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Abstract

Consider the perpetuity equation X
D
= AX +B, where (A,B) and X on the right-

hand side are independent. The Kesten–Goldie theorem states that P{X > x} ∼ cx−κ
if EAκ = 1,EAκ log+A < ∞ and E|B|κ < ∞. We assume that E|B|ν < ∞ for some
ν > κ, and consider two cases (i) EAκ = 1 but EAκ log+A = ∞; (ii) EAκ < 1 but
EAt =∞ for all t > κ. We show that under appropriate additional assumptions on A
the asymptotic P{X > x} ∼ cx−κ`(x) holds, where ` is a nonconstant slowly varying
function. We use Goldie’s renewal theoretic approach.
Keywords: Perpetuity equation; Stochastic difference equation; Strong renewal theo-
rem; Exponential functionals; Maximum of random walks.
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1 Introduction and results

Consider the perpetuity equation

X
D
= AX +B, (1)

where (A,B) and X on the right-hand side are independent. To exclude degenerate cases
as usual we assume that P{Ax + B = x} < 1 for any x ∈ R. We also assume that A ≥ 0
and that logA conditioned on being nonzero is nonlattice.

The first results on existence of the solution and its tail behavior is due to Kesten
[19], who proved (in d-dimension) that if EAκ = 1, EAκ log+A < ∞, where log+ x =
max{log x, 0}, E|B|κ <∞ for some κ > 0 then the solution of (1) has Pareto-like tail, i.e.

P{X > x} ∼ c+x
−κ and P{X < −x} ∼ c−x

−κ as x→∞, (2)
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for some c+, c− ≥ 0, c+ + c− > 0. (In the following any nonspecified limit relation is meant
as x→∞.) Later Goldie [15] simplified the proof of the same result in the one-dimensional
case (for more general equations) using renewal theoretic methods. Following Buraczewski,
Damek and Mikosch [5] we refer to (2) as the Kesten–Goldie theorem. That is, under
general conditions on A, if P{A > 1} > 0 then the tail decreases polynomially. On the
other hand, Goldie and Grüber [16] showed that the solution has at least exponential tail
under the assumption A ≤ 1 a.s. For further results in the thin-tailed case see Hitczenko
and Weso lowski [18]. Returning to the heavy-tailed case Grey [17] showed that if EAκ < 1,
EAκ+ε <∞ then the tail of X is regularly varying with parameter −κ if and only if the tail
of B is. That is, the regular variation of the solution X of (1) is either caused by A alone, or
by B alone (under some weak condition on the other variable). Our intention in the present
note is to explore more the role of A, i.e. to extend the Kesten–Goldie theorem. More
precisely, we assume that E|B|ν <∞ for some ν > κ, and we obtain sufficient conditions on
A that imply P{X > x} ∼ `(x)x−κ, where `(·) is some nonconstant slowly varying function.

The perpetuity equation (1) has a wide range of applications; we only mention the
ARCH and GARCH models in financial time series analysis, see Embrechts, Klüppelberg
and Mikosch [10, 8.4 Perpetuities and ARCH Processes]. For a complete account on the
equation (1) refer to Buraczewski, Damek and Mikosch [5]. Equation (1) is also strongly
related to exponential functional of Lévy processes, see Arista and Rivero [2] and Behme
and Lindner [4] and the references therein.

The key idea in Goldie’s proof is to introduce the new probability measure

Pκ{logA ∈ C} = E[I(logA ∈ C)Aκ], (3)

where I(·) stands for the indicator function. Since EAκ = 1 this is indeed a probability
measure. If F is the distribution function (df) of logA under P then under Pκ

Fκ(x) = Pκ{logA ≤ x} =

∫ x

−∞
eκyF (dy). (4)

Under Pκ equation (1) can be rewritten as a renewal equation, where the renewal function
corresponds to Fκ, the df of logA. If Eκ logA = EAκ logA < ∞ then a renewal theorem
on the line implies the required tail asymptotics. Yet a smoothing transformation and a
Tauberian argument is needed, since key renewal theorems apply only for direct Riemann
integrable functions.

