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Abstract

We present an on-line learning approach for devel-
oping sensor-based controllers and show how it can
make the programming of assembly tasks easier. We
suggest to combine the qualitative modelling of human
expert skills and the self-tuning of control parameters
so that a controller for a complex assembly task can
be efficiently developed. It is then discussed how to
construct a fuzzy controller with B-splines and why
rapid convergence of its learning can be achieved. To
apply the concept in a screwing operation, we pro-
pose several gradual steps of active on-line learning.
Erperiments were carried out with two independently
controlled robot arms. Although general-purpose jaw-
grippers are used and diverse uncertainties exist, the
“elevator control” of a toy aircraft can be robustly
bualt.

1 Introduction

Our research concentrates on using two robot arms
to assemble complex aggregates. Among assembly op-
erations, insertion and screwing are very important
for investigating sensor-based control methods, [7].
In industrial applications, a screwing task is usually
performed by position-based approaches using pre-
cise fixturing and special screwing tools with passive-
compliance devices. However, in order to enhance the
flexibility of a robotic system, approaches are nec-
essary which are able to control a general-purpose
hand/gripper based on sensor inputs. Only with sen-
sors can the diverse uncertainties occuring during dif-
ferent screwing operations be detected and correctly
handled.

Screwing is a robot skill to be acquired, either
conventionally by manual programming or by self-
learning of the robot. However, solutions to screw-
ing are not as thoroughly discussed as the peg-in-hole
problem. In [2] it was briefly discussed how to develop

programs for screwing operations by using force feed-
back. [1] presented a telerobotic system for perform-
ing such an operation. Screwing with a multifingered
hand was reported in [6]. To the best of our knowl-
edge no experiments on screwing with two robot arms
have been reported.

Robot learning aims at generating robot software
in an evolutionary way. Off-line supervised learning
must utilise data from human demonstration, and it
cannot be guaranteed at all that the optimal controller
is trained even if the human instructor demonstrated
his best skills. Recently, serveral unsupervised learn-
ing methods have been presented. [3] discussed the
training of a fuzzy-neural controller for position/force
control through backpropagation and gave some simu-
lation results. To train a controller for contour track-
ing based on force feedback, [5] used a neural network
method.

Fuzzy logic is a suitable mechanism to model and
summarise human knowledge for sensor-based control,
[9]. In this paper, we introduce an on-line unsuper-
vised learning approach based on fuzzy controllers.
We try to tell the robot approximately “how-to”, then
let it practise in the real world and learn the optimal
values of a number of control parameters. We also
show how the parameters to be adjusted can be re-
duced to the fewest possible by constructing a fuzzy
controller with B-splines. We show experimental re-
sults of screwing operations with two robot manipula-
tors.

2 Screwing Control Problem
2.1 Experimental set-up

The problem of the screwing of a bolt into a nut
originates from our collaborative project which aims at
assembly of aggregates with wooden toy construction
sets, [4]. The “elevator control” of a toy aircraft was
selected as one aggregate to be built, Fig. 1.



(a) Bolt, bar and block-nut

(b) “elevator controls”

Figure 1: Parts and aggregates of the “Baufix” con-
struction set.

The assembly agent in our experiment is a two-
arm robotic system, Fig. 2(a). Two manipulators
of type PUMA 260 are installed overhead. On the
wrist of each manipulator, a parallel pneumatic jaw-
gripper with integrated force/torque sensor and a
hand-camera are mounted. The X-, Y-, and Z-axis
in the coordinate system of the force/torque sensor
coincide with the N-(normal), O-(orientation) and A-
(approach) direction of the arm tool coordinate sys-
tem, respectively.

inconvenient
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(a) Two cooperating ma- (b) An
nipulators

Figure 2: The experimental set-up for fixtureless as-
sembly.

We consider general screwing without using any fix-
ture devices. Screwing with the two arms assumes the
following starting situation: under the guidance of an
overhead-camera and instructed by a command in nat-
ural language, one arm /gripper moves over a bolt, po-
sitions finely with the help of the hand-camera and
grasps the bolt (this gripper is called “bolt-hand” in
the following); the other arm/gripper similarly grasps
a block-nut (that gripper is called “nut-hand”). Af-
ter that, both hands move to a “rendezvous” point in
their common working area, and they are ready for
screwing!.

1To emphasise the screwing problem, the “insertion of a bolt
into the nut”, which is actually a subproblem of screwing, is
omitted here.

