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Abstract

Despite the growing research interest in 2.5D and
3D video face processing, 3D facial videos are actually
scarcely available. This work introduces a new open source
tool, named FaceGrabber, for capturing human faces us-
ing Microsoft’s Kinect 2.0. FaceGrabber permits the con-
current recording of various formats, including the raw 2D
and 2.5D video streams, 3D point clouds and the 3D reg-
istered face model provided by the Kinect. The software
is also able to convert different data formats and playback
recorded results directly in 3D. In order to encourage re-
search with Kinect 2.0 face data, we publish a new public
video face database which was captured using FaceGrab-
ber. The database comprises 40 individuals, performing the
six universal emotions (disgust, sadness, happiness, fear,
anger, surprise) and two additional sequences.

1. Introduction

The field of 2.5D and 3D face recognition and manipula-
tion has grown rapidly since the advent of affordable record-
ing technologies such as structured light and time-of-flight
sensors. Yet more importantly, computer hardware became
fast enough to process such data in realtime, making way
for a wide field of novel 3D applications such as video face
recognition [13], video emotion recogntion [6, 22], movie
production [2], video face replacement [7, 12], face reen-
actment [17], videoconferencing [10] or virtual avatar con-
trol [3, 15]. Having suitable data at hand is inevitable in or-
der to compare and evaluate novel methods in these fields.
For example, it is reasonable to compare 2D with 3D per-
formance for face recogntion [1, 4]. Although a number
of 2.5D and 3D face databases already exist, there are ap-
parently only four which provide actual video sequences:
BU-4DFE [19], BP4D-Spontaneous [21], 3DMAD [9] and
KinectFaceDB [14].

The BU-4DFE database [19] is the transition from the
static BU-3DFE database [20] to dynamic 3D video. Just

like the BP4D-Spontaneous dataset [21], the data includes
live performances of facial expressions and is captured by
a 3D laser scanner. Due to the data being of a very high
quality, however, the database is unsuitable for mimick-
ing typical real-world scenarios. A consumer, for example,
can probably not afford to buy an expensive laser scanner.
3DMAD [9] is recorded with Kinect 1.0, targeting spoofing
attacks for face authentication using 3D masks. Since it is
recorded in a sterile and very specific setting, other appli-
cations are fairly limited. For example, 3DMAD does not
include facial expressions.

Lastly, KinectFaceDB [14] is captured with Kinect 1.0
and provides emotion as well as head scan sequences, in-
cluding difficult lighting and occlusion scenarios [14]. In
their work, Min et al. were able to show that 3D face and
emotion recognition performance increases significantly
with the quality of the sensor. The major shortcoming of
KinectFaceDB is indeed that the Kinect 1.0 is outdated, not
very accurate and has a comparatively low depth resolution
of only 320x240. The depth sensor of Kinect 2.0 is much
more robust to noise, especially at foreground-background
boundaries. Furthermore, the color and depth resolutions
are roughly 7 and 3 times higher, respectively. A compre-
hensive comparison between Kinect 1.0 and 2.0 is given
in[11].

Our main contributions are 1) FaceGrabber, an open
source capturing tool for Microsoft’s Kinect 2.0, as well
as 2) a video face database recorded with FaceGrabber.
The database improves on KinectFaceDB mainly by us-
ing the more accurate Kinect 2.0 sensor. Furthermore,
we hope that FaceGrabber encourages other researchers to
record or extend human face video databases. The Face-
Grabber source code and database are both available at:
www.mmk.ei.tum.de/facegrabber/

2. FaceGrabber

Alongside the higher resolution and noise resistance, an-
other advantage of the Kinect 2.0 over its predecessor is that
it comes with facial correspondences based on an active ap-



Name | Structure
2D scene® | 1920x1080 RGB & 512x424 depth
3D scene | 512x424% colored point cloud
3D face | ~ 3—6k colored point cloud
2D model | 1347 facial landmarks in 2D
3D model | 1347 facial landmarks in 3D

“raw Kinect 2.0 outputs
bexcluding z-buffered points, see Section 2.1

Table 1: Overview of the capture types.

pearance model [16]. Despite the fact that these correspon-
dences are not as accurate as common landmark detection
methods, e.g., [18, 23, 24], they are helpful for face detec-
tion, head pose estimation, or initialization for further algo-
rithms. The core idea of FaceGrabber is therefore simple:
The user should be able to capture face video sequences
while also being able to store the model points generated by
the Kinect. The full set of capture types is listed in Table 1.
A secondary objective for FaceGrabber was to have a con-
venient way to examine the recorded data. Finally, for per-
formance reasons, it should be possible to convert the data
format after it was captured, e.g., from binary to ASCIL.