What we assume instead of the finiteness of the mean is that under Pκ the variable logA
is in the domain of attraction of a stable law with index α ∈ (0, 1), i.e. logA ∈ D(α). Since

Fκ(−x) = Pκ{logA ≤ −x} = EI(logA ≤ −x)Aκ ≤ e−κx, (5)

under Pκ the variable logA ∈ D(α) if and only if

1− Fκ(x) = F κ(x) =
`(x)

xα
, (6)
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where ` is a slowly varying function. Let U(x) =
∑∞

n=0 F
∗n
κ (x) denote the renewal measure

of logA and put

m(x) =

∫ x

0

[Fκ(−u) + F κ(u)]du ∼
∫ x

0

F κ(u)du ∼ `(x)x1−α

1− α

for the truncated expectation; the first asymptotic follows from (5), the second from (6).
To obtain the asymptotic behavior of the solution of the renewal equation we have to use a
key renewal theorem for random variables with infinite mean. The two-sided infinite mean
analog of the strong renewal theorem (SRT) is the convergence

lim
x→∞

m(x)[U(x+ h)− U(x)] = hCα,

lim
x→∞

m(x)[U(−x+ h)− U(−x)] = hC ′α,
(7)

where, in our case
Cα = [Γ(α)Γ(2− α)]−1, C ′α = 0.

The first infinite mean SRT was shown by Garsia and Lamperti [14] in 1963 for nonnegative
integer valued random variables, which was extended to the nonlattice case by Erickson
[11, 12]. In both cases it was shown that for α ∈ (1/2, 1) assumption (6) implies the SRT,
while for α ≤ 1/2 further assumptions are needed. For α ≤ 1/2 sufficient conditions for
(7) were given by Chi [7], Doney [8], Vatutin and Topchii [22]. The necessary and sufficient
condition for nonnegative random variables was given independently by Caravenna [6] and
Doney [9]. They showed that if for a nonnegative random variable with df H (6) holds with
α ≤ 1/2 then (7) holds if and only if

lim
x→∞

xH(x)[H(x+ h)−H(x)] = 0, for any h > 0, and

lim
δ→0

lim sup
x→∞

xH(x)

∫ δx

1

1

yH(y)2
H(x− dy) = 0.

(8)

Moreover, Doney conjectures that the same is true for random walks, i.e. H ∈ D(α) and
the SRT holds if and only if (8) holds. This is actually shown for α > 1/3. However, a
closer inspection of Doney’s proof shows that this is indeed the case for any α ∈ (0, 1) for
exponentially negligible left-tail, which, by (5), is exactly our setup. For further results
and history about the infinite mean SRT we refer to [6, 9] and the references therein. In
what follows, we simply assume that (7) holds. In Lemma 1 below, which is a modification
of Erickson’s Theorem 2 [11], we prove the corresponding key renewal theorem. Since in
the literature ([21, Lemma 3], [22, Theorem 4]) this lemma is stated incorrectly, we give a
counterexample in the appendix. We use the notation x+ = max{x, 0}, x− = max{−x, 0},
x ∈ R.

3



Theorem 1. Assume that EAκ = 1, E|B|ν < ∞ for some ν > κ, (6) and (7) hold, logA
conditioned on being nonzero is nonlattice, and that P{Ax + B = x} < 1 for any x ∈ R.
Then for the tail of the solution of the perpetuity equation (1) we have

lim
x→∞

m(log x)xκP{X > x} = Cα
1

κ
E[(AX +B)κ+ − (AX)κ+],

lim
x→∞

m(log x)xκP{X ≤ −x} = Cα
1

κ
E[(AX +B)κ− − (AX)κ−].

(9)

Moreover, E[(AX +B)κ+ − (AX)κ+] + E[(AX +B)κ− − (AX)κ−] > 0.

