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Zusammenfassung

In dieser Arbeit wird das Potenzial aktueller Methoden des maschinellen Lernens
zur einkanaligen Mehrquellen-Audioanalyse untersucht, d.h. Informationsgewinnung
aus einkanaligen Audiosignalen, in denen Nutzsignale mit einem oder mehreren
Störsignalen überlagert sind. Zunächst wird gezeigt, dass Quellentrennung durch
kürzlich eingeführte Verfahren zur nichtnegativen Matrix-Faktorisierung die Erken-
nungsleistung erheblich erhöhen können, verglichen mit dem Standardverfahren, in
dem ein Erkenner auf gemischten Signalen trainiert wird. Zweitens wird gezeigt, dass
durch Formulierung der Quellentrennung als Erkennungsaufgabe aktuelle Verfahren
zum überwachten Lernen z.B. tiefer neuronaler Netze genutzt werden können, um
bisher unerreichte Performanz in der einkanaligen Quellentrennung zu erzielen. In
diesem Kontext wird auch überwachtes Lernen für nichtnegative Modelle eingeführt.
Die Aufgabe der Mehrquellen-Audioanalyse wird exemplarisch an realistischen Proble-
men dargestellt, wie z.B. automatischer Spracherkennung und Sprachsignalanhebung,
wobei Sprachsignale mit nichtstationären Signalen wie Musik überlagert sind, und in
diesem Zusammenhang werden führende Ergebnisse in internationalen Forschungswet-
tbewerben werden vorgestellt. Durch Anwendung der vorgestellten Methoden werden
weiterhin in ausgewählten Anwendungen der polyphonen Musikverarbeitung, z.B.
Erkennung von Sängereigenschaften oder Musiktranskription, Ergebnisse nach dem
neuesten Stand der Technik erzielt.
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Abstract

This thesis investigates the potential of recent machine learning methods for the
challenging task of single-channel, multi-source audio audio analysis, i.e., information
extraction from single-channel audio where the sources of interest (e.g., speech) are
mixed with multiple interfering sources. First, it is shown that source separation by
recently proposed techniques for non-negative matrix factorization can significantly
improve the recognition performance, compared to the state-of-the-art approach
of training the recognition task with multi-source data. Second, it is shown that
by formulating the source separation problem itself as a recognition task, state-of-
the-art methods for supervised training of recognition systems such as deep neural
network models can be used to achieve previously unseen performance in single-
channel source separation. In this context, supervised training of non-negative
models is introduced as well. The task of multi-source recognition as defined above
is exemplified by challenging real-world speech separation and recognition problems
where speech is mixed with non-stationary background noise such as music, and
world-leading results in international evaluation campaigns are demonstrated for this
task. Furthermore, state-of-the-art results are presented in selected music information
retrieval applications involving polyphonic audio, such as characterizing the singer,
or transcribing the music into a score.
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Preface

This thesis is based on selected pre-publications made during my time as a PhD
student in the Machine Intelligence & Signal Processing Group, Institute for Human-
Machine Communication (MMK), Technische Universität München (TUM) in Munich,
Germany. The selection is based on scientific relevance and recency, and aims at
a coverage of various applications in both speech and music analysis. The first
aim of this thesis is to make these pre-publications more accessible to the generally
knowledgeable reader, who should be familiar with the basics of digital signal
processing and machine learning. The second aim is to provide a broader view of
the concept of multi-source analysis than is present in the pre-publications. To this
end, the pre-publications have been restructured into methodology and results, cast
into a general research framework, and augmented by an introductory chapter and
concluding remarks. Hopefully, this results in a publication that is a joy to read
from the beginning to the end. The interested reader can find references to the
pre-publications and related literature throughout this thesis.

Munich,
Fall 2014 Felix Weninger
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Introduction

The world’s continual breathing is what we hear and call silence.
– Clarice Lispector

1.1 Motivation

Sound is everywhere – many environments we encounter in our daily lives contain
multiple sound sources. As a consequence, audio signals of interest for technical
systems, including speech, music, or acoustic events, rarely occur in isolated form.
Thus, for intelligent systems of the future it will be crucial to understand audio
signals that are blended with others – for example, recognizing the words in a speech
signal mixed with background music and street noise while driving a car, a signal
recorded on a mobile phone while walking down a busy street, or working in an office
environment with interferences from background talkers and appliances.

In this thesis, multi-source audio analysis is formulated as the generic task of
extracting information from an audio source of interest in the presence of potentially
multiple interfering sources. Due to its practical importance, in the last years
there has been considerable progress in this direction [41, 114], and attention has
shifted away from considering audio analysis tasks in isolation inside the lab, in
favor of realistic setups. This holds for tasks such as automatic speech and emotion
recognition [108, 241], audio event classification [128], etc.

Applications of multi-source audio analysis are found in human-computer interac-
tion – a very well known and highly important practical challenge is distant-talking
Automatic Speech Recognition (ASR), where one or more microphones capture not
only the speech source of interest, but also a considerable amount of interferences
from the environment [108, 203]. Furthermore, multi-source audio analysis tasks
are naturally given by Music Information Retrieval (MIR) applications, since music
generally comprises multiple audio sources – e.g., singers, instrumentalists, and crowd
noise in live recordings. Note that the task of transcribing the lyrics of a song, or
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1. Introduction

recognizing the identity of the singer, bears some similarity to speech and speaker
recognition in non-stationary noise – with the ‘non-stationary noise’ comprising
instrumental accompaniment [221].

Existing approaches to solve multi-source recognition can be roughly divided
into two categories: noisy (multi-condition) training, where a task of interest (e.g.,
ASR) is learnt in a supervised way by associating audio mixtures with the labels
(e.g., phonemes) of the source(s) of interest; and source separation, where the goal
is to first estimate the source(s) of interest (in the time, time-frequency, or feature
domains) before further processing. Of course, it seems natural to combine these
approaches to achieve optimal performance, but this is more intricate than it might
seem at first: Separated signals will generally mismatch both the ‘clean’ sources and
the mixture signals on which typical recognizers are trained.

An important insight is that if we formulate the optimal recovery of the source(s)
as the task of interest, source separation can be cast as an instance of noisy training.
Hence, the general framework of this thesis is to solve prediction tasks in the presence
of interferences. For this, machine intelligence will be leveraged, in order to tackle
the particular challenge of performing multi-source recognition on single-channel
audio. By that, source separation and noise-robust recognition will be unified in a
single research framework, which allows for investigating optimal machine learning
strategies for tasks including speech enhancement, ASR and MIR. The next section
will present the above arguments in a more formal manner.

1.2 Problem statement

For a finite number of sources S ≥ 2, let

y∗ : (s1, . . . , sS) 7→ (y∗1, . . . , y
∗
S) (1.1)

be a labeling function, i.e., a mapping from source signals (finite sequences) s1, . . . , sS
to target signals (finite sequences) y∗1, . . . , y

∗
S. For example, when recognizing speech

from concurrent speakers, the signals s1(τ), . . . , sS(τ) correspond to speech signals
from S different speakers, and y∗1, . . . , y

∗
S correspond to textual transcriptions. Simi-

larly, the automatic piano transcription problem (cf. Section 7.3) can be formalized
in this framework by assuming that s1(τ), . . . , sS(τ) are sequences of acoustic real-
izations of piano notes belonging to a certain pitch (S = 88), and y∗1(τ), . . . , y∗S(τ)
are the corresponding note onset indicator functions.

Applying the traditional view of pattern recognition, one would strive to find a
set of single-source recognition functions ŷl that approximate y∗l for all l = 1, . . . , S:

ŷ(s1, . . . , sS) = (ŷ1(s1), . . . , ŷS(sS)) ≈ y∗(s1, . . . , sS). (1.2)

However, in most practical scenarios, one does not have access to the separated
source signals s. Instead, a mixing process M(s1, . . . , sS) = (m1, . . . ,mC) yields C

4



1.2. Problem statement
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M ŷ
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Figure 1.1: Schematic overview of multi-source audio recognition: The recognition
function y is implemented as a mapping from mixture signal(s) m1, . . . ,mC (obtained
as the output of an unknown mixing process M on the sources s1, . . . , sS) to source
labels y1, . . . , yS. The implementation may include source separation, M, or feature-
domain separation / enhancement, e. ŷ and υ̂ denote single-source recognition
functions (υ̂: defined in the feature domain), and g denotes feature extraction.

observed mixture signals m1, . . . ,mC on C receivers (microphones, channels). Based
on this and (1.2), in this thesis, multi-source recognition is defined as finding a
mapping y fulfilling

y(M(s1, . . . , sS)) = y(m1, . . . ,mC) ≈ y∗(s1, . . . , sS). (1.3)

It is tempting to assume that the above problem is just an instance of the well-known
source separation problem, i.e., that it can be reduced to inverting the mixing process
M. However, the connection between the two is more sophisticated. It is clear that if
M is a bijective function, i.e., the mixing process is deterministic and reversible, there
exists an ‘unmixing’ functionM−1 such that for a suitable ŷ ≈ y∗, y = ŷ ◦M−1 ≈ y∗.
An example for a reversible mixing process is noiseless determined instantaneous
mixing,

M(s1, . . . , sS) = (m1, . . . ,mS) = A(s1, . . . , sS), (1.4)

with a full rank S × S matrix A and the mixture and source signals corresponding
to matrix rows. In other words, assuming (i) one can find M−1 effectively, and (ii)
recognition on separated sources fulfills ŷ ≈ y∗, the ideal solution is to perform source
separation, then apply the mapping ŷ to the separated signals1.

Yet these two assumptions are hardly met in any realistic application. First, the
assumption that M is bijective is unrealistic, foremost due to underdetermination,
C < S, i.e., having less channels than sources. In this thesis, the ‘heavily underde-
termined’ case C = 1 (single-channel) is of particular interest, as systems capable
of handling single-channel signals can be applied to any type of multi-source audio,

1This is not as trivial as it might seem since M is unknown in practical applications; however,
Independent Component Analysis (ICA) has been shown to solve the case of noiseless determined
instantaneous mixing to perfection more than a decade ago [92].
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1. Introduction

regardless of the number of available channels and the microphone placement. In
this context, it must also be noted that in many application scenarios the mixing
process is convolutive due to reverberant environments – i.e., each source signal is
convolved with a Room Impulse Response (RIR) hl:

M(s1, . . . , sS) = (m1, . . . ,mC) = A(h1 ∗ s1, . . . , hS ∗ sS), (1.5)

with a matrix of mixing coefficients A ∈ RC×S
+ . This effectively results in additional

sources corresponding to reflected sounds (convolutive noise), hl∗sl  sl+sl′ . Finally,
measurement noise, such as from recording equipment, adds random fluctuations to
the mixing process M, which are hard to impossible to revert.

Clearly, in case thatM cannot be inverted, the question how to design y becomes
very interesting. y will be called multi-source recognition function subsequently. For
example, one could design y as a composition y = ŷ ◦M, where M approximates
the inverse of M, i.e., M◦M ≈ id – again reducing multi-source recognition to
source separation followed by single-source recognition. However, unlike in the case
of reversible mixing, there is no guarantee that this is optimal.

The second assumption, y∗ ≈ y, might not be met either, as y∗ (the true labeling
function) can be very hard to compute (think of the notoriously difficult ASR
problem), inefficient to compute accurately, or even incomputable, so that ŷ 6≈ y∗.
Given such ŷ (say, a well-trained ASR system), the question arises: Should one
design y as ŷ ◦M, i.e., imperfect source separation followed by imperfect recognition,
or should one try to find a ‘direct’ mapping y such that y ◦M is close to y∗? As
source separation seems to be a very hard problem, one might be tempted to consider
the latter as being more straightforward – in other words, one could solve the multi-
source recognition problem without performing explicit source separation. In fact,
this approach (known as ‘noisy training’ or ‘multi-condition training’) can be very
effective in practice, particularly if y is implemented by powerful machine learning
models. For instance, in the case of recognizing speech mixed with noise sources,
it is now known that Deep Neural Networks (DNNs) can exploit noisy speech data
very well [183], and training with noisy speech even helps generalization compared
to training with isolated speech [247]. Furthermore, if one has a generative model
of (m1, . . . ,mC) | (y∗1, . . . , y∗S), i.e., of the mixed observations given certain labels of
the sources, one can attempt to solve the multi-source recognition problem (1.3) by
inference [160, 206]2.

There are a couple of arguments to the defense of source separation, though.
First, it is now well known that some processes in the human auditory processing
resemble source separation [129]. Thus, if the goal is to design intelligent methods in
the sense of artificial intelligence resembling human cognitive processes, one should
not neglect source separation. Furthermore, in some applications, such as speech
separation for human-human communication (e.g., in telephony or hearing aids), the

2For larger numbers of possible labels and multiple sources this can quickly become intractable.
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1.3. Objectives

task of interest is to recover source signal(s) – to phrase this in the above framework,
one can simply define the labeling y∗ to be the identity function, and it follows that
one needs to find y such that y ◦M ≈ id, which is exactly the source separation
problem, i.e., y ≈ M−1. Finally, speech has many facets that can be recognized –
the spoken words, the attributes (age, gender, personality, likability, etc.) of the
speaker, speaking style (casual, whispered, emotional), etc. [174]. If one wants to
recognize all these facets robustly, it might be ineffective to perform multi-condition
training over and over again for all these tasks, as opposed to having only recognizers
trained on separated sources (‘clean training’) and a source separation module that
can be connected3.

Another relevant aspect for the design of the multi-source recognition function
is that in practice, recognition is hardly ever performed directly on time domain
signals, but features are extracted in an intermediate step (cf. Section 3.1). Let us
now explicitly model the feature extractor as a function g; then, the multi-source
audio analysis problem in the feature domain becomes

υ(g(M(s1, . . . , sS))) = υ(g(m1), . . . , g(mC)) ≈ y∗(s1, . . . , sS) (1.6)

where υ is used instead of y to distinguish the problem from the time-domain
equivalent (1.3). Then, instead of attempting to approximate (1.6) by finding a
source separation function M, we can find a feature enhancement function e such
that e ◦ g ◦M ≈ g, giving rise to the multi-source recognition function y = υ̂ ◦ e ◦ g
with υ̂, υ̂ ◦ g ≈ y∗, being a single-source recognition function in the feature domain.
This will be applied to a practical ASR task in Section 5.2.

Finally, it is noteworthy that in some applications, such as speech enhancement
(cf. Chapter 4), or speech recognition in noise (cf. Chapter 5), only one source
l ∈ {1, . . . , S} is of interest. The above framework is flexible enough to support this
case – one can simply suppose y∗(sl′) = ε (empty string) for all l′ 6= l and adjust the
recognition objective accordingly. A practical example for this is given in Section 3.6.

Figure 1.1 summarizes the multi-source recognition process via multi-condition
training, source separation, and feature enhancement.

1.3 Objectives

Based on the above considerations, the research agenda for this thesis consists of
two main objectives:

1. To verify the hypothesis that including an explicit source separation or fea-
ture enhancement step in the multi-source recognition process yields higher
performance in ASR and MIR tasks than noisy training.

3For this reason, a ‘plug-and-play’ scenario, where a clean trained recognizer is used on separated
signals, will be considered in this thesis whenever possible.
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1. Introduction

2. To demonstrate that it is particularly effective to formulate source separation
as a recognition task and use supervised training of models which are typically
used for recognition, instead of unsupervised or weakly supervised methods.

Arguably, intelligence is both necessary and sufficient to solve the single-channel
multi-source audio analysis problem: necessary, since rule-based methods generally
do not perform well on challenging multi-source tasks, such as speech enhancement
in non-stationary noise, where they are outperformed by machine learning [111, 229];
and sufficient, considering human performance on this task, e.g., recognizing the
melody and lyrics of a song played on the radio.

To quantify if the above objectives are met, standard evaluation measures and
datasets will be used. These will be the subject of Chapter 2. In particular, this
thesis will demonstrate the successful application of the proposed techniques to
the 2011 and 2013 Computational Hearing in Multisource Environments (CHiME)
Challenges, as well as the 2014 Reverberant Voice Enhancement and Recognition
Benchmark (REVERB). Next, Chapter 3 will describe some of the chosen machine
learning methods in detail, including their efficient implementation on modern
parallel computing architectures. Then, Chapter 4 will describe the potential of
machine learning based methods to find separation functions in the light of the
second objective, by the example of speech enhancement. Chapter 5 will investigate
the first hypothesis in the context of automatic speech recognition in additive noise,
and Chapter 6 will do the same for convolutive noise (reverberation). Finally, in
Chapter 7 the above hypotheses will be tested in the domain of MIR. Conclusions
are drawn in Chapter 8.
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Part II

Methodology
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2

Measures of success

Goals are dreams with deadlines. – Diana Scharf Hunt

It can be argued that in the field of engineering, the true measure of success is the
acceptance of the resulting system by users. In the case of source separation, this
can correspond to the perceived separation quality, such as the intelligibility of a
separated speech signal. In the case of ASR, it corresponds to whether the errors of
the system lead to critical misunderstandings between the human and the machine.
However, such subjective measurements are costly to obtain, and notoriously difficult
to predict automatically [105]. As a consequence, the research community has picked
up on objective measures that are deterministic functions of the recognizer output
and the desired output, such as the rate of words recognized correctly in a speech
signal, or the similarity of the separated and the original sources. In this thesis,
established objective measures for multi-source recognition are used, starting with
energy-based measures for source separation quality and then moving to evaluation
in terms of recognition accuracy. These will be presented in the first part of this
chapter.

This chapter then concludes with an overview of data sets that are used to
compute these objective measures. The crucial question is how objective measures
obtained on a given data set relate to the expected performance in some application
scenario – again, in general terms, this question is unsolved. However, there are still
some commonly used criteria for classifying data sets according to their suitability
for evaluation. These are mostly based on heuristics and practical experience – a
simple example is the size of the data set, resulting from the belief that ‘there is no
data like more data’. More of these criteria will be discussed below.

2.1 Evaluation measures

In the light of the objectives of this thesis, mainly two kinds of objective criteria
come to mind: source separation quality and recognition accuracy.

11



2. Measures of success

2.1.1 Source separation evaluation

This section deals with energy-based objective measures for source separation evalua-
tion. Let us start by reviewing simple measures of correlation between true source
signals and estimated sources.

2.1.1.1 Correlation-based source separation measures

Smaragdis [185] introduced the Source Ratio (SR) for a source s1, interference s2

and estimated source ŝ1 as follows1:

SR = 20 log10

%(ŝ1, s1)

%(ŝ1, s2)
, (2.1)

where % denotes the Pearson correlation coefficient. In case that the source and
interference signals have zero expectation, this equals

SR = 20 log10

∑
τ ŝ1(τ)s1(τ)

√∑
τ ŝ1(τ)2

√∑
t s2(τ)2∑

τ ŝ1(τ)s2(τ)
√∑

τ ŝ1(τ)2
√∑

t s1(τ)2
(2.2)

= 20 log10

〈ŝ1, s1〉|s2|
〈ŝ1, s2〉|s1|

(2.3)

with 〈·, ·〉 denoting the scalar product and | · | the L2-norm.

An advantage of this measure is that it is very efficient to compute (in linear
time). A drawback is that if the source and the interference are similar, i.e., s1 ≈ s2,
the above is likely to yield SR ≈ 0 dB regardless of the goodness of the approximation
ŝ1. However, in many applications sources and interferences can be assumed to be
uncorrelated, e.g., in speech / noise separation, or in speaker separation, which is
why the above measure is certainly justified.

2.1.1.2 Projection-based source separation measures

A more generic approach for source separation evaluation, which is nowadays widely
used, also as competition measure in the Signal Separation Evaluation Campaign
(SiSEC) [141], was introduced by Vincent et al. [200]. Reasons for the popularity of
this approach include that the measures are still rather straightforward to compute,
easy to extend to an arbitrary number of sources, and that they do not make any
assumption about the mixing or unmixing process, or about the independence /
orthogonality of the sources. Furthermore, distortions by source separation are
taken into account explicitly. This is achieved by decomposing an estimated source

1Since Smaragdis [185] addresses the specific case of separating two concurrent speakers, the
acronym SR originally stands for Speaker Ratio.
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2.1. Evaluation measures

ŝl(τ) into a component starget
l (τ) that represents the actual source, plus error terms

einterf
l (τ) and eartif

l (τ) representing the presence of interferences and artifacts:

ŝl(τ) = starget
l (τ) + einterf

l (τ) + eartif
l (τ). (2.4)

This decomposition is effectively computed by

starget
l = 〈ŝl, sl〉sl/|sl|2, (2.5)

(Rss)l,l′ = 〈sl, sl′〉, (2.6)

C = R−1
ss (〈ŝl, s1〉, . . . , 〈ŝl, sS〉)ᵀ , (2.7)

einterf
l = Cᵀs− starget

l , (2.8)

eartif
l = ŝl −Cᵀs, (2.9)

where sl(τ) is the separated source l and s is a matrix with rows corresponding to
source signals. Rss is the Gram matrix whose inverse is used to define an orthogonal
projector in (2.7). Then, one can define the Source-to-Distortion Ratio (SDR),
Source-to-Interference Ratio (SIR), and Source-to-Artifacts Ratio (SAR) [200] by

SDRl = 10 log10

|starget
l |2

|einterf
l + eartif

l |2
, (2.10)

SIRl = 10 log10

|starget
l |2

|einterf
l |2

, (2.11)

SARl = 10 log10

|starget
l + einterf |2

|einterf
l |2

. (2.12)

It is easy to see that for S = 2 orthogonal sources, i.e., 〈s1, s2〉 = 0, and letting l = 1
and l = 2 represent the desired source and interference,

starget
1 = 〈ŝ1, s1〉s1/|s1|2, (2.13)

einterf
1 = 〈ŝ1, s2〉s2/|s2|2, (2.14)

SIR1 = 10 log10

〈ŝ1, s1〉2|s2|2

〈ŝ1, s2〉2|s1|2
, (2.15)

the latter being equivalent to SR (2.3). Thus, SIR can be seen as a generalization of
SR to multiple non-orthogonal sources.

Although for non-orthogonal sources, the computation of einterf
l , and hence SDR,

SIR and SAR, requires solving a linear system of equations, the dimensionality of
this system is only determined by the number of sources S. Thus, for a constant
number of sources, SDR, SIR and SAR can be computed in linear time.
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2. Measures of success

2.1.2 Recognition evaluation

In the following, the most common objective measures to evaluate the performance
of a recognition system with symbolic output, such as class labels or text strings,
will be presented. Apart from these, there are other measures which are relevant to
specific applications, but for clarity these will be introduced ‘on-the-fly’ later on in
Part III.

2.1.2.1 Classification accuracy

Probably the most straightforward objective measure of a system’s performance in
a classification task is to estimate the probability of correct classification. Given a
sequence of discrete labels y∗1, . . . , y

∗
N and a sequence of predicted labels y1, . . . , yN

for the N test instances, accuracy (Acc) is defined as

Acc =

∑N
i=1 δ(yi, y

∗
i )

N
, (2.16)

where δ is the Kronecker delta. Alternatively, if the distribution of class labels is
non-uniform, it can be more meaningful to consider (average) recall (Rec):

Rec =
1

L

L∑
c=1

∑
i:y∗i =c δ(yi, y

∗
i )

Nc

(2.17)

where L is the number of classes and Nc = |{i : y∗i = c}| is the number of test
instances with class label c. The difference to Acc is that always picking the class
with the highest prior Nc/N can result in high accuracy, whereas it leads to chance
level recall.

2.1.2.2 Transcription accuracy

In computing transcription accuracy, a reference sequence of symbols y∗1, . . . , y
∗
N

is compared to a recognized sequence of symbols y1, . . . , yN ′ . For example, in
automatic speech recognition, the symbols correspond to words. Since the recognition
algorithm can erroneously insert or omit symbols, there is generally no one-to-one
correspondence between reference and and recognized symbols; hence, the measures
defined above cannot be used directly. Instead, an alignment of the reference and
recognized sequences has to be determined first, before calculating accuracy. This can
be done by a dynamic programming algorithm which is similar to the one proposed
by Wagner and Fischer [207] for the calculation of the Levenshtein (edit) distance,
but counts insertions, deletions, and substitutions separately. After execution of this
algorithm, the Word Accuracy (WA) is given by

WA =
N − I −D − S

N
× 100 %, (2.18)
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2.1. Evaluation measures

where N is the number of symbols, and I, D, and S are the numbers of insertions,
deletions, and substitutions. Note that in contrast to Acc and Rec, WA can be
negative, for example in case of many insertions. As the ‘opposite’ of WA, Word
Error Rate (WER) is defined as

WER = 100 %−WA =
I +D + S

N
× 100 %. (2.19)

2.1.2.3 Relation to source separation quality

When evaluating multi-source recognition systems, it is tempting to conjecture that
there is a generic relation between recognition accuracy on separated sources and
source separation quality. However, this hypothesis has still to be verified on a
larger scale. This thesis presents some evidence in Section 5.1.1 and Section 5.1.2.
Furthermore, it is promising that automatic speech recognition accuracy has been
demonstrated to be a predictor of speech intelligibility in the cases of speech coding
and pathological speech [73, 195].

2.1.3 Significance testing

An issue of high practical interest is to compare the performance of multiple systems
on a given recognition task. It has to be determined whether observed differences
in performance are caused by random fluctuations. This is usually achieved by
statistical significance testing. The following section briefly introduces important
types of significance tests for classification and general recognition tasks.

2.1.3.1 Comparing two accuracies

The z-test as described by Dietterich [30] can be used to test if the accuracies of two
systems A and B are significantly different. Let pA and pB denote the probabilities
of correct classification, which are measured as the accuracies on a given data
set. Without loss of generality, we assume that pB > pA, i.e., B seems to perform
better than A. One then supposes (formulates the null hypothesis H0) that the
observed performances are caused by random deviations from the probability of
correct classification by either system, pAB. Since pA and pB are measured on the
same data set, it holds that pAB = (pA+pB)/2. Then, the null hypothesis is disproven
at a chosen level of significance. Denoting the number of correct classifications by
Nc, Nc follows a binomial distribution with success probability pAB:

Nc ∼ Bin(N, pAB). (2.20)

Accordingly, one observes the improved accuracy of B with probability

P (Nc > pB ·N) = 1− P (Nc ≤ pB ·N). (2.21)

15
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Approximating the binomial distribution by a normal distribution with mean N ·pAB
and variance N · pAB(1− pAB), the standardized (z-normalized) test quantity z∗c,B
becomes

z∗c,B =
pB − pAB√
pAB(1− pAB)

√
N. (2.22)

The criterion for rejecting H0 is

p = 1− Φ(z∗c,B) < α, (2.23)

for the significance level α and the cumulative distribution function of the standard
normal distribution Φ. One typically speaks of significant differences if α < 0.05
(this is the significance level used in this thesis unless stated otherwise). The left
hand side of the inequality (2.23) is called p-value and corresponds to the probability
of wrongly rejecting H0, i.e., assuming a significant difference when none is given.
As noted by Dietterich [30], the above test tends to overestimate significances, i.e.,
underestimate p-values. However, its calculation is very simple and is still worthwhile
if significance testing is not understood in the strict sense of calculating an error
probability but rather as an objective measure for identifying observations deserving
further investigation [137].

2.1.3.2 Comparing multiple performance measurements

Due to the assumption of a binomial distribution, the above significance test can
only be applied when test instances are classified independently from each other.
This is not the case, e.g., in ASR. In this case, comparing WAs according to the
above, with N corresponding to the number of words, leads to false positives [60].
Gillick and Cox [60] suggest to obtain the WAs per sentence, since these can be
assumed to be statistically independent measurements – the state of a typical speech
recognizer is reset after processing an utterance, cf. Section 3.7. An alternative is
to use the WA per speaker, as proposed by the National Institute of Standards and
Technology (NIST) [143].

In all these cases, the assumption of a Bernoulli experiment for each measurement
(transcription of a sentence or the utterances of a speaker) does not make sense. A
similar argument holds for tasks such as source separation, where the measurement
consists of computing real-valued quantities such as the Signal-to-Noise Ratio (SNR)
or SDR for each test signal. Thus, in the following a more generic significance test
for comparing two sets of performance measurements is presented. Denoting the
performance measurements of system A by a random variable A and those of B by
B, the performance difference is also a random variable, denoted by D.

As null hypothesis H0, we suppose that the difference D is normally distributed
with zero mean and standard deviation σD. Under H0, the standard normal test
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quantity becomes

z∗D =
D

σD

√
N, (2.24)

where D is the mean difference on the test set. If the goal is to test whether B is
better than A (or A is better than B), one speaks of a one-sided test (as in the z-test
described above), and H0 can be rejected if 1− Φ(z∗D) < α.

The crux is that D and σD are not known and have to be estimated from the
observations of A and B. For small N , the estimation error in D and σD can not be
neglected, and these quantities have to be modeled as random variables themselves.
This is addressed by Student’s t-test, which is preferred over a z-test in the case of
small N . A disadvantage of Student’s t-test is that the random variables A and B
need to follow a normal distribution, which might not always be given.

A non-parametric alternative, i.e., one that does not make particular assumptions
about the distributions of the measurements, is Wilcoxon’s signed rank test [86, 234].
As in other non-parametric statistics such as Spearman’s rank correlation coefficient,
the core idea is to define a normally distributed random variable based on a ranking of
the observations. In this case, the ranking Ri of the absolute measurement differences
|ai − bi|, i = 1, . . . , N is used. Wilcoxon’s test statistic is defined as

W =

∣∣∣∣∣
N∑
i=1

(sgn(ai − bi) ·Ri)

∣∣∣∣∣ . (2.25)

The null hypothesis H0 is that the median difference of A and B is zero. It can be
shown that under H0 and for sufficiently large N , W follows a normal distribution
with mean µW = 0.5 and standard deviation

σW =

√
N(N + 1)(2N + 1)

6
. (2.26)

Then, the standard normal test quantity z∗W = (W−0.5)/σW is tested for significance,
and H0 can be rejected if 1−Φ(z∗W ) < α. Comparing speaker WERs with Wilcoxon’s
signed rank test is one of the tests used by the NIST for their official evaluations
[143].

2.2 Data sets for multi-source audio analysis

Having discussed the evaluation measures, the data sets used in this thesis for
evaluation of multi-source recognition systems will be introduced. For comparability
of results, a clear focus is on standard data sets that are publicly available, and that
have been used for research challenges. A few criteria will be defined that might help
in assessing the strengths and weaknesses of data sets in providing a performance
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measure for a multi-source recognition algorithm. This adds another facet to the
important topic of result validation, along with statistical significance testing as
introduced in the previous section.

An important criterion is whether data sets are constrained to a single domain,
a small (closed) set of sources (e.g., speakers, singers, instruments, noise types),
etc. This is because if a system outperforms another on such a constrained data
set, it is hard to estimate if this would also be the case in a more general scenario.
Furthermore, data sets pose a different level of challenge at the signal level – for
example, present noise sources can be stationary or non-stationary. If multi-source
data is generated artificially, this can be done by convolutive or additive mixing of
separated sources – the former arguably posing a greater challenge to recognition
systems.

Ideally, data sets should also feature real recordings of multi-source data instead of
artificially generated recordings, because it is not clear if results obtained on artificially
generated data can be replicated in real applications. Conversely, simulated test data
can be useful to some extent to gain insight into the behavior of algorithms in very
specific conditions (e.g., SNR levels, reverberation times), and simulated training
data might be useful to help generalization, due to the extreme ease of simulating
the most varying conditions.

2.2.1 Speech and noise

Let us begin this discussion with the important special case of speech recognition
in noisy environments. For this scenario, a plethora of data sets are available – a
comprehensive overview is given by Le Roux and Vincent [110]. These data sets
can be characterized by a few criteria – the following lists are to be understood as
non-exhaustive. First, the ASR task itself can be characterized by, e.g.,

• vocabulary (small: few hundred words or less / medium: few thousand words /
large: > 10 k words),

• speaking style (prompted or conversational / casual speech), and

• speaker independence, i.e., disjoint sets of speakers, in the training / test split
commonly used for evaluation.

Then, the interferences can be characterized by their types, e.g., by

• additive stationary vs. non-stationary noise,

• convolutive noise: short-term (channel distortions) and long-term (room rever-
beration),

• real vs. artificially added noise and reverberation, and
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• strict training / test split of noise (only relevant in case of artificially added
noise).

It can be argued that an ASR system that comes close(r) to the goal of interacting
with humans in daily life needs to cope with speech that is actually recorded in a
variety of acoustic environments (and thus might or might not be similar to artificially
corrupted speech), and spontaneous speaking style, in a speaker-independent fashion
with more or less open vocabulary. It is notable that despite the relative ease of
collecting large amounts of realistic speech data, so far there is no publicly available
data set that reflects these conditions. However, in the opinion of the author, a few
publicly available data sets are interesting enough to be considered for evaluation,
because they cover at least a few of the desirable aspects.

2.2.1.1 Computational Hearing in Multisource Environments (CHiME)

The database referred to as CHiME-2011 was the subject of the 2011 CHiME
Challenge [7, 21]. By that, it enables comparison of the results obtained in this
thesis with other studies. It considers the scenario of separating speech from ‘highly
non-stationary’ noise. In particular, noises from a home environment including
household appliances and small children are considered; furthermore, speech is
heavily reverberated. In contrast, the ASR task itself is very easy, featuring command
utterances with a fixed grammar (from the Grid corpus [24] that had already been
used for the preceding CHiME-2006 benchmark). Nevertheless, in the noise and
reverberation the speech recognition task is challenging even for humans – a trained
human was found to be at around 94 % accuracy [7].

The corpus contains corrupted versions of 24 200 utterances of 34 speakers from
the Grid corpus [24], subdivided into a training (17 000 utterances), development
(3 600), and test set (3 600). Noise and reverberation were added artificially. The dry
utterances in each set were convolved with a different binaural RIR, corresponding
to varying room configurations (e.g., doors open/closed, curtains drawn/undrawn).
Noise was added to the development and test sets by selecting segments from a
recorded noise corpus matching specific SNRs from -6 to 9 dB, in steps of 3 dB. Only
limited scaling of speech and noise is used. A corpus of isolated training noise signals
is provided, and the background noise in the development and test set is disjoint
from this training noise. Yet, no official multi-condition training set is provided.

The database referred to as CHiME-2013 was introduced for the second track2 of
the second installment of the CHiME Challenge in 2013 [202]. The noise corpus is the
same as in the CHiME-2011 data, but the ASR task is considerably more complex,
featuring medium vocabulary (5 k) speech from the WSJ-0 corpus [147]. While large

2The data used for the first track of the second CHiME Challenge was virtually identical to the
CHiME-2011 setup – despite small head movements which have next to no influence on monaural
systems – and is thus of minor relevance for this thesis. It will be referred to as CHiME-2013-SV.
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vocabulary speech (20 k) is also available, no comparative evaluations were done on
these data in the Challenge, which is why results in this thesis are reported only
on the 5 k task. The noise-free training set as well as the multi-condition training
set consist of 7 138 utterances each (in analogy to the WSJ-0 SI-84 set). For the
multi-condition training set, six SNRs from -6 to 9 dB are used, in steps of 3 dB.
The development and test sets (similar to the WSJ-0 si dt 05 and si et 05 sets)
consist of 410 and 330 utterances at each of these SNRs, for a total of 2 460 / 1 980
utterances. By construction of the WSJ-0 corpus, the CHiME-2013 evaluation is
speaker-independent. As in CHiME-2011, there is a training / test split of noise and
RIRs.

A drawback of the CHiME family of databases, besides the absence of real
recordings of noisy speech, is that the simulated acoustic conditions largely overlap
between training and test data. The noise recordings and RIRs, while split into
training and test sets, are all taken from the same home environment, and hence
vary only slightly. The resulting absence of mismatched conditions in training and
test might introduce a bias towards training-based approaches to ASR (such as deep
neural network acoustic models) when evaluating on these data sets.

2.2.1.2 Data sets introduced by the author

2.2.1.2.1 CHiME-2011-Buckeye A variation of the above database was cre-
ated by the author and his colleagues [223]. It will be referred to as CHiME-2011-
Buckeye. The noise is exactly the same as in CHiME-2011, but the ASR task is
among the most challenging ones so far considered in the domain of noise-robust
ASR, featuring conversational speech from the Buckeye corpus [148]. At the same
time, the mixing setup from the CHiME-2011 Challenge (SNR levels and selection
of speech / noise pairs matching a specific SNR, instead of scaling) was preserved
as closely as possible. The high variability of conversational speech presents an
additional challenge to training-based approaches for source separation and robust
ASR, besides the variability of the noise.

2.2.1.2.2 Noisy TUM AVIC With a similar goal, yet taking into account
also multiple (simulated) mouth-to-microphone distances and recording rooms, as
well as aiming at realistically sounding recordings instead of random speech and
noise combinations, the Noisy TUM AVIC corpus (NAVIC) was introduced by the
author of this thesis and his colleagues [43]. It is an artificially corrupted version
of Technische Universität München (TUM)’s Audio-Visual Interest Corpus (AVIC),
which consists of spontaneous dialogues where 21 subjects show various levels of
arousal depending on their interest in the conversation. In the following, the data
set and partitioning as used by Weninger et al. [229] is presented. As test partition,
the one defined for the INTERSPEECH 2010 Paralinguistic Challenge [176] is used,
which is balanced and stratified by gender. A random 30 % split of the Challenge
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training and development set is used for early stopping of the training algorithm (cf.
below). By this partitioning, strict speaker independence is given.

Realistic noise samples of three types as used by Eyben et al. [44] serve as additive
noise: Babble noise, city street noise, and music. Babble noise recordings are samples
from the freesound.org website in the categories pub-noise, restaurant chatter, and
crowd noise. Music recordings are instrumental and classical music from the last.fm
website. The city recordings were recorded in Munich, Germany [178]. The length of
the noise pool is 30 minutes per noise type in the test set and roughly 6.5 hours in
total in the training set.

Furthermore, RIRs from the Aachen Impulse Response Database [95] were used
to add convolutive noise. A few meaningful combinations of noise types and RIRs
were selected to realize the above mentioned goal of realistically sounding recordings:
babble noise and lecture room, babble noise and stairway, city noise and meeting
room, and music noise and chapel (Aula Carolina), thus representing a wide range of
stationary and non-stationary additive noises and favorable to heavily reverberated
room acoustics. For each condition, three different virtual microphone distances
are employed. Degraded speech utterances were created by first padding with
silence – this allows algorithms to perform blind background noise estimation –, then
convolving with a RIR, normalizing to -6 dB peak amplitude, and mixing with a
randomly selected additive noise sample (respecting the train/test split), which is
convolved with the RIR (‘far’ distance) and scaled in order to achieve a given SNR.
The test set of each corpus is convolved with the ‘near’, ‘mid’, and ‘far’ impulse
responses and noise is added at SNRs from 0 to 20 dB in steps of 5 dB, resulting
in 15 test sets for each acoustic condition, thus 60 test sets with 73 k utterances
in total. The training set has twelve times the size of the original AVIC training
set (32 k utterances in total), because each utterance is included once for the 3 RIR
distances and four acoustic conditions. In the training set, noise at random SNRs
(uniformly distributed on the range 0–25 dB and with 10% probability of SNR = ∞)
is added. SNRs are calculated after first order high pass filtering of speech and noise,
approximating A-weighting to better match human perception.

2.2.1.3 REVERB Challenge

The corpus of the 2014 REVERB Challenge3 [104] serves to evaluate mainly the
removal of convolutive noise (room reverberation effects). Here, eight microphone
channels are available. The corpus contains both a simulated data set based on the
WSJCAM0 corpus [162], which is convolved using six different real room impulse
responses (three rooms, near and far microphone distances) and corrupted by various
types of pre-recorded stationary noise, and a ‘real world’ data set from the MC-
WSJ-AV corpus [116], recorded in a reverberant meeting room with real ambient

3http://reverb2014.dereverberation.com/
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noise, at near and far distances. These sets will be referred to as SimData and
RealData in the ongoing. In accordance with the 2014 REVERB Challenge
guidelines, the experiments in this thesis use either the first (reference) channel or
all eight channels. Overall, the SimData set has 1 484 utterances from 20 speakers
(10 female) and the RealData set has 179 utterances from five speakers. For
Multi-Condition Training (MCT), the Challenge multi-condition training set is used,
which is generated in analogy to the SimData set. It is of the same size as the clean
WSJCAM0 training set, containing 7 861 utterances from 92 speakers (39 female);
room impulse responses and noise types are chosen randomly, with equal probability.
Note that both MC-WSJ-AV and WSJCAM0 are based on the prompts from the
Wall Street Journal (WSJ) corpus, which allows for using the standard WSJ language
models for both corpora. According to the 2014 REVERB evaluation protocol, the
RealData set is used only for evaluation, not for training. Hence, the REVERB
corpus allows assessing the generalization capability of a system trained on simulated
data.

2.2.1.4 Other databases

• Aurora-2: This was one of the first attempts at a standard set to evaluate
noise-robust ASR [84]. It was motivated by the application of continuous digit
recognition on mobile devices. Thus, the ASR task is characterized by little
phonetic confusions between the keywords, but the possibility of insertions and
deletions (as opposed to fixed grammar tasks, cf. below). While channel effects
(G.712 and MIRS filtering according to International Telecommunication union
(ITU) standards) were addressed, there is no long-term reverberation. While
the database has a mismatched training/test setup (test noise and channel effect
not seen in training), the amount of noise recordings is very little compared to
the amount of speech, and there is no strict training/test split of noise. The
WER of a simple HMM recognizer using the ETSI front-end and noisy training
is already below 10 % [57]. Overall, the database seems a bit outdated today
and is thus not considered further in this thesis.

• Aurora-4: This database is similar to Aurora-2, but featuring the WSJ-0 5 k
ASR task [147] instead of spoken digits. Compared to Aurora-2, the amount of
interference is lower, as the lowest SNR is 5 dB – this might be more realistic,
because additive mixing neglects the Lombard effect which is not appropriate
at low SNR. As in Aurora-2, since the same noise corpus is used, there is little
variety in noise. The database is not considered in this thesis because there is
a similar, yet more challenging setup presented by the CHiME-2013 corpus.

• CHiME-2006: This data set is intended to study the task of speaker separation,
i.e., reversing the cocktail party effect, in a single channel [23]. In principle,
this appears to be a very challenging task due to non-stationarity. However,
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2.2. Data sets for multi-source audio analysis

the setup of the task was rather artificial: (i) only mixings of exactly two
speakers were considered; (ii) it was assumed that for every test recording,
it is known which two speakers are present; (iii) the effect of reverberation
was not considered; (iv) the individual tracks follow a fixed grammar, where
each keyword can only occur at a defined point in the utterance. Due to the
peculiarities of this setup, very specific recognizer architectures [160, 206, 210]
are the most successful on this task. Hence, the practical significance of these
results might be rather limited, and the database is thus not considered further
in this thesis.

• COSINE: This database provides recordings of conversational speech in noisy
environments [190]. It certainly has a few appealing facts to it: Recordings
are taken from real multi-party conversations on a campus, thus featuring
multiple sources (speakers, environmental noise) in real instead of artificial
mixing; there are time-aligned recordings with different microphone arrays as
well as a close-talk microphone, offering potential for real stereo training; and
the speech is spontaneous and conversational. In the opinion of the author,
the main drawback is that most of the interferences are masked by wind noise;
consequently, the performance is heavily influenced by a system’s capability of
removing wind noise, instead of by its capability to separate the other sources.
It might be one of the reasons that the database has not seen widespread usage
in the noise-robust ASR community – to the knowledge of the author, few
studies so far report any results on this database (e.g., [237]).

2.2.1.5 Summary

A summary of the databases mentioned in this section, including the total recording
lengths, is given in Table 2.1. Note that the Aurora-4, CHiME-2013, and REVERB
databases are all based on the WSJ-0 corpus, and the different lengths result from
the variants of artificial corruption used.

2.2.2 Polyphonic music

Let us now proceed to databases for MIR in polyphonic music, applying similar
criteria as above. It is clear that the criterion of speaker-independence can be easily
‘translated’ to singer- or instrument-independence for recognition tasks in vocal and
instrumental music, and training/test splits or training/test mismatches can be
defined in the same way. A different criterion is musical genre, (e.g., classical, opera,
jazz, or chart music), which strongly influences the audio sources which are present,
and also the singing or interpretation style (for example, figurations or vibrato in
singing yield much more complex melodic patterns, arguably increasing the difficulty
of source separation).
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Table 2.1: Databases featuring speech and noise sources; Abbreviations: ST: Speech
type (conv: conversational; FG: fixed grammar; SV/MV/LV: small/medium/large
vocabulary); NS: non-stationary (additive) noise; CM: Convolutive mixing / pres-
ence of long-term reverberation; SI: speaker independence; TT: train/test split of
interference; MM: mismatched train/test setup; RR: (partly) real recordings. 1: LV
available, but not used here.

Name Length ST NS CM SI TT MM RR

Aurora-2 42:46 h read/SV
√

–
√

–
√

–
Aurora-4 84:54 h read/MV

√
–

√
–

√
–

CHiME-2006 8:48 h read/FG
√

– – – – –
COSINE 12:47 h conv/MV

√
–

√ √
–

√

CHiME-2011 12:15 h read/FG
√ √

–
√

– –
CHiME-2011-Buckeye 50:30 h conv/MV

√
–

√ √
– –

CHiME-2013 40:23 h read/MV/LV1 √ √ √ √
– –

REVERB 26:28 h read/MV –
√ √ √ √ √

TUM-NAVIC 76:18 h conv/MV
√ √ √ √

– –

Table 2.2: Databases for polyphonic music information retrieval. 1: Not ‘instrument-
independent’. See Table 2.1 for an explanation of the abbreviations.

Name Length Style CM SI TT MM RR

Singer Trait Recognition
TUM-Ultrastar [175] 37:03 h Pop

√ √ √
–

√

Singing Style Recognition
TAU-Vibrato [219] 0:13 h Opera, Jazz, Pop

√ √ √
–

√

Piano Transcription
MIDI [149] 20:03 h Classical – –1 – – –
MAPS-MIDI [38] 13:45 h Classical – –1 – – –
MAPS-Disklavier [38] 4:22 h Classical

√
–1 – –

√

Compared to ASR, the distinction between artificial and realistic data cannot be
easily tied to the mixing process. A truly ‘in-the-wild’ recording would correspond
to a live recording of an artist with accompaniment, probably in the presence of
interfering sources (audience, environmental noise etc.) Yet, many of the audio
recordings found in people’s music archives are produced by professional mixing
in studios, and in this case they are usually augmented by artificial reverberation,
rather than recordings in real acoustic environments. Thus, a big difference between
robust ASR and polyphonic music databases is that studio recordings of music are
clearly meaningful from an application point of view, whereas it is hard to find an
application where artificial mixings of speech and other sources are of interest. What
will be referred to as ‘artificial data’ in the context of MIR is polyphonic music
generated by synthesis, e.g., from MIDI files.
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2.2. Data sets for multi-source audio analysis

Table 2.3: Number of instances per class (no vibrato / vibrato), genre (jazz / pop /
opera) and fold number in the TAU Vibrato Database.

