available. An open problem in the area

of cooperative manipulators is the modeling of the occurring end effector forces, which

are a crucial prerequisite for the stability analysis in cooperative force/motion tracking

tasks. Moreover, the kinematic coordination of the manipulator ensemble without global

coordinate frame is a major challenge faced beyond dedicated laboratory environments

which has not yet been treated by the robotics community.

The main contributions of this thesis can be divided into three parts. First, a novel

and physically consistent modeling of the interaction dynamics is presented. This model

incorporates an explicit mathematical expression for the emerging manipulator wrenches

and is based on the Dirac structure imposed by the kinematic constraints through the

object. Second, a thorough analysis of this model provides a new characterization and

decomposition of internal and external manipulator wrenches. This analysis leads to a

completely new approach to the design of a more general decoupling control scheme for

internal/external forces, a new paradigm for the choice of the load distribution between

manipulators and the synthesis of the resulting object dynamics. Third, an adaptive

control scheme is described which achieves robust force/motion tracking under uncertain

kinematic grasp parameters without relying on a global coordinate frame for planar, quasi-

static cooperative manipulation tasks.
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Zusammenfassung

Autonome Robotersystems sind heutzutage die Schlüsseltechnologie in zahlreichen indus-

triellen, logistischen und häuslichen Anwendungen. Die steigenden Anforderungen an deren

Leistungsfähigkeit führen sukzessive zu Aufgabenstellungen, die von einzelnen Robotern

nicht mehr bewältigt werden können. Ein Team von kooperierenden Robotern übertrifft

naturgemäß die Funktionalität eines einzelnen Roboters aufgrund der intrinsischen Red-

undanz und der potentiell verschiedenartigen Fähigkeiten der Team-Mitglieder. Typische

Anwendungsbeispiele umfassen industrielle Roboter, die große Metallprofile manipulieren

oder schwere Lasten verfrachten, aber auch Transportaufgaben, die von fliegenden Robo-

tern durchgeführt werden. Sobald mehrere Roboter kooperieren, stellt die größte Heraus-

forderung deren Koordination im Hinblick auf die Integration der auf die einzelnen Roboter

verteilten Sensorik und Aktuierung dar. Dies gilt im Besonderen für kooperative Manipu-

lationsaufgaben, bei denen eine direkte physikalische Interaktion zwischen den Robotern

stattfindet.

Die vorliegende Dissertation behandelt die bedeutendsten Aspekte kooperativer Mani-

pulationsaufgaben im Falle autonomer Roboter mit verteilter Sensorik und Aktuierung

unter der Annahme, dass kein globales Koordinatensystem für die Aufgabenausführung

zur Verfügung steht. Zu diesem Zweck wird das zentrale Ziel der Manipulationsaufgabe

in Form von geeigneten Sollwerten für die Kraft-/Bewegungs-Regler auf die einzelnen Ro-

boter verteilt. An dieser Stelle führen selbst kleine kinematische Koordinationsfehler zu

großen Interaktionskräften, die das Objekt beschädigen können und damit das Aufgaben-

ziel verfehlen. Die vorliegende Arbeit formuliert die kooperative Manipulationsaufgabe als

ein Problem der robusten Kraft-/Bewegungs-Folgeregelung unter unsicheren kinematischen

Parametern. Besondere Aufmerksamkeit ist der Tatsache gewidmet, dass im Allgemeinen

jeder Roboter nur Zugriff auf seine lokale Sensorik und Aktuatorik besitzt, während er

durch das Objekt global mit dem gesamten restlichen Manipulatorensemble interagiert.

Der verteilte Charakter des Robotersystems muss dementsprechend in der Modellierung,

der Analyse und dem Regelungsentwurf abgebildet werden um das Manipulationsziel auch

zu erreichen, wenn keine akkurate globale Koordination möglich ist. Ein offenes Problem

auf dem Gebiet der kooperativen Manipulation stellt die Modellierung der auftretenden

Endeffektor-Kräfte dar, die eine wesentliche Voraussetzung für die Stabilitätsanalyse von

kooperativen Kraft-/Bewegungs-Reglern ist. Besonders außerhalb von dedizierten Labor-

umgebungen findet sich in der kinematischen Koordination der Manipulatoren unter Ver-

zicht auf ein globales Koordinatensystem eine bedeutende Herausforderung, die bisher

innerhalb der Robotik nicht behandelt wurde.

Die zentralen wissenschaftlichen Beiträge dieser Dissertation gliedern sich in drei Tei-

le. Erstens wird ein physikalisch konsistentes Modell der Interaktionsdynamik eingeführt.

Dieses Modell umfasst einen expliziten mathematischen Ausdruck für die auftretenden

Endeffektor-Kräfte und basiert auf der durch die vom Objekt vorgegebenen kinemati-

schen Zwangsbedingungen und der damit verbundenen Dirac-Struktur. Zweitens führt

eine sorgfältige Analyse dieses Modells zu einer neuen Charakterisierung und Zerlegung

von internen und externen Manipulatorkräften. Diese Analyse führt zu einem komplett

neuartigen Ansatz für den Entwurf einer verallgemeinerten Entkoppelungsregelung für in-

terne/externe Kräfte, einem neuen Paradigma für die Wahl der Lastverteilung zwischen
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den Manipulatoren und der Synthese der resultierenden Objektdynamik. Drittens wird

ein adaptives Regelgesetz vorgestellt, das für planare, quasi-statische Manipulationsaufga-

ben und fehlerbehaftete kinematische Parameter robuste Kraft-/Bewegungs-Folgeregelung

garantiert, ohne dabei auf eine globales Koordinatensystem zurückzugreifen.
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Notations

Symbols

General

R
n Real coordinate space of n dimensions

R
m×n Set of m× n matrices

R
+ Set of non-negative real numbers

I3 3 × 3 identity matrix

03 3 × 3 zero matrix

R 3× 3 rotation matrix

Operators

∗ Quaternion product

× Cross-product

S(·) Skew-symmetric matrix performing the cross-product, i.e. a× b = S(a)b

AT Matrix transpose of the matrix A

M−1 Matrix inverse of the matrix M

q−1 Inverse of the unit quaternion q

A† Moore-Penrose inverse of the matrix A

A+ Generalized inverse of the matrix A

‖v‖ Euclidean norm of the vector v

Manipulator and object kinematics

ξ Manipulator joint space angle vector

J Manipulator Jacobian matrix

x Rigid body pose

p Position vector

q Unit quaternion representing a rigid body orientation

η Scalar part of the unit quaternion

ǫ Vector part of the unit quaternion

ω Angular velocity

r Grasp vector

δq Grasp orientation
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Notations

Manipulator and object dynamics

Λ Joint space inertia matrix

τ Joint torque vector

M Task space inertia matrix

C Task space Coriolis matrix

D Task space damping matrix

K Task space stiffness matrix

I Moment of inertia matrix

h Task space wrench vector

Coordinate frames

{i} Coordinate frame attached to the end-effector of the i-th manipulator

{i} Coordinate frame attached to the base of the i-th manipulator

{o} Coordinate frame attached to the object’s center of mass

{w} Inertial world frame

Subscripts, Superscripts and Accents

xi End effector pose of the i-th manipulator

xdi Desired value of xi
r̂i Estimate of the grasp vector ri
r̃i Estimation error of the grasp vector
ori Grasp vector ri expressed in the coordinate frame {o}
oRw Rotation matrix transforming a vector from frame {w} to frame {o}

τ̃i Joint torque disturbance

h̃i End effector wrench disturbance

h̄i Reaction wrench to the wrench hi, i.e. h̄i = −hi
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troller acceleration ẍx and the interaction in terms of the internal wrenches hint. 30

3.3 Two cooperating manipulators moving a rigid object in one dimension. . . 36

3.4 Load distribution example for two cooperating manipulators. . . . . . . . . 36

3.5 Block scheme representation of controller and plant dynamics for coopera-

tive force/motion tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Illustration of the apparent object dynamics as a parallel connection of mass-

spring-damper elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Experimental setup with two robotic manipulators and force/torque sensor

for measuring the externally applied wrench h̃o . . . . . . . . . . . . . . . . 43

3.8 Externally applied force and resulting position in x-direction . . . . . . . . 44

3.9 Externally applied torque and resulting orientation about the z-axis . . . . 45

3.10 Applied object wrench h̃o and resulting object pose δxo in SE(3) . . . . . 46

4.1 Illustration of the local coordinate frames employed by the robotic manip-

ulators for the cooperative manipulation task . . . . . . . . . . . . . . . . . 55

4.2 Extended block scheme representation of the cooperative control system . . 58

4.3 Two planar manipulators with biased grasp parameter L̂ < L rotate a rigid

bar counter-clockwise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Block scheme representation of the adaptive control law for robust force/motion

tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Block scheme representation of the force/velocity cooperative manipulator

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Illustration of the parameterization of the 1-sphere S
1 . . . . . . . . . . . . 74

xi



List of Figures

4.7 Illustration of the kinematic grasp parameters for a planar manipulation

task with N = 3 manipulators . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Trajectory of the end effectors during the cooperative manipulation task . 76

4.9 End effector forces during the cooperative manipulation task without pa-

rameter adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.10 Parameter estimation error during the cooperative manipulation task . . . 78

4.11 End effector forces during the cooperative manipulation task with parameter

adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.12 Trajectory of the end effectors during the cooperative manipulation task

with parameter adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.1 Block scheme representation of the cooperative manipulator dynamics and

the employed coordination strategy . . . . . . . . . . . . . . . . . . . . . . 82

xii



1 Introduction

Autonomous robotic systems are nowadays the key technology in a variety of application

domains ranging from manufacturing, construction, agriculture and forestry to service

robotics, search and rescue but also aerial transportation. The increasing demand for

performance of such robotic systems is often met by employing an ensemble of robots for

performing a task. A team of cooperating robots outperforms naturally the functional-

ity of a single robot due to the intrinsic redundancy and the potentially heterogeneous

team member skills in terms of sensing and actuation capabilities. Applications of classi-

cal multi-agent system theory include area coverage and surveillance (e.g. for forest fire

detection) and formation control (e.g. for search and rescue tasks). When the coopera-

tive task involves manipulation of an object, the multi-robot system is said to perform a

cooperative manipulation task. Typical examples include industrial robots manipulating

cooperatively large metal profiles or loading heavy cargo between different carriers as well

as transportation tasks conducted by means of cooperating aerial robots. In the long term,

scenarios in which a human operator interacts actively with the multi-robot team show

promise to yield a maximum benefit in regard to the achievable task efficiency. An exem-

plary cooperative multi-robot manipulation scenario with human interaction is depicted

in Fig. 1.1.

Fig. 1.1: Cooperative multi-robot manipulation scenario with human-robot interaction

In such tasks, the human operator provides not only high-level task directives to the

robots but also gets simultaneously feedback from the multi-robot team about the current

task progress. In this way, the human cognitive skills and the robots’ distributed sensing

and actuation capacities contribute to an increasing task performance. In order to enable
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1 Introduction

the human to adopt a supervising role, the multi-robot team is required to maintain a

high level of autonomy during the task, allowing to reduce the human intervention to a

minimum.

In this perspective it becomes obvious that the benefits of using a team of robots for ma-

nipulating a common object come at the cost of an increased complexity for coordinating

the manipulator ensemble. The variety of potential applications motivates the tremendous

research on multi-agent coordination strategies during the past decades. Recently, multi-

agent approaches are employed for the coordination of cooperating manipulators, too.

However, as detailed in the sequel of this thesis, the dynamics in cooperative manipulation

tasks are intrinsically different from the dynamics encountered in conventional multi-agent

systems. In general, the emerging behavior of the cooperative manipulator system is com-

plex due to a direct coupling of the nonlinear manipulator dynamics and the dynamics of

the manipulated object. Aiming for a successful task achievement, the interplay between

the cooperative coordination strategy and the manipulator force/motion control schemes

needs to be thoroughly understood and analyzed. This work starts with discussing coor-

dination strategies for general multi-robot systems and specifying the particular features

of the system dynamics encountered in cooperative manipulation tasks.

1.1 Coordination strategies for multi-robot systems

Coordination strategies for multi-robot systems are part of the broader field of multi-

agent system theory. This research field unites algorithmic, game-theoretic and logical

approaches in order to develop new methods for multi-robot systems, distributed opti-

mization or reinforcement learning [1]. According to [2], multi-agent systems are charac-

terized by three distinct features: 1) the agents are (at least partially) autonomous ; 2) the

agents have only a local view, i.e. no agent has a full global view on the system and 3) the

coordination between is decentralized, i.e. there is no designated controlling agent.

Typically, methods developed within the framework of multi-agent system theory ad-

dress multi-robot problems such as the consensus [3] or rendez-vous problem [4], formation

control [5] or coverage control problem [6]. Particular emphasis is put on maintaining net-

work connectivity [7] and the formation stability in terms of graph rigidity [8]. While the

greater part of multi-agent coordination methods are developed for configuration spaces, a

framework based on differential geometry for motion coordination on the Euclidean group

is presented in [9]. By construction, all cited coordination strategies above do comply with

the requirements on multi-agent systems in view of their autonomy, the local view and the

decentralization.

At this point it is crucial to recognize that in classical multi-agent systems the emerging

system dynamics result from a coupling through feedback. This is illustrated by means of

the formation control problem in the following Fig. 1.2.

Initially, the agent position (denoted by the gray triangles) does not match the desired

formation shape. In the present example, the desired formation shape is an equilateral

triangle. Through sensing of the agents’ relative positions and appropriate feedback design

the ensemble performs a transient (denoted by the black dotted lines) which reaches the

desired formation eventually (denoted by the black triangles).

2



1.1 Coordination strategies for multi-robot systems

Fig. 1.2: Illustration of a multi-robot system performing a formation control task

In cooperative manipulation tasks the situation is different. Consider Fig. 1.3 for an

illustration of the system dynamics encountered in cooperative manipulation tasks.

Fig. 1.3: Illustration of a multi-robot system performing a manipulation task

The manipulators (depicted by the black boxes) grasp the rigid object (denoted by the

black lines) firmly. All manipulators try to track their individual force/motion setpoints

(denoted by the gray boxes) by means of their local feedback loops. Note that those set-

points do not necessarily need to comply with the object shape. However, due to the object

rigidity, the manipulators are at any time of the manipulation task forced to maintain their

initial relative positions (unless end effector slippage occurs or the object breaks). In case

the manipulator setpoints do not match the object shape, the manipulator ensemble will

be subject to constraining forces which ensure that the end effectors maintain the geomet-

ric constraint. From a system theoretic point of view, this means that each manipulator

implements a local feedback loop but that the individual dynamics are coupled through a

kinematic constraint (not through feedback as for conventional multi-agent systems).

Given this observation on the resulting system dynamics, one needs to check carefully

to which extent a cooperative manipulator exhibits the features of a multi-agent system

as discussed at the beginning of this section. Clearly, any manipulator ensemble complies

with the requirement 1) since each manipulator is able to operate and manipulate objects

autonomously. Moreover, each manipulator has a priori only access to its local sensing and

actuation capabilities. This is in line with the requirement of each agent having only a local

view on the system. Due to the rigid coupling of the manipulation dynamics, coordination

strategies for cooperative multi-robot manipulation tasks are typically centralized in the

sense that there exists a dedicated agent which generates the desired object motion and

from which the individual manipulator setpoints are derived. The following section dis-

cusses the assumptions and implications of such centralized coordination strategies which

will lead naturally to the challenges in cooperative manipulation tasks.
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1 Introduction

1.2 Challenges in cooperative manipulation tasks

A core challenge faced in today’s robotics research is the realization of highly autonomous

robot behavior in unstructured environments. This holds particularly true for coopera-

tive multi-robot manipulation tasks in which accurate coordination among the robots is

required but in which also direct interaction with a human takes place. In the context

of manipulation tasks, the human safety, the design of interfaces for the information and

signal exchange between humans and robots and the predictability of the robotic behavior

are major prerequisites for a successful synergy of human and robot skills.

There exist a couple of challenges related to the autonomy of a cooperating multi-robot

team when performing a manipulation task in an unstructured environment. The term

unstructured shall refer to environments which are not modified in order to accommodate

or compensate limitations of the robot [10]. In this sense, any model provided to the robotic

manipulator system might be interpreted as an a priori knowledge about the manipulation

task which needs to be adapted during the task execution as a function of the encountered

task situation. The ability to incorporate updates on the task knowledge is crucial in

order to keep a high level of autonomy for the robotic system. The particular challenges

concerning the manipulation task model and occurring uncertainties are as follows.

Cooperative manipulator dynamics Cooperative manipulation tasks are characterized

by the tight coupling of the individual, commonly nonlinear manipulator and object dy-

namics. Traditionally, the interplay between the manipulators is coordinated in task space,

i.e. the manipulator force/motion setpoints are derived from the desired object motion and

its inertial properties. At the same time, existing modeling approaches for the coopera-

tive manipulator dynamics are commonly derived in joint space. As a consequence, there

is an obvious gap between the system theoretic modeling of the cooperative manipulator

system in joint space and the available coordination and control strategies in task space.

This clearly impedes a smooth and compact analysis of the interaction between plant and

control dynamics. In fact, there is currently no analytic closed-form expression for the

emerging end effector forces which is indisputably a crucial ingredient for the analysis of

any manipulation task.

Dynamic force/motion tracking As a direct consequence of the apparent gap between

existing modeling approaches in joint space and control strategies in task space as described

above, relevant ingredients for an accurate system analysis of the cooperative manipulator

system are missing. So far, existing results on stability or tracking in task space are based

on ad-hoc assumptions or involve limiting simplifications such as quasi-static manipula-

tion of objects. Without an explicit closed-form expression for the emerging end effector

forces at hand, central issues such as achieving force/motion tracking can not properly

be discussed when aiming for general, dynamic manipulation tasks. Moreover, the appar-

ent dynamic behavior of the manipulator ensemble is crucial when interacting with the

environment in view of bounding the potential interaction forces. While in centralized

control schemes this apparent dynamics is usually imposed, in manipulation tasks with

decentralized coordination, one is clearly interested in finding and deriving the apparent,
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1.2 Challenges in cooperative manipulation tasks

global behavior from the local manipulator and object dynamics. There exists currently

no methodology for this purpose. Eventually, the force tracking task is commonly split

into the tracking of internal and external force components. However, this decomposition

is not unique and it is controversially discussed in the literature.

Distributed coordinate knowledge A particular challenge arises from the fact that the

coordination of cooperating manipulators is traditionally performed in a centralized fashion

with access to a common coordinate system. This centralized approach to the problem of

manipulator coordination works well for manipulation tasks in structured environments as

e.g. dedicated laboratory spaces, in which each manipulator can be localized accurately.

As an immediate consequence, any coordination approach based on a global reference

frame neglects the autonomous character of the individual manipulators as represented

by their distributed sensing, actuation and computation capabilities. In case no global

coordinate frame is available for the task coordination, the cooperating manipulators are

forced to employ potentially inaccurate on-board measurements of the relative kinematics

between them. This leads inevitably to uncertainty in the relative grasp parameters and to

undesired interaction forces which - in the worst case - might even destroy the manipulated

object. Currently, there are no coordination schemes available which are able to exploit

the distributed knowledge on the available coordinate systems in order to eliminate the

fundamental dependency on a global coordinate frame.

Example Consider the cooperative aerial transportation task with three quadcopters de-

picted in Fig. 1.4.

b

b

b

Fig. 1.4: Illustration of global and local localization systems for the coordination in a cooper-
ative aerial manipulation task

In case of outdoor aerial manipulation, one potential global reference frame is provided

by the global positioning system (GPS). This is depicted in Fig. 1.4 by the satellite, which

makes it possible to locate all quadcopters in a common coordinate system (depicted

by the gray localization signals). For indoor manipulation the same global localization

mechanism applies when an optical, potentially marker-based tracking system is available.

However, when such global localization is not available (or with limited accuracy as in the

case of GPS), the cooperating manipulators need to rely on their local on-board sensing

for measuring their relative position. This is depicted by the black localization signals in
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1 Introduction

Fig. 1.4. Obviously, it is desirable to employ coordination strategies which take into account

the distributed character of the local on-board sensing and which are simultaneously able

to deal efficiently with the arising uncertainty in the kinematic grasp parameters.

Remark The challenges stated above are particularly relevant in conventional multi-robot

manipulation tasks as e.g. cooperative manipulation of an object with several anthropo-

morphic or industrial manipulators. All of the named challenges are however also relevant

to other domains in greater or lesser extent. While the cooperative manipulator dynamics

and the force/motion tracking goal appear equally relevant for in-hand manipulation and

thus for the grasping community, the distributed coordinate knowledge aspect is proba-

bly less significant in this domain since the individual fingers are mounted to a common

base (the palm) providing a common coordinate system. In aerial manipulation tasks a

proper dynamic modeling and efficient treatment of arising uncertainties due to inaccu-

rate on-board sensing is again of prior importance. A similar situation is encountered in

cooperative underwater manipulation tasks.

1.3 Outline and contributions

This thesis intends to provide a complete and physically consistent treatment of the dy-

namics in cooperative manipulation tasks with emphasis on the manipulator interaction

when dealing with rigid objects and uncertainties in the kinematic grasp parameters for

the manipulator coordination. Moreover, the present study tries to highlight the intersec-

tion and links between existing cooperative manipulation control schemes and particular

coordination schemes developed within the framework of multi-agent theory.

To this end, the structure of this thesis is borrowed from the classical approach in control

design, starting with the modeling of the cooperative manipulator dynamics in Chapter 2

followed by a thorough analysis of this model in Chapter 3. Chapter 4 formulates the

general problem setting of cooperative force/motion tracking when no global localization

system is available and presents an adaptive control approach which is able to deal with

the arising uncertainties in the kinematic grasp parameters. Appendix A reviews and

summarizes some basic concepts from adaptive control and system identification which are

extensively used in Chapter 4. Conclusions of this study and potential future works are

presented in Chapter 5.

The related work and open problems are reviewed in detail at the beginning of each

chapter. The contributions of the individual chapters with respect to the challenges as

previously presented in Section 1.2 are as follows.

Chapter 2: Modeling of the dynamics in cooperative manipulation tasks

This chapter develops one of the core results of this thesis by means of a complete dynami-

cal model of the cooperating manipulators in task space incorporating both the constrained

system kinematics and an analytic and explicit expression for the manipulators’ interaction

forces. The derivation of this result is based on Gauss’ principle known from constrained

6



1.3 Outline and contributions

multi-body systems and highlights the significant role of the kinematic constraints im-

posed to the manipulator ensemble by firmly grasping a common object. The chapter

presents a comprehensible methodology which links the dynamics of the individually feed-

back controlled manipulators in task space with the dynamics of the manipulated object.

This new perspective on the cooperative manipulator system as a constrained multi-body

system provides simultaneously a very convenient way for the simulation of multi-robot

manipulator systems since it transforms the initial, implicit system description as a set

of differential algebraic equations (DAE) to an explicit system model by means of a set

of ordinary differential equations (ODE) which can be solved conveniently by standard

engineering tools. The contributions of this chapter are based on [11].

Chapter 3: Analysis of the cooperative manipulator model

Based on the explicit cooperative manipulator model in task space as presented in Chap-

ter 2, this chapter focuses on the system theoretic properties of the interaction dynamics.

Given the non-ideal feedback linearization of individual manipulator control loops in prac-

tice, robust stability for the manipulator ensemble coupled through the object is derived.

Simultaneously, the apparent dynamics of the cooperating manipulators when interacting

with the environment is presented and evaluated in an experimental study. Eventually, the

formulation of the cooperative manipulator system as constrained multi-body systems is

exploited for introducing a new paradigm for the description of internal and external force

components as needed for cooperative force/motion tracking. This new definition unites

and generalizes previous results on force decomposition by invoking the principle of virtual

work. As an immediate consequence of this model-based approach to the control design,

a decoupled control scheme for simultaneous internal and external force/motion tracking

is presented. The contributions of this chapter are based on [11], [12] and in parts on two

of my students master’s theses [13, 14].