The conditions of the theorem are stated in terms of the measure-changed A. Following
the remark by Korshunov after his Theorem 2 in [20] we give a sufficient condition to (6) in
terms of the df F of logA under the original probability P. Simple properties of regularly
varying functions imply that if

eκxF (x) =
α `(x)

κxα+1

with a slowly varying function ` then (6) holds. However, the converse implication does not
hold.

The asymptotic behavior of the solution X of (1) is closely related to the maximum
M = max{0, S1, S2, . . .} of the corresponding random walk Sn = logA1+logA2+. . .+logAn,
where logA1, logA2, . . . are iid logA. The assumption EAκ = 1 implies that E logA < 0, so
the random walk tends to −∞, thus M is a.s. finite. Assuming (6) Korshunov [20] showed
that for some constant c > 0

lim
x→∞

P{M > x}eκxm(x) = c. (10)

(In the following c, c′, C are nonnegative constants, whose value may differ from line to line.)
In specific cases this result is equivalent to our theorem. Let (ξt)t≥0 be a nonmonotone Lévy
process, which tends to −∞. Consider its exponential functional J =

∫∞
0
eξtdt and its

supremum ξ∞ = supt≥0 ξt. Arista and Rivero [2, Theorem 4] showed that P{J > x} is

regularly varying with parameter −α if and only if P{eξ∞ > x} is regularly varying with
the same parameter. Now, if (ξt) has finite jump activity and 0 drift then conditioning on
its first jump time one has the perpetuity equation

J
D
= AJ +B,

with B being an exponential random variable, independent of A, which is the jump size.
The equivalence of Theorem 1 and (10) readily follows. We use this argument at the end of
the proof of Theorem 2.

Finally, we note that the tail behavior (9) with nontrivial slowly varying function was
noted before by Rivero [21] for exponential functionals of Lévy processes. In Counterexample
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1 [21] the following is shown. Let (σt)t≥0 be a nonlattice subordinator, such that Eeκσ1 <∞
and m(x) = EI(σ1 > x)eκσ1 is regularly varying with index −α ∈ (−1/2,−1). Consider
the Lévy process (ξt)t≥0 obtained by killing σ at ζ, an independent exponential time with

parameter logEeκσ1 . Then, in terms of the exponential functional J =
∫ ζ

0
eξtdt Lemma 4

[21] states that limx→∞m(log x)xκP{J > x} = c, for some c > 0. (Note that P1{T0 > t} =
P{J > t}.)

Assume now that EAκ = θ < 1 for some κ > 0, and EAt = ∞ for any t > κ. Consider
the new probability measure

Pκ{logA ∈ C} = θ−1E[I(logA ∈ C)Aκ],

that is under the new measure logA has df

Fκ(x) = θ−1

∫ x

−∞
eκyF (dy).

Note that these are the same definitions as in (3) and (4), the only difference is that now
θ < 1. Therefore the same notation should not be confusing. The assumption EAt = ∞
for all t > κ means that Fκ is heavy-tailed. Rewriting again (1) under the new measure
Pκ leads now to a defective renewal equation for the tail of X. To analyze the asymptotic
behavior of the resulting equation we use the techniques and results developed by Asmussen,
Foss and Korshunov [3]. A slight modification of their setup is necessary, since our df Fκ is
not concentrated on [0,∞).

For some T ∈ (0,∞] let ∆ = (0, T ]. For a df H we put H(x + ∆) = H(x + T )−H(x).
A df H on R is in the class L∆ if H(x+ t+ ∆)/H(x+ ∆)→ 1 uniformly in t ∈ [0, 1], and it
belongs to the class of ∆-subexponential distributions, H ∈ S∆, if H(x+ ∆) > 0 for x large
enough, H ∈ L∆, and (H ∗H)(x + ∆) ∼ 2H(x + ∆). If H ∈ S∆ for every T > 0 then it is
called locally subexponential, H ∈ Sloc. The definition of the class S∆ given by Asmussen,
Foss and Korshunov [3] for distributions on [0,∞) and by Foss, Korshunov and Zachary
[13, Section 4.7] for distributions on R. In order to use a slight extension of Theorem 5 [3]
we need the additional natural assumption supy>x Fκ(y + ∆) = O(Fκ(x + ∆)) for x large
enough. (This does not follow from the assumptions.) Properties of locally subexponential
distributions, in particular its relation to infinitely divisible distributions were investigated
by Watanabe and Yamamuro [23, 24].