Fold # Genre No vib. Vibrato Sum

1 Jazz 12 41 53
Pop 24 28 52
Opera – 65 65
All 36 134 170

2 Jazz 8 34 42
Pop 8 33 41
Opera – 47 47
All 16 114 130

3 Jazz 14 21 35
Pop 18 29 47
Opera – 48 48
All 32 98 130

All Jazz 34 96 130
Pop 50 90 140
Opera – 160 160
All 84 346 430

A summary of the databases discussed in this section, according to the aforemen-
tioned criteria, is given in Table 2.2. The MIR tasks associated with these databases
will be explained in detail below.

2.2.2.1 TAU Vibrato database

The Tel Aviv University (TAU) Vibrato database consists of 430 segments, each
corresponding to one sung note in professionally recorded music. 30 different artists
are found in the database, all of which are accomplished female singers. Genres cover
jazz, pop and opera with 10 singers each, and 130, 140 and 160 instances, respectively.
The segments were extracted manually and labeled by experts as containing vibrato
or not. All opera segments are sung with vibrato while the percentage of vibrato
segments is approximately 2/3 for pop and 3/4 for jazz. The average note duration
is 1.86 s with a standard deviation of 1.10 s and considerably differs among genres,
with jazz exhibiting at the same time the longest average duration (2.12 s) and the
greatest standard deviation (1.54 s). In some instances, vibrato is delayed in the
note, which is particularly often the case in jazz: a delay occurs for 52 of 96 instances
(54 %) of jazz notes, reaching up to 81 % of the total note duration.

For vibrato singing, singer-independence seems particularly desirable, as vibrato
styles differ considerably among singers [139]. Thus, a singer-dependent system would
be prone to over-fitting to the specificities of the singers in the database – which
could be called a ‘singer effect’ in analogy to the well-known ‘speaker effect’. To
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ensure singer-independence for the experiments presented in this thesis, the database
is subdivided into three folds for singer-independent cross-validation stratified by
genre, i. e., the class and genre distributions in each fold are approximately equal.
For the sake of reproducibility, these folds were obtained as follows: For each genre,
the ten singers were sorted alphabetically and assigned to fold 1 (singers 1–4), fold
2 (singers 5–7) or fold 3 (singers 8–10). Consequently, of the 430 instances in the
database, 170 / 130 / 130 are assigned to each of the three folds. The resulting
numbers of instances per fold are shown in Table 2.3.

2.2.2.2 UltraStar singer traits database

For experiments on singer trait recognition (classification of singers by age and
gender), the UltraStar database was introduced by the author of this thesis and
his colleagues, first with gender annotation [175, 218], and later with additional
attributes: age, height, and (biological) race [213]. The database contains 581 songs
commonly used for the ‘UltraStar’ karaoke game, corresponding to over 37 h total
play time. The ground truth tempo is provided and lyrics are aligned to (quarter)
beats.

To ensure a singer-independent partitioning, the database is split according to
the first letter of the name of the performer into training (A, D, G, . . . ), development
(B, E, H, . . . ) and test partitions (0-9, C, F, . . . ). The identity of the singer(s) was
determined at beat level wherever possible. This is particularly challenging in case
of formations such as ‘boy-’ or ‘girl-groups’, in which case the ‘singer diarization’
(alignment of the singer identity to the music) was determined from publicly available
music videos. Then, information on gender, height, birth year and race of the 516
distinct singers present in the database was collected and multiply verified from
on-line textual and audiovisual knowledge sources, including IMDB, Wikipedia and
YouTube. All annotation was performed by two male experts for popular music (24
and 28 years old). Of the annotated traits, only age and gender will be considered
for automatic recognition in this thesis, due to the strong correlation of height with
gender and the data scarcity for non-white singers in the chosen set of popular songs.

In a multitude of cases, two or more singers are singing simultaneously. This was
handled by the following scheme: For gender, the beats were marked as ‘unknown’
unless all simultaneously present artists share the same attribute value. For age, the
average value was calculated, since in formations the individual artists’ traits are
usually similar. This procedure was also followed to treat performances of formations
where an exact singer diarization could not be retrieved, by assuming presence of an
‘average singer’ throughout. In case that the desired attribute is missing for at least
one of the performing vocalists, the corresponding beats were marked as ‘unknown’ –
these are excluded from analysis later on.

The distribution of gender among the 516 singers is shown in Figure 2.1a. Age
(Figure 2.1b) is shown as box-and-whisker plot where boxes range from the first to
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Figure 2.1: Evaluation database for singer trait recognition: Distribution of gen-
der, race, and height among 516 singers in the UltraStar Singer Trait Database.
Distribution of age is shown on beat level, since it is dependent on recording date.

Table 2.4: Number of beats per trait, class and set (train / devel /test) in the
UltraStar singer trait database. ‘Unknown’ (?) includes simultaneous performance
of artists of different gender, as well as those with unknown age.

#beats train devel test Σ

no voice (0) 90 076 75 741 48 948 214 765

gender
female (f) 32 308 23 071 9 739 65 118
male (m) 55 505 49 497 37 686 142 688
? 86 253 771 1 110

age
young (y) 48 510 42 056 25 682 116 248
old (o) 34 074 24 596 18 712 77 382
? 5 315 6 169 3 802 15 286

Σ 177 975 148 562 97 144 423 681

the third quartile and all values that exceed that range by more than 1.5 times the
width of the box are considered outliers, depicted by circles. Unlike gender, the age
distribution can only be given on beat level since age is not well defined per artist
(due to different recording dates) nor per song (due to potentially multiple singers
per song). The continuous-valued age was discretized to ‘young’ (y, < 30 years) and
‘old’; the threshold is close to the median (28 years) to avoid scarcity of either class.
From the manual singer diarization and collection of singer meta data, the beat
level annotation is generated automatically, resulting in the number of beats and
according classification tasks shown in Table 2.4. The annotation (singer meta-data,
voice alignments, song list with recording dates and partitioning) is made publicly
available for research purposes at http://www.openaudio.eu.
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Table 2.5: Evaluation databases for automatic music transcription: MIDI, MAPS
MIDI and MAPS Disklavier. Total recording lengths of the partitions given in
hours:minutes:seconds.

Dataset Partition # pieces # notes Length

MIDI training 200 519 477 14:18:18
validation 26 59 835 1:59:33
test 1 35 71 242 2:20:03
test 2 23 58 223 1:25:05

MAPS MIDI training 155 334 974 9:41:18
validation 21 48 921 1:45:23
test 1 23 36 075 1:23:47
test 2 11 41 018 0:54:04

MAPS Disklavier training 36 86 010 2:23:56
validation 6 16 487 0:43:21
test 1 3 5 675 0:11:08
test 2 15 46 180 1:03:17

2.2.2.3 Automatic music transcription

To evaluate the performance of automatic transcription of piano music, the MIDI
database introduced in [149] and the MAPS (MIDI Aligned Piano Sounds) database
[38] are used. The MIDI database consists of MIDI files collected from the Classical
Piano MIDI Page4. The MIDI files are converted to waveforms with a sampling rate
of 44.1 kHz using the freely available Maestro Concert Grand v2 sound font5. The
MAPS database consists of synthesized music as well as real piano recordings. The
first part (MAPS MIDI) is created with different software synthesizers, configurations
and virtual recording conditions. The second part (MAPS D) dataset contains music
played by a Yamaha Disklavier Mark III in realistic recording conditions (‘ambient’
and ‘close’). For a detailed description of the database the reader is referred to [38].
The Disklavier part of the MAPS database is treated as an individual corpus, since
these are the only recordings of a real piano in the data sets considered.

Statistics of the individual data sets are shown in Table 2.5. The partitioning
into training, validation and test sets as used by Poliner and Ellis [149] and Böck
and Schedl [15] is followed. However, note that Böck and Schedl restricted their
evaluation on the test set to a subset for which the alignments were manually verified
(testing 1); in this thesis, additional evaluations are done on the full test set (testing
1 ∪ 2), which may contain alignment errors.

4http://www.piano-midi.de
5http://www.linuxsampler.org/instruments.html
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Learning multi-source recognition

There are some things you learn best in calm, and some in storm.
– Willa Cather

In the following, the implementation of multi-source audio recognition functions will
be discussed, fleshing out the details of the coarse framework laid out in Section 1.2.
In particular, methods for supervised learning of recognition functions on mixed and
separated sources, as well as source separation and feature-domain enhancement, will
be presented. For the sake of readability, and in the light of this thesis’ objectives,
single-channel mixtures will be assumed throughout (C = 1). It is straightforward to
extend the feature extraction and learning schemes to multiple channels, for example,
by concatenating single-channel feature vectors [91, 117].

3.1 Feature extraction

The traditional way of pattern recognition looks at a recognition function y as a
composition of a ‘hard-coded’ pre-processing and feature extraction process with
few, if any, free parameters – which are usually ‘tuned’ manually – and a model h
for the prediction of the labels with trainable parameters, which are typically gained
from minimizing the prediction error of y. Denoting the pre-processing and feature
extraction steps by g1, g2, . . . , gK , one can write this as

y = h ◦ gK ◦ · · · ◦ g1(x). (3.1)

For example, let us assume that it is desired to build a predictor for the gender of a
speaker. Then, g1 could represent the Short-Term Fourier Transformation (STFT)
of the time-domain signal, g2 the detection of the fundamental frequency from the
spectrum, g3 the process of pitch tracking, and g4 the calculation of the mean over
time, etc. For this case of ‘hand-crafted’ feature extraction, h could be very simple
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in turn: for example, a decision stump. However, if the type of model chosen for h
has enough power to subsume gk, . . . , gK , one can reformulate (3.1) as

y = v ◦ gk−1 ◦ · · · ◦ g1(x) (3.2)

with v = h ◦ gK ◦ · · · gk being the new recognition model.
In fact, many features considered relevant in speech and audio processing, such

as loudness, fundamental frequency, voice quality, chroma, etc., can be derived from
the STFT. Thus, it can be conjectured that powerful recognition models can learn
to exploit these relationships automatically for prediction of the task of interest,
and thus the manual feature extraction process can be constrained to very simple
operations. Moreover, if z is formulated as a function with trainable parameters, the
feature extraction steps gk−1 to gK can be optimized according to the recognition
objective (e.g., the classification accuracy). As a matter of fact, it is believed that
the power of DNN models (cf. Section 3.3) is partly due to this kind of ‘blurring’
between feature extraction and recognition [131]. Furthermore, as will be shown in
Section 3.5.2, more advanced models such as Recurrent Neural Networks (RNNs) even
possess the power to perform temporal integration of information – theoretically1,
they can subsume g1 to g4 as well as h in the above example. For these reasons, in
this thesis, the feature extraction process will, for the most part, be constrained to
simple spectral and cepstral features2.

The spectral feature extraction process is based on the complex STFT z =
F(x,w,∆τ), where x(τ) is a discrete-time single-channel signal, w(τ) is a discrete-
time window function for a window size W , and ∆τ is the frame shift, ∆τ ∈]0,W/Fs],
where Fs is the sampling frequency. In most audio recognition applications, the phase
of the complex spectrum z ∈ CW is neglected and only the magnitude spectrum
x = |z| is kept, yielding x ∈ RF

+ with F = bW/2 + 1c frequencies due to symmetry.
Further, non-linear warping is often applied to the magnitudes and frequencies.

The magnitudes are warped by a mapping x 7→ xα – e.g., α = 2 to obtain the
power spectrum, and α = 2/3 to obtain the ‘auditory’ spectrum as in calculation
of Perceptual Linear Prediction (PLP) coefficients [78]. α < 1 is used to compress
the dynamic range, which can alternatively be achieved by logarithmic warping,
x 7→ log x, where log is applied element-wise.

To implement the warping of the frequency axis, a linear transformation with
matrix B can be used, x 7→ Bx. The well-known ‘Mel filter bank’ with B filters is a
suitable choice for that purpose, which can be represented as a matrix B = (bi,f ) ∈
[0, 1]B×F , such that

∑F
f=1 bi,fx

α
f is the output of filter i applied to the F -dimensional

1In practice, this ability is restricted by sub-optimal training schemes and the quantity of available
training data – for instance, Sections 4.2 and 5.2 will show that indeed the parameterization of the
feature extraction can be important even with RNNs.

2This fact is also mirrored in the notation: the index f will be used for both feature and
frequency indices, and the symbol F for numbers of features/frequencies.
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(a) B = 23 (b) B = 100

Figure 3.1: Heatmap visualization of the matrix B representing the Mel filterbank
used for non-linear warping of the frequency axis, for B = 23 and B = 100 Mel
filters.

spectrum. The coefficients are chosen such that centers of the filters are equidistantly
spaced on the Mel frequency scale. Furthermore, they fulfill

∑
f bi,f = 1, and each

filter has a triangular shape, with the rising flank of filter i being equivalent to 1
minus the falling flank of filter i−1. Figure 3.1 shows the matrix B for W = 512, i.e.,
F = 257, and B = 100 (which seems a good choice for source separation applications,
cf. Section 4.2) and B = 23 (which is the default in the open-source ASR toolkit
Kaldi [152]).

In addition, the filterbank outputs are often processed by logarithmic warping.
Combining this with warping of the filterbank inputs yields filterbank features
log Bxα, where x is a magnitude spectrum. This kind of features for α = 1 will be
referred to as ‘Log-FB’ subsequently.

The Mel cepstrum is (conceptually) obtained as x̃ = D log Bxα, where D is the
matrix representing the Discrete Cosine Transformation (DCT) coefficients. Typically
α = 1 or α = 2 are chosen in the computation of the Mel cepstrum. The components of
the vector x̃ are known as Mel-Frequency Cepstral Coefficients (MFCCs)3. The DCT
serves as an approximation of a de-correlation operation [107], which is useful for some
recognition models such as diagonal covariance Gaussian Mixture Models (GMMs).

Subsequently, α = 1 (use of magnitude spectra) will be assumed unless stated
otherwise.

3The MFCC features as used in typical ASR systems, and in this thesis, include further operations
such as high-pass filtering, and scaling (‘liftering’) of the MFCCs – for details, refer to [245].
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3.2 Non-Negative Matrix Factorization

As a first example of a multi-source recognition algorithm, which operates on simple
spectral features (usually magnitude or power spectra), Non-Negative Matrix Factor-
ization (NMF) will be introduced, which is popular and effective for single-channel
audio source separation, cf., e.g., [5, 157, 185, 220]. In the most general form, the
goal of NMF is to represent a data matrix V with T non-negative observations in
columns, V = [v1 · · ·v · · ·vT ], vt = (v1,t, . . . , vF,t)

ᵀ ∈ RF
+, where F is the dimension

of the feature space, by

vf,t ≈
R∑
r=1

wf,rhr,t (3.3)

subject to wf,r, hr,t ≥ 0 for a given number of components R. The matrix W = (wf,r)
is called dictionary, with dictionary atoms in columns.

Note that imposing other constraints apart from non-negativity on the repre-
sentation (3.3) leads to other popular information reduction or extraction methods.
For example, Principal Component Analysis [99] constrains the dictionary vectors
to the eigenvectors of the covariance matrix CVV (and hence to be orthogonal),
while no constraints are put on the coefficients hr,t. If only wf,r are required to
be non-negative, this leads to semi-NMF, which has some applications in image
processing [196]. However, as will be explained in more detail below, non-negativity
constraints for wf,r and hr,t are motivated from the audio source separation problem.

The factors W and H = (hr,t) are obtained by minimizing a distance (cost)
function D(V|WH), such as the Euclidean distance

DED(V,WH) =
∑
f,t

(vf,t − (WH)f,t)
2 =

∑
f,t

(
vf,t −

∑
r

wf,rhr,t

)2

(3.4)

or the Kullback-Leibler-(KL-)-divergence-like function

DKL(V|WH) =
∑
f,t

vf,t log
vf,t

(WH)f,t
− vf,t + (WH)f,t (3.5)

=
∑
f,t

(
vf,t log

vf,t∑
r wf,rhr,t

− vf,t +
∑
r

wf,rhr,t

)
, (3.6)

which is called generalized KL divergence4. Both the Euclidean distance and the
generalized KL divergence are instances of the family of β-divergences Dβ, for which
a generic NMF algorithm can also be derived [46]. In this framework, the Euclidean

4It differs from the regular KL divergence by the term
∑

f,t−vf,t + (WH)f,t, which ensures that
the properties DKL ≥ 0 and DKL = 0 ⇐⇒ V = WH do not only hold for probability distributions
(for which the regular KL divergence is defined), but also for arbitrary non-negative data.
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distance corresponds to the 2-divergence and the generalized KL divergence to the
1-divergence – thus, they will be denoted as D2 and D1 below.

The minimization of (3.4) or (3.6) is often performed by gradient-descent-like
algorithms. Updates are usually performed alternatingly for W and H,

W(k+1) = W(k) − η∇WD(W(k)), (3.7)

H(k+1) = H(k) − η∇HD(H(k)), (3.8)

where the ‘matrix gradients’ are defined as ∇WD = ( ∂D
∂wf,r

) and ∇HD = ( ∂D
∂hr,t

)

and the free parameter η determines the step size. Obviously, after performing the
gradient descent update, the non-negativity constraints can be violated. An easy
solution is to perform projected gradient descent [115], which simply truncates the
updates such that the parameters stay non-negative:

w
(k+1)
f,r = max

(
w

(k)
f,r − η

∂D

∂wf,r
(w

(k)
f,r ), 0

)
, (3.9)

h
(k+1)
r,t = max

(
h

(k)
r,t − η

∂D

∂hr,t
(h

(k)
r,t ), 0

)
, (3.10)

Note that this effectively results in gradient descent with a non-constant step size
which depends on the current parameter values.

A more elegant solution that both preserves non-negativity and dispenses with the
step size parameter η (which has to be tuned empirically) is to perform multiplicative
updates of the form

W(k+1) = W(k) ⊗ ∇
−
WD(W(k))

∇+
WD(W(k))

, (3.11)

H(k+1) = H(k) ⊗ ∇
−
HD(H(k))

∇+
HD(H(k))

, (3.12)

where ∇−W, ∇+
W, ∇−H and ∇+

H denote a split of the matrix gradient into positive and
negative terms, i.e., ∇W = ∇−W +∇+

W, ∇H = ∇−H +∇+
H, ⊗ denotes element-wise

multiplication and the quotient line element-wise division.
To set this in relation to gradient descent, let us assume that (3.11) and (3.12)

are equivalent to (3.7) and (3.7) for some (non-constant) step size η
(k)
f,r :

W(k) ⊗ ∇
−
WD(W(k))

∇+
WD(W(k))

= W(k) − (η
(k)
f,r )⊗∇WD(W(k)). (3.13)

Solving for η
(k)
f,r yields

(η
(k)
f,r ) = −

W(k) ⊗ ∇
−
WD(W(k))

∇+
WD(W(k))

−W(k)

∇+
WD(W(k))−∇−WD(W(k))

(3.14)
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=
W(k)

∇+
WD(W(k))

. (3.15)

The solution for H(k) is derived in analogy. Due to the non-negativity of the
parameters, it is clear that η

(k)
f,r > 0, and thus every multiplicative update performs a

gradient descent like step into the ‘right direction’, albeit with a step size that varies
for each parameter. Still, from the above no convergence guarantee can be derived –
whereas gradient descent is guaranteed to converge for small enough step size, η

(k)
f,r

in the above need not be small in general. Furthermore, depending on the choice
of D, the choice of an appropriate ‘split’ into positive and negative parts might be
ambiguous.

Let us now derive multiplicative update rules for minimizing either of the cost
functions above. For the Euclidean distance, the partial derivatives w.r.t. the
dictionary elements read

∂D2

∂wf ′,r′
=
∑
t

((WH)f ′,t − vf ′,t)hr′,t, (3.16)

which can be rewritten in matrix gradient form as

∇WD2 = (WH−V)Hᵀ. (3.17)

The only obvious split leads to the well-known update rule,

W(k+1) = W(k) ⊗ VHᵀ

WHHᵀ
. (3.18)

It is easy to derive a corresponding update rule for H, considering that

V = WH ⇐⇒ Vᵀ = HᵀWᵀ. (3.19)

Thus, an update rule for Hᵀ can be directly derived from the update rule for W.
From the properties of the matrix transpose it follows that the following is an update
rule for H:

H(k+1) = H(k) ⊗ WᵀV

WᵀWH
. (3.20)

Similar to the above, updates for minimizing the generalized KL divergence (3.6)
can be derived. Splitting the gradient as follows:

∂D1

∂wf ′,r′
=
∑
t

− vf ′,t
(WH)f ′,t

hr′,t + hr′,t (3.21)

=
∑
t

(
1− vf ′,t

(WH)f ′,t

)
hr′,t (3.22)
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leads to the update rules

W(k+1) = W(k) ⊗ (V/WH)Hᵀ

1Hᵀ
, (3.23)

H(k+1) = H(k) ⊗Wᵀ(V/WH)

Wᵀ1
. (3.24)

where 1 denotes all-one matrices of the right dimensions. For both the Euclidean
distance and generalized Kullback-Leibler divergence updates, convergence can be
proven [112].

The above update rules are usually executed until convergence of the cost function
has been reached. To limit the run-time for practical applications, typically a
maximum number K of iterations is specified. The factors are often initialized from
Gaussian random numbers (taking the absolute value).

Figure 3.2 shows NMF and PCA decompositions of the magnitude spectrogram
X of a periodic rising chirp signal5. In this example, NMF finds dictionary atoms
corresponding to a single fundamental frequency, and activations model the temporal
evolution of the fundamental frequency. Conversely, the representation found by
PCA is hardly interpretable, apart from the fact that the activation matrix seems
to capture different temporal resolutions. Despite the apparent advantage of the
NMF representation, it has to be stated here that an NMF solution, in contrast to
PCA or related methods, has no guaranteed properties apart from non-negativity –
in particular, there is no unique solution, as dictionary atoms can be permuted or
otherwise transformed by an invertible R×R matrix leading to alternative solutions
fulfilling V ≈WH.

3.2.1 NMF for audio source separation

When applied to audio processing tasks, NMF is used to decompose a matrix of
F -dimensional non-negative spectral features. In case of audio source separation,
this is the spectrogram M of a mixture signal, M = [mα

1 · · ·mα
T ], where T is the

number of frames and mt ∈ RF
+, t = 1, . . . , T are STFT magnitudes obtained from

the time-domain mixture signal m(τ). The NMF constraints wf,r ≥ 0 and hr,t ≥ 0
incorporate the model assumptions that the dictionary atoms wr = (w1,r, . . . , wF,r)

ᵀ

represent spectra of acoustic events, and that these are combined additively into an
observed spectrogram, i.e., that cancellations in the time-frequency domain can be
neglected.

To apply NMF for audio source separation, a surjective mapping a : {1, . . . , R} →
{1, . . . , S} is assumed, i.e., each dictionary atom can be assigned to exactly one
of S sources, and a source comprises one or multiple NMF components – e.g., an

5For visualization purposes, the warping exponent α = 1/5 is used for X and the NMF factor
W.
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(a) V

(b) W (NMF) (c) H (NMF)

(d) W (PCA) (e) H (PCA)

Figure 3.2: Visualization of the factors W and H computed by Non-Negative Matrix
Factorization (NMF) and Principal Component Analysis (PCA) from the magnitude
spectrogram with magnitude spectrogram (V) of a periodically rising chirp signal.

instrument playing multiple notes, or a speaker speaking a sequence of phonemes,
which are modeled as dictionary atoms. This mapping can be found automatically,
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3.2. Non-Negative Matrix Factorization

e.g., by a classifier y(wr,hr), or by manual inspection, resulting in a user-guided
separation scheme. A well-known scenario where automatic assignment of components
to sources can be applied effectively is the separation of percussive and harmonic
instruments, as these have distinctive properties both in their spectral and temporal
distributions [77, 170, 197].

Given a mapping a, without loss of generality one can assume a set of Rl

non-negative dictionary atoms wl
1, · · · ,wl

Rl
for each source l ∈ {1, . . . , S}, which

constitute the dictionaries Wl = [wl
1 · · ·wl

Rl
]. The non-negative factorization can

then be written as6

M ≈WH = [W1 · · ·WS][H1; · · · ; HS]. (3.25)

An approach related to Wiener filtering is typically used to reconstruct each source
while ensuring that the source estimates sum to the mixture:

Ŝl =
WlHl∑
l W

lHl
⊗M. (3.26)

Ŝl is then transformed back to the time-domain by inverse STFT and overlap-add.

3.2.2 Sparse regularization for NMF

Sparse regularization is useful for many machine learning problems in order to prevent
overfitting. Here, Sparse NMF (SNMF) with L1 regularization is considered, which
minimizes the cost function

Dβ(V | W̃H) + µ|H|1, (3.27)

where W̃ =
[

w1

‖w1‖ · · ·
wR

‖wR‖

]
is the column-wise normalized version of W, |H|1 =∑

r,t |hr,t| =
∑

r,t hr,t is the L1-norm of H, and µ > 0 is the weight of the sparsity
penalty. Sparse regularization for NMF incorporates the model constraint that only
a few spectra from the dictionary W should be present at each time instant, which
makes sense if W contains spectra of audio events such as notes or phonemes.

Since the L1 sparsity constraint on H is not scale-invariant, it can be trivially
minimized by scaling of the factors; by including the normalization in the cost
function, the scale indeterminacy can be avoided. Note that for the reasons pointed
out by Eggert and Körner [37], this is not the same as performing standard NMF
optimization and scaling one of the factors to unit norm after each iteration – the
latter can indeed lead to inferior performance [216].

A multiplicative update algorithm to optimize (3.27) for β = 2 was introduced
by Eggert and Körner [37] and was later generalized to arbitrary β ≥ 0 by O’Grady
and Pearlmutter [140]. For β = 1, as mainly used in this thesis, each iteration
k = 1, . . . , K of the algorithm performs the following steps:

6For simplicity, the notation [a;b] for [aᵀbᵀ]ᵀ is used.
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1. Calculate the L2-normalized dictionary atoms:

W(k) = W̃(k) =

[
w

(k)
1

‖ w
(k)
1 ‖

· · · w
(k)
R

‖ w
(k)
R ‖

]
(3.28)

2. Update the activation matrix:

H(k+1) = H(k) ⊗W(k)ᵀ(V/W(k)H(k))

W(k)ᵀ1 + µ
(3.29)

3. Update the dictionary atoms (not preserving normalization):

W(k+1) = W(k) ⊗
(
V/W(k)H(k+1)

)
H(k+1)ᵀ + 1

(
1H(k+1)ᵀ ⊗W(k)

)
⊗W(k)

1H(k+1)ᵀ + 1
(
(V/W(k)H(k+1)) H(k+1)ᵀ ⊗W(k)

)
⊗W(k)

.

(3.30)

Note that the multiplications with all-one matrices do not have to be carried out
explicitly – in practice, they can be replaced by more efficient operations7.

3.2.3 Supervised NMF

NMF as introduced above is an unsupervised algorithm, since no prior knowledge
about the constituents of the signal is assumed. Yet, the perspectives of unsupervised
NMF for speech source separation tasks, such as removal of non-stationary noise,
are rather limited at the time of this writing. Compared to the case of percussive-
harmonic separation, where simple spectral features such as harmonicity can be
used to distinguish between speech and noise components [77, 197], this seems much
harder in the case of speech and noise sources that are often similar in their spectral
characteristics. As a result, virtually all NMF-based speech separation approaches
nowadays use supervised initialization of (part of) the dictionary atoms based on
training data, cf., e.g., [5, 96, 134, 185, 220], with only a few exceptions relying on
only model-based constraints that might work in specific scenarios [113].

In supervised NMF [187], all Wl are learnt in advance from training data, and at
run time only the activation matrices Hl = [hl1 · · ·hlT ], where hlt ∈ RRl

+ , are estimated.
In the supervised case, the activations for each frame are independent from the other
frames (mt ≈

∑
l W

lhlt). Thus, source separation can be performed on-line and with
latency corresponding to the window length plus the computation time to obtain
the activations for one frame [96]. At test time, supervised NMF finds the optimal
activations Ĥ such that

Ĥ = [Ĥ1; · · · ; ĤS] = arg min
H

D(M |WH) + µ|H|1, (3.31)

7In Matlab, the update (3.30) can be implemented efficiently using bsxfun.
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3.2. Non-Negative Matrix Factorization

where D is a cost function that is minimized when M = WH (e.g., D1 or D2).
The minimization (of D1) is performed using the multiplicative update (3.29). For
supervised NMF, H(0) can be initialized deterministically instead of randomly, e.g.,
as h

(0)
r,t = 1/R – in that initial solution, every observation is the average of the

dictionary atoms.

3.2.4 Obtaining NMF dictionaries

A common approach [140, 166, 185] to obtaining dictionaries Wl is to fit an NMF
model WlHl to the spectrograms of source signals, Sl, performing the optimization
separately for each source l. In the case of SNMF, the following criterion is used:

Ŵl, Ĥl = arg min
Wl,Hl

Dβ(Sl | W̃lHl) + µ|Hl|1, (3.32)

where W̃l =
[

wl
1

‖wl
1‖
· · ·

wl
Rl

‖wl
Rl
‖

]
is the column-wise normalized version of Wl.

To obtain large dictionaries – e.g., if it is desired to cover multiple speakers and
pronunciation variants in a speech dictionary – exemplar-based approaches have
become popular [5, 52, 58, 157], where every atom corresponds to an observation of
the source l in the training data. These avoid the peculiarities and complexity of
SNMF training. There, given a short-time spectral representation Sl =

[
sl1 · · · slT l

]
of

training signals for source l, a subset E = {e1, . . . , eRl} ⊂ {1, . . . , T l} is chosen, and
the NMF dictionary is simply defined as

Wl =
[
sle1 · · · s

l
e
Rl

]
. (3.33)

3.2.5 Semi-supervised NMF

In semi-supervised NMF [187], at test time the dictionary atoms for one source l,
Wl, are estimated alongside with the activations H of all dictionary atoms:

Ĥ,Ŵl = arg min
H,Wl

D(M |WH) + µ|H|1. (3.34)

Examples for the successful application of semi-supervised NMF include speech and
noise separation, where either the speech dictionary is pre-defined and the noise
dictionary is estimated [96, 142, 220, 224], or vice versa [34]. The latter variant can be
transferred to the separation of the vocal artist from polyphonic music, assuming that
an accompaniment dictionary can be built on the non-vocal parts before estimating
the leading voice dictionary at test time [75].

It is also possible to extend semi-supervised NMF with model-based constraints
for a specific application scenario. For example, the separation of the most prominent
vocal source from polyphonic music (leading voice separation) has been formulated
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as an optimization problem resembling semi-supervised NMF by Durrieu et al. [36].
In their approach, the mixture is represented as the additive combination of the
vocal and accompaniment sources v and a in the STFT domain:

M = Sv + Sa. (3.35)

While the accompaniment is modeled directly by NMF, Sa = WaHa, the vocals are
assumed to follow an excitation-filter model in the frequency domain:

Sv = Sv,E ⊗ Sv,F . (3.36)

Thus, each observed spectrum of the leading voice, svt is the multiplication (corre-
sponding to a convolution in the time domain) of a time-varying excitation sv,Et with
a time-varying filter sv,Ft . Without further constraints, this model is too generic and
could fit any spectral observation. Hence, a supervised NMF model is used for both
Sv,E and Sv,F to restrict the set of possible excitations and filters,

Sv = (WEHE)⊗ (WFHF ), (3.37)

where both WE and WF are pre-defined. Since the goal is to separate vocals, the
excitation is assumed to be periodic. Consequently, the matrix WE is initialized with
dictionary atoms resembling harmonic combs with various fundamental frequencies
(F0) in a given range, e.g., 100 to 800 Hz, equally spaced on the semitone scale.
The matrix WF contains overlapping Hann windows, such that Sv,F becomes a
smooth filter. Fixing WE and WF , the first step of the algorithm is to estimate
the parameters HE, HF , Wa and Ha by multiplicative updates similar to the ones
used for NMF. In a second step, F0 tracking is applied to HE to eliminate jumps
due to octave errors, and elements outside an interval around the tracked F0 are
set to zero. Then, the above named parameters are re-estimated in a second step.
Since multiplicative updates are used, the zeroed elements in HE will remain zero,
imposing the constraint of a smooth F0 curve.

After parameter estimation, the estimated spectrogram of the vocals Ŝv is obtained
by Wiener-like filtering, Ŝv = Sv/(Sv + WaHa) with Sv being computed according
to (3.37), and a time-domain signal is resynthesized by inverse STFT.

3.2.6 Efficient parallel implementation of NMF

The discussion of NMF in this thesis is concluded by describing efficient implemen-
tation of NMF using multi-core architectures, as in a previous study by the author
and his advisor [217].

Two observations can be made regarding parallelization of NMF. First, since
NMF is an iterative algorithm, it is highly sequential in nature: Parallelization can
only performed within each iteration. Second, the lion’s share of the computational
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3.2. Non-Negative Matrix Factorization

effort in each NMF iteration lies in the multiplicative update of the parameters.
In turn, the complexity of the update rules is dominated by dense matrix-matrix
multiplication: The asymptotic complexity of each iteration is O(FRT ).

Since there is virtually no restriction on the matrix dimensions (such as F = R,
which would lead to a square W matrix), it is hard to apply specialized matrix-matrix
multiplication algorithms with lower asymptotic complexity. However, parallel imple-
mentation of matrix-matrix multiplication on multi-core architectures, in particular
Graphics Processing Units (GPUs), can be used to lower the actual computation
time drastically. While this parallelization is a non-trivial problem – every entry of
the result matrix consists of a scalar product, whose computation requires a parallel
reduction –, there are well-developed ‘off-the-shelf’ libraries that lend themselves to
this task, especially those provided by GPU vendors, such as NVIDIA’s Compute
Unified Basic Linear Algebra Subroutines (CUBLAS). Other operations required by
the multiplicative update NMF algorithm include element-wise matrix operations
(addition, multiplication, and division), which do require some ‘hand-crafted’ routines,
but these are less critical for performance [8].

As an example, the update of the H matrix performed by the KL-NMF algorithm
features an element-wise division of the H matrix by a vector of column sums
–equivalent to the multiplication with the 1 matrix in (3.24). In the author’s and his
colleagues’ GPU implementation of NMF in the openBliSSART library [212, 217],
these operations are realized by means of Compute Unified Device Architecture
(CUDA) kernels, i.e., small programs resembling instructions in a single instruction,
multiple data (SIMD) architecture. Every kernel handles a data subset, and the data
subsets as well as the kernel threads are instantiated and distributed automatically
across the GPU cores by the CUDA library. If every kernel modifies a set of matrix
entries that is disjoint from the others – in particular, if every kernel writes to
exactly one entry of the result matrix – no synchronization is needed across kernels,
making parallel implementation trivial and dispensing with expensive inter-thread
communication. Using these ‘multiplicative update kernels’ enables running the
NMF algorithm entirely on the GPU without time intensive memory transfers to the
Central Processing Unit (CPU)’s memory. More details on the implementation of
CUDA kernels can be found in [8].

In the following, experimental results obtained in [217] with GPU and CPU
implementations of NMF will be presented. The speedup by GPU parallelization
over CPU implementation, as well as the impact of single- or double-precision
calculation on CPU and GPU on Real-Time Factor (RTF) and source separation
performance, will be evaluated. The code used to achieve these results is publicly
available in the openBliSSART toolkit8. As a strong baseline for efficient single-core
CPU implementation of linear algebra operations, the open-source Basic Linear
Algebra Subroutines (BLAS) implementation provided by the Automatically Tuned

8http://openblissart.github.com/openBliSSART
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Figure 3.3: Processing time of the NMF algorithm (KL divergence) on a 500× 1 000
matrix by the number of NMF components; single / double floating point precision
and CPU /GPU computation. Speedup for double or single precision on both CPU
and GPU, and single precision GPU vs. double precision CPU.

Linear Algebra Software (ATLAS) project [233] is chosen. The ATLAS libraries
can be considered industry standard and are at the core of Matlab’s linear algebra
capabilities. From the experience of the author, the ATLAS routines decrease
the RTF by an order of magnitude for typical NMF applications, compared to a
straightforward implementation of schoolbook matrix multiplication in C++.

All computation was performed on a desktop PC running Ubuntu Linux 10.04.
The PC had an Intel Core2Quad CPU with 2.4 GHz clock frequency and 4 GB of
RAM, and an NVIDIA GeForce GTX560 GPU with 336 CUDA cores – each with
810 MHz core and 160 MHz shader frequency – and 2 GB of RAM. CPU computation
was performed using a single computation thread (i.e., using only one of the four
cores), in order to minimize singular effects due to interferences with concurrent
system processes, to reflect an end-user application where only part of the CPU
computation power can be dedicated to audio processing, and to compare to a baseline
with no parallelization across computation units. However, intra-core vectorized
processing on the CPU is performed by the employed ATLAS library, exploiting the
Intel Multimedia Extensions (MMX) and their follow-up technologies.

First, the influence of the computation architecture (CPU vs. GPU) on the RTFs
is evaluated, using matrix dimensions encountered in typical applications in speech
and music processing. It is of high interest to assess whether there is a ‘break-even
point’ for GPU calculation: It is expected that due to the overhead introduced by
CPU-to-GPU memory transfers and thread synchronization of parallel computations
on the GPU, GPU can outperform CPU calculation only for ‘sufficiently high’ matrix
dimensions. Furthermore, the impact of floating point precision is evaluated for both
CPU and GPU, as current generation GPUs increasingly support double precision
calculations – they are increasingly popular in scientific computing applications,
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3.2. Non-Negative Matrix Factorization

where the required precision depends on the application [244].
In Figure 3.3, the processing times of the NMF algorithm (KL divergence) on a

500× 1 000 matrix are shown. This corresponds to a W = 1 001 point DFT (≈ 63 ms
window size at 16 kHz sampling rate), i.e., F = 500, and 10 s signal length at 10 ms
frame shift, i.e., T = 1000 signal frames. The number of NMF components R was
varied from 5 to 5 000 to reflect NMF applications ranging from the extraction from
a few number of simple sources (cf., e.g., [76]) to high-dimensional decomposition
(cf., e.g., [57]). Comparing single vs. double precision, a consistent speedup from 1.9
up to 3.5 is observed for GPU computation, depending on R. In contrast, for CPU
computation, the results are more mixed when using lower numbers of components;
particularly, for R = 50, double precision is about 1.2 times faster than single
precision. Furthermore, in case of single precision, the measured RTF is not linear
in R. These phenomena can be attributed to peculiarities of the employed ATLAS
library.

Measuring the speedup by using parallel GPU instead of CPU computation, a
speedup of at least 6.8 is observed even for ‘small’ matrices (R = 5), indicating
that the overhead by parallel computation is quite low in a typical audio source
separation scenario. Speedups of up to 24.9 are reached for double precision and up
to 58.1 for single precision. In other words, the maximum speedup obtained by using
single-precision GPU computation instead of double-precision CPU computation
is 86.0. As expected, speedups increase with the dimensionality R. In the result,
by using single-precision GPU computation, real-time processing (i. e., a processing
time below 10 s) is achievable even for 5 000 NMF components. Note that the above
benchmark results have been obtained with the openBliSSART benchmark tool
delivered with the source code to ensure best reproducibility.

To put these results in perspective, let us note that in [56], a speedup factor of 28
has been reported for SNMF classification (cf. Section 5.1.1) of a spectral matrix with
R = 8 000, F = 690 and T = 182, comparing double precision NMF computations
on a CPU with a single precision implementation on a GPU. In that study, a slightly
less performant GPU with only 675 MHz core frequency (instead of 810) was used;
however, it can be assumed that the timing of the CPU computation refers to using
both cores of the employed Intel Core2Duo CPU with 2.4 GHz (as is the default
setting in Matlab), whereas here only one CPU core is used. Generally, the RTFs
reported above are higher than in [56], where supervised NMF (Section 3.2.3, i.e.,
excluding the W updates) is applied, while the above performance measurements
pertain to unsupervised NMF, including the update for W. Furthermore, in an
earlier study on parallelization of music source separation by NMF [8], an 18-fold
speedup has been reported for R = 30, F = 512 and T = 3 445 comparing single
precision calculations in a single CPU thread (Intel Core i7 920) vs. a single precision
CUDA implementation (NVIDIA GTX 280); this speedup is lower than the speedup
gained in the above experiments for similar dimensions, but this can be attributed
to the slightly different processing hardware used.
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Table 3.1: Double and single precision in supervised speech separation by NMF:
Separation performance in terms of SDR, SIR and SAR, as well as corresponding
real-time factors (RTF) for CPU and GPU computation.

Separation performance [dB] RTF
Precision SDR SIR SAR CPU GPU
double 5.16 10.15 7.92 .522 .068
single 5.16 10.15 7.92 .937 .033

Second, experiments are performed in the framework of a somewhat realistic
application: supervised speaker separation with NMF (cf. Section 3.2.3). The
experimental protocol is defined in accordance with Smaragdis’ study [185]. 12
random pairs of male and female speakers were selected from the TIMIT database
[47]. For each pair, two randomly selected sentences of roughly equal length were
mixed at an SNR of 0 dB. From the spectra in the other sentences spoken by each
speaker, an NMF dictionary W was computed using K = 250 multiplicative update
iterations. Through supervised NMF with W, separated signals for both speakers
were obtained, cf. (3.26). As quality measures, SDR, SIR and SAR were employed
[200].

In this context, it is investigated whether using single instead of double floating
point precision has a negative impact on separation quality. From Table 3.1, it is
evident that this is not the case: In fact, the SDR, SIR and SAR values are identical
for double and single precision up to the third decimal. This is in accordance with
the findings of [56] for non-negative sparse classification. Interestingly, the matrix
dimension in the speaker separation case (R = 50) coindices with a configuration
where double precision is faster than single precision in CPU computation, confirming
the singularity evident from Figure 3.3; this surprising result has been corroborated
in multiple repetitions to cope with random fluctuations due to operating system
CPU usage etc. Conversely, in GPU computation, the RTF can be halved by using
single precision without decreasing the separation quality.

Overall, it can be concluded that GPU parallelization is highly rewarding in
efficient NMF implementation, as first promising results from [56] and [8] could be
corroborated in a larger scale study. RTFs smaller than one can be achieved for
several thousand NMF components, motivating fully real-time processing on GPUs
in the future – the crux is that in this case, no parallelization across time steps can
be performed, as was done in the above experiments. In this context, it will also be
of interest to derive efficient parallel implementations of semi-supervised real-time
NMF algorithms (cf., e.g., [96]).

The exact speedups induced by parallel computation of NMF depend on a variety
of external factors such as the number of double and single precision floating point
units which can operate in parallel, the implementation of the employed BLAS
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libraries and the instruction set architecture of the CPU and GPU. While separation
quality is seemingly unaffected by floating point precision, using single precision is
not necessarily faster for all configurations. Performance measurements in a real-life,
end-user oriented setup featuring a state-of-the-art desktop PC – as in this article –
usually imply that the CPU has a complex instruction set architecture (ISA) where
performance of floating point operations strongly depends on the used machine
instructions. This is in contrast to GPUs whose ISA is usually similar to the concept
of reduced instruction set computer (RISC) architectures. Overall, it is believed that
by providing the source code of the algorithms as well as the benchmarks, it will
be straightforward for the research community to gain additional insights into the
performance of NMF in different hardware setups.

3.3 Deep Neural Networks

In the following, DNNs will be introduced briefly. In contrast to NMF, which is a
model-based algorithm that incorporates problem constraints such as non-negativity
and additivity, DNNs are very generic models that are principally able to handle
arbitrary features and recognition tasks. Still, they have been proven very successful
in multi-source recognition, cf., e.g, [87, 183].

A DNN is functionally equivalent to the well-known Multi-Layer Perceptron
(MLP). A K-layer DNN computes a non-linear function y(x)

y = H(K)
(
W(K)H(K−1)

(
W(K−1) · · ·H(1)

(
W(1)x

)))
, (3.38)

where xt are the input features and H(k), k = 1, . . . , K are activation functions
applied to a(k) = W(k)h(k−1) ∈ RU(k) with U(k) being the number of units in layer k.
The layers with indices k = 1, . . . , K − 1 are called hidden layers, so that the DNN
from (3.38) is said to have K − 1 hidden layers. In the above, we omit bias inputs
for simplicity. The following element-wise activation functions are commonly used
(where the layer index k is omitted for readability):

• Identity: H(a) = a;

• Half-wave: H ((a1, . . . , aU)ᵀ) = (max(a1, 0), . . . ,max(aU , 0))ᵀ;

• Logistic: H ((a1, . . . , aU)ᵀ) = (σ(a1), . . . , σ(aU))ᵀ with σ(x) = 1/(1 + exp(−x));

• Hyperbolic tangent: H ((a1, . . . , aU)ᵀ) = (tanh(a1), . . . , tanh(aU))ᵀ

with tanh(x) = 2σ(2x)− 1.

The hidden layer activations in layer k are defined as hk = H(ak). Consequently,
in case of identity and half-wave activation functions, the corresponding hidden
layer units are often referred to as linear and rectified linear. An activation function
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commonly used in the output layer is the Softmax function, which is the only common
activation function that is not applied element-wise:

H ((a1, . . . , aU)ᵀ) = z−1 · (exp(a1), . . . , exp(aU))ᵀ,

z =
∑
u

exp(au). (3.39)

It is easy to see that the above fulfills hu ∈ [0, 1],
∑

u hu = 1, u = 1, . . . , U and hence,
hu can be interpreted as pseudo-probabilities, which is useful, e.g., to have a DNN
output class posteriors.