2.2 Motion sequence for screwing

Our experiments have shown that a set of sensor-
based subtasks must be sequentially performed to
complete a screwing operation:

1. Find the contact during approach of the bolt
towards the block.

2. Put the bolt in the nut through either spiral
search or visually-guided fine motion.

3. Find the notch point to fit the bolt-thread into
the bolt-nut?. This can be realised by rotating the
bolt-hand counterclockwise and is characterised
by an impulse in the force-reading.

4. Screw-in by exerting a forward force to maintain
the correct contact of the bolt with the block-nut
while rotating clockwise. To finish a long-thread
screwing using grippers with the limited rotation
range, the bolt-hand has to open the gripper if a
joint limit has reached, then rotate backward and
regrasp.

5. Terminate when one hand detects a torque im-
pulse in the approach direction.

2.3 Uncertainties

For a general-purpose arm /gripper system, the fol-
lowing three types of uncertainties must be taken into
account:

Grasping precision. Although we have applied a
hand-camera in a “self-viewing” configuration,
which significantly improved the grasping preci-
sion in comparison with the open-loop position-
ing, regrasping still engenders deviation of the
bolt from the rotation axis of the gripper.

Slippage of the part in the hand. Due to the ef-
fect of the resulting forces, the bolt grasped by a
Jjaw gripper may easily slip during the screwing
process.

Position limit and vibration. Even if the bolt and
the nut are fitted quite well at the beginning, the
intolerable forces can still be generated due to the
limited positioning precision and the unavoidable
vibrations during the hand rotation.

The uncertainties in a screwing process cause the
following two concrete problems:

1. The bolt is not centrically grasped, i.e. the rotat-
ing axis of the bolt does not coincide with that of
the gripper.

2 Analogous to the alignment in the peg-in-hole problem.



2. The bolt is obliquely grasped, Fig. 2(b).

Without using sensors, such an operation can
fail under each of the uncertainties discussed above.
Therefore, sensor-based compensation motions be-
come necessary. The resulting forces in case 1 and
2 in the normal and orientation directions should be
minimised and stable. Additionally, to guarantee a
successful screwing-in phase, a constant force in the
approach direction should be exerted.

3 Learning of the B-Spline Fuzzy Con-
troller

3.1 Combining design and learning

We adopt a two-phase scheme for developing a
sensor-based motion controller. These two phases cor-
respond to the qualitative design and the quantitative
fine-tuning. Fuzzy logic is selected as the basic struc-
ture for modelling the qualitative rules extracted from
expert knowledge. In the quantitative part of an as-
sembly skill, the decisive parameters are fine-tuned.

In our B-spline fuzzy controller, values of the con-
trol vertices in the “THEN” part are the main param-
eters to adapt. To define the linguistic terms of the
“IF” parts, it 1s unnecessary to specify each fuzzy set
manually. A user simply selects the granularity for
partitioning the universe of the input variable. The
“optimal” parameters in these “IF-THEN” rules, es-
pecially the control vertices, cannot be determined
only through design. They must be optimised in a nat-
ural “learning-by-doing” procedure through real oper-
ations with the robot.

3.2 Why B-spline fuzzy controllers?

The above idea can be effectively realised using the
B-spline fuzzy controller proposed in our earlier work
[8]. This type of controller is distinguished from the
conventional fuzzy controller by the following features:

e B-spline basis functions are employed for spec-
ifying the linguistic terms (labels) of the input
variables. By choosing the order k of the basis
functions (k > 2), the output is C*~2-continuous.
However, too high an order will result in high
computational burden and additional rules. In
practice, orders 2, 3, 4 are suitable for modelling
membership functions.

e The linguistic terms of all the IF-parts are gener-
ated automatically using the recursive definition

of the basis functions. The human users only need
to specify how fine each input variable should be
partitioned.

e Each controller output is defined by a set of fuzzy-
singletons, called control vertices in the B-spline
terminology. The number of the control vertices
is equal to the number of the rules. The values
of the control vertices can be initialised approxi-
mately if a priori knowledge is available or simply
as zero if this is not the case. The optimal values
can be iteratively found through learning.

e If “product” is used as the fuzzy conjunction and
“centroid” as the defuzzification method, compu-
tation of such a fuzzy controller is equivalent to
that of a general B-spline hypersurface. Learning
of such a controller is transformed to adjusting
the control vertices for shaping an “ideal” curve
or (hyper)surface.