Theorem 2. Assume that EAκ = θ < 1 for some κ > 0, Fκ ∈ Sloc, supy>x Fκ(y + ∆) =
O(Fκ(x+ ∆)) for x large enough, E|B|ν <∞ for some ν > κ, logA conditioned on A being
nonzero is nonlattice, and P{Ax+B = x} < 1 for any x ∈ R. Then

lim
x→∞

g(log x)−1xκP{X > x} =
1

(1− θ)2κ
E[(AX +B)κ+ − (AX)κ+],

lim
x→∞

g(log x)−1xκP{X ≤ −x} =
1

(1− θ)2κ
E[(AX +B)κ− − (AX)κ−],

(11)
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where g(x) = Fκ((x, x+1]). Moreover, E[(AX+B)κ+−(AX)κ+]+E[(AX+B)κ−−(AX)κ−] > 0.

The condition Fκ ∈ Sloc is much stronger than the corresponding regularly varying
condition in Theorem 1. Typical examples satisfying this condition are the Pareto, lognormal
and Weibull (with parameter less than 1) distributions, see [3, Section 4]. For example in
the Pareto case, i.e. if for large enough x we have F κ(x) = c x−β, for some c > 0, β > 0,
then g(x) ∼ cβx−β−1, and so P{X > x} ∼ c′x−κ(log x)−β−1. In the lognormal case, when
Fκ(x) = Φ(log x) for x large enough, with Φ being the standard normal df, (11) gives
the asymptotic P{X > x} ∼ cx−κe−(log log x)2/2/ log x, c > 0. Finally, for Weibull tails
F κ(x) = e−x

β
, β ∈ (0, 1), we obtain P{X > x} ∼ cx−κ(log x)β−1e−(log x)β , c > 0.

Theorem 2 and Theorem 4 [2] together immediately imply the following.

Corollary 1. Let logA1, logA2, . . . be iid logA, let Sn = logA1 + logA2 + . . . + logAn
denote their partial sum, and M = max{0, S1, S2, . . .}. Assume that EAκ < 1 for some
κ > 0, Fκ ∈ Sloc, supy>x Fκ(y + ∆) = O(Fκ(x + ∆)) for x large enough, logA conditioned
on A being nonzero is nonlattice. Then

P{M > x} ∼ cg(x)eκx,

with some c > 0, where g(x) = Fκ((x, x+ 1]).

2 Proofs

2.1 Proof of Theorem 1

We follow closely Goldie’s proof. It is enough to show the first limit in (9), since the second
follows from this writing −X and −B in (1). Writing

ψ(x) = eκx(P{AX +B > ex} −P{AX > ex}), f(x) = eκxP{X > ex} (12)

from (1) using that X and A are independent we obtain the equation

f(x) = ψ(x) + Ef(x− logA)Aκ. (13)

Using the definition (3) we see that Eκg(logA) = E(g(logA)Aκ) thus under the new measure
equation (13) reads as

f(x) = ψ(x) + Eκf(x− logA). (14)

It is necessary to introduce the smoothing transformation, since the function ψ is not neces-
sary directly Riemann integrable (dRi), which is needed to apply the key renewal theorem.
For an integrable function g introduce its smoothed transform

ĝ(s) =

∫ s

−∞
e−(s−x)g(x)dx. (15)
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Applying this transform to both sides of (14) we get the renewal equation

f̂(s) = ψ̂(s) + Eκf̂(s− logA). (16)

Iterating (16) we obtain for any n ≥ 1

f̂(s) =
n−1∑
k=0

∫
R
ψ̂(s− y)F ∗kκ (dy) + Eκf̂(s− Sn), (17)

where logA1, logA2, . . . are iid logA, independent of X, and Sn = logA1 + . . . + logAn.
Since Sn → −∞ P-a.s.