3.3.1 Gradient descent based training

The weights W of a DNN are trained by minimizing the following cost function:

ET (W) =
∑
t∈T

Et =
∑
t∈T

D(y∗t | y(xt)), (3.40)

where T denotes the set of indices belonging to training vectors xt along with their
ground truth labels y∗t . The choice of D depends on the application but also on the
network structure, in particular the activation function H(K) of the output layer.
The most common criterion, which can be used for any activation function, is the
squared deviation of the output from the training target,

ET (W) =
∑
t∈T

∑
f

(y∗f,t − yf,t)2. (3.41)

Since in case of a softmax activation function at the output layer, the outputs yt
can be interpreted as pseudo-probabilities, the cross-entropy of a target Probability
Density Function (PDF) given the output PDF can be used:

ET (W) =
∑
t∈T

H(y∗t | yt) = −
∑
t∈T

∑
f

y∗f,t log yf,t. (3.42)

Besides continuous-valued targets y∗t , one can also have discrete labels c∗t ∈ {1, . . . , L}
for L-way classification. In this case, the discrete label is usually ‘coded’ in a 1-of-L
scheme, i.e., y∗f,t = 1 for f = c∗t and 0 otherwise. Then, the cross-entropy function
simplifies to

ET (W) = −
∑
t∈T

log yc∗t ,t. (3.43)

The error function ET (3.40) is usually mininimized via gradient descent,

W(q+1),(·) = W(q),(·) − η∇ET
(
W(q),(·)) . (3.44)
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with training epoch q, learning rate η > 0 and (·) indicating that the update is
performed for all layers simultaneously. In practice, since the scale of ET depends
on the cardinality of T , and hence the choice of η would depend on the training
set size, the cost function is normalized by the factor 1/|T |. Furthermore, often a
momentum term [150] is added, which serves to minimize ‘oscillations’ of the cost
function. This is done by treating the weight update ∆W as the ‘velocity’ of the
gradient descent process, which is updated in each iteration [191]:

∆W(q+1),(·) = µ∆W(q),(·) − η∇ET
(
W(q),(·)) , (3.45)

W(q+1),(·) = W(q),(·) + ∆W(q+1),(·), (3.46)

with ∆W(0),(·) = 0 and 0 < µ ≤ 1 being the momentum coefficient.
In the computation of the gradient of the error function with respect to the weights,

one can exploit the fact that because of the chain rule, the function composition in
the computation of the DNN output (3.38) translates to the multiplication of the
weight gradients per layer. It can be shown that for the gradient with respect to
weights in layer k, it holds that

∇W(k)ET =
∑
t

∇WkEt =
∑
t

(
∂Et/∂w

(k)
i,j

)
=
∑
t

(
h

(k−1)
i,t δ

(k)
j,t

)
, (3.47)

with Et being the error in timestep t, and the matrix of deltas being defined as

∆
(k)
t = (δ

(k)
j,t ) = W(k)ᵀ

(
∇aH(k)(a

(k)
t )⊗

(
. . .
(
W(K)ᵀ

(
∇aH(K)(a

(K)
t )⊗∇yEt

))))
.

(3.48)
The latter can be formulated as an iterative algorithm (backpropagation) that is
initialized with the output layer deltas, i.e., the gradient of the error function for
time step t with respect to the network outputs, ∇yEt, and computes the deltas for
layer k − 1 based on the deltas for layer k:

∆
(K+1)
t := ∇yEt, (3.49)

∆
(k)
t := W(k)ᵀ

(
∇aH(k)(a

(k)
t )⊗∆

(k+1)
t

)
. (3.50)

For some activation functions, the gradient computation can be further simplified.
For example, for the element-wise sigmoid function σ, it can be reduced to a simple
transformation of the hidden layer activations:

∇aσ(a(k)) = σ(a(k))⊗ (1− σ(a(k))) = h(k)(1− h(k)). (3.51)

As these activations have to be computed anyway during the forward pass, i.e., the
computation of (3.38), this significantly reduces the time and space complexity of
the algorithm with respect to an arbitrary activation function.
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3.3.2 Deep Neural Networks vs. Multi-Layer Perceptrons

All the above considerations about gradient descent based training hold equally for
the MLP. Yet, the term DNN is commonly associated with a few recent advances in
training schemes that make gradient descent based training of large models on large
amounts of data practicable – a recent overview is given by Deng et al. [29].

For example, layer-wise training avoids training many weight parameters at once
from a random initialization, easing the high-dimensional optimization problem. A
simple, yet effective iterative implementation of layer-wise training of a K-layer
DNN uses the weights of a k − 1-layer DNN as initialization for the weights of a
k-layer DNN (k = 2, . . . , K), with only the weights in the k-th layer being randomly
initialized [246]. Generative pre-training [83] is an example for a model-inspired
method that particularly lends itself to training with scarce data. Overall, layer-wise
training seems of little importance for very large training sets [29].

Another recent insight is that popular audio features such as MFCCs, which
were partly motivated by the constraints of Gaussian mixture modeling in ASR
(cf. Section 3.7.1), turn out to be less useful than simpler features such as ‘raw’
Mel filterbank outputs [131]. Some researchers believe that given ‘low-level’ input
features, the network can – to some degree – extract its own higher-level features,
with each hidden layer computing a higher-level representation [82]. However, in
practice this ability is constrained by the chosen network topology (connections and
activation functions), which can sometimes lead to counterintuitive results, such as
rotations of the input features having a large impact on performance [131].

Yet another crucial point for the success of DNNs is that exploiting large amounts
of training data has become practicable, mainly due to the increased prevalence
of multi-core CPU and GPU architectures (cf. Section 3.5.5). In fact, for ASR it
has been shown that DNNs provide significant advantages over previous models
particularly with large-scale training data [181]. Large parts of DNN training can
be easily parallelized on multi-core architectures: In the delta computation (3.48),
all timesteps can be processed in parallel in a matrix-matrix multiplication. These
multiplications are interleaved with element-wise operations, which can also be
vectorized. The gradient computation (3.47) is easy to re-formulate as a matrix
product, too. Thus, within the gradient computation sequential computation is only
required between layers.

A precondition for effective large-scale training is to achieve a training time (for
a given reduction of the cost function) that is sub-linear in the amount of training
data. In practice, this can be achieved by stochastic gradient descent (SGD), where
weight updates are performed on mini-batches B of size |B| with B ⊂ T , based on
the assumption that each mini-batch is a representative sample of the whole training
set. This leads to a set of cost functions for mini-batches Bi,

EBi(W) =
∑
t∈Bi

D(y(xt),y
∗
t ), (3.52)
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such that
∑

iEBi = ET . Hence, the mini-batch update becomes

W(q+1),(·) = W(q),(·) − η

|Bi|
∇EBi

(
W(q),(·)) . (3.53)

The above still involves significant sequential computation, as no two sets of mini-
batches can be computed in parallel. To remedy this problem, the update can be
slightly reformulated to allow a time delay ∆q ∈ N between the current estimate of
the weights and the estimate of the weights that the weight update calculation is
based on:

W(q+1),(·) = W(q),(·) − η

|Bi|
∇EBi

(
W(q−∆q),(·)) . (3.54)

This concept leads to asynchronous gradient descent, which is suitable for large-scale
distributed computations [27]. To improve the convergence of asynchronous gradient
descent, an initial estimate of the parameters W can be obtained by running a few
iterations of SGD (‘warm start’) [27].

Improving generalization As DNNs are very powerful models, they are likely
to over-adapt to spurious patterns in the training data (over-fitting). Three common
heuristics are frequently used in this thesis to alleviate over-fitting and improve
generalization: (i) input noise, where white noise is added to the input features
at the start of each training epoch (incorporating the model constraint that the
network’s output should invariant to small variations of the input features, and
hence regularizing the regression / decision function); (ii) training set shuffling,
where the order of training instances is determined randomly – this is important
for SGD, effectively randomizing the order in which gradient steps corresponding to
mini-batches are taken, and supposedly reducing the susceptibility to local minima
in the error function; and (iii) early stopping, where the convergence criterion for the
error function is not only evaluated on a training set, but also on a disjoint ‘held-out’
validation set. Optimal DNN training is still an active area of research, and more
‘recipes’ to improve generalization are presented in [133].

3.4 Regression-based source separation

Since a main application of machine learning in this thesis is audio source separation,
and the methods presented in the previous section are trained in a supervised fashion
(using labeled training data), it will now be examined how source separation can be
formulated as a regression problem using supervised training.

To this end, let us first review the process of obtaining the separated source l by
NMF as introduced in Section 3.2, cf. (3.26). For each time-frequency bin, this can
be re-written as

ŝlf,t =

∑
r∈Il wf,rhr,t∑
r wf,rhr,t

mf,t (3.55)
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= Pr(l | f, t)mf,t, (3.56)

where Pr(l | f, t) indicates the probability that source l is active in the time-frequency
bin with frequency f and time t, and Il is the set of indices of dictionary atoms
belonging to source l. The second equality comes from a probabilistic interpretation
of the filter term, which is guaranteed to be in [0, 1] due to the non-negativity
constraints. The above formulation is known as time-frequency masking.

From this perspective, there is no evident reason why Pr(l | f, t) needs to be
computed by NMF, apart from the conceptual advantage of being a model-based
approach. Instead, any method for estimating class posteriors could be used to
obtain Pr(l | f, t). In particular, it has been shown that binary classification by
decision trees [61] and Support Vector Machines (SVMs) [111] can be effectively used
for this task. However, as in many other areas of audio processing, there is currently
an increasing trend towards DNN based source separation [87, 136, 229].

3.4.1 Supervised training for source separation

It is straightforward to derive a supervised training scheme for time-frequency
masking, by training a system to predict an ideal mask for a wanted signal from
features of a mixed signal. Specifically, to train single-channel source separation, a
training corpus of source signals s(τ) and a parallel training corpus of mixtures m(τ)
is assumed to be available9. From this, the residual signals sl(τ) = m(τ)− sl(τ) are
computed. Then, the STFTs (slt)t and (slt)t ∈ RF

+ of s(τ) and s(τ) with F frequency
bins are computed. From this, an ideal ratio mask (IRM) for source l in each training
frame t is obtained as follows:

ylt =
slt

slt + slt
. (3.57)

Now, supervised training can be applied to obtain a mapping yl(mt),mt 7→ ŷlt, where
ŷlt is an estimated ratio mask for source l. The objective function to be minimized
in supervised training is

EMA,l =
∑
f,t

D(ŷlf,t, y
l
f,t), (3.58)

where D is a distance measure and ‘MA’ stands for ‘mask approximation’. In this
thesis, the squared Euclidean distance, D = D2, is used, which ensures that EMA is
closely related to the source separation objective (cf. Section 3.6).

At test time, using a full-resolution ratio mask ylt ∈ [0, 1]F , the source spectrum
ŝlt is estimated as

ŝlt = ylt ⊗mt, (3.59)

9Since mixtures can be generated artificially from isolated training signals, this is not a stronger
assumption than assuming the availability of training signals for all sources, such as as in supervised
NMF.
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where mt is the spectrum of the mixture. From this, a time-domain signal ŝl(τ) is
reconstructed using inverse DFT and overlap-add.

Considering the above, DNNs have a few convenient properties that can be
exploited for training the task of source separation: First, the masking function for
all frequency bins can be represented in a single (multi-task) model, which allows for
efficient computation of yl at test time. Besides, non-linearities in the feature repre-
sentation can be handled effectively, thus allowing for (e.g., logarithmic) compression
of the spectral magnitudes, which is considered useful in speech processing. Once
trained, source separation only needs to evaluate (3.38) and (3.59), which is very
efficient compared to iterative methods such as NMF. Finally, the backpropagation
algorithm allows for switching the training objective easily, since only the gradient
computation of the objective function with respect to the network output ŷl needs to
be changed. This property can be exploited for discriminative training (cf. Section
3.6).

A fundamental limitation of the above approach is that even if the classifier /
regressor is perfect, the resulting speech estimate might not equal the clean speech
magnitude, Pr(l | f, t)mf,t 6= slf,t. This is because due to cancellations in the

time-frequency domain it might be the case that mf,t < slf,t and hence the ‘true

mask’ slf,t/mf,t is not a probability. However, this is not a specific disadvantage of
regression-based speech separation, but rather of time-frequency masking in general.
Another problem is that only the magnitudes are modified. To get back to the time
domain, a phase estimate is needed, which typically is – lacking better alternatives –
the phase of the mixture. Consequently, even if the magnitudes of the source are
estimated perfectly, the resulting time-domain signal ŝl(τ) will still be different from
the source signal sl(τ). Again, this is not a specific disadvantage of the algorithms
presented in this thesis, but rather of any single-channel source separation algorithm
working in the time-frequency domain, which also comprises popular speech and
audio de-noising schemes such as unsupervised spectral subtraction [16], minimum
statistics [124], etc.

Despite these theoretical limitations, it can often be observed that time-frequency
masking using the ‘ideal’ ratio mask (3.57) delivers good separation quality. Figure 3.4
shows the result of applying such masks to a noisy speech signal from the CHiME-2013
corpus (cf. Section 2.2.1.1).

3.4.2 Mel-domain separation

The source separation algorithms considered so far operated in the full-resolution
Discrete Fourier Transformation (DFT) domain. Consequently, for a window size W ,
F = bW/2 + 1c probabilities Pr(l | f, t) have to be estimated per frame. Especially
in case of training data scarcity, it might be hard for a machine learning based model
to provide accurate estimates for all the DFT bins. Thus, it might be useful to
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(a) Noisy (b) Ideal ratio mask

(c) Noisy, filtered by ideal ratio mask (d) Transformed ideal Mel ratio mask

(e) Noisy, filtered by transformed Mel ideal
ratio mask

(f) Clean

Figure 3.4: Time-frequency masking in the full-resolution STFT and the Mel domain
applied to the utterance 050c0101 at 0 dB input SNR from the CHiME-2013 data.
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reduce the dimensionality of the mask. Furthermore, coarser frequency masks often
generalize better to unseen speakers and noise [5] – yet there is a trade-off with the
achievable separation quality [5].

The most obvious choice of feature reduction, which is motivated from acoustic
modeling in automatic speech recognition, is to employ Mel filter-banks. As explained
in Section 3.1, this effectively results in a linear transformation of the features mt by
the matrix B = (bi,f) ∈ RB×F , where B < F is the number of Mel bins and bi,f is
the weight of the DFT bin f in the i-th Mel bin. In this case, the mask ylt is also in
the Mel domain:

yMel,l
i,t = Pr(l | i, t) =

(Bsl)i,t

(Bsl)i,t + (Bsl)i,t
. (3.60)

Directly applying this mask to the Mel features Bmt is not advisable for speech
reconstruction, as the matrix B is rectangular (B < F ) and hence the corresponding
linear transform is not invertible. Instead, the speech estimate can be computed by
filtering the full-resolution spectrum,

ŝlt = (BᵀyMel,l
t )⊗mt. (3.61)

This is motivated by the special structure of B, where
∑

i bi,f ≤ 1. In particular, for
i < B the falling slope of filter i overlaps with the rising slope of filter i + 1, and
bi,f = 1 − bi+1,f in this region. With yMel,l

t,f ∈ [0, 1], it holds that BᵀyMel,l
t ∈ [0, 1]F ,

which can be interpreted as a full-resolution mask. Mathematically, the probability
mass for each Mel-frequency bin, Pr(l | i, t) is redistributed to the DFT bins,
Pr(l | f, t), by the weights bi,f .

A more principled approach could be using a Wiener-like filter, where the Mel-
domain speech and noise estimates are both transformed with the pseudo-inverse B+

of B. However, the author’s experiments with source separation on the CHiME-2013
data (cf. Section 4.2) showed that this approach did not perform better in terms of
SDR than the above ad-hoc approach.

Figure 3.4 shows the ideal ratio mask, [ylt]t, the transformed Mel ideal ratio mask,
[BᵀyMel,l

t ]t (B = 100), as well as the corresponding reconstructions of the magnitude
spectrogram of the speech, for an utterance from the CHiME-2013 data (development
set, 050c0101) where speech is mixed with a music source at 0 dB SNR. It can be
seen that the Mel transformation induces a smoothing of the mask in the higher
frequencies. In particular, comparing the clean spectrogram with the Mel-filtered
spectrogram and the full-resolution filtered spectrogram, it is evident that both filters
preserve the speech information very well, while the Mel filter leaves some audible
musical noise, as can be seen from the harmonics in the spectrogram. This is expected,
as the low-resolution Mel filter cannot separate harmonics of speech and noise that lie
close together. Still, in terms of objective measures, the Mel transformation results
in only a slight reduction of the separation strength (15.9 dB vs. 15.3 dB SDR), while
reducing the amount of filter parameters by 50 % (B/F = 100/201). The latter
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could lead to more reliable parameter estimation by machine learning, a hypothesis
that will be verified in Section 4.2, along with a comparative evaluation of various
regressors to estimate the masks.

3.5 Context-sensitive methods

So far, STFT-based features have been considered as input for the source separation
algorithms. As a consequence, the algorithms are forced to discriminate sources
based on a short-term observation, with length corresponding to W/Fs. This context
size, however, is not always sufficient, as can be easily seen from a simple example,
which is inspired by the work of Mohammadiha et al. [132]. Figure 3.5 shows the
superposition m(τ) = s1(τ) + s2(τ) of rising and falling chirp signals s1(τ) and
s2(τ). Intuitively, a source separation algorithm that has source models based on
the original signals s1(τ) and s2(τ) should be able to robustly separate the mixture.
Yet, supervised NMF, where dictionaries W1 and W2 are trained on the STFT
spectrograms S1 and S2 of the original chirp signals (R1 = R2 = 20), fails to separate
the mixture (Figure 3.5b), effectively resulting in two virtually identical source
estimates, Ŝ1 ≈ Ŝ2. This surprising result is easy to understand when examining
the estimated dictionary W1: It will contain only small-band spectra, which can
represent the short-term observations in both S1 and S2 perfectly. In the following, a
simple solution to remedy this problem based on frame stacking is introduced, before
more advanced methods are outlined.

In a frame stacking approach, the observation super-vector m′t at time t cor-
responds to the observations [mt−TL ; · · · ; mt; · · · ; mt+TR ] where TL and TR are the
left and right context sizes. Missing observations at the beginning and end of the
data can be replaced by copying the first and last observations, i.e., mt:t<0 := m1

and mt:t>T := mT . The above is a generic approach that can be applied to any
recognition algorithm. In particular, DNNs are usually trained using similar temporal
context windows [82]. In case of NMF frame stacking [57], each dictionary atom will
also correspond to a spectral super-vector. Consequently, dictionaries are trained
on matrices Sl

′
containing spectral super-vectors of the separated sources in their

columns, and the Wiener-like filter (3.26) also yields a sequence of super-vectors,
each of the form [ŝlt−TL ; · · · ; ŝlt−TR ]. From these, one can either just output the ‘center
frame’ ŝlt, or average the source estimates within the window [57].

In the example, when dictionaries W1′ and W2′ are trained on S1′ and S2′,
and supervised NMF is applied to M′, using context sizes of TL = TR = 9, the
source signals can be reconstructed as expected (Figure 3.5c). This is because every
dictionary atom (such as the one displayed in Figure 3.5d, ‘reshaped’ into a matrix
with TL + TR + 1 columns) now describes the temporal evolution of its corresponding
source signal. For readability, subsequently the ′ is dropped, and it is assumed that
it is clear from context whether features correspond to stacked column vectors.
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(a) Mixture (b) Separated source 1 without con-
text

(c) Separated source 1 with context (d) Basis atom with context

Figure 3.5: Importance of context in source separation: Mixture of rising and falling
chirp signals, separated by NMF without and with context.

3.5.1 Matrix deconvolution

A disadvantage of super-vector approaches in general is that the model is ‘blind’
to the information loss which occurs by ‘flattening’ structured data. In the case of
frame stacking in NMF, the temporal information within the super-vectors is lost. In
practice, this can result in an unnecessary blow-up of the model size. To understand
why, let us again consider the case of a periodically rising chirp signal, where the
period is significantly longer than the frame shift ∆τ . Intuitively, a context-sensitive
basis representation should be able to model this signal with a single time-dependent
dictionary atom, which captures the rising period. However, it is easy to see that
this is not possible with frame stacking - since every observation corresponds to a
sliding window, which in turn corresponds to a cyclic shift of the rising period of the
chirp, every possible cyclic shift needs to be modeled by an additional dictionary
atom, such as the one shown in Figure 3.5d.
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A much more compact signal model can be obtained if time shifts are taken
into account directly by the mixing model, an argument already put forth for the
case of speech recognition by Hurmalainen et al. [88]. This consideration leads
to non-negative matrix deconvolution (NMD) or convolutive NMF [184]. There,
the observed spectrogram M is modeled as a convolution of ‘basis’ spectrograms
wl
r = (wlr,f,p)f,p ∈ RF×P

+ , each spreading over P frames of context, with the activation
matrix H:

mf,t ≈
P−1∑
p=0

S∑
l=1

∑
r

wlr,f,ph
l
r,t−p+1 (3.62)

In matrix form, this can be written as

M ≈
P−1∑
p=0

S∑
l=1

Wl(p)
p→
H =

P−1∑
p=0

W(p)
p→
H (3.63)

with

Wl(p) =

 wl1,1,p · · · wlRl,1,p
...

. . .
...

wl1,F,p · · · wlRl,F,p

 , (3.64)

the concatenated dictionary W(p) =
[
W1(p) · · ·WS(p)

]
and the shift operator

p→
·

being defined as
p→
A :=

{ [
0M×p , A:,1:T−p

]
p > 0

A p = 0
. (3.65)

In analogy to NMF, supervised and semi-supervised schemes with NMD dictionary
learning, sparse NMD, and exemplar-based NMD can be derived [88, 91, 140, 185, 211].
In turn, these are based on multiplicative update rules for obtaining a dictionary
W(p) and activations H from a spectrogram X which represents a mixture or a
source. These rules are given in matrix form as follows:

W(p)(k+1) = W(p)(k) ⊗ (X⊗ (X̂)β−2)(
p→
H)ᵀ

(X̂)β−1(
p→
H)ᵀ

, (3.66)

h
(k+1)
j,t = h

(k)
j,t

1

P (t)

P (t)−1∑
p=0

W(p)ᵀ
←p

(X⊗ (X̂)β−2)

W(p)ᵀ
←p

(X̂)β−1


j,t

. (3.67)

In the above, X̂ denotes the reconstructed spectrogram which is computed in analogy

to (3.63), and the ‘left shift’ operator
←p
· is defined as

p→
A :=

{ [
A:,p+1:T , 0M×p

]
p > 0

A p = 0
, (3.68)
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j = 1, . . . , R, t = 1, . . . , T and P (t) := min{P, T − t+ 1}. β is the parameter of the
β-divergence cost function (cf. Section 3.2) defined in analogy to NMF. The above
formulation [217] avoids the divisions by zero in the rightmost columns of the right
hand side operands, which occur in the original matrix formulation of the algorithms
[185, 208]. A Wiener-like filter equation for estimating the source l in the NMD
model can be derived in analogy to NMF (3.26):

Ŝl =

∑P−1
p=0 Wl(p)

p→
H∑P−1

p=0

∑
l W

l(p)
p→
H
⊗M. (3.69)

Efficient implementation of NMD It is beneficial to formulate NMD update
rules in ‘matrix form’ in order to exploit linear algebra routines employing vector-
ization (cf. Section 3.2.6). However, if implemented näıvely, the shift operators
introduce additional operations and increase memory usage. Hence, it will be shown
how to eliminate them completely by reducing multiplications with shifted matrices
to multiplication of submatrices, as proposed by the author and his advisor in [217].
This is in contrast to [22] where it was suggested to use special Matlab functions to
eliminate the shifts.

Observe that the shift operators are always used within a matrix-matrix mul-
tiplication, introducing zeros into one of the factors: Thus, the shifting can be
‘simulated’ by adjusting the summation ranges in the scalar products used in ma-
trix multiplication. This allows an easy and very efficient implementation without
having to compute (and store) shifted versions of the matrices, or submatrices: The
BLAS standard supports submatrix multiplications directly on the memory blocks
corresponding to the full matrices. Defining X̃ := X⊗ X̂β−2, the numerator of the
rule (3.66) can be transformed using

X̃(
p→
H)ᵀ = X̃

[
0R×p H:,1:T−p

]ᵀ
= X̃:,p+1:THᵀ:,1:T−p , (3.70)

and the numerator of the rule (3.67) can be reformulated using

W(p)ᵀ
←p

X̃ = W(p)ᵀ
[
X̃:,p+1:T 0F×p

]
=

[(
W(p)ᵀX̃:,p+1:T

)
0F×p

]
. (3.71)

The denominators of the rules can be transformed accordingly. Finally, the shifts in
the computation of (3.63) can be eliminated by exploiting the equality

W(p)
p→
H = W(p)

[
0R×p H:,1:T−p

]
=

[
0F×p (W(p)H:,1:T−p)

]
, (3.72)

thereby eliminating all shift operators from the algorithm.
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3.5.2 Deep recurrent neural networks

Since audio is sequential, it is not surprising that in recent years, sequence learners
such as RNNs have seen a resurgence in popularity for speech and music processing
tasks [15, 17, 66, 67, 87, 209]. The combination of deep structures with temporal
recurrence for sequence learning yields so-called Deep Recurrent Neural Networks
(DRNNs) [67]. The function computed by a K-layer DRNN can be defined by the
following iteration10 (forward pass) for k = 1, . . . , K − 1 and t = 1, . . . , T :

h
(1,...,K−1)
0 = 0, (3.73)

h
(0)
t = xt, (3.74)

h
(k)
t = H(k)(W(k−1,k)[h

(k−1)
t ; 1] + W(k,k)h

(k)
t−1), (3.75)

yt = H(K)(W(K−1,K)[h
(K−1)
t ; 1]). (3.76)

In the above, h
(k)
t denotes the hidden feature representation of time frame t in the

level k units, where k = 0 represents the input layer (3.74) and k = K the output
layer. W(k−1,k) and W(k,k) denote the feed-forward and recurrent weight matrices at
layer k, where the feed-forward part also includes the bias weights for simplicity.

To train RNNs, Backpropagation Through Time (BPTT) is typically used. This
algorithm is conceptually similar to ‘unfolding’ the recurrent connections into a
partially connected KT -layer DNN where connections exist both across consecutive
timesteps and consecutive layers, and weight parameters are tied across timesteps,
then performing standard backpropagation. However, this approach suffers from
a vanishing or exploding gradient for larger T , making the optimization difficult
[10]. As a result, RNNs are often not able to outperform DNNs in practical speech
processing tasks [87, 230]. One of the oldest, yet still most effective11 solutions
proposed to remedy this problem is to add structure to the RNN following the Long
Short-Term Memory (LSTM) principle as defined in [59, 85]. Formally, in an LSTM-
DRNN the mapping from a sequence of input features xt to outputs yt, is defined
by the following iteration for layers k = 1, . . . , K − 1 and timesteps t = 1, . . . , T :

h
(1,...,K−1)
0 =0, c

(1,...,K−1)
0 = 0, (3.77)

h
(0)
t =xt, (3.78)

f
(k)
t =G

(
Wf,(k−1,k)[h

(k−1)
t ; 1] + Wf,(k,k)h

(k)
t−1 + Wf,(k),pc

(k)
t−1

)
, (3.79)

i
(k)
t =G

(
Wi,(k−1,k)[h

(k−1)
t ; 1] + Wi,(k,k)h

(k)
t−1 + Wi,(k),pc

(k)
t−1

)
, (3.80)

c
(k)
t =f

(k)
t ⊗ c

(k)
t−1

10There are other possibilities to construct DRNNs, which is an emerging subject at the time of
this writing, cf., e.g., [146].

11For example, at the time of this writing, LSTM-DRNNs set the benchmark [67] on the TIMIT
phoneme recognition task [47].
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+ i
(k)
t ⊗H

(
Wc,(k−1,k)[h

(k−1)
t ; 1] + Wc,(k,k)h

(k)
t−1

)
, (3.81)

o
(k)
t =G

(
Wi,(k−1,k)[h

(k−1)
t ; 1] + Wi,(k,k)h

(k)
t−1 + Wi,(k),pc

(k)
t

)
, (3.82)

h
(k)
t =o

(k)
t ⊗H(c

(k)
t ), (3.83)

yt =H(K)
(
W(K−1,K)[h

(K−1)
t ; 1]

)
. (3.84)

Again, h
(k)
t denotes the hidden feature representation of time frame t in the layer k

units (k = 0: input layer). Analogously, c
(k)
t , f

(k)
t , i

(k)
t , and o

(k)
t denote the dynamic

cell state, forget gate, input gate, and output gate activations. The hidden layer
activations correspond to the state variables, ‘squashed’ by the activation function
and scaled by the output gate activations (3.83). W·,(k−1,k) and W·,(k,k) denote
feed-forward and recurrent weight matrices at layer k (k = K: output layer). The
superscript · is used to refer to cell states (c), forget gates (f), input gates (i), and
output gates (o). W·,(k),p denote the diagonal matrices of peephole weights [59], which
provide a connection from the memory cell to the gate units with scalar weight. H
is the cell activation function (typically tanh) and G is the gate activation function
(typically σ). H(K) is, again, an arbitrary output layer activation function.

In comparison to a standard RNN, the computation of h
(k)
t is now performed by a

differentiable function L(k)(h
(k)
t ; h

(k)
t−1) which performs ‘soft’ (differentiable) versions of

read, write, and delete operations on a state variable c
(k)
t . The latter is implemented

as a recurrent unit with weight 1, allowing the RNN to exploit an unbounded amount
of context. It can be shown that the LSTM approach avoids the vanishing gradient
problem, thus allowing to effectively train DRNNs using gradient descent, and being
able to learn long-term dependencies.

Figure 3.6 shows a visualization of a single LSTM cell (index i in layer k), which

calculates its hidden activation h
(k)
i,t from h

(k−1)
t and h

(k)
t−1. c

(k)
i,t , i

(k)
i,t , o

(k)
t,i , f

(k)
i,t denote

the state, input gate, output gate, and forget activation of the cell i in layer k.

3.5.3 Backpropagation for LSTM-RNNs

Gradient descent for LSTM-RNNs is implemented by adapting BPTT accordingly.
For a deep LSTM-RNN with K − 1 hidden LSTM layers and a single feedforward
output layer, which is the configuration used for the experiments in this thesis, first
the deltas and weight updates are computed for the output layer according to (3.49)
and (3.47) substituting k 7→ K.

Then, in order to get the deltas ∆ for a sequence with T timesteps, the LSTM-
RNN training algorithm executes the following iteration for t = T, . . . , 1 and k =
K − 1, . . . , 1, i.e., exactly in reverse order as the RNN forward pass described above:

∆
·,(1,...,K−1)
T+1 =0, (3.85)
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Figure 3.6: Visualization of the i-th cell in the k-th layer of a deep LSTM-RNN.
Arrows denote data flow and 1 denotes a delay of one timestep.

e
(k)
t =∆

(k+1)
t

+ Wc,(k,k)∆
c,(k)
t+1 + Wi,(k,k)∆

i,(k)
t+1

+ Wf,(k,k)∆
f,(k)
t+1 + Wo,(k,k)∆

o,(k)
t+1 , (3.86)

∆
o,(k)
t =G ′(ao,(k)

t )⊗H(c
(k)
t )⊗ e

(k)
t , (3.87)

e
c,(k)
t =o

(k)
t ⊗H′(c

(k)
t )⊗ e

(k)
t

+ f
(k)
t e

c,(k)
t+1

+ Wi,(k),p∆
i,(k)
t+1 + Wf,(k),p∆

f,(k)
t+1 + Wo,(k),p∆

o,(k)
t , (3.88)

∆
c,(k)
t =i

(k)
t ⊗H′(a

c,(k)
t )⊗ e

c,(k)
t , (3.89)

∆
f,(k)
t =G ′(af,(k)

t )⊗ c
(k)
t−1 ⊗ e

c,(k)
t , (3.90)

∆
i,(k)
t =G ′(ai,(k)

t )⊗H(a
c,(k)
t )⊗ e

c,(k)
t , (3.91)

∆
(k)
t =Wc,(k−1,k)ᵀ∆

c,(k)
t + Wi,(k−1,k)ᵀ∆

i,(k)
t

+ Wf,(k−1,k)ᵀ∆
f,(k)
t + Wo,(k−1,k)ᵀ∆

o,(k)
t . (3.92)

Note that (3.86) and (3.92) handle the back-propagation of the deltas between layers,
in analogy to the non-recurrent DNN. From the deltas, the weight updates for the
LSTM layers (recurrent and feedforward connections, as well as peephole weights)
are obtained as:

∆w
·,(k−1,k)
i,j =

∑
t

h
(k−1)
i,t δ

·,(k)
j,t , (3.93)
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∆w
·,(k,k)
i,j =

∑
t<T

h
(k)
i,t δ

·,(k)
j,t+1, (3.94)

∆w
i,(k),p
i,i =

∑
t<T

c
(k)
i,t δ

i,(k)
i,t+1, (3.95)

∆w
f,(k),p
i,i =

∑
t<T

c
(k)
i,t δ

f,(k)
i,t+1, (3.96)

∆w
o,(k),p
i,i =

∑
t

c
(k)
i,t δ

f,(k)
i,t , (3.97)

for k = 1, . . . , K − 1. Of these, (3.93) can be re-written in matrix form as:

∆W·,(k−1,k) = H(k−1)∆·,(k)ᵀ, (3.98)

with H(k−1) representing the column-wise concatenation of the hidden layer activa-
tions from layer k − 1 (as row vectors), for all timesteps. This formulation lends
itself to efficient parallel implementation (cf. Section 3.5.5).

3.5.4 Bidirectional RNNs

The LSTM-DRNN as introduced above can exploit context from previous feature
frames. In cases that real-time processing is not required, future context can be
used as well. One method to take into account an unbounded amount of future
context12 is to split each hidden layer into two parts, one of which executes the
forward pass in the order t = 1, . . . , T as above (‘forward layer’) and the other in the
reverse order, i.e., replacing t− 1 by t+ 1 for the recurrent connections and iterating
over t = T, . . . , 1 (‘backward layer’). The forward layer and backward layer have

separate weight matrices,
→
W and

←
W. This yields a Bidirectional Deep Recurrent

Neural Network (BDRNN) or, if the hidden units are designed as LSTM units, a
Bidirectional Long Short-Term Memory (BLSTM)-DRNN.

For each time step t, the activations of the k-th forward (→) and backward (←)
layer are collected in a single vector

h
(k)
t =

[ →
h

(k)
t ;

←

h
(k)
t

]
. (3.99)

Both the forward and backward layers in the next level (k + 1) process this entire
vector as input. Thus, conceptually, in a deep BLSTM network one processes the
sequence in both directions, collects the activations and uses them as input for a
bidirectional pass on the sequence on the next level, etc. Alternatively to (3.99), one

12A system similar to an LSTM-RNN with fixed lookahead can be implemented by delaying the
training targets by a fixed number D ∈ N of timesteps, i.e., y∗t  y∗t−D.
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can consider ‘subsampling layers’ [62] performing the operation

h
(k)
t = Hsub,k

(
Wsub,(k)

[ →
h

(k)
t ;

←

h
(k)
t

])
, (3.100)

with trainable low-rank weight matrices Wsub,(k), for k = 1, . . . , K − 1. This can
be useful for information reduction between the layers. For example, in [230] using
subsampling layers with tanh activation functions was found to reduce training time
without decreasing performance, in contrast to simply using less hidden units.

Backpropagation for BLSTM-RNNs can be easily implemented due to the untying

of the forward layer and backward layer weights. The forward layer weights
→
W

are obtained in analogy to the unidirectional LSTM-RNN case, as described above,

based on the ‘forward activations’
→

h
(k)
t . The backward layer weights

→
W are obtained

by BPTT for LSTM-RNN, reversing the temporal dependencies (t − 1  t + 1,

t+ 1 t+ 1) and using the ‘backward activations’
←

h
(k)
t accordingly.

3.5.5 Efficient parallel implementation of RNNs

Having introduced the theoretical foundations, this section now presents an ap-
proach to efficient GPU-based training of LSTM-RNNs, as it is implemented in
the author’s and his colleagues’ open-source CUda RecurREnt Neural Network
Toolkit (CURRENNT) [228]. The CURRENNT software can be obtained from
http://currennt.sf.net. To the knowledge of the author, it is the first of its kind
open-source parallel implementation of LSTM-RNNs in C++.

Despite that fact that recent research demonstrates that deep LSTM-RNNs
exhibit superior performance in speech recognition in comparison to state-of-the-
art deep feed forward networks [67, 163], RNNs are still not widely adopted by
the research community at large, in contrast to the growing interest in DNNs [82].
It can be argued that one of the major barriers is the lack of high-performance
implementations for training RNNs. At the same time, such implementations are
non-trivial due to the limited parallelism caused by time dependencies. This is in
contrast to DNNs, for which the backpropagation algorithm can be performed in
parallel for all time steps, resulting in large matrix-matrix multiplications which can
be efficiently done on GPUs (cf. also Section 3.2.6).

To refer to a few studies on parallelization and freely available implementations: A
‘reference’ CPU implementation of LSTM-RNNs as used by Graves [62] is available as
open-source C++ code [65]. A Python library for many machine learning algorithms
including LSTM-RNN has been introduced by Schaul et al. [165]; however, it does
not directly support parallel processing. Multi-core training of (standard) RNNs has
been investigated by Cernanský [20], but the source code is not available, and LSTM
is not supported. Pascanu et al. have recently released a Python implementation
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(‘GroundHog’) of various RNN types described in their study [146], exploiting GPU-
accelerated training through Theano [12]; yet, it does not provide LSTM-RNNs, and
at the moment there is no user-friendly interface. Freely avalailable CUDA C++
implementations of feedforward, but not recurrent, neural networks are provided by
Donati [32] and Lopes et al. [118].

Below, the principles of the parallel mini-batch learning algorithm implemented
in CURRENNT are described. More details can be found in [11].

3.5.5.1 Parallel mini-batch learning for DRNNs

From the dependencies between layers (k− 1 k) and time steps (t− 1 t) in the
DRNN forward pass outlined above, it is obvious that parallel computation of feed-
forward activations cannot be performed across layers; further, parallel computation
of recurrent activations is not possible across time steps.

Thus, parallelization has to be performed by considering multiple sequences in
parallel – an obvious choice for the set of parallel sequences are mini-batches (cf.
Section 3.3) of size |B| < N . All of the features, hidden layer variables, network
outputs, and training targets (if needed) are stored in large matrices in order to
exploit BLAS. For instance, a cell state matrix C(k) for the k-th layer is given as

C(k) = [c
(k)
1,p · · · c

(k)
1,j+|B|−1 · · · c

(k)
T,p · · · c

(k)
T,j+|B|−1], (3.101)

where c
(k)
t,j are the cell states for sequence j in layer k at time t.

In the above, it is assumed assume that every sequence has exactly T time steps.
For shorter sequences, ‘dummy’ time steps are introduced, which are neglected in
the error calculation (3.40). In practice, the largest T per batch Bi, TBi , can be
determined, and computations are only performed up to that TBi , which is easy due
to the temporal ordering in (3.101): The timesteps t = 1, . . . , TBi form a contiguous
sub-matrix of (3.101).

Furthermore, instead of determining mini-batches randomly, the set of sequences
is split in a way such that sequences of similar length are in the same batch.
This minimizes the number of dummy time steps which have to be introduced.
Consequently, sequence shuffling, which is commonly applied in training to help
generalization (cf. Section 3.3), is performed by randomizing the order of mini-batches,
as well as the order of sequences within mini-batches, but not by exchanging sequences
across batches, which would violate the constraint of equal sequence lengths.

The realization of the LSTM-DRNN forward pass shall be exemplified again by the
state variables. The update (3.81) is performed on C(k) (3.101) by first computing
the feedforward part for all time steps and |B| sequences in parallel, simply by
pre-multiplication of the hidden layer activations, which are stored in analogy to
(3.101), with W(k−1),(k). Second, for the recurrent part of (3.81), one can update the
submatrices of C(k) for each timestep from ‘left to right’ using W(k),(k). There, the

63



3. Learning multi-source recognition

Table 3.2: Performance (WER / speedup) on the CHiME-2013-SV noisy word
recognition task. In each epoch, roughly 10 h of speech are processed (training and
validation set).

RNNLIB [65] CURRENNT
# Parallel sequences (|B|) 1 1 10 50 200
Validation set error (10 ep.) 0.138 0.138 0.135 0.137 0.144
Validation set error (50 ep.) 0.120 0.119 0.116 0.118 0.119
Training time / epoch [s] 7 420 3 805 580 392 334
Speedup (1.0) 2.0 12.8 18.9 22.2

matrix structure (3.101) ensures memory locality of the data corresponding to one
time step (matrices are stored in column-major order). For the matrix multiplications,
the CUBLAS routines are used, as in the efficient NMF implementation presented in
this thesis (cf. Section 3.2.6). The element-wise operations (addition, multiplication,
application of the activation function) are realized by means of the Thrust framework
which is part of CUDA, and provides a parallel GPU implementation of routines
which are similar to C++’ Standard Template Library (STL). It is straightforward
to coerce the remaining hidden variables in the forward pass (hidden and gate unit
activations) into matrices of the same dimension as (3.101).

Input, output and forget gate activations are calculated in parallel in analogy to
the state variables. For bidirectional layers, the above matrix structure is replicated
at each layer. In the ‘reverse’ part, the recurrent parts are updated from ‘right to
left’ according to the procedure outlined in Section 3.5.4.

During network training, the backward pass for the hidden layers is realized
similarly, by splitting the matrix of weight changes into a part propagated to the
preceding layer and a recurrent part propagated to the previous time step, resulting
in a parallel implementation of the BPTT algorithm. Details of the implementation
are described by Bergmann [11].

The weight changes are summed for all sequences (batch learning) or applied
after each mini-batch. In either case, only |B| sequences have to be kept in memory
at once, allowing for learning from large data sets – a practical prerequisite for this
is a data file format supporting random access, which is fulfilled by the NetCDF
data format chosen for CURRENNT.

3.5.5.2 A word recognition benchmark

Let us illustrate the performance of parallel LSTM-DRNN training by a benchmark
of the CURRENNT software on a word recognition task in convolutive non-stationary
noise (CHiME-2013-SV task, cf. Section 2.2.1.1). There, BLSTM networks have
been shown to yield best ASR performance in a multi-stream Hidden Markov
Model (HMM) [52]. The frame-wise WER as well as the computation speedup
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in training a BLSTM-DRNN are reported with respect to the open-source C++
reference implementation by Graves [65] running in a single CPU thread on an Intel
Core2Quad PC with 4 GB of RAM. The GPU is an NVIDIA GTX 560 with 2
GB of RAM. The results are compared for different values of |B| while fixing the
other training parameters. The corresponding NetCDF, network configuration, and
training parameter files are distributed with CURRENNT. The results (Table 3.2)
show that the error rate after 50 epochs is not heavily influenced by the size of the
data fractions in hybrid batch/on-line learning, while speedups of up to 22.2 can be
achieved.

3.6 Discriminative training of source separation

It is notable that neither of the objectives considered so far for supervised training in
source separation, namely those for DNN mask prediction (3.58) and NMF dictionary
learning, match the actual objective of source separation, which is to optimally
recover one or more desired sources from a mixture signal. Introducing this kind of
discriminative objective in source separation training is one major contribution of
this thesis and has been proposed by the author and his colleagues [81, 215, 216].

Recall that the objective of NMF dictionary training (without regularization)
can be formulated as

W = arg min
W

∑
l

D(Sl |WlHl). (3.102)

In DNN training, the objective is

W = arg min
W

∑
t

D(y∗t | yt), (3.103)

where yt ∈ [0, 1]F is the estimated time-frequency mask.
Let us now consider the case of extraction of one desired source s from a mixture,

thus dropping the source index l for readability. For a time-frequency masking
approach such as NMF or regression-based separation, the optimal reconstruction
objective can be written as a generic cost function for the time-frequency mask y:

DDT(y) =
1

2

∑
f,t

(ŝf,t − sf,t)2 =
1

2

∑
f,t

(yf,tmf,t − sf,t)2 . (3.104)

Thus, it is not clear if the NMF and DNN training objectives (3.102) and (3.103)
are related to the actual objective (3.104) of source separation.

In the DNN case, optimizing (3.104) can be easily achieved by backpropagation.
Then,

∂DDT

∂yf,t
= (yf,tmf,t − sf,t)mf,t (3.105)
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is the gradient of the cost function with respect to the network outputs. The weight
updates are then simply determined by backpropagation to the output and hidden
layers, as outlined above.

For DNNs, it is also easy to derive a discriminative training algorithm for the
case of Mel-domain separation, where a mask yMel

t is computed. To this end, one
can simply substitute the Mel reconstruction (3.61) into (3.104):

DDT,Mel(y) =
1

2

∑
f,t

(ŝf,t − sf,t)2 =
1

2

∑
f,t

((∑
i

bf,iy
Mel
i,t

)
mf,t − sf,t

)2

. (3.106)

It is then straightforward to adapt backpropagation to the Mel-domain objective
(3.106). In fact, the Mel reconstruction (3.61) can be thought of as passing the
Mel-domain mask through a deterministic linear layer.