Chapter 4: Adaptive control for cooperative multi-robot manipulation

This chapter deals with the cooperative manipulator coordination when no global localiza-

tion frame is available and only estimates of the kinematic grasp parameters are at hand.

First, the general problem setting is expressed as a robust force/motion control problem

with respect to uncertain kinematic grasp parameters. An explicit condition for the iden-

tifiability of the kinematic grasp parameters are derived for the relevant special case of

planar manipulation for which existing identifiability criteria do not apply. Finally, a ro-

bust control law for planar manipulation tasks is proposed which guarantees exponential

force/motion tracking under initially biased grasp parameters in case the object’s inertial

forces remain small. The contributions of this chapter are in parts based on [15], [16]

and previously unpublished material elaborated at least in parts during two consecutive

research periods (January/February and May/June 2015) with Yiannis Karayiannidis at

the Computer Vision and Active Perception Lab (CVAP) at KTH, Stockholm, Sweden.
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2 Modeling of the dynamics in cooperative

manipulation tasks

This chapter deals with the modeling of the dynamics in cooperative manipulation tasks.

The employed dynamical model plays a vital role for system analysis and control design.

The material presented in this chapter is consequently the foundation of this thesis. The

cooperative manipulation task model derived in the sequel meets the two typically opposed

requirements encountered in dynamical system theory: on the one hand, the abstract

model should incorporate all characteristic features of the physical system. On the other

hand, the model should remain simple and compact enough to facilitate system analysis

and control design. The key result of this chapter is a physically consistent model of

the cooperating manipulators, providing an explicit analytical expression for the emerging

interaction forces and torques.

This chapter is structured as follows. First, the related work on dynamic modeling of co-

operative manipulator system is reviewed and open problems are discussed. Subsequently,

a general formulation of the manipulator dynamics in joint and task-space is presented

in Section 2.1, while particular emphasis is put on impedance controlled end effectors.

Section 2.2 briefly covers the rigid body dynamics of the manipulated object. Section 2.3

addresses the kinematic constraints which arise when the robotic end effectors are rigidly

grasping the manipulated object. Finally, the dynamics of the cooperative manipulator

system is derived in Section 2.4 wherein an explicit link between the kinematic constraints

and the emerging interaction wrenches is drawn by means of the Gauss principle.

Related work and open problems

The dynamics of cooperative manipulator systems have been studied for more than three

decades. A pioneering work on the dynamics of a robotic multi-arm system under motion

constraints is given in [17]. The augmented object model describing the apparent dynamics

of a cooperating manipulator system is presented in [18]. The authors of [19, 20, 21, 22]

present a model of the cooperative manipulator dynamics illustrating the interaction effects

in joint space. More recently, the modeling of the redundant manipulator dynamics are in-

terpreted in the context of constrained multi-body systems [23, 24]. These previous works

build on the formulation of the interaction dynamics in joint space without addressing

relevant interaction effects between the manipulators in task space. In [25] the interaction

between cooperative manipulators is modeled in task space by means of port-Hamiltonian

systems without addressing the underlying Dirac structure. The Dirac structure however

determines the interaction wrenches and is thus a central quantity for manipulation tasks.

As will be detailed in the sequel, manipulation of a rigid object gives rise to kinematic con-

straints between the manipulators’ end effectors, leading to an implicit port-Hamiltonian
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2.1 Manipulator dynamics

system endowed with a Dirac structure and thus to a mixed set of differential and algebraic

equations (DAEs) [26]. The Dirac structure induced from a constraint distribution may be

represented in various ways [27] among which the Lagrange multiplier formulation is the

most common. The Dirac structure and the underlying rigidity constraints between the

end effectors have not been explored for the modeling of cooperating manipulators in the

robotics literature. A general framework for simulating constrained multi-body systems

based on a projection operator for control applications is presented in [28].

A very similar situation in view of modeling and control design is encountered in dex-

terous manipulation of objects with multi-fingered hands. Interestingly, common models

for the dynamics in dexterous manipulation do actually incorporate the coupling between

fingertips and object in terms of a kinematic (velocity) constraint [29]. The interaction

wrenches between fingers and object have a straightforward interpretation as the Lagrange

multiplier associated to the kinematic constraints [30]. However, inertia terms are ne-

glected and quasi-static manipulation is assumed when computing explicit values for the

resulting interaction wrenches. A notable exception is reported in [31], where a linearized

and quasi-static (i.e. neglect of inertial terms) approximation of the cooperative dynamics

is employed to compute explicit values for the Lagrange multipliers.

Recent works on cooperative aerial manipulation as e.g. [32] assume quasi-static ma-

nipulation or employ a dynamic manipulation task model for which the under-determined

interaction forces are computed based on differential flatness conditions [33].

In summary, there exists currently no explicit closed-form solution for computing the

manipulators’ end effector wrenches in task space when cooperatively manipulating an

object. It is obvious that such an expression is the core instrument for the analysis of

cooperative manipulation tasks, since it allows to quantify the end effector wrenches applied

to the object and provides insight on how the interaction between manipulators and object

actually takes place.

2.1 Manipulator dynamics

This thesis focses on the dynamics and the interaction analysis of cooperative manipulators

in task space. The dynamics of a single manipulator are however naturally expressed in

joint and a desired end effector behavior in task space is rendered by means of an additional

control loop. This section describes how to achieve a certain end effector behavior in task

space for a single manipulator starting from the dynamics in joint space.

2.1.1 Joint space dynamics

A single robotic manipulator is composed of several mechanical links and joints which

are additionally actuated in order to perform a desired task. The number of joints for

the i-th manipulator is denoted by ni. For each joint, the current position is commonly

available through explicit measurement by means of a dedicated joint angle sensor while

the actuation is implemented through an electric motor connected to a gear mechanism

applying a desired force/torque about this joint. The stacked vector of joint angles and joint

torques is denoted ξi ∈ R
ni and τi ∈ R

ni respectively. Given the set of joint angles ξi, the
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2 Modeling of the dynamics in cooperative manipulation tasks

pose of the i-th end effector xi ∈ SE(3) is uniquely determined by the forward kinematics

map Φi : R
ni → SE(3) of the manipulator given by

xi = Φi(ξi). (2.1)

Differentiation of (2.1) leads to a relation between the joint space velocities ξ̇i ∈ R
ni and

the resulting end effector velocity ẋi ∈ se(3) according to

ẋi = Ji(ξi)ξ̇i (2.2)

with the manipulator Jacobian Ji defined by

Ji(ξi) :=
∂Φi

∂ξi
. (2.3)

The dynamics of robotic manipulators is most conveniently derived in joint space, mean-

ing that the joint angles are employed as the (generalized) coordinates in the Lagrange

formulation. The most general form of the manipulator dynamics is given by

Λi(ξi)ξ̈i + Γi(ξi, ξ̇i) = τi (2.4)

wherein Λi ∈ R
ni×ni is the symmetric positive-definite joint space inertia matrix and

Γi ∈ R
ni is a vector incorporating the Coriolis and gravity terms. In general, the matrix

Λi and the vector Γi induce a coupling between the manipulator joints in terms of the

apparent inertial properties and the Coriolis forces.

Joint space feedback control

In view of implementing a desired manipulator behavior independent of the current joint

space configuration, feedback linearization is commonly applied which additionally decou-

ples the individual joint variables. Choosing

τi = Λ̂i(ξi)µi + Γ̂i(ξi, ξ̇i) + τdi (2.5)

with τdi = 0ni×1 and based on the estimates of the inertia matrix Λ̂i and Γ̂i respectively

and substituting (2.5) in (2.4) yields the decoupled, second order joint space dynamics

ξ̈i = µi (2.6)

for Λ̂i = Λi and Γ̂i = Γi and the new motion control input µi ∈ R
ni.

Exemplarily, for motion control in joint space a PD-controller with feed forward term

is implemented by letting

µi = ξ̈di +KP,i(ξ
d
i − ξi) +KD,i(ξ̇

d
i − ξ̇i) (2.7)

wherein ξdi (t) is the desired joint space trajectory andKP,i, KD,i ∈ R
ni×ni are some positive-

definite matrices. It is straightforward to verify that the tracking error ξ̃i = ξdi −ξi satisfies

¨̃ξi +KD,i
˙̃ξi +KP,iξ̃i = Λ−1

i τ̃i (2.8)
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2.1 Manipulator dynamics

when subject to a disturbance τ̃i ∈ R
ni, e.g. due to non-ideal feedback linearization. Under

some mild assumptions on the smoothness of ξdi (t), the boundedness of Λi and finiteness of

the Coriolis error term [34, (8.72) through (8.74)], one can still guarantee convergence of

the tracking error to zero for Λ̂i 6= Λi and Γ̂i 6= Γi (cf. Lemma 3 in Section 3.5). Obviously,

tracking in joint space is achieved exponentially for τ̃i = 0ni×1.

In case of contact with the environment, an arbitrary wrench applied to the i-th end

effector h̃i ∈ se∗(3) induces a dynamically consistent joint-torque τ̃i according to [35]

τ̃i = JT
i (ξi)h̃i. (2.9)

Relation (2.9) is particularly useful in order to incorporate an additional feed forward

term τdi 6= 0ni×1 on the right-hand side of (2.5) which accounts for a potential payload hdi
attached to the i-th end effector. Letting τdi = JT

i (ξi)h
d
i guarantees exponential convergence

of the joint space tracking error ξ̃i(t) even when a payload is attached to the robotic

manipulator.

2.1.2 Task space dynamics

Given the manipulator dynamics in joint space, the emphasis is now put on the behavior

of the end effector. The apparent inertia of the manipulator model (2.4) in task space

MΛ
i ∈ R

6×6 after arbitrary feedback design in terms of τi or µi, the apparent inertia of the

end effector in task space is given by the symmetric positive-definite matrix [35]

MΛ
i = [Ji(ξi) Λ

−1
i (ξi) J

T
i (ξi)]

−1. (2.10)

This expression clearly shows that the inertial properties of the end effector depend on both

the particular values of the joint space inertia Λi and on the current manipulator pose ξi.

In view of the vast variety of potential manipulation tasks and the involved requirements

on the manipulator dynamics, both dependencies of the apparent manipulator inertia MΛ
i

are generally undesired.

Task space feedback control

A common measure to overcome this limitation is the use of an additional, wrist-mounted

force/torque sensor [36] measuring the end effector wrench hi. Given hi, an arbitrary

stable filter can be employed to design the desired manipulator response in terms of the

resulting, commanded end effector motion ẍ∗i . A widely used approach to this goal is

impedance control, which enforces a relation between the applied end effector wrench hi
and the resulting end effector motion according to

Mi (ẍ
∗
i − ẍdi ) +Di (ẋ

∗
i − ẋdi ) + hKi (x

∗
i , x

d
i ) = hi − hdi + h̃i (2.11)

wherein x∗i = (p∗Ti , q∗Ti )T denotes the commanded pose of the i-th end effector. The pose

is split into translational and rotational coordinates with p∗i ∈ R
3 and the unit quater-

nion q∗i ∈ Spin(3). Thus each x∗i can be mapped onto an element of the special Euclidean

group SE(3). The twist ẋ∗i = (ṗ∗Ti , ω∗T
i )T ∈ se(3) is composed of the end effector’s transla-

tional and rotational velocity denoted by ṗ∗i ∈ R
3 and ω∗

i ∈ R
3. The wrench hi = (fT

i , t
T
i )

T
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2 Modeling of the dynamics in cooperative manipulation tasks

is split into the force and torque vectors fi, ti ∈ R
3. Desired quantities are indicated by

the superscript d. An additional disturbing wrench h̃i is labeled with the tilde.

Remark (Quaternion rates and angular velocity) Employing a slight abuse of notation,

the twist ẋi is not the pure time derivative of the pose xi, in particular d
dt
qi 6= ωi. In order

to compute the proper angular velocity, the unit quaternion rate needs to be mapped to

the angular velocity by the following relationship [37]

(
0

ωi

)

=

[
ηi −ǫTi
ǫi ηiI3 + S(ǫi)

]

q̇i (2.12)

with the unit quaternion qi = (ηi, ǫ
T
i )

T composed of real and imaginary part ηi ∈ R and

ǫi ∈ R
3, respectively.

Without loss of generality, the impedance parameters, denoting the desired apparent

mass, damping and stiffness of the end effector are assumed to exhibit (block-)diagonal

structure, i.e.

Mi =

[
miI3 03
03 Ii

]

, (2.13)

Di =

[
diI3 03
03 δiI3

]

, (2.14)

Ki =

[
kiI3 03
03 κiI3

]

, (2.15)

decoupling the translational from the rotational end effector behavior. The matrices are

parameterized by the scalar values mi, di, ki ∈ R
+ yielding isotropic translational behavior

of the individual end effector. Isotropic impedance parameters are assumed in order to

simplify subsequent expressions for the cooperative manipulator system and keep a maxi-

mum level of clarity. R
+ denotes the set of strictly positive real numbers. The rotational

dynamics are determined by the positive definite inertia matrix Ii ∈ R
3×3 and the scalar

parameters δi, κi ∈ R
+.

The geometrically consistent stiffness hKi [38] in (2.11) (i.e. a stiffness matrix which

results from a corresponding potential function in SE(3), having thus a physical equivalent)

is given by

hKi (xi, x
d
i ) =

(
fK
i

tKi

)

=

(
[kiI3] ∆pi
[κ′iI3] ∆ǫi

)

, (2.16)

wherein the difference of actual and desired pose is defined as ∆pi = pi − pdi and

∆qi = qi ∗ (q
d
i )

−1 with κ′i = 2κi∆ηi. For notational convenience the quaternion express-

ing the relative orientation is further split into ∆qi =
(
∆ηi,∆ǫ

T
i

)T
.

The positive-definite impedance parameters Mi, Di ∈ R
6×6 represent the apparent iner-

tia, damping and stiffness of the end effector and can in general be chosen arbitrarily.

Depending on the actual implementation of the impedance control scheme in practice,
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2.1 Manipulator dynamics

the choice of these values might be restricted in view of the closed-loop manipulator sta-

bility [39]. In what follows, the focus is exemplarily put on the implementation called

position-based impedance control, in which the output xi(t) resulting from (2.11) is trans-

lated into a joint space trajectory after differentiation of (2.2) and employing a generalized

inverse of the manipulator Jacobian J+
i according to [40]

ξ̈∗i = J+
i (ξ

∗
i )(ẍ

∗
i − J̇i(ξ

∗
i )ξ̇

∗
i ) + [Ini

− J+
i (ξ

∗
i )Ji(ξ

∗
i )]ξ̈

∗0
i (2.17)

with an arbitrary joint acceleration vector ξ̈∗0i ∈ R
ni projected onto the null space of Ji.

Note that tracking of ξ∗i in joint space is subject to the error dynamics as presented in (2.8)

and in case of ξ̃i 6= 0ni×1 one has in general

xi = Φi(ξi) 6= x∗i = Φi(ξ
∗
i ). (2.18)

In order to focus primarily on the interaction effects of the cooperative manipulator system,

the following assumption is made.

Assumption 1 (Ideal single manipulator motion tracking). The joint space tracking er-

ror ξ̃i can be made arbitrarily small for each manipulator so that

xi(t) ≈ x∗i (t), (2.19)

i.e. commanded and actual end effector pose coincide. Therefore, no distinction is drawn

in the sequel between x∗i and xi and the asterix is omitted for notational convenience.

Assumption 1 holds obviously for ideal feedback linearization, i.e. Λ̂i = Λi and Γ̂i = Γi

in (2.4) and (2.5), since a consistent feed forward term ξ̈∗i can be computed from ẍ∗i and

the control gains KP,i and KD,i can be made arbitrarily high, leading to exponential con-

vergence of ξ̃i to zero. Note that this assumption does not imply congruence of x∗i /xi with

the desired manipulator pose xdi .

Remark (Non-ideal feedback linearization) The case of non-ideal feedback linearization

and the resulting disturbances on the cooperative manipulation dynamics is discussed in

the subsequent chapter in Section 3.5.

Generic representation of the task space dynamics

In view of the subsequent modeling of the interaction effects of the cooperative manipulator

system, a generic description of the task space dynamics is of interest. For an arbitrary

manipulator control scheme the resulting task space dynamics can be written in the form

Miẍi = hΣi + hi, (2.20)

wherein hΣi = hΣi (xi, ẋi, t) incorporates the specific structure of the applied manipulator

control scheme and depends only on the manipulator state variables xi, ẋi and on time,

e.g. through the desired trajectory xdi (t).
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2 Modeling of the dynamics in cooperative manipulation tasks

Task space impedance control Rewriting the task space impedance control law (2.11)

in form of (2.20) yields

hΣi = hxi − hdi + h̃i (2.21)

wherein all terms related to the kinematic motion control are combined into

hxi =Miẍ
d
i −Di[ẋi − ẋdi ]− hKi (xi, x

d
i ). (2.22)

Finding similar representations for alternative force control schemes (e.g. PI force con-

troller [41]) is straightforward whenever the end effector wrench hi appears affine in the

manipulator control law.

Task space tracking control In this paragraph it is illustrated how to cast a pure motion

control scheme into the generic form (2.20). Feedback linearization as in (2.5) combined

with a PD tracking controller and feed forward acceleration term in task space [35] can be

written as

hΣi =MΛ
i [ẍdi −KD,i(ẋi − ẋdi )−KP,i ∆xi] (2.23)

with the apparent inertia of the i-th end effector MΛ
i as in (2.10), the difference of ac-

tual and desired pose ∆xi = [∆pTi ,∆ǫ
T
i ]

T as in (2.16) and the proportional and derivative

control gains KP,i, KD,i ∈ R
6×6. Although the tracking controller does not explicitly in-

corporate the end effector wrench hi, the scheme can directly be interpreted by means

of (2.20) by considering hi as an externally applied disturbing end effector wrench. Note

further thatMΛ
i is the apparent physical inertia, whereas Mi in (2.11) is a virtual and tun-

able parameter by means of the impedance control law. In case of the task space tracking

controller (2.23), the virtual inertia Mi on the left-hand side of (2.20) needs to be replaced

by the physical inertia MΛ
i .

Remark (Alternative manipulator control schemes) Although the focus is put in the

sequel exemplarily on the case of ideal and non-ideal admittance (i.e. position-based

impedance) control for the individual manipulator control loops, the generic representa-

tion of the interaction dynamics (2.20) is able to incorporate also force-based impedance

control loops as e.g. presented in [42]. The mapping between forces and accelerations from

joint space to task space is readily performed by employing the dynamically consistent

(i.e. satisfying not only the kinematic projection but also providing a proper mapping

between end-effector force/torque and joint torque vectors) Jacobians (and their inverses)

as proposed in [35]. This allows to compute for any joint space controlled manipulator

the end effector wrench hΣi resulting from the individual control scheme in task space as

required in (2.20).
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2.2 Object dynamics

2.2 Object dynamics

The equations of motion of a rigid object are derived by applying Lagrangian mechanics.

The object’s kinetic and potential energy are

To =
1

2
ẋToMoẋo and Uo = mo g

Tpo (2.24)

with Mo = diag(moI3, Io) and mo ∈ R and Io ∈ R
3×3 are the object’s mass and inertia

respectively and g ∈ R
3 is the gravity vector. For convenience of notation the explicit

indication of dependencies such asMo(xo) is omitted when unambiguous. Employing (2.24)

for deriving the Lagrange equations yields the object dynamics w.r.t. its center of mass

Moẍo + Coẋo + hg = ho + h̃o (2.25)

wherein ho is the effective wrench acting on the object, h̃o is an additional, external dis-

turbance and hg and Co incorporate the gravity force and the Coriolis term, i.e.

hg =

(
−mo g

03×1

)

, Co =

[
03 03
03 ωo × Io

]

. (2.26)

The generic representation of the object dynamics is written as

Moẍo = hΣo + ho (2.27)

with

hΣo = h̃o − Coẋo − hg. (2.28)

2.3 Object manipulation and rigidity constraints

In this section, some fundamental properties of the manipulator kinematics are discussed

when cooperatively holding a common object. For the subsequent analysis, the following

assumption is made.

Assumption 2 (Object and grasp rigidity). The manipulated object is assumed to be rigid

and the end effectors are assumed to be rigidly connected to the object.

Assumption 2 has two important consequences. On the one hand this means, that the

deformation of the object is negligible throughout the manipulation task. Of course, there

exists no ideally rigid object. However, from a practical point of view this assumption is

well approximated as soon as the object stiffness exceeds the apparent stiffness of the end

effectors. This manipulator stiffness can either be rendered by an appropriate control loop

or might simply be the result of a finite structural stiffness of the manipulator construction

components. On the other hand, based on Assumption 2, any end effector slippage is

excluded, i.e. the individual grasp pose of the manipulators remains constant during the

manipulation task. This assumption is more likely to be violated in practice. In Chapter 4
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2 Modeling of the dynamics in cooperative manipulation tasks

it is pointed out how to detect slippage and identify the modified grasp pose by means of

an adaptive control scheme.

For the subsequent mathematical description of the manipulator and object kinematics,

a coordinate system is attached to each rigid body. This is depicted in Fig. 2.1.

b
{w}

b

b

ri
po

pi

{o}

{i}

Fig. 2.1: Illustration of the coordinate systems employed for the cooperative manipulation task

The coordinate frames are denoted by curly brackets. Besides the body-fixed object

frame {o} each manipulator has its individual, local end effector frame {i}. If not stated

otherwise (through a leading upper index) vectors are expressed in the (inertial) world

frame {w}.

Translational constraint

The rigidity condition constrains the relative displacement of two bodies, i.e.

ori = const. (2.29)

This means that the relative position of the manipulator with respect to the body-fixed

coordinate system {o} remains constant. Using this fact one may express the position of

the i-th end effector as

pi = po +
w Ro(qo)

ori (2.30)

with the 3 × 3 rotation matrix wRo transforming a vector from frame {o} to frame {w}.

Differentiation of pi and using ori = const. yields

ṗi = ṗo + ωo × ri. (2.31)

Differentiating (2.31) again leads to

p̈i = p̈o + ω̇o × ri + ωo × (ωo × ri). (2.32)

This latter condition constrains mutually the admissible accelerations of the object p̈o, ω̇o,

the end effector p̈i and the object’s angular velocity ωo.

Rotational constraint

Furthermore the relative orientation between object and manipulators
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2.3 Object manipulation and rigidity constraints

oδqi = q−1
o ∗ qi (2.33)

is constrained to remain constant, i.e.

oδqi = const. (2.34)

Differentiation of oδqi w.r.t. time reveals that the angular velocity of the two bodies {o}

and {i} needs to be equal [12, Lemma 1], so that

ωo = ωi. (2.35)

Thus one has after differentiating again

ω̇o = ω̇i (2.36)

imposing a constraint on the admissible angular acceleration of the object and the end

effector.

Constraint matrix

In order to analyze the system dynamics under the previously discussed kinematic con-

straints, it is convenient to introduce the stacked state vector

x′ =








xo
x1
...

xN








(2.37)

being an element of the (N+1)-fold Cartesian product of SE(3) and containing the stacked

pose information of object and end effectors. The stacked acceleration vector ẍ ∈ R
6·(N+1)

reads thus

ẍ′ =














p̈o
ω̇o

p̈1
ω̇1
...

p̈N
ω̇N














. (2.38)

The acceleration constraints (2.32) and (2.36) may be rewritten compactly as

A′ · ẍ′ = b′ (2.39)

with A′ ∈ R
6·N×6·(N+1) and b ∈ R

6·N given by
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2 Modeling of the dynamics in cooperative manipulation tasks

A′ =










−I3 S(r1) I3 03 03 03
03 −I3 03 I3 03 03
...

...
. . .

−I3 S(rN) 03 03 I3 03
03 −I3 03 03 03 I3










(2.40)

and

b′ =










S(ωo)S(ωo)r1
03×1
...

S(ωo)S(ωo)rN
03×1










(2.41)

with S(·) denoting the skew-symmetric matrix performing the cross-product operation, i.e.

a× b = S(a) · b = −S(b)a.