3.3 The learning aspect

One problem with the learning of conventional
fuzzy controllers is that too many parameters must
be adjusted. This results in difficulties for the con-
vergence of the learning algorithms and the learning
speed. With B-spline fuzzy controllers, modification
of control vertices effectively causes the changes of the
control surface. Learning of the controller is then re-
duced to the learning of the positions of the fuzzy-
singletons on the axis of the output variables®. Tun-
ing a controller i1s equivalent to shaping the control
surface. In CAD applications, the criterion for defin-
ing the “ideal” surface can be the visual appearance
or some measures like length, curvature, energy, etc.
For control applications, they should optimise certain
cost functions, e.g. the action-value in the (J-learning
paradigm.

We showed an important feature of the B-spline
fuzzy controller: for supervised learning, if the squared
error is selected as the action-value, its partial differen-
tiation with respect to each control vertex is a convex
function. Therefore, a learning algorithm employing
simple gradient descent method can converge rapidly.
For unsupervised learning, the learning process with
the gradient descent will also show a stable asymp-
totic behaviour if the system possesses the following
feature: given two controller outputs with different
signs, the system changes away from the current state

3The changes of the knots of the B-spline basis function on
the input will also influence the control surface. We have de-
veloped a self-adaptation module to find the best positions for
them, based on the extreme points of the output.



in two directions (“better” or “worse” as measured by
the action-value).

4 Implementation Issues
4.1 Initialising the controller

4.1.1 Input

The input information is provided by the force feed-
back during the motion. In the screwing operation,
instead of absolute forces, the deviations of the real
forces from the desired ones are used as the input vari-
ables, which can be restricted to 2N for our appli-
cation. Greater force deviations occur when the bolt
is placed on the thread-neck.

Firstly, the linguistic terms and their definition in-
tervals are specified. At each of both ends of the in-
put range [—2N, +2N], two virtual linguistic terms are
added to maintain the smooth controllability at the
end of the interval [8]. If B-spline basis functions of or-
der three are used, the generated linguistic terms can
be seen in Fig. 3(a), where Ag and Ay are virtual lin-
guistic terms, A; to Ag are e.g. HighNegForceError,
LowNegForceError, ..., etc.

o 1
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(b) The control curves
during learning

(a) The input variables

within the effective range

+2N
Figure 3:

curves.

Membership functions and the control

Force deviations in all three directions are noted as
Ferr in A-) O- and N-direction. They are covered with
these linguistic terms similarly.

4.1.2 Owutput

Linguistic terms of the output variables are defined in
the following way:

def singleton: MoveVeryHighlleg 0.3

These fuzzy-singletons are the control vertices and
noted as y; in the following. They can be specified

approximately if data for the control process are avail-
able, or initialised as zero if there 1s no a prior: knowl-

edge.

4.1.3 Rules

An example of a rule is:

“IF the deviation from the desired force is very high

THEN the arm should move back in a big stretch”

In this way, the heuristic rules for acting in the
real situations are extracted. They are called “core
rules”. To deal with the input combinations of the
vertual linguistic terms, marginal rules have to be gen-
erated. That can be done by just copying the output
values from the directly neighbouring input combina-
tions. For details see [8].

4.2 Learning functions

There 1s no direct information on how the mo-
tion should be compensated to realise the desired
forces in each control cycle. However, we know
in which direction the compensation motion should
go if the force errors are computed. In a finely
partitioned local area, the force error is approxi-
mately proportional to the step of the last compen-
sation motion if the time delay is omitted. Let

Ferr(z)  the force error in control cycle z

n the learning rate, transforming the
force error to the compensation motion,
with the unit [mm/N].

Then each control vertex y; (¢ is the index of rules)
can be modified similarly to gradient descent in super-
vised learning:

dy; = =1 - (Ferr) (2) - Ni(Fere(z = 1)) (1)

where z > 0 and N; is the i-th basis function of a
selected order. Representing the “firing strength” of
the i-th rule, N;(Ferr(z — 1)) serves as the function to
backpropagate the force error to the modification of
Yi-

This algorithm works only if there is no time delay.
Otherwise, the oscillation problem should be taken
into account, which results from the time delay due
to sensor data processing as well as limits of the con-
trol cycle. Through observation, an oscillation can be
detected if Fepr(2) - Ferr(2 — 1) < 0. The modification
of the control vertices for this case has to be designed
specially by summing up the force errors of the last
several control cycles and using a bigger learning rate

no,n < no:



N Ferr(2) - Ni(Ferr(z — 1)) if >0
by, = >

300 Fere(2) - Ni(Fere(z —v)) it @< 0
v=1
with o = Ferr(2) - Ferr(2 — 1)

By using (2) instead of (1) for the system with time
delays, the learning algorithm shows an asymptotic
behaviour.