To derive a discriminative training algorithm for supervised NMF, let us start by
rewriting the Wiener-like reconstruction (3.26):

yf,t =

∑Rs

r=1 wf,rhr,t∑R
r=1 wf,rhr,t

, (3.107)

where it is assumed – without loss of generality – that the dictionary of the de-
sired source comes first in the matrix W, and Rs is the number of components of
that source’s dictionary. The crux in optimizing (3.104) with respect to the NMF
‘weights’ wf,r is that hr,t itself depends on wf,r, yet there is no closed form solu-
tion for hr,t(wf,r) – instead, hr,t is found by an optimization algorithm (supervised
NMF using multiplicative updates). Thus, directly optimizing for wf,r is a bi-level
optimization problem. However, it is easy to get around the bi-level optimization
problem by considering hKr,t – the NMF activations after executing K iterations of
the multiplicative update – instead of hr,t in the above. Then, hKr,t is a deterministic
function of wf,r and the mixture mf,t. Still, the gradient of this function is rather
cumbersome. A much easier solution is to dispense with the tying of the parameters
wf,r used in (3.107) and in the multiplicative updates. Instead, one can simply define
an independent ‘reconstruction’ matrix WK = (wKf,r) to be used in (3.107):

yf,t =

∑Rs

r=1 w
K
f,rh

K
r,t∑R

r=1 w
K
f,rh

K
r,t

. (3.108)

Inserting (3.108) into (3.104) yields the cost function to be minimized,

DDT,NMF
2 (WK) =

1

2

∑
f,t

(∑Rs

r=1w
K
f,rh

K
r,t∑R

r=1w
K
f,rh

K
r,t

mf,t − sf,t

)2

(3.109)
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Since hKr,t does not depend on wKf,r but only wf,r and mf,t, the gradient computation

is greatly simplified. Defining λf,t =
∑

r w
K
f,rh

K
r,t, λ

s
f,t =

∑Rs

r=1 w
K
f,rh

K
r,t and λsf,t =

λf,t − λsf,t, for r′ ≤ Rs,

∂DDT,NMF
2

∂wKf ′,r′
=
∑
t

(
sf ′,t −

λsf ′,t
λf ′,t

mf ′,t

)(
−
hKr′,tλf ′,t − λsf ′,thKr′,t

λ2
f ′,t

mf ′,t

)
(3.110)

=
∑
t

λsf ′,tλ
s
f ′,th

K
r′,t

λ3
f ′,t

m2
f ′,t − sf ′,t

λsf ′,th
K
r′,t

λ2
f,t

mf ′,t, (3.111)

and for r′ > Rs,

∂DDT,NMF
2

∂wKf ′,r′
=
∑
t

(
sf ′,t −

λsf ′,t
λf ′,t

mf ′,t

)
λsf ′,th

K
r′,t

λ2
f ′,t

mf ′,t (3.112)

=
∑
t

sf ′,t
λsf ′,th

K
r′,t

λ2
f ′,t

mf ′,t −
(
λsf ′,t

)2
hKr′,t

λ3
f ′,t

m2
f ′,t. (3.113)

Rewriting the gradient in matrix form and splitting into positive and negative parts
(in analogy to the derivation of the original NMF algorithm) yields the following
multiplicative update13 for the reconstruction matrix WK = [WK,sWK,s]:

WK,(q+1) = [WK,s,(q)WK,s,(q)]⊗

[
M⊗S⊗Λs

Λ2 HK,sᵀ

M2⊗Λs⊗Λs

Λ3 HK,sᵀ

M2⊗(Λs)2

Λ3 HK,sᵀ

M⊗S⊗Λs

Λ2 HK,sᵀ

]
. (3.114)

One can also derive an objective similar to (3.109), but using the KL divergence D1

instead of D2:

DDT,NMF
1 (WK) =

∑
f,t

sf,t log
sf,t

mf,t
λsf,t
λf,t

+mf,t

λsf,t
λf,t
− sf,t (3.115)

=
∑
f,t

sf,t log
sf,t

mf,t

∑
r≤Rs wf,rh

K
r,t∑

r wf,rh
K
r,t

+mf,t

∑
r≤Rs wf,rh

K
r,t∑

r wf,rh
K
r,t

− sf,t. (3.116)

For this, the partial derivatives become:

∂DDT,NMF
1

∂wKf ′,r′
=
∑
t

sf ′,t

(
hKr′,t
λf ′,t

−
hKr′,t
λsf ′,t

)
+mf ′,t

hKr′,tλf ′,t − λsf ′,thKr′,t
λ2
f ′,t

(3.117)

=
∑
t

mf ′,tλ
s
f ′,t

λ2
f ′,t

hKr′,t −
sf ′,tλ

s
f ′,t

λsf ′,tλf ′,t
hKr′,t (3.118)

13In [216], it is formulated as separate updates for WK,s and WK,s, but by the notation used
here it is emphasized that the entire WK matrix is updated simultaneously.
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for r′ ≤ Rs and

∂DDT,NMF
1

∂wKf ′,r′
=
∑
t

sf ′,t
λsf ′,t

hKr′,t −
mf ′,tλ

s
f ′,t

λ2
f ′,t

hKr′,t (3.119)

for r′ > Rs. This leads to the multiplicative update,

WK,(q+1) = [WK,s,(q)WK,s,(q)]⊗

[
S⊗Λs

Λs⊗Λ
HK,sᵀ

M⊗Λs

Λ2 HK,sᵀ

M⊗Λs

Λ2 HK,sᵀ

S
Λ

HK,sᵀ

]
. (3.120)

This multiplicative update is executed for a maximum number of training epochs Q
or until convergence. The most straightforward initialization for WK is the ‘analysis
matrix’ W.

Relation between discriminative NMF and DNN It is notable that by fixing
the number of NMF iterations and de-coupling the analysis and reconstruction matrix,
a system similar to a deep neural network which outputs a time-frequency mask is
obtained:

yDNMF
t =W

(
WK ,U

(
W,mt,U

(
· · · U

(
W,mt,h

(0)
t

))))
, (3.121)

The number of hidden layers, K − 1 corresponds to the number of NMF iterations;
the activation function W at the output layer corresponds to the computation of the
Wiener-like filter in (3.108), and U is the multiplicative update rule formulated as a
non-linear function with weights W and a deterministic (non-trainable) connection

to the input ‘layer’ containing the mixture features mt. Since h
(0)
t is initialized

deterministically in supervised NMF, it can be regarded as a bias input. The weights
up to the output layer are tied in this approach, and ‘pre-trained’ according to the
NMF dictionary learning (Section 3.2.4), which is similar to a generative model –
thus, the training process for W bears some resemblance to generative pre-training
[83]. In contrast, the weights WK are discrminatively fine-tuned. Generalizing this
concept to untied and discriminatively trained Wk for k < K was proposed by the
author and his colleagues in [81], introducing multiplicative updates for non-negative
backpropagation, but the practical advantages of this concept have not been fully
investigated yet. A related approach, yet using tied weights for all ‘layers’, and
not being restricted to non-negative weights, is known in the area of sparse coding
[68, 188].

3.7 Dynamic classification with Hidden Markov

Models

Having introduced machine learning models for frame-by-frame classification and
regression, let us now move on to the de-facto standard approach to dynamic
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classification, which is based on HMMs14. In dynamic audio classification, the goal
is to find a mapping from a sequence of acoustic features X = (x1, . . . ,xT ) to a
sequence of symbols w = (w1, . . . , wU). The crux is that there is no one-to-one
correspondence between feature frames and symbols – in contrast, every symbol can
correspond to one or more feature frames, and finding this correspondence (alignment)
is one of the major challenges. Probably the most important application of dynamic
classification in audio processing is ASR, yet other audio recognition tasks, such as
chord recognition in music [102], can be cast into the same framework.

In this section, a ‘top-down’ approach to presentation will be taken, focusing on
the structural aspects that are required for understanding the application of HMMs
to ASR in multi-source environments, as presented later on in Chapters 5 and 6.
As a consequence, mostly acoustic modeling will be discussed below. For a more
in-depth discussion, the interested reader is referred to the large body of literature
on HMM-based speech and audio recognition, e.g., [18, 100, 155, 156], and many
technical details can be found in the documentation of the Hidden Markov Model
Toolkit (HTK) [245] and the Kaldi software [152].

Typically, a Maximum-A-Posteriori (MAP) approach is used to find an optimal
w given X:

w = arg max
w′

p(w′|X). (3.122)

Using Bayes’ rule, this can be transformed to

w = arg max
w′

p(X|w′)p(w′)
p(X)

= arg max
w′

p(X|w′)p(w′), (3.123)

where the second equality comes from p(X) being a constant in the maximization.
Thus, the likelihood of the symbol sequence w′ is factored into an acoustic model
likelihood p(X|w′) and a language model likelihood p(w′).

In case of dynamic classification, the acoustic model likelihood is determined by
Hidden Markov modeling. Each symbol p is represented by an HMM with parameters
λp = (πp, fp) representing state transition and emission probability densities. The
state transition probabilities correspond to the underlying Markov model. In this
thesis, left-to-right Markov models are used with non-zero πps1,s2 = 0 only for s2 = s1

and s2 = s1 + 1. The emission probability densities model the distribution of possible
acoustic realizations of the symbol, and the state transition probabilities model
possible time-warping. From λp, it is easy to (conceptually) construct an HMM
for a symbol sequence w with parameters λw, by concatenating the symbol HMMs
using a constant transition probability between HMMs [245]. Having determined the

14There are initial studies demonstrating the feasibility of RNN-based dynamic classification
[66, 242], but at the time of this writing, it is not fully clear how these can be generalized to
large-scale recognition tasks.

69



3. Learning multi-source recognition

sequence HMM, one obtains the acoustic model likelihood,

p(x1, . . . ,xT |w) =
∑

S∈S(w)

p(x1, . . . ,xT |S) =
∑

S∈S(w)

πws0,s1

T∏
t=1

pw(xt|st)πwst,st+1
,

(3.124)
where πwst,st+1

denotes the transition probability from state st to st+1 in the HMM for
w and S = (s0, . . . , sT+1) is a state sequence starting in the starting state and ending
in the end state and S(w) is the set of possible state sequences corresponding to w.
In modern speech recognizers such as Kaldi [152], state transition probabilities are
assumed to be constant, which significantly simplifies the likelihood computations
– in practice, without compromising accuracy [152]. Since a näıve calculation of
(3.124) takes exponential time, most often dynamic programming is used for a more
efficient computation.

For the specific case of medium-to-large vocabulary ASR, there are a couple of
specific adjustments made to the general framework presented above. First, there
is an additional level of abstraction since the language model is usually defined on
words while HMMs are defined for phonemes. The mapping from word to phoneme
sequences (dictionary) can be implemented deterministically or probabilistically
(using pronunciation alternatives) – in either case, it is straightforward to construct
a sequence of phoneme HMMs from a word sequence and a dictionary. Second, to
alleviate the restriction of the Markov assumption, context is modeled on the HMM
level as well as on the emission probability level (cf. below). To model context on
the HMM level, symbols correspond to context-expanded phonemes. There, the
phonemes (‘monophones’) pi are mapped to the n-phones (pi−Q, . . . , pi, . . . , pi+Q)
where Q is the context size (Q = 1: triphones, Q = 2: quinphones). Since the
number of resulting HMMs would be exponential in Q, n-phones are clustered to
reflect acoustic similarities, and the parameters of phonetically similar HMMs are
tied. Details can be found in [245].

In the experiments described in this thesis, the language model likelihood p(w) is
determined by simple n-gram modeling, i.e.,

p(w) =
U∏
i=1

p(wi|w1, . . . , wi−1) ≈
U∏
i=1

p(wi|wi−(n−1), . . . , wi−1), (3.125)

which is similar to an n−1-th-order Markov chain. Typical values in n-gram language
modeling are n = 2 to n = 5. The probabilities p(wi|wi−(n−1)) are learnt from large
text corpora, i.e., hundreds of millions of words. In order to avoid combinatorial
explosion for larger n and enable more reliable parameter estimation, a strategy
is required for pruning rare or unseen n-grams from the language model, such as
‘back-off’ language models [101].

In typical ASR systems, the acoustic and language models are not weighted
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equally. Instead, an exponential scaling factor (language model weight15) LMW is
introduced in (3.123):

w = arg max
w′

p(X|w′)p(w′)LMW, (3.126)

Typical choices of LMW range from 5 to 20.
Instead of using the above MAP approach to speech decoding, one can also

use Minimum Bayes Risk (MBR) decoding. In MBR decoding, one looks for the
hypothesis w̃ fulfilling

w̃ = arg min
w

∑
w′

p(w′|X)DL(w,w′), (3.127)

where DL(w,w′) is the Levenshtein (edit) distance of w and w′. The intuition is that
it is ‘risky’ to choose a hypothesis that is far from other hypotheses that are also
likely given the model, and one wants to minimize that risk. It can be shown that
under assumption of model correctness, the above is equivalent to minimizing the
expected WER, while MAP corresponds to minimizing expected sentence error rate
[243]. Thus, if it is agreed upon using WER as the ASR performance measure, MBR
decoding will improve the results over standard MAP. As for MAP decoding, efficient
approximations are needed since calculating the above sum requires exponential time.
In [243], an efficient forward-backward algorithm operating on lattices is described,
which is used in the experiments described in this thesis.

3.7.1 GMM-HMM acoustic modeling

Today’s acoustic modeling approaches, as detailed below, mostly differ in the way
the emission probabilities p(xt|st) are computed within the HMM framework. For
years, acoustic modeling by GMM-HMMs has been prevalent. There, the emission
probabilities for each state are defined as weighted sums of multivariate Gaussian
densities,

p(xt|st) =
M∑
m=1

αst,mN (xt;µst,m,Σst,m), (3.128)

where αst,m ∈]0, 1[, µst,m ∈ RF and Σst,m ∈ RF×F are the mixture weights, means
and covariance matrices for state st and mixture m. To reduce the model complexity,
typically diagonal covariance matrices are used,

Σst,m = Σdiag
st,m = diag(σ2

1,st,m, . . . , σ
2
F,st,m), (3.129)

where σf is the standard deviation of the acoustic feature f , f = 1, . . . , F in the
mixture component m and the state st.

15Obviously, LMW becomes a weight when considering the log-likelihood.
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3.7.1.1 Context expansion

A typical state-of-the-art front-end for GMMs considers context expansion (‘frame
stacking’) and subsequent transformation by Linear Discriminant Analysis (LDA)
[125]. Frame stacking is used to incorporate context on the feature level, which, how-
ever, results in correlated features. Thus, LDA is used to simultaneously decorrelate
the features from consecutive frames and increase the correlation of the transformed
features with the class label, e.g., phonemes or n-phones. Note that by LDA, robust-
ness to noise and reverberation can be addressed, assuming that these distortions
occur in regular temporal patterns which can be expressed as feature dimensions not
related to phonetic information, and hence can be easily removed [192]. Functionally,
LDA maps the F ′ = F × P -dimensional sliding window of acoustic features to an
F -dimensional acoustic feature vector x

′
t by means of a linear transformation with a

matrix ALDA:
x
′

t = ALDA [xt−TL ; · · · ; xt+TR ] . (3.130)

The LDA matrix is obtained by considering a split of the covariance matrix CXX of
the input features into two summands:

CXX = Cintra
XX + Cinter

XX , (3.131)

of which the first represents the intra-class-covariances:

Cintra
XX =

C∑
i=1

p(i)Ci
XX , (3.132)

where p(i) is the prior probability of class i and Ci
XX is the covariance matrix of

the training vectors belonging to class i. In the context of ASR, the assignment of
classes to feature vectors is determined by forced alignment16. Conversely, Cinter

XX

represents the inter-class-covariances, i.e., the dispersion of the class centers µi in
the feature space,

Cinter
XX =

C∑
i=1

p(i) (µi − µ) (µi − µ)ᵀ , (3.133)

where µ = E{x}. The LDA matrix consists of the cascade of two linear transforma-
tions:

ALDA = AinterAintra, (3.134)

where
Aintra = diag(λintra1 , . . . , λintraF )−1/2

[
vintra

1 · · ·vintra
F

]ᵀ
(3.135)

and
Ainter =

[
vinter

1 · · ·vinter
F

]ᵀ
, (3.136)

16A forced alignment corresponds to maximization of p(X|S) with respect to the state sequence
S, under the constraint that S represents a given word sequence.
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where vintra
f and λintraf , f = 1, . . . , F are the eigenvectors and corresponding eigenvalues

of Cintra
XX , whereas vinter

f , f = 1, . . . , F are the eigenvectors of the transformed inter-

class covariance matrix AintraCinter
XX Aintraᵀ. It can be shown that after applying (3.130),

the covariance matrix of the transformed features fulfills

CX′X′ = I + diag
(
λinter

′

1, . . . , λ
inter

′

F

)
, (3.137)

with λinter
′

f , f = 1, . . . , F being the eigenvalues of the transformed inter-class covari-

ance matrix. Thus, the features x
′
t are decorrelated, but with a high dispersion of

the class centers along the axes of the transformed feature space.
Note that the once popular delta feature computation [48] can also be seen as a

linear transformation of a sliding window of input features similar to (3.130), yet with
a transformation matrix A∆ that is hand-crafted instead of being discriminatively
trained. In the case of delta feature computations, the output features can be
interpreted as discrete derivatives of the input feature contours. The matrix A∆ ∈
QF×F ′ can be written as

A∆ =

 −δW
F−1︷ ︸︸ ︷

0 · · · 0 −δW−1 0 · · · 0 · · · δW−1 0 · · · 0 δW 0 · · · 0
...

0 · · · 0 −δW 0 · · · 0 −δW−1 0 · · · 0 · · · δW−1 0 · · · 0 δW


(3.138)

with
δw =

w∑W
u=1 u

2
, w = 0, . . . ,W (3.139)

and W being the delta window size, i.e., effectively a sliding window of size P = 2W+1
is used. A typical choice for W is 2 [245]. In modern speech recognizers such as
Kaldi [152], LDA features are preferred.

3.7.1.2 Semi-Tied Covariance Matrices

Traditionally, diagonal covariance GMM-HMM acoustic models have been used with
acoustic features such as MFCC, delta features, and LDA features. These features
are globally uncorrelated (cf. the note on LDA above). However, this property does
not necessarily hold for the features encountered in a single HMM state. Conversely,
requiring a local decorrelating transform for each state and mixture component
would result in a chicken-and-egg problem in decoding. In order to model potential
correlations within HMM states without having to resort to full-covariance matrices,
Semi-Tied Covariance (STC) matrices have been proposed by Gales [50]. There, the
covariance matrices for state s and mixture component m are modeled as

ΣSTC
s,m = Ar(s,m)Σ

diag
s,mAᵀr(s,m), (3.140)
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where r(s,m) defines the tying of parameters, for example, across all states corre-
sponding to a certain monophone. The matrices Ar(s,m) are estimated by maximizing
the likelihood of the training data xt, t ∈ T given the GMM-HMM model parameters
with covariances ΣSTC

s,m . The estimation algorithm in Expectation-Maximization (EM)
form is described in [50].

3.7.1.3 Discriminative training

After conventional Maximum Likelihood (ML) estimation of the acoustic model pa-
rameters, often discriminative training is employed, such as by the boosted Maximum
Mutual Information (bMMI) criterion [154]. The bMMI training objective Ob for
the acoustic model parameters Q is to maximize the mutual information between
the correct transcription and the decoding lattice, given by

Ob(Q) = log
∑
u

p(Xu|Q, hw∗u)p(w∗u)
LMW∑

wu
p(Xu|Q, hwu)p(wu)LMWe−b%(wu,w∗u)

(3.141)

where the outer sum is taken over all training utterances u, Xu denotes the acoustic
features of utterance u, w∗u is the reference transcription, wu is a word hypothesis,
and hw denotes the HMM state sequence corresponding to the hypothesis w. The
set {wu} in the denominator corresponds to the lattice of word hypotheses, while p(·)
denotes the language model likelihood. %(wu, w

∗
u) denotes the phoneme accuracy of

wu with respect to the reference w∗u. Thus, the term e−b%(wu,w∗u) with a ‘boosting factor’
b > 0 emphasizes the weight of wrong hypotheses in the denominator calculation.

3.7.1.4 Adaptation

Model adaptation is a powerful method to achieve environmental robustness and to
adapt to speaker variation. Concerning practical applications, mainly unsupervised
adaptation is of interest. There, an initial transcription is obtained from the acoustic
features, which is then used to either adapt the model parameters to fit the data
(acoustic features and assumed transcription) or shifting the features to fit the
model (sequence) corresponding to the assumed transcription. In this thesis, MAP
adaptation and feature-space Maximum Likelihood Linear Regression (fMLLR) are
considered.

In MAP adaptation, typically only the means of the GMM are adapted. The
adapted mean µ̂m of mixture component17 m can be written as a weighted sum of
the mean and the ‘adaptation mean’ µa

m for m,

µ̂m =
τ

Nm + τ
µm + (1− τ

Nm + τ
)µa

m, (3.142)

17In practice, to reduce the number of parameters to be estimated, parameter tying is applied by
clustering mixture components according to acoustic similarity (Euclidean distance of the means)
[245]. To simplify notation, it will be assumed that each cluster contains exactly one mixture
component.
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where Nm =
∑T a

t=1 Lm(t) T a denotes the number of feature frames in the adaptation
data, and τ is the weight of the original model parameters with respect to the
adaptation data. Lm(t) = Pr(m, t | Q,Xa) is the occupation likelihood of component
m at time frame t, which is determined by the forward-backward algorithm [156] on
the adaptation data Xa, using the original model parameters (Gaussian PDFs) Q.
It is easy to see that for low occupancy Nm, the adapted mean will be close to the
original mean. Using Lm(t), the adaptation mean is defined as

µa
m =

∑
t Lm(t)xa

t∑
t Lm(t)

. (3.143)

In MLLR, both means and covariances of the GMMs are linearly transformed. For
MLLR, the generic objective function O to be maximized reads:

O(Q̂) = −
M∑
m=1

T a∑
t=1

Lm(t)
[
log
∣∣∣Σ̂m

∣∣∣+ (xt − µ̂m)ᵀΣ̂−1
m (xt − µ̂m)

]
(3.144)

with adapted model parameters (Gaussian PDFs) Q̂. For constrained maximum
likelihood linear regression (CMLLR), which will be the adaptation method of choice
for several applications in this thesis, the adapted means and variances are obtained
by linear transformation with the same matrix A−1

m ,

µ̂m = A−1
m µm + bm, Σ̂m = A−1

m ΣmA−1
m
ᵀ
, (3.145)

where bm is a bias vector. Substituting this into (3.144) yields the objective function
to maximize. It can be shown that the above is equivalent to linearly transforming
the acoustic features by

x̂t = [−Ambm Am] [xt; 1] . (3.146)

For this reason, CMLLR is often referred to as feature-space MLLR (fMLLR).
For many practical ASR tasks, it is desirable to adapt with little data – if

possible, single utterances. A popular method to cope with little adaptation data is
basis fMLLR, which performs well even on very small amounts of adaptation data
according to Povey and Yao [151]. In this approach, the acoustic features X of a
speech utterance are transformed by a matrix A

X 7→ A[X; 1] (3.147)

which itself is a linear combination of basis matrices:

A = A0 +
B∑
i=1

βiBi. (3.148)
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The matrices Bi are estimated by Princial Component Analysis (PCA) on statistics
derived from the fMLLR matrices obtained on the training utterances. At test time,
the number J of basis matrices is varied depending on the utterance length. To this
end, the top J eigenvectors bi (representing row-stacked matrices Bi) are used as
basis. It is shown in [151] that for any J ≤ F (F + 1) this is equivalent to Maximum
Likelihood estimation under reasonable assumptions. J is chosen proportial to the
amount of frames in the utterance to be decoded, i.e., J = min{γT, F (F + 1)}, 0 <
γ � 1 where F is the acoustic feature dimension. The corresponding Maximum
Likelihood coefficients βi are estimated by Newton’s method. Thus, if γT is small
compared to F (F + 1), the amount of adaptation parameters to be estimated is
greatly reduced compared to conventional fMLLR (which requires an F × (F + 1)
matrix to be estimated). This enables robust adaptation on single utterances as
short as three seconds [151].

3.7.2 Connectionist methods

Connectionist methods for acoustic modeling integrate DNNs into the HMM or
GMM-HMM ASR framework. They are increasingly becoming industry standard
[27, 29, 163] for the simple fact that they allow for exploiting the non-linear modeling
power of DNNs while largely preserving existing speech decoders.

3.7.2.1 Tandem GMM-HMM

In tandem ASR systems, the activations of neural networks trained on phoneme
or phoneme state targets are used as features, alternatively to (or in combination
with) standard MFCC features. A forced alignment (cf. above) yields the most likely
HMM state sequence S∗u for each training utterance u. From this, a sequence of
training targets is generated which corresponds to HMM states, (s∗1, . . . , s

∗
T ), or other

labels derived from the states, such as phonemes, (P (s∗1), . . . , P (s∗T )), where P is
the mapping from HMM states to (n-)phones. These training targets are used in
cross-entropy training of a DNN (cf. (3.43)). Once the DNN is trained, the label log
likelihoods, log y(xt) are computed per frame. These are then concatenated with the
acoustic features to form a tandem feature vector, and PCA is used for decorrelation,
yielding the acoustic features

ut = APCA [xt; log y(xt)] . (3.149)

In the bottleneck approach [69, 70], the activations from a (usually narrow) hidden
layer are used instead of the output activations,

bt = APCA[hK−Bt ; xt] (3.150)

where
hK−Bt = HK−1

(
WK−B . . .H1

(
W1[xt; 1]

))
(3.151)
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xt ot

t-1

t+1

PCA

forward
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backward
layer

Figure 3.7: Architecture of the Bottleneck-BLSTM front-end [223]. ot: Output layer
activations.

is the hidden layer activation of the bottleneck layer (B − 1-th last layer) and APCA

is determined by PCA on a training set. The HMM emission probability is then
simply p(bt|st) respectively p(ut|st) in analogy to (3.128).

For tandem feature generation, various DNN architectures can be used. The
author’s colleague introduced bottleneck feature generation by bidirectional LSTM-
DRNN, which was shown to lead to lower error rates than standard DNN features in
spontaneous speech recognition [235]. In particular, using LSTM-DRNN captures
co-articulation effects in human speech (for more details, see [63]). In the context of
this thesis, the noise robustness of the bottleneck LSTM-DRNN approach will be
assessed in Section 5.1.2.

Figure 3.7 exemplifies the bottleneck feature extraction procedure using a BLSTM-
DRNN. In bidirectional processing, there are two bottleneck layers: one within
the network processing the speech sequence in forward direction and one within
the network for backward processing. In Figure 3.7, the connections between the
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bottleneck layers and the output layer are depicted in grey, indicating that the
activations of the output layer (ot = y(xt)) are only used during network training
and not during Bottleneck-BLSTM feature extraction.

3.7.2.2 Hybrid DNN-HMM

In the hybrid approach [82], a DNN is trained in the same way as for the Tandem
approach. However, instead of using the output activations as features in a GMM,
they are used to calculate the HMM emission probabilities directly. Note that the
output activations y(xt) of a DNN with a softmax output layer, trained on HMM
state targets s∗t , can be interpreted probabilistically as

p(st|xt) =
exp

(∑
iw

K
st,ih

K−1
i,t

)∑
s′ exp

(∑
iw

K
s′,ih

K−1
i,t

) (3.152)

where WK = (wKs,i) is the output layer matrix of the DNN and hK−1
t is the K − 1-th

hidden layer activation of the DNN in analogy to (3.150) . To convert this to HMM
emission probabilities, Bayes’ rule is used:

p(xt|st) =
p(st|xt)p(xt)

p(st)
(3.153)

Since xt is fixed in the maximization (3.123), p(xt) can be assumed as an arbitrary
constant, whereas p(st) is determined from a forced alignment of the training data.

3.7.2.3 Multi-stream HMM

In the multi-stream HMM approach, a D(R)NN with a softmax output layer is
trained on a frame-wise phoneme classification task. Thus, the output activations yt
of the DNN correspond to pseudo posteriors ỹt ∈ [0, 1]P where P is the number of
phonemes. From this, a frame-wise phoneme prediction bt ∈ {1, . . . , P} is derived as

bt = arg max
i

ỹt,i. (3.154)

The phoneme prediction is decoded along with the acoustic feature vector (e.g.,
MFCCs) in a multi-stream HMM. The joint probability of observing an acoustic
feature vector xt and a DNN phoneme prediction bt in the HMM state st is obtained
as

p(xt, bt|st) = p(xt|st)νp(bt|st)2−ν (3.155)

where ν ∈]0, 2[ is a stream weight. The emission probabilities p(xt|st) are modeled by
conventional GMMs whereas the probabilities p(bt|st) are determined from the row-
normalized state-phoneme confusion matrix on a held out part of the training data.
The multi-stream approach allows for probabilistic modeling of possible phoneme
confusions, i.e., uncertainties in the DNN predictions [238].
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4

Speech enhancement

The articulate voice is more distracting than mere noise. – Seneca

In this chapter, the application of machine learning techniques to the problem of
speech enhancement, i.e., extracting a speech source from a mixture of speech and
generally non-stationary noise, will be discussed. These techniques rely on spectral
properties of the speech and the noise that are learnt from training data, as opposed
to ‘blind’ de-noising schemes such as minimum statistics spectral subtraction [124],
which rely on global assumptions such as stationarity of the noise, which are not
always met in practice.

In the first section, semi-supervised online learning of noise models will be
discussed, which can be used to cope with highly variable ‘noise’ such as background
music, as was shown in a study by the author and his colleagues [220]. Then,
supervised discriminative training of NMF and DNN speech enhancement models
will be evaluated in a large-scale benchmark, in order to demonstrate the efficacy of
formulating speech enhancement as a regression task, as was done by the author and
his colleagues in [215].

4.1 Speech / music separation by NMF

Separation of speech overlaid with music in monaural signals remains a challenging
problem, especially due to the large similarity between voiced (harmonic instruments,
vowels) and unvoiced (drums, consonants) parts. In turn, robust suppression of back-
ground music can be immediately exploited in a variety of applications, comprising
speech enhancement for in-car human-machine interfaces or mobile telephony in
highly noisy environments such as discotheques, speech recognition for multimedia
information retrieval in TV series or on-line videos, or even lyrics transcription of
rap/hip-hop music.

First promising results for monaural background music suppression have been
obtained by Ozerov et al. [142], indicating that NMF is a promising approach to
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4. Speech enhancement

ensure intelligibility of the extracted speech signal. A more comprehensive evaluation
has been carried out by Raj et al. [157], using an exemplar-based approach based
on supervised NMF (cf. Section 3.2.4), i.e., predefining a large set of speech and
music spectra extracted from training data. Still, from these results it is not clear
whether information about the music signal as in fully supervised NMF is required
for optimal separation.

Hence, in this section, semi-supervised NMF (cf. Section 3.2.5) is considered,
where only speech dictionaries are pre-defined, whereas the music dictionaries are
not characterized a priori, in order to cope with variability of the music over time, as
in [142]. The semi-supervised method is compared against an ‘upper bound’ for the
performance of (supervised) NMF where music dictionaries are estimated from parts
of the ground truth music, and the influence of sparsity constraints is evaluated.
Unlike in [142], sparsity constraints are enforced on the NMF activations – similar
to the algorithm proposed by Virtanen [205] – to improve discrimination of speech
and music spectra, and this algorithm is extended to dictionaries with sparse spectra
in order to model harmonicity of music. Furthermore, a rather small set of speech
dictionary atoms is used for initialization that are learnt from training data by NMF.
This is done to vastly decrease computational effort compared to exemplar-based
approaches such as [157]. A speaker-dependent scenario with 168 speakers from the
TIMIT database is chosen for evaluation, and different music styles are investigated.

4.1.1 Experiments

The experiments rely on semi-supervised and supervised NMF as introduced in
Sections 3.2.3 and 3.2.5, where the sources correspond to speech (l = 1) and music
(l = 2). For clarity, the superscripts (s) and (m) will be used instead of 1 and 2. The
cost function of sparse semi-supervised NMF (3.34) is slightly modified as follows:

D(W(m),H) = Dr(W
(m),H)

+ λDH
s (H(m)) + µDW

s (W(m)) (4.1)

where Dr corresponds to the reconstruction error as D1(M | WH) (generalized
Kullback-Leibler divergence) and

DH
s (H(m)) =

R(m)∑
r=1

1

σ(H
(m)
r,: )

T∑
t=1

H
(m)
r,t , (4.2)

DW
s (W(m)) =

R(m)∑
r=1

1

σ(W
(m)
:,r )

F∑
f=1

W
(m)
f,r (4.3)

are sparsity constraints with weights λ and µ ≥ 0. σ(W
(m)
:,r ) and σ(H

(m)
r,: ) are standard

deviation estimates for the r-th column of W(m) and the r-th row of H(m), that are
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4.1. Speech / music separation by NMF

introduced to avoid dependency on the scaling of the matrices, following [205]. This
kind of sparsity constraint provides similar performance to L1-norm constraints [97].

Informally, Ds is a sparsity constraint that is only enforced on the music part:
The purpose of imposing sparsity on H(m) is to mitigate the fact that the algorithm
can ‘mis-use’ the bases designated to isolate the music for modeling the speech parts;
additionally, sparsity on W(m) is imposed to increase the discrimination between
speech and music, as the latter is arguably characterized by higher harmonicity com-
pared to speech. For low-dimensional speech dictionaries as used in the experiments
below, there is no apparent reason to impose sparsity on the speech activations
during learning or separation.

The cost function (4.1) is minized by applying component-wise multiplicative
updates to W(m), H(s) and H(m) based on the algorithm proposed in [205]. It is
straightforward to extend the algorithm to the semi-supervised case, including the
sparsity constraint for the spectra W(m) which was not considered in [205], yielding
the following update rule for W(m):

W(m) ←W(m) ⊗ ∇D
−(W(m),H)

∇D+(W(m),H)
, (4.4)

where ∇+ and ∇− indicate the positive and negative parts of the gradient, which, in
turn, are composed of ∇D+

r (W(m)) and ∇D−r (W(m)) (cf. (3.23)) and

[∇DW+

s (W(m))]f,r =

√
F√∑F

f=1 w
(m)2
f,r

, (4.5)

[∇DW−

s (W(m))]f,r = w
(m)
f,r

√
F
∑F

f=1w
(m)
f,r(∑F

f=1w
(m)2
f,r

)3/2
. (4.6)

The update rules are applied for K = 100 iterations starting from a (Gaussian)

random solution. Finally, the estimated clean speech spectrogram Ŝ(s) is obtained by
Wiener-like filtering (3.26). Since the asymptotic complexity of the NMF multiplica-
tive update is polynomial (O(RFT )), and linear in each of R, F and T , it is desirable
to keep the number of components R as low as possible at a reasonable separation
quality for performance critical applications. All experiments for this paper are
based on the NMF implementations found in the open-source toolkit openBliSSART
co-authored by the author of this thesis [212, 217].

The aim of the following experiments is to evaluate the extraction of the speech
from mixed speech and music audio signals, as well as to determine the influence of
sparsity weights, Discrete Fourier Transform (DFT) window size and music style.
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Figure 4.1: Average signal-to-distortion ratio (SDR) on TIMIT test set (1 680
sentences overlaid with waltzes from BRD database) by sparse semi-supervised NMF
(dashed-dotted lines) for SMRs of -2.5 and 0 dB. Variation of the sparsity weights λ
for µ = 0 (a), and of µ for λ = 0 (b). Continuous lines: semi-supervised NMF with
λ = µ = 0, i. e., no sparsity constraints. DFT window size 128 ms.

4.1.1.1 Evaluation Data Set

The evaluation set is formed by 1 680 audio signals (sentences) spoken by 168 different
subjects (56 females and 112 males) from the TIMIT database test set, i. e., there are
10 sentences of typically 2–3 seconds length for each speaker. The TIMIT database
[47] is chosen for its rich phonetic content. Each of the TIMIT test sentences is
artificially mixed with a random segment of music of the same length at various
speech-to-music ratios (SMRs) from -7.5 dB to +5 dB in intervals of 2.5 dB. These
SMRs correspond to typical application scenarios as indicated above. To demonstrate
the performance on a variety of music styles, the experiment was first carried out
with the 136 Viennese Waltzes from the Ballroom Dance (BRD) Database [169] as
an example for classical music, then it was repeated with 136 pieces of each of the
latin and rock genres. Note that these frequently contain segments with sung vocals,
which makes separation of speech particularly challenging.

4.1.1.2 Protocol

Evaluation is carried out in a speaker-dependent cross-validation, i. e., for each
TIMIT test sentence all other sentences of the same speaker are concatenated, and
their spectrogram is reduced to a NMF speech dictionary W(s). As this results in
aproximately 20–30 seconds training material for separation of each test instance, this
methodology resembles a practicable way of speaker adaptation. For supervised NMF,
music dictionaries W(m) are computed from a disjoint random section of 25 seconds
of the same music track used for mixing the test file – this yields an upper benchmark
on the performance of supervised NMF assuming the exact characteristics of the
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4.1. Speech / music separation by NMF

music are known during separation. The number of music and speech components
in NMF, R(m) and R(s), were set to 10 and 20. 20 speech components have been
found to represent a good compromise between separation quality and computational
complexity [185], and the ratio 2/1 for the speech and music dictionaries was chosen
empirically in preliminary experiments. The experiment was repeated for different
Hann window sizes from 8 ms to 512 ms whereas the overlap between consecutive
DFT frames in the time domain remained fixed at 75 %.

To assess the characteristics of semi-supervised and supervised speech and music
separation in detail, SDR (2.10), SIR (2.11) and SAR (2.12) of the extracted speech
source are measured. Measurements were carried out using the open-source BSS Eval
toolkit [200].

4.1.2 Results

Figure 4.1 shows the performance in terms of SDR for semi-supervised NMF when
varying the sparsity weight λ for the music activations H(m) while keeping the
sparsity weight µ for the music spectra W(m) constant at zero (4.1a), and vice versa
(4.1b). In both evaluation scenarios, sparsity constraints slightly – yet consistently
– increase performance by over 0.1 dB absolute at all SMRs. Across SMRs, best
results are obtained at µ = 10−5. Evidently, this choice of sparsity weight is highly
‘non-aggressive’ – larger values of µ would probably force a reduction of the W(m)

to single harmonics which is not desirable in the case of complex music. Additional
experiments showed that using both λ, µ > 0 could not further improve the results.

Next, Figures 4.2a and 4.2b show the results in terms of SDR (indicated by
squares), SIR (triangles) and SAR (asterisks) for both supervised and (non-sparse)
semi-supervised NMF at SMRs of -5 dB and 0 dB, for varying window sizes (8, 16,
32, 64, 128, 256 and 512 ms), corresponding to DFT sizes of 128–8192 points. For
both supervised and semi-supervised NMF, the best suppression (SIR) is achieved at
a window size of 128 ms while small window sizes (< 32 ms) do not enable robust
suppression in general. For a SMR of -5 dB, the semi-supervised method improves
SIR by more than 4 dB compared to the supervised case, boosting the average SIR
to almost 10 dB. At 0 dB SMR the improvement by semi-supervised NMF is smaller
but still clearly visible, achieving over 12 dB average SIR. In terms of overall quality
(SDR), at -5 dB semi-supervised NMF delivers equal or higher SDR for up to 128 ms
window size; at 0 dB, larger window sizes (> 64 ms) decrease the SAR – and hence
the SDR – of the separated speech for semi-supervised NMF. It can be concluded
that semi-supervised NMF seems to be prone to lose some speech information at
higher SMRs. Since this effect does not occur for supervised NMF, it can be argued
that larger window sizes help to create a more precise model of the true music in
supervised NMF.

The rather slight effect of imposing sparsity constraints on the music dictionaries
deserves some further investigation. Figures 4.3a through 4.3c show how the music
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Figure 4.2: Average separation performance on TIMIT test set (1 680 sentences)
overlaid with waltzes from the BRD database. Effect of DFT window size on non-
sparse semi-supervised NMF separation (dashed lines) compared to supervised NMF
(continuous lines).

genre affects the separation for three different styles: classical (waltz), latin and rock.
The experiments are done using a DFT window size equal to 128 ms with sparse
(µ = 10−5, λ = 0) and non-sparse (µ = λ = 0) semi-supervised as well as supervised
NMF. The results reveal that the improvement by using sparse instead of non-sparse
semi-supervised NMF – i. e., enforcing harmonicity in the music spectra – is mostly
visible for waltz music with its arguably high degree of harmonicity, while for rock
music no gains can be observed.
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Figure 4.3: Separation of TIMIT test set (1 680 sentences): Average SDR results for
speech overlaid by different music styles, for sparse semi-supervised (µ = 10−5, λ = 0),
semi-supervised (µ = λ = 0) and supervised NMF. DFT window size 128 ms.

Corroborating the results obtained for speech recognition accuracy in [157] on
the acoustic level, all methods exhibit highest performance for waltz music while
results consistently downgrade for the other styles: On average a loss of almost 2 dB
SDR is observed for rock compared to waltz music, which can be attributed to the
spectral overlap with ‘noisy’ instruments such as drums and distorted guitars, since
rock music also decreases the SDR obtained by supervised NMF.

4.1.3 Conclusions

In this section, a large-scale study on performance of semi-supervised and supervised
NMF algorithms for compensation of background music in speech has demonstrated
the effectiveness of semi-supervised NMF particularly in highly noisy environments.
Comparing the semi-supervised method to an upper benchmark for supervised NMF
assuming the characteristics of the music are known, it is notable that in highly
‘noisy’ conditions, the semi-supervised method suppresses the music to a larger extent
than the supervised benchmark, in terms of SIR; however, at higher speech-to-music
ratios a decrease in overall quality (SDR) has to be accepted. This can be attributed
to the relative simple modeling of speech by predefined spectral vectors, which can
cause information loss in the reconstructed speech signal since subtleties of speech not
modeled by the predefined dictionary are captured by the iteratively updated vectors
designated to contain the background music. By enforcing sparsity constraints on
the spectra and on the activations, the performance of semi-supervised NMF could
be improved slightly, but the gain strongly depends on the genre and according
complexity of the music signal. Overall, the performance of semi-supervised NMF
seems to depend strongly on ‘parameter tuning’, such as the DFT window size. This
finding has been corroborated by the author in subsequent studies (cf. [223, 224],
Section 5.1.2).
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Future work on speech/music separation could focus on integration of automatic
genre recognition on the separated music signal in a two-stage separation algorithm:
This enables the usage of optimal NMF parameterizations for different genres.
Furthermore, the relatively simple speech models and factorization constraints in
this study should be extended by explicit models of temporal dependencies, such as
in [132, 134].

4.2 Synopsis: Supervised training for

speech enhancement

Having compared supervised and semi-supervised NMF, in this section, a comparative
evaluation of supervised training methods and discriminative training for real-time
speech enhancement will be provided, as was presented by the author and his
colleagues in [215]. The methods investigated will comprise machine learning based
methods allowing real-time separation. These include supervised NMF1 and deep
(non-recurrent as well as recurrent) neural networks. Furthermore, the influence
of discriminative training as introduced in Section 3.6 on these methods will be
evaluated in a fair comparison. As such, this section provides a synopsis on the
performance of the machine learning methods introduced in this thesis in the speech
enhancement task. Non-stationary noise will be considered which not only comprises
music as in the previous section, but also interfering speakers and domestic noise, as
featured in the CHiME-2013 corpus (cf. Section 2.2.1.1).

4.2.1 Experiments

As input features for speech enhancement, spectral features are extracted according
to Section 3.1, with various magnitude warping exponents α, using the square root
of the Hann window, a window size of W = 400 points (25 ms) and a frame shift of
160 points (∆τ = 10 ms). Optionally, Mel spectra are calculated.

Supervised NMF is implemented according to Section 3.2.2, i.e., using sparse
regularization. As shown in [216], sparse NMF outperforms exemplar-based NMF
by a large margin on the CHiME-2013 corpus. A larger dictionary than in the
previous section is required since by the CHiME-2013 setup, the evaluation has
to be speaker-independent. The SNMF hyper-parameters are set as α = 1 (using
magnitude spectra), TL = 8 (frame stacking with 8 frames of left context), TR = 0
(no right context, in order to allow for real-time operation), K = 25 (number of
iterations), R(s) = 1 000, R = 2 000 (number of speech dictionary atoms and total

1Note that semi-supervised NMF does also allow for real-time separation, yet with additional
overhead [96], and is more susceptible to parameter tuning than supervised NMF (cf. the previous
section as well as [96, 224]) – hence, it will not be considered in this section.
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Table 4.1: Average SDR for various topologies (# of hidden layers × # of hidden
units per layer) of DNN and LSTM-DRNN on the CHiME-2013 development set.

SDR [dB] Input SNR [dB]
-6 -3 0 3 6 9 Avg.

Noisy -3.73 -1.05 1.18 2.86 4.53 6.19 1.66
DNN 1×1024 4.48 6.90 8.96 10.38 12.11 13.95 9.46
DNN 2×1024 4.76 7.17 9.15 10.62 12.38 14.27 9.72
DNN 3×1024 5.77 8.00 9.92 11.24 12.99 14.84 10.46
DNN 4×1024 5.70 7.92 9.91 11.26 13.02 14.83 10.44
DNN 2×1536 4.61 7.06 9.13 10.60 12.39 14.28 9.68
LSTM-DRNN 1×256 7.30 9.31 11.14 12.38 14.15 15.93 11.70
LSTM-DRNN 2×256 7.94 9.89 11.68 12.92 14.60 16.35 12.23
LSTM-DRNN 3×256 7.64 9.69 11.52 12.70 14.46 16.18 12.03
Oracle (IRM) 13.91 15.26 16.52 17.38 18.91 20.49 17.08

dictionary size) and µ = 5 (sparsity weight), based on limited parameter tuning on
the CHiME-2013 development set [216].

Likewise, for feedforward DNNs TL = 8 and TR = 0 are used, whereas the
parameter α, as well as the DNN and DRNN topologies (number of hidden layers
and units per layer) are validated on the CHiME-2013 development set (cf. below).

In neural network training, the weight matrices are estimated by supervised train-
ing according to (3.103) (mask approximation objective) and (3.104) (discriminative
objective). The time-frequency masks y∗t and source spectra st used as training
targets are derived from the parallel noise-free and multi-condition training sets of
the CHiME-2013 data (cf. Section 2.2.1.1). Accordingly, discriminative NMF training
is performed following the algorithm from Section 3.6, using the least-squares (D2)
objective (3.109) in analogy to the DNN training, yet ‘down-sampling’ the data by a
factor of ten to cope with memory requirements. The sparse (non-discriminative)
NMF baseline is implemented by training speech and noise dictionaries according to
the objective (3.27), using the same data (sub-)set as for discriminative NMF.

In D(R)NN training, inputs are logarithmized to compress the dynamic range,
which is considered useful in speech processing. Furthermore, the input features are
globally mean and variance normalized on the training set, this kind of normalization
allowing for on-line processing at run time. The D(R)NN hidden layer(s) have hyper-
bolic tangent activation functions, while the output layer has a sigmoid activation
function, such that each output activation is forced to the range [0, 1]. All weights
are randomly initialized with Gaussian random numbers (µ = 0, σ = 0.1). For DNN
training, ‘discriminative’ pre-training is used [246], i.e., building the DNN layer by
layer by backpropagation (as opposed to generative pre-training).