Eκf̂(s− Sn) = e−s
∫ s

−∞
e(κ+1)yP{XeSn > ey}dy → 0 as n→∞,

therefore as n→∞ from (17) we have

f̂(s) =

∫
R
ψ̂(s− y)U(dy). (18)

where U(x) =
∑∞

n=0 F
∗n
κ (x) is the renewal measure of Fκ. The question is under what

conditions of z the key renewal theorem

m(x)

∫
R
z(x− y)U(dy)→ Cα

∫
R
z(y)dy (19)

holds.
In the following lemma, which is a modification of Erickson’s Theorem 2 [11], we give

sufficient condition for z to (19) hold. We note that both in Lemma 3 [21] and in Theorem
4 of [22] the authors wrongly claim that (19) holds if z is dRi. A counterexample is given
in the appendix.

Lemma 1. Assume that z is dRi and z(x) = O(x−1) as x→∞. Then (7) implies (19).

Proof. We may and do assume that z ≥ 0. Write

m(x)

∫
R
z(x− y)U(dy)

= m(x)

[∫ ∞
x

z(x− y)U(dy) +

∫ x

0

z(x− y)U(dy) +

∫ 0

−∞
z(x− y)U(dy)

]
=: I1(x) + I2(x) + I3(x).

We show that I1(x) → Cα
∫ 0

−∞ z(y)dy whenever z is dRi. Fix h > 0 and put zk(x) =
I(x ∈ ((k − 1)h, kh]), ak = inf{z(x) : x ∈ ((k − 1)h, kh]}, and bk = sup{z(x) : x ∈
((k − 1)h, kh]}, k ∈ Z. Simply

m(x)
0∑

k=−∞

ak(U ∗ zk)(x) ≤ I1(x) ≤ m(x)
0∑

k=−∞

bk(U ∗ zk)(x).
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As x→∞ by (7) for any fix k

m(x)(U ∗ zk)(x) = m(x)[U(x− kh+ h)− U(x− kh)]

=
m(x)

m(x− kh)
m(x− kh)[U(x− kh+ h)− U(x− kh)]→ Cαh,

where the convergence m(x)/m(x−kh)→ 1 follows from the fact that m is regularly varying
with index 1 − α. Since 1 − α > 0 and k ≤ 0 this also gives us an integrable majorant
uniformly in k ≤ 0, i.e. for x large enough

lim sup
k<0

m(x)(U ∗ zk)(x) ≤ 2Cαh.

Thus by Lebesgue’s dominated convergence theorem

lim
x→∞

m(x)
0∑

k=−∞

ak(U ∗ zk)(x) = Cα

0∑
k=−∞

akh,

lim
x→∞

m(x)
0∑

k=−∞

bk(U ∗ zk)(x) = Cα

0∑
k=−∞

bkh.

Now the statement readily follows from the direct Riemann integrability of z.
The convergence I2(x) → Cα

∫∞
0
z(x)dx is the statement of [11, Theorem 3]. From its

proof we see that for any θ ∈ (0, 1)

m(x)

∫ x

θx

z(x− y)U(dy)→ Cα

∫ ∞
0

z(y)dy

holds without the extra assumption z(x) = O(1/x), which is only needed to show that

lim
θ↓0

lim sup
x→∞

m(x)

∫ θx

0

z(x− y)U(dy) = 0.

Finally, we show that I3(x)→ 0. Indeed, for any θ > 0 the direct Riemann integrability
of z combined with a Lebesgue’s dominated convergence theorem implies

m(x)

∫ −θx
−∞

z(x− y)U(dy)→ 0,

while for small x we have with K ≥ supx>0 xz(x) that

lim sup
x→∞

m(x)

∫ 0

−θx
z(x− y)U(dy) ≤ K lim sup

x→∞

U(−θx)m(x)

x
= 0.
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Recall the definition of ψ in (12). In what follows, we show that ψ̂ satisfies the condition
of Lemma 1.