Remark (Alternative contact model) In case that the end effector contact is not rigid

and e.g. relative angular motion between end effector and object is possible, the constraint

formulation (2.39) remains valid while only the number of incorporated constraints is

reduced in the contact model.

Remark (Inequality constraints) Note that the presented modeling incorporating equal-

ity constraints is valid for inequality constraints, too, as long as the applied end effector

forces remain positive. Inequality constraints arise typically in dexterous manipulation

tasks with unilateral finger contacts [43] or in aerial manipulation when cooperatively

manipulating a cable-suspended load [33].

2.4 Cooperative manipulation dynamics

In this section the interaction dynamics of the cooperative manipulator system is derived

when rigidly grasping a common object. In particular, an analytical closed-form expression

for the emerging interaction wrenches is presented. The derivation is based on Newton’s

third law and the Gauss principle as applied for the analysis of constrained multi-body

systems.

2.4.1 Principle of action and reaction

Whenever a manipulator is in rigid contact with the object and a wrench is applied by

this manipulator, then due to Newton’s third law, there is always a wrench with opposite

sign acting on the object. For notational convenience, the actual wrenches acting on the

object will be denoted h̄i in the sequel, so that

h̄i = −hi and h̄di = −hdi . (2.42)
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2.4 Cooperative manipulation dynamics

This situation is illustrated in Fig. 2.2.

h1 h̄1
hNh̄N

ho

r1
b

rN

Fig. 2.2: Free-body diagram of the closed kinematic chain built by manipulators and object

To any wrench hi acting on the end effector there is an opposed reaction h̄i acting on the

object. Note that the wrenches hi are the end effector wrenches as potentially measurable

by means of a wrist-mounted force/torque sensor (if available). However, in the sequel the

primary interest is to find an analytical expression for the actual values of the interaction

wrenches hi. In view of any model-based (force feedback) control approach, this analytical

expression for computing the hi’s is a prerequisite for a consistent analysis and control

design.

While the hi are a priori unknown, it is well known that once the hi are known, the

resulting object wrench ho can be computed according to

ho = Gh̄ (2.43)

with h̄ = [h̄1, . . . , h̄N ]
T . The grasp matrix G [44] incorporates explicitly the kinematic

parameters defined via the constraints and are stacked into the parameter vector

r =





r1
. . .

rN



 (2.44)

used in the definition of the grasp matrix

G =

[
I3 03 · · · I3 03

S(r1) I3 · · · S(rN) I3

]

. (2.45)

2.4.2 Gauss principle

This paragraph applies the Gauss principle to the combined system dynamics of manipu-

lators and object in order to obtain an explicit expression for the interaction wrenches hi.

To this end, recall that the dynamics of the manipulators is imposed independently from

each other through a control law given in the generic form (2.20), yielding an expression

for hΣi . The generic form of the object dynamics are given through (2.27) and determines

hΣo . Combining the dynamic equations of the end effectors and the object leads to the

cooperative manipulator system representation
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2 Modeling of the dynamics in cooperative manipulation tasks








Mo

M1

. . .

MN








︸ ︷︷ ︸

M ′

·ẍ′ =








hΣo
hΣ1
...

hΣN








︸ ︷︷ ︸

h
′Σ

+








ho
h1
...

hN








︸ ︷︷ ︸

h′

. (2.46)

Above representation admits the following interpretation. Since the stacked inertia ma-

trix M ′ on the left-hand side of (2.46) is block-diagonal, the individual accelerations ẍo
and ẍi of object and manipulators might appear decoupled. The wrenches hΣo and hΣi are

clearly determined by the dynamics of object and manipulators and thus also independent

from each other. However, the set of object and manipulator wrenches ho and hi is not in-

dependent from each other as pointed out earlier in (2.43). Moreover, as it is obvious from

the previous section on the discussion on the kinematic constraints between end effectors

and object, the individual accelerations of ẍ′ are in fact not decoupled. Thus the only op-

tion for the coupled dynamics under the imposed kinematic constraints is that the vector h′

adopts suitable values in order to render ẍ′ compatible to the kinematic constraints (2.39).

The computation of the constraining wrench is a problem arising in the domain of

constrained multi-body systems. In fact an explicit solution for h is presented in [45] given

by

h′ = P ′(b′ − A′M
′−1h

′Σ) (2.47)

with P ′ = M
′ 1
2 (A′M

′− 1
2 )† and M ′ = diag(Mo,M1, . . . ,MN). Given h′ as above, the dy-

namics (2.46) can be interpreted as follows: the vector h
′Σ :=

(
hΣo , h

Σ
1 , . . . , h

Σ
N

)T
contains

the wrenches resulting from the local system dynamics. The vector h′ :=
(
ho, h1, . . . , hN

)T

in turn results from the global interaction of all manipulators through the object. The

vector h′ thus adopts suitable values to render the accelerations ẍ on the left-hand side of

(2.46) compatible to the constraint (2.39) at any time instant and for any given h
′Σ.

The derivation of h′ is based on Gauss’ principle of least constraint, which states that

the acceleration of a constrained system is altered with respect to the acceleration of an

equivalent unconstrained system such that the acceleration difference is minimal in the

least-squares sense. The equivalent optimization problem is given by

minẍ′ (ẍ′ − ẍ
′Σ)T M ′ (ẍ′ − ẍ

′Σ) (2.48)

subject to A′ẍ′ = b′

with ẍ
′Σ = M

′−1h
′Σ denoting the acceleration of the unconstrained system. The inter-

pretation of the system dynamics (2.46) as the solution of a constrained optimization

problem (2.48) admits interesting insights.

Arbitrary trajectories in terms of xdi (t) may be specified a priori for each manipulator.

The desired trajectories in combination with the desired end effector wrenches hdi determine

unambiguously the virtual wrench vector h
′Σ as a function of the manipulator control laws.

In case initially assigned trajectories are incompatible to the kinematically constrained
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2.4 Cooperative manipulation dynamics

system, the emerging end effector wrenches h′ render the system trajectory compatible to

the imposed constraints by means of (2.47).

Discussion The cooperative manipulator dynamics (2.46) in combination with the Dirac

structure represented by an explicit expression for the interaction wrenches h′ in (2.47)

constitutes for the first time a complete and physically consistent interaction model of the

rigidly coupled manipulator system. Note that the vector h′ in (2.46) contains the actual

end effector wrenches h1 to hN as measurable by each manipulator by means of a wrist

mounted force/torque sensor. The clear contribution of this modeling approach is that it

provides a closed-form expression for computing the interaction wrenches instead of merely

measuring them via force/torque sensors at the end effector. This is clearly a prerequisite

for the consistent design of model-based force/torque controllers.

Example 1 (Load distribution). The following example illustrates the computation of the

interaction wrenches as discussed previously and motivates simultaneously a more detailed

analysis of the model as presented in the following chapters. Consider the following 1-

dimensional cooperative manipulator scenario depicted in Fig. 2.3.

b

mo

m1 m2

ẍd2ẍd1

Fig. 2.3: Two cooperative manipulators handling a rigid object along one dimension

Two manipulators are coupled rigidly to a common object of mass mo. In case of a

simplified impedance control law (letting Ki = Di = 0, i.e. only feed forward action), one

has

h
′Σ =





hΣo
hΣ1
hΣ2



 =





0

m1ẍ
d
1 + h̄d1

m2ẍ
d
2 + h̄d2



 ∈ R
3 (2.49)

The term hΣo ∈ R is zero since the Coriolis term vanishes when manipulating along only

one dimension. hΣ1 ∈ R and hΣ2 ∈ R contain the reduced impedance control law with feed

forward acceleration term and desired forces h̄d1, h̄
d
2 ∈ R. Given a desired acceleration of

the object ẍdo ∈ R, a convenient choice for the manipulator setpoints is

ẍd1 = ẍd2 = ẍdo (2.50)

and any distribution of the desired forces for α ∈ [0, 1] which satisfies

α h̄d1 + (1− α) h̄d2 = hdo = moẍ
d
o. (2.51)

In this example, the rigidity constraints impose ẍo = ẍ1 = ẍ2, yielding

A′ =

[
1 −1 0

1 0 −1

]

and b′ =

(
0

0

)

. (2.52)
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2 Modeling of the dynamics in cooperative manipulation tasks

It is now straightforward to compute the interaction wrenches. Explicit evaluation of (2.47)

yields

h′ =





ho
h1
h2



 =





moẍ
d
o

−α hdo
−(1 − α) hdo



 . (2.53)

As expected, the object experiences the desired acceleration ẍdo since ho = hdo = moẍ
d
o. The

end effector forces h1 and h2 depend on the actual implementation of the load distribution

parameterized by α. However, one can still verify the validity of (2.43) since

ho = −G

(
h1
h2

)

(2.54)

wherein the grasp matrix in this example is G =
[
1 1

]
. Amongst others, this obser-

vation leads consequently to a more thorough analysis of potential load distributions for

cooperative manipulation tasks.
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2.4 Cooperative manipulation dynamics

Example 2 (Internal forces). Note that in the previous example the setpoints for the

desired motions (2.50) were compatible with the kinematic constraints in (2.52). In general,

this might not always be the case. Consider in the following the modified motion setpoints

of the manipulators according to

ẍd1 = −ẍd2 = ẍdint. (2.55)

with an arbitrary value for ẍdint ∈ R. Note that the desired accelerations of the two

manipulators point in opposite direction, thus they tend to approach each other. In this

example, it is further assumed that m1 = m2 = mint, i.e. the two simplified impedance

controllers feature the same gain. Analogue to the previous example, one has

h
′Σ =





0

+mintẍ
d
int

−mintẍ
d
int



 ∈ R
3 (2.56)

wherein the desired forces h̄d1 and h̄d2 are set to zero. Computation of the interaction

wrenches in this example according to (2.47) yields

h′ =





ho
h1
h2



 =





0

−mintẍ
d
int

+mintẍ
d
int



 . (2.57)

Since ho = 0, the object remains at rest. Moreover, the end effector forces have the

same magnitude but opposite signs. The result of this observation is that the object is

subject to internal forces, namely a squeezing force of magnitude mintẍ
d
int. The interaction

wrenches as discussed in this chapter may thus contain motion-inducing components as

well as internal wrench components. In the following chapter, a novel and more general

approach to the characterization of internal wrenches is presented.

2.4.3 Comparison with previous approaches

The major difference of the presented modeling in this chapter with respect to existing

approaches to the modeling of the cooperative dynamics in the literature is the focus on

the task space dynamics only. In existing works, the cooperative dynamics are a mixture

of joint and task space dynamics in the form of [34, Chapter 28, eq. (28.29)]





Λ(ξ) 0 JT (ξ)

0 Mo(xo) −G

J(ξ) −GT 0









ξ̈

ẍo
λ



 =





τ − Γ

ẋo − Co

bλ



 (2.58)

with the stacked joint angle vector ξ = (ξT1 , . . . , ξ
T
N)

T , the stacked manipulator Jacobian

J = [JT
1 , . . . , J

T
N ]

T , the stacked joint space inertia matrix Λ = blockdiag(Λ1, . . . ,ΛN) and

bλ defined by

bλ = [
∂(J ξ̇)

∂ξ
]ξ̇ − [

∂(G ẋo)

∂xo
]ẋo. (2.59)
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2 Modeling of the dynamics in cooperative manipulation tasks

In the cooperative dynamics model (2.58), λ contains the Lagrange multipliers associated

to the kinematic constraint

[
J −GT

]
(
ξ̇

ẋo

)

= 0. (2.60)

Note that this constraint is a compact representation of the velocity constraints as pre-

sented in (2.31) and (2.35). In fact, under Assumption 2 (object and grasp rigidity), the

Lagrange multipliers are equivalent to the end effector wrenches, i.e.

λ ≡






h1
...

hN




 (2.61)

but their computation is based on (2.59) and inversion of the matrix on the left-hand

side of (2.58) which couples the variables ξ̈, ẍo and λ. Thus the effective value of λ can

actually be computed by evaluating an expression which incorporates joint and task space

quantities coupled through the kinematic constraint. As a consequence of the coupling

between joint and task space, expression (2.59) in combination with (2.58) does not admit

deeper insights on the origin and the characterization of the interaction wrenches. This is

different for the expression of the end effector wrenches as provided in (2.47), where the

dynamics of object and manipulators is projected onto the constrained manifold defined by

the kinematic constraints. It is worth mentioning again that the right-hand side of (2.47)

contains exclusively known task space quantities as e.g. the force/motion setpoints of the

end effectors or the individual control gains but no joint space variables. Consequently,

the analysis of the resulting end effector wrenches is greatly simplified (cf. the examples in

the previous Section 2.4.2) which allows to focus on manipulator coordination strategies

in task space as e.g. internal/external wrench control as described in the next chapter.

Summary and outlook

In this chapter a novel approach to the modeling of cooperative manipulator dynamics is

introduced. The presented approach is characterized by a strict focus on the interaction

effects of manipulators and object in task space. For computing the effective interaction

wrenches between object and manipulators, the Gauss principle known from constrained

multi-body systems is applied and the vital role of the imposed kinematic constraints is

discussed. As an immediate result, an explicit closed-form expression for the interaction

wrenches is derived.

The presented compact cooperative manipulator model in task space presents the basis

for the subsequent analysis of control and coordination strategies. Moreover, it simplifies

significantly the numerical simulation of multi-robot manipulation tasks since it transforms

the initial model expressed as a differential algebraic equation (DAE) into an ordinary

differential equation (ODE). This is clearly favorable in view of the reduced computational

complexity in view of potential applications in real-time, model-based control algorithms.
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3 Analysis of the cooperative multi-robot

manipulation model

This chapter deals with the analysis of the dynamics of cooperative manipulators. Fun-

damental properties of the dynamic model presented in Chapter 2 are derived, which are

relevant for the successful implementation of arbitrary manipulation tasks. The analysis

includes a shift of paradigm for the computation of internal wrenches and is based on a

novel, physically consistent definition of internal wrenches. Moreover, concise results on

the stability of the interaction dynamics and model-based force/motion tracking are pre-

sented. A meaningful expression for the apparent dynamics of the object is derived when

rigidly grasped by the manipulator ensemble. The chapter concludes with the analysis of

the decoupling of internal/external wrench control schemes.

This chapter is structured as follows. First, the related work on load distribution and

cooperative force/motion tracking is reviewed and open problems are discussed. Subse-

quently, an alternative definition and computation of internal wrenches based on the virtual

work principle is presented in Section 3.1. As an immediate consequence of this definition,

a more general approach to the load distribution problem is introduced in Section 3.2. A

model-based force/motion tracking controller is presented in Section 3.3 and the apparent

object dynamics is theoretically derived and experimentally evaluated in Section 3.4. Sec-

tion 3.5 presents a robust stability result of the cooperative manipulator dynamics under

inaccurate feedback linearization of the manipulators’ joint space dynamics. Eventually,

an internal wrench controller is proposed in Section 3.6 which provides a proper decou-

pling of internal and external wrench spaces consistent with the novel definition of internal

wrenches presented in Section 3.1.

Related work and open problems

The related work on force/motion tracking in the robotics research is typically split into

the two areas of internal/external wrench analysis and the cooperative control design.

Therefore, the review of the related work is also divided into those two categories. As will

become clear in the course of this chapter, the central link between both domains is given

by the imposed kinematic constraints.

Internal wrench analysis and load distribution The load distribution in robotic manipu-

lation tasks is a particular input allocation problem [46], in which the redundant degrees of

freedom for choosing the input can be given a meaningful interpretation in terms of motion-

inducing components and internal wrenches applied to the object. A typical control goal in

robotic manipulation tasks is the decoupled control of internal and external force/torque
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3 Analysis of the cooperative multi-robot manipulation model

components [47, 38, 48]. This topic has received quite some attention in the robotics liter-

ature. One of the first works addressing force control in a multi-manipulator setup is [49],

resolving the load distribution problem by means of a linearly constrained quadratic op-

timization routine. A scalar weighting factor is introduced in order to balance between

assigned end effector forces and torques, resulting in a weighted pseudoinverse for the load

distribution problem. In [50] a definition of internal wrenches based on the principle of

virtual work is provided without addressing the imposed kinematic constraints between

object and manipulators. The authors of [51] claim that only a specific non-squeezing

pseudoinverse avoids internal loading of the object. This particular load distribution is

subsequently used for the analysis of interaction forces, i.e. the decomposition of manip-

ulator forces/torques into internal and external components [52]. Recently, the authors

of [53] challenged the result for the non-squeezing pseudoinverse in [51] and proposed to

use the Moore-Penrose inverse instead. A common interpretation of internal loading is that

the difference between two end effector forces projected onto their geometric connecting

line does not vanish [52, 54]. However, it is not clear how to extend this concept in a

meaningful way to describe internal torques. Beyond the scope of cooperative multi-robot

manipulation, internal forces play a central role in the context of manipulation with multi-

fingered robot hands [55]. A geometrically inspired definition of internal forces is presented

in [56], trying to resolve inconsistencies occurring with the use of the pseudoinverse. An

alternative characterization of internal forces is presented in [57] wherein the ensemble of

manipulators is approximated as an articulated mechanism. Internal forces are interpreted

as the actuator wrenches required to lock this mechanism. However, the influence of the

applied end effector forces on the resulting torque is neglected. In summary, the complete

characterization of internal forces and torques is still an open issue as well as suitable load

distribution strategies that avoid internal wrenches applied to the object. The solution to

the problem is essential for multi-robot manipulation. The need is particularly obvious in

case of heterogeneous manipulators with different payload capacities, where the freedom

to select a capacity compliant load distribution [58] is quintessential to solve the task.

Cooperative control design The control design for cooperative manipulation tasks is

commonly performed in task space without explicitly addressing the coupling of the ma-

nipulator dynamics. Instead, the kinematic grasp parameters are used to compute the

motion setpoints of the manipulators but no model for the resulting end effector wrenches

and the resulting object trajectory is provided. Thus no conclusion of the system behavior

under an infinitesimal disturbance of the manipulator coordination in task space is drawn.

Based on the concept of impedance control [59], a cooperative control scheme realizing an

apparent object impedance is proposed by the authors of [60] and [61]. A decentralized im-

plementation of the object impedance scheme is presented in [62]. However, no expression

for the resulting object impedance is provided. Recent publications on the control design

for dexterous manipulation are either assuming quasi-static object manipulation [63] or

specify the desired closed-loop behavior through virtual object dynamics [64] without ex-

plicit model of the interaction wrenches. Previous approaches to the force/motion control

of cooperative manipulators [47, 38, 48] are not based on a complete model (i.e. including

the end effector wrenches) of the interaction dynamics as presented in the previous Chap-
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ter 2. As discussed previously, the cooperative dynamics can be written as an implicit

port-Hamiltonian system [25]. In general the control design for implicit port-Hamiltonian

systems is found to be non-trivial [65]. In [66] a differential geometric approach to the

motion coordination of Lagrangian systems is presented which incorporates the kinematic

constraints for the control synthesis, splitting the dynamics into a locked and a shape sys-

tem. For the special case of two underactuated aerial manipulators a cooperative tracking

control law based on an explicit internal force model is proposed very recently in [67]. In

summary, there is currently no general methodology for the model-based control design

for cooperative manipulators in task space which allows to analyze, derive and quantify

relevant cooperative system properties such as robust stability or force/motion tracking.

3.1 Internal wrenches

This section focuses on the analysis of internal wrenches. Internal wrenches are end ef-

fector wrenches which do not contribute to the motion of the manipulated object but

are sometimes required to achieve a stable grasp when grasp contacts are not rigid. A

gentle squeezing of the object might be necessary to avoid slippage of the end effectors

when contact points are subject to friction. However, in any manipulation scenario inter-

nal wrenches need to be limited to avoid damage of the object. Therefore, a consistent

characterization of internal wrenches is mandatory.

3.1.1 Characterization of internal wrenches

Previously, internal wrenches were defined similarly in the area of cooperative manipu-

lation [51] and grasping [68] as the components of the wrench vector h lying in the null

space of the grasp matrix G. An alternative formulation of internal wrenches is proposed

by means of the following definition.

Definition 1. Internal wrenches are end effector wrenches for which the total virtual work

is zero for any virtual displacement of the end effectors satisfying the kinematic constraints.

This definition has some important consequences. One immediate observation is that

internal wrenches do no work to the common object. That is, internal wrenches according

to Definition 1 are not motion-inducing and are thus in line with the nomenclature in [51].

Note that in particular any wrench belonging to the null space of the grasp matrix G

yields a total virtual work of zero for an arbitrary virtual displacement compatible with

the constraints.

The most important difference of Definition 1 compared to previous definitions is that

it is based on the kinematic constraints between the end effectors. The following theorem

shows that the two formulations based on the virtual work principle and the null space of

the grasp matrix are equivalent.
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3 Analysis of the cooperative multi-robot manipulation model

Theorem 1. Under Assumption 2 and given a non-zero set of end effector wrenches h

acting on the object, the following statements are equivalent:

• the wrenches h are internal according to Definition 1.

• the wrenches h belong to the null space of the grasp matrix G in (2.45).

Proof. According to Definition 1, the virtual work of the set of internal wrenches h along

the virtual end effector displacements δx compliant with the kinematic constraints is zero,

i.e.

hT δx = 0. (3.1)

Given an infinitesimal displacement of the object δxo, the infinitesimal displacement of the

end effectors δx compliant to the kinematic constraints is obtained via (2.31) and (2.35),

which can be rewritten as

δx = GT δxo. (3.2)

Employing this fact in (3.1), one has

hT δx = hTGT δxo = (Gh)T δxo = 0, (3.3)

Therefore, (3.3) holds for Gh = 06×1. This means that the wrenches h are internal accord-

ing to Definition 1 if and only if h ∈ Ker(G).

This result illustrates that the virtual work principle is in accord with the previous

definition of internal wrenches based on the null space of the grasp matrix. However,

Definition 1 throws light on the significance of the kinematic constraints. Consideration

of the kinematic constraint is crucial for the explicit computation of internal wrenches as

discussed subsequently.

To this end, note that Definition 1 is consistent with the concept of constraining

wrenches in the context of constrained multi-body systems [45]. It is well-known from

Lagrangian mechanics that the total virtual work done by the constraining wrenches is

zero. Internal wrenches can thus be interpreted as wrenches ensuring compliance of the

manipulator motion to the imposed kinematic constraints.

3.1.2 Computation of internal wrenches

In the previous Chapter 2, the modeling of the cooperative manipulator system and the

computation of the interaction wrenches is based on an augmented system description

including the dynamics of manipulators and object. The computed interaction wrenches h′

are the constraining wrenches for this augmented system as presented in (2.46), denoted

by the apostrophe.

In this section, the constraining wrench formulation is again used for computing the

internal wrenches hint. This time, the constraining wrench are computed for the system

incorporating only the dynamics of the manipulators without the object, yielding a physi-

cally consistent description of internal wrenches. This idea is illustrated in Fig. 3.1.
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ho
b

h1 hi

hN

r1 ri

rN

hint1 hinti

hintN

ri1

rN1

b

Fig. 3.1: Illustration of the constraining wrenches for the system of manipulators plus object
and for the system of manipulators without object

On the left-hand side of Fig. 3.1 the system of manipulators and object is depicted.

Computation of the constraining wrench for this system yields an expression for the wrench

acting on the object ho and the end effector wrenches hi. Consequently, the end effector

wrenches hi comprehend the inertial effects related to the object dynamics. On the right-

hand side of Fig. 3.1, the reduced system consisting of the manipulators only is depicted.

Note that the relative kinematics between the end effectors is uniquely determined by

means of the relative grasp parameters

∆rij = ri − rj (3.4)

∀i ∈ {1, . . . , N}\{j} for an arbitrary choice of j ∈ {1, . . . , N}. In Fig. 3.1, the case for

j = 1 is depicted. The constraining wrench for the system of end effectors without object

is identified with the internal wrenches as discussed in the sequel. It is intuitively clear

that the internal wrenches hint should not depend on the actual object dynamics. In fact,

it is shown subsequently that internal wrenches depend exclusively on the motion setpoints

of the end effector ensemble.