The DNNs and DRNNs are trained through stochastic gradient descent with
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Figure 4.4: SDR on the CHiME-2013 development set with oracle masking (ideal
ratio mask, IRM) as well as LSTM-DRNN based mask estimation for various spectral
warping exponents α used in computation of DFT and Mel spectra (B = 40, B = 100).

an initial learning rate of 10−5 and a momentum of 0.9. Weights are updated after
mini-batches of |B| = 25 feature sequences. Since in DRNN training, there is no
parallelism across time steps that can be exploited for GPU training (cf. Section
3.5.5), to increase the efficiency of DRNN training, the utterances are ‘chopped’ into
sequences of at most T = 100 timesteps (but not shorter than T = 50).

Two common strategies are used to minimize over-optimization on the training set.
First, Gaussian noise (µ = 0, σ = 0.1) is added to the inputs in the training phase.
Second, an early stopping strategy is used where the objective function is evaluated
on the development set after each training epoch and the best network is selected
accordingly. Training is stopped as soon as no improvement on the development set
is observed for ten training epochs, or after 100 epochs have elapsed in total.

The open-source DNN and LSTM-DRNN training software CURRENNT co-
authored by the author of this thesis (cf. Section 3.5.5) has been used for the
experiments to enable reproducibility, in conjunction with the publicly available
evaluation database.
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4.2.2 Results

4.2.2.1 Neural network topologies

Table 4.1 shows the source separation performance using various network architectures
and dimensions. Best DNN results are obtained with 3 layers and 1024 units per
layer (10.46 dB SDR), whereas for 4 layers the performance saturates. 1.0 dB SDR is
gained by increasing the depth from 1 to 3 layers, whereas increasing the breadth
of the network to 1536 units does not seem to help. LSTM-DRNN can achieve up
to 12.23 dB SDR with a much smaller model size (3×1024 DNN: 4.1 M trainable
parameters, 2×256 LSTM-DRNN: 1.0 M), indicating a clear benefit of explicitly
modeling temporal dependencies. Interestingly, the benefit of adding depth to LSTM-
DRNN (besides their inherent depth in time) seems to be comparatively minor for
the de-noising task, leading to competitive results even with a single layer (11.70 dB).

4.2.2.2 Influence of feature representation

Having ‘tuned’ the network topology, different feature representations are evaluated:
DFT vs. Mel spectra, and the choice of the spectral warping exponent α. Figure 4.4
first shows the influence of α on the oracle masking performance as well as the
results obtained with supervised training of mask estimation with LSTM-DRNNs.
As is expected, in the oracle case the full-resolution mask delivers the best SDR.
Regarding compression, α = 1 (magnitude spectrum) works best. Conversely, when
the estimated mask is used, best results are obtained with Mel masks (B = 100), and
the full-resolution mask works only slightly better than the low-resolution (B = 40)
Mel mask. Since for B = 100, the lower Mel bins correspond to single DFT bins while
the higher Mel bins comprise multiple DFT bins, this indicates difficulties in precisely
estimating the mask for the higher frequencies, which could be due to insufficient
training data. Furthermore, while ‘auditory’ spectra (α = 2/3) deliver clearly the
worst performance in oracle masking, they are on par with magnitude spectra in
case of mask estimation. Apparently, using compression with α = 2/3 eases the
optimization of the cost function enough to compensate for the lower attainable
performance in oracle masking. Overall, the performance differences stemming from
the feature representation are astonishing. In the DFT power spectrum domain,
11.39 dB average SDR are obtained, compared to 12.81 dB in the Mel magnitude
domain with B = 100.

4.2.2.3 Discriminative training

Figure 4.5 shows the impact of using discriminative objective functions for α = 1.
Interestingly, when training LSTM-DRNNs using the the discriminative objective
EDT (3.104), (3.106) (‘DT’ in Figure 4.5), worse performance is obtained than with
the standard mask approximation objective EMA (3.58) (‘MA’ in Figure 4.5). In
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Figure 4.5: SDR on the CHiME-2013 development set with LSTM-DRNN time-
frequency masking, trained with the mask approximation (MA) and discriminative
training (DT) objectives, and discriminative retraining of LSTM-DRNNs trained
with MA (MA+DT). Mel (B = 100) and DFT magnitudes (α = 1).

Table 4.2: Source separation performance for selected systems on CHiME-2013 test
set (α = 1). Mel: B = 100.

SDR [dB] Mel DT Input SNR [dB]
-6 -3 0 3 6 9 Avg.

Noisy -2.27 -0.58 1.66 3.40 5.20 6.60 2.34
NMF [216] – – 5.48 7.53 9.19 10.88 12.89 14.61 10.10
NMF [216] –

√
6.61 8.40 9.97 11.47 13.51 15.17 10.86

DNN – – 6.89 8.82 10.53 12.25 14.13 15.98 11.43
DNN –

√
7.89 9.64 11.25 12.84 14.74 16.61 12.16

DNN
√ √

8.36 10.00 11.65 13.17 15.02 16.83 12.50
LSTM-DRNN

√ √
10.14 11.60 13.15 14.48 16.19 17.90 13.91

Oracle (IRM) – – 14.53 15.64 16.95 18.09 19.65 21.24 17.68

this case, convergence of the cost function was found to be sub-optimal. However,
when starting from the solution obtained by training with EMA until convergence,
the results are significantly improved over MA (‘MA + DT’ in Figure 4.5). Yet, the
results in the DFT domain using MA + DT are still below the results with Mel
domain MA. Furthermore, if MA + DT is applied in the Mel domain, best results
can be obtained (13.09 dB average SDR on the CHiME-2013 development set).

4.2.2.4 CHiME-2013 test set evaluation

The evaluation is concluded with a comparison of selected speech enhancement
systems on the CHiME-2013 test set, cf. Table 4.2. The topologies for DNN and
LSTM-RNNs as tuned on the development set are used (2×256 LSTM-DRNN and
3×1024 DNN, cf. Table 4.1). Comparing the results obtained with full-resolution
magnitude spectra, it is observed that the DNN significantly outperforms NMF
(according to a t-test comparing SDR measurements at the various input SNRs).
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4.2. Synopsis: Supervised training for speech enhancement

Note that without discriminative training, the comparison is not entirely fair, since
NMF does not use parallel training data in this case. Discriminative training leads to
a similar performance improvement for both. As on the development data, switching
to the Mel magnitude domain (B = 100) further improves the results for the DNN.
The gains by using the LSTM-DRNN network architecture are complementary, and
1.4 dB performance improvement are achieved with the LSTM-DRNN over a strong
DNN baseline using Mel magnitudes and discriminative training, leading to the best
result of 13.91 dB average SDR. While this corresponds to 11.6 dB gain over the noisy
baseline, there is still a large gap to the performance attainable by oracle masking
(17.68 dB).

4.2.3 Conclusions

By a comparative evaluation on the CHiME-2013 test set, it could be shown that
regression-based approaches to speech source separation are effective, and that the
discriminative training criterion based on optimal speech reconstruction in the DFT
domain, as introduced in Section 3.6, can improve the performance of model-based
approaches (here, NMF) as well as training-based approaches (here, D(R)NN) to
speech enhancement. The overall best performance in real-time speech enhancement
on the CHiME-2013 database was achieved by DRNNs operating in a reduced feature
space (Mel domain). It is interesting that DRNNs outperform DNNs by a large
margin in the present study, whereas this was not the case in earlier work by Huang
et al. [87]; this can be attributed to avoiding the vanishing temporal gradient in
conventional DRNN training – as used by Huang et al. [87] – by the LSTM principle.
Furthermore, it is notable that the choice of feature representation has such a strong
effect on the results, but this is in accordance with earlier studies showing that
DNN acoustic models cannot compensate even for simple rotations of the input
features [131]. Thus, in future work it will be investigated if the advantage of the
Mel-domain feature reduction vanishes with more training data, which could allow
for learning larger models supporting the separation of harmonics in the higher
frequencies. Another goal will be to transfer the concepts of recurrent models to
(discriminative) NMF.
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5

Noise-robust front-ends for
automatic speech recognition

It is not the voice that commands the story; it is the ear. – Italo Calvino

Having introduced the application of NMF and DNNs to speech separation, where
the goal was to obtain noise-free time-domain signals, for example in human-human
communication as by mobile telephony, the focus will now be laid on improving
the results of automatic speech recognition, i.e., human-machine communication, by
using NMF and DNN front-ends. The combination with DNN back-ends (acoustic
models) will be addressed in Chapter 6.

5.1 Speech separation for robust ASR

5.1.1 Case study: The 1st CHiME Challenge

This section describes the main findings of the author and his colleagues obtained
on the data of the first CHiME Challenge (CHiME-2011, cf. Section 2.2.1.1), as
laid out in more detail in [211, 222, 242]. The key idea is to use NMF not only
for speech enhancement, but also directly for noise-robust speech recognition, as is
described below. The NMF recognition approach is based on the ideas simultaneously
discovered by Gemmeke and Virtanen [55] as well as the author and his colleagues
[172]. Building on these foundations, a system is proposed that combines NMF-based
speech enhancement and speech recognition methods, treating them as separate
systems despite their overlap in methodology. The research objectives on the CHiME-
2011 Challenge data in this section are to investigate the benefits of (a) combining
these NMF methods, and (b) of adding these components to a strong ASR baseline
using a multi-stream BLSTM-DRNN acoustic model, multi-condition training, and
model adaptation.
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5. Noise-robust front-ends for automatic speech recognition

5.1.1.1 Word prediction by sparse NMF

Supervised sparse NMF as introduced in Section 3.2.3 can be exploited directly for
multi-source recognition. This is done by assigning labels to each dictionary atom
r for a source l of interest (typically speech). The labels can correspond to, e.g.,
phoneme or word identities, or corresponding HMM states. In case of exemplar-based
NMF (3.33), these can be determined by forced alignment, since each dictionary
atom wl

r corresponds to a short-term spectrum from the training set, and a sequence
of spectra in case of frame stacking or NMD. Assuming L classes, Rl dictionary
atoms for the source of interest, and P short-term spectra per atom (frame stacking
or NMD), the labels can be formally defined as a L × Rl matrix Yl = (ylc,r) with
class occupancy probabilities

ylc,r = Pr(c | r) =

∑τr+P−1
t=τr

δ(ct, c)

P
, (5.1)

where c and r are the indices of the class and atom, ct is the forced alignment label
at time frame t in the training data, τr is the start frame of the atom r, and δ is the
Kronecker delta.

At test time, the activation weights Hl obtained in supervised NMF on a mixture
spectrogram M are normalized column-wise, yielding a matrix H̃l = (h̃lr,t) with∑

r h̃
l
r,t = 1. Thus, for each time frame t pseudo-probabilities h̃lr,t = Pr(r |mt) are

computed. Then,
Nl = (nlc,t) = YlH̃l (5.2)

contains the class pseudo-posteriors for each time frame in the test signal, nlc,t =
Pr(c | mt). This technique is known as non-negative sparse classification (NSC)
[89]. Standalone recognition results on the CHiME-2011 database in a hybrid ASR
system using NSC (in analogy to the hybrid DNN-HMM approach outlined in Section
3.7.2.2) are given by Hurmalainen et al. [89]. The non-negative modeling of the
wanted and the interfering spectral patterns with corresponding activations provides
inherent source separation capabilities and hence allows for high robustness in speech
recognition, particularly in low SNRs [57, 89]. For each time frame t, the most likely
label nt is obtained as

nt = arg max
c

nlc,t (5.3)

In the experiments described in this section, the resulting label sequence (nt)t=1,...,T

is used as a feature stream in a multi-stream HMM decoder, in analogy to the
multi-stream DNN-HMM approach outlined in Section 3.7.2.3.

5.1.1.2 Experiments

The architecture of the proposed system using a multi-stream HMM acoustic model
with BLSTM-DRNN and NSC feature streams is shown in Figure 5.1. The triple-
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noisy speech 
signal

NMF enhancement

enhanced speech 
signal

feature extr. MFCC
Multi-stream 

HMM

BLSTM

word predictionNSCMFB

word prediction

Figure 5.1: Block diagram of the proposed system [222]: The central component is a
multi-stream HMM acoustic model fusing MFCCs with optional word predictions by
non-negative sparse classification (NSC) operating on Mel frequency bands (MFB),
and/or the BLSTM-RNN (processing MFCC features). The MFCC as well as
MFB feature extraction can optionally by performed on an enhanced speech signal,
applying convolutive NMF as pre-processing.

stream system using nt in conjunction with a BLSTM-DRNN prediction bt has the
emission probability

p(xt, bt, nt|st) = p(xt|st)µ × p(bt|st)γ × p(nt|st)ν (5.4)

in the HMM state st.
As a preprocessing step in the front-end, the multi-stream architecture uses

speech enhancement by convolutive NMF (cf. Section 3.5.1) as in [211]. Convolutive
NMF dictionaries are estimated in advance for both speech and noise, resulting in a
supervised NMF scheme as in [211]. For each of the 51 words w = 1, . . . , 51 and each
of the 34 speakers i = 1, . . . , 34 in the CHiME-2011 training data, the corresponding
segments of the noise-free CHiME-2011 training utterances are extracted according
to an HMM forced alignment and concatenated into a single spectrogram which is
reduced to a dictionary atom W(s,i,w)(p) by convolutive NMF using the generalized
KL divergence D2 as cost function, using the updates (3.66) and (3.67) with β =
2 and P = 13. From the 51 speaker-specific word spectrograms for speaker i,
speaker-dependent dictionaries W(s,i)(p) = [W(s,i,1)(p) · · ·W(s,i,51)(p)] are formed. A
general noise dictionary is obtained by sub-sampling the 4 hours of training noise
provided with the CHiME-2011 corpus and applying convolutive NMF with R(n) = 51
components, resulting in a dictionary W(n)(p).

The features for convolutive NMF are STFT magnitudes with 64 ms frame size
and 16 ms frame shift, and hence use longer windows than those commonly used in
speech recognition. This has been proven beneficial for the quality of NMF-enhanced
signals [185, 220], cf. also Section 4.1.

At test time, since the speaker identity i is assumed to be known in accordance
with the CHiME-2011 evaluation protocol [7], the speaker-specific dictionary W(s,i)

and the noise dictionary W(n) are concatenated to form the supervised convolutive
NMF dictionary. After obtaining the NMF activations, a speech estimate is computed
using (3.69), and a time domain signal is resynthesized for further processing in the
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5. Noise-robust front-ends for automatic speech recognition

multi-stream recognizer.
The temporal resolution used for NSC-based speech recognition corresponds

to a typical ASR setup – 25 ms frame size and 10 ms shift. As spectral features,
26 Mel scale magnitude bands (B = 26) are used. This resolution is believed to
capture most of the information needed for direct classification, while keeping the
computational complexity manageable [57, 89]. Exemplar windows spanning P = 20
frames are used in a frame stacking approach, based on earlier results on CHiME-2011
data [89]. On these data, using convolutive NMF instead of frame stacking did not
significantly improve results [88]. The other factorization options, including weighting
of features, sparsity penalty values and the number of iterations were exactly set
as in [89]. The dictionaries W(s) and W(n) used in the experiments consist of 5 000
speaker-dependent speech exemplars and 5 000 noise exemplars, which are extracted
from the CHiME-2011 training data. Here, the label matrix Y(s) is chosen so as to
correspond to word identities, i.e., L = 51, that are obtained by forced alignment
using the CHiME-2011 baseline HMM system [21].

The BLSTM network applied for generating the estimates bt for the multi-
stream system is trained on framewise word targets obtained via HMM-based forced
alignment of the clean training set. Similar to the network configuration used
in [238], the BLSTM network consists of three hidden LSTM layers with sizes of
78, 150, and 51 hidden units per input direction. Subsampling layers of size 39
and 75 are used for information reduction between layers. The remaining training
configurations are the same as in [238]. To create speaker-dependent networks, the
BLSTM word predictor is adapted by performing additional training epochs using
only the training utterances of a single speaker. For each speaker, a network is
generated by initializing with the weights of the speaker independent networks and
training until no further improvement on the development data of the chosen speaker
can be observed. By using speaker-dependent BLSTMs, performance on the CHiME
test set could be improved by about 3 % absolute with respect to speaker-independent
BLSTM networks [211]. The stream weights are chosen for the double-stream MFCC-
BLSTM case based on limited parameter tuning on the development set as in [211]:
µ = 1.3, γ = 0.7, ν = 0. For the MFCC-NSC stream combination the weights are
µ = 1, β = 0, ν = 1, and for the triple-stream model the weights are µ = γ = ν = 1.

The proposed system is evaluated against the baseline provided by the 2011
CHiME Challenge [21] organizers. As a basic technique for increased robustness,
mean-only MAP adaptation with τ = 5 (3.142) is used to estimate speaker-dependent
GMMs modeling the MFCC stream, and MCT is used for both the MFCC GMMs
and the weights within the BLSTM layers. The MCT data is generated by mixing
all 17 000 training utterances with random segments of the training noise in the
CHiME corpus. Thus, the complete MCT (clean and noisy) data consists of 34 000
utterances. Note that it is intentional that the noise or speech levels are not scaled
to obtain specific SNRs for training, as the SNR conditions in the test data are
assumed to be unknown.
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5.1. Speech separation for robust ASR

Table 5.1: Keyword recognition accuracies [%] on the CHiME corpus using multi-
stream HMMs with MFCC, BLSTM, and/or non-negative sparse classification (NSC)
feature streams. –: not present (λi = 0),

√
: present,

√
+: computed from NMF

enhanced signal.

Devel Test Test
Streams Mean SNR [dB] Mean

MFCC BLSTM NSC -6 -3 0 3 6 9
CHiME Challenge Baseline√

– – 56.3 30.3 35.4 49.5 62.9 75.0 82.4 55.9
Speaker adaptation / multi-condition training√

– – 74.6 54.5 61.1 72.8 81.7 86.8 91.3 74.7√
+ – – 82.7 75.6 79.2 84.1 87.7 88.3 90.6 84.2√ √

– 86.5 72.8 79.0 85.4 90.8 93.8 95.8 86.3√
+

√
+ – 90.1 82.9 87.2 90.3 93.7 93.9 94.8 90.5√

–
√

85.3 67.2 75.1 85.0 89.8 92.0 93.4 83.7√
+ –

√
89.3 79.1 82.8 88.7 91.2 92.7 93.5 88.0√

+ –
√

+ 88.2 80.4 83.2 87.5 89.9 90.3 92.8 87.4√ √ √
91.0 76.9 82.9 88.8 92.3 95.3 96.4 88.8√

+
√

+
√

92.6 84.8 88.3 92.1 93.9 95.7 96.4 91.9√
+

√
+

√
+ 92.1 84.5 87.9 91.0 93.5 95.0 95.6 91.3

The HMM topologies of the proposed system correspond to the baseline [21]. Left-
to-right word-level HMMs with 4–10 states and seven Gaussian mixtures per state
are employed. 39-dimensional cepstral mean normalized MFCC features (MFCCs
1–12 with energy, deltas and delta-deltas) as in the baseline are used.

5.1.1.3 Results

Experimental results on the development and test set of the CHiME-2011 corpus
are shown in Table 5.1. In accordance with the CHiME-2011 Challenge setup, the
evaluation measure is keyword accuracy, which is the accuracy (2.16) obtained on the
25 letters (A-Z without W) and 10 digits in the ASR task. A noticeable improvement
of almost 19 % absolute in keyword accuracy (on test) is gained by using MCT
and mean-only MAP adaptation for the GM modeling of the MFCC stream, as
detailed in [211]. When using only the MFCC stream in a MAP-adapted HMM with
MCT, NMF enhancement delivers a gain of about 10 % absolute as reported in [211].
Still, this improvement is mostly visible for lower SNRs, while at 9 dB SNR there
is a slight degradation. Considering a noise-robust back-end including additional
BLSTM modeling without any front-end enhancement yields 86.3 % average accuracy;
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5. Noise-robust front-ends for automatic speech recognition

while the improvement by the BLSTM is slightly smaller than the one by NMF
enhancement at low SNRs, significant gains are now observed at the highest SNR level
(4.5 % absolute at 9 dB, p < .001 according to a z-test). Using NMF enhancement
in combination with BLSTM modeling gives an average accuracy of 90.5 %, again
boosting the performance at low SNRs while inducing a slight degradation at 9 dB
SNR: It appears that at 9 dB the BLSTM alone delivers predictions so robust that
NMF separation artifacts outweigh the benefit of additional noise suppression.

Modeling the NSC word prediction in analogy to the BLSTM in a double-stream
HMM, 83.7 % average accuracy are obtained without prior speech enhancement.
Most notably, this accuracy is boosted to 87.4 % when using NMF enhancement in
addition to NSC, indicating that the NMF and NSC approaches both contribute
to robustness: It can be argued that although NMF is the basis of both, the input
representations and dictionaries are considerably different (cf. Sections 5.1.1.1 and
5.1.1.2) – in fact, NSC was shown to produce better recognition of noisy speech than
recognition of enhanced signals reconstructed from the same sparse representation [57].
Interestingly, even higher performance (88.0 %) is observed when using enhancement
only for the MFCC stream: Enhancement degrades performance of the MFCC-NSC
model starting from 0 dB SNR. This can probably be attributed to a mismatch of
the NSC dictionaries, which are built from unprocessed speech and noise data, and
the characteristics of the separated signal with separation artifacts and remaining
interferences.

Finally, the overall best results are obtained by a triple-stream HMM fusing the
enhanced MFCC stream with BLSTM and NSC word predictions, reaching 91.9 %
keyword accuracy on the test set. Again, using NMF enhancement prior to NSC
does not further improve performance; yet again, without NMF enhancement at
all, performance is considerably lower (88.8 %). Notably, it can be seen that the
triple-stream approach significantly (p < .005) outperforms both double-stream
approaches, providing evidence for complementarity between the BLSTM and NSC
streams.

5.1.1.4 Conclusions

A highly effective system exploiting NMF for speech enhancement as well as directly
for speech recognition was introduced. In combination with a BLSTM-RNN multi-
stream HMM acoustic model 91.9 % average keyword accuracy were achieved on
the CHiME-2011 data set containing highly non-stationary noise at SNRs from -6
to 9 dB. This was the best result reported on these data in 2012 [222]. Using a
similar system, yet with larger dictionaries for NMF enhancement, the author and
his colleagues were later able to obtain the best results on the CHiME-2013-SV
corpus [52] (93.9 % accuracy). The results presented in this section suggest that NMF
enhancement and recognition are complementary; it remains to investigate whether
this is due to different parameterizations (features, dictionaries) or fundamental
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methodological differences. Furthermore, since the triple-stream approach delivers
best results, it can be argued that robustness by flexible context modeling in the
BLSTM is complementary to explicit noise modeling in NSC. This result, and the
consistent gains by NMD speech enhancement, suggest that explicit source separation
is complementary to state-of-the-art acoustic models. In [52], the author and his
colleagues also demonstrated how to generalize the triple-stream system presented in
this section to large vocabulary ASR.

5.1.2 Case study: Noise-robust conversational ASR

The study on noise-robust conversational ASR presented in this section [223] was
motivated by the fact that earlier studies on source separation for noise-robust ASR,
such as the one described above, were restricted to small vocabulary, prompted speech.
ASR in many realistic scenarios, including hands-free natural human-computer
interaction and multimedia retrieval, has to deal with spontaneous speech on the
one hand, and interfering audio sources on the other hand. To overcome the
shortcomings of previous studies, the evaluation is carried out on the CHiME-2011-
Buckeye database created by the author and his colleagues (cf. Section 2.2.1.2). This
database enforces a stricly speaker independent evaluation for speech enhancement
as well as ASR.

To address the variability of spontaneous speech as well as non-stationary noise, a
system is proposed which is structurally similar to the CHiME-2011 system presented
above and in [211], yet uses a Tandem BLSTM-DRNN HMM acoustic model instead
of the double-stream HMM. This is because context-sensitive Tandem BLSTM-
DRNN acoustic models (cf. Section 3.7.2.1) have been shown to lead to remarkable
performance gains in conversational speech recognition [235], outperforming the
multi-stream HMM approach. Furthermore, semi-supervised phoneme-based NMF is
employed, which is arguably more suited to the larger vocabulary task at hand and
provides unsupervised adaptation to background noise, as was shown for the case of
music noise in Section 4.1.

5.1.2.1 Experiments

For speech enhancement on the development and test set, semi-supervised sparse
NMF (cf. Section 3.2.5) was used. Spectrograms of the mixture signals were calculated
by short-time Fourier Transform (STFT) using Hann windows of 25 ms length at
10 ms frame shift. A shorter window size and frame shift than in the author’s and
his colleagues’ previous study on the small vocabulary CHiME Challenge ASR task
(cf. [211] and the previous section) were chosen to cope with higher variability of
spontaneous conversational speech.

In accordance with the medium vocabulary and speaker independent ASR task,
a phoneme-dependent yet speaker-independent speech dictionary was constructed
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Figure 5.2: Signal-to-distortion ratio (SDR, top) and signal-to-interference ratio (SIR,
bottom) on the CHiME-2011-Buckeye development set (average across 6 SNRs from -6
to 9 dB), by number of noise components and number of iterations in semi-supervised
sparse NMF (µ = 0.1).

for NMF, instead of a word- and speaker-dependent speech dictionary as used for
speech enhancement in the above. To this end, for each phoneme, the corresponding
spectrograms were extracted from the Buckeye training set according to a forced
alignment with the recognizer described in [235]. These concatenated phoneme
spectrograms were reduced to a single dictionary atom by a 1-component NMF. The
column-wise concatenation of these atoms builds the matrix W(s). Thus, the number
of speech components R(s) in semi-supervised NMF was equivalent to the number of
phonemes (39). The advantage of such phoneme-dependent speech dictionaries over
unsupervisedly learnt ones has been shown in [166].

The number of noise components R(n) as well as the sparsity constant µ and the
number of NMF iterations K were optimized in a limited three-dimensional grid
search on a subset of the development set which consisted of 10 randomly selected
utterances of each speaker at 6 SNRs (parameter ranges: R(n) ∈ {4, 8, 12, 16},
µ ∈ {0, 0.01, 0.1, 1}, K ∈ {1, 2, 4, 8, 16, 32}). This is in contrast to the experiments
with semi-supervised NMF in Section 4.1 which kept these parameters fixed. The
separation performance was measured in terms of SDR, SIR and SAR (cf. [200] and
Section 2.1.1.2). The overall best SDR (8.8 dB on average from -6 to 9 dB SNR)
was obtained for 4 noise components, 4 NMF iterations and µ = 0.1, which is a
gain of more than 4 dB over the noisy data (average SDR = 4.5 dB). As can be seen
from Figure 5.2, higher numbers of iterations tend to decrease SDR especially for
a high number of noise components. More precisely, additional iterations increase
noise suppression in terms of SIR at the expense of introducing artifacts (decreasing
SAR); this can be explained by (over-)fitting of the noise components to parts of the
observed speech, due to the mismatch with the speaker-independent speech dictionary.
Conversely, increasing R(n) is only slightly advantageous for the SDR in the case of 1
or 2 iterations. This is somewhat expected, as the number of noise sources present in
a single speech turn is limited, and thus over-fitting occurs if the noise components
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Figure 5.3: Separation performance on the CHiME-2011-Buckeye test set: Baseline
SDR and SDR / SIR after applying sparse semi-supervised NMF (K = 4, R(n) = 4,
µ = 0.1) for various input SNRs.

have too many parameters. Overall, the results of the parameter tuning corroborate
previous findings of Joder et al. [96] for enhancement of conversational speech in a
larger-scale and speaker-independent evaluation.

As the acoustic model, a Bottleneck-(BN-)based Tandem approach incorporating
a BLSTM-DRNN was used (cf. Section 3.7.2.1). The network consisted of three
hidden layers (per input direction) and was trained on framewise phoneme targets
obtained via HMM based forced alignment of the clean Buckeye training set. All
network and training parameters, including the size of the hidden layers, learning
rate, etc. were set exactly as in [235]. Only the first 39 principal components of the
PCA-transformed BN-BLSTM feature vector were used as final features for tandem
ASR. In the HMM system applied for processing the tandem and BN-BLSTM
features each context-dependent phoneme is represented by three emitting states
(left-to-right HMMs) with 16 Gaussian mixtures. Tied-state cross-word triphone
models with shared state transition probabilities were applied. The clean acoustic
models as well as a back-off bigram language model were trained on the training set
of the Buckeye corpus. Multi-condition acoustic models were trained accordingly, on
the training set of the CHiME-2011-Buckeye corpus.

5.1.2.2 Results

The separation by sparse semi-supervised NMF, with parameters optimized on the
development set as described in Section 5.1.2.1, is evaluated on the test set in Figure
5.3. A constant and significant gain over the noisy SDR baseline is observed; however,
the SDR gain decreases with increasing input SNR, ranging from 4.6 dB (-6 dB SNR)
down to 2.9 dB (9 dB SNR). Furthermore, NMF boosts the SIR by 7.3 dB at -6 dB
SNR and by 5.9 dB at 9 dB SNR.

Considering the word accuracies of ASR (Table 5.2), drastic decreases are observed
in noisy conditions compared to clean data; however, by using NMF, a consistent
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Table 5.2: Word accuracies [%] on Buckeye test set at SNRs from -6 to 9 dB, on
average across these SNRs, and for clean speech. xt: acoustic feature vector (MFCC
or tandem, (3.149)). MCT: multi-condition training.

xt NMF MCT SNR clean
-6 dB -3 dB 0 dB 3 dB 6 dB 9 dB avg

MFCC – – 21.21 23.11 25.40 27.85 30.85 34.48 27.15 50.97
MFCC –

√
25.25 27.36 30.09 31.59 34.20 37.00 30.92 43.84

MFCC
√

– 23.06 25.32 27.17 29.65 32.56 36.48 29.04 50.54
MFCC

√ √
26.51 28.82 30.85 32.85 35.13 37.95 32.02 43.83

Tandem – – 22.73 25.08 28.13 30.51 35.16 39.04 30.11 58.21
Tandem –

√
34.93 37.58 40.04 41.71 44.60 46.87 40.96 51.12

Tandem
√

– 24.47 26.79 29.75 32.18 36.53 40.74 31.74 57.94
Tandem

√ √
35.74 38.45 40.49 42.45 45.27 47.29 41.62 50.91

gain of around 2 % absolute WER across all considered SNRs is achieved over the
noisy baseline. The latter is in contrast to the study on the CHiME-2011 database
(cf. [211] and the previous section), where a downgrade had to be accepted at high
SNRs when using NMF. This can be attributed to the optimization of the NMF
parameters on SDR which effectively leads to using much less NMF iterations than
in [211] (4 instead of 100).

In contrast to NMF, using MCT improves the performance of the MFCC front-
end particularly in highly noisy conditions, but a severe downgrade of 7 % absolute
is observed for clean speech; clean speech, in turn, seems to be largely unaffected
by applying NMF. By combining NMF and MCT, the results on noisy speech can
be further improved, but the downgrade for clean speech remains. This downgrade
along with the low accuracies in noisy conditions indicate the difficulty of modeling
highly variable speech and noise at the same time.

The BN-BLSTM features deliver consistently higher word accuracies than the
MFCC front-end, both with and without NMF; the gain by using the BN-BLSTM
approach instead of MFCC features increases with the SNR and the largest improve-
ment (7 % absolute, up to 58.21 %) is found for clean speech. Finally, the overall best
result across noisy speech (35.74 % to 45.27 %, mean = 41.62 %) and clean speech
(50.91 %) is observed when combining BN-BLSTM with NMF and MCT. Overall, it
seems that the BN-BLSTM acoustic model can profit much more from training with
noisy data than the GMM-HMM with MFCC features. This is in accordance with
more recent findings on DNN-based acoustic modeling of noisy speech [247].
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5.1.2.3 Conclusions

A large scale study on speaker independent recognition of spontaneous speech in
various levels of interfering non-stationary noise has been carried out. Significant
gains could be achieved by a combination of NMF and BN-BLSTM, and optimization
of NMF on SDR could avoid a downgrade in high SNRs and clean conditions. Still,
the word accuracies indicate that this task remains highly demanding, especially due
to the interfering speakers occuring in the CHiME-2011 noise used for evaluation;
the latter condition is especially challenging for monaural separation algorithms.

Furthermore, it is found that the drastic gains in SDR by NMF only correspond
to slight gains in ASR accuracy, especially in the case of the noise-robust BN-BLSTM
frontend. This is in contrast to the results on ‘command and control’ speech in
the CHiME-2011 Challenge task [211] (cf. also the previous section), where NMF
improved by a larger margin over the BLSTM baseline. This observation could be
attributed to insufficient power of simple linear, low dimensional NMF models in the
case of spontaneous speech, in contrast to non-linear BLSTM-DRNN acoustic models
with many more trainable parameters. As an extension, it could be promising to
exploit larger NMF models, including exemplar-based, sparse, and discriminative
NMF. Besides, the mismatch of ASR accuracies and source separation metrics deserve
further investigation, in order to enable optimization of source separation for ASR
without costly task based evaluations.

5.2 Feature enhancement:

A CHiME-2013 benchmark

Robustness of ASR systems can be addressed at different stages of the recognition
process [171], and successful systems usually employ a combination of them [7]. In
this thesis, so far, speech and noise separation by NMF in the front-end, as well as
back-end model adaptation and acoustic modeling using DNNs have been considered
to increase ASR robustness in the case of single-channel signals with non-stationary
noise. Yet, ‘in between’ one can also address noise-robust features – a popular expert
crafted feature extraction scheme is RASTA-PLP [79] – or feature enhancement,
defining a mapping from noisy to noise free speech features. One advantage of
considering feature enhancement is that enhanced features can – ideally – be used in
a recognizer without back-end modification, allowing to treat the back-end as a ‘black
box’ as long as the feature extraction procedure is known. An example for a data-
based, non-parametric technique for feature enhancement is histogram equalization
[26, 239]. The subject of this section will be to investigate feature enhancement based
on supervised training of DRNNs, as was presented by the author of this thesis and
his colleagues in [230]. In this case, the input features represent sequences of mixture
features g(m1, . . . ,mT ), where mt, t = 1, . . . , T , is a short-term spectrum of a noisy
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and reverberated mixture and g is an acoustic feature extractor (e.g., computation
of MFCCs with delta coefficients), and as training targets corresponding sequences
of isolated speech features g(s1, . . . , sT ) are used. Thus, the following cost function
is minimized in training:

EFE(W) =
∑
t

|hW(g(mt))− g(st)|2, (5.5)

where hW is a vector-valued regressor such as a DNN with trainable parameters W
and | · | indicates the Euclidean distance. In this objective function, no assumptions
are made on the relation between clean and corrupted speech features, such as
assuming an additive mixing process, as was done for spectral domain enhancement
by time-frequency masking (3.104). As a result, the above objective is very generic
and can be applied to any type of speech feature and any type of (non-linear)
corruption. In particular, this framework also comprises the case of feature de-
reverberation, in which case time-frequency masking is hardly applicable due to the
wanted and interfering signals being highly correlated. However, depending on g,
the relation between clean and corrupted speech features can be highly complex and
hard to learn. It has been shown that DNNs can exploit non-linear relationships
between noisy and clean features in the context of acoustic modeling [183], but it is
not clear whether this also holds for feature enhancement.

Thus, a main research question to investigate in this section is the choice of
g for optimal performance. In particular, feature enhancement in the logarithmic
Mel frequency domain and in the cepstral domain are compared. Furthermore, it is
investigated whether measures of the network regression performance are correlated
to ASR performance, which involves much more complicated likelihood functions
than the error functions typically used in network training (cf. Section 3.3). Finally,
also the effects of using multi-condition training with reverberated and noisy speech,
feature transformations, and discriminative back-end training are taken into account
separately. This serves to verify the hypothesis that a feature enhancement step
improves over state-of-the-art multi-condition trained ASR models.

Regarding the model for h, DRNNs are the method of choice, due to the success
in other speech processing tasks (cf. above). Feature enhancement by RNNs has been
considered before [121, 145]. In particular, BLSTM-DRNNs have been employed
by Wöllmer et al. [236] for feature enhancement in highly non-stationary noise, by
mapping noisy cepstral features to clean speech cepstral features, and have been shown
to outperform traditional RNNs on this task. In [225], the author of this thesis and
his colleagues successfully applied the BLSTM feature enhancement methodology to
both ASR tasks (CHiME-2013 and CHiME-2013-SV) of the CHiME-2013 Challenge
(cf. [202] and 2.2.1.1). There, the BLSTM approach outperformed a similar approach
using conventional RNNs on the CHiME-2013-SV task [122]. In this section a larger
scale evaluation of BLSTM-DRNNs and other types of neural networks – including
feedforward DNNs – is presented on the CHiME-2013 (medium vocabulary) task.
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5.2.1 Experiments

5.2.1.1 Feature enhancement front-end

The original contribution of the author and his colleagues to the CHiME-2013
Challenge [225], and a related contribution using standard RNNs [122] considered
MFCCs as input and output of the feature enhancement networks. Using MFCCs is
mainly an ad-hoc solution motivated by their use in a GMM-HMM speech recognition
back-end with diagonal covariances. However, it is now well known that DNN-based
speech recognition can be improved by directly using logarithmic Mel filterbank
outputs (Log-FB) [67, 82]. Hence, it is interesting to compare MFCC and Log-FB
in the context of feature enhancement. Note that considering Log-FB as training
targets resembles multi-task regularization of the network due to the correlation in
the targets, which is expected to help generalization.

26 Log-FB covering the frequency range from 20–8 000 Hz are used. Delta
coefficients (3.138) are added both to the input and output features; using them as
targets is similar in spirit to the proposal by [182] to use multi-frame information as
training targets in neural network based speech recognition, which again serves to
improve generalization. As additional feature in input and output, root-mean-square
(RMS) energy is used along with its deltas. For the MFCC features, acceleration
coefficients (second order deltas) are also added, and Cepstral Mean Normalization
(CMN) is performed to compensate short-term channel responses. Thus, in the
MFCC case, the network input and output exactly correspond to the ASR front-end
used in the HTK CHiME baseline [202]. In the Log-FB case, the outputs can be
converted to MFCCs by simply applying a Discrete Cosine Transformation (DCT)
and cepstral liftering with the parameters listed in [245]. Log-FB features are
investigated with and without log spectral subtraction, which is the Log-FB domain
equivalent of CMN [54]. For reproducibility, feature extraction is done using the
HTK [245], using the MFCC E D A Z, FBANK E D and FBANK E D Z types of features
with the default parameters [245].

Prior to feature extraction, the stereophonic signals from the CHiME-2013 corpus
are down-mixed to monophonic audio by averaging channels, corresponding to simple
delay-and-sum beam-forming. This is useful for the specific setup of the CHiME-2013
corpus, where the speaker is positioned at a frontal position with respect to the
microphone, and is hence exploited also in the baseline system by Vincent et al.
[202].

All features are globally mean and variance normalized. To this end, the global
means and variances of the noise-free and the noisy training set feature vectors are
computed, and mean and variance normalization of the network training targets and
the network inputs are performed accordingly. This normalization was found to be
very important for performance; in particular, it ensures that features with large
variance due to noise do not ‘mask’ important information in features with lower
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variance such as delta coefficients.

5.2.1.2 Network training

Feature enhancement networks are trained by minimizing (5.5), substituting the noisy
training set for the features mt and a noise-free training set for st in (5.5). In a first set
of experiments, a de-noising network is trained, i.e., the network learns a mapping of
noisy to noise-free features within the same acoustic environment. As a consequence,
the output features will still be reverberated, and they will be used for decoding
with a model trained on reverberated data. This is done to enable a comparison
to previous results with BLSTM-DRNN feature enhancement on the CHiME-2013
corpus [225]. Additionally, learning mappings from noisy and reverberated to dry
(noise-free, close-talk microphone) speech features will be considered, i.e., the network
is forced to also learn the removal of convolutive noise in the ASR feature domain.
In the latter case, deep learning with pre-training is also considered, cf. below. While
the CHiME-2013 corpus also contains noise context for each utterance, this is not
exploited here, i.e., only the end-pointed speech segments are used (so-called ‘isolated
utterances’ in the CHiME-2013 corpus).

The networks are trained through on-line gradient descent (batch size |B| = 1)
with a learning rate of 10−5 and a momentum of 0.9. Prior to training, all weights
are randomly initialized with Gaussian random numbers (mean 0, standard deviation
0.1). The on-line gradient descent algorithm applies weight changes after processing
each utterance, using a random order of utterances in each training epoch to alleviate
overfitting. Using on-line learning was found to drastically speed up convergence and
increase generalization compared to (full) batch learning. Zero mean Gaussian noise
with standard deviation 0.1 is added to the input activations in the training phase, and
an early stopping strategy is used in order to further help generalization. The latter
is implemented as follows: The cost function (5.5) is evaluated on the development
set after every fifth epoch. Training is aborted as soon as no improvement in (5.5) on
the development set has been observed during 30 epochs. The network that achieved
the lowest cost on the development set (across all six SNRs) is chosen as the final
network.

Most of the applied BLSTM networks have three hidden layers consisting of
2F , 128, and 2F LSTM cells as described above, where F is the input and output
feature dimension (39 for MFCC, 54 for Log-FB). Each memory block contains one
memory cell. This topology was empirically determined on a similar speech feature
enhancement task [236]. In case that noisy features are mapped to clean features,
networks with four hidden layers incorporating 2F , 128, 2F , and 2F LSTM cells are
considered in addition. The rationale behind this is that mapping to clean features is
a more complex task than just removing noise, which also involves de-reverberation.
Besides training the four hidden layers without additional constraints, it is also aimed
at enforcing structure by pre-training of the first three hidden layers. In particular, a
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fourth hidden layer is added to the three-layer network which has been trained to map
noisy and reverberated to noise-free reverberated features, and then run additional
training epochs using the same inputs, but clean features as targets. For the sake
of consistency, the training parameters are set based on previous experience with
RNN-based enhancement of conversational speech in noise [236]. For reproducibility,
the open-source CURRENNT software written by the author and his colleague is
used for BLSTM training (cf. Section 3.5.5). CURRENNT is delivered with a subset
of the CHiME-2013-SV feature enhancement task as demonstration.

5.2.1.3 Baseline networks

To verify the effectiveness of BLSTM networks for feature enhancement, simpler
network architectures are considered as baselines: bidirectional RNNs (BRNNs) and
feedforward DNNs. In the case of DNNs, a certain degree of context-sensitivity is
introduced by frame stacking (cf. Section 3.5). The sliding windows are of size 9
(TL = TR = 4). Consequently, the DNN training targets are positioned at the center
frames of the sliding windows.

As DNN topologies, ‘symmetric’ hidden layers (3 × 256 units) are investigated as
well as a structure that reduces information layer by layer (486, 256, and 108 hidden
units), matching the size of the first hiddden layer to the input layer and the size of
the third layer to two times the size of the output layer. BRNNs have the same size as
BLSTM-RNNs (108, 128, 108 hidden units). Since BLSTM-RNNs have many more
parameters than DNNs or BRNNs of the same hidden layer size, a smaller BLSTM
net (81, 96, and 81 hidden units) is also investigated whose number of parameters
compares to the simpler architectures. For a fair comparison, both BRNNs and DNNs
were trained using the same stochastic gradient descent algorithm as BLSTM-RNNs,
using random initialization. The learning rate for DNNs and BRNNs was tuned on
the development set, and it was found that best performance with DNNs was obtained
with 10−7, as opposed to 10−5 for the BLSTM-RNNs, requiring more training epochs
until convergence. BRNNs required setting a particularly low learning rate (here,
10−8) in order for the training to converge. The latter is in accordance with the
findings of Sutskever et al. [191].

5.2.1.4 Obtaining ASR features

As detailed above, the first step of obtaining enhanced ASR features is presenting
the frame-wise noisy features (MFCC or Log-FB) mt to the trained network and
computing the denoised features yt = h(mt) as the output activations. In principle,
cepstral mean normalized MFCC features with deltas output by a network can be
used ‘as is’ in the speech recognizer. However, due to the normalization of the
training targets, yt will be (approximately) mean and variance normalized, which
does not match the features used to train the baseline models. Thus, to be able to
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use the enhanced features in a ‘plug-and-play’ fashion, i.e., without any recognizer
modification, the global mean and variance normalization is reverted after obtaining
the enhanced MFCC features, to ensure compatibility with the means and variances
of the trained recognition models. More specifically, each enhanced feature vector is
multiplied element-wise with the corresponding variances of the noise-free training
set, and the mean feature vector of the noise-free training set is added. For the
Log-FB features, deltas output by the network are thrown away, the MVN is reverted
as above, and cepstral mean normalized MFCC features with delta and acceleration
coefficients are computed from the Log-FB features output by the network.

5.2.1.5 Speech recognition back-ends

In the following, the speech recognition back-ends used for evaluating the feature
enhancement procedure are described.

5.2.1.5.1 Baseline models The performance of the enhanced features is first
evaluated using the baseline models provided by the Challenge organizers, as well
as in models which are re-trained with enhanced features. The baseline system is
implemented using HTK [245] based on the WSJ-0 ‘recipe’ by Vertanen [199]. From
these models, a ‘reverberated’ baseline model is generated by EM-ML estimation on
the reverberated training set. Four EM-ML iterations are used. The ‘noisy’ baseline
model is created by four additional EM-ML iterations using the training set with
convolutive noise. From these ‘noisy’ models, ‘re-trained’ models are derived simply by
repeating the MCT step using features that have been processed by the enhancement
networks. This is done to investigate to which extent distortions by enhancement
can be compensated by model re-training. Furthermore, it is expected that feature
de-noising and de-reverberation results in lower feature variance, requiring model
adaptation. In contrast, using the baseline models without modification serves to
estimate the ‘compatibility’ of enhanced features with their clean counterparts used
to train the ASR models. From an application point of view, it corresponds to
a ‘plug-and-play’ configuration – in other words, a scenario where the recognizer
back-end is a ‘black box’ and only the feature extraction front-end is known.

5.2.1.5.2 Discriminatively trained models with feature transformations
The training procedure used to generate the CHiME baseline models does not use
many state-of-the-art ASR techniques for GMM-HMM (cf. Section 3.7.1), such as
feature transformations and discriminative training. Thus, it is of crucial interest to
investigate whether the performance of state-of-the-art ASR, such as the back-end
used by [192] for their (winning) contribution to the CHiME-2013 Challenge, can
also be improved by the proposed feature enhancement technique. This system is
implemented with the Kaldi speech recognition toolkit [152].
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LDA-STC (Sections 3.7.1.1 and 3.7.1.2) is employed for feature transformation,
using a sliding window of 9 frames (TL = TR = 4) of 13 MFCCs (0–12) for LDA and
keeping the 40 first dimensions of the transformed 117-dimensional vector. The LDA
classes are obtained by aligning the 2 500 tri-phone HMM states. Finally, since in
the CHiME-2013 Challenge setup the speaker identities are assumed to be known,
fMLLR speaker adaptation (cf. Section 3.7.1.4) is applied, and canonical models are
obtained by Speaker Adaptive Training (SAT) [4], which corresponds to re-training
the models using the fMLLR transformed features of the training utterances. For
unsupervised adaptation at test time, a tight-beam decoding is performed on all test
utterances of a single speaker to obtain a first pass transcription, which is used to
re-estimate the fMLLR transform, before doing a final decoding.