Lemma 2. Assume that EAκ ≤ 1, E|B|ν < ∞ for some ν > κ. Then ψ̂ is dRi and
ψ̂(s) = O(e−δs) as s→∞, for some δ > 0.

Proof. The direct Riemann integrability holds without the extra moment assumption; this
is shown in [15, Lemma 9.2].

Let us choose ε > 0 so small that

κ+
3κε

1− ε
< ν, if κ ≥ 1, and κ+ ε ≤ min{1, ν}, for κ < 1. (20)

Using the inequality

|P{AX +B > y} −P{AX > y}| ≤ P{AX +B > y ≥ AX}+ P{AX > y ≥ AX +B},

we obtain

|ψ̂(s)| ≤
∫ s

−∞
e−(s−x)eκx[P{AX +B > ex ≥ AX}+ P{AX > ex ≥ AX +B}]dx. (21)

Changing variables and using Fubini’s theorem we have for the first term

e−s
∫ s

−∞
e(κ+1)xP{AX +B > ex ≥ AX}dx

= e−s
∫ es

0

yκP{AX +B > y ≥ AX}dy

≤ e−εs
∫ es

0

e−(1−ε)syκP{AX +B > y ≥ AX}dy

≤ e−εs
∫ es

0

yκ−1+εP{AX +B > y ≥ AX}dy

≤ e−εs
∫ ∞

0

yκ−1+εEI(AX +B > y ≥ AX)dy

≤ e−εs(κ+ ε)−1EI(B ≥ 0)((AX +B)κ+ε
+ − (AX)κ+ε

+ ).

The same calculation for the second term in (21) implies

|ψ̂(s)| ≤ e−εs(κ+ ε)−1E||AX +B|κ+ε − |AX|κ+ε|.

We show that the expectation on the right-hand side is finite. Indeed, for a, b ∈ R we
have ||a+ b|γ − |a|γ| ≤ |b|γ for γ ≤ 1 and ||a+ b|γ − |a|γ| ≤ 2γ|b|(|a|γ−1 + |b|γ−1) for γ > 1.
From Theorem 1.4 by Alsmeyer, Iksanov and Rösler [1] we know that E|X|γ < ∞ for any
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γ < κ. Assume that κ ≥ 1 and let p = κ+2κε/(1−ε), 1/q = 1−1/p. By Hölder’s inequality
and by the choice of ε in (20)

E||AX +B|κ+ε − |AX|κ+ε| ≤ 2(κ+ ε)
[
E|B||AX|κ+ε−1 + E|B|κ+ε

]
≤ 2(κ+ ε)

[
E|X|κ+ε−1(E|B|p)1/p(EAq(κ+ε−1))1/q + E|B|κ+ε

]
<∞,

which proves the statement for κ ≥ 1. For κ < 1 we choose ε such that κ+ ε ≤ 1, so

E||AX +B|κ+ε − |AX|κ+ε| ≤ E|B|κ+ε <∞.

Note that for Lemma 1 we only need that ψ̂(s) = O(s−1). Obvious modification of the
proof shows that this holds if instead of assuming E|B|ν < ∞ for some ν > κ we assume
that

E|B|κ(log+ |B|)max{1,κ} <∞, E|B|κ log+A <∞, and E|B|Aκ−1 log+A <∞.

Clearly, the latter condition is weaker for independent A and B.

We return to the proof of the main result. From Lemmas 1 and 2 we obtain that for the
solution of (18)

lim
s→∞

m(s)f̂(s) = Cα

∫
R
ψ(y)dy =: c, (22)

where we also used the simple fact that
∫
R ψ(y)dy =

∫
R ψ̂(s)ds. From (22) the statement

follows again the same way as in [15, Lemma 9.3]. Indeed, since m(x) is regularly varying
m(log x) is slowly varying, thus from (22) we obtain for any 0 < a < 1 < b <∞

m(log x)
1

x

∫ bx

ax

yκP{X > y}dy → (b− a)c.