In order to quantify the internal wrenches arising in a cooperative manipulation task,

reconsider the term hxi in (2.22) representing the motion controller of a single end effector.

Alternatively, one can reformulate (2.22) on acceleration level by multiplying with M−1
i

from the left, yielding

ẍxi = ẍdi −M−1
i {Di[ẋi − ẋdi ] + hKi (xi, x

d
i )}. (3.5)

In case that no tracking error exists, i.e. xi(t) = xdi (t), the acceleration of the motion

controller ẍxi coincides with the desired acceleration ẍdi . Simultaneously, this means that

the (virtual) spring and damper of this end effector are in rest position. In general however,

the contributions from spring and damping elements need to be considered, too. The focus

is now put on the case that the action of the motion controller is not compatible with the

kinematic constraints. Such a situation is depicted in Fig. 3.2.

The set of the ẍxi do not necessarily have to respect the kinematic constraints as depicted

on the right-hand side of Fig. 3.2. However, the constraining wrenches hinti render the actual

end effector accelerations ẍi compatible with the imposed constraints as depicted on the

left-hand side of Fig. 3.2. This observation links the computation of internal wrenches

closely to the kinematics of the cooperative manipulator system.
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3 Analysis of the cooperative multi-robot manipulation model

hint

1 hint

2

hint

3

ẍx1

ẍx2

ẍx3

ẍ1

ẍ2

ẍ3

Fig. 3.2: Illustration of internal wrenches in a multi-robot manipulation task. The actual mo-
tion of the manipulators ẍ is the superposition of their motion controller acceleration
ẍx and the interaction in terms of the internal wrenches hint.

In order to quantify the constraining wrenches, the kinematic constraints in (2.32)

and (2.36) are reformulated in matrix form as

Aẍ = b (3.6)

by letting ẍ = (ẍT1 , . . . , ẍ
T
N)

T , the matrix A ∈ R
6(N−1)×6N

A =










−I3 S(∆r21) I3 03
03 −I3 03 I3
...

...
. . .

−I3 S(∆rN1) I3 03
03 −I3 03 I3










, (3.7)

with the relative grasp positions ∆rji as in (3.4) and the vector b ∈ R
6(N−1) incorporating

the centripetal terms

b =









S(ω2)S(ω2)∆r21
03×1

. . .

S(ωN)S(ωN)∆rN1

03×1









. (3.8)

An explicit expression for the internal wrenches in the sense of Definition 1, result from

a projection of the motion controller accelerations ẍx onto the kinematic constraints [45]

according to

hint =M
1
2 (AM− 1

2 )†(b−Aẍx) (3.9)

with the matrix M = diag(M1, . . . ,MN ) incorporating the apparent inertia of the robotic

end effectors in task-space. In fact, the kinematic error e = b − Aẍx indicates if the

desired end effector accelerations ẍx violate the imposed kinematic constraint (3.6). More-

over, the constraining wrench hint vanishes whenever the commanded acceleration of the

manipulators is compatible with the kinematic constraints.

It remains to demonstrate that the internal wrenches computed according to (3.9) are

in compliance with Definition 1. To this end, the following intermediate result is helpful.
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3.1 Internal wrenches

Lemma 1. Under Assumption 2, an equivalent expression for the internal wrenches (3.9)

is given by

hint = AT (AM−1AT )−1(b−Aẍx). (3.10)

Proof. The proof is based on an explicit computation of the Moore-Penrose inverse

(AM− 1
2 )† in (3.9). Note that the Moore-Penrose inverse of a matrix X with full row

rank is explicitly given by X† = X∗(XX∗)−1 wherein X∗ denotes the conjugate transpose

of X . It is straightforward to show that A has full row rank since the kinematic constraints

are (by construction) linearly independent. Moreover, M is square, symmetric and posi-

tive definite by construction and has consequently full rank. The same properties hold for

M− 1
2 . Thus it follows that [69, p. 88, (3.121)]

rank(AM− 1
2 ) = rank(A), (3.11)

i.e. AM− 1
2 has full row rank. Explicit computation of (AM− 1

2 )† and substitution in (3.9)

yields immediately the result (3.10).

Based on the interaction wrench formulation (3.10), the next fundamental result on

internal wrenches is derived.

Theorem 2. Under Assumption 2, the wrenches hint given by (3.10) are internal according

to Definition 1.

Proof. In order to prove that hint are internal wrenches in the sense of Definition 1, ac-

cording to Theorem 1, it is sufficient to show that hint ∈ Ker(G). To this end, it can be

shown that

Im(AT ) ≡ Ker(G) (3.12)

which follows from combining

(i) the dimensions of Im(AT ) and Ker(G) coincide, since dim(Im(AT )) = 6(N − 1)

and by applying the rank-nullity theorem of linear algebra one has

dim(Ker(G)) = 6N − dim(Im(G)) = 6N − 6 = 6(N − 1)

(ii) the matrix product GAT vanishes. Substitution of G in (2.45) and AT in (3.7) yields

G AT =

[
. . . −I3 + I3 03 . . .

. . . −S(r1) + S(∆r1j) + S(rj) −I3 + I3 . . .

]

= 06×6(N−1). (3.13)

By definition in (3.4), ∆r1j = r1 − rj, and consequently S(∆r1j) = S(r1) − S(rj).

Thus all elements of the matrix product GAT are zero.
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3 Analysis of the cooperative multi-robot manipulation model

Given (3.12), it is now straightforward to verify that

G hint = G AT
︸ ︷︷ ︸

06×6(N−1)

(AM−1AT )−1(b− Aẍx) = 06×1 (3.14)

and thus hint ∈ Ker(G).

The computation of the internal wrenches as performed by means of (3.10) clearly

constitutes a shift of paradigm for the analysis and computation of internal wrenches. This

new perspective links the analysis of internal wrenches closely to the kinematic constraints

imposed to the end effectors.

3.1.3 Comparison with previous approaches

Previously, the computation of internal wrenches was performed via a decomposition of

the manipulator wrenches without incorporating the end effector kinematics. This former

approach depends implicitly on a specific load distribution in terms of a generalized in-

verse of the grasp matrix G+. This becomes clear as the internal wrench components are

computed e.g. in [52] via

hint = (I6N×6N −G+G)h, (3.15)

which is based on a particular wrench distribution G+. Alternatively, one could also

reformulate this approach as hint = h− hext with hext = G+Gh. As will be detailed in the

next section of this chapter, there is no unique generalized inverse G+ allowing a conclusion

on the internal components. Thus the previous approach in (3.15) for computing the

internal wrenches is in fact assuming a particular distribution for the external end effector

wrenches hext and is computing the internal components hint subsequently.

A more general and physically consistent characterization of internal wrenches results

from incorporating the end effector kinematics by means of ẍx for computing the internal

components hint as presented in (3.10).

Remark (Internal stress) In continuum mechanics, internal stress is defined as the con-

tact force between neighboring particles inside a solid body. In the scope of the analysis

of cooperating manipulators one is not interested in the actual stress distribution inside

the commonly manipulated object - internal stress occurs even when manipulating a rigid

object with a single end effector and can thus not be avoided.

3.2 Load distribution

With the physically consistent characterization of internal wrenches according to Defini-

tion 1 in the previous section, the focus is now shifted on the load distribution in cooperative

manipulation tasks. The load distribution allocates suitable force and torque setpoints to

an ensemble of manipulators in order to implement a desired action on the manipulated

object. Mathematically, this is equivalent to finding an inverse expression for the grasp
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3.2 Load distribution

matrix G in (2.43). More precisely, given a desired wrench applied to the object hdo, one

would like to resolve the intrinsic redundancy in






h̄d1
...

h̄dN




 = G+hdo (3.16)

by means of a suitably parameterized generalized inverse G+. In particular, one is in-

terested in finding all load distributions which are free of internal wrenches according to

Definition 1. This leads to the major result of this section.

Theorem 3. Under Assumption 2, the load distribution given by

G+
M =










m∗
1[m

∗
o]

−1I3 m∗
1[J

∗
o ]

−1S(r1)
T

03 J∗
1 [J

∗
o ]

−1

...
...

m∗
N [m

∗
o]

−1I3 m∗
N [J

∗
o ]

−1S(rN)
T

03 J∗
N [J

∗
o ]

−1










(3.17)

for some positive-definite weighting coefficients m∗
i ∈ R and J∗

i ∈ R
3×3 with

m∗
o =

∑

i

m∗
i (3.18)

J∗
o =

∑

i

J∗
i +

∑

i

S(ri)m
∗
iS(ri)

T , (3.19)

and

∑

i

rim
∗
i = 03×1 (3.20)

is free of internal wrenches applied to the object according to Definition 1.

Proof. The proof is based on a particular parameterization of the generalized inverse of the

grasp matrix. This parameterization appears naturally when considering the dynamics of

a virtual end effector system subject to the kinematic constraints and allows to give these

parameters the meaning of virtual masses and inertias. With hdo in hand, one readily

computes the resulting virtual acceleration ẍ∗o which the object would experience if it had

the mass m∗
o and inertia J∗

o under the assumption that only the desired wrench hdo was

acting on the object. This is done by inverting

[
m∗

oI3 03
03 J∗

o

]

ẍ∗o = hdo. (3.21)

With this virtual object acceleration ẍ∗o it is possible to conclude on the (virtual) acceler-

ation of the attached end effectors ẍ∗i by employing the kinematic constraints (2.32) and

(2.36). By assigning now virtual inertias m∗
i and J∗

i to the i-th end effector, it is straight-

forward to compute the required wrench h̄di inducing the virtual end effector acceleration
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3 Analysis of the cooperative multi-robot manipulation model

ẍ∗i according to

h̄di =

[
m∗

i I3 03
03 J∗

i

]

ẍ∗i . (3.22)

So far, all occurring virtual inertias and thus the individual manipulator wrenches h̄di are

undetermined. However, any admissible load distribution should satisfy (2.43), i.e. hdo =

Gh̄d being equivalent to the individual conditions on the desired object force f d
o =

∑

i f̄
d
i

and the desired object torque tdo =
∑

i t̄
d
i +

∑

i ri × f̄ d
i . Substituting (3.21) and (3.22) for

the force components and employing (2.32) leads to

m∗
op̈

∗
o =

∑

i

m∗
i [p̈∗o + ω̇∗

o × ri + ω∗
o × (ω∗

o × ri)] . (3.23)

Comparing the coefficients of p̈∗o immediately yields m∗
o =

∑

im
∗
i . Since ω̇∗

o (and ω∗
o) can

take arbitrary values, the virtual masses need to respect
∑

i rim
∗
i = 03×1 in order to cancel

the terms involving ω̇∗
o and ω∗

o in (3.23). Considering the torque components in (2.43) and

again substituting (3.21) and (3.22) combined with (2.32) and (2.36) one has

J∗
o ω̇

∗
o =

∑

i

J∗
i ω̇

∗
o +

∑

i

ri ×m∗
i [p̈

∗
o + ω̇∗

o × ri + ω∗
o × (ω∗

o × ri)]. (3.24)

Comparing coefficients yields J∗
o =

∑

i J
∗
i +

∑

i S(ri)m
∗
iS(ri)

T wherein the cross-product

is expressed in terms of skew-symmetric matrices. The term involving p̈∗o on the right-

hand side of (3.24) vanishes (since
∑

i rim
∗
i = 03×1) so that only the additional term

∑

i ri ×m∗
i [ω

∗
o × (ω∗

o × ri)] remains. Recall that (3.21) determines solely a virtual object

acceleration due to hdo at a specific time instant but no information about the object’s

virtual velocity is available. In order to obtain an admissible load distribution satisfying

(2.43), a convenient choice is thus ω∗
o = 03×1 which eliminates the impact of the virtual

product of inertia-like term. Note that this does not mean that the manipulated (physical)

object needs to be at rest since ẍ∗o is in general different from the object’s actual acceleration

(and velocity). The choice for the object’s virtual velocity ω∗
o = 03×1 is arbitrary and simply

ensures that at one specific time instant and a given hdo, an admissible set of end effector

wrenches h̄di is computed - completely independent from the actual object dynamics. By

construction, the total virtual work done by the end effector wrenches is non-zero for any

virtual displacement satisfying the constraints. The load distribution is thus free of internal

wrenches according to Definition 1.

Note that the weighting coefficients m∗
i and J∗

i (and consequently m∗
o and J∗

o ) do have

the meaning of inertial parameters but they are abstract parameters. They are exclusively

used to parameterize the generalized inverse G+
M for the purpose of load distribution but

they do not characterize the inertial properties of the manipulated object. A particular

choice of these weighting coefficients leads to an explicit expression for the Moore-Penrose

inverse of the grasp matrix.
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3.2 Load distribution

Corollary 1. An equal distribution of the manipulator weights according to m∗
i = 1 and

J∗
i = I3 yields

G† =
1

N










I3 J̄−1S(r1)
T

03 J̄−1

...
...

I3 J̄−1S(rN)
T

03 J̄−1










(3.25)

with J̄ = I3 +
1
N

∑

i S(ri)S(ri)
T and (3.25) being equivalent to the Moore-Penrose inverse

of G.

Proof. The Moore-Penrose inverse of a matrix might be interpreted as the solution to

a quadratic programming problem with equality constraint. Thus the load distribution

problem is reformulated as

min
hd

‖h̄d‖2. (3.26)

s.t. hdo = Gh̄d

An explicit, analytical solution to this optimization problem can be obtained by computing

the Schur complement

S̄ := GGT = N

[
I3 03
03 I3 +

1
N

∑

i S(ri)S(ri)
T

]

(3.27)

which is used for computing the desired mapping

h̄d = GT S̄−1hdo. (3.28)

By definition the Moore-Penrose inverse is equivalent to the solution of the minimization

problem (3.26) such that

G† = GT S̄−1. (3.29)

Straightforward computation of GT S̄−1 reveals equivalence of this expression to (3.25).

Clearly, there exist not a single load distribution free of internal wrenches but a set of

load distributions avoiding application of internal wrenches to the object. This is in line

with the observations from the previous Example 1 in Chapter 2, where the interaction

wrenches required to manipulate the object were balanced between two end effectors while

avoiding entirely internal wrenches. A more detailed discussion of the load distribution

presented in Theorem 3 and its implications is given in the subsequent examples.

Example 3 (Heterogeneous load distribution). In this example, a heterogeneous load dis-

tribution is analyzed and the non-squeezing property is further stressed. To this end, con-

sider the one-dimensional multi-robot manipulation example depicted in Fig. 3.3, wherein

two manipulators cooperatively move an object in the horizontal direction.
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3 Analysis of the cooperative multi-robot manipulation model

m∗
1

b

f d
o = 10N

m∗
2

3N 7N

Fig. 3.3: Two cooperating manipulators moving a rigid object in one dimension.

The force distribution indicated at the right-hand side of Fig. 3.3 results obviously in the

desired object force f d
o . The relevant question is if the load distribution contains internal

forces applied to the object. In contrast to previous results [51, 52, 53] it becomes obvious

that in this case there is not necessarily an internal wrench applied to the object: Both end

effector forces contribute entirely to the desired motion of the object and thus no internal

wrench is present. Existing criteria [51, 53] for the analysis of internal wrenches yield an

internal force component of ±2N for the force distribution in Fig. 3.3. This is due to the

fact that a specific (an equal) distribution of manipulator forces is assumed implicitly by

using e.g. G† for the computation of internal and external wrenches by means of (3.15).

By letting m∗
1 = 3kg and m∗

2 = 7kg in (3.17), the force distribution indicated in Fig. 3.3

is obtained. Note that this one-dimensional example is equivalent to manipulating a point

mass and condition (3.20) is trivially met through choosing r1 = r2 = 03×1 for any values

of m∗
1 and m∗

2. By considering an infinitesimal displacement of the end effectors along the

horizontal axis it becomes obvious that the total virtual work done is non-zero and the

load distribution is free of internal wrenches.

For the current example this means that no internal wrenches are applied to the object

as long as both manipulators agree and move with a common desired acceleration ẍdo
while applying the indicated end effector forces. In order to conclude consistently on the

existence of internal wrenches, the end effector kinematics need to be evaluated by means

of (3.9). This observation is in contrast to the results in [51, 52] where the difference in

the applied force of two manipulators projected onto their connecting line was used to

conclude on internal loading.

Example 4 (Balancing for load distribution). This example stresses further that there

exists no unique load distribution free of internal wrenches. Consider the multi-robot

manipulation setup depicted in Fig. 3.4.

b

f d
o

b

L
td1 td2

f d
1 f d

2

L

tdo
x

y

Fig. 3.4: Load distribution example for two cooperating manipulators.

This time a desired torque about the axis perpendicular to the paper plane is imple-

mented, i.e. only tdo,z = τ in the desired object wrench hdo. The load distribution according

to the Moore-Penrose inverse G† in (3.25) gives for τ = 1Nm and L = 1m

f̄ d
1,y = −f̄ d

2,y = −
1

4
N , td1,z = td2,z =

1

4
Nm. (3.30)

The choice of m∗
i = 4 and J∗

i = I3 for the load distribution by means of G+
M in (3.17) gives
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3.3 Cooperative force/motion tracking

f̄ d
1,y = −f̄ d

2,y = −
4

10
N , td1,z = td2,z =

1

10
Nm. (3.31)

The load distribution obtained by the modified, non-unitary weights yields a wrench dis-

tribution which demands a smaller torque to be applied by the robotic end effectors but

leads to an equivalent object wrench. The ratio between the resulting inertial parameters

m∗
o and J∗

o in (3.18) and (3.19) can be used to tune the amount of the resulting object

torque tdo that is either produced by end effector forces f̄ d
i acting over a lever ri, or by direct

application of the end effector torques t̄di . It is worth noticing that the wrench distribution

(3.31) does not induce internal wrenches at the object. As a limit case for J∗
i → 03, the

desired object torque tdo is exclusively produced by the desired end effector forces f̄ d
i and

the allocated end effector torques are zero, i.e. t̄di = 03×1.

3.3 Cooperative force/motion tracking

Based on the previous discussion on internal wrenches and load distributions, a fundamen-

tal result on force/motion tracking for the cooperative manipulator ensemble is presented

in this section . With the desired motion of the object ẋdo in hand, the desired motion of

the end effectors ẋdi is unambiguously determined by the following relation

ẋd = GT ẋdo, (3.32)

with ẋd = [(ẋd1)
T , . . . , (ẋdN)

T ]T which is essentially a reformulation of the kinematic con-

straints presented in (2.32) and (2.36) at velocity level.

Remark (Motion setpoint computation) Based on ẋdi , each manipulator is able to

compute ẍdi and xdi in its local end effector frame by proper derivation/integration of the

desired velocity. Equivalently, the desired trajectory xdi can locally be computed by double

integration of ẍdi .

Combining the kinematic coordination (3.32) with any suitable load distribution ac-

cording to (3.17) achieves cooperative force/motion tracking as stated in the following

theorem.

Theorem 4. Consider the object dynamics (2.25) without disturbance h̃o = 06×1 and ideal

feedback linearization h̃i = 06×1 in (2.11). Further assume that the object’s inertia Mo and

the grasp matrix G are known and that Assumptions 1 and 2 hold. Then the combined

dynamic and kinematic coordination strategies in (3.16) and (3.32) achieve tracking, i.e.

ho(t) ≡ hdo(t) and ẋo(t) ≡ ẋdo(t) (3.33)

for the cooperative manipulation task without applying internal wrenches according to Def-

inition 1.

Proof. Ideal kinematic coordination of the manipulators according to (3.32) means that

∀i : xi(t) = xdi (t) which implies ẋi = ẋdi and ẍi = ẍdi in compliance with the kinematic con-

straints by construction. Using this fact in (2.11) (or in any other force/motion control
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3 Analysis of the cooperative multi-robot manipulation model

scheme) one has immediately hi = hdi and h̄i = h̄di respectively. Combining (2.43) and

(3.16) leads to an explicit expression for the object wrench ho in (2.25) as

ho = GG+
Mh

d
o. (3.34)

By definition GG+
M is the identity matrix. Substituting this result in the object dynamics

(2.25) and choosing hdo =Moẍ
d
o + Co(x

d
o, ẋ

d
o)ẋ

d
o yields ẍo(t) = ẍdo(t) and thus xo(t) = xdo(t)

for xdo(0) = xo(0) and ẋ
d
o(0) = ẋo(0). No internal wrenches are applied to the object since

the desired motion of the manipulators is by construction compatible to the kinematic

constraints. Mathematically, this can be verified by employing ẍ′x = ẍd in (3.9) from

which follows h′int = 06×1.

This result gives insight to the fundamental characteristics of a cooperative manipulation

task. In general it is not sufficient to choose a suitable load distribution strategy for

the manipulator ensemble but the effective end effector motions need to be kinematically

compatible to the imposed constraints, too. The control strategy of Theorem 4 achieves

tracking and is essentially an inverse dynamics controller for the interaction dynamics

model as given through (2.46) and (2.47) with respect to the manipulated object. The

corresponding block scheme is depicted in Fig. 3.5.

Inverse dynamics

M−1
o G+

M

Load

hd1
hdN

GT

Kinematicẋdo

hdo

ẋd1
ẋdN

Cooperative dynamics

ẋo
coordination

Object level controller

Redundancy resolution

distribution

Fig. 3.5: Block scheme representation of controller and plant dynamics for cooperative
force/motion tracking

From the desired object motion ẋdo, the desired object wrench hdo is computed by means of

the (inverse) dynamics given in (2.25). The load distribution allocates suitable end effector

wrenches hdi while the kinematic coordination computes suitable motion setpoints for the

individual manipulators. In this context, the coordination strategies (3.16) and (3.32) can

be interpreted as a dynamically consistent redundancy resolution for the manipulator en-

semble. The actual manipulator and object dynamics are contained in the Cooperative dy-

namics block as described in Chapter 2, i.e. in particular the system representation (2.46)

and (2.47).

3.4 Apparent object dynamics

In this section the apparent object dynamics with respect to a disturbing wrench is derived.

This behavior is particularly relevant whenever contact with the environment occurs during
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3.4 Apparent object dynamics

the manipulation task. In case of impedance controlled end effectors, it turns out that the

object behavior can again be characterized by an equivalent impedance in the form of (2.11)

if the manipulators compensate the object’s inertial effects.

Theorem 5. Consider the impedance controlled end effector dynamics (2.11) with ideal

feedback linearization, i.e. h̃i = 06×1, and assume the manipulator ensemble to compensate

the gravity force of the object, i.e. hdo = hg in (3.16) and with hg from (2.26). Assume

further that Assumptions 1 and 2 hold. Then the apparent dynamics of the cooperative

manipulator system with respect to a disturbance h̃o in (2.25) is given by

Mẍo +Dẋo + hKo (xo, x
d
o) + Coẋo = h̃o. (3.35)

The apparent inertia M, damping D and stiffness hKo are

M =

[
(mo +

∑

imi)I3
∑

imiS
T (ri)

∑

i S(ri)mi J

]

(3.36)

with J := Jo +
∑

i Ji +
∑

i S(ri)[miI3]S
T (ri),

D =

[
(
∑

i di)I3
∑

i diS
T (ri)

∑

i S(ri)di
∑

i δi +
∑

i S(ri)[diI3]S
T (ri)

]

(3.37)

and

hKo (xo, x
d
o) =

N∑

i=1

{

[
kiI3 03
Ξi κ′iI3

](
∆po
∆ǫo

)

} (3.38)

with the coupling terms Ξi ∈ R
3×3 defined by Ξi := ST (ri)ki. For an infinitesimal twist

displacement of the object δxo about xdo in (3.38) one has hKo = K δxo with

K =
N∑

i=1

[
kiI3 0

Ξi ST (ri)[kiI3]S(ri) + κiI3

]

. (3.39)

Among all possible representations, one particular factorization of the Coriolis-centrifugal

matrix Co for the cooperative dynamics can be computed via

Coẋo = Ṁ −
1

2

∂

∂xo

(
ẋTo Mẋo

)
. (3.40)

Proof. The apparent inertia of the object M is computed by considering the kinetic energy

of the overall system being equivalent to the sum of the kinetic energy of the subsystems

T = To(ẋo) +
N∑

i=1

Ti(ẋi). (3.41)

By employing the constraint (2.31) in (3.41) one has

T = ẋTo Mẋo (3.42)

yielding the expression for M in (3.36). Similar to the kinetic energy, the potential energy
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3 Analysis of the cooperative multi-robot manipulation model

of the augmented system can be used to conclude on the apparent stiffness of the object

K. The potential energy of the overall system is the sum of the potential energy of the

subsystems, i.e.