Parameterization and training of acoustic models follows [192] and works as
follows: 40 phonemes (including silence) are integrated in context-dependent triphone
models with 2 500 states and a total number of 15 000 Gaussians. First, models
are trained with clean training data applying the EM-ML principle. Next, EM-ML
training is continued with reverberated training data, using the alignments and
triphone tree structures from the clean models. Then, isolated noisy training data
are used for training. Another set of EM-ML training iterations is then performed
after applying the described feature transformations, using the noisy training data.
Subsequently, features are transformed using LDA-STC and model re-estimation
is done. Afterwards, fMLLR transforms are estimated for SAT, leading to another
set of model re-estimation iterations. Based on the ML trained acoustic models,
discriminative training is performed with the noisy training data, using bMMI (3.141)
with a boosting factor of b = 0.1.

5.2.2 Results

5.2.2.1 Regression performance

Before turning to task-based ASR evaluation, let us first investigate the feature
enhancement performance in terms of regression error. The determination coefficient
R2 (squared Pearson correlation coefficient) of the noise free features is computed
with (i) the unprocessed noisy MFCC features, (ii) the MFCC features output by
the MFCC enhancement network, and (iii) the MFCC features computed from the
output of the Log-FB enhancement network. The correlation of Log-FB outputs with
Log-FB ‘ground truth’ was not considered because the two types of enhancement are
compared in the context of ASR using MFCC features. From the results displayed
in Figure 5.4, it can be seen that BLSTM feature enhancement always improves
over the noisy baseline. Furthermore, lower order MFCCs are predicted with slightly
higher precision by the Log-FB enhancement network while the MFCC enhancement
network is better at predicting higher order MFCCs. This is somewhat expected
since the error function averages over frequency bands in the first case and over
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Figure 5.4: Evaluation of BLSTM feature de-noising: R2 of enhanced and noisy
MFCC features (1–12) and RMS energy (E) with noise-free MFCC features on the
CHiME-2013 development set. Enh (MFCC): BLSTM output = enhanced MFCC;
Enh (Log-FB): MFCCs generated from enhanced Log-FB features output by BLSTM.

MFCCs in the second case – thus, lower quefrencies are given more weight in the
error calculation for the Log-FB enhancement network. However, lower order MFCCs
seem to be easier to enhance than higher order MFCCs regardless of the actual
type of features used in the network. Especially for high MFCCs at higher SNRs, a
drop in performance is observed by Log-FB instead of direct MFCC enhancement
(e.g., MFCC 12 at 9 dB SNR, Log-FB: R2 = .46, MFCC: R2 = .51). Conversely,
e.g., enhancement of the MFCC 1 at -6 dB SNR works considerably better when
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Table 5.3: ASR evaluation of BLSTM feature de-noising (MFCC, Log-FB). Word
error rates (% WER) on the CHiME-2013 development set using the baseline GMM-
HMM recognizer trained by EM-ML on the reverberated noise-free training set
(si tr s). SSub: (log) spectral subtraction.

WER [%] SNR [dB] Mean
FE Domain -6 -3 0 3 6 9

— 86.25 82.79 76.08 71.35 63.04 55.87 72.56

MFCC 69.57 62.23 53.83 48.51 43.18 37.15 52.41
Log-FB 62.59 55.84 47.80 43.82 38.25 34.68 47.16

Log-FB + SSub 63.57 55.38 48.02 43.76 38.75 35.48 47.49

using Log-FB as features in the enhancement network (Log-FB: R2 = .73, MFCC
R2 = .67). Overall, these results are quite promising since it is expected that higher
performance on the lower order MFCCs achieved by Log-FB domain enhancement
would result in ASR performance gains. This hypothesis will be verified below.

5.2.2.2 ASR performance

Let us begin the ASR evaluation of BLSTM enhanced features by considering BLSTM
de-noising, i.e., learning mappings between noisy and noise-free features within the
same acoustic environment. As acoustic models, the ‘reverberated’ CHiME baseline
models [202] are used. Evaluation is done on the CHiME-2013 development set (test
set results will be given below for selected systems). The resulting WERs are shown
in Table 5.3. It can be seen that by enhancing the MFCCs directly, one obtains
an improvement of 20 % absolute (28 % relative) in terms of WER. Using Log-FB
outputs as net input and target, WER is further decreased by 5 % absolute (10 %
relative), reaching 47.16 % average WER across the six SNRs. Using log spectral
subtraction (SSub) on the filterbank outputs cannot further improve results. Thus,
it seems that the mapping from noisy to clean features can best be learnt in the ‘raw’
log spectral domain.

Regarding the performance of BLSTM in comparison to simpler network architec-
tures, i.e., bidirectional RNN and feedforward networks with input frame stacking, it
is found that BLSTM significantly outperforms both BDRNN and DNN (Table 5.4).
This corroborates earlier results with neural network based feature enhancement
[236]. Comparing the number of parameters of the networks, it can be seen that the
superiority of BLSTM is not simply due to increasing model complexity in terms
of weights. In particular, the BLSTM network with 81, 96, and 81 units per layer
performs almost equally to the larger network considered above, while DNNs with
the same number of parameters perform significantly worse (58.48 % WER with
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Table 5.4: ASR evaluation of alternative network topologies in Log-FB domain
enhancement. DNNs using nine frames of input context to enhance center frame. #
Wts: number of weights in network. Word error rates (% WER) on the CHiME-2013
development set using the baseline GMM-HMM recognizer trained by EM-ML on
the reverberated noise-free training set.

WER [%] SNR [dB] Mean
Network Layers # Wts -6 -3 0 3 6 9

BLSTM-DRNN 81-96-81 305 k 63.36 55.22 48.71 44.28 38.05 34.39 47.34
BDRNN 108-128-108 159 k 76.44 69.68 60.90 58.49 52.32 47.62 60.91
DNN 256-256-256 270 k 74.78 68.27 59.79 54.91 49.54 43.60 58.48
DNN 384-384-384 503 k 76.26 69.68 60.96 56.99 50.07 45.79 59.96
DNN 486-256-108 395 k 76.37 68.86 60.88 55.93 49.82 46.87 59.79

the DNN with 3 × 256 units having 270 k weights, vs. 47.34 % with the BLSTM
having 305 k weights). Further increasing the DNN size to 384 units per layer, or
adjusting the hidden layer size to the size of the adjacent input and output layers
(486-256-108 topology) does not improve performance. Generally, the fact that larger
networks do not improve performance could be attributed to the limited amount of
training data in the CHiME Challenge. Furthermore, it is observed that BRNNs
perform slightly worse than DNNs with stacked inputs, pointing at the difficulty
of training conventional RNNs through standard gradient descent. The fact that
LSTM modeling outperforms feature frame stacking in DNNs is in accordance with
the results reported by Wöllmer et al. [240] and recently by Geiger et al. [51] as well
as Sak et al. [163] for neural network based ASR.

Next, in Table 5.5, the performance of BLSTM de-noised and de-reverberated
features is considered in the close-talk recognizer provided by Vertanen [199]. The
baseline WER of this recognizer applied to the CHiME development set is very high
(89.43 % on average and 82.07 % even at 9 dB SNR). However, a drastic drop in WER
occurs when applying feature enhancement in the MFCC domain (50.79 % WER,
using the same network topology as above). Again, when using Log-FB outputs
as enhancement domain, a further improvement down to 46.97 % WER is obtained
– using the same network topology as for de-noising. When simply using a fourth
layer, results are much worse (51.52 % WER), pointing at overfitting due to the
increased number of parameters. When the above-mentioned deep training technique
for mapping to clean features is used, 47.76 % WER are obtained, which is, however,
below the result with simple training of a three-layer network. Switching to the zero
mean log spectral domain, direct training of three- or four-layer networks does not
reach the performance obtained with deep training. In the result, the lowest average
WER that is attained with the unmodified close-talk recognizer is at 46.15 %, which is
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Table 5.5: ASR evaluation of BLSTM feature de-noising and de-reverberation. Word
error rates (% WER) on the CHiME-2013 development set using the baseline GMM-
HMM recognizer trained by EM-ML on the close-talk microphone WSJ-0 training
set (si tr s). SSub: (log) spectral subtraction. 3+1 layers: 4 layer network with
pre-training of 3 layers (see text).

WER [%] Layers SNR [dB] Mean
FE Domain -6 -3 0 3 6 9

Baseline (no enhancement)
— — 94.08 92.97 91.51 89.92 86.03 82.07 89.43

With BLSTM feature enhancement
MFCC 3 70.10 61.16 52.34 47.66 38.97 34.51 50.79

Log-FB 3 65.34 57.58 48.18 41.78 36.5 32.44 46.97
Log-FB 4 69.97 62.49 52.71 47.28 41.23 35.41 51.52
Log-FB 3+1 66.53 59.27 48.6 43.08 36.49 32.57 47.76

Log-FB + SSub 3 65.92 58.53 48.34 42.19 36.65 31.36 47.17
Log-FB + SSub 4 65.48 57.47 47.62 42.49 35.97 31.70 46.79
Log-FB + SSub 3+1 65.07 56.85 47.03 41.51 35.56 30.90 46.15

a 48 % relative reduction with respect to using unenhanced features. In comparison, a
four-layer network achieves 46.79 % average WER and a three-layer network 47.17 %
WER. These rates are significantly worse (true average WER differences ≥ .45 and
≥.65 with 95 % confidence, according to a one-tailed t-test, treating WER per SNR
as independent observations). Comparing the results to those obtained with the
reverberated ASR models and BLSTM de-noising without de-reverberation, it is
found that the latter works better at lower SNRs and performs worse at higher SNRs.
This can be attributed to higher variances of the reverberated GMMs.

In the following, let us further investigate the relation between back-end refinement
and front-end enhancement. The most obvious back-end adaptation is to consider
multi-condition training using noisy data, as is done in the CHiME ‘noisy’ baseline
acoustic models. As front-end enhancement, Log-FB de-noising is investigated –
which yields best results with the reverberated models – and Log-FB de-noising and
de-reverberation with log spectral subtraction – which gives best results with the
clean models. Results are shown in Table 5.6.

Without any front-end enhancement, the CHiME multi-condition baseline yields
an average WER of 58.27 % on the development set, improving by over 40 % absolute
with respect to the clean models. With BLSTM de-noising, an additional improvement
of 8 % absolute WER is observed. If the multi-condition models are re-trained using
the BLSTM de-noised training set, average WER is decreased to 43.38 %. The gain
by re-training is especially visible at higher SNRs. When using BLSTM de-noising
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Table 5.6: ASR evaluation of BLSTM enhanced features in multi-condition trained
models: EM-ML trained CHiME Challenge baseline models and discriminatively
trained models using feature transformations (see text). Multi-condition training
using unenhanced (= no re-training) and enhanced (= re-training) noisy and re-
verberated CHiME training set. Feature enhancement (FE) type: de-noising with
Log-FB front-end (Table 5.5) or de-noising + de-reverberation with Log-FB + SSub
front-end (Table 5.5). Evaluation on the CHiME-2013 development set.

WER [%] Retraining SNR [dB] Mean
FE type -6 -3 0 3 6 9

EM-ML trained recognizer [202]
— — 73.17 67.43 59.89 55.71 49.07 44.34 58.27

de-noising – 62.68 56.89 51.36 47.90 43.02 40.94 50.47
de-noising

√
57.74 51.14 43.85 39.10 35.54 32.88 43.38

+de-rev. – 65.49 60.22 54.79 50.10 47.87 43.92 53.73
+de-rev.

√
62.34 53.39 45.17 38.93 34.17 29.63 43.94

EM-ML trained recognizer with feature transformations [192]
— — 59.63 49.97 40.60 34.72 29.56 25.52 40.00

de-noising – 46.35 37.94 31.20 27.45 23.60 21.12 31.28
de-noising

√
49.45 41.08 33.18 29.31 25.14 22.05 33.37

+de-rev. – 48.77 39.21 33.04 27.26 24.52 21.26 32.34
+de-rev.

√
55.60 46.79 38.69 31.60 27.57 22.78 37.17

Boosted MMI trained recognizer with feature transformations [192]
— — 56.47 47.12 38.47 31.86 27.50 23.32 37.46

de-noising – 47.91 40.30 33.09 28.22 25.11 22.70 32.89
de-noising

√
43.71 35.12 27.66 24.90 21.55 18.56 28.58

+de-rev. – 57.86 50.48 44.36 39.81 36.63 33.49 43.77
+de-rev.

√
47.31 37.65 30.15 24.30 20.83 18.00 29.71

and de-reverberation, additional improvements are obtained in the re-trained multi-
condition models at higher SNRs (≥ 3 dB), at the expense of reduced accuracy at
lower SNRs. This is in line with the observations made above without noisy training.

The system proposed by [192] exploiting LDA, MLLT and SAT with fMLLR adap-
tation achieves better results without front-end enhancement than the best CHiME
baseline system with front-end enhancement (40.00 % average WER)1. However, using
BLSTM de-noising, another 8.7 % absolute accuracy improvement (31.28 % WER) is
gained ‘on top’. Interestingly, results are found to be best in a ‘plug-and-play’ setup
where the feature transformations are estimated on noisy data instead of enhanced

1Note that this result is much better (6 % absolute WER difference) than the corresponding
result reported by [192], because for a fair comparison beam-forming is used as in the CHiME
baseline.
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5.2. Feature enhancement: A CHiME-2013 benchmark

data – thus, there seems to be a larger mismatch in the enhanced features than in
the noisy features across training and development set. This could be due to the
networks being trained speaker-independently – in the future, enhancement on the
SAT transformed features could be investigated.

Finally, it is observed that BLSTM feature enhancement is also complementary to
discriminative training using boosted MMI. Boosted MMI and feature transformations
without front-end enhancement yield 37.46 % WER, while the best combination
(BLSTM de-noising, feature transformations, boosted MMI training using enhanced
noisy data) results in 28.58 % average WER on the development set. Notably,
when using boosted MMI training using unenhanced data and evaluating using
de-noised and de-reverberated data, results are vastly degraded (43.77 % WER) while
reasonable results are obtained with re-training (29.71 % WER) – this probably
indicates in a large mismatch of the phoneme errors on unenhanced and enhanced
data, leading to over-fitting.

Since fMLLR adaptation in the form used by the system of Tachioka et al. [192]
requires the utterances of each speaker to be processed at once, it is not suitable for
real-time applications such as dialog systems; it is thus of interest to also consider
results without adaptation (and hence without SAT). In this case, best performances
(not shown in Table 5.6) are obtained using the de-noising (not de-reverberation)
front-end, with recognizer re-training, leading to 35.87 % (instead of 33.37 %) average
WER in the EM-ML and 30.82 % (instead of 28.58 %) WER in the discriminatively
trained recognizer (without de-noising and without SAT: 46.07 %, 45.13 %).

For the results reported so far (Tables 5.3, 5.5, and 5.6), a constant language
model weight (LMW, cf. (3.126)) of 15 has been used for a fair comparison of results.
However, it was found that since ‘cleaner’ features yielded generally higher acoustic
likelihoods, the language model weight should be increased accordingly. An optimal
weight µ∗ ∈ {9, 10, 11, . . . , 20} was determined on the development set. Results
are displayed in Figure 5.5. It can clearly be seen that the ‘cleaner’ the features,
the higher the language model weight has to be for optimal performance. In the
boosted MMI system using feature transformations, µ∗ = 11 yields 34.18 % WER
without BLSTM feature enhancement; 28.10 % WER are obtained at µ∗ = 17 with
BLSTM de-noising; for BLSTM de-noising and de-reverberation, µ∗ = 20, resulting
in 28.66 % WER. For comparison, let us note that the best DNN in the best back-end
(LDA-MLLT, SAT, fMLLR adaptation, boosted MMI) achieved 33.22 % WER, which
is significantly (more than 4 % absolute) better than the noisy baseline but clearly
below the BLSTM result.

Let us now proceed to evaluate selected ASR systems (combinations of back-
ends and BLSTM front-ends) on the official CHiME-2013 Challenge test set, and
compare to other state-of-the-art approaches. Results are shown in Table 5.7. The
best system without back-end modification (using close-talk acoustic models) yields
42.06 % average WER across SNRs from -6 to 9 dB. This is much better than the
result using noise compensation only in the back-end by MCT, in the same HMM
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Figure 5.5: Influence of the language model weight on the WER on the CHiME-2013
development set for noisy features, BLSTM de-noising and de-reverberation.

framework (55.01 %, [202]). It also outperforms a state-of-the-art approach for
feature enhancement in the linear Mel frequency domain using non-negative matrix
factorization (NMF) [52], which gives 48.07 % WER.

Combining BLSTM feature enhancement and MCT results in 39.24 % WER,
which is a noticeable improvement but also indicates the limits of the basic HMM
recognizer framework. Still, this result is better than a previous result with multi-
stream HMM fusion of MCT EM-ML trained MFCC-GMMs and a BLSTM phone
recognizer ([52], 41.76 % WER). In this work, a deep BLSTM was used as a secondary
acoustic model providing frame-wise phoneme probabilities, instead of performing
front-end enhancement.

Using the BLSTM front-end, but changing the back-end to a state-of-the-art
system exploiting feature transformations and discriminative training [192], 22.16 and
22.78 % WER are obtained in combination with BLSTM de-noising and de-noising
/ de-reverberation. This is a 17 % relative improvement over the BLSTM feature
enhancement results presented in the CHiME-2013 Challenge (26.73 % WER, cf.
[225]).

The BLSTM result also outperforms DNN feature enhancement by 4 % absolute;
in turn, DNN enhancement in the front-end seems to perform slightly better than
binary masking [192]. Comparing to recent results by Geiger et al. [53], the results
by BLSTM feature enhancement are slightly inferior to BLSTM acoustic modeling
in a multi-stream HMM framework (21.5 % WER). Still, the best result reported
here is better than the one by Weng et al. [209] for standard RNN acoustic modeling
(22.8 % WER).
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5.2. Feature enhancement: A CHiME-2013 benchmark

Table 5.7: Final CHiME-2013 test set evaluation of ASR systems with BLSTM
feature enhancement and comparison to related approaches. 1: Only three significant
digits given in [53].

WER [%]
SNR [dB] Mean

-6 -3 0 3 6 9

Systems using BLSTM feature enhancement

BLSTM de-noising + de-reverberation / base WSJ-0
61.55 50.64 43.84 37.04 31.94 27.33 42.06
BLSTM de-noising / CHiME multi-condition baseline
53.18 44.97 40.65 34.32 32.39 29.93 39.24

BLSTM de-noising / feat. transf. + MMI
35.55 27.11 22.40 17.45 16.14 14.29 22.16
BLSTM de-noising + de-rev. / feat. transf. + MMI

37.79 28.71 23.37 18.70 15.41 12.70 22.78

Other systems for CHiME 2013 track 2 task

CHiME multi-condition baseline [202]
70.43 63.09 58.42 51.06 45.32 41.73 55.01

NMF / CHiME multi-condition baseline [52]
61.85 55.58 50.94 43.51 39.14 37.40 48.07

Binary masking / feat. transf. + MMI [192]
44.12 35.46 28.12 21.20 17.43 14.83 26.86

DNN feature enhancement / feat. transf. + MMI
42.11 33.08 26.17 21.43 18.08 16.05 26.15

BLSTM-HMM double-stream recognizer1 [53]
37.1 27.2 22.5 16.7 13.9 11.8 21.5

5.2.3 Conclusions

The efficacy of data-based feature enhancement using deep recurrent neural networks
for ASR in non-stationary convolutive noise has been demonstrated. Reasonable
results have been achieved even with unmodified close-talk acoustic models, which
otherwise fail at decoding the CHiME utterances. Best results on the CHiME-2013
task have been achieved by combining enhancement with feature transformations
and discriminative HMM training. Furthermore, the enhancement of ASR features
by the proposed method has been shown to be complementary to that kind of state-
of-the-art multi-condition training. The improvements by the proposed BLSTM
feature enhancement method are all the more noticeable since it does not directly
exploit phonetic information. However, this absence of phonetic information could
contribute to the observed inferior performance in comparison with BLSTM acoustic
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5. Noise-robust front-ends for automatic speech recognition

modeling. Thus, effective combination strategies with BLSTM acoustic modeling
will be an important topic of future research.

Another caveat is that in contrast to other enhancement techniques such as facto-
rial models [159, 222], the present approach requires frame-by-frame correspondences
between distorted and clean training features, similar to the supervised training of
speech enhancement presented in the previous sections. Hence, the most straight-
forward approach to generate training data is to algorithmically apply distortions
to clean data, as done in the CHiME Challenges and previous evaluations such
as the AURORA-4 database. Still, realistic training data is not trivial to obtain
(it could be done, e.g., by loudspeaker playback and recording in various settings
involving real noise and reverberation). A more promising approach might be to use
semi-supervised learning, initialized by large amounts of systematically generated
training data using combinations of speech and noise corpora, and continuing using
real noisy and reverberated speech for which no ‘clean’ counterpart exists.

One important issue in training-based methods such as deep learning, as compared
to ‘blind’ de-noising and de-reverberation approaches, is generalization to unseen
test scenarios. In Section 6.1, an approach will be presented that exploits both blind
and training-based approaches for ASR feature enhancement, and in Section 6.2
a combination of microphone array processing and BLSTM feature enhancement
will be exploited. Including noise context, i.e., training on noisy streams instead
of end-pointed but corrupted speech data, might also help generalization – there is
already evidence that LSTM networks are very well suited to voice activity detection
in noise [44].

5.3 From feature to speech enhancement

Let us now conclude the discussion of speech enhancement and ASR feature de-noising
by uniting the two in a single framework.

Again, time-frequency masking is considered as the general framework to recover
a source l of interest from mixture signal features mt. Explicit modeling of both
the source l and the interference l is assumed: Spectral representations s̃lt and s̃lt are
computed from the mixture. Then, the source estimate ŝl is computed through

ŝlt =
s̃lt

s̃lt + s̃lt
⊗mt. (5.6)

For example, traditional spectral subtraction can be cast into this framework by
unsupervised estimation of s̃lt (e.g., by minimum statistics [124]), then setting

s̃lt = mt − s̃lt. (5.7)

Of course, s̃lt and s̃lt can be estimated as non-negative combinations of spectral
dictionary atoms, resulting in the NMF filter equation (3.26). Alternatively, the
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feature enhancement approach from the previous section, which outputs a speech
feature estimate given a mixture feature estimate, can be used. Given a trained
feature enhancement regressor hWl ,

s̃lt = g(hWl(g(mt)) (5.8)

is obtained, where g is the ‘inverse’ feature extraction procedure. Furthermore,
the feature ‘enhancement’ approach can be used reversely, in order to obtain an
interference feature estimate from the mixture feature estimate:

s̃lt = g(hWl(g(mt)). (5.9)

Note that in the general case the feature extraction is not invertible. However, if
Log-FB features are used as in the previous section, the logarithmic transform can
simply be reverted by exponentiation, and a Mel-domain mask is computed according
to (5.6) using g(x) = exp(x). Then, (3.61) is used to obtain full-resolution spectral
estimates of the source. It is also possible to run a ‘hybrid’ approach where the
interference is estimated in the full-resolution DFT domain using an unsupervised
method, and

s̃lt = B̃ᵀ exp(hWl(g(mt)), (5.10)

where B̃ᵀ is the transpose of the Mel matrix B where filterbank coefficients are
normalized to sum to unity. This is similar to the proposal of Lu et al. [119] uniting
a DNN approach for speech feature estimation with an unsupervised noise estimation
approach. These setups will be investigated below.

In this section, DNN- and DRNN-based models are chosen as feature estimator(s)
h, in analogy to the speech enhancement experiments reported in Section 4.2. A
focus is laid on real-time capability, and hence, unidirectional LSTM-DRNNs; yet,
performance is also compared with bidirectional (BLSTM)-DRNNs as were used in
Section 5.2.

5.3.1 Experiments

Experiments are carried out on the NAVIC database of conversational speech in
multiple noise and reverberation conditions (cf. Section 2.2.1.2.1). The task considered
is speech enhancement, with the only wanted source sl corresponding to speech. A
multi-condition training setup is used where no knowledge of RIR, SNR, or noise
type is assumed during enhancement.

5.3.1.1 Network training and evaluation

As input features for the neural networks, logarithmic Mel scale spectrograms
M ∈ RB×T

+ with B = 40 frequency bands equally spaced on the Mel frequency
scale are used. The scope of the evaluation is constrained to the de-noising, not the
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5. Noise-robust front-ends for automatic speech recognition

de-reverberation task – that is, the output of the networks will comprise convolutive
noise. Independent networks with three hidden layers are used to predict either
speech or noise features. Both DRNNs and DNNs are considered for speech feature
estimation. DNNs and LSTM-DRNNs have 256 units per layer while BLSTM-DRNNs
have 128 units per direction. Sub-sampling layers with 64 units are inserted after each
LSTM layer. Networks are trained on the NAVIC training instances with SNR <∞;
for speech feature prediction, the corresponding reverberated, yet noise-free features
are used as training targets (SNR = +∞). An analogous procedure is followed for
noise feature prediction. To prevent over-fitting at high SNRs in training, Gaussian
noise with zero mean and standard deviation 0.1 is added to the inputs. Input and
target features are standardized to zero mean and unit variance on the training set,
and delta regression coefficients (3.138) of the feature contours are added. To further
alleviate over-fitting, early stopping on a held-out validation set as well as random
shuffling of training sequences are used. The cost function at the output layer is the
squared Euclidean distance (3.41).

In all experiments, DNNs and LSTM-DRNNs are trained and evaluated on GPUs
using the CURRENNT software (cf. Section 3.5.5). Mini-batch gradient descent
with batch size |B| = 15 is used in the experiments. One BLSTM-DRNN training
epoch on the 32 k sequences, 5.8 M time steps AVIC training set (cf. above) takes
around 20 minutes on a consumer grade GPU. Training a DNN for an epoch takes
only 50 seconds due to an increased level of parallelization across timesteps (using
50 parallel sequences). Depending on the task to learn, networks took around 35–
100 epochs to converge. Except for the number of units and the DNN learning
rate (reduced to 10−6 to ensure convergence), all chosen hyper-parameters (such as
learning rate) correspond to the regression example delivered with CURRENNT for
straightfoward reproducibility, which is based on experiments with the CHiME-2013
feature enhancement task (cf. above and [225]). Decoding one of the 60 test sets (44
minutes of speech) in batch processing takes less than a minute on a consumer grade
GPU.

5.3.1.2 Source separation evaluation

After resynthesizing time-domain signals from the filtered magnitude spectra ŝlt (5.6)
by means of windowing and overlap-add, using the mixture phase, SDR, SIR, and
SAR are computed (cf. Section 2.1.1.2 and [200]). As baselines, unprocessed noisy
signals are considered. Furthermore, different combinations of minimum statistics
(unsupervised) and neural network based speech and noise estimates are evaluated.
As implementation of minimum statistics spectral subtraction, the freely available
Voicebox toolkit for MATLAB is used2. The default parameters in the toolkit are
changed by setting the sliding window length for minimum statistics estimation

2http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
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Table 5.8: Noisy AVIC (NAVIC) corpus: Evaluation of speech enhancement by
unsupervised spectral subtraction using minimum statistics (MinStat) or super-
vised training of noise estimators ((B)LSTM-RNN); clean speech estimation using
supervised training of DNN, LSTM-RNN or BLSTM-RNN.

model [dB]
speech noise SDR SIR SAR

Noisy baseline (no processing)
— 13.2 13.2 ∞
On-line Enhancement

– MinStat 8.3 17.1 10.3
DNN MinStat 11.4 15.4 16.2

LSTM-RNN MinStat 12.1 15.7 16.4
LSTM-RNN LSTM-RNN 14.6 17.0 19.7

Off-line Enhancement
BLSTM-RNN BLSTM-RNN 14.8 16.6 20.8

to 0.256 s (16 windows), and disabling over-subtraction by setting the maximum
subtraction factor to 1, which led to a few dB SDR gain in a preliminary experiment.

5.3.2 Results

Table 5.8 shows the average SDR, SIR, and SAR obtained on the NAVIC test
set, across all acoustic conditions, input SNRs (0 to 20 dB), and noise types. Using
minimum statistics spectral subtraction, about 4 dB absolute in interference reduction
(SIR) are gained at the cost of artifacts, which lower the SDR by almost 5 dB absolute
with respect to the noisy baseline. Using a DNN or LSTM-RNN based speech estimate
along with minimum statistics noise estimation significantly increases the SDR (by 3
and 4 dB absolute) due to an increase in SAR by about 6 dB absolute, with respect
to the minimum statistics baseline. However, around 1.5 dB absolute are lost in
interference reduction. Using a LSTM-RNN based noise estimate in addition further
boosts the SDR to 14.6 dB and SAR to 19.7 dB while providing similar interference
reduction (SIR = 17 dB) as minimum statistics spectral subtraction. Considering
bidirectional LSTM-RNNs, a slight improvement in SDR (+0.2 dB) can be gained at
the expense of real-time capability.

Figure 5.6 shows the results by input SNR in more detail. It can be seen that
the SDR of the minimum statistics spectral subtraction saturates at around 11 dB –
which is due to the introduction of artifacts, i.e., lower SAR – while SIR increases
consistently with input SNR. However, at low SNRs (0 and 5 dB), LSTM-RNNs
outperform minimum statistics also in terms of SIR.

Finally, in Figure 5.7 two examples of speech corrupted by city noise (clicking
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Figure 5.6: NAVIC corpus: SDR and SIR by input SNR, averaged across acoustic
conditions; LSTM-RNN speech/noise model or minimum statistics (MinStat) noise
model.

noise caused by a bicycle) at high SNR (20 dB), as well speech corrupted by music
noise (rock music with distorted guitars and drums, SNR = 5 dB) are shown. In
the former case, the spectro-temporal structure of the original speech is very well
reconstructed by the LSTM-RNN approach while most of the broadband transient
interference is reduced. Minimum statistics does not remove all of the interference
while partially ‘destroying’ speech components, resulting in some musical noise. The
bottom row shows that also music noise can be compensated by the LSTM-RNN
approach to some degree; while some harmonic interferences from the music remain
in the lower frequency bands, there is significantly less musical noise than with
minimum statistics.

Informal listening tests confirm that the LSTM speech enhancement approach pre-
sented in this section produces naturally sounding speech, and remaining interferences
also sound natural.

In order to compare to the results obtained by time-frequency mask training,
an additional experiment was performed using the mask approximation strategy
from Section 4.2. Accordingly, the hyper-parameter selection was preserved from the
experiments on the CHiME-2013 development set: B = 100 Mel bands and α = 1
were used, and a LSTM-DRNN with two hidden layers with 256 units each. This
configuration achieved an SDR of 14.6 dB on the NAVIC test set, which is slightly
below the performance reported above (14.8 dB). From this result, it can be concluded
that the speech enhancement approach derived from feature enhancement is highly
effective. However, it has to be noted that the network for the mask approxmation
has only 918 K parameters, while in the experiments above, two networks with 1.06 M
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Figure 5.7: De-noising examples: Test utterances (top: #4, bottom: #8) from
the NAVIC corpus, after processing with spectral subtraction using a minimum
statistics (MinStat) noise estimate, or LSTM-RNN speech and noise estimates, and
the noise-free (‘clean’) version.

weights each are used, i.e., 2.12 M trainable parameters in total. It can be conjectured
that the mask approximation formulation yields a very efficient representation of the
relation of speech and noise features, compared to the ‘double’ feature enhancement
approach. However, this will have to be verified in future experiments using various
network topologies, such as multi-task networks that estimate speech and noise
features simultaneously.

There is also evidence that although the LSTMs are trained on simulated parallel
data, the approach generalizes to real-world recordings. An initial experiment was
conducted with mobile phone recordings, using a Huawei P2 phone (with disabled
speech enhancement) in a busy street scene near TUM. An example recording
(original and enhanced by LSTM) is shown in Figure 5.8, where a male speaker (25
years old) reads a sentence from a scientific paper. It can be seen in the spectrograms
that despite the poor quality of the recording as such, the noise can be removed
successfully. Particularly notable is the bell sound around the 8 s position, caused by
a bike driving by, which is attenuated by the LSTM filtering despite its transient
nature. These claims can be verified by the interested reader by listening to the
example, which is provided at the above mentioned location.
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5. Noise-robust front-ends for automatic speech recognition

Figure 5.8: Application of LSTM speech enhancement trained on NAVIC corpus to
real mobile phone recording in street noise: noisy (left) and processed (right).

5.3.3 Conclusions

In this section, a generic framework for time-frequency masking was derived from
the previously presented ASR feature enhancement approach, and was shown to
be highly effective for conversational speech enhancement in non-stationary noise
and various acoustic conditions. Applying supervised training of LSTM-DRNN
feature enhancement, unsupervised speech enhancement was outperformed by a large
margin in terms of SDR, and performance was found to be similar to a dedicated
speech enhancement approach. The proposed method introduces very little artifacts
while providing good interference reduction, and seems to generalize to real-world
recordings. In the future, the performance of the approach might be further improved
by considering negative SNRs in training, i.e., data where noise is dominant, to ease
the training of noise feature estimators. Furthermore, the subjective quality of all
the speech enhancement algorithms presented in this and the previous chapter could
be enhanced by applying unsupervised techniques for musical noise reduction such
as the one proposed by Esch and Vary [39].
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6

Feature de-reverberation for
automatic speech recognition

When there is an original sound in the world, it makes a hundred echoes.
– John A. Shedd

After focusing on the removal of non-stationary additive noise in the previous section,
let us now shift the attention to convolutive noise, i.e., reflected sounds caused by
reverberant environments. Conversely, in this chapter, additive noise will be limited
to stationary ambient noise. This scenario corresponds to relevant applications such
as meeting transcription [116].

6.1 Early fusion in feature enhancement

So far, robustness of ASR in this thesis has been realized by data-based methods such
as multi-condition training, acoustic modeling techniques such as DNN, supervised
training of signal and feature enhancement, and combinations of these. In the context
of reverberation, Ishii et al. [93] were among the first to study DNN-based feature
enhancement for de-reverberation.

However, a problem with such data-based approaches is generalization to acoustic
environments which are not known at training time. Traditionally, supposing a
physically motivated model of reverberation, ‘blind’ or ‘model-based’ techniques can
be used to estimate physical parameters of the room acoustics, such as reverberation
time [158], or to compensate the influence of the transfer function of the room on
ASR features [54, 103, 179, 180]. A survey on these techniques is given by Habets
[72]. Furthermore, model-based ASR adaptation techniques (cf. Section 3.7.1.4)
allow to blindly estimate transformations of the ASR features suited to the current
acoustic environment [49, 153]. They can also account for speech modifications by
de-reverberation [28].
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Figure 6.1: Flowchart of the proposed method for reverberated speech recogni-
tion. Dashed lines depict optional processing steps. FB: filterbank. (*) Linear
transformations: DCT (to obtain MFCC), LDA, MLLT, CMLLR – see text.

The research objectives in this study, which was presented by the author and
his colleagues in [232], are three-fold. The first goal is to show that supervised
training of feature enhancement in analogy to the previous section generalizes to
real reverberated speech in unseen acoustic conditions. Second, it is proposed to
perform early fusion of unprocessed spectral features with spectral features obtained
from a model-based de-reverberation algorithm, and it is shown that this further
improves performance, in contrast to näıve cascading. Third, it is demonstrated
that blind ASR adaptation provides complementary performance gains to all these
system combinations – that is, the proposed combined de-reverberation improves
over state-of-the-art ASR techniques.

As in the previous section, feature enhancement is done by LSTM-DRNNs which
provides a flexible amount of temporal context to the network, as is required for
de-reverberation in multiple acoustic environments. The method is evaluated on the
2014 REVERB Challenge data (cf. Section 2.2.1.3) which features both simulated
reverberated and noisy data as well as real recordings from a meeting room.

6.1.1 Experiments

The proposed feature enhancement algorithm with early fusion is depicted as a
flowchart in Figure 6.1. Below, the steps in the algorithm will be explained in more
detail.
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6.1.1.1 Spectral subtraction with RT estimation

As a physical model based single-channel de-reverberation method, the algorithm
proposed by Tachioka et al. [193] is employed, which performs spectral subtraction
based de-reverberation with reverberation time (RT) estimation. If the RT is much
longer than the frame size, the band energies of the reflected and direct sounds can
be simply superposed. Therefore, an observed power spectrum xt is modeled as a
weighted sum of the (dry) speech power spectrum st to be estimated and a stationary
noise spectrum n as

xt =
t∑

j=0

hjst−j + n, (6.1)

where hj are time-varying weights for delays j. n can be estimated by averaging xt
for a small number of frames where speech is absent. The power spectrum of the dry
speech source can be estimated from the observed power spectra as

ŝt−j = ζ(Tr)xt−j − n, (6.2)

where Tr is the RT in the given environment and ζ is the average proportion of direct
sounds in the frequency bins. ζ is a decreasing function of Tr because the amount of
reflected sounds increases with longer Tr. Assuming that h0 is unity, and given an
RT estimate Ta, a clean speech estimate ŝt(Ta) is derived from (6.1) and (6.2):

ŝt(Ta) = xt −
t∑

j=1

hj(Ta) [ζ(Ta)xt−j − n]− n. (6.3)

To estimate the weights hj, a two-stage reverberation model is assumed. Early
reverberation is complicated, but it is ignored here, because it only influences short-
term spectra, which can be compensated by the acoustic model. On the contrary,
the ASR performance is mainly degraded due to late reverberation. There, the
sound energy density decays exponentially with time according to Polack’s statistical
model [72]. The threshold between early and late reverberation shall be denoted by
ξ. Hence, the weights hj are determined as

hj(Ta) =

{
0 (1 ≤ j ≤ ξ) ,
γ exp(−6 ln 10

Ta
∆τj) (ξ < j) ,

(6.4)

where ∆τ is the frame shift and γ is a subtraction parameter to be set. With (6.4)
and assuming constant ζ(Ta), the result of (6.3) is similar to spectral subtraction
[16]. If the estimated speech power spectrum ŝ is less than εx, it is substituted by
εx, where ε is a flooring constant. The flooring probability φ is defined as the ratio
of the number of floored DFT bins in εx to the number of total DFT bins.

Two observations are exploited to estimate Tr from flooring probabilities φ. First,
when varying the RT estimate Ta in (6.3), φ increases monotonically with Ta for

129



6. Feature de-reverberation for automatic speech recognition

constant ζ, because the weights hj increase with Ta. This is modeled as a linear
relationship with inclination ∆φ. Second, φ increases with Tr, since the assumption
of constant ζ leads to an overestimation of the subtrahend in (6.3) for longer Tr, and
hence, oversubtraction. Therefore, Tr has a linear relationship with ∆φ, which can
be modeled as

Tr = a∆φ − b (6.5)

with two empirically detemined constants a and b. Thus, to compute Tr, first the
ratio φ(Ta) is calculated for various Ta in steps of 0.05 s. From this, ∆φ is obtained
by least-squares regression, and Tr and ŝ(Tr) are computed according to (6.5) and
(6.3).

6.1.1.2 BLSTM-DRNN feature enhancement

In addition to blind de-reverberation, spectral enhancement is performed based on
supervised DNN training. To highlight the connection of this feature enhancement
method and the one proposed earlier by Ishii et al. [93], the term ‘de-noising auto-
encoder’ (DAE) is used interchangably with DRNN. To model the context needed
for compensating late reverberation, LSTM-DRNNs are the method of choice, which
deliver state-of-the-art performance in ASR also in real reverberated and noisy
speech [241]. As input features and training targets, Log-FB features with 24 Mel
frequency bands are used. In addition, log power spectra, for comparison with blind
de-reverberation on similar features, are considered. In the following, the network
input will be denoted by x̃t.

Delta coefficients are added to the filterbank features to capture dynamics at the
feature level, which gives a slight performance gain. Since the level of the RealData
utterances was found to be very low (below -30 dB) in general, these were amplified
to a peak level of -24 dB. This is important because the features x̃t are scale-sensitive.

Since feature enhancement is investigated in combination with utterance-based
ASR adaptation in the present study, future context within a sequence can be
exploited. Here, this is done by considering BLSTM-DRNNs.

6.1.1.3 Integration

To integrate spectral subtraction and RT estimation with the BLSTM-DRNN feature
enhancement, one can simply use the output of the former as input for the latter,
i.e., x̃t = log(Bŝt(Tr)), where B is the Mel matrix. Alternatively, one can use
early (feature level) fusion of unprocessed and de-reverberated speech, i.e., x̃t =
log[Bxt; Bŝt(Tr)]. This is similar in spirit to the proposal by Seltzer et al. [183]
to use a model-based estimate of additive stationary noise in noise-robust neural
network training; however, here the noise is of convolutive nature. By providing
de-reverberated features, an initial solution for the output features is given to the
network, and by having access to the original features, the network can potentially
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compensate some distortions by the blind enhancement algorithm. Finally, data-
based fusion of ŝt(Ta) for different Ta is investigated, instead of using a heuristic
to compute Tr and ŝt(Tr) from multiple ŝt(Ta). In particular, the input features
x̃t = log[Bŝt(0.3 s); Bŝt(0.5 s); Bŝt(0.7 s); Bxt] are used.

Note that enhanced ASR features are directly generated from the BLSTM-DRNN
outputs by applying the DCT (to obtain MFCCs) and other linear transforms (cf.
below).

6.1.1.4 ASR baseline

The ASR baseline used for the present study is based on the Kaldi speech recognition
toolkit [152] and is an improved version of the ASR baseline provided by the REVERB
Challenge organizers, which is implemented with HTK [245]. A clean triphone
recognizer is trained on the WSJCAM0 training set, while a multi-condition triphone
recognizer is trained by repeating the HMM training steps using the REVERB
multi-condition training set. The standard 5 k WSJ language model is used, whose
weight is set to 15.

In this paper, two major improvements are implemented compared to the HTK
baseline. These are motivated by their success on the noise-robust ASR task in the
CHiME Challenge (cf. Section 5.2). First, while the HTK baseline employs standard
MFCCs plus delta coefficients, here LDA (cf. Section 3.7.1.1) is used with context
size TL = TR = 4, keeping the 40 first components. During model training on LDA
features, after every other iteration (2–10) STC matrices are estimated (cf. Section
3.7.1.2). In case of MCT, LDA and STC matrices are estimated on the REVERB
multi-condition training data.

Second, while the HTK baseline performs adaptation by fMLLR on all test
utterances of a specific test condition, here basis fMLLR is used for robust per-
utterance adaptation [153]. The bases are estimated on the training set of each
recognizer (clean, multi-condition). On the SimData and RealData sets, the
WERs of the proposed ASR baseline are 19.42 % and 41.4 % (HTK multi-condition
+ CMLLR baseline: 25.16 and 47.2 %). For reference, let us note that the WER of
the clean recognizer on the clean WSJCAM0 development set is 8.26 % (HTK clean
baseline: 10.94 %). To perform ASR on pre-processed data (by de-reverberation
methods), the clean and MCT recognizers are evaluated with and without adaptation
to the processed data, as well as re-trained recognizers obtained by performing the
MCT step (including the estimation of the LDA and MLLT transforms and the
CMLLR basis) with the pre-processed multi-condition training set.

6.1.1.5 De-reverberation parameterization

For both de-reverberation methods, short-time spectra of 25 ms frames at 10 ms
frame shift are extracted. For the blind de-reverberation method, parameters are set
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Table 6.1: REVERB development set results obtained with a clean recognizer
and BLSTM-DRNN feature enhancement trained with different input features and
training targets. Significant digits reflect the different sizes of the SimData and
RealData sets. xt denotes a short-term power spectrum.

WER [%] SimData RealData
Input Target

Power spectral domain enhancement
log xt log st 24.99 75.4

Mel filterbank domain enhancement
log Bxt log Bst 21.22 56.5
log Bŝt(Tr) log Bst 22.97 56.9
Mel filterbank domain enhancement; feature level fusion
log[Bxt; Bŝt(Tr)] log Bst 20.02 61.8
log[Bxt; Bŝt(Ta)] log Bst 19.06 52.5
Ta ∈ {0.3, 0.5, 0.7}s

as follows: ξ = 9, γ/ζ = 5, ε = 0.05, a = 0.005, and b = 0.6. BLSTM-DRNN weights
are estimated on the task to map the multi-condition training set of the REVERB
Challenge to the clean WSJCAM0 training set, in a frame-by-frame manner. The
networks are trained through stochastic on-line gradient descent with a learning rate
of 10−7 (10−6 for power spectrum features) and a momentum of 0.9. Weights are
updated after mini-batches of |B| = 50 utterances (feature sequences). Input and
output features are mean and variance normalized on the training set. All weights
are randomly initialized with Gaussian random numbers (µ = 0, σ = 0.1). Zero mean
Gaussian noise (σ = 0.1) is added to the inputs in the training phase, and an early
stopping strategy is used in order to further help generalization. The experiments
are done using the GPU enabled BLSTM-RNN training software CURRENNT
written by the author and his colleague, which is publicly available and described in
Section 3.5.5. The network topology used in this study is motivated from the feature
enhancement experiments on the CHiME-2013 data (cf. Section 5.2). Networks
have three hidden layers each consisting of 128 LSTM units for each direction, but
without using sub-sampling layers, which were found to decrease performance on the
REVERB data.

6.1.2 Results

As evaluation measure for de-reverberation, the WER of the ASR back-end is
considered. To test WER differences across systems for statistical significance,
the Wilcoxon signed rank test of speaker WER (cf. Section 2.1.3.2) is used at a
significance level of α = .05.
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First, the results obtained by different system architectures for the BLSTM-DRNN
front-end are investigated in a clean recognizer without model adaptation. Results are
shown in Table 6.1. Considering straightforward mappings from reverberated to clean
log spectral features, it is observed that filterbank features perform significantly better
than power spectrum features, both on SimData and RealData, while decreasing
computational complexity. This might be due to less overfitting in a smaller and
less correlated feature space. While a näıve cascade of blind de-reverberation and
BLSTM-DRNN does not improve performance (25.12 / 62.6 %), early fusion of
reverberated and de-reverberated features gives a significant performance gain of
1.2 % absolute on SimData (20.02 %). Dispensing with the rule-based fusion of
de-reverberated spectra with various Ta in favor of a data-based approach yields
another gain of 1.0 % absolute on SimData. Only the latter combination approach
is better on RealData than the standard feature enhancement approach.