2.1. Challenges

Despite the simplicity of FaceGrabber’s concept, a few
challenges had to be adressed. First of all, there is an off-
set between camera and depth sensor. The offset results in
occluded points when combining the RGB channels with
the depth image in order to construct a point cloud. The
Kinect 2.0 API does not account for this occlusion problem
which is illustrated in Figure 1. Min et al. [14] aligned the
RGB and depth information via camera-space transforma-
tions in order to account for this problem. The downside of
that approach is the resulting inaccurate mapping between
color and depth. While the error is typically not very large,
it is problematic for high frequency components. To solve
this issue, the occlusions have to be detected and, subse-
quently, the affected points have to be filtered, since no
reasonable value exists. FaceGrabber therefore applies one
of the simplest and computationally least expensive tech-
niques to achieve this, that is, z-buffering [5]. In essence, z-
buffering constructs a quantized matrix of 2.5D points and
stores only the nearest candidates for each cell. Although
this approach filters possibly valuable background depth in-
formation, it does conserve the actual scene without intro-
ducing errors.

A second challenge while developing FaceGrabber was
the synchronization of all buffers. Due to the possible asym-
metry between the captured data type sizes and the high
throughput requirements, several threads are working in
parallel. Furthermore, if all capture types are selected, the
raw throughput can easily reach several hundred Mbit/s and
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Figure 1: An offset between color and depth sensors re-
sults in colored shadows of foreground objects on the back-
ground in the 3D scene. These critical areas are filtered via
z-buffering.

may even exhaust common solid state drives. Therefore,
any 1/O is directly bufferd in memory before being written
to disk by a separate thread.

With the above adaptions, the only remaining perfor-
mance bottleneck is the CPU. Although we did not analyze
the hardware requirements in depth, we were able to con-
sistently reach 30 fps on a Notebook with Core 17-4500U
CPU as long as background data was not captured.

2.2. User Interface

The interface of FaceGrabber is split into three different
tabs which are accessible in the top left corner of the GUI:

e the record tab (Figure 2)
o the playback tab (Figure 3)
e the convert tab (not shown)

This division separates the core features of FaceGrabber
into intuitive functional units. The GUI runs in a separate
thread and is therefore always responsive to user input. The
user is given the freedom to manage each capture type sep-
arately. Since the required performance during recording
may vary depending on the scenario as well as the avail-
able hardware, the user can choose the number of threads
per capture type separately. For example, a lot of data has
to be processed in order to capture the background. Thus
it may be necessary to dedicate more threads to meet the
target frame rate.

3. FaceGrabber Database

We use FaceGrabber to record a database of human faces
at 15 fps. The reasons for not recording at the maximum 30
fps are 1) the fact that the Kinect automatically halves the
frame rate in dark scenes (twice the exposure time) and 2)
the high performance cost of capturing all data streams at
the same time without losing synchronization. For the latter
reason, although the full 2D scene is captured, we do not
capture the full 3D scene but rather only the face area.
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Figure 2: The record tab of FaceGrabber. (A) The tabs
are accessible at the top. (B) The 2D output of the Kinect
with overlaid landmarks is shown live. The horizontal axis
is flipped in order to imitate a mirror. (C) The 3D land-
marks and 3D face are also shown live in a separate resiz-
able window. The 3D views (translation, rotation, zoom)
can be changed separately with the mouse on the fly. (D)
Recording options can be customized. (E) The user receives
feedback if data is missing for accurate tracking.

3.1. Capturing Conditions

Nowadays, 2.5D sensors like the Kinect are very cheap
and they are used in many day-to-day applications. There-
fore, one of the main objectives was that the recordings
should be as natural as possible in order to mimic a real-
world scenario. Consequently, the recordings were done in
a regular office environment and no special background re-
strictions or lighting conditions were imposed. On the con-
trary, indirect lighting from the sun as well as direct room
lightning were varied on purpose. The approximate capture
distance was 0.8m, which results in about 3000 to 6000 3D
points for each face. This number may seem low compared
to other 2.5D databases reporting up to about 9000 points
per face using Kinect 1.0 [14]. In contrast to them, however,
we do not resample or interpolate the depth values provided
by the Kinect, which would introduce errors. Nevertheless,
the possibility of artificially increasing the depth resolution
is left open by the fact that the raw Kinect outputs are pro-
vided.