U = Uo(xo) +

N∑

i=1

Ui(xi). (3.43)

The potential energy Ui depends implicitly on the desired pose of the i-th end effector xdi
since it is equivalent to the elastic energy stored in a tensioned spring between the points

xi and x
d
i with stiffness ki/κi. The desired end effector pose is chosen to coincide with the

initial end effector pose resulting in zero preload of all springs. By considering an arbitrary

object equilibrium pose

x̄o =

(
p̄o
q̄o

)

= const. (3.44)

the desired end effector pose can be derived from the kinematic constraints

xdi =

(
pdi
qdi

)

=

(
p̄o +

w Ro(q̄o)
ori

q̄o ∗ δqi

)

. (3.45)

It is worth noticing that the relative rotation of the object w.r.t. its equilibrium

∆qo = qo ∗ (q̄o)
−1 (3.46)

is equivalent to the relative rotation of the attached end effectors w.r.t. their equilibrium

pose, i.e. ∆qi = ∆qo. Thus the potential energy of the individual end effector Ui in (3.63)

can conveniently be written as a function of the object coordinates xo according to

Ui(xo) =
1

2
∆pTi [kiI3]∆pi + 2∆ǫTo [κiI3]∆ǫo. (3.47)

In order to conclude on the apparent stiffness of the object, one needs to investigate the

forces arising from the potential energy. Taking the partial derivative of the potential

energy U in (3.43) w.r.t. the object coordinates xo yields

∂U

∂xo
= hg + hKo (xo) (3.48)

with the gravitational force hg presented in (2.26) and hKo (xo) as given in (3.36).

With the expressions for the kinetic and potential energy in (3.41) and (3.43) one readily

derives the system’s equation of motion by applying Lagrangian mechanics

Mẍo + Coẋo + hKo (xo) + hg = h∗ (3.49)

wherein h∗ is a generalized, non-conservative wrench acting on the object and Co is the

Coriolis-centrifugal matrix [70] associated to M. For isotropic inertial parameters mi and

Ji the corresponding elements of M do not depend on the generalized coordinate xo and

the associated Christoffel symbols are thus zero. In this particular case one has Co = Co

as in (2.26). The term h∗ in (3.49) turns out to be of the form
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3.4 Apparent object dynamics

h∗ = −Dẋo + ho + h̃o (3.50)

with D given in (3.37). The expression for h∗ can be derived by substituting (2.43) in

the object dynamics (2.25) and replacing hi by the impedance control law in (2.11). This

yields

Mẍo + Coẋo +Dẋo + hKo (xo) + hg = hdo + h̃o. (3.51)

from which (3.35) follows immediately by letting hdo = hg.

This result has a straightforward interpretation in terms of a mechanical equivalent. The

effective object inertia Mo is augmented by attaching rigidly the individual manipulator

inertias Mi to the respective grasp points xi. Additionally, for each manipulator a spring-

damper element defined through the parameters Ki and Di is attached at each grasp point

with the remote suspension point located at the manipulators’ desired pose xdi . This is

illustrated in Fig. 3.6.

b

b

b

M1
Mi

MN
Mo

b h̃o

x1
xi

xN

b
xd1

b x
d
i

b xdN

Fig. 3.6: Illustration of the apparent object dynamics as a parallel connection of mass-spring-
damper elements

The apparent damping and stiffness of the object results from a parallel connection

of the individual spring-damper elements. Note that the apparent end effector inertias

Mi appear as if attached rigidly to the object at the grasp point xi, not at the desired

manipulator pose xdi . Furthermore, the analytic expressions for M,D and K in Theo-

rem 5 constitute the fundamental equations for the impedance synthesis in multi-robot

cooperative manipulation tasks. Their significance is illustrated by the following example.

Example 5 (Apparent object stiffness). Consider two manipulators with k1 = k2 = 100N
m
,

κ1 = κ2 = 100Nm
rad

and or1/2 = ±(1, 0, 0)Tm. According to (3.39), the apparent translational

stiffness of the object is isotropic and simply the parallel connection of k1 and k2 yielding

200N
m
. The rotational stiffness is the parallel connection of κ1 and κ2 plus the contribution

from the translational stiffness yielding (200, 400, 400)T Nm
rad

for infinitesimal rotations about

the object axes. Even in case of a symmetric manipulator setup, the apparent stiffness

of the object is non-isotropic. However, due to the symmetry the coupling term
∑

i Ξi

between translational and rotational motion is zero.

The preceding observation for a symmetric setup of the manipulator system can further

be generalized.
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3 Analysis of the cooperative multi-robot manipulation model

Corollary 2. Let the values of mi, di and ki in (3.36), (3.37) and (3.38) respectively be

homogeneous

∀i 6= j : mi = mj , di = dj, ki = kj (3.52)

and the grasp geometrically symmetric, that is
∑

i ri = 03×1. Then the translational and

rotational object motion of the cooperative system (3.35) subject to a disturbance h̃o is

decoupled, i.e. the matrices M, D and K are block-diagonal.

Proof. It is straightforward to verify that the matricesM, D and K are block-diagonal with

zero off-diagonal matrices 03 by considering (3.36), (3.37) and (3.39) while employing (3.52)

and exploiting the linearity of the skew-symmetric operator S(·) for
∑

i ri = 03×1.

In the symmetric setup under consideration both the center of stiffness and the center

of compliance [71] coincide with the origin of the object frame {o}, yielding perfect decou-

pling of translational and rotational behavior. Consider yet another practically motivated

example.

Example 6 (Impedance synthesis). Assume that the apparent impedance of the cooper-

ative manipulator system is to be tuned to exhibit critical damping. By considering the

entries of M, D and K in Theorem 5 it is obvious that the rotational impedance param-

eters involve the translational impedance parameters and the grasp kinematics in terms

of ri. Thus the impedance synthesis needs to incorporate the actual grasp geometry. An

independent design of rotational and translational impedance leads in general not to the

desired target impedance.

3.4.1 Experimental evaluation

The conducted experimental study focuses on the evaluation of the apparent dynamics

of the cooperative manipulator system presented in Theorem 5. To this end, the wrench

h̃o and the object pose xo in a cooperative manipulator setup is measured and a system

identification is performed subsequently in order to estimate the parameters M, D and K.

Experimental setup

The experimental setup involving two anthropomorphic manipulators with 7 degrees of

freedom and wrist-mounted force/torque sensors is depicted in Fig. 3.7.

Both end effectors are rigidly grasping an aluminum beam with a quadratic profile and

1.5mm edge length. The overall length of the beam is 1m. A JR3 67M25 6-dimensional

force/torque sensor is attached to the center of the beam and an auxiliary handle is

mounted on the opposite side of the sensor, enabling the measurement of the externally

applied wrench h̃o. The force/torque signal is filtered by a low-pass filter with 500Hz cutoff

frequency. Simultaneously, the object is equipped with optical markers in order to track

its pose xo via a Qualisys Motion Capture System. The object coordinate frame {o} co-

incides with the center of mass and is indicated by means of red arrows in Fig. 3.7. The

overall mass of the object is mo = 1.75kg and its moment of inertia about the x-axis is

Jo,x ≈ 0.055kgm2.
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3.4 Apparent object dynamics

Fig. 3.7: Experimental setup with two robotic manipulators and force/torque sensor for mea-
suring the externally applied wrench h̃o

The manipulators are controlled individually by an impedance control scheme according

to (2.11) with a sampling time of Ts = 1ms, wherein the desired wrench is set to zero,

i.e. hdi = 06×1 and a constant desired end effector pose, i.e. xdi = const., such that

r1 = (0.0,−0.40, 0.0)Tm and r2 = (0.0,+0.40, 0.0)Tm. The impedance control parameters

for both manipulators are mi = 10kg, di = 180Ns
m
, ki = 300N

m
for the translational behavior

and Ji = I3 · 0.5kgm
2, δi = 10Nm rad

s
, κi = 50Nm

rad
for the rotational behavior.

Translational dynamics

The apparent translational dynamics in x-direction derived from (3.35) can be written as

m∗
o p̈x + d∗o ṗx + k∗o px = f̃x (3.53)

with the object’s position in x-direction px ∈ R, the applied force in x-direction f̃x ∈ R

and the translational impedance parameters

m∗
o = 21.75kg, d∗o = 360

Ns

m
, k∗o = 600

N

m
(3.54)

extracted from the matrices M, D and K in Theorem 5. The applied force f̃x and the

position px are plotted in Fig. 3.8.

Based on the reduced dynamical model (3.53) and the input/output data given by f̃x/px,

a system identification is performed. Estimates of the scalar parameters m∗
o, d

∗
o and k∗o

are obtained using the linear grey-box model estimation method (greyest) of the Matlab

System Identification Toolbox. The estimates are

m̂∗
o = 21.5kg, d̂∗o = 384

Ns

m
, k̂∗o = 630

N

m
. (3.55)
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Fig. 3.8: Externally applied force and resulting position in x-direction

The identified model parameters correspond very well to their nominal values as indicated

in (3.54). The model output for the input depicted on the left-hand side of Fig. 3.8 and

the estimated parameters (3.55) is illustrated by the dashed line on the right-hand side of

Fig. 3.8, yielding a mean squared error ‖p̂x−px‖
2 of 3.86 ·10−6m2 for a recording interval of

45s. Estimated and measured values coincide well and prove consistency of the presented

approach.

Rotational dynamics

The apparent rotational dynamics about the object’s z-axis derived from (3.35) can be

written as

J∗
o,z ϕ̈z + d∗o ϕ̇z + k∗o ϕz = t̃z (3.56)

with the object’s orientation about the x-axis ϕx ∈ R , the applied torque about the x-axis

t̃x ∈ R and the rotational impedance parameters

J∗
o,z = 4.255kgm2, δ∗o,z = 77.6Nm

rad

s
, κ∗o,z = 196

Nm

rad
. (3.57)

The applied torque t̃z and the resulting orientation ϕz are plotted in Fig. 3.9.

The estimates for the rotational dynamics in (3.56) are

Ĵ∗
o,z = 4.652kgm2, δ̂∗o,z = 84Nm

rad

s
, κ̂∗o,z = 170

Nm

rad
. (3.58)

The identified rotational impedance parameters approximate their nominal values well.

The most significant divergence is observed for the rotational stiffness. The identified

value κ̂∗o,z is slightly smaller than predicted. This result is attributed to a finite stiffness of

the mechanical arrangement whereas an ideal rigid structure is assumed for computing κ∗o,z.

The model output for the estimated parameters is illustrated by the dashed line on the
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Fig. 3.9: Externally applied torque and resulting orientation about the z-axis

right-hand side of Fig. 3.9, yielding a mean squared error ‖ϕ̂x −ϕx‖
2 of 2.46 · 10−5rad2 for

a recording interval of 60s.

Dynamics in SE(3)

For the identification of the impedance parameters in SE(3) the (linearized) dynamics of

the cooperating manipulators are used as presented in (3.83). For the manipulator setup

under consideration the object impedance parameters are

M∗ = [21.75kg · I3, 03; 03, diag([4.255, 1, 4.255])kgm
2]

D∗ = [360
Ns

m
, 03; 03, diag([78, 20, 78])Nm

rad

s
] (3.59)

K∗ = [600
N

m
, 03; 03, diag([196, 100, 196])

Nm

rad
].

The wrench h̃o applied to the object and the resulting object pose δxo are plotted in

Fig. 3.10.

The estimates of the object impedance parameters in (3.83) are

M̂∗ = [25.8kg · I3, 03; 03, diag([2.8, 0.45, 2.8])kgm
2]

D̂∗ = [485
Ns

m
, 03; 03, diag([73, 19, 73])Nm

rad

s
] (3.60)

K̂∗ = [820
N

m
, 03; 03, diag([148, 78, 148])

Nm

rad
].

The estimated values provide a satisfactory approximation of the nominal impedance pa-

rameters. The most significant divergence is observed for the estimates of the rotational
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Fig. 3.10: Applied object wrench h̃o and resulting object pose δxo in SE(3)

inertia, yielding too small values. This observation is explained through a comparatively

low excitation of the rotational motion in combination with the finite structural stiffness

of the object. However, the rotational damping is perfectly identified. The translational

parameters match satisfactory. Moreover, the experimental study shows clearly the rele-

vance of the coupling between the translational and rotational impedance parameters for

the apparent object impedance.

3.5 Stability of the cooperative manipulator system

In this section a formal stability analysis of the cooperative manipulator system is provided.

First, strict output passivity of the interaction dynamics is shown. To this end, the notation

of passivity is introduced. A system is said to be output strictly passive [72, p. 236] if there

exists a positive semidefinite storage function V and a positive definite function yTρ(y)

such that

uTy ≥ V̇ + yTρ(y) (3.61)

for y 6= 0.
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3.5 Stability of the cooperative manipulator system

The kinetic and potential energy of the object defined in (2.24) and the equivalent

energy of the i-th manipulator

Ti =
1

2
ẋTi Miẋi (3.62)

Ui =
1

2
∆pTi [kiI]∆pi + 2∆ǫTi [κiI]∆ǫi (3.63)

are used in the storage function for the cooperative system

V = To + Uo +
∑

i

{Ti + Ui}. (3.64)

This leads to the following intermediate result.

Lemma 2. Assume that the manipulators compensate the gravity force of the object by

letting hdo = hg in (3.16) and (2.26), respectively. Then, under Assumption 2, the system

of object and manipulators (3.35) is strictly output passive with respect to the input u = h̃o
and the output y = ẋo with the storage function V in (3.64).

Proof. The computation of the time derivative of (3.64) yields

V̇ = ẋTo Mẍo +
1

2
ẋTo Ṁẋo +

N∑

i=1

{∆ṗTi f
K
i +∆ωT

i t
K
i }. (3.65)

By substituting (3.51) in (3.65), one has

V̇ = ẋTo

[

hdo − hg + h̃o − hKo (xo)−Dẋo − Coẋo

]

+
1

2
ẋTo Ṁẋo

+

N∑

i=1

{(ṗTo + [ωo × ri]
T )fK

i + ωT
o t

K
i }. (3.66)

Letting hdo = hg and using the fact that ẋTo [Ṁ − 2Co]ẋo = 0 (cf. [73]) yields

V̇ = ẋTo h̃o − ẋTo Dẋo − ẋTo h
K
o (xo)

+

N∑

i=1

{(ṗTo + [ωo × ri]
T )fK

i + ωT
o t

K
i }. (3.67)

Employing (3.38) for hKo (xo) and rewriting the sum in terms of a dot product with ẋo
cancels out the last two terms in (3.67) and eventually yields

V̇ = ẋTo h̃o − ẋTo Dẋo < ẋTo h̃o (3.68)

47



3 Analysis of the cooperative multi-robot manipulation model

and thus ρ(y) = Dy in (3.61). It is straightforward to show that the damping matrix D

given in (3.37) is positive definite which concludes the proof.

This result is a direct consequence of the passivity property of the subsystems, i.e. the

rigid body dynamics and the closed-loop manipulator dynamics and is readily expressed

in terms of end effector wrenches/velocities.

Corollary 3. The system of object and manipulators (3.35) with the storage function V

in (3.64) is strictly output passive with respect to the input/output combination u = h̃i and

y = ẋi for any i ∈ {1, . . . , N}.

Proof. Choosing u = h̃i and y = ẋi as input/output signals is equivalent to a change

of the coordinate system preserving the passivity property presented in Lemma 2. By

employing (2.31) and ωo = ωi for computing ẋi and transforming the wrench h̃o to an

equivalent wrench h̃i one has

ẋi =

[
I3 ST (ri)

03 I3

]

ẋo and h̃i =

[
I3 03

ST (ri) I3

]

h̃o. (3.69)

It is now straightforward to verify that ẋTo h̃o = ẋTi h̃i from which follows V̇ < ẋTi h̃i.

Based on this passivity characterization, one readily derives stability of the cooperative

manipulator system.

Theorem 6. Under Assumptions 1 and 2, the cooperative manipulator system (3.35) is

asymptotically stable about

xo = xdo = const. (3.70)

for h̃o = 06×1 in (2.25) and h̃i = 06×1 in (2.11). Moreover, when interacting with a passive

environment, i.e. the relation between ẋo and h̃o is described by a strictly passive map [72,

Def. 6.3], the cooperative manipulator system remains stable.

Proof. As stated in Lemma 2, the system of object and manipulators (3.35) is strictly

output passive. The feedback interconnection of the cooperative dynamics and the passive

environment is strictly passive with input h̃o and output ẋo. In order to conclude on

stability, it is required to show that the system (3.35) is zero-state detectable. Here it

is shown that the system is zero-state observable which implies that it is also zero-state

detectable. Consider the output y = ẋo = 06×1. It follows immediately that ẍo = 06×1.

Employing this and h̃o = 06×1 in (3.35) one has hKo (xo, x
d
o) = 06×1, which can only hold

true if ∆po ≡ ∆ǫo ≡ 03×1 in (3.38). Hence the system (3.35) is zero-state observable for

the error state ∆x = (∆pTo ,∆ε
T
o )

T . Asymptotic stability of the cooperative manipulator

system without disturbances follows immediately from application of Lemma 6.7. Stability

of the manipulators in contact with a strictly passive environment follows by Theorem 6.3

in [72].

Above result shows that the rigidly coupled manipulators interact in such a way that

the overall system remains stable if no additional disturbance is present. For the relevant

case when the system is subject to non-ideal feedback linearization and externally applied

wrenches the following result is presented.
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3.5 Stability of the cooperative manipulator system

Lemma 3. Consider the (non-ideal) joint space feedback linearization control law (2.5)

with Λ̂i 6= Λ and Γ̂i 6= Γi and the robust tracking controller [34, (8.77)]

µi = ξ̈di +KD,i
˙̃
ξi +KP,iξ̃ + wi. (3.71)

incorporating the uncertainty compensation term

wi =
ρi

‖ui‖
ui (3.72)

with

ui = DT
i Qi

(

ξ̃i
˙̃ξi

)

, (3.73)

Di = [0ni
; Ini

] and any positive definite Qi ∈ R
2ni×2ni. Assume further that [34, (8.72)

through (8.74)]

sup ‖ξ̈di ‖ < αξi <∞ ∀ξ̈di (3.74)

‖Ini
− Λ−1

i Λ̂i‖ ≤ αΛi
≤ 1 ∀ξi (3.75)

‖Γ̂i − Γi‖ ≤ αΓi
<∞ ∀ξi, ξ̇i. (3.76)

and that the robotic manipulator is sufficiently far from singular joint configurations. Then

the equivalent disturbance in task space h̃i due to non-ideal feedback linearization of the i-th

manipulator is uniformly bounded.

Proof. The proof starts with discussing the assumptions taken in this Lemma and follow the

argumentation presented in [34, pp. 334]. Assumption (3.74) is practically always satisfied

since any desired trajectory of the object (and consequently of the attached manipulators)

should not require infinite acceleration. Assumption (3.75) concerns the boundedness of

the inertia matrix. Given a lower and upper bound of Λi, there exists a proper choice for Λ̂i

which satisfies (3.75), yielding αΛi
= 0 in case of Λ̂i = Λi. Finally, assumption (3.76) puts

a bound on the Coriolis error term. This last assumption is most restrictive, in the sense

that unbounded joint velocities may arise for an unstable system, leading to an arbitrary

large error. However, due to physical actuation limits of the robotic manipulator, the joint

space velocities will remain bounded and consequently an appropriate αΓi
in (3.76) can

eventually be found.

In order to show boundedness of the disturbance from non-ideal feedback linearization,

an expression for the emerging disturbance in joint space is derived. Employing (2.5) and

(2.7) in the manipulator dynamic (2.4) and solving for ẍi yields

ξ̈i = µi − ηi (3.77)

with the error term

ηi = (Ini
− Λ−1

i Λ̂i)µi − Λ−1
i (Γ̂i − Γi). (3.78)
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Choosing

ρi ≥ ‖Γ̂i − Γi‖ ∀ξi, ξ̇i, ξ̈
d
i (3.79)

for the sliding gain ensures convergence of the error system trajectories to zero. Given

the assumptions (3.74), (3.75) and (3.75), the signal ηi can be shown to be (uniformly)

bounded [34, (8.86)]. Thus the resulting disturbance in joint space τ̃i in (2.4) becomes

τ̃i = Λiηi. (3.80)

Consequently, τ̃i is bounded since the inertia matrix Λi is a positive definite matrix with

upper and lower limited norm.

The equivalent disturbance at the end effector can be computed by

h̃i = J̄T
i (ξi) τ̃i (3.81)

with the generalized inverse J̄i of the Jacobian matrix corresponding to the solution that

minimizes the manipulator’s instantaneous kinetic energy [35]

J̄i = Λ−1
i (ξi) J

T
i (ξi) M

Λ
i (ξi) (3.82)

andMΛ
i (ξi) as in (2.10). As long as the manipulator does not reach a singular configuration,

J̄i is a continuous mapping and hence bounded. Thus the equivalent disturbance at the

end effector h̃i is bounded.

With the previous intermediate result on the boundedness of the disturbance terms due

to non-ideal feedback linearization the main result of this section concerning the robust

stability of the cooperative manipulator dynamics is presented next.

Theorem 7. Assume that the external disturbance on the object h̃o in (2.25) and the

disturbance due to non-ideal feedback linearization of the manipulators h̃i in (2.11) are

uniformly bounded and that Assumption 2 holds. Then xo in (3.35) is uniformly ultimately

bounded about xdo = const.

Proof. The net wrench about the object’s center of mass h̃Σo due to the disturbances h̃o
and h̃ = [h̃T1 , . . . , h̃

T
N ]

T is given by h̃Σo = Gh̃ + h̃o. Since the h̃i’s and h̃o are bounded,

h̃Σo is bounded, too. Linearization of the interaction dynamics (3.35) about an arbitrary

equilibrium pose x̄o yields

Mδẍo +Dδẋo +Kδxo = h̃Σo . (3.83)

It is obvious that M and D are symmetric and positive definite while K is in general

asymmetric. K is positive definite, too, since all eigenvalues of the summand matrices in

(3.39) are the eigenvalues of the block matrices (ki and κi + ‖ri‖
2ki respectively) on the

diagonal. As discussed in [71, Theorem 2], the stiffness matrix K can always be brought

into symmetric form by an appropriate change of coordinates. In fact the linearized sys-

tem (3.83) can be diagonalized by means of a real congruence transformation if and only if

M−1D commutates with M−1K [74]. Explicit computation reveals DM−1K = KM−1D.

Thus there exists a transformation which decouples the dynamics (3.83) into six indepen-

dent second order ODEs. Since M, D and K are positive definite, the diagonal elements
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3.6 Internal wrench control

(corresponding to the eigenvalues of the matrices) are all positive, yielding (exponential)

stability of the linearized system. Furthermore, under mild assumptions [34, (8.70) through

(8.74)] it can be shown that the joint space disturbances arising from non-ideal feedback

linearization are bounded which leads to bounded disturbances h̃i in task space by em-

ploying the generalized inverse of the Jacobian [35] for the mapping between joint and

task space. Boundedness of h̃o and h̃i and exponential stability of the linearized dynamics

(3.83) yields (local) stability of the interaction dynamics (3.35) by applying Lemma 9.2

in [72].

This result is of prior relevance for the practical implementation of cooperative manip-

ulation tasks. It proofs robustness of the interaction dynamics to small (bounded) pertur-

bations arising e.g. from imperfect feedback linearization or contact with the environment.