Second, the filterbank domain BLSTM-DRNN (‘LSTM’) and the BLSTM-DRNN
using multiple ŷt as input (‘Fusion’) are compared in recognizers with and without
MCT and adaptation. As baselines, unprocessed features (‘None’) or spectral
subtraction based de-reverberation (‘SSub’) are considered. Results are shown
in Table 6.2. As expected, MCT is highly effective even without pre-processing;
combined with adaptation, remarkable WERs of 19.42 and 41.4 % are obtained on
SimData and RealData (clean: 48.22 / 91.7 %). The effectiveness of MCT can
also be attributed to the estimation of LDA-STC on noisy data (using MCT in a
recognizer without LDA-STC, 27.48 / 52.8 % WER are reached). As it seems, it
is hard to compensate the distortions in reverberated speech with only adaptation
(36.93 % WER). A notable trend is that the blind de-reverberation method is only
effective for ASR if the recognizer is re-trained using the de-reverberated training
set. In this case, it provides an additional WER reduction by 2.2 % relative (19.42
to 18.99 %).

In contrast, data-based de-reverberation (LSTM) gives good results in the clean
recognizer without any back-end modification (21.22 % WER). This result is signifi-
cantly better than MCT (23.41 %) and indicates a good match between the clean
and the enhanced features. On the RealData set, LSTM outperforms spectral
subtraction when used with the clean recognizer, which indicates good generalization
to unseen conditions despite its data-based nature. On SimData, the clean recog-
nizer with the Fusion front-end and adaptation significantly outperforms the MCT
recognizer with adaptation (17.43 % vs. 19.42 %). When using the MCT recognizer
in combination with pre-processing but without adaptation, performance decreases –
this can be explained by a mismatch of reverberated and de-reverberated features,
and it can be observed for both LSTM and SSub front-ends. Using recognizer
re-training with LSTM enhanced data only slightly improves performance (18.68 to
17.85 % WER), and not at all for Fusion (17.43 to 17.62 %); this might be because
the enhanced training set becomes ‘too close’ to the clean features and remaining
distortions on the development set are non-linear. Conversely, the gains by combining
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Table 6.2: ASR results on the REVERB Challenge development set, obtained using
clean, multi-condition trained (MCT) and re-trained MCT recognizers, with and
without basis CMLLR adaptation. SSub: Model-based de-reverberation by spectral
subtraction (Section 6.1.1.1). LSTM: Feature enhancement by bidirectional LSTM-
DRNN (Section 6.1.1.2). Fusion: Early fusion of original and processed spectral
features in the BLSTM-DRNN (see Section 6.1.1.3).

WER [%] SimData RealData
Processing Processing

Recognizer None SSub LSTM Fusion None SSub LSTM Fusion

Clean 48.22 57.49 21.22 19.06 91.7 84.2 56.5 52.5
+adaptation 36.93 38.94 18.68 17.43 80.1 71.7 48.9 44.0

MCT 23.41 46.98 26.36 26.59 47.8 55.3 43.2 39.5
+adaptation 19.42 24.39 18.04 17.80 41.4 42.0 37.7 36.5

Re-trained MCT – 21.39 20.13 18.94 – 46.2 50.1 44.4
+adaptation – 18.99 17.85 17.69 – 40.5 44.3 40.4

input features become less pronounced with recognizer re-training and adaptation.

On RealData, no significant gains are obtained in general by early fusion.
However, the Fusion front-end in the MCT recognizer with adaptation significantly
outperforms the baseline MFCC and spectral subtraction front-ends in the same
system (36.5 vs. 41.4 / 42.0 % WER). Interestingly, recognizer re-training significantly
decreases performance of the LSTM front-end on RealData, which indicates an
even stronger mismatch between enhanced training and test features than it is the
case on SimData. In contrast, the performance of the spectral subtraction method
in a MCT recognizer with adaptation is slightly improved (40.5 % vs. 42.0 %) by
re-training.

6.1.3 Conclusions

An effective combination of model- and data-based de-reverberation by spectral
subtraction and BLSTM-DRNN feature enhancement for reverberant ASR has
been introduced. Results on the 2014 REVERB Challenge data indicate significant
gains with respect to traditional multi-condition training and adaptation. Large
improvements can be obtained even with a clean recognizer back-end; furthermore,
in unseen acoustic conditions the data-based method achieves notable performance
compared to the model-based method. Furthermore, for better integration with
the ASR back-end, improved cost functions can be investigated for DRNN training,
taking account parameters of the ASR back-end instead of just optimizing distances
in the spectral domain. To alleviate the need for suited multi-condition training data
and to improve generalization, weakly supervised training of feature enhancement
using physical models of reverberation will be investigated in addition. Finally, the
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spectral feature fusion scheme could be extended to multi-channel input, similar
to a recent study by Liu et al. [117] which proposes such fusion for DNN acoustic
modeling. In the next section, a cascading approach will be presented for combining
multi-channel and single-channel front-ends. Furthermore, discriminative methods,
which have proven effective for reverberated speech [192], will be investigated in the
next section.

6.2 Combination with multi-channel front-end

In this section, further investigations on the automatic recognition of reverberated
speech, as presented by the author and his colleagues in [231], will be summarized.
In line with the objectives of this thesis, the main goal of the following study is to
further improve the ASR back-end in order to show that front-end enhancement is
complementary to state-of-the-art ASR. To this end, discriminative GMM-HMM
training, DRNN-based acoustic models and improved language models are investi-
gated. Furthermore, it will be shown that the BLSTM-DRNN feature enhancement
method introduced in the previous section can be effectively used to further enhance
speech that has been processed by a multi-channel beam-forming method. Again,
the evaluation is carried out on the REVERB data (cf. Section 2.2.1.3).

6.2.1 Experiments

Figure 6.2 shows a schematic overview of the proposed ASR techniques. Single-
or multi-channel audio is transformed to the time-frequency domain. In case that
multiple channels are available, the direct sound is enhanced by estimating the
direction of arrival (cross-spectrum phase analysis, CSP) and subsequent delay-
and-sum (DS) beamforming. The resulting complex spectrum is converted to a
power spectrum and passed through a Mel filterbank. The logarithmic filterbank
(Log-FB) outputs are passed to a DRNN for single-channel enhancement, as in the
previous section. As before, ASR features are generated directly from the enhanced
Log-FB features, by applying feature transformations including DCT, unsupervised
adaptation, etc. (cf. below). These ASR features are modeled by a GMM acoustic
model (AM), whose likelihoods are combined with the language model (LM) for
decoding. Alternatively, a DRNN AM can be used on top of enhanced Log-FB
features. In this case, the GMM and DRNN AMs are fused by a multi-stream HMM.

6.2.1.1 Beamforming after DoA estimation

To enhance the direct sound from the speech source in multi-channel mixture signals,
a frequency domain delay-and-sum beamformer is applied [98]. Given C microphones,
the complex STFT spectra zt(c), c = 1, . . . , C are summed to the enhanced complex
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Figure 6.2: Combination of multi- and single-channel front-end enhancement for
de-reverberation: Flowchart of the proposed system, using beamforming (CSP+DS)
and DRNN enhancement in the front-end, and GMM and/or DRNN acoustic models
(AM) in the back-end.

spectrum ẑt,

ẑt =
∑
c

zt(c)⊗ exp(−ωτ1,c), (6.6)

where ω denotes the angular frequencies and  the imaginary unit. The arrival time
delay of the c-th microphone from the first microphone τ1,c is related to the direction
of arrival (DoA) and is estimated by the cross-spectrum phase (CSP) analysis, which
uses a cross-power spectrum between two microphones [106] as

τ1,c = arg maxF−1

[
zt(1)⊗ zt(c)

∗

|zt(1)||zt(c)|

]
, (6.7)

where F is the STFT operation and * denotes the complex conjugate. To improve
the performance of the original CSP method, the post-processing steps described by
[194] are added. For the purpose of further processing, the power spectrum xt = |ẑt|2
is computed.

6.2.1.2 DRNN feature enhancement

The DRNN feature enhancement strategy is similar to Section 6.1, the main differences
lying in the feature representation and pre-processing. The training task for single-
channel DRNN feature enhancement is to map the reference channel features of the
multi-condition set of the REVERB Challenge to the features of the clean WSJCAM0
training set, in a frame-by-frame manner. For the eight-channel case, the beamformer
is applied on the multi-condition set, and the resulting features form the training
inputs. Log-FB features with B = 23 Mel bands are used as input and output features,
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and log spectral subtraction (as in Section 5.2) is performed per utterance, so that
cepstral mean normalized MFCCs can be obtained simply by applying a discrete
cosine transformation (DCT) to the DRNN output yt. In practice, performing
another CMN after DCT turned out to give better performance, because the actual
network outputs tend not to have exact zero mean. Using normalized Log-FB, the
peak level scaling of the utterances used in the previous system (Section 6.1) can
also be dispensed with. Input and output features are globally variance normalized
on the training set. Thus, all feature transformations at test time are suitable for
utterance-based processing.

6.2.1.3 GMM-HMM back-end

As in Section 6.1, the GMM-HMM acoustic model uses an LDA-STC front-end where
nine consecutive frames of 13 MFCC features (coefficients 0–12) are reduced to 40
components. STC transforms are estimated after every other iteration of model
training up to iteration 10. To use MCT with front-end enhancement (beam-forming
and DRNN), the multi-condition set is processed by the same enhancement steps.
Using the original multi-condition training set in combination with enhancement
delivered inferior results, sometimes even falling below the clean training result.

With respect to the ASR baseline presented in Section 6.1, three improvements
are implemented. First, after conventional ML training of the GMM parameters,
discriminative training by the bMMI criterion (3.141) is employed. Second, instead of
the standard MAP approach (3.123), MBR decoding (3.127) is performed. Third, a
tri-gram language model is included in the experiments. Experiments are performed
using the standard 5 k WSJ bi-gram and tri-gram language models. In most of the
experiments, the language model weight is fixed at LMW = 15. The open-source
Kaldi toolkit is used to implement this improved GMM-HMM back-end.

6.2.1.4 Multi-stream DRNN-GMM-HMM acoustic model

As an extension to the GMM-HMM back-end, DRNN acoustic modeling in a multi-
stream HMM approach (cf. Section 3.7.2.3) is considered. To integrate feature
enhancement with the multi-stream HMM approach, instead of cascading both as in
previous work by the author and his colleagues [53], here the fact is exploited that
feature enhancement is performed by a DRNN, and thus the enhancement layers can
be stacked with the recognition layers, which allows backpropagation of the recogni-
tion error to the enhancement layers. More precisely, given a feature enhancement
DRNN with K hidden layers, first the the weight matrices W(K+2), . . . ,W(K+K′+2)

of a DRNN with K + K ′ + 1 hidden layers are trained, i.e., the output layer of
the feature enhancement DRNN becomes the K + 1-th hidden layer of the stacked
DRNN. The error function is the cross-entropy between phoneme posteriors and
phoneme labels (3.43). After convergence, all weight matrices W(1), . . . ,W(K+K′+2)
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are re-trained until convergence, using the same error function. Thus, the feature
enhancement network is re-trained discriminatively so as to enable good phoneme
classification instead of optimizing the squared error in the enhanced features. The
‘stacking’ procedure also resembles pre-training of the first K hidden layers in a
de-noising auto-encoder scheme [204].

In the proposed ASR system, the GMM stream emission probabilities p(xt|st)
are always calculated using features before DRNN enhancement. In particular, the
GMM model parameters exactly correspond to those obtained using multi-condition
discriminative training (on beamformed data in the 8-channel case). This improved
performance over using enhancement in both streams, probably because it makes
both streams carry more complementary information. For the multi-stream HMM
back-end, the stream weight of the acoustic feature vector xt is set to 1.2.

6.2.1.5 Network training

The network topology used in this study was determined based on limited tuning
on the REVERB development set. In the case of beamformed input, networks have
two hidden layers each consisting of 128 LSTM units for each direction (N = 2). For
single-channel input, an additional hidden layer is used (N = 3), reflecting the fact
that the single-channel enhancement task is more complex. All weights are randomly
initialized with Gaussian random numbers (µ = 0, σ = 0.1).

The DRNNs are trained through stochastic on-line gradient descent with a learning
rate of 10−6 and a momentum of 0.9. Weights are updated after mini-batches of
|B| = 50 utterances (feature sequences). Zero mean Gaussian noise (σ = 0.1) is
added to the inputs in the training phase. An early stopping strategy is used to
minimize overfitting, by evaluating an error function on the development set for
each training epoch and selecting the best network accordingly. In this section, the
guidelines of the REVERB Challenge [104] are followed exactly, in order to enable
a fair comparison to the state-of-the-art. Evaluating the the sum of squared errors
function (3.41) on the development set would not comply with these guidelines, as it
would require using the clean development data. Thus, in contrast to the evaluation
in Section 6.1, now the ASR performance in terms of WER is used directly.

The networks are trained for a maximum of 50 epochs, and the WER obtained
with the enhanced features and the clean trained GMM-HMM acoustic model using
the LDA-STC front-end is measured on the SimData and RealData development
sets for every training epoch. The best network in terms of the average of the
SimData and RealData WERs is used as the final network. It was found that the
optimal performance is obtained after only 6 epochs for the beamformed input, and
after 17 epochs for the single-channel input. The corresponding WER curves are
shown in Figures 6.3a and 6.3b.

For DRNN acoustic modeling, three hidden layers (K ′ = 3) with 50 LSTM units
for each direction are used on top of the enhancement layers. A learning rate of 10−5
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Figure 6.3: DRNN feature enhancement training: WER curves on development
set, clean training, LDA-STC, no adaptation, tri-gram LM. Baseline WER without
DRNN: (a) 43.4 / 89.6 %; (b) 24.9 / 72.2 % (SimData / RealData).

and input noise with standard deviation σ = 0.6 is used. Phoneme alignments are
obtained by the multi-condition trained GMM-HMM recognizer with the LDA-STC
front-end on the Challenge multi-condition training set. Early stopping is done on the
frame-wise phoneme error obtained on a held out part of the multi-condition training
data, consisting of utterances from 10 speakers. As per the REVERB Challenge
regulations [104], it is not allowed to use the phoneme error on the development data.
Both for DRNN feature enhancement and acoustic model training, the open-source
CURRENNT software by the author and his colleagues is used (cf. Section 3.5.5).

6.2.1.6 Search parameter optimization

For the final ASR system, the language model weight was tuned on the (unweighted)
average WER on the development SimData and RealData sets, by rescoring the
decoding lattices accordingly. This is done because front-end enhancement changes
the acoustic model likelihoods in a way that the optimal language model weight
differs from the standard front-end (cf. Section 5.2). The best development set
language model weight (without adaptation) is also used for obtaining the first-pass
hypothesis in fMLLR transformation estimation. Additionally, the width of the beam
search both in first-pass decoding and lattice generation is increased to avoid search
errors which might cause performance drops.

6.2.1.7 System combination

System combination is performed to investigate whether the DRNN feature enhance-
ment system and the DRNN acoustic model system are complementary. For system
combination, the Recognizer Output Voting Error Reduction (ROVER) scheme
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6. Feature de-reverberation for automatic speech recognition

Table 6.3: Results on the REVERB development set with improved GMM-HMM
back-end using MCT, on SimData and RealData. Single-channel MFCC front-end,
without pre-processing, LDA-STC transformation. bg/tg: bi-gram/tri-gram language
model.

fMLLR DT LM MBR WER [%]
(bMMI) Sim Real

– – bg – 23.41 47.80√
– bg – 19.42 41.42

–
√

bg – 17.34 46.48√ √
bg – 15.53 40.60√ √
tg – 12.28 31.05√ √
tg

√
12.05 30.73

implemented in NIST’s scoring toolkit1 is used for reproducibility. First, 1-best
hypotheses with word level posteriors (‘confidences’) are generated from the decoding
lattices of each system. Then, alignment of the hypotheses is performed by dynamic
programming. Finally, for each aligned segment a weighted majority vote is taken.

6.2.2 Results

6.2.2.1 Baseline ASR results

In a first step, the gains by discriminative GMM acoustic model training and tri-gram
language modeling, as well as adaptation, are assessed (cf. Table 6.3). Performing
MCT with the bMMI criterion (discriminative training) gives a boost on SimData
(6 % absolute without adaptation, 4 % absolute with adaptation), but only a slight
gain (≈ 1 %) on RealData, probably because of the mismatched condition. Next,
choosing a tri-gram language model instead of a bi-gram one drastically improves
performance by about 21 / 24 % relative on SimData / RealData. This shows the
importance of adding domain knowledge to achieve increased robustness. Finally,
using MBR decoding slightly improves WER both on SimData and RealData. All
in all, the performance gain just by improving the ASR back-end are quite impressive,
resulting in 52 % / 35 % relative reduction in WER compared to the multi-condition
/ fMLLR REVERB baseline [104].

6.2.2.2 Results with beamforming and/or spectral enhancement

Table 6.4 shows selected results with single- and multi-channel enhancement. First,
a clean recognizer (with fMLLR adaptation) is used to show how well the front-end
performs in a recognizer that has never seen noisy data in training (recall that

1ftp://jaguar.ncsl.nist.gov/pub/sctk-1.2c.tgz
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6.2. Combination with multi-channel front-end

Table 6.4: WER obtained by single- and multi-channel front-ends with and without
feature enhancement, on the REVERB development set, using the GMM-HMM back-
end, LDA-STC and basis fMLLR, tri-gram LM, MBR. # ch: number of channels;
Enh: DRNN enhancement. Optimized: tuning of LM weight and beam width in
decoding. 1 bMMI training using clean data.

WER [%] Back-End
Front-End Clean trained MCT + DT (bMMI) Optimized
# ch Enh Sim Real Sim Real Sim Real Sim Real

1 – 33.21 77.76 14.92 35.20 12.05 30.73 11.22 30.77
1

√
13.99 35.03 13.51 32.69 10.77 28.30 10.44 26.30

8 – 16.42 54.49 9.77 26.34 7.94 23.82 7.49 23.91
8

√
9.72 26.49 9.94 24.25 7.91 22.04 7.67 21.39

Oracle 5.96 10.12 – – 5.011 10.121 5.061 9.911

for the clean recognizer, the fMLLR basis is computed on clean data as well). It
can be seen that DRNN enhancement on the single-channel input gives reasonable
results with the clean recognizer, significantly outperforming beamforming on its
own. However, combination of both in a straightforward cascade gives by far the
best result, improving by 71 % / 66 % relative on SimData and RealData over the
baseline without front-end processing.

When the back-end is trained with multi-condition data, DRNN enhancement
improves for all cases except the 8-channel SimData. Furthermore, if the search
parameters are optimized, the performance difference between features with and
without DRNN enhancement becomes larger on RealData (both for 1-channel and
8-channel). This probably shows that for DRNN enhanced features, there are some
search errors in the baseline ASR due to a different dynamic range of acoustic model
likelihoods. Furthermore, it was found that they gave generally higher acoustic
likelihoods, which requires adjusting the LM weight.

All in all, while the performance gains by enhancement are notable, they are still
far from the performance obtained in clean conditions, especially on RealData. It
has to be noted, though, that the ASR task of RealData itself seems much harder
than the SimData task, when eliminating reverberation and noise as confounding
factors – the WER in clean conditions is about twice as high. This could be due
to a mismatch in accent and/or speaking style, since the MC-WSJ-AV corpus was
recorded in a different site and dialect region than the WSJCAM0 corpus, and a
different recording protocol was used (speakers standing in a meeting room, rather
than sitting in a sound-proof booth).

141



6. Feature de-reverberation for automatic speech recognition

Table 6.5: REVERB development (Dev.) and evaluation set results (SimData) for
selected 1-channel and 8-channel systems, as well as system combination. Evaluation
set results are given per room and microphone distance (near / far). All with MCT,
LDA-STC, basis fMLLR, bMMI, tri-gram LM, MBR, optimized search parameters.
BF: beamforming. Enh: DRNN enhancement.

WER [%] Dev. Evaluation set
Avg Room 1 Room 2 Room 3 Avg

near far near far near far

1-channel systems
REVERB baseline 25.16 16.23 18.71 20.50 32.47 24.76 38.88 25.26
GMM-HMM 11.22 6.37 7.67 8.76 16.22 10.66 20.20 11.65
GMM-HMM (Enh) 10.44 6.39 7.52 8.41 14.15 9.47 15.30 10.21

8-channel systems (BF)
GMM-HMM (I) 7.49 5.39 5.93 6.38 9.71 6.87 12.47 7.79
DRNN+GMM-HMM (II) 6.48 5.32 5.76 6.19 9.00 6.65 10.78 7.28
GMM-HMM (Enh) (III) 7.67 5.49 6.12 6.80 9.69 7.13 11.28 7.75

8-channel systems (BF) – System combination
ROVER I+II 6.58 5.00 5.44 6.04 8.95 6.70 11.04 7.20
ROVER II+III 6.44 5.08 5.66 5.95 8.58 6.72 10.10 7.02
ROVER I+III 7.15 5.29 5.98 6.24 9.34 6.98 11.19 7.50
ROVER I+II+III 6.75 5.30 5.88 6.06 9.00 6.89 11.07 7.37

Oracle enhancement
GMM-HMM 5.06 5.34 5.55 6.07 5.65

6.2.2.3 Test set evaluation and system combination

Tables 6.5 and 6.6 shows the detailed results on the evaluation set (Table 6.5:
SimData / Table 6.6: RealData) obtained by the 1-channel and 8-channel systems,
with and without DRNN enhancement. In the 1-channel case, the best result is
10.21 / 26.73 % WER (SimData / RealData). Comparing the results obtained
at the ‘near’ microphone distance with the 8-channel front-end to the oracle results
on SimData, one can observe that the performance is already quite close (to be
fair, one has to look at the GMM-HMM results). However, at the ‘far’ distance a
significant difference remains. The same holds for the RealData set, which can be
explained by the mismatched training / test conditions.

To investigate whether DRNN enhancement and acoustic modeling are comple-
mentary, let us first outline the results with the multi-stream DRNN+GMM-HMM
recognizer. It obtains 6.48 / 7.28 % WER on SimData (development / evaluation
set), which is the best single system result for SimData. However, the performance
on RealData is lower than the one of the DRNN enhancement GMM-HMM system.
This could be due to the different cost functions for enhancement and acoustic
modeling, which apparently leads to a better modeling of the SimData which is
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Table 6.6: REVERB development and evaluation set results (RealData) for selected
1-channel and 8-channel systems, as well as system combination. Evaluation set
results are given per room and microphone distance (near / far). All with MCT,
LDA-STC, basis fMLLR, bMMI, tri-gram LM, MBR, optimized search parameters.
BF: beamforming. Enh: DRNN enhancement.

WER [%] Dev. Evaluation set
Avg. near far Avg

1-channel systems
REVERB baseline 47.23 50.74 47.57 49.16
GMM-HMM 30.77 31.84 30.93 31.39
GMM-HMM (Enh) 26.30 25.39 28.06 26.73

8-channel systems (BF)
GMM-HMM (I) 23.91 20.25 23.16 21.71
DRNN+GMM-HMM (II) 22.07 19.74 23.63 21.69
GMM-HMM (Enh) (III) 21.39 17.66 22.52 20.09

8-channel systems (BF) – System combination
ROVER I+II 22.60 19.26 22.01 20.64
ROVER II+III 20.24 16.96 22.25 19.61
ROVER I+III 21.20 17.57 21.10 19.34
ROVER I+II+III 21.62 17.76 22.62 20.19

Oracle enhancement
GMM-HMM 9.91 8.47

close to the training data while worsening the results on the mismatched RealData
– recall that similar differences can be seen for the ML vs. bMMI objectives in GMM
training, cf. Table 6.3. It is also in accordance with the fact that DRNN acoustic
modeling worked better than feature enhancement on the CHiME data, which do
not exhibit a strong training / test mismatch (cf. Section 5.2).

Let us now investigate the combination of two or three of the 8-channel systems.
As it seems, the best combination on the development set is the DRNN acoustic
model with the DRNN enhancement system. This combination achieves the best
development set WER on SimData and RealData, indicating a certain degree
of complementarity between these approaches although they use similar modeling
techniques (both involving a DRNN and a GMM). This combination also achieves
the best average WER on the evaluation set, reaching down to 7.02 and 19.61 %
WER on SimData and RealData.

6.2.3 Conclusions

In this section, the complementarity of beam-forming and BLSTM-DRNN single-
channel feature enhancement were shown, thereby uniting physical model based
and training based approaches in an effective system. By late fusion, it was also
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6. Feature de-reverberation for automatic speech recognition

possible to combine performance gains from DRNN feature enhancement and DRNN
acoustic modeling. However, using the former as front-end for the latter did not
significantly improve the results. This can be explained by the fact that using feature
enhancement layers is a kind of pre-training for the DRNN acoustic model weights,
and pre-training does not always improve over a suitable random weight initialization
[29].

The presented ASR system was submitted by the author and his colleagues
as the MERL / MELCO / TUM system to the REVERB Challenge 2014 [231]
and, according to the official results2, achieved the second best performance on
the RealData among the submissions of the participants exactly following the
guidelines and not being affiliated with the organizers – second only to the one by
Tachioka et al. [194], which, however, uses as many as sixteen acoustic models.

The proposed system architecture allows both multi-channel and single-channel
processing. In particular, the proposed integration of (physical) model based multi-
channel and data based single-channel processing has the advantage that the models
do not have to be re-trained for different microphone array setups (as would likely
be the case if the input features from the eight channels were just concatenated for
DRNN enhancement).

The system has been designed to allow utterance based processing, but needs
multiple recognition passes at this stage. It is thus suitable, e.g., for server-based
ASR systems. Most of the system components could be used in an on-line ASR
system as-is or with small modifications. The CSP+DS front-end is fully on-line
capable. Low-latency enhancement could be done by using unidirectional DRNNs
(possibly with a small lookahead); it remains to evaluate the performance of this
setup.

From the results, it is evident that there is a fundamental limitation to the
performance of training-based approaches in a mismatched condition setup, such
as the RealData scenario. In a practical application one could perform semi-
supervised training of the DRNN enhancement and acoustic model on ‘field data’
(in the Challenge scenario, this would be other data from the MC-WSJ-AV corpus,
which was not allowed to be used). This, along with other methods to improve
generalization, such as weight noise for DRNNs [64], will be a promising direction
for future research.

2http://reverb2014.dereverberation.com/result asr.html
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7

Applications in Music Information
Retrieval

If a composer could say what he had to say in words he would not bother
trying to say it in music. – Gustav Mahler

Polyphonic music is a natural, practically relevant, and challenging test bed for multi-
source recognition algorithms. This is because polyphonic music – similar to speech
– is associated with symbolic information (the notes played, the conveyed emotion,
the text sung by a lead vocalist, etc.), yet this information is naturally embedded in
a complex mixture of audio signals (vocalist, instrumentalists, percussion and crowd
noise, etc.) Thus, after having discussed a variety of speech applications, this last
application chapter will be devoted to music processing.

In addition, the first two sections will go beyond traditional separation and
transcription tasks, and deal with ‘the voice behind the words’, or computational
paralinguistics [168], in polyphonic music. As highlighted by the author and his
colleagues [221], the synergies between multi-source recognition in polyphonic music
and environmentally robust speech processing are obvious: for example, there is a
direct correspondence between multi-talker ASR and automatic music transcription.

7.1 Singer characterization

In the field of speech processing, a large body of literature exists on speaker char-
acterization, cf., e.g., [6, 130, 214, 227]. Schuller and Batliner [174] introduced the
taxonomy of speaker traits (long-term attributes) and states (short-term conditions).
An analogous taxonomy can be established for singer characterization, that is, auto-
matically recognizing meta data of the performing vocalist(s) in recorded music. Yet,
singer characterization is currently still an under-researched topic in MIR, compared
to speech processing. As some of the first studies in the field, gender, age, and race
recognition have been introduced by the author and his colleagues [175, 213, 218].
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In this section, the author’s and his colleagues’ experiments with gender and age
recognition as previously presented in [213] are described. Singing style recognition,
as a shorter-term phenomenon, is addressed in the following section (Section 7.2).

Speaker trait recognition is often used in dialog systems to improve service quality
[19], yet another important area of application is forensics where it can deliver cues
on the identities of unknown speakers [94]. Likewise, applications in music processing
can be found in categorization and query of large databases with potentially unknown
artists – that is, artists for whom not enough reliable training data is available for
building singer identification models as, e.g., in [127]. Robustly extracting a variety
of meta information can then allow the artist to be identified in a large collection
of artist meta data, such as the Internet Movie Database (IMDB). In addition,
exploiting gender information is known to be very useful for building models for
other MIR tasks such as automatic lyrics transcription [126].

Current research in speech processing suggests that the automatic determination
of age in full realism is challenging even in clean, spoken language, and even gender
recognition is far away from perfection if a representative sample of the population
is taken [176]. In comparison to speech, recognition of singer traits is expected to be
an even more challenging task due to pitch variability, influence of voice training,
and presence of multiple vocalists as well as instrumental accompaniment. The latter
particulary motivates the consideration of the topic for this thesis. The goal is to
show that by separating the leading vocals, the task of singer characterization is
considerably simplified. In this respect, it is promising that an earlier study by the
author and his colleagues [218] showed that gender identification of unseen artists in
recorded popular music can be performed with over 90 % accuracy in full realism, by
extracting the leading voice through an extension of non-negative matrix factorization
(NMF) [36], and using BLSTM-RNN classification.

The following investigation builds on that study, extends the findings by combined
percussive/harmonic and leading voice separation by NMF, and adds the recogni-
tion of age as a new dimension. For evaluation of automatic singer-independent
classification, the UltraStar database as presented in Section 2.2.2.2 will be used.

7.1.1 Experiments

A major part of the experiments is devoted to finding the optimal preprocessing by
source separation for recognition of vocalist gender and age. To this end, harmonic
enhancement as in [77, 218] and extraction of the leading voice as in [36], as well as
a combination of both, are investigated.

7.1.1.1 Enhancement of Harmonic Parts

Enhancement of harmonic parts is performed according to the generic, weakly
supervised scheme outlined in Section 3.2.1. After decomposing the STFT magnitude
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spectrogram into NMF components, an SVM is used to to discriminate between
components corresponding to percussive or non-percussive signal parts. The classifier
is trained on a manually labeled set of NMF components extracted from popular
music as described in [170]. Features are extracted from both the NMF dictionaries
and the activations. For straightforward reproducibility of the experiments, the
default parameters of the publicly available1 drum beat separation demonstrator of
the source separation toolkit openBliSSART written by the author and his colleagues
[212, 217] are used.

The STFT parameters are set as frame shift ∆τ = 30 ms and window size 60 ms,
using the square root of the Hann window as proposed by Helen and Virtanen [77].
K = 100 NMF iterations and R = 50 NMF components are used. Semi-supervised
NMF is used where 20 dictionary atoms for percussive components are initialized
from typical drum spectra delivered with the openBliSSART demonstrator. To
allow the algorithm to use different dictionaries for the individual sections of a song
without increasing the dimensionality of the factorization, a blind segmentation into
frame-synchronous non-overlapping chunks is performed before the separation, as
described in [218].

7.1.1.2 Leading Voice Separation

The second method used to facilitate singer trait identification is the leading voice
separation approach described in Section 3.2.5 and [35, 36]. To ensure best repro-
ducibility of the results, an open-source implementation2 of the algorithm with default
parameters was used. The same chunking as for harmonic / percussive separation
was applied.

7.1.1.3 Combined Source Separation Approaches

In a preliminary experiment it was found that when the leading voice separation is
applied to popular music, part of the drum track may remain after separation. Hence,
for this study, cascading of both separation techniques was considered: harmonic
enhancement after leading voice separation (LV-HE), and vice versa (HE-LV). There,
time domain signals are synthesized inbetween the two separation stages, in order to
be able to use different NMF parameterizations for both algorithms.

7.1.1.4 Acoustic Features for Classification

The features used for classification exactly correspond to those used in [175] and
were extracted for each beat using TUM’s open-source toolkit openSMILE [42].
The short-time energy, zero-, and mean-crossing rate are considered, which are

1http://openblissart.github.com/openBliSSART
2http://www.durrieu.ch/phd/software.html
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known to indicate vocal presence. In addition, several features are derived from
the normalized autocorrelation sequence of the DFT coefficients, namely voicing
probability, fundamental frequency (F0) and harmonics-to-noise ratio (HNR). F0
is the location of the highest peak of the autocorrelation sequence aside from the
maximum at zero. HNR is computed by the value of this peak. These pitch and
voice quality parameters have been successfully used in paralinguistic information
assessment from speech [176]. Further, MFCCs 0–12 and their first-order delta
regression coefficients are added, which are known to capture the characteristic
qualities of individual voices for singer identification [127]. Thus, altogether the
feature set comprises 46 time-varying features. The employed configuration of the
openSMILE toolkit is provided for further reproducibility3.

7.1.1.5 Classification by BLSTM-RNNs

As in [218], sequential vocalist gender classification with BLSTM-RNNs has been
observed greatly superior to beat-by-beat classification by SVMs or Hidden Naive
Bayes (90.77 % beat level accuracy on original signals vs. 72.78 % and 76.17 %), this
classifier was chosen for the present study.

Individual BLSTM-RNNs are trained for each classification task. The tasks
investigated comprise binary age and gender classification tasks (young / old, fe-
male / male, cf. Section 2.2.2.2), as well as ternary tasks where additionally the beats
without any vocals must be identified. As in [218], the networks have one hidden
layer with 80 LSTM memory cells for each direction. The size of the input layer is
equal to the number of features (46), while the size of the output layer is equal to
the number of classes to discriminate (2–3). A softmax output layer is used so that
the outputs represent the posterior class probabilities. The songs in the test set are
presented frame by frame (in correct temporal order) to the input layer, and each
frame is assigned to the class with the highest pseudo-probability as indicated by
the output layer.

For network training, supervised learning with early stopping was used as follows:
The network weights were intialized randomly from a Gaussian distribution (µ =
0, σ = 0.1). To improve generalization, the order of the input sequences was
determined randomly, and Gaussian noise (µ = 0, σ = 0.3) was added to the input
activations. The network weights were iteratively updated using resilient propagation
[161]. To prevent over-fitting, the performance (in terms of classification error) on
the validation set was evaluated after each training iteration (epoch). Once no
improvement over 20 epochs had been observed, the training was stopped and the
network with the best performance on the validation set was used as the final network.
Graves’ open-source BLSTM-RNN implementation [65] is used.

3http://www.openaudio.eu
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Table 7.1: Beat-wise BLSTM-RNN classification of UltraStar test set on 2- and
3-class tasks (V: presence of vocals; G: gender; A: age). Preprocessing: HE =
harmonic enhancement (Section 7.1.1.1); LV = leading voice extraction (Section
7.1.1.2); LV-HE: HE after LV; HE-LV: LV after HE.

Preprocessing
[%] – HE LV LV-HE HE-LV
task classes Rec Acc Rec Acc Rec Acc Rec Acc Rec Acc

V 0/1 74.55 74.50 73.82 73.84 75.77 75.81 75.40 75.41 75.09 75.11

G 0/m/f 63.75 68.54 65.65 68.91 69.29 71.31 67.90 70.41 68.52 70.44
m/f 86.67 91.09 88.45 91.91 86.93 91.12 89.61 93.60 87.76 92.50

A 0/y/o 51.02 57.61 50.00 57.14 53.50 59.85 51.26 58.86 50.01 57.72
y/o 55.30 55.60 57.55 56.56 53.93 53.63 55.97 54.89 54.69 54.17

7.1.2 Results

The primary measure for evaluating performance of automatic singer trait recognition
is recall (Rec) (2.17) on beat level. Due to the general class imbalance (Table 2.4),
recall better represents the discrimination power of the classifier than accuracy (Acc).
Note that either random guessing or always picking the majority class would both
achieve a recall of 33.33 % in ternary and 50.00 % in binary classification tasks.

7.1.2.1 Results on Beat Level

Results on beat level are shown in Table 7.1. In order to estimate the difficulty of
the evaluated singer trait recognition tasks in full realism, first a BLSTM-RNN was
evaluated on the task to recognize the presence of a singer (vocal activity recognition).
It turns out that this can be done with over 75 % recall when using the leading
voice extraction. Note that due to the underlying model (3.35), (3.36), (3.37), the
separation algorithm does not discriminate human voices from other harmonic sources
with similar filters; hence, the vocal activity recognition task remains non-trivial.

Best results on the 2-class gender recognition task are obtained by the combination
of source separation algorithms (LV-HE, 89.61 % recall) while in the 3-class task, best
recall is achieved by the LV algorithm alone (69.29 %), which significantly (α = .001)
outperforms the baseline without preprocessing. Notably, this recall also higher
than it would be expected if the accuracies of vocal activity and 2-class gender
recognition were independent, potentially showing the benefit of the ‘multi-task’
ternary modeling. Up to 57.55 % recall are achieved in age recognition when using
HE; while this is clearly below typical results on spoken language, it is significantly
above chance level (50 %) according to a z-test (α = .001).
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Table 7.2: Song-wise BLSTM-RNN predictions on UltraStar test set by beat-wise
majority vote. Vote on 3-class tasks (ignoring beats classified as 0) or 2-class tasks.
Preprocessing as in Table 7.1.

Preprocessing
[%] – HE LV LV-HE HE-LV
task vote on Rec Acc Rec Acc Rec Acc Rec Acc Rec Acc

G 0/m/f 80.9 87.0 81.7 85.6 87.7 90.9 91.3 92.4 87.7 90.9
m/f 86.9 90.1 89.0 90.9 87.7 90.9 89.6 93.9 89.6 93.9

A 0/y/o 55.2 54.5 54.6 54.1 56.0 54.1 56.9 57.4 50.9 51.6
y/o 54.5 54.5 57.0 55.7 52.2 51.6 53.4 52.5 58.9 58.2

7.1.2.2 Results on Song Level

As a performance estimate for ‘tagging’ entire songs, for each scenario (front-end
separation / classification task) the accuracies and recalls of a majority vote on beat
level compared with the most frequent class label on beat level were calculated. Note
that such measurements are rather heuristic in nature, since a song level ground
truth cannot always be established due to phenomena such as alternating male /
female vocalists. To briefly comment on the results (shown in detail in Table 7.2),
song level gender can be recognized with up to 91.3 % recall, and age with 58.9 %
recall. The song level gender estimation works even better from the 3-class than the
2-class beat level task. LV-HE preprocessing delivers overall best results.

7.1.2.3 Discussion

Compared to usual results obtained on spoken language [176], the performance of age
recognition is rather low; the task seems to be especially challenging on the considered
type of ‘chart’ popular music with a prevalence of singers in their twenties. At least,
when using gender-dependent models for age, 61.63 % recall could be achieved for
males; for females there is not enough training data.

A promising direction for further research may be to investigate different units
of analysis, such as longer-term statistical functionals that are commonly used
in paralinguistic information retrieval from speech [176], instead of recognition at
the beat level. Still, this is not fully straightforward due to the feature variation,
especially for pitch, which will necessitate methods for robust pitch estimation and
transformation.

7.1.3 Conclusions

Inspired by previous successful studies on vocalist gender recognition, the concept of
singer trait recognition was introduced and exemplified by age recognition in a large
collection of recorded popular music. In the light of the research objectives of this
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thesis, it is an highly interesting result that explicit separation of the leading voice
according to a weakly supervised NMF algorithm could improve the performance of
an RNN based vocal activity, gender, and age recognizer. While gender recognition
is now close to perfection even on beat level (up to 93.60 % WA on unseen test data),
it was also shown that even in chart music with a prevalence of singers from 20–30
years, age recognition could be performed significantly above chance level; still, when
aiming at real-life applications new directions in research must be taken.

Future work should primarily focus on more variation in data by not only including
chart music, but also classical, jazz and non-Western music. Furthermore, multi-task
learning similar to the approach of Stadermann et al. [189] can be investigated to
exploit interdependencies of singer traits and phonetic content, in order to improve
generalization.

7.2 Singing style recognition

Having addressed the recognition of singer traits, let us now move to short-term singer
states. As an example for singer states, the displayed emotion can be named, for
example singing enthusiasm [25]. In this chapter, another short-term state, singing
style, is introduced in analogy to speaking style (cf., e.g., [138, 248]). Its automatic
recognition is exemplified by vibrato, as in the study previously presented by the
author and his colleagues in [219].

Vibrato is usually defined characterized as a periodic oscillation of the funda-
mental frequency (pitch) of the voice at a rate of 4–8 Hz. Applications of automatic
recognition of vibrato singing in recorded polyphonic music include singer identifi-
cation, as different singers develop their own style of vibrato [139], as well as other
MIR tasks such as structure and performance analysis. Furthermore, it can be useful
for highly efficient audio coding, e. g., as an attribute for sound synthesis [33].

Few performance studies exist on fully automatic recognition of vibrato singing
[3, 144]. Some of these [3, 144] are limited to monophonic recordings, which may
be justified for applications such as coaching of singing students [3]. For retrieval
applications in recorded music, however, one has to cope with additional sources from
accompaniment. Salamon et al. [164] propose vibrato features for genre classification
of polyphonic music, but without comparing the performance of vibrato recognition
against a ground truth. Per definition, it can be assumed that automatic recognition
of vibrato strongly depends on robustness of pitch extraction, which, however, is
challenging in the condition of multi-source mono- or stereophonic recordings [120].
In fact, as shown below, the extraction of pitch is challenging in the presence
of instrumental accompaniment, leading to unsatisfactory classification accuracy
(61.1 %) if only the F0 frequency spectrum is used as features.

In line with the objectives of this thesis, the following investigation deals with
robustness of vibrato classification against ‘noise’ by instrumental accompaniment.
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Table 7.3: Feature extraction for vibrato recognition: Low-level descriptors (LLDs)
and functionals.

LLD Functionals
(∆) Log. F0 Extremes
(∆) RMS energy Range
(∆) Auditory spectrum Position min., max.

Dist. min./max. from arith. mean
Moments
Std. dev., skewness, kurtosis
Temporal evolution
Mean crossing rate (MCR)
DCT coefficients 1–6
Percentiles
Inter-quartile ranges 1–2, 2–3, 1–3
DFT coefficients 1–10 (log. F0)
Arith. mean (of ∆)

Several strategies are evaluated to address robustness: First, besides the obvious
frequency analysis of the F0 contour [33], other functionals of pitch itself, and also
other ‘low-level’ features, are considered. Second, feature selection is investigated
to keep only those features which are unaffected by noise. Third, the hypothesis is
tested whether extraction of the leading voice by semi-supervised NMF (cf. Section
3.2.5) can contribute to the robustness of vibrato recognition.

A pecularity of this section is to characterize individual acoustic features by
their robustness in fully automatic recognition. This is in contrast to the speech
enhancement and automatic speech recognition applications, where the features
considered were spectra, and unless noise is constrained to particularly low or high
frequency ranges, no difference is expected in the noise robustness of these features.
In contrast, for vibrato recognition, higher-level, musically motivated features are
used (cf. below), and it will be shown that variants of these features exhibit strongly
different properties in robustness.

7.2.1 Experiments

7.2.1.1 Feature Extraction

The feature set chosen in this study is a combination of generic features, similar to
the ones in Section 7.1.1.4, and musically motivated, ‘hand-crafted’ features for the
recognition of vibrato. An overview of the feature set is given in Table 7.3.
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7.2.1.1.1 Low-Devel Descriptors As frame-wise low-level descriptors (LLDs),
pitch (F0), root mean square (RMS) energy and auditory spectrum are extracted.
All feature extraction is performed without manual post-processing such as correction
of octave errors. Pitch detection is based on the Subharmonic Summation (SHS)
algorithm [80] to identify pitch candidates in the frequency domain. The power
spectrum is transformed to a logarithmic scale by spline interpolation and shifted
spectra are added to the original spectrum to sum up the harmonics. The result
is the so called SHS spectrum (SHSS). In theory there should be one prominent
peak at F0; however, in practice higher harmonics are also present. The N highest
peaks in the SHSS are identified, and peak position and amplitude are adjusted by
three point quadratic regression using the peak and its left and right neighbors to
fit a parabola. A voicing probability is assigned for each candidate based on the
(adjusted) peak’s amplitude in the SHSS. The arithmetic mean (µs) of the bins in
the SHSS is computed. For each pitch candidate i with a pitch candidate score
sci (= peak amplitude) greater than µs the voicing probability pvi is computed as
pvi = 1.0− µs

sci
. Otherwise (sci ≤ µs), pvi = 0. The final pitch contour as well as the

final voicing decision is smoothed by dynamic programming where soft penalties for
jumps and out-of-range values are applied. The algorithm is based on the Viterbi
pitch smoothing as presented in [120], which was slightly modified for the SHS pitch
values and voicing probabilities. This implementation of pitch extraction is available
in TUM’s open-source toolkit openSMILE [42].

To make the absolute amount of pitch variation independent of the fundamental
frequency, the natural logarithm of the pitch is taken. Pitch and RMS energy
are extracted from 50 ms frames of the audio signal windowed with a Gaussian
function at 10 ms frame shift. The auditory spectrum is computed by reweighting
the Mel frequency bands 1–26 obtained from a short-time Fourier transform (STFT)
with 25 ms frame size and a Hamming window function, similarly to the procedure
performed in extraction of PLP features [78].

7.2.1.1.2 Functionals To capture variation of the low-level descriptors, first
order delta regression coefficients (∆) are extracted according to Section 3.7.1.1,
spanning five frames (W = 2). Furthermore, segment-wise functionals are computed
from both the low-level descriptors and their ∆ coefficients.

To capture pitch oscillations in the range relevant for vibrato, Discrete Fourier
Transform (DFT) coefficients 1–10 are extracted from overlapping windows of 128
logarithmic F0 points which are centered to zero mean, corresponding to a window
size of 1.28 s to achieve sufficient frequency resolution. Windows overlap by 64 points
and are multiplied by a Hamming function before applying the Fourier transformation.
Zero padding is applied for segments shorter than the length of a single window
(1.28 s); for segments longer than a single window, incomplete windows at the end
are discarded – it was often observed that the DFT coefficients from the previous
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windows were deteriorated by the alteration of the frequency distribution in the last
window due to zero padding. Finally, the mean across windows is taken for each
DFT coefficient.