4.3 Learning step by step

Naturally, the whole screwing skill should be
learned starting with easy motions and proceeding to
more complicated ones, which are summarised as fol-
lows:

1. Motions in the approach-direction.

The bolt-hand attempts to approach the nut and
exerts a force along the Z-axis. This step is re-
peated many times until it is demonstrated that
the screw can stay in the nut-thread by itself. The
controller has learned how to apply a certain force
in the approach direction by compensation mo-
tions. The condition of successful learning is that
the bolt axis should not depart from the rotation
axis too much, since cross forces cannot yet be
compensated in this first learning step.

2. Motions in the normal- and orientation-
directions.

After the screw is sited in the nut-thread, the
controller can learn analogously to step 1 along
the X-, Y-axis, respectively.

3. Screwing motions.

After step 1 and 2, the bolt-hand performs a slight
rotation (about 10° in our experiment) repeat-
edly until the resulting forces along the X- and Y-
axis are compensated to zero. Through these in-
tentional abnormal motions, situations which can
occur in the screwing operation are generated.

4.4 Experimental results

The force/torque sensor (type JR3-67TM25A) was
read at 8 KHz, and the force/torque data were com-
puted at a rate of 125 Hz to filter out noise. The
sampling time for joint position measurement of the
two cooperating manipulators was 28 ms for the cur-
rent experiment, which is on the order of the usual
control cycle of most industrial robots.

This task was performed many times to judge its
robustness. The screwing process can be successfully
realised to build the “elevator control”, Fig. 1(b). Ex-
periments show that the controller can learn how to
compensate the resulting forces after the above three
steps are executed only once.

4.4.1 The control curve

We give an example of screwing with large positioning
deviation of the bolt. Fig. 3(b) illustrates the control
curves to compensate the force in Y-axis i) by approx-
imate initialisation; ii) after learning step 2; and iii)
after learning step 3.

The resulting forces with the controller before and
after learning are shown in Fig. 4(a) and 5(b).

(b) After learning step 3

(a) Before learning

Figure 4: Forces along X- and Y-axis generated during
screwing with large positioning deviations of the bolt
from the rotation axis.

4.4.2 Screwing with both hands

We have successfully applied the learning procedure
to control the two robot arms simultaneously. Both
hands rotate during the “screwing-in” phase. FEach
arm controller can learn its own control curve after
one complete screwing. Apparently, rotation of one
gripper creates disturbances effecting the other grip-
per. Even in this case, the forces to be controlled can
still be kept within the tolerance (Fig. 4(b)).

4.4.3 Comparison with PID

For comparison, a PID controller was also imple-
mented. The adjustment of the PID coefficients needs
experience, is tedious work with “trial-and-error” and
needs a much longer time to achieve similar perfor-
mance than our learning approach. Fig. 5 shows the
comparative result of the learning fuzzy controller and
a tuned PID controller.



(a) Tuned PID (b) B-spline fuzzy con-

troller after learning
Figure 5: Maintaining constant small values of Fix
and Fy - the comparison of PID and the learning B-
spline fuzzy controller, both with large positioning de-
viations of the bolt from the rotation axis.

5 Conclusions

We developed a novel learning approach for real-
ising screwing operations with a B-spline fuzzy con-
troller and implemented the approach with a two-arm
robotic system. The robot controller learns actively
and on-line, instead of being trained passively and off-
line. The learning process converges to a reasonable
result after the three steps outlined in section 4.3. The
advantages of our learning-controller approach are:

e The combined design/learning methodology.
What must be done in the design phase is quite
simple: select input variables, the granulation of
partitioning the input space, and some approxi-
mate output values if they are available. The key
work for learning is to find a suitable learning
function and let the robot generate enough data
for covering all possible situations.

e Rapid convergence of the learning process. This
property benefits from the appropriately selected
cost or error function.

e Smooth output. If a B-spline basis function of
order 3 1s used, the output is twice differentiable

(Fig. 3(b)).

In this approach, the human-to-robot skill trans-
fer is finally represented in form of “IF-THEN” rules
with optimised parameters. No complex programming
and control expertise are needed. Fine-tuning of the
main controller parameters is done on-line automati-
cally. No subjective evaluation is needed. The learn-
ing process is fast, the usual time-consuming “trial-
and-error” is no longer necessary. The methodology
of combining design and learning can be applied to ac-
quire other assembly skills, such as peg-in-hole, han-
dling flexible objects, etc. We have shown that this

approach is very promising for realising efficient robot
assembly skills based on sensorimotor coordination.
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