3.2. Data

Overall, the database consists of 40 different individu-
als (33 male) aged between 18 and 28. The participants are
asked to perform the six universal emotions (disgust, sad-
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Figure 3: The playback tab of FaceGrabber. (A) Folder se-
lection. (B) The 3D data to be played back is displayed in a
separate resizable window. The number of views adapts to
the number of captures being selected. Again, the 3D views
(translation, rotation, zoom) can be changed separately with
the mouse on the fly. (C) The frames are buffered in mem-
ory before playback in order to ensure a constant frame rate.
(D) The user can customize the frame rate and navigate in-
side the data using either the buttons or the slider.

ness, happiness, fear, anger, surprise) [8] in a two-second
time window. Additionally, the database includes a six-
second head scan sequence with neutral expression, where
the individuals rotate their heads in front of the camera, in
order to potentially allow for a 3D reconstruction of the
head. Finally, the individuals were invited to perform any
movements or facial expressions they wanted to for ten sec-
onds, however, with the restriction of facing the camera
(£45°) and not performing too fast head motions, both to
avoid loss of tracking. In contrast to KinectFaceDB [14], we
do not capture occlusion sequences because this would in-
terfere with our idea of capturing the Kinect 2.0 face model.

For video sequences to be of noticably more value than
single images, there has to be exploitable temporal con-
text. Hence, we explicitly ask the participants to perform
the emotions in a natural and active way, meaning that they
neither exaggerate nor freeze like they would for a photo-
graph, but rather run through the full motion. For example,
we intentionally allow head movements and tilting, or even
leaning back in the chair (e.g., when surprised). On the one
hand, this increases the complexity and variety of the per-
formed emotions. On the other hand, it also reinforces the
uniqueness of the same emotion among different individu-
als as well as the different emotions for the same individual.
An excerpt from the database is given in Figure 4.



Figure 4: An excerpt from the FaceGrabber database. From left to right: Disgust, sadness, happiness, fear, anger, and
surprise. Each image shows the beginning of a two-second time window. The images are cropped to the same region in order
to highlight the (intentional) variance in head and body pose. For illustration purposes, the second row depicts the landmarks
of the first row, whereas the fourth row depicts the 3D face of the third row.

4. Conclusion

In spite of the growing number of depth cameras, 2.5D
and 3D video face databases are rare. We have presented
a open source face capturing tool, FaceGrabber, as well as
a recorded database in order to address the scarcity of 3D
face videos. The database strives to achieve realistic capu-
turing conditions with as few restrictions as reasonably pos-
sible. To the best of our knowledge, this is the first public
(video) face database using Kinect 2.0, despite the desktop
consumer version being sold for close to 11/2 years now.
We hope to animate other researchers to contribute to this
growing database of 2.5D face videos and thereby advance

the field of 3D video face recognition, manipulation, and
the like.

For future work, we are investigating which further pre-
and postprocessing options would be worthwile to integrate
into FaceGrabber in order to extend the functionality and
make its use even more convenient. Another aspect which
could be improved further is achieving a steady frame rate
even on lower cost hardware, for example, by means of
queueing any 3D conversions for postprocessing rather than
using a buffered thread pool. Finally, FaceGrabber is yet
lacking a streaming interface which would allow for feed-
ing the captured data into arbitrary algorithms on the fly
before (or instead of) writing the data to disk.



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

(16]

(17]

A. F. Abate, M. Nappi, D. Riccio, and G. Sabatino. 2D and
3D face recognition: A survey. Pattern Recognition Letters,
28:1885-1906, 2007.

O. Alexander, M. Rogers, W. Lambeth, M. Chiang, and
P. Debevec. The digital emily project: Photoreal facial mod-
eling and animation. In SIGGRAPH Courses, pages 12:1—
12:15. ACM, 2009.

S. Bouaziz, Y. Wang, and M. Pauly. Online modeling for
realtime facial animation. ACM Transactions on Graphics
(TOG), 32(4):40:1-40:10, 2013.

K. W. Bowyer, K. Chang, and P. Flynn. A survey of ap-
proaches and challenges in 3D and multi-modal 3D + 2D
face recognition. Computer Vision and Image Understand-
ing, 101:1-15, 2005.