Other, more generic functionals applied to all kinds of LLDs include moments,
range (absolute difference of minimum and maximum), distance of minimum and
maximum from the arithmetic mean, standard deviation and higher order moments,
mean crossing rate, Discrete Cosine Transform (DCT) coefficients 1–6 and finally
inter-quartile ranges (IQR, absolute differences between quartiles). These functionals
are often used in segment-based functional extraction from pitch and other LLDs for
paralinguistic information retrieval [177]. Frames (erroneously) classified as unvoiced
are excluded from calculation of functionals and ∆ coefficients from the F0 contour,
except for DFT coefficients to preserve the frequency of periodic oscillations – in that
case, unvoiced frames are assumed to be equivalent to the mean of the F0 points in
the corresponding window(s). Note that only those functionals are chosen which are
independent of the absolute values of the LLDs, in order to capture signal variation
instead of overall characteristics. Thus, for instance, the arithmetic mean is only
computed from the delta coefficients, not from the LLDs themselves.

7.2.1.2 Automatic Classification Experiments

Preprocessing As a weakly supervised preprocessing method for extraction of
the singer’s voice in the presence of background music, the leading voice separation
approach described in Section 3.2.5 and [36] is used. While this method also includes
pitch tracking, it differs from traditional methods (cf. Section 7.2.1.1.1) by explicit
modeling of accompaniment and the vocal tract of the singer. To ensure best
reproducibility of the findings, an open-source implementation4 of the algorithm with
default parameters was used.

To get an upper performance bound by simulating near-perfect pitch extraction,
a band-pass (BP) filter was applied for each segment. The pass-band was manually
set to capture single harmonic(s) of the singing voice including pitch variations, so
that robust automatic pitch determination is straightforward. These filters were
applied to the DFT spectrum of each segment as a whole to achieve best frequency
resolution.

Classification Algorithm For classification the SimpleLogistic algorithm [109]
was used, as implemented in the Weka toolkit [74]. This classifier is particularly
suitable for small to medium feature spaces as it is based on boosting of one-
dimensional logistic regression functions. The number of boosting iterations was
cross-validated on the training set, using the default parameters in the Weka toolkit.
In order to optimize on a balanced recall of both the vibrato and non-vibrato classes,

4http://www.durrieu.ch/phd/software.html
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Figure 7.1: Logarithmic F0 contour (normalized to zero mean) and its DFT coeffi-
cients for a segment of jazz music, without or with manual bandpass (BP) filtering
to extract the singing voice.

a simple method of training instance up-sampling was applied as follows: For testing
on each fold, all instances of the minority class (non-vibrato) in the two folds used
for training were copied so as to achieve uniform a-priori class probabilities in the
training set for the classifier.

7.2.2 Results

7.2.2.1 Classification Results

In Table 7.4, the recall (Rec) of the vibrato and non-vibrato classes is shown.
Similar to the experiments with singer characterization, recall is preferred over
accuracy as evaluation measure due to the class imbalance. It is observed that the
joint feature space of F0 functionals provides highly robust classification, reaching
84.9 % recall without preprocessing. Still, this is significantly (p < .05 according
to a one-tailed z-test) below the upper bound of 90.1 % achieved by manual BP
filtering, indicating that accompaniment makes vibrato classification considerably
more challenging. Surprisingly, vocal separation significantly degrades performance
by over 8 % absolute compared to using no signal enhancement; this can be attributed
to the fact that the algorithm was not designed to capture slight pitch variations, as
the source STFT is assumed to be constant in the vocal model [36].

An analysis of different functional groups of F0 reveals that as expected, DFT
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Table 7.4: Recall of vibrato / non-vibrato instances in singer-independent 3-fold
stratified cross-validation using SimpleLogistic classification by feature set and
functional groups. Preprocessing by vocal separation or manual band-pass (BP).

Recall [%] Preprocessing
LLD Functionals — Voc.sep. BP
(∆) Log. F0 All 84.9 73.3 90.1

DFT coeff. 61.1 66.1 91.7
DCT / MCR 65.4 60.9 66.2
Extremes 55.5 51.8 81.1
Moments 56.4 53.5 79.1
Percentiles 86.9 78.0 88.0

(∆) Aud.spec. All 67.0 59.7 61.9
(∆) Energy All 59.5 67.0 73.8
All All 67.1 65.0 77.7
(∆) F0 + Energy All 79.8 75.1 82.7

coefficients allow highly robust classification on their own if pitch extraction is
facilitated by manual bandpass filtering (91.7 % recall); this performance, however,
is vastly degraded to 61.1 % recall without such preprocessing. Notably, vocal
separation can partly alleviate this downgrade (66.1 % recall). An explanation for
the performance drop is shown in Figure 7.1 for an example of jazz music. It is
clearly visible that while there is a prominent peak in the 6th frequency bin (4.7 Hz)
for ‘ideal’ F0 extraction, in the real-life setting without manual preprocessing the
DFT coefficients are significantly deteriorated due to the pitch estimation errors. In
the example, these are caused by chords played by a piano in the second half of the
segment.

As to other functionals, extremes and moments both are robust (around 80 %
recall) for bandpass filtering, yet performing not significantly (p > .05) above chance
level (50 % recall) without preprocessing, probably due to sensitivity against outliers.
Their performance apparently cannot be restored by vocal separation. In contrast,
DCT and MCR perform similarly above chance level regardless of the preprocessing,
but generally deliver unsatisfactory accuracy on their own (up to 66.2 % recall).
Finally, and most importantly, percentile features, i. e., inter-quartile ranges enable
highly robust classification (86.9 % recall) even without preprocessing; for bandpass
filtering, their recall of 88.0 % is still remarkable, yet significantly below the one of
DFT coefficients. This behavior will be further investigated below.

Before, briefly the performance of other LLDs than pitch is summarized. While
both, auditory spectrum and RMS energy cannot compete with F0 in terms of
recall, it is notable that both are observed highly above chance level (α = .005).
Interestingly, the auditory spectrum seems to carry valuable information especially

156



7.2. Singing style recognition

when using no preprocessing (67.0 % recall); this is possibly due to the strong
interdependency with musical genre (cf. Table 2.3), which can be detected by spectral
features. Furthermore, energy is considerably informative; this is not simply due
to vibrato occurring in accented notes of higher loudness since the functionals are
independent of the absolute energy (see above). Still, none of the ‘alternative’ LLDs
seem to complement the information gained from the pitch, as classification with the
union of feature sets (all or F0 + energy) cannot significantly surpass the performance
of F0 functionals alone.

Overall, the effect of vocal separation is disappointing for the vibrato recognition
task. While one could extend the algorithm to allow slight variations in the source
model (WE, cf. (3.37)), the extent of variation to be allowed would depend on the
presence of vibrato, resulting in a chicken-and-egg problem for the task of vibrato
classification. Furthermore, given the stability of the pitch features without signal
preprocessing, a large performance increase would be required to outweigh the high
additional computational effort from a practitioner’s point of view.

7.2.2.2 Feature Relevance

As a perspective on feature relevance independent of the classification algorithm,
two-sided Welch two-sample t-tests (assuming inequal variance) are performed on
the features derived from F0 and its delta regression coefficients in the whole data
set. These tests indicate whether their mean in the vibrato segments is significantly
different from the mean in the non-vibrato segments. This strongly differs from the
paired-sample t-test used for recognition evaluation in Section 2.1.3.2, since now two
populations are modeled instead of a single test set. Here, the t-statistic is

µV,f − µV ,f√
σ2
V,f/NV + σ2

V ,f
/NV

, (7.1)

where µV,f and µV ,f are the sample means of feature f in the vibrato and non-vibrato
segments, σV,f and σV ,f are the corresponding sample standard deviations, and NV

and NV the corresponding numbers of instances. The p-values are not corrected for
repeated measurements since only a ranking of the features is desired, which would
be unchanged by Bonferroni correction and the like. This evaluation is restricted to
F0 functionals due to their vastly superior performance in general (cf. the previous
section).

For manual BP filtered as well as for unprocessed signals, the ten most discrim-
inative functionals of F0 and their delta regression coefficients by their absolute
t-statistic are shown in Tables 7.5a and 7.5b. Evidently, inter-quartile ranges of
∆ F0 are particulary informative in both cases. Inter-quartile ranges of F0 itself,
however, are only informative for manual BP filtering. This indicates that deltas
are robust against pitch estimation errors while F0 itself is not: Apparently, due
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Table 7.5: Relevance of functionals of pitch (F0) and F0 delta regression coefficients
(∆ F0): p-values and t-statistics obtained on the evaluation database. IQR: inter-
quartile ranges.

(a) no preprocessing

LLD Functional p t

∆ F0 IQR 1–2 � .001 12.9
∆ F0 IQR 1–3 � .001 12.8
∆ F0 IQR 2–3 � .001 10.7
∆ F0 DFT coeff. 1 < .001 4.2
F0 DCT coeff. 2 < .001 - 3.8
F0 MCR < .001 3.6
F0 DFT coeff. 5 < .005 - 3.2
∆ F0 Position of max. < .005 - 3.2
∆ F0 Position of min. < .01 - 2.8
F0 DFT coeff. 4 < .01 - 2.6

(b) manual BP

LLD Functional p t

∆ F0 IQR 1–3 � .001 19.9
∆ F0 IQR 2–3 � .001 19.7
∆ F0 IQR 1–2 � .001 18.9
F0 DFT coeff. 7 � .001 13.2
F0 DFT coeff. 8 � .001 13.0
F0 DFT coeff. 9 � .001 9.1
F0 DFT coeff. 6 � .001 8.9
F0 Max-mean-dist. � .001 6.8
F0 DFT coeff. 10 � .001 6.7
F0 IQR 1–3 � .001 6.4

to the Viterbi smoothing, the musical accompaniment causes systematic errors in
pitch estimation rather than random fluctuations. Furthermore, it is well known that
generally, percentile-based features such as IQR are robust against outliers caused
by measurement errors. Concerning DFT coefficients, it is obvious that they have
strong discriminative power after applying manual BP filtering: The most relevant
coefficients 6–10 exactly correspond to vibrato rates from 4.7 to 7.8 Hz. In accordance
with the automatic classification experiments, they are less discriminative when not
doing preprocessing; furthermore, although DFT coefficients 1 (of ∆ F0), 4 and 5
occur in the 10 most relevant features, their relation to vibrato is not immediately
obvious: Coefficient 1 corresponds to 0.77 Hz, and the t-statistic of coefficients 4
and 5 is negative. Thus, these functionals (as well as the first DCT coefficient and
mean crossing rate) apparently provide an useful, yet generic assessment of temporal
evolution.

7.2.3 Conclusions

In a singer-independent evaluation on a real-life database spanning different musical
genres from pop to opera, different approaches to robust automatic recognition of
vibrato in recorded polyphonic music were investigated. As LLDs, F0 contours
and other low-level descriptors were considered, and features were generated using
segment-wise functionals. It turned out that while the conventional approach of
using the F0 discrete spectrum dramatically suffers from pitch estimation errors
due to multiple present sources of accompaniment, percentiles of the ∆ coefficients
of the pitch contour are highly robust, reaching up to 86.9 % accuracy in real-life
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conditions without any signal enhancement. Signal enhancement could not improve
the accuracy of vibrato recognition, which is in contrast to the other applications
in this thesis. Instead, a combination of multi-condition training – in this case,
training with mixtures of singing and accompaniment – and feature selection was
most successful.

Future work should focus on dynamic spotting of vibrato singing in recorded
polyphonic music, integrating the proposed classification framework into a fully
automatic system; this could be achieved by using note on-set detection as a first
stage, or dynamic modeling of LLDs or functionals by DRNNs.

7.3 Polyphonic piano transcription

In this section, a discriminative method for the transcription of polyphonic piano
music is presented, which was introduced by the author and his colleagues in [226].

Transcription of polyphonic music is one of the key applications in MIR [9, 71],
as it converts unstructured waveform data to a symbolic, musically meaningful
representation. As such, it has striking similarities to ASR, yet is inherently a multi-
source problem. Here, the problem of polyphonic music transcription is formulated
as joint onset detection and multi-pitch estimation, where note onsets have to be
detected along with the correct pitch.

A popular approach to multi-pitch estimation and polyphonic music transcription
is based on NMF spectrogram decompositions, performing onset detection on the
activations [1, 186, 201]. In several approaches, unsupervised NMF is used [1, 2, 186].
However, without further constraints it cannot be guaranteed that the NMF dictionary
atoms resulting from this procedure have the desired musical meaning, i.e., that they
represent different pitches of different instruments. As a result, the interpretation of
the NMF decomposition, and hence transcription based on the activation matrix, can
become challenging. Introducing musical constraints into NMF, such as in [13, 205],
appears to be promising, yet from the results it seems that transcription using weakly
supervised NMF techniques remains a notoriously difficult task [13, 205].

As an alternative, discriminative approaches [15, 123, 135, 149, 198] have been
proposed, delivering most robust results [15]. In discriminative music transcription,
a classifier is trained on positive and negative examples corresponding to signal
frames where a given pitch is present or absent. This can be done in a ‘one-versus-all’
training paradigm for pitch-specific classifiers as will be considered below, based on
the principle of Poliner and Ellis [149], or in a multi-task learning fashion as done by
Böck and Schedl [15]. These paradigms avoid the combinatorial explosion reported
by Emiya et al. [38] when all possible combinations of pitches are modeled as classes.

To combine the benefits of discriminative training with explicit signal decom-
position and information reduction by NMF, here it is proposed to use the NMF
activations computed from onset and non-onset parts as positive and negative data
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points for the SVM classifier. In order to avoid matching unsupervisedly estimated
dictionary atoms to pitches, supervised NMF is employed, where spectra correspond-
ing to pitch-instrument pairs are pre-defined. As explained in Section 3.2.3, this has
the additional advantage of being capable of low delay on-line processing, in contrast
to the previous unsupervised or weakly supervised approaches. As in many previous
studies [15, 38, 149, 186, 198], the evaluation is limited to piano music – the main
reason being comparability, since for this task a large annotated evaluation database
is available to the public (cf. Section 2.2.2.3).

7.3.1 Experiments

The method evaluated in this section is depicted as a flowchart in Figure 7.2. As a
first step, the audio signal is converted to the time-frequency domain by either STFT
or by the constant Q transformation (CQT) [167]. The time-frequency representation
is then mapped to frame-wise note activations by means of supervised NMF with
a dictionary of note spectra. From these ‘raw’ activations, ‘high level’ activation
features are derived, which are then fed into a set of SVM classifiers that perform
onset detection for each pitch-instrument pair. The frame level decisions of these
classifiers are finally post-processed by a simple clustering method. Starting from
this broad picture, let us now flesh out the details of each processing step.

7.3.1.1 Calculation of the NMF Activation Matrix

The magnitude of the time-frequency spectrogram (STFT or CQT) is computed,
yielding a non-negative matrix M̂ (with observations in columns). This matrix is
then subject to data reduction, i.e., ‘down-sampling’ by a factor Nc by merging time
steps, yielding a matrix M:

mt = max{m̂(t−1)Nc+1, . . . , m̂tNc} (7.2)

Then, NMF is applied to decompose M into the two factors W and H, of which the
first one represents a note dictionary and the second one the activity of notes over
time. A supervised NMF approach (cf. Section 3.2.3) is followed, where the matrix
W is pre-computed in a training phase according to the following section. During
the transcription phase, the matrix H is calculated by iteratively minimizing the
generalized Kullback-Leibler divergence (3.6) starting from a random solution for
H, until the solution has converged or a maximum number of K iterations has been
reached.

7.3.1.2 Dictionary Matrix Estimation

In order to build the matrix W, NMF is exploited in a weakly supervised fashion
as follows. It is assumed that there are recordings of isolated notes available for
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Figure 7.2: Overview of the proposed transcription method, consisting of low-
level spectral feature extraction, calculation and post-processing of NMF activation
features, classification by support vector machines and decision level post-processing.

the instrument that is to be transcribed. Then, ‘characteristic spectra’ for each
of these notes are calculated from the spectrograms Sl, where l is the pitch index.
Treating notes of different pitches as sources in the supervised NMF framework
(cf. Section 3.2.3), the most straightforward approach to dictionary learning is to
apply unsupervised NMF on Sl, using R = 1 and keeping the first factor (i. e.,
a column vector) as dictionary atom for pitch l. However, since the focus is on
detecting the onsets of the notes, it seems useful to extract spectra representing the
attack and the decay phases of a note (onset sharpening). This is motivated by the
observations made by Ewert and Müller [40] in the context of weakly supervised NMF
on piano music. In the presented approach, the 1× T activation matrix obtained
by unsupervised NMF with R = 1 is considered as a row vector ĥ, of which the
maximum h∗ and its position t∗ are computed. Then, the frame index t′ is set to the
first frame after the maximum (t′ > t∗) where

ĥt′ < σ · h∗. (7.3)

Then, an ‘onset atom’ is obtained by applying unsupervised NMF only on the first t′

columns of Sl. Analogously, from the rest of Sl a ‘decay atom’ is obtained. The usage
of onset and decay atoms will be evaluated later. Finally, the matrix W is simply
the column-wise concatenation of the atom(s) estimated per pitch l, normalized to
unity L2 norm per column.

7.3.1.3 Activation Post-Processing

Before performing onset detection on the NMF activations, a three-step post-
processing stage (cf. Figure 7.2) is applied. First, the activations are accumulated
for each pitch l in case that multiple dictionary atoms per pitch are used. The
outcome of this step will be denoted by h(t) in the ongoing, and its components by
hl(t). Second, since it was found that certain pitches had overall higher activations
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than others despite the normalized atoms in W, an ‘inverse document frequency’
weighting is applied to the activation vectors per time step:

hl(t)← hl(t)/hl,∀p (7.4)

where hl is the average activation of pitch l when NMF is applied to the training
data. Finally, h(t) is normalized by its L1 norm adding a constant ε:

h(t)← h(t)/(ε+ |h(t)|1) (7.5)

The constant ε is needed because a näıve normalization would yield erroneous
activations for segments without onsets. Subsequently, ε = 6 will be used.

7.3.1.4 Activation Feature Extraction

In a baseline approach, a single activation difference feature is used per pitch.
Precisely, defining Tspan(t) as the set of frame indices corresponding to the span in
milliseconds after the frame with index t, this feature is computed as

g1(t) = hl(t)− max
t′∈T−50(t)

hl(t
′), (7.6)

i. e., the difference of the current activation to the maximum activation within the
last 50 milliseconds.

Besides, a multi-dimensional feature set is considered where

g2(t) = max
t′∈T50(t)

hl(t
′)− min

t′∈T−50(t)
hl(t

′), (7.7)

g3(t) = hl(t)− min
t′∈T−100(t)

hl(t
′), (7.8)

g4(t) = max
t′∈T100(t)

hl(t
′), (7.9)

g5(t) = min
t′∈T−100(t)

hl(t
′), and (7.10)

g6(t) = max
t′∈T250(t)

hl(t
′)− hl(t) (7.11)

are added.

7.3.1.5 Classification and Onset Detection

For each pitch l, an SVM classifier is trained on set of feature vector – label pairs
{(g(t), yt)}t. For the multi-dimensional feature set, g(t) = (g1(t), . . . , g6(t))ᵀ. In case
of the single-dimensional feature ‘set’, an SVM is used as well for consistency – this
corresponds to a threshold decision on activation differences, where the threshold is
optimized by a maximum margin criterion on the training data.
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As positive examples for the SVM, feature vectors inside a detection window of
100 ms around the ground truth onsets are used that have a maximum acceleration
of the activation, since rising activations indicate onsets and an attack phase may
include several points of rising activations. Mathematically, (g(t∗), 1) is added to the
training set with t∗ = arg maxt{hl(t)− hl(t− 1)− (hl(t− 1)− hl(t− 2))}.

Negative examples are taken from intervals outside the detection window. To
reduce the redundancy caused by many similar data points representing silence, all
data points yielding an activation difference less than the average are discarded with
a probability close to one. Still, the above procedure yields a large training set.
For example, the training set introduced in Section 7.3.1.6 corresponds to 14 h of
music, resulting in 2.5 million data points. For efficiency reasons, and since usage of
non-linear SVM kernels did not significantly improve transcription results, classifier
training is done with LibLinear [45], providing an efficient method to train linear
SVM.

After obtaining a classifier decision for each time step, the onset timing is
computed by a ‘clustering’ step on the ‘raw’ decisions. A cluster is defined by a set
of positively classified data points, such that there is no negatively classified data
point between two points of the set, and the two neighboring data points around this
set are classified as negative. An onset is predicted at the mid-point of each cluster.

7.3.1.6 Evaluation

As training and evaluation data, the MAPS family of databases as introduced in
Section 2.2.2.3 is used. For NMF, an instrument-dependent W matrix is built using
isolated notes in the training sets of the databases; in case of the MIDI database,
some missing isolated notes were synthesized using the above-mentioned sound font.
Onset classifiers are trained on the activation features computed from the union of
the training and validation sets.

As the main evaluation measure, accuracy in the form introduced by Dixon
[31] was used, which was later picked up by Böck and Schedl [15] for polyphonic
transcription. Here, accuracy is defined as TP / (TP + FP + FN), where TP is
the number of true positives, i. e., notes identified with the correct pitch within a
symmetric window around the ground truth onset time, FP is the number of false
positives (i. e., a note of the wrong pitch is detected), and FN is the number of
false negatives (i. e., a note is missing in the transcript). This is a somewhat ‘harsh’
measure, as it counts substitutions, i. e., pitch errors, twice (one false negative for
the correct pitch and one false positive for the incorrect pitch). Additionally, the
standard F-measure is used, which is the harmonic mean of recall (TP / (TP + FN))
and precision (TP / (TP + FP)) following the notion of TP, FN and FP introduced
above. Following Poliner and Ellis [149], the window of correct detection is set to
100 ms (ground truth timing ± 50 ms).

As a rule of thumb for the observed ranges of accuracy, accuracy improvements
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Table 7.6: Threshold detection (1-dimensional SVM using g1(t)) vs. SVM using
6-dimensional features (g(t)), Nc = 2: Accuracy and F-measure (Fm).

[%] MIDI MAPS MIDI MAPS D
Acc Fm Acc Fm Acc Fm

1-dim. 62.4 76.8 72.5 84.0 45.1 62.2
6-dim. 74.3 85.3 79.4 88.5 68.0 81.0

of more than one percent are statistically significant at the 0.1 % level according to a
one-tailed z-test (cf. Section 2.1.3.1) with the number of instances corresponding to
the number of notes in the data set.

7.3.1.7 Parameterization

For the STFT, a window size of 3 072 samples and a step size of 512 samples are
used as in a previous study using spectral features [149]. For the CQT, the toolbox
presented in [167] is utilized, using 24 bins per octave over seven octaves and the
default parameters for window size and step size. NMF is applied for up to K = 200
iterations.

7.3.2 Results

In a first step, the 6-dimensional feature set g(t) is evaluated against a simple
threshold decision (1-dimensional SVM) based on the NMF pitch activation differences
g1(t). The accuracies and F-measures resulting from either method are shown in
Table 7.6. It is observed that for all three of the data sets, both measures are
drastically increased by the proposed 6-dimensional feature set. This especially holds
for the MAPS Disklavier set of real piano recordings, where 22.9 % absolute accuracy
and 18.8 % F-measure are gained. As generally very similar trends were observed for
accuracy and F-measure in the evaluations, the focus will be laid on accuracy below.

Next, the proposed merging of frames in the spectrogram matrix by the maximum
operator (7.2) is evaluated. From the accuracies displayed in Figure 7.3, it can be
seen that this technique consistently improves the performance over the baseline (no
merging, Nc = 1), and best results are achieved by setting Nc = 4.

Next, in Figure 7.4, the influence of the spectral representation (CQT or STFT)
is evaluated. There does not seem to be any improvement by using CQT instead
of STFT, even if the factor Nc is increased, respecting the fact that the frame shift
chosen for CQT is larger than for STFT. In fact, the accuracy is significantly lower
when using CQT rather than STFT spectra as input for the NMF step. This is
probably because the linear scaling of frequency bins in the STFT domain provides
better discrimination of pitches from different octaves. In the ongoing, STFT features
will be used.
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Figure 7.3: Effect of frame merging in the M̂ matrix of polyphonic spectra: Accuracy
for different values of Nc (7.2), on test sets 1 ∪ 2.

Finally, the method is evaluated using different dictionary sizes (R = 1, 2 atoms
per pitch), and optionally using onset sharpening (σ = 0.8) to subdivide the training
notes into attack and decay phase. For σ = 0.8 and R = 1, only the attack (onset)
atoms are used. Results of the evaluation on the testing 1 set (for comparability
with [15]) are shown in Figure 7.5. If onset sharpening is not used, the number
of atoms in the NMF dictionary only changes the outcome on the MIDI dataset
(by 1 % absolute accuracy). Notably, the standard unsupervised NMF approach is
outperformed by the proposed onset sharpening method, which delivers best results
on each database. This indicates the usefulness of prior knowledge in the NMF
dictionary learning process. However, on MAPS MIDI, results can only be improved
over the baseline (R = 1, no onset sharpening) if the dictionary size (and thereby the
computational complexity) is increased by including the decay atoms as well. Note
that the dictionary size does not influence the number of features in classification, so
that the performance improvement by using R = 2 cannot be attributed simply to
having more features.

Let us now compare the obtained results (with R = 2, σ = 0.8) to the state-of-
the-art in terms of accuracy, and display the results in Table 7.7. On the MIDI
dataset, the proposed NMF+SVM method evidently delivers significantly higher
accuracy (+ 14.8 % abs.) than the SVM method based on spectral features proposed
by Poliner and Ellis [149]. However, the method is outperformed by the boosting
and BLSTM approaches proposed in [15, 198]. It can be argued that this is due
to the independent training of pitch-specific classifiers, and the presented method
could be improved by exploiting the correlations of pitch activations, such as chord
structures in tonal music. On the MAPS data set, the presented method is evidently
superior to the results obtained by Böck and Schedl [15] (+2.3 % abs. on MIDI and
+8.6 % on real piano). Yet, these results are not fully comparable since Böck and

165



7. Applications in Music Information Retrieval

MIDI MAPS MIDI MAPS Disklavier
40

50

60

70

80

90

100

ac
cu

ra
cy

 (%
)

STFT (N
c
=4)

CQT (N
c
=4)

CQT (N
c
=8)

CQT (N
c
=16)

Figure 7.4: Effect of different spectral features: Accuracy using STFT vs. Constant-
Q-Transform (CQT), for different values of Nc (7.2), on test sets 1 ∪ 2.
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Figure 7.5: Effect of dictionary size (R atoms per pitch) and onset sharpening
(σ = 0.8, cf. (7.3)) on accuracy; evaluation on test set 1.

Schedl [15] use a ‘closed set’ experimental setup where training data is collected from
all pianos in the databases, and it is not known which piano is played in which test
instance, whereas the presented results, as the ones of Poliner and Ellis [149] and
v. d. Boogaart and Lienhart [198], are obtained in an instrument-dependent setup.

Note, however, that there are reasons to believe that NMF provides a convenient
and effective method to perform transcription in a closed set setup, by building a joint
W matrix of the instrument-dependent dictionaries, performing supervised NMF
and then selecting the dictionary with the highest overall activation for transcription.
In a preliminary experiment, 83 % average recall of the ten pianos in the test
databases could be achieved by deciding for the instrument whose dictionary had
the highest activation sum, respecting instrument-wise group sparsity constraints on
the activations in analogy to the method proposed by Hurmalainen et al. [90] for
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Table 7.7: Comparison of algorithms on testing 1 set. 1: Instrument-dependent
training; 2: Multi-instrument (closed-set) training.

Accuracy [%] MIDI MAPS MIDI MAPS D
SVM1 [149] 62.3 – –
BLSTM2 [15] 88.9 84.0 68.7
Boosting1 [198] 87.4 – –
Proposed (NMF+SVM)1 77.1 86.3 77.1

speaker identification.

7.3.3 Conclusions

An effective and efficient method for the task of polyphonic piano transcription
was presented. In line with the objectives of this thesis, it was shown that source
separation motivated features extracted by NMF lead to better performance in
discriminative one-versus-all classification by SVM compared to unprocessed spectral
features (‘multi-condition training’). The proposed method delivered state-of-the-art
results on three test databases comprising synthesized MIDI as well as real piano
recordings. In the future, it should be investigated if the NMF feature extraction
method can be used advantageously in combination with LSTM-RNN based pitch
onset classification.
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Concluding remarks

I dread success. To have succeeded is to have finished one’s business on
earth [...] I like a state of continual becoming, with a goal in front and
not behind. – George Bernard Shaw

8.1 Summary

The research presented in this thesis was oriented on two main hypotheses: (a)
that an explicit source separation step in the process of multi-source recognition is
beneficial for recognition performance, and (b) that formulating source separation as
a recognition task improves separation performance over unsupervised training (cf.
Section 1.3).

The first hypothesis could be verified in the real-life uses cases of noise-robust
speech recognition, singer characterization, and polyphonic music transcription. The
word error rates achieved by state-of-the-art DNN-HMM acoustic models (multi-
stream and bottleneck) with multi-condition training could be significantly improved
by including NMF-based separation of speech and noise sources (Sections 5.1.1
and 5.1.2). Similar results were obtained in singer characterization, where the
determination of singer age and gender could be enhanced by separation of the
leading voice via semi-supervised NMF (Section 7.1). Furthermore, discriminatively
trained automatic music transcription systems could be improved by including
NMF-based features, instead of simple spectral features (Section 7.3).

When applying DNN-based feature enhancement in GMM acoustic models, it
was found that the results in noise- and reverberation-robust ASR are similar to
state-of-the-art connectionist approaches for acoustic modeling (Section 5.2). In
a realistic reverberant speech recognition task (Section 6.2), DNN-based feature
enhancement could only yield limited gains when combined with DNN-based acoustic
modeling. This is interesting as on the contrary, NMF-based front-ends appeared to
be complementary to DNN acoustic models. Another negative result in the context
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of the first hypothesis is that in the case of singing style recognition (vibrato, Section
7.2), information loss due to source separation outweighed the benefits, as the task
itself is tied to the fine-grained structure of the spectrum.

The second hypothesis regarding the formulation of source separation as a recog-
nition task could be verified by showing that supervised discriminative training of
source separation using state-of-the-art DNN models outperforms state-of-the-art
weakly supervised methods such as NMF (Section 4.2). Furthermore, it was observed
that the transfer of the supervised training scheme to NMF leads to significant per-
formance gains also for NMF (Section 4.2). In the related application of ASR feature
enhancement, it could also be demonstrated that stereo training using simulated
parallel data is applicable to real noisy and reverberant speech (Section 6.1), and
there is initial evidence for stereo-training based LSTM-RNN source separation being
able to generalize to real-life data (Section 5.3).

8.2 Outlook

Novel architectures for deep learning In the light of the formulation of NMF
as a deep learning method using supervised training [81, 216], and the results
regarding NMF and DNN enhancement discussed above, it will be highly interesting
to investigate a combination of NMF ‘layers’ with traditional (e.g., rectified linear
or sigmoid) as well as recurrent or LSTM layers. Evidence for the complementarity
of supervised NMF pre-processing and DNN acoustic modeling was also found
by Geiger et al. [53], but they did not yet consider backpropagation of the DNN
acoustic modeling error to the NMF part. The closer integration of NMF and DNN
would serve to integrate model-based constraints into deep learning for multi-source
recognition, possibly leading to better generalization especially with scarce training
data, and to model-inspired techniques for on-line adaptation. For example, the
semi-supervised NMF method presented in Section 4.1 yielded robust results with
less than a minute of training data per speaker and on-line learning of noise models.
It will be highly interesting to consider schemes similar to semi-supervised NMF in
the context of the deep learning framework.

Better models vs. more data A large part of the contributions of this thesis can
be subsumed under the umbrella of advanced modeling and model training. Yet, in
pattern recognition, it is a common belief that ‘there is no data like more data’, and
this belief is verified particularly in the case of industrial ASR applications, where
drastic improvements by DNN acoustic models over the previous state-of-the-art
GMM approaches can be obtained if and only if a large amount of training data
are available [82]. This shows the importance of performing evaluations for varying,
and particularly large, data set sizes. Conversely, especially in the noise-robustness
and source separation research communities, a significant amount of research effort
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is devoted to improving results with a fixed, usually small sized, amount of data,
with frequently used data sets such as the CHiME and REVERB databases being
comparable in size to the ones used for ASR research in the early 1990s [147]. This is
not to devalue these benchmarks, as coping with scarce data, such as by model-based
approaches like NMF, is clearly an interesting research problem that is of interest
in many domains. However, from a practitioner’s point of view, it is not clear
whether the benefits of more complex learning models, such as combinations of
NMF front-ends and DNN acoustic models, or better training schemes, such as the
two-stage discriminative training process from Section 4.2, would still be significant
for industrial training set sizes, such as the ones used for voice search applications
with thousands of hours of speech [27]. Formally, in terms of (3.1), source separation
can be thought of as a pre-processing step g1 that can be subsumed by a powerful
enough model z – in this case, it is not clear that it would still be beneficial to model
z as a composition incorporating g1: There could be a generic model which performs
better, at least when given enough training data. A somewhat encouraging result for
the proponents of model-inspired approaches is that LSTM-based acoustic modeling,
which incorporates the constraint of audio processing requiring the storage of long-
term context, improves over simpler DNN models in industrial ASR application [163].
This is notable as LSTM has been shown to be beneficial for source separation in
this thesis (Sections 4.2, 5.3), but of course its actual benefit for source separation
with large training sets remains to be evaluated.

Synergies between speech and music analysis As laid out in [221], music
analysis has co-shaped many of the robust ASR techniques presented in this thesis,
and vice versa. Considering the contributions of this thesis, obviously it will be
interesting to evaluate discriminative and DNN-based source separation on a large
scale in MIR tasks; yet also novel approaches for music analysis can be thought of,
which are inspired by the results of this thesis. For instance, stereo-training based
mappings of musically motivated features (e.g., timbre, pitch, vibrato) extracted
from polyphonic music to features from single tracks could be exploited, in analogy
to ASR feature enhancement. Both for feature ‘enhancement’ and source separation
scenarios, stereo training seems even more appealing for MIR than for ASR, because
in music recordings, ‘stem tracks’ (studio recordings of separated sources) are often
available [14], along with professionally produced convolutive mixtures.

Towards holistic scene understanding Schuller [173] introduced ‘intelligent
audio analysis’ and formulated the vision of holistic scene understanding, for example,
to simultaneously analyze a mixture of speech and music in terms of the speaker’s
emotion, spoken words, musical genre, as well as the instruments played. This thesis
contributes to a realization of this vision by methods for multi-source recognition,
for example, separating speech and music (Section 4.1), and singer characterization
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and polyphonic transcription (Sections 7.1 and 7.3). In using supervised approaches
for holistic scene understanding, one needs to take into account the combinatorial
explosion when multiple recognition tasks are learnt on mixtures of multiple sources,
as the number of models to be trained in a traditional multi-condition training setup
is exponential in the number of potential sources and polynomial in the number of
possible recognition tasks that can be performed on a source. Therefore, it will likely
be necessary to consider an effective combination of unsupervised methods, e.g., for
source separation and acoustic clustering, and advanced supervised training schemes
with a focus on generalization, in order to come closer to this goal.
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Acronyms

ASR Automatic Speech Recognition

ATLAS Automatically Tuned Linear Algebra Software

BDRNN Bidirectional Deep Recurrent Neural Network

BLAS Basic Linear Algebra Subroutines

BLSTM Bidirectional Long Short-Term Memory

bMMI boosted Maximum Mutual Information

BPTT Backpropagation Through Time

BRNN Bidirectional Recurrent Neural Network

CHiME Computational Hearing in Multisource Environments

CMN Cepstral Mean Normalization

CPU Central Processing Unit

CUBLAS Compute Unified Basic Linear Algebra Subroutines

CUDA Compute Unified Device Architecture

CURRENNT CUda RecurREnt Neural Network Toolkit

DCT Discrete Cosine Transformation

DFT Discrete Fourier Transformation

DNN Deep Neural Network

DRNN Deep Recurrent Neural Network
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EM Expectation-Maximization

fMLLR feature-space Maximum Likelihood Linear Regression

GPU Graphics Processing Unit

GMM Gaussian Mixture Model

HMM Hidden Markov Model

HTK Hidden Markov Model Toolkit

ICA Independent Component Analysis

LDA Linear Discriminant Analysis

LSTM Long Short-Term Memory

MAP Maximum-A-Posteriori

MBR Minimum Bayes Risk

MCT Multi-Condition Training

MFCC Mel-Frequency Cepstral Coefficient

MIR Music Information Retrieval

ML Maximum Likelihood

MLP Multi-Layer Perceptron

NIST National Institute of Standards and Technology

NMF Non-Negative Matrix Factorization

PCA Principal Component Analysis

PDF Probability Density Function

PLP Perceptual Linear Prediction

REVERB Reverberant Voice Enhancement and Recognition Benchmark

RIR Room Impulse Response

RNN Recurrent Neural Network

RT reverberation time
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Acronyms

RTF Real-Time Factor

SAT Speaker Adaptive Training

SAR Source-to-Artifacts Ratio

SDR Source-to-Distortion Ratio

SNMF Sparse NMF

SNR Signal-to-Noise Ratio

SIR Source-to-Interference Ratio

SVM Support Vector Machine

STC Semi-Tied Covariance

STFT Short-Term Fourier Transformation

TAU Tel Aviv University

TUM Technische Universität München

WA Word Accuracy

WER Word Error Rate
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β . . . . . . . . . . . . . . . . . . . . Divergence parameter

B, |B| . . . . . . . . . . . . . . . . (Mini-)batch, batch size

B . . . . . . . . . . . . . . . . . . . . Number of (Mel) frequency bands

C . . . . . . . . . . . . . . . . . . . . Number of channels

D . . . . . . . . . . . . . . . . . . . . Distance / divergence / cost function

ET . . . . . . . . . . . . . . . . . . Training set error

f . . . . . . . . . . . . . . . . . . . . Feature index

F . . . . . . . . . . . . . . . . . . . . Number of features

g . . . . . . . . . . . . . . . . . . . . Feature extractor

η . . . . . . . . . . . . . . . . . . . . Gradient descent step size (learning rate)

H . . . . . . . . . . . . . . . . . . . . Activation function

H . . . . . . . . . . . . . . . . . . . Activation matrix

id. . . . . . . . . . . . . . . . . . . . Identity function (id: x 7→ x)

k . . . . . . . . . . . . . . . . . . . . Layer index (e.g., feature extraction, NMF update or
DNN layer)

K . . . . . . . . . . . . . . . . . . . Number of layers

l . . . . . . . . . . . . . . . . . . . . . Source index

L . . . . . . . . . . . . . . . . . . . . Number of classes

M . . . . . . . . . . . . . . . . . . . Mixing process

M . . . . . . . . . . . . . . . . . . . Unmixing function

m(τ). . . . . . . . . . . . . . . . . Mixture time-domain signal

mt . . . . . . . . . . . . . . . . . . . Mixture features at time step t
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M . . . . . . . . . . . . . . . . . . . Mixture feature matrix (e.g., spectrogram)

p . . . . . . . . . . . . . . . . . . . . Likelihood, p-value (in statistical testing)

q . . . . . . . . . . . . . . . . . . . . Training epoch

R . . . . . . . . . . . . . . . . . . . . NMF dictionary size (number of NMF components)

S . . . . . . . . . . . . . . . . . . . . Number of sources

sl(τ) . . . . . . . . . . . . . . . . . Source l time-domain signal

ŝl(τ) . . . . . . . . . . . . . . . . . Estimated source l time-domain signal

slt . . . . . . . . . . . . . . . . . . . . Source l features at time step t

ŝlt . . . . . . . . . . . . . . . . . . . . Estimated source l features at time step t

Sl . . . . . . . . . . . . . . . . . . . Source l feature matrix (e.g., spectrogram)

Ŝl . . . . . . . . . . . . . . . . . . . Estimated source l feature matrix (e.g., spectrogram)

τ . . . . . . . . . . . . . . . . . . . . Sample index (in a discrete-time signal)

t . . . . . . . . . . . . . . . . . . . . . Time step

T . . . . . . . . . . . . . . . . . . . . Number of time steps / short-term feature windows

TL . . . . . . . . . . . . . . . . . . . Number of left context frames

TR . . . . . . . . . . . . . . . . . . . Number of right context frames

T . . . . . . . . . . . . . . . . . . . . Training set

W . . . . . . . . . . . . . . . . . . . Weight matrix (e.g., DNN connections, NMF dictionary)

x(τ) . . . . . . . . . . . . . . . . . Acoustic time-domain signal

xt . . . . . . . . . . . . . . . . . . . . Acoustic features at time step t

X . . . . . . . . . . . . . . . . . . . . Acoustic feature matrix (e.g., spectrogram)

y . . . . . . . . . . . . . . . . . . . . Recognition function

y . . . . . . . . . . . . . . . . . . . . Value of recognition function (e.g., DNN outputs)
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2010.

[33] C. Drioli and R. D. Federico, “Toward an integrated sound analysis and
processing framework for expressiveness rendering,” in Proceedings of the
International Computer Music Conference (ICMC), Ann Arbor, MI, USA,
1998, pp. 175–178.

[34] Z. Duan, G. J. Mysore, and P. Smaragdis, “Speech enhancement by online
non-negative spectrogram decomposition in non-stationary noise environments,”
in Proceedings of the 13th Annual Conference of the International Speech
Communication Association (INTERSPEECH). Portland, OR, USA: ISCA,
2012, no pagination.

[35] J.-L. Durrieu, G. Richard, and B. David, “An iterative approach to monaural
musical mixture de-soloing,” in Proceedings of the 34th IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). Taipei,
Taiwan: IEEE, 2009, pp. 105–108.

184



Bibliography

[36] J.-L. Durrieu, G. Richard, B. David, and C. Févotte, “Source/filter model for
unsupervised main melody extraction from polyphonic audio signals,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 18, no. 3, pp.
564–575, 2010.

[37] J. Eggert and E. Körner, “Sparse coding and NMF,” in Proceedings of the 2004
IEEE International Joint Conference on Neural Networks (IJCNN), vol. 4,
Dalian, China, 2004, pp. 2529–2533.

[38] V. Emiya, R. Badeau, and B. David, “Multipitch estimation of piano sounds
using a new probabilistic spectral smoothness principle,” IEEE Transactions
on Audio, Speech and Language Processing, vol. 18, no. 6, pp. 1643–1654, 2010.

[39] T. Esch and P. Vary, “Efficient musical noise suppression for speech enhance-
ment system,” in Proceedings of the 34th IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). Taipei, Taiwan: IEEE,
2009, pp. 4409–4412.

[40] S. Ewert and M. Müller, “Using score-informed constraints for NMF-based
source separation,” in Proceedings of the 37th IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). Kyoto, Japan: IEEE,
2012, pp. 129–132.

[41] S. Ewert, B. Pardo, M. Müller, and M. D. Plumbley, “Score-informed source
separation for musical audio recordings,” IEEE Signal Processing Magazine,
vol. 31, no. 3, pp. 116–124, 2014.

[42] F. Eyben, F. Weninger, F. Groß, and B. Schuller, “Recent developments in
openSMILE, the Munich open-source multimedia feature extractor,” in Pro-
ceedings of the 21st ACM International Conference on Multimedia. Barcelona,
Spain: ACM, 2013, pp. 835–838, (Honorable Mention (2nd place) in the ACM
MM 2013 Open-source Software Competition).

[43] F. Eyben, F. Weninger, and B. Schuller, “Affect recognition in real-life acoustic
conditions – a new perspective on feature selection,” in Proceedings of the 14th
Annual Conference of the International Speech Communication Association
(INTERSPEECH). Lyon, France: ISCA, 2013, pp. 2044–2048.

[44] F. Eyben, F. Weninger, S. Squartini, and B. Schuller, “Real-life voice activity
detection with LSTM recurrent neural networks and an application to Hol-
lywood movies,” in Proceedings of the 38th IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). Vancouver, Canada:
IEEE, 2013, pp. 483–487.

185



Bibliography

[45] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, “LIBLINEAR:
A library for large linear classification,” Journal of Machine Learning Research,
vol. 9, pp. 1871–1874, 2008.

[46] C. Févotte, N. Bertin, and J.-L. Durrieu, “Nonnegative matrix factorization
with the Itakura-Saito divergence: with application to music analysis,” Neural
Computation, vol. 21, no. 3, pp. 793–830, 2009.

[47] W. M. Fisher, G. R. Doddington, and K. M. Goudie-Marshall, “The DARPA
speech recognition research database: Specifications and status,” in Proceedings
of the DARPA Workshop on Speech Recognition, 1986, pp. 93–99.

[48] S. Furui, “Speaker-independent isolated word recognition based on emphasized
spectral dynamics,” in Proceedings of the 11th IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). Tokyo, Japan: IEEE,
1986, pp. 1991–1994.

[49] M. J. F. Gales and Y. Q. Wang, “Model-based approaches to handling additive
noise in reverberant environments,” in Proceedings of the IEEE Workshop on
Hands-free Speech Communication and Microphone Arrays (HSCMA), Edin-
burgh, UK, 2011, pp. 121–126.

[50] M. J. F. Gales, “Semi-tied covariance matrices for hidden Markov models,”
IEEE Transactions on Speech and Audio Processing, vol. 7, pp. 272–281, 1999.

[51] J. T. Geiger, Z. Zhang, F. Weninger, B. Schuller, and G. Rigoll, “Robust
speech recognition using Long Short-Term Memory recurrent neural networks
for hybrid acoustic modelling,” in Proceedings of the 15th Annual Conference
of the International Speech Communication Association (INTERSPEECH).
Singapore, Singapore: ISCA, 2014, in press.

[52] J. T. Geiger, F. Weninger, A. Hurmalainen, J. F. Gemmeke, M. Wöllmer,
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[236] M. Wöllmer, Z. Zhang, F. Weninger, B. Schuller, and G. Rigoll, “Feature
enhancement by bidirectional LSTM networks for conversational speech recog-
nition in highly non-stationary noise,” in Proceedings of the 38th IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).
Vancouver, Canada: IEEE, 2013, pp. 6822–6826.
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