With a = 1 < b and a < 1 = b it follows that

c
b− 1

bκ+1 − 1
(κ+ 1) ≤ lim inf

x→∞
xκm(log x)P{X > x}

≤ lim sup
x→∞

xκm(log x)P{X > x}

≤ c
1− a

1− aκ+1
(κ+ 1).

As a ↑ 1, b ↓ 1 the convergence follows. The form of the constant follows by evaluating the
integral

∫
R ψ(x)dx, which goes along the same lines as in the proof of Lemma 2.

Finally, the positivity of the limit follows exactly the same way as in [15]. Goldie shows
[15, p.157] that for some positive constants c, C > 0

P{|X| > x} ≥ cP {sup {logA1 + . . .+ logAk : k ≥ 1} > C + log x} . (23)

Now the positivity follows from (10).
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2.2 Proof of Theorem 2

Again it is enough to prove the result for the right tail. Following the same steps as in the
previous proof, we end up with the defective renewal equation

f(x) = ψ(x) + θEκf(x− logA).

Applying the smoothing transform in (15) we obtain

f̂(s) = ψ̂(s) + θEκf̂(s− logA).

The same way as we showed that (16) implies (18) we obtain that

f̂(s) =

∫
R
ψ̂(s− y)U(dy),

where U is the defective renewal measure U(x) =
∑∞

n=0(θFκ)
∗n(x). Since θ < 1 we have

U(R) = (1 − θ)−1 < ∞. A modification of Theorem 5 [3] gives the following. Recall that
g(x) = θ[Fκ(x+ 1)− Fκ(x)].

Lemma 3. Assume that Fκ satisfies the condition of Theorem 2, z is dRi, and z(x) =
o(g(x)). Then ∫

R
z(x− y)U(dy) ∼ g(x)

∫
R z(y)dy

(1− θ)2
.

Proof. Assume that z is nonnegative. We again cut the integral∫
R
z(x− y)U(dy) = I1(x) + I2(x) + I3(x),

where I1, I2 and I3 are the integrals on (x,∞), (0, x] and on (−∞, 0], respectively.

The asymptotics I1(x) ∼ g(x)
∫ 0

−∞ z(y)dy/(1− θ)2 follows along the same lines as in the

proof of Lemma 1. Theorem 5(i) [3] gives I2(x) ∼ g(x)
∫∞

0
z(y)dy/(1−θ)2. (In the appendix

we explain why the results for ∆-subexponential distributions on [0,∞) remain true in our
case.) Finally, for I3 we have

I3(x) ≤ U(−∞, 0) sup
y≥x

z(y) = o(g(x)),

where we use that supy≥x Fκ(y + ∆) = O(Fκ(x+ ∆)).

From Lemma 2 we have ψ̂(x) = O(e−δx) for some δ > 0. Since Fκ is subexponential
ψ̂(x) = o(g(x)). That is, the condition of Lemma 3 holds, and we obtain the asymptotic

f̂(s) ∼ g(s)

∫
R z(y)dy

(1− θ)2
, s→∞.
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Since g(x) is subexponential, g(log x) is slowly varying, and the proof can be finished exactly
the same way as in Theorem 1.

It remains to show the positivity of the sum of the constants. By inequality (23)
it is enough to show that P{eM > x} ∼ cx−κg(log x), with some c > 0, where M =
supn≥1(logA1 + . . .+ logAn) is the maximum of the random walk, is the same as after The-
orem 1 and in Corollary 1. Let us choose B to be an standard exponential random variable,
independent of A. Since B > 0 the constant of the right-tail in (11) is positive. Consider the
Lévy process SNt , where Nt is a standard Poisson process, and Sn = logA1 + . . . + logAn.
Since SNt → −∞ the exponential functional J =

∫∞
0
eSNtdt is finite, and conditioning on

the first jump we see that it satisfies the perpetuity equation

J
D
= AJ +B.