Implicitly, the robustness property has been used for the successful implementation of co-

operative manipulation schemes in the past but no explicit and formal verification was

presented so far incorporating the Dirac structure in the interaction model.

3.6 Internal wrench control

In the previous sections of this chapter, a novel characterization of internal wrenches is

presented by means of Definition 1. Based on this definition, all load distributions free of

internal wrenches are derived in Section 3.2 and a force/motion tracking controller avoiding

application of internal wrenches is presented in Section 3.3. In this section, the focus is put

on a basic internal wrench controller suitable for the implementation of a desired internal

wrench.

Recalling that internal wrenches according to Definition 1 are equivalently characterized

by belonging to the null space of the grasp matrix and employing relation (3.12), i.e. that

the null space of the grasp matrix G is identical to the range space of the constraint matrix

AT , the following proposition is presented.

Proposition 1. The desired internal wrench hint,d ∈ R
6N×1 must satisfy hint,d ∈ Ker(G)

or equivalently hint,d ∈ Im(AT ). Thus one can write

hint,d = AT z (3.84)

for a suitable vector z ∈ R
6(N−1)×1.

The vector z selects columns of the constraint matrix AT and thus determines in which

direction internal wrenches are applied. This is illustrated by the following example.

Example 7 (Desired internal wrench parameterization). Reconsider the setup in Fig. 2.3

with two robotic end effectors manipulating an object along one dimension. In this case,

the constraint matrix becomes

AT =

[
1

−1

]

(3.85)
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3 Analysis of the cooperative multi-robot manipulation model

and z ∈ R is a scalar which determines whether the manipulators squeeze (z > 0) or pull

the object apart (z < 0). In this simple example, there is obviously just one potential

direction for the application of an internal wrench, i.e.

hint,d =

(
+z

−z

)

. (3.86)

In order to implement the desired internal wrench hint,d given by (3.84), the following

result is of relevance.

Theorem 8. Assume that the grasp matrix G is known and that the kinematic coordination

is implemented cooperatively by means of (3.32), i.e. the initial manipulator motion is

compliant to the kinematic constraints. Then, under Assumption 2, the extended motion

control law

hX = hx − hint,d (3.87)

with the kinematic controller hx from (2.22) and the desired internal wrench hint,d

from (3.84) makes the actual internal wrench hint coincide with its desired value. More-

over, any hint,d according to (3.84) does not interfere with the apparent (external) object

dynamics (3.35).

Proof. The proof is based on explicit computation of the emerging internal wrench hint as

presented in (3.10), i.e.

hint = AT (AM−1AT )−1(b− AẍX ). (3.88)

Note that in the expression above, the commanded acceleration of the extended motion

control law ẍX is used, resulting from

ẍX =M−1hX . (3.89)

Moreover, one has ẍX =M−1(hx−hint,d) = ẍx−M−1hint,d by employing (3.5). Substituting

this in (3.88) yields

hint = AT (AM−1AT )−1(b− Aẍx + AM−1hint,d). (3.90)

Since the commanded acceleration of the initial motion controller ẍx are compatible to the

kinematic constraints by construction, it is straightforward to verify by explicit computa-

tion that b − Aẍx = 06(N−1)×1. Employing this fact in (3.90) and exploiting (3.84) leads

to

hint = AT (AM−1AT )−1(AM−1AT )z, (3.91)

in which (AM−1AT )−1(AM−1AT ) cancels out such that

hint = AT z = hint,d. (3.92)

Since hint ∈ Ker(G), the dynamics of the object with respect to an external disturbance h̃o
as e.g. in (3.35) remains unchanged.
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3.6 Internal wrench control

The extended motion control law (3.87) incorporates the individual impedance control

laws for the external dynamics hx and a feed forward action for the internal wrench imple-

mentation hint,d. This simple approach points out that internal wrench control is closely

related to the kinematics and can be achieved by appropriate shaping of the feed forward

motion signals. Obviously, in view of the robustness with respect to disturbances more

sophisticated control approaches such as an internal wrench PI controller might be favor-

able. However, any additional wrench for internal wrench control should still belong to

Im(AT ) according to (3.84) in order to guarantee proper, physically consistent decoupling

of the internal and external wrench space.

Summary and outlook

In this chapter the cooperative manipulator model is systematically analyzed and rele-

vant properties for the model-based control design are discussed. Robust stability of the

manipulators with respect to inaccuracies in the individual feedback linearization loop

and external disturbances is derived. A shift of paradigm for the decomposition of inter-

nal/external wrenches based on the principle of virtual work is introduced. An immediate

consequence is that it is in general not possible to conclude on the presence of internal

wrenches by simply analyzing the manipulator wrenches itself. A consistent analysis of

internal wrenches needs to incorporate the end effector kinematics, too.

The results of this chapter present the fundamentals for model-based control design in

cooperative manipulation tasks. Based on the employed comprehensive model it is possible

to compute dynamically consistent feedforward control signals for cooperative force/motion

tracking. This becomes particularly obvious for internal wrench control tasks, where the

feedforward terms are given by suitably shaped kinematic setpoints for the end effectors

whereas previous model-free control schemes depend on the feedback of the force/torque

measurements. This insight highlights again the vital role of the kinematics for the control

and coordination of the multi-robot manipulator system.

The result that the constrained cooperative manipulator dynamics maintain the passiv-

ity property as derived in Section 3.5 is the missing complement to the numerous passivity-

based control schemes for cooperative manipulation proposed in the literature. The pas-

sivity formalism presents simultaneously a promising concept for the stability analysis in

more complex setups.
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manipulation

This chapter deals with the cooperative manipulator control problem when no global coor-

dinate frame for the multi-robot coordination is available. This situation arises whenever

the multi-robot team has no access to a global localization system or when only inaccu-

rate measurements of the relative kinematics between the manipulators are at hand. As

a consequence, the kinematic grasp parameters employed in the manipulation task model

are biased and counteract the manipulation task objective. The resulting coordination

problem without global coordinate frame is reformulated as a robust force/motion track-

ing problem under uncertain kinematic grasp parameters. An adaptive control scheme for

planar cooperative force/velocity manipulation tasks is presented which is evaluated in a

numerical simulation at the end of this chapter.

This chapter is structured as follows. First, the related work on cooperative manip-

ulation tasks under uncertain kinematic parameters is reviewed and open problems are

discussed. Section 4.1 introduces and motivates the problem of manipulator coordination

without global coordinate frame. In Section 4.3 analytical conditions on the manipu-

lator motion are derived for which the uncertain kinematic parameters can be identified.

Section 4.2 formulates a general robust force/motion control problem under uncertain kine-

matic grasp parameters. In Section 4.4 an adaptive control law for planar, force/velocity

manipulation tasks is proposed which guarantees robust tracking under uncertain grasp

parameters in a simplified setting.

Related work and open problems

Only few works in the robotics literature address the problem of kinematic uncertainties

in the control design for cooperative manipulator systems. In [75] an adaptive controller is

presented dealing with uncertain kinematic parameters of a single robot in a motion track-

ing task. An adaptive control scheme for two cooperating manipulators with geometric

uncertainties in the closed kinematic loop is presented in [76]. A least squares approach

is used to identify the rigid transformation between the manipulators’ end effector frames.

While minimizing the actuator torques, the actual contact force is not addressed in the re-

sulting control scheme. The work in [77] deals with the modeling and the control design for

a single manipulator operating an uncertain kinematic mechanism. Although cooperative

manipulators handling a common object are frequently subject to kinematic uncertainties,

the consequences on position and force tracking are widely unexplored. The authors of [78]

solve the planar object attitude manipulation problem taking into account the distributed

coordinate knowledge of the individual agents for computing the rotation centroid. In the

area of formation control, the work in [79] describes the severe impact of biased measure-
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4.1 Kinematic coordination without global coordinate system

ments of the relative kinematics on the formation dynamics. For cooperative manipulation

tasks, the effect of biased kinematic grasp parameters resulting in undesired interaction

forces is discussed and experimentally evaluated in [80]. In summary, the cooperative

force/motion tracking problem under uncertain kinematic grasp parameters is a relevant

but yet disregarded topic.

4.1 Kinematic coordination without global coordinate

system

This section motivates the problem of achieving kinematic coordination of cooperating

manipulators when no global coordinate frame is available. As detailed in the previous

chapters, typical manipulation task objectives, such as tracking of a desired object tra-

jectory or implementing internal/external wrench control, require exact knowledge of the

kinematic grasp parameters as e.g. incorporated in the grasp matrix G in (2.45) or the

constraint matrix A in (3.7). However, these crucial parameters are not accurately avail-

able when the ensemble of autonomous robotic manipulators has no access to a global

coordinate frame. This situation is illustrated in Fig. 4.1.

{1}

{i}

{N}

{1}

{i}

{N}

{w}

{o}

Fig. 4.1: Illustration of the local coordinate frames employed by the robotic manipulators for
the cooperative manipulation task

In order to determine the kinematic grasp parameters, the position of a single end

effector {i} is usually expressed in the object-fixed coordinate system {o}. That is the

translational grasp parameter ori is a vector expressed in the frame {o} pointing to the

origin of frame {i}. But this approach requires that both frames {o} and {i} can be

localized in a common global coordinate system {w} for computing ori. The requirement

to have access to such a global coordinate frame for object and manipulator localization

is clearly restrictive in view of potential application scenarios as described in Chapter 1.

Note further that the manipulators and the object form a closed kinematic chain which

is properly defined and independent of any global frame {w}. This chain is uniquely

described by the end effector frames {i}, the manipulator base frames {i} as depicted in

Fig. 4.1 and the kinematic transformations between those frames as detailed in the sequel.
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4 Adaptive control for cooperative multi-robot manipulation

Manipulator kinematics

All robotic manipulators feature commonly a base frame, denoted {i} for the i-th ma-

nipulator, and a coordinate frame rigidly attached to the end effector denoted {i}. The

kinematic transformation between those two frames is determined by means of the forward

kinematics involving the individual joint angles as presented in (2.1).

Assumption 3 (Accurate kinematic manipulator calibration). The individual manipula-

tors are kinematically calibrated, i.e. the forward kinematic transform, representing the

rigid transformation between the base frame {i} and end effector frame {i} for the i-th

manipulator, is accurate.

This assumption is considered valid in view of the vast variety of kinematic calibration

methods for robotic manipulators [81]. Thus each manipulator has accurate information

about its own end effector pose, twist and acceleration in its proper base frame denoted
ixi,

iẋi and
iẍi, respectively. Note that with

ixi in hand, it is straightforward to transform

all local quantities (twist, acceleration, wrench) from the base to the end effector frame.

Grasp kinematics

The grasp parameters, as e.g. incorporated in the grasp matrix G (2.45), might be in-

terpreted as the rigid transformation between the object frame {o} and the end effector

frames of the robotic manipulators {1} to {N}. To be precise, one needs additionally to

specify in which coordinate frame the stacked translational grasp parameter vector r as

introduced in (2.44) is expressed. Usually r is expressed in the body-fixed object frame

{o} since in this frame the grasp points remain constant, i.e.

or =






or1
...

orN




 = const. (4.1)

But the actual grasp also determines the mutual orientation of object and end effector

frames. As discussed in Chapter 2, the relative orientation between object and manipula-

tors as introduced in (2.33) remains constant, too, yielding

oδq =






oδq1
...

oδqN




 = const. (4.2)

In fact the representation of the grasp kinematics in terms of (4.1) and (4.2) is redundant

since the choice of the object frame {o} is a priori arbitrary. If not stated otherwise, the

object frame is assumed to be located in the object’s physical center of mass and its axes

aligned with its principle axes of inertia. This choice eliminates the intrinsic redundancy

contained in the kinematic grasp parameters.

In case a global coordinate frame (as e.g. the inertial world frame {w} in Fig. 4.1) is

available, the individual pose coordinates of manipulators and object is expressed in this

frame and the relative grasp kinematics is readily computed. This means at the same time,
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4.1 Kinematic coordination without global coordinate system

that either the end effector frame or the base frame of each manipulator can be located

in this global frame (e.g. by means of an optical tracking system, GPS sensing or laser

scanner). The computation of the relative kinematics depends obviously on the accuracy

of the employed sensing system.

However, in case such a sensing system is not available, there is no other option than

estimating the grasp kinematics. Consequently, only estimates of the relative displacement

and orientation between object and manipulators or̂ and oδq̂ are at hand.

Instead of estimating the relative end effector pose, i.e. the kinematic transformation

between two end effector frames, one might also estimate the relative pose of the base

frames. Depending on the available sensing equipment, the relative base pose is estimated

through some localization algorithm [82, 83]. Typically, an accuracy of a few centime-

ters/degrees is reached, which - depending on the actual distance of the manipulators -

can sum up to even more significant errors in the relative end effector pose. Therefore,

biased estimates of the grasp geometry need to be addressed in the cooperative control

scheme.

Cooperative control scheme without global coordinate system

Before presenting the extended coordination scheme incorporating the estimates of the

grasp kinematics, the following assumptions are made.

Assumption 4 (Desired object trajectory). The desired trajectory for the object xdo(t) as

e.g. provided by a motion planner is smooth.

Assumption 5 (Object tracking). The current pose of the object xo(t) is measurable by

means of a suitable sensing system.

Above assumptions are crucial for the implementation of an object-centered control

scheme. Smoothness of the desired object trajectory is easily guaranteed through applica-

tion of an appropriate filter. Sensing of the actual object pose xo is required in order to

transform the desired object motion xdo into the body-fixed coordinate frame {o}. Tracking

of xo might be realized e.g. by visual object tracking. Under Assumption 5, it is possible

to compute the desired object acceleration oẍdo (expressed in the body-fixed frame {o}).

Given the estimates of the grasp geometry or̂ and oδq̂, the resulting block scheme is

illustrated in Fig. 4.2.

The estimate r̂ of the translational grasp geometry is employed for computing the desired

end effector wrenches and achieving kinematic coordination. Note that this computation

is carried out in the object frame {o} since also oẍdo is specified in this frame. Subsequently,

the desired wrench ohdi and acceleration vector oẍdi need to be converted to the respective

end effector frame {i}. This is achieved by means of the stacked block-diagonal rotation

matrix

R(δq) =










R(δq1) 03
03 R(δq1)

. . .

R(δq1) 03
03 R(δq1)










(4.3)
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Inverse dynamics

M−1
o G+

M

Load
1hd1
NhdN

GT

Kinematic
oẍdo

ohdo

1xd1
NxdN

Cooperative dynamics

ẍo
coordination

Object level controller

distribution

R
ohd1
ohdN

oẍd1
oẍdN

R

Change of
coordinates

r̂ δq̂ r, δq

Fig. 4.2: Extended block scheme representation of the cooperative control system

with the 3×3 rotation matrix R ∈ SO(3) parameterized by a unit quaternion q = (η, ǫT )T

according to

R(q) = (η2 − ǫT ǫ)I3 + 2ǫǫT − 2ηS(ǫ). (4.4)

The effective change of coordinates yields the manipulator force/motion setpoints expressed

in their individual end effector frame. Note that the cooperative dynamics block on the

right-hand side of Fig. 4.2 contains the individual manipulator control schemes (which are

usually implemented to accept setpoints such as force/motion commands expressed in the

end effector frame). The effective interaction behavior is again based on the actual grasp

parameters r and δq. For convenience, the cooperative dynamics as presented in Chapter 2

are in turn expressed in the inertial world frame {w}. However, any other suitable frame

might be chosen. From a pure control perspective, the cooperative dynamics block in

Fig. 4.2 is equivalent to the plant model and the object level controller is a particular control

scheme. Under Assumption 4 it is straightforward to implement an additional control block

addressing the potential object tracking error between ẍdo and ẍo. Force/motion tracking as

proposed in Section 3.3 holds obviously just in case r̂ = r and δq̂ = δq. This is illustrated

by means of the following example.

Example 8 (Biased kinematic grasp parameter). Consider a planar manipulation task in

which two manipulators rotate a rigid bar of length L counter-clockwise. This situation is

depicted in Fig. 4.3.

At time instant to, the manipulators grasp the bar and are at rest. Assume in the follow-

ing that the manipulators have only a biased estimate of their relative displacement L̂ < L.

As soon as the manipulators perform a counter-clockwise rotation of the object, the desired

trajectories of the manipulators will describe a segment of a circle (black lines in Fig. 4.3)

which lies inside of the circle described by the edges of the bar (gray circle in Fig. 4.3). It

is straightforward to verify that internal wrenches are applied to the object, i.e. in fact the

manipulators squeeze the object. Moreover, for L̂ < L the actual rotation of the object is

inferior to the desired rotation, resulting in a (negative) orientation error. The converse

situation (pulling the object apart, positive tracking error) is encountered for L̂ > L.
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bb b
x1(t0) x2(t0)

x1(t1)

x2(t1)

xd1(t1)

xd2(t1)

L

b

b

Fig. 4.3: Two planar manipulators with biased grasp parameter L̂ < L rotate a rigid bar
counter-clockwise

The previous example highlights that the identification of the actual kinematic grasp

parameters is a prerequisite for cooperative force/motion tracking. This observation is

formalized in the following section.

4.2 Adaptive control for uncertain kinematic grasp

parameters

This section deals with the control design for the cooperative manipulator system subject to

uncertainty in the kinematic grasp parameters. Before discussing potential control design

approaches, the general problem setting is formulated.

Problem formulation Find a control law for the cooperative manipulator dynamics (2.46)

which achieves tracking of the desired object trajectory

xo(t) → xdo(t) (4.5)

and tracking of the desired internal end effector wrenches

hint(t) → hint,d(t) (4.6)

for t→ ∞ and some initially biased estimates of the kinematic grasp parameters

r̂(t = 0) 6= r and δq̂(t = 0) 6= δq. (4.7)

The problem stated above is clearly a robust force/motion tracking problem. The

stability analysis for this kind of control problem is typically involved - even in case of

constrained single manipulators [84, 85]. In the cooperative manipulator case under con-

sideration, there are additional challenges which require a novel approach to the analysis

and the design of an adaptive control law.
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4 Adaptive control for cooperative multi-robot manipulation

Based on the cooperative force/motion tracking scheme in Section 3.3 and the internal

wrench control law as proposed in Section 3.6, the implementation of an adaptive, self-

tuning controller appears convenient. The resulting block scheme is illustrated in Fig. 4.4.

1hd1
NhdN

oẍdo

1ẍd1
N ẍdN

Cooperative dynamics

oẍo

Object level controller

r, δq

Grasp parameter estimator

1ẍ1
N ẍN

b

b

r̂, δq̂

Internal wrench controller

hint,d
1ẍint1
N ẍintN

AT (r̂)

G+(r̂, δq̂)

Fig. 4.4: Block scheme representation of the adaptive control law for robust force/motion
tracking

In the adaptive, self-tuning control scheme, the object level controller and the internal

wrench controller employ the kinematic grasp parameter estimates r̂ and δq̂. Simultane-

ously, the estimates are updated continuously based on the motion signals as measured by

the robotic manipulators. The stability analysis for the depicted control scheme is involved

due to several reasons, which are detailed in the sequel.

• Considering the pure motion tracking objective (4.5), one can analogous to (3.34)

find an explicit expression for the effectively applied object wrench, which in case of

uncertain kinematic grasp parameters becomes

ho = G(r, δq) G+(r̂, δq̂) hdo (4.8)

with the augmented grasp matrix

G(r, δq) = G(r) RT (δq) (4.9)

incorporating the change of coordinates between object and end effector frames in

terms of the stacked rotation matrix R(δq) as in (4.3). It is obvious that

G+(r, δq) = R(δq) G+(r). (4.10)
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4.2 Adaptive control for uncertain kinematic grasp parameters

Looking again at (4.8), the matrix product can be split into

G(r, δq) G+(r̂, δq̂) = I6 + U(r̃, δq̃) (4.11)

with the nonlinear matrix expression U ∈ R
6×6 incorporating the dependency on

the parameter error. Obviously U → 06 for r̂ → r and δq̂ → δq. The matrix U

contains in fact an explicit coupling between translational and rotational estimation

errors. The nonlinear parameter dependency of U on r̃ and δq̃ requires sophisticated,

non-classical tools for the stability analysis of the adaptive controller.

• The force tracking objective (4.6) requires necessarily the computation of the internal

wrenches as presented in (3.10). However, this computation is again based on the

estimates of the grasp geometry, i.e.

ĥint = ÂT (ÂM−1ÂT )−1(b̂− ÂRT (δq̂)ẍx) (4.12)

with Â = A(r̂) and b̂ = b(r̂) as defined in (3.7) and (3.8) respectively. Consequently,

the computed internal wrenches ĥint might actually contain components which are

not in the null space of the grasp matrix G(r) representing the actual grasp geometry.

In turn, it is also possible that the allocated external wrenches

ĥext = G+(r̂, δq̂) hdo (4.13)

based on the grasp geometry estimates do contain internal components when imple-

mented by the cooperative manipulator system with the kinematic grasp parame-

ters r and δq. This initial but yet undesired coupling between internal and external

wrench spaces requires the implementation of additional dynamics for the (feed for-

ward) internal wrench controller as presented in (3.87) in order to compensate for

this disturbance. The stability analysis of the interacting internal/external wrench

control laws during the transient of r̂ → r and δq̂ → δq is not straightforward.

• For the purpose of pose tracking as in (4.5), the self-tuning control scheme in Fig. 4.4

needs to be augmented by an additional control loop handling the pose error. In

its current form, the block scheme represents a pure feed forward motion controller.

The additional dynamics of the pose controller and its potential interaction with the

internal wrench controller needs to be considered in the stability analysis, too.

• Beyond the pure stability analysis, the closed-loop parameter identifiability needs to

be investigated separately. Descriptively speaking this means that the actual object

motion xo(t) has to satisfy the persistent excitation condition (4.15) and (4.23) under

continuous adaptation of the parameter estimates. In general it is not sufficient that

the desired motion xdo(t) meets the persistent excitation requirement. In [15] it is

shown that singular trajectories exist in which compliance of the desired motion to

the persistent excitation condition does not necessarily admit a proper parameter

identification.
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4 Adaptive control for cooperative multi-robot manipulation

The points above sketch the complexity of a comprehensive stability analysis for robust

force/motion tracking. A core criterion for the proper functionality of adaptive control

laws is the identifiability of the parameters which is discussed in the next section.

4.3 Identifiability of the kinematic grasp parameters

In this section conditions are derived under which the kinematic grasp parameters can be

identified by the manipulator ensemble. Since there is no global coordinate frame providing

direct measurements of object pose xo and end effector poses xi, the parameter identifi-

cation needs to be based on locally available measurements. Typically, each manipulator

has access to its end effector velocity iẋi expressed in the respective end effector frame.

Under Assumption 5, it is also possible to compute the current object velocity oẋo in the

body-fixed frame {o}.

4.3.1 Identifiability of the relative orientation in SE(3)

Recall that the kinematic constraint (2.35) enforced the object and end effectors to have

equal angular velocities. Expressing this equation in the local coordinate frames yields

iωi = R(δqi)
oωo. (4.14)

Clearly, given the available measurements iωi and
oωo one would like to identify the mutual

orientation of object and end effector, parameterized by the unit quaternion δqi. This

problem, being equivalent to an attitude determination using vector observations, was

formulated for the first time by Wahba [86]. Subsequently, different algorithms based on

the unit quaternion representation were proposed addressing this problem, such as e.g.

QUEST, the q-method or nonlinear observer approaches (see [87] for a recent survey).

The authors of [76] employed the q-method for estimating the relative orientation between

two robotic end effectors. Moreover, convergence of the estimate to the actual orientation

is guaranteed only if the velocity signal satisfies the persistent excitation condition.

Proposition 2. The object’s angular velocity ωo is persistently exciting for the identifica-

tion of the relative orientation error δq̃i = δq−1
i ∗ δq̂i if the direction of the angular velocity

does not remain constant, i.e.

ω̇o /∈ Im(ωo). (4.15)

Proof. Substituting the estimate δq̂i in (4.14) yields the prediction

iω̂i = R(δq̂i)
oωo. (4.16)

Unfortunately, the right-hand side of (4.16) is not linear in the parameter estimate δq̂i.