E. Catmull. A Subdivision Algorithm for Computer Display
of Curved Surfaces. Dissertation, Computer Science Depart-
ment, University of Utah, 1974.

H. Chen, J. Li, F. Zhang, Y. Li, and H. Wang. 3D model-
based continuous emotion recognition. In Proc. Conference
on Computer Vision and Pattern Recognition (CVPR), 2015.
K. Dale, K. Sunkavalli, M. K. Johnson, D. Vlasic, W. Ma-
tusik, and H. Pfister. Video face replacement. ACM Trans-
actions on Graphics (TOG), 30, 2011.

P. Ekman. Facial expression. Nomnverbal Behaviour and
Communication, pages 97-126, 1977.

N. Erdogmus and S. Marcel. Spoofing in 2D face recognition
with 3D masks and anti-spoofing with kinect. In Proc. Con-
ference on Biometrics: Theory, Applications and Systems,
2013.

C. Kuster, T. Popa, J.-C. Bazin, C. Gotsman, and M. Gross.
Gaze correction for home video conferencing. ACM Trans-
actions on Graphics (TOG), 31(6), 2012.

E. Lachat, H. Macher, M.-A. Mittet, T. Landes, and
P. Grussenmeyer. First experiences with kinect v2 sensor
for close range 3D modelling. International Archives of the
Photogrammetry, Remote Sensing and Spatial Information
Sciences (ISPRS), pages 93—-100, 2015.

D. Merget, P. Tiefenbacher, M. Babaee, and G. Rigoll. Pho-
torealistic face transfer in 2D and 3D video. In Proc. German
Conference on Pattern Recognition (GCPR). Springer, 2015.
R. Min, J. Choi, G. Medioni, and J.-L. Dugelay. Real-time
3D face identification from a depth camera. In Proc. Inter-
national Conference on Pattern Recognition (ICPR), 2012.
R. Min, N. Kose, and J.-L. Dugelay. Kinectfacedb: A kinect
database for face recognition. [EEE Transactions on Sys-
tems, Man, and Cybernetics, 44(11):1534—-1548, 2014.

T. Shiratori, M. Mahler, W. Trezevant, and J. K. Hodgins.
Expressing animated performances through puppeteering.
Symposium on 3D User Interfaces (3DUI), pages 59-66,
2013.

N. Smolyanskiy, C. Huitema, L. Liang, and S. E. Ander-
son. Real-time 3D face tracking based on active appearance
model constrained by depth data. Image and Vision Comput-
ing, 32:860-869, 2014.

J. Thies, M. Zollhofer, M. NieBner, L. Valgaerts, M. Stam-
minger, and C. Theobalt. Real-time expression transfer for

(18]

(19]

(20]

(21]

(22]

(23]

[24]

facial reenactment. ACM Transactions on Graphics (TOG),
34(6), 2015.

M. Uriéér, V. Franc, D. Thomas, S. Akihiro, and V. Hlavac.
Real-time multi-view facial landmark detector learned by
the structured output SVM. In BWILD: Automatic Face
and Gesture Recognition Conference (FG) and Workshops.
IEEE, 2015.

L. Yin, X. Chen, Y. Sun, T. Worm, and M. Reale. A high-
resolution 3D dynamic facial expression database. In Proc.
International Conference on Automatic Face and Gesture
Recognition (FG), pages 211-216, 2008.

L. Yin, X. Wei, Y. Sun, J. Wang, and M. J. Rosato. A 3D
facial expression database for facial behavior research. In
Proc. International Conference on Automatic Face and Ges-
ture Recognition (FG), pages 211-216, 2006.

X. Zhang, L. Yin, J. F. Cohn, S. Canavan, M. Reale,
A. Horowitz, and P. Liu. A high-resolution spontaneous 3D
dynamic facial expression database. Image and Vision Com-
puting, 2014.

Y. Zhang, L. Zhang, and A. Hossain. Adaptive 3D facial
action intensity estimation and emotion recognition. Expert
Systems with Applications, 42:1446-1464, 2015.

E. Zhou, H. Fan, Z. Cao, Y. Jiang, and Q. Yin. Extensive fa-
cial landmark localization with coarse-to-fine convolutional
neural network. ICCV workshop on 300 Faces in-the-Wild
Challenge, 2013.

F. Zhou, J. Brandt, and Z. Lin. Exemplar-based graph match-
ing for robust facial landmark localization. In Proc. Interna-
tional Conference on Computer Vision (ICCV), 2013.