We have just proved that the solution of the latter equation has regularly varying tail with
index −κ. Theorem 4 by Arista and Rivero [2] implies that

P{J > x}
P{eM > x}

→ c′ > 0,

where the constant c′ can be determined. The proof is ready. This also implies Corollary 1.

3 Appendix

3.1 A counterexample

Here we give a counterexample to [21, Lemma 3] and [22, Theorem 4], which shows that
alone from the direct Riemann integrability of z the key renewal theorem (19) does not
follow.

Let an = n−β, with some β > 1, and let dn ↑ ∞ a sequence of integers. Define

z(x) =


0, x = dn ± 1/2,

an, x = dn,

linear, x ∈ (dn − 1/2, dn) ∪ (dn, dn + 1/2),

0, elsewhere.

Since
∑∞

n=1 an <∞ the function z is directly Riemann integrable.
For α ∈ (0, 1) consider the measure V (dy) = yα−1dy. Then∫ x

0

z(x− y)yα−1dy =

∫ x

0

z(y)(x− y)α−1dy = xα−1

∫ x

0

z(y)(1− y/x)α−1dy.

It is clear that by Lebesgue’s dominated convergence theorem for any ν ∈ (0, 1)∫ νx

0

z(y)(1− y/x)α−1dy →
∫ ∞

0

z(y)dy.

12



On the other hand for x = dn∫ dn

dn−1/2

z(y)(1− y/dn)α−1dy =

∫ dn

dn−1/2

an2[y − (dn − 1/2)]

(
dn − y
dn

)α−1

dy

= and
1−α
n 2−α

∫ 1

0

u(1− u)α−1du

Choosing dn = n2 and β such that 2α+β < 2 we see that the latter integral goes to infinity,
so the asymptotic (19) does not hold.

This example also shows that a growth condition on z, something like Erickson’s z(x) =
O(1/x), is needed.

3.2 Local subexponentiality

We claim that Theorem 5 in [3] remains true in our setup. Additionally to the local subex-
ponential property, we assume that supy≥xH(y + ∆) = O(H(x + ∆)). The main technical
tool in [3] is the equivalence in Proposition 2. In our setup it has the following form.

Lemma 4. Assume that H ∈ L∆, and supy≥xH(y + ∆) = O(H(x + ∆)). Let X, Y be iid
H. The following are equivalent:

(i) H ∈ S∆;

(ii) there is a function h such that h(x) → ∞, h(x) < x/2, H(x − y + ∆) ∼ H(x + ∆)
uniformly in |y| ≤ h(x), and

P{X + Y ∈ x+ ∆, X > h(x), Y > h(x)} = o(H(x+ ∆)).

Proof. Write

P{X + Y ∈ x+ ∆} = P{X + Y ∈ x+ ∆, X ≤ h(x)}+ P{X + Y ∈ x+ ∆, Y ≤ h(x)}
+ P{X + Y ∈ x+ ∆, X > h(x), Y > h(x)}.

Since ∫ h(x)

−h(x)

P{Y ∈ x− y + ∆}H(dy) ∼ H(x+ ∆),

and ∫ −h(x)

−∞
P{Y ∈ x− y + ∆}H(dy) ≤ H(−h(x)) sup

y≥x
H(y + ∆) = o(H(x+ ∆)),

for the first two terms

P{X + Y ∈ x+ ∆, X ≤ h(x)} ∼ H(x+ ∆),

and the result follows.

13



Similarly, assuming the extra growth condition all the results in [3] hold true with the
obvious modification of the proof.

Alternatively, we could use Theorem 1.1 by Watanabe and Yamamuro [23], from which
the extension of Theorem 5 in [3] follows. In Theorem 1.1 [23] finite exponential moment
for the left-tail is assumed, which is satisfied in our setup by (5). Also note that Theorem
1.1 is a much stronger result what we need: it gives an equivalence of certain tails, and we
only need implication (ii) ⇒ (iii).

Acknowledgement. I thank Mátyás Barczy for useful comments on the manuscript and
Vı́ctor Rivero for drawing my attention to Counterexample 1 in [21].
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