However, while employing the fact that R(δq̂i) = R(δq̃i)R(δqi) with the parameter error

defined as δq̃i = δq−1
i ∗ δq̂i, the prediction error becomes

iω̃i =
i ω̂i −

i ωi = [R(δq̂i)− R(δqi)]
oωo = [R(δq̃i)− I3]R(δqi)

oωo
︸ ︷︷ ︸

iωo

. (4.17)

62



4.3 Identifiability of the kinematic grasp parameters

In order to obtain an expression linear in the parameter error, the rotation matrix R(δq̃i)

is linearized using the corresponding roll-pitch-yaw angles Θi = (φi, θi, ψi)
T . Thus one

has [37]

R(δq̃i) ≈ R(Θ̃i) =





1 ψ̃i −θ̃i
−ψ̃i 1 φ̃i

θ̃i −ψ̃i 1



 = I3 − S(Θ̃i). (4.18)

Substituting this result in the prediction error yields immediately

iω̃i = −S(Θ̃i)
iωo = S(iωo)Θ̃i (4.19)

from which the regressor matrix is identified with the skew-symmetric matrix S(iωo). Thus

the object’s angular velocity is persistently exciting (cf. Appendix A) if

∫ t+∆T

t

ST (ωo)S(ωo)dr (4.20)

is uniformly positive definite. Consider two subsequent time intervals of length ∆T starting

at t1 and t2 in which the angular velocity of the object ωo(t1) and ωo(t2) remains constant.

For those two time intervals, the integral becomes

[
ST (ωo(t1))S(ωo(t1)) + ST (ωo(t2))S(ωo(t2))

]
∆T. (4.21)

With the property of skew-symmetric matrices that S(·) = −S(·)T one has

Im(S(ωo)) = Im(ST (ωo)). It is straightforward to verify that the image of S(ωo) is spanned

by the plane orthogonal to ωo. Thus the matrix sum in (4.21) has full rank whenever ωo(t1)

and ωo(t2) are not collinear. For ∆T → 0 this means that the object’s angular acceleration

is not collinear with its current angular velocity.

Remark (Region of validity) Due to the linearization in (4.18), the result as derived

in its present form has (in a strict sense) only local validity. Taking into account the

algebraic properties of rotation matrices, it is possible to prove that the presented persistent

excitation condition (4.15) holds globally [88].

Under the persistent excitation condition in Proposition 2, any attitude estimation

algorithm (cf. [87]) can be employed for finding the relative orientation between object

and end effector frame. Consequently, with the convergence of oδq̂i →o δqi, it becomes

possible to transform local quantities in the manipulator frames to a common coordinate

frame as e.g. in the object frame {o} and carry out further computations such as the

estimation of the relative displacement.
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4 Adaptive control for cooperative multi-robot manipulation

4.3.2 Identifiability of the relative displacement in SE(3)

Given the converging estimates of the relative orientations as discussed in the previous sub-

section, one is now interested in eliminating the error in the translational parameters r̂i. To

this end, consider again the kinematic constraint (2.32) expressed in the object frame {o}

op̈i =
o p̈o +

o ω̇o ×
o ri +

o ωo × (oωo ×
o ri). (4.22)

Alternatively, one can use the kinematic constraint (2.31) formulated in terms of the in-

volved velocities instead of the rigid body accelerations. However, above representation is

particularly illustrative in view of the following result.

Proposition 3. The object’s angular velocity ωo is persistently exciting for the identifica-

tion of the relative displacement error r̃i = r̂i − ri if the direction of the angular velocity

does not remain constant, i.e.

ω̇o /∈ Im(ωo). (4.23)

Proof. For the relative displacement identification the analysis of the persistent excita-

tion condition is less involved since the model (4.22) is already linear in the unknown

parameter ri. Thus the prediction based on the estimate r̂i is

o ˆ̈pi =
o p̈o +

o ω̇o ×
o r̂i +

o ωo × (oωo ×
o r̂i), (4.24)

from which the prediction error is readily computed according to

o ˜̈pi =
o ˆ̈pi −

o p̈i = [S(oω̇o) + S(oωo)S(
oωo)]

︸ ︷︷ ︸

Wr̂i
(ωo,ω̇o)

or̃i. (4.25)

The matrixWr̂i(ωo, ω̇o) on the right-hand side of above expression is the regressor matrix for

the relative displacement estimation. The regressor has full rank if and only if ω̇o /∈ Im(ωo)

and thus satisfying the persistent excitation condition (A.12) since consequently W T
r̂i
Wr̂i

has full rank, too.

It turns out that the persistency of excitation condition for the identification of relative

orientation (4.15) and relative displacement (4.23) are identical. Note that in practice

one would therefore ensure that the input is persistently exciting, i.e. ω̇o /∈ Im(ωo), and

implement a cascaded estimation of δq̂i and r̂i.

4.3.3 Identification of the kinematic grasp parameters in SE(2)

A relevant special case occurs when the robotic end effectors are manipulating an object

in the plane. Obviously, the persistent excitation conditions (4.15) and (4.23) cannot be

satisfied anymore since the object pose is limited to the oriented plane SE(2). Thus the

only available axis of rotation is the one orthogonal to the plane and hence ω̇o ∈ Im(ωo).

However, it is still possible to identify the kinematic grasp parameters as described by the

following result.
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4.3 Identifiability of the kinematic grasp parameters

Proposition 4. The object motion in the oriented plane SE(2)

ẋo =

(
ṗo
ωo

)

∈ se(2) (4.26)

with ṗo ∈ R
2 and ωo ∈ R is persistently exciting for the identification of the kinematic

grasp error

Θ̃i =

(
r̃i
ϕ̃i

)

(4.27)

with r̃i ∈ R
2 and ϕ̃i ∈ R, if the angular velocity is not constant, i.e.

ω̇o 6= 0 (4.28)

and the object twist does not remain collinear, i.e.

[
ṗo(t1)

ωo(t1)

]

/∈ span

[
ṗo(t2)

ωo(t2)

]

(4.29)

for two subsequent time instants t1 and t2.

Proof. Choose the model output as

iṗi = R(ϕi)[
oṗo +

o ωos(
ori)] (4.30)

with the matrix operator

s(ri) =

[
0 −1

1 0

]

ri (4.31)

performing a rotation of +90 degree with the vector ri and the rotation matrix

R(ϕi) =

[
cos(ϕi) − sin(ϕi)

sin(ϕi) cos(ϕi)

]

∈ SO(2). (4.32)

Note that ϕi is the orientation of the i-th end effector frame {i} with respect to the object

frame {o}. The output sensitivity with respect to the kinematic grasp parameters is

∂ iṗi
∂ Θi

=
[
R̄(ϕi)

oωo, R̄(ϕi)[
oṗo +

o ωos(
ori)]

]
(4.33)

with the modified rotation matrix R̄(ϕi) = R(ϕi −
π
2
). The sensitivity matrix for two

output observations at two distinct time instants t1 and t2 is

S(t1, t2) =

[
R̄ωo(t1), R̄[ṗo(t1) + ωo(t1)s(ri)]

R̄ωo(t2), R̄[ṗo(t2) + ωo(t2)s(ri)]

]

=

[
R̄ωo(t1), R̄v̄1
R̄ωo(t2), R̄v̄2

]

. (4.34)

After multiplication of S with R̄T from the left and performing elementary matrix opera-

tions one has
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4 Adaptive control for cooperative multi-robot manipulation

S(t1, t2) ≃

[
I2ωo(t1) v̄1

02 ωo(t1)v̄2 − ωo(t2)v̄1

]

(4.35)

which has full rank if ωo(t1)v̄2 − ωo(t2)v̄1 6= 02×1.

Reformulation of this latter inequality yields

[
I2ωo(t1) −ṗo(t1)

]

︸ ︷︷ ︸

Q

(
ṗo(t2)

ωo(t2)

)

6= 02×1, (4.36)

wherein all quantities are expressed in the object frame and the leading superscript is

omitted for brevity of notation. The null space of the matrix Q is

Ker(Q) = span

(
ṗo(t1)

ωo(t1)

)

(4.37)

which means that the sensitivity matrix S has full rank whenever

[
ṗo(t1)

ωo(t1)

]

/∈ span

[
ṗo(t2)

ωo(t2)

]

. (4.38)

This result is particularly interesting since conditions (4.28) and (4.29) admit a combined

identification of orientation and displacement error based on the translational velocities iṗi
and oṗo. Evaluation of the angular velocities in SE(2) provides no additional information

since the measured angular velocity is simply a scalar with the same value in all local

coordinate frames. With respect to the previous results for SE(3) it is worth mentioning

that in SE(2) a non-zero translational velocity of the object ṗo is required for proper

identification of the grasp kinematics.

4.4 Adaptive control for cooperative manipulation

in SE(2)

In view of the evident complexity of the general adaptive control problem formulated in

Section 4.2, a simplified setting is considered in the sequel for which stability of the control

law and convergence of the parameter estimates is studied in detail. A concise stability

analysis for an adaptive control law needs to address the interplay between system dynam-

ics, controller and parameter estimators in order to guarantee robust tracking performance.

To this end, the manipulation task under study is reduced in dimensionality and conducted

in the oriented plane SE(2).

Remark (Reduced dimensionality) In this section, the pose coordinates of object and

end effectors are xo, xi ∈ SE(2) with the assigned twist vectors ẋo, ẋi ∈ se(2). The object

and manipulator wrenches are ho, hi ∈ seT (2).
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4.4 Adaptive control for cooperative manipulation in SE(2)

In order to further simplify the setting under consideration, the coupling effects between

internal and external wrenches are eliminated through the following assumption.

Assumption 6 (Kinematic approximation). The wrench required to manipulate the object

remains small such that

ho ≈ 03×1. (4.39)

This assumption eliminates the object’s inertial forces and thus the entire load distribu-

tion problem from the robust tracking task. As an immediate consequence of Assumption 6,

the resulting manipulator forces are exclusively internal and satisfy

N∑

i=1

fi = 02×1. (4.40)

Note that the ability to compensate the object’s gravitational force is unaffected in case

gravity acts orthogonal to the plane.

4.4.1 Gauss principle for cooperative force/velocity manipulation

tasks

An alternative interpretation of Assumption 6 is that with ho ≈ 03×1, the object acceler-

ation ẍo needs to remain small, too. This implication leads to models for manipulation

scenarios based exclusively on force, position and velocity signals while neglecting the

acceleration. This simplified modeling approach appeared convenient for the design of

adaptive control laws in manipulation tasks [15, 77, 78]. The Gauss principle as presented

in Section 2.4.2 can be readily applied for the modeling of force/velocity manipulation

tasks and presents a general and unifying framework for constrained manipulation tasks.

In order to derive the modified Gauss principle for pure force/velocity manipulation

tasks, consider the following general, second-order manipulator model

Miẍi = wi (4.41)

with the positive definite task space inertia matrixMi ∈ R
3×3, the end effector acceleration

ẍi ∈ R
3 and the control input wi ∈ R

3. Choosing the control law

wi = M̂iẍi +Ki,c(ẋ
r
i − ẋi) (4.42)

with the positive definite control gain Ki,c ∈ R
3×3 allows to track a reference velocity ẋri

which is typically composed of a desired (feed forward) velocity ẋdi and a force feedback

term, incorporating the end effector wrench hi according to

ẋri = ẋdi + Cihi (4.43)

with the positive definite end effector compliance Ci ∈ R
3×3. Letting now Ki,c → ∞

enforces

ẋi = ẋri . (4.44)
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4 Adaptive control for cooperative multi-robot manipulation

Thus the stacked system of manipulators can be rewritten as






C−1
1

. . .

C−1
N






︸ ︷︷ ︸

C−1






ẋ1
...

ẋN




 =






C−1
1 ẋd1
...

C−1
1 ẋdN




+






h1
...

hN




 (4.45)

which has the same structure as the stacked system dynamics (2.46). Therefore, the end

effector wrenches hi are computed by employing the Gauss principle for the modified system

with the inertia matrix C−1 and the kinematic constraints expressed on the velocity level,

i.e.

A ẋ = b (4.46)

with

A =










I2 −s(r1) −I2 s(r2)

01×2 1 01×2 −1
...

...
. . .

I2 −s(r1) −I2 s(rN)

01×2 1 01×2 −1










and b = 03(N−1)×1, (4.47)

yielding

h = AT (ACAT )−1(b− Aẋd). (4.48)

Note that neither the object wrench ho nor the object pose and velocity appear explicitly

in the force/velocity representation. However, the origin of the grasp vectors ri defines

also the origin of the object frame {o}, which for consistency should coincide with the

equivalent center of mass of the end effector ensemble satisfying

N∑

i=1

C−1
i ri = 02×1. (4.49)

The resulting block scheme of the force/velocity manipulator model is depicted in Fig. 4.5.

b− Aẋd AT (ACAT )−1

bẋd 1
s

ẋ

C−1
h

x

Fig. 4.5: Block scheme representation of the force/velocity cooperative manipulator model

The actual manipulator velocities ẋ are the sum of the desired (feed forward) veloci-

ties ẋd and the feedback term C−1h, which results from a projection of the desired ve-

locities ẋd on the kinematic constraints contained in the matrix A. The actual system
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4.4 Adaptive control for cooperative manipulation in SE(2)

dynamics are represented by a single integrator element with the manipulator poses x as

output.

4.4.2 Kinematic controller

The desired velocities of the individual end effectors are computed as follows. Without

loss of generality, the orientation of the object frame {o} is assumed to coincide with the

orientation of the end effector frame {1} such that

1ẋd1 ≡ oẋdo =

(
oṗdo
ωo

)

. (4.50)

Given the desired velocity for object, the desired velocity for the j-th manipulator in

coordinate frame {j} for j ∈ {2, . . . , N} is computed according to

jẋdj =

(
R(ϕ̂1j)[

1ṗdo − ωos(r̂1j)]

ωo

)

, (4.51)

based on the kinematic grasp estimates ϕ̂1j and r̂1j for the relative orientation and displace-

ment, respectively. The desired velocity expressed in the object frame {o} (or equivalently

in the end effector frame {1}) is

1ẋdj =

(
R(ϕ̃1j)[

1ṗdo − ωos(r̂1j)]

ωo

)

(4.52)

which depends explicitly on the relative orientation estimation error ϕ̃1j . By projecting

the stacked desired velocities 1ẋd on the kinematic constraints, the kinematic error is

e = b− A oẋd =










[I2 − R(ϕ̃12)]
oṗdo + [R(ϕ̃12)s(r̂12)− s(r12)]ωo

0
...

[I2 −R(ϕ̃1N )]
oṗdo + [R(ϕ̃1N)s(r̂1N )− s(r1N )]ωo

0










. (4.53)

It is straightforward to verify that the kinematic error e, and consequently also h in (4.48),

vanishes for ϕ̃1j → 0 and r̃1j → 02×1.

69



4 Adaptive control for cooperative multi-robot manipulation

4.4.3 Robust force/velocity tracking

Based on the previous modeling of the force/velocity dynamics for cooperative manipula-

tion tasks, in this subsection an adaptive controller addressing uncertain kinematic grasp

parameters in SE(2) is presented.

Theorem 9. Under the Assumptions 1, 2, 3, 4, 5 and 6, the kinematic object level con-

troller (4.50) and (4.51) and the kinematic manipulator control law (4.43) achieve robust

force/velocity tracking for the cooperative manipulator system (4.45), i.e.

ẋo(t) → ẋdo(t) and h(t) → hint,d(t) (4.54)

under some initially biased translational grasp parameter estimates

r̂(t = 0) 6= r (4.55)

and some sufficiently small orientation errors, i.e.

ϕ̂(t = 0) ≈ ϕ (4.56)

for t→ ∞ and the kinematic grasp parameter estimators

˙̂ϕ = −KϕW
T
ϕ

(

−
N∑

j=2

{R(ϕ̂1j)
jfj} −

1 f1

)

(4.57)

with

Wϕ =
[
s(2f2) . . . s(NfN )

]
(4.58)

and

˙̂r = −Kr W
T
r






1ṗo + ωos(r̂12)− R(ϕ̃12)
2ṗ2

...
1ṗo + ωos(r̂1N)− R(ϕ̃1N)

N ṗN




 (4.59)

with

Wr =










0 −ωo

ωo 0
. . .

0 −ωo

ωo 0










(4.60)

and the positive definite estimation gain matrices Kϕ ∈ R
(N−1)×(N−1) and

Kr ∈ R
2(N−1)×2(N−1), if the initial orientation errors ‖ϕ̃‖ = ‖ϕ̂ − ϕ‖ are small and

the regressor matrices Wϕ and Wr in (4.77) and (4.60) respectively fulfill the persistent

excitation condition (A.12).

Proof. Without loss of generality, it is assumed for the proof that hint,d(t) ≡ 03N×1. Nev-
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4.4 Adaptive control for cooperative manipulation in SE(2)

ertheless it is possible to choose hint,d(t) = AT (r̂)z(t) with z(t) 6= 0 according to (3.84) by

adding an appropriate velocity vector ẋint,d = Chint,d to the desired velocity ẋd. For the

illustrative case of hint,d(t) ≡ 03N×1 it becomes obvious by rewriting (4.45) as

C−1(ẋ− ẋd) = h (4.61)

that force/velocity tracking is achieved for h = 03N×1. Since h as presented in (4.48) re-

sults from a projection of the desired velocities ẋd onto the actual kinematic constraints

incorporated in A, tracking is achieved if and only if the kinematic grasp parameter es-

timates match the actual grasp parameters, i.e. ẋd ∈ ker(A). As a matter of fact, the

only dynamics relevant to the force/velocity tracking objective stems from the parameter

estimators.

Remark (Uniqueness of the kinematic grasp parameters) Assumption 6 eliminates

the object’s inertial effects and thus the significance of the object’s center of mass. The

grasp parameters are hence uniquely determined by the relative kinematics between the

individual end effectors (excluding the object)

r̂ =






r̂12
...

r̂1N




 and ϕ̂ =






ϕ̂12
...

ϕ̂1N




 , (4.62)

expressed with respect to end effector {1}. It is possible to express the set of grasp

parameters with respect to any other arbitrary coordinate frame when using this frame for

the kinematic controller as described in Section 4.4.2.

The parameter estimation model for the relative orientation is based on (4.40) while

expressing the locally available end effector forces ifi with respect to frame {1}, i.e.

N∑

i=1

R(1ϕi)
ifi = 02×1. (4.63)

wherein ϕ1i ∈ R is the actual relative orientation between the end effector frames {1}

and {i}. Since trivially ϕ11 = 0 and thus R(ϕ11) = I2, one can rewrite

1f1 = −
N∑

i=2

R(ϕ1i)
ifi (4.64)

and analogous for the orientation estimates

1f̂1 = −
N∑

i=2

R(ϕ̂1i)
ifi. (4.65)

One has further

1f̂1 −
1 f1 =

N∑

j=2

[jfj, s(
jfj)]

(
cos(ϕ̂1j)− cos(ϕ1j)

sin(ϕ̂1j)− sin(ϕ1j)

)

(4.66)
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4 Adaptive control for cooperative multi-robot manipulation

which is, for small orientation errors ϕ̂1j ≈ ϕ1j , linear in ϕ̃, i.e.

1f̂1 −
1 f1 ≈

N∑

j=2

[jfj, s(
jfj)]

(
0

ϕ̃1j

)

= Wϕ ϕ̃. (4.67)

The translational parameter estimator is based on a prediction model incorporating the

kinematic velocity constraints (2.31), i.e.

j ṗj =
j ṗo + ωos(r1j) and j ˆ̇pj =

j ṗo + ωos(r̂1j) (4.68)

which is obviously linear in the translational grasp parameters r̂.

Remark (Orientation error convergence) Convergence of ϕ̃1j → 0 ensures that the

measured end effector forces sum up to zero, i.e.
∑

i fi = 02×1. However, this does not

imply that the end effector forces vanish since one still has fi 6= 02×1 for an translational

parameter estimation error r̃i 6= 02×1.

Consider now the Lyapunov function candidate

V =
1

2

(
ϕ̃T ϕ̃+ r̃T r̃

)
. (4.69)

Straightforward computation of the time derivative yields

V̇ = −ϕ̃TKϕ(ϕ̂)W
T
ϕWϕϕ̃− r̃TKrW

T
r Wrr̃ ≤ 0. (4.70)

Convergence of V̇ → 0 and consequently ϕ̃ → 0(N−1)×1 and r̃ → 02(N−1)×1 follows im-

mediately by employing the persistent excitation property of the regressor matrices Wϕ

and Wr and by invoking standard arguments for convergence analysis [89, Theorem 4.3.2]

by deriving boundedness of V̈ given the boundedness of ẋdo and its derivative in case the

estimators for ϕ̂ and r̂ are decoupled.

As visible in (4.59), the translational parameter estimator depends on the orientation

errors ϕ̃1j . Put differently, the translational estimator is subject to a disturbance stem-

ming from the orientation error since the two estimators are cascaded. Given the persistent

excitation property of the regressor matrices, the gradient estimators for û and r̂ guaran-

tee exponential convergence of the estimation error to zero in the unperturbed case [89,

Theorem 4.3.2]. The cascaded estimator incorporating the rotational estimates for the

translational parameter estimation can be analyzed by means of the stability theory for

perturbed systems. The induced perturbation on the translational parameter estimator

due to R(ϕ̃1j) 6= I2 in (4.59) is vanishing since for ϕ̃1j → 0 one has R(ϕ̃1j) → I2 expo-

nentially. Moreover, by an appropriate bound on ‖ṗdo‖ it is possible to find for any ϕ̃1j a

suitable γj > 0 such that

‖1ṗo −R(ϕ̃1j)
j ṗj‖ < γj ‖ϕ̃1j‖, (4.71)

by employing e.g. the Frobenius norm or the 2-norm [90]. With this bound for the vanishing

perturbation and the exponential convergence of the unperturbed system, Lemma 9.1

in [72] guarantees exponential convergence of the perturbed translational estimation error
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4.4 Adaptive control for cooperative manipulation in SE(2)

to zero.

This theorem generalizes a previous result for planar cooperative force/velocity manip-

ulation tasks under uncertain kinematic grasp parameter involving two manipulators [15]

to the case of N > 2 manipulators. Moreover, it is possible to extend the result in Theo-

rem 9 to larger initial orientation errors ϕ̃ by exploiting the geometry of the 1-sphere S
1,

a 1-dimensional manifold representing the orientation of a rigid body in the plane.

4.4.4 Reparameterization of the relative orientation

The persistent challenge in the analysis of adaptive control laws incorporating rotational

parameters such as the relative grasp orientation is that those parameters appear nonlin-

early in the prediction models. In SE(2) the orientation of a rigid body, such as the i-th

end effector, is uniquely determined by a scalar value, namely the angle of rotation ϕi ∈ S
1.

Moreover, each ϕi can be identified unambiguously with a unit vector ui ∈ R
2 given by

ui =

[
cos(ϕi)

sin(ϕi)

]

. (4.72)

Based on the unit vector representation, it is possible to reparameterize any two-

dimensional rotation matrix in (4.32) as

R(ϕi) =
[
ui, s(ui)

]
(4.73)

with the matrix operator s(·) defined in (4.31). Thus it is possible to reformulate the

prediction model output as

1f1 = −

N∑

i=2

R(ϕ1i)
ifi (4.74)

= −
N∑

i=2

[u1i, s(u1i)]
ifi (4.75)

= −
N∑

i=2

[ifi, s(
ifi)] u1i. (4.76)

Rewriting the sum as matrix multiplication yields

1f1 = − [2f2, s(
2f2), . . . ,

NfN , s(
NfN )]

︸ ︷︷ ︸

Wu





u12
. . .

u1N





︸ ︷︷ ︸

u

(4.77)

which is clearly linear in the stacked unit vectors u. Moreover, Wu is a regressor incorpo-

rating only known quantities, namely the end effector forces expressed in the individual

end effector frames.

The resulting parameter update law based on the unit vector representation is given by
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4 Adaptive control for cooperative multi-robot manipulation

˙̂u = −Ku P(û) W T
u

(
Wu û − 1f1

)
(4.78)

with Wu as in (4.77) and the projection matrix

P(û) =






I2 − ûT12û12
. . .

I2 − ûT1N û1N




 (4.79)

which ensures that the computed gradient of the parameter update law points in the

direction spanned by the tangent plane of û. The orientation error dynamics becomes

d

dt
[ûT û] = −ũTKuP(û)W T

u Wuũ (4.80)

for which it remains to verify that the projection matrix P(û) in (4.78) does not alter the

convergence properties of the gradient algorithm.

A prerequisite for ensuring the convergence properties of the projected gradient algo-

rithm with classical tools is that the projected parameter set is bounded and convex. The

orientation error ϕ̃1j ∈ S
1 belong to the spherical group which is not bounded nor convex.

The group S
1 can be visualized as a circle in the plane and is depicted in Fig. 4.6.

)( S
1

b

Rb

ϕ̃1jϕ̃1j − π ϕ̃1j + π
( )

Fig. 4.6: Illustration of the parameterization of the 1-sphere S
1

Any element ϕ̃1j ∈ S
1 as depicted by the blue dot in Fig. 4.6 can however be mapped to

a segment of R (depicted by the green line) when excluding the opposing element (depicted

in the figure by the red dot). Clearly, the open interval (ϕ̃1j − π, ϕ̃1j + π) is bounded and

convex. Moreover, the mapping (4.72) can be interpreted as isomorphism between this

line interval and its corresponding unit vector representation. In this regard, the presented

projected gradient algorithm (4.78) is expected to provide almost global convergence of

ϕ̃1j → 0 for |ϕ̃1j | < π according to [89, Theorem 4.4.1] and Wu fulfilling the persistent

excitation criterion.

Discussion For a concise analysis of the transient and the resulting convergence properties

of the projected gradient algorithm, a more detailed study of the employed isomorphism

(4.72) in the context of classical projected gradient algorithms such as [89, Theorem 4.4.1] is

required. The unit vector representation enables to rewrite the parameter model equation

linear in the orientation error. However, the chosen unit vector representation is not

minimal. Therefore, the matrix P realizes a projection of arbitrary vectors in R
2 (generated

by the gradient algorithm), to the unit circle. In this regard, the involved projection does
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4.4 Adaptive control for cooperative manipulation in SE(2)

not limit the range of the orientation error itself but ensures that the chosen orientation

parameterization remains conform to the unit norm requirement.

4.4.5 Numerical results

The adaptive control law proposed in Theorem 9 is illustrated in the sequel by means of

a numerical example. To this end, consider the following planar manipulation setup with

N = 3 manipulators depicted in Fig. 4.7.

{1} {2}

{3}

Fig. 4.7: Illustration of the kinematic grasp parameters for a planar manipulation task with
N = 3 manipulators

In this example the kinematic grasp parameters are

1r12 =

(
1.0

0.0

)

m , ϕ12 = π rad (4.81)

for manipulator {2} and

1r13 =

(
0.5

−0.8600

)

m , ϕ13 =
π

2
rad (4.82)

for manipulator {3}. The grasp parameter estimates are chosen as

1r̂12 =

(
1.0

0.0

)

m , ϕ12 = π rad (4.83)

and

1r̂13 =

(
0.5

−1.0

)

m , ϕ13 =
π

2
+ 0.3 rad. (4.84)

This choice means that only the kinematic grasp parameter estimates of manipulator {3}

are biased.

Initially, the pose of the object (and by definition equivalent to the pose of manipula-

tor {1}) is set to

xo(t0) = x1(t0) =





0.0m

0.0m

0.0 rad



 . (4.85)
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4 Adaptive control for cooperative multi-robot manipulation

In this example, the desired velocity for the object is imposed by choosing a constant value

of

ẋdo =
xdo
Tsim

(4.86)

with

xdo =





2.0m

1.0m
π
2
rad



 and Tsim = 10s. (4.87)

In case of unbiased kinematic grasp parameters, this choice of ẋdo (expressed in the world

frame {w}) should transport the object within the simulation period Tsim to its goal pose xdo.

The compliance of the end effectors is set to

Ci =

[
0.01Ns

m
I2 02×1

01×2 0.01Nms
rad

]

(4.88)

for all i = {1, 2, 3}.

Cooperative manipulation task without parameter adaptation The resulting trajec-

tory of the manipulator ensemble for constant but biased parameter estimates according

to (4.81) through (4.84) is illustrated in Fig. 4.8.
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Fig. 4.8: Trajectory of the end effectors during the cooperative manipulation task

First note that the end effector poses are compliant to the kinematic constraints through-
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4.4 Adaptive control for cooperative manipulation in SE(2)

out the entire manipulation task execution. This is visualized for the initial and final pose

of the ensemble by means of the gray triangular in Fig. 4.8. However, the object does not

reach its goal position - the small blue circle indicating the position of end effector {1}

should be located at pdo = (1.0, 2.0)Tm. It is also visible in Fig. 4.8 that the effective

rotation of the object is greater than ϕd
o =

π
2
. The emerging end effector forces are plotted

in Fig. 4.9.
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Fig. 4.9: End effector forces during the cooperative manipulation task without parameter
adaptation

The end effector forces are all non-zero and do not match the desired end effector forces.

It is worth noticing that although only the kinematic grasp parameter of end effector {3}

are biased, the end effector force of manipulator {2} is non-zero, too. This observation

illustrates the intrinsic all-to-all interaction in cooperative manipulation tasks. Obviously

this holds also true for the error propagation under biased kinematic grasp parameters.

Therefore, an accurate estimate of the kinematic grasp parameters is of prior relevance.

Cooperative manipulation task with parameter adaptation The robust tracking con-

troller as presented in Theorem 9 and the relative orientation estimate as proposed in (4.78)

is employed for the cooperative manipulation task example for N = 3 and biased kinematic

grasp parameters as given by (4.81) through (4.84). The parameter adaptation gains for

the simulation are set to

Ku = 10 I6 and Kr = 100 I6. (4.89)

The time plot of the estimation error for the cooperative manipulation task under consid-

eration is depicted in Fig. 4.10.
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Fig. 4.10: Parameter estimation error during the cooperative manipulation task

In the top plot of Fig. 4.10 it is visible that the orientation error ϕ̃13 drops quickly

from its initial value +0.5rad to zero. The initially unbiased translational estimation

error r̃12 depicted in the plot in the middle of the figure undergoes just a slight initial

perturbation due to a non-zero orientation error but remains close to zero throughout

the whole manipulation task. The translational error r̃13 illustrated in the bottom plot

of Fig. 4.10 converges within a period of approximately 1.5s to zero. As an immediate

consequence of the convergence of the estimation error to zero, one expects the manipulator

forces to approach zero, too. The manipulator forces for the cooperative manipulation task

with parameter estimation is depicted in Fig. 4.11.

As expected, all manipulator forces tend to zero. This highlights and stresses the rele-

vance of having precise estimates of the relative end effector orientation. This is particularly

true for pure translational motion tasks. The greater the desired angular motion of the

manipulator ensemble, the greater will be the impact of biased translational parameter

estimates. As a further consequence of converging parameter errors, the resulting tracking

error of the manipulator ensemble also decreases as depicted in Fig. 4.12.

The object approaches its goal pose this time much closer - the small blue circle indicat-

ing the position of end effector {1} should be located at pdo = (1.0, 2.0)Tm. The remaining

pose error is in fact too small to be visible from Fig. 4.12. Note that no additional pose

tracking controller is used and only the desired feed forward object twist in combination

with the adaptive parameter estimation minimize the resulting pose error very efficiently.

This again proves the relevance of having accurate estimates for the kinematic grasp pa-

rameters at hand.
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Fig. 4.11: End effector forces during the cooperative manipulation task with parameter
adaptation

Summary and outlook

This chapter motivates and describes the challenges encountered in cooperative manip-

ulation tasks for the relevant case when no global coordinate frame is available for the

multi-robot coordination. The resulting coordination problem is reformulated as a ro-

bust force/motion tracking problem under uncertain kinematic grasp parameters and an

adaptive control scheme is presented which solves this control problem for a planar and

quasi-static manipulation task. Numerical results are provided which illustrate the im-

pact of uncertain kinematic parameters on the force/motion tracking task. Moreover, the

efficiency of the proposed adaptive controller is evaluated in simulation, too.

The findings in this chapter do not present an extensive solution to the proposed gen-

eral robust force/motion tracking problem. The results should be read as a rudimentary

attempt towards a conceptual approach for dealing with uncertain kinematic parameters

in manipulation tasks by combining techniques from physical system modeling, control

design and parameter identification. In view of the proposed identifiability criterion for

planar manipulation tasks, it appears that more generalized parameter estimators might

be found by addressing the identification of a rigid transformation, i.e. joined estimation

of translational and rotational grasp parameters. This observation leads consequently to

methods and tools from differential geometry, which comprise the core characteristics of

the configuration and parameter space SE(3) as a manifold. The parameter estimation

problem might thus potentially be reformulated as an optimization problem on manifolds,

aiming for global parameter convergence, an improved convergence compared to the cas-
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Fig. 4.12: Trajectory of the end effectors during the cooperative manipulation task with pa-
rameter adaptation

caded estimation of translation/rotation parameters and a characterization of the error

dynamics in the framework of the passivity formalism.
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5 Conclusions

The increasingly autonomous character of robotic manipulator systems creates an entire

set of novel challenges regarding an efficient team coordination during the cooperative

manipulation tasks. In the future, cooperative manipulation tasks will not be limited to

dedicated laboratory environments but they will become an indispensable part of indus-

trial manufacturing, delivery logistics and remotely supervised missions such as search and

rescue, space exploration or underwater operations. While the benefits of using a team

of robots are obvious, the actual success of cooperating manipulators in all these differ-

ent domains will depend on one crucial factor: the ability to maintain and exploit the

robots’ autonomous features while integrating them by means of distributed coordination

and control algorithms for performing the manipulation task. Thus each robot is able to

contribute best as possible to the common task, given the individual sensing and actuation

capabilities. Moreover, the cooperative manipulator ensemble remains autonomous and

eventually outperforms conventional single and centralized manipulator systems in view of

the achievable redundancy, its modularity and the resulting online reconfigurability. This

thesis contributes to this endeavor by conducting a systematic analysis of the cooperative

manipulation dynamics and addressing some of the encountered challenges when targeting

distributed control architectures.

Summary of contributions

The main achievement of Chapter 2 is the novel characterization of the cooperative ma-

nipulator system as a constrained multi-body system. As an immediate consequence, a

closed-form model, incorporating the manipulators’ kinematics and forces, is derived based

on the Gauss principle. Moreover, the vital role of the kinematic constraints imposed to the

manipulator ensemble is discussed, enforcing an all-to-all coupling in terms of the emerging

interaction forces between the manipulators. From a multi-agent point of view, this might

be interpreted as an implicit all-to-all communication through the force/torque sensors.

On the other hand, this rigid coupling emphasizes the intrinsically centralized character of

the interaction dynamics when aiming for cooperative force/motion tracking.

In Chapter 3 fundamental properties of the manipulator model presented in Chapter 2

are derived. This includes a result on the robust stability of the cooperative manipulator

system under inaccurate feedback linearization of the individual manipulators as encoun-

tered in many practical situations. This finding is the thorough theoretical proof that

common cooperative manipulator implementations maintain important system properties

such as passivity (in case the end effector dynamics themselves are passive) and that the in-

dividually feedback controlled end effector remains stable when interacting with the object,

the rest of the manipulators and a properly defined environment. It is the first stability

result which is based on an explicit expression of the emerging end effector wrenches and

valid for arbitrary dynamic manipulation tasks.
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This chapter introduces also a shift of paradigm for the analysis of internal force/torques.

Previously, the decomposition of internal and external wrench components is performed

exclusively based on the measured end effector force/torques. As a result of the interpre-

tation of the cooperative manipulator system as a constrained multi-body system, a new

characterization of internal wrenches is presented which is compliant to the principle of

virtual work. As a direct consequence, novel degrees of freedom for the load distribution

between the manipulators are available and it is demonstrated that a proper internal force

analysis needs to incorporate the kinematics of the end effectors.

In Chapter 4 the challenge of kinematic manipulator coordination without a global co-

ordinate frame is introduced and formulated as an adaptive control problem. The relevant

case of cooperative manipulation tasks without access to an accurate, common reference

frame is discussed and the disturbing impact on the force/motion tracking objective is

illustrated by means of several examples. As a first step within the adaptive control de-

sign, the identifiability of the kinematic grasp parameters is derived for manipulation tasks

in SE(3) but also in the particular case of planar manipulation tasks in SE(2). In the

latter case, a proper identification of the kinematic grasp parameters requires the object’s

motion to meet a condition involving its angular and translational velocity (opposed to

tasks conducted in SE(3) where only the angular velocity is relevant for the parameter

identification).

In view of achieving robust force/motion tracking under uncertain kinematic grasp pa-

rameters, an adaptive control law for planar manipulation tasks is proposed. The presented

scheme guarantees asymptotic tracking of the force/motion setpoints and performs an iden-

tification of the unknown grasp parameters under the assumption that the inertial forces

required to manipulate the object remain small.

Conclusions

This thesis contributes to the field of cooperative manipulation by insisting continuously

on a clear distinction between the modeling of the cooperative system dynamics and the

control and coordination design for the manipulator ensemble in task space. Thanks to

this precise differentiation, the dynamics of cooperative manipulator systems may be con-

veniently split into components commonly used in control design as depicted in Fig. 5.1.

hd1
hdN

xdo

xd1
xdN

Cooperative dynamics

xo

Manipulator coordination

x1
xN

(controller) (plant)

h1
hN

Fig. 5.1: Block scheme representation of the cooperative manipulator dynamics and the em-
ployed coordination strategy

Chapter 2 discusses thoroughly the cooperative manipulator dynamics as depicted by
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the block on the right-hand side of Fig. 5.1. The individual manipulator force/motion set-

points serve as input to the kinematically constrained multi-robot ensemble manipulating

the object. The output of this block is the actual object pose (from which in turn the

manipulator poses can be derived through the kinematic constraints) but also the actual

end effector wrenches rendering the system of manipulators and object compatible to the

imposed constraints.

Chapter 3 deals in depth with the analysis of the coordination strategies depicted by

the block on the left-hand side of Fig. 5.1 interconnected with the cooperative system

dynamics. This includes the force/motion tracking control scheme in Section 3.3 but also

a completely new perspective on the design of internal/external wrench control as discussed

in Sections 3.1 and 3.6, respectively.

From a high-level control engineering perspective, the cooperative dynamics block in in

Fig. 5.1 represents a specific plant model while the manipulator coordination block repre-

sents the controller. Note however that the cooperative dynamics block itself contains the

individual, local manipulator feedback loops rendering the apparent, individual end effec-

tor dynamics in task space. This distinction between plant dynamics (i.e. the constrained

cooperative manipulator system) and controller (i.e. the applied coordination strategy for

cooperative force/motion tracking) is essential for the design of more sophisticated coor-

dination strategies with the force/motion setpoints in task space serving as convenient

interface between coordination strategy and manipulator dynamics.

From an object-centered perspective, the manipulator coordination block in Fig. 5.1 re-

alizes an inverse dynamics control law while simultaneously distributing the desired applied

object wrench to the manipulator ensemble by means of suitable force/motion setpoints.

Consequently, the computations in the manipulator coordination block have a straightfor-

ward interpretation as a redundancy resolution for input redundant systems.

From a multi-robot system perspective, Chapter 2 and Chapter 3 point out the vital role

of the kinematic constraints imposed through the object for the system dynamics and the

control design. Chapter 4 picks up this observation in view of the situation encountered in

most practical implementations, where these crucial kinematic parameters are either not

measurable at all or only with limited accuracy. The presented adaptive control scheme in

Section 4.4 achieves robust force/motion tracking for planar manipulation tasks, in which

the object’s inertial effects remain small.

Future work

Cooperative multi-robot manipulator systems have drawn the attention of many re-

searchers since more than three decades. Yet the number of cooperative manipulator

systems successfully deployed in real world scenarios is very limited. This surely will not

last long due to several reasons. On one hand, there is the recent technological trend of

robotic manipulators becoming more reliable, more robust and more accessible to a broader

professional and non-professional audience in regard to the available interfaces and gener-

ally decreasing deployment costs. In the field of aerial manipulation, a fully operational

quadcopter equipped with on-board camera, wireless communication and inertial measure-

ment units for stabilization of the flight dynamics is nowadays available at the price of a

tablet computer. On the other hand, the conceptual design of coordination strategies for

83
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multi-robot systems is progressively advancing towards algorithms which are able to deal

efficiently with the arising uncertainties in distributed systems. However, various open

research questions in the field of cooperating manipulators must be addressed in the future

to comply with the expectation of its potential.

Generalization to dynamic manipulation tasks An open issue is the conceptual gener-

alization of the adaptive control design approach presented in Chapter 4 to more general,

dynamic manipulation tasks without global coordinate frame in SE(3). Common param-

eterizations of the task space, i.e. the special Euclidean group, impede a straightforward

application of standard stability results from adaptive control due to the nonlinear occur-

rence of the rotational parameters in the manipulator model. A potentially more general

approach for this purpose might be found by employing tools from differential geometry for

the parameter estimation and exploiting passivity properties of the cooperative dynamics

and a suitably designed controller.

Distributed control strategies Current cooperative multi-robot manipulator setups are

characterized by the increasingly autonomous character of the individual robot and the

resulting distributed hardware architecture in terms of the available sensing and actua-

tion equipment. Chapter 4 deals with the particular challenge of distributed coordinate

knowledge leading to uncertain kinematic grasp parameters. The presented adaptive con-

trol algorithm is clearly a centralized scheme since it evaluates and combines continuously

the sensor data of all robots in a single computational entity. No restriction on the avail-

able communication bandwidth and no delay in the sensor data transmission, which occur

in real world applications, are taken into account. In case of non-ideal information ex-

change over the communication network, a performance loss is expected, which degrades

the force/motion tracking performance of the multi-robot team. A thorough analysis of

the manipulation performance and the design of distributed control algorithms appears

indispensable whenever the manipulation task is conducted by means of non-ideal commu-

nication networks.

Multi-robot team reconfiguration The manipulators’ autonomy in view of the numer-

ous challenges encountered in more complex cooperative manipulation tasks can only be

maintained when a coordination layer on top of the system dynamics and control design

level is introduced. This means that the manipulator ensemble is eventually capable to

reconfigure itself facing a task in which the objective or the requirements change over time.

A typical example for this is cooperative regrasping of the object in order to increase the

achievable dexterity or to render a desired apparent object dynamics. On the other hand,

it appears also beneficial that manipulators flexibly join or quit the multi-robot team when

needed without destabilizing or degrading the cooperative manipulation task. It is obvious

that such performance-related reconfiguration builds on a concise model of the interaction

dynamics as presented in this thesis.

Multi-agent reasoning With the increasing autonomy of single robotic manipulator sys-

tems and potentially heterogeneous on-board sensing, actuation and computation capaci-
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ties in the multi-robot team, decision relevant to the current task objective may be negoti-

ated during the task and subtasks may be reallocated to specific robots. The desired tra-

jectory for the object and the manipulator ensemble should be updated and redistributed

as a function of the available visual sensor information if obstacles in the environment or

new directives from a human operator are detected. This negotiation about task objectives

should include the human who is able to communicate at least implicitly by means of the

applied force/torque to the object with the entire multi-robot team. Based on the captured

sensor data, task-relevant signals such as haptic cues induced by a human operator might

be extracted and learned by the manipulators in order to improve the interaction comfort

for the human.
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A Basic adaptive control concepts

This section introduces some fundamental concepts from adaptive control theory. The

content follows the compact presentation in [91]. For a more detailed treatment of related

concepts, the reader is referred to more comprehensive textbooks such as [89, 92]. Adaptive

control is employed in this thesis in order to achieve accurate force/motion tracking under

unknown plant parameters.

Adaptive control model

Throughout this section the joint space dynamics of a single robotic manipulator as pre-

sented in (2.4) is used in order to illustrate the adaptive control concepts. Recall that the

joint space dynamics are given by

Λi(ξi)ξ̈i + Γi(ξi, ξ̇i) = τi. (A.1)

It can be verified that the individual manipulator dynamics are linear in terms of suitably

selected set of pi physical robot parameters Θi ∈ R
pi as e.g. the link inertias or the end-

effector payload. In adaptive control this linear parameterization property is commonly

exploited to rewrite the plant dynamics as

τi = Yi(ξi, ξ̇i, ξ̈i) Θi, (A.2)

wherein Yi ∈ R
ni×pi is a non-linear matrix function called the regressor matrix.

Remark In case the joint acceleration ξ̈i is not measurable, the following modification

can be implemented. In order to eliminate ξ̈i from (A.2), both sides of (A.2) are filtered by

an exponentially stable and strictly proper filter with impulse response wi(t). By defining

the filtered torque as

yi(t) =

∫ t

0

wi(t− r)τi(r)dr (A.3)

and using partial integration one has

∫ t

0

wi(t− r)[Λi(ξi)ξ̈i] = wi(t− r)Λi(ξi)ξ̇i |
t
0 −

∫ t

0

d

dr
[wiΛi(ξi)]ξ̇idr (A.4)

which clearly is a function of ξi and ξ̇i only. Thus one can write

yi = Wi(ξi, ξ̇i) Θi (A.5)
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wherein Wi is the filtered version of Yi, which can be computed by means of the measure-

ments ξi and ξ̇i.

Based on the parameter estimate Θ̂i ∈ R
pi, a prediction of the (filtered) torque is

generated according to

ŷi = Wi(ξi, ξ̇i) Θ̂i. (A.6)

The prediction error is thus

ei = ŷi − yi =Wi(ξi, ξ̇i) Θ̃i (A.7)

and hence ei linear in the parameter error

Θ̃i = Θ̂i −Θi. (A.8)

Parameter estimation methods

In the sequel parameter estimators of the form

˙̂
Θi = −PiW

T
i ei (A.9)

are considered wherein Pi ∈ R
pi×pi is a constant or time-varying, positive definite gain

matrix.

Gradient estimator

The gradient estimator results from choosing

Pi = P̄i = const., (A.10)

which is equivalent to minimizing the instantaneous prediction error, i.e.

min
Θ̂i

‖ei‖
2. (A.11)

The gradient estimator is suitable to track time-varying parameters and performs well

in the presence of disturbances. If the regressor matrix Wi is persistently exciting, the

parameter estimate converges exponentially. However, if Wi is not persistently exciting,

the parameters will not converge - even in the absence of uncertainties. Therefore, persis-

tency of excitation plays a crucial role for the parameter identification in adaptive control

schemes.

Persistent excitation A matrixM ∈ R
d×d is said to be persistently exciting if there exist

positive constants α1, α2 and ∆T such that

∀t ≥ 0 α1Id ≤

∫ t+∆T

t

MT (r)M(r)dr ≤ α2Id. (A.12)
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Note that although the matrix product MTM might in general be singular for all r, the

integral of MTM is uniformly positive definite for any interval of length L. The concept

of persistent excitation is closely linked to the uniform observability condition of non-

linear systems and the observability Gramian in linear systems. In the context of adaptive

control, persistent excitation means unambiguous observability of the parameters from the

observed system trajectory. In view of the manipulator example with W (ξi, ξ̇i), persistent

excitation means that the joint space trajectory ξi(t) is sufficiently rich in order to allow a

unique conclusion on the parameter vector Θi.

Least-squares estimator

An alternative estimator guaranteeing convergence to a constant parameter vector is ob-

tained by

Ṗi = −PiW
T
i WiPi (A.13)

minimizing the squared integral of the prediction error, i.e.

min
Θ̂i

∫ t

0

‖ei(r)‖
2dr. (A.14)

However, even ifWi is persistently exciting, the estimator does not converge exponentially.

See [89, Section 4.3] for alternative estimators and a thorough analysis of the individual

convergence properties.
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