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Abstract— This paper proposes an online tactile transfer
learning strategy for discriminating objects through the surface
texture properties via a robotic hand and an artificial robotic
skin. The proposed method has the ability to autonomously
select and exploit the previously learned multiple texture models
while discriminating new textures with a very few available
training samples or even one. The experimental results show
that employing the proposed method and 10 prior texture
models, the robotic hand could discriminate 12 objects via their
surface textures with 97% and 100% recognition accuracy with
only one and ten training samples respectively. Moreover, the
experimental outcomes illustrate that our proposed algorithm
is robust against of any negative tactile knowledge transfer.

I. INTRODUCTION
A. Motivation

Tactile information is pivotal for autonomous robots for
detecting and learning the physical properties of objects.
The performance of tactile systems depends not only on the
technological aspect of the sensory device [1] but also on
the design of the learning methods that interpret information
contained in tactile data [2].

B. Background
Liu et al. employed an intelligent contact sensing finger to
classify surface materials with Naive Bayes classifier [3].
Hu et al. used Support Vector Machine (SVM) to classify
five different fabrics by sliding a finger-shaped sensor over
the surfaces [4]. A robot actively knocks on the surface of
the experimental objects with an accelerometer-equipped
device to discriminate stone, mulch, moss, and grass from
each other with a lookup table and k-nearest neighbors
(K-NN) techniques [5]. To classify cotton, linen, silk,
and denim fabrics, Song et al. designed a mechanism to
generate the relative motion at a certain speed between
the PVDF film and surface of the perceived fabric. In this
study neural network and K-means clustering algorithms
were used for fabric surface texture recognition [6]. A
force sensor, an accelerometer, and a position-orientation
sensor were used to develop a haptic tool which was then
used by a robotic hand in order to identify surface textures
through multiple One-Class Support Vector Machines [7].
Five textiles were explored and discriminated from each
other via k-nearest neighbor (k-NN) using an active sliding
touch strategy and an array of MEMS [8]. A humanoid
robot was equipped with an artificial finger nail with
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Fig. 1. The Shadow Hand with BioTac robotic skin. Employing the
proposed tactile transfer learning method the Shadow Hand could re-use
its prior knowledge while discriminating new objects from their texture
with a very few trials. The illustrated formula is the regularizer term of the
adapted LS-SVM in (2). The weight assigned to each prior knowledge λ

was found by minimizing Eq.(2). K is the number of prior knowledge.

an attached 3-axis accelerometer in order to classify 20
different surfaces through Support Vector Machine (SVM)
and k-nearest neighbor (k-NN) learning techniques [9].
Jamali et al. fabricated a biologically inspired artificial
finger composed of silicon with two PVDF pressure sensors
and two strain gauges. The finger was mounted on a
robotic gripper and was scraped over eight materials. The
Majority voting learning method was employed to find
the optimal technique for the texture recognition problem



[10]. Classification results of 117 different textures using
Bayesian exploration are reported in [11]. A multi-modal
tactile sensor called BioTac was used to perceive tactile
information. In this experiment one BioTac sensor was
placed on a customized tool and a vibration-free linear
staged was used to slide textures under the tactile sensor.
In [12], the Shadow Hand with the BioTac sensor on the
index fingertip together with Bayesian exploration technique
were employed to discriminate 10 different objects while
executing exploratory movements over the surface of the
objects. However, the existing texture classification methods
cannot re-use the past tactile experience or prior learned
texture models (tactile transfer learning). There are many
papers proposing various transfer learning strategies in other
robotic fields than tactile sensing [13]–[17]. However, these
proposed methods are not appropriate for tactile learning
tasks due to the properties of the tactile signals and tactile
features. In our previous research, we have shown that it is
necessary to re-design appropriate feature descriptors and
learning methods for tactile data processing and modeling
specially for surface texture discrimination [18], [19]. This
is especially important when a large area of a robotic system
covered with many tactile sensors [20].

C. Contribution
The aim of this study is to enable robotic hands to re-use
the already learned object texture models while classifying
new in-hand objects from their textures with a few available
training samples or even one, especially in an online
manner. In this respect we propose, for the first time in
tactile learning area, a novel online tactile transfer learning
technique.

II. SYSTEM DESCRIPTION
A. Robotic Hand

The Shadow Hand is a dexterous Robotic Hand System
with five fingers and 20 active degrees of freedom in total,
which enables the robot to have a range of movement
equivalent to that of a human hand (see Fig.2).

B. Multi-Modal Artificial Skin
The BioTac is a multi-modal tactile sensor designed to

provide the ability to replicate the human sense of touch.
When the sensor moves over an object, caused vibration can
be measured to obtain a dynamic pressure signal (PAC) with
the sampling data rate of 2 KHz. The BioTac also has 19
impedance-sensing electrodes (E1, ...,E19) distributed over
the surface of the rigid part. These electrodes are capable of
measuring the deformation that arises when normal forces
are applied to the surface of the skin with a 50 Hz sampling
data rate (see Fig.2).

C. Properties Of Experimental Objects
In this work 22 everyday objects (natural and synthetic)

were selected. 10 objects were chosen with an identical
geometrical shape property (spherical shape), including a
Red and a Yellow ball with almost similar smooth surface

Fig. 2. Fig.A shows the Shadow Robotic Hand, Fig.B shows the schematic
of the BioTac sensor while sliding on a textures surface, and Fig.C shows
the BioTac sensor with 19 impedance electrodes.

texture, a Rough textured ball, an Orange, an Apple, a
Colorful ball with smooth and non-uniform texture, a Rough
spherical sponge, a Pine apple textured ball (non-uniform
texture), a String ball, and a Mirror ball (see Fig.1-Prior
Objects). Also, 12 objects with different shapes including
a Soft sponge, a Memory sponge (non-uniform texture), a
Toothbrush (non-uniform texture), a Floor brush, a Rough
textured star (non-uniform texture), a Soap, a Spray, a Coffee
capsule, a Paper box, a Cream tube, a Plastic baby feeder,
and a Metal ruler (see Fig.1-New Objects). The first set of
the objects was used to construct a prior tactile knowledge
and the second set was considered as new objects which the
robotic hand should recognize them with the help of its prior
tactile knowledge. In both sets of the objects, the difference
in the surface texture properties between the selected objects
varied from relatively similar to noticeably different.

III. TACTILE PERCEPTION AND DATA COLLECTION

A. Data Collection With Prior Objects Set

The Shadow Hand held each of the spherical shaped prior
objects (see Fig.1-Prior Objects) in palm with three random
fingers. Afterwards, the robotic hand explored the texture of
each in-hand object by randomly moving the remaining two
free fingers to slide over the surface of the in-hand object
for 3 seconds. The texture exploration was repeated 50 times
for each prior objects with random orientation. The entire
collected data (for each object) then randomly divided in
two sets, one set for the training purpose with 30 samples
and the other set with 20 trials for the testing.



B. Data Collection With New Objects Set

In this scenario, the robotic hand used its three fingers to
hold each of the complex shaped object (Fig.1-New Objects).
The surface exploration carried out with the remaining two
fingers by sliding over the surface of each object for 3
seconds. The data collection was repeated 30 times for each
new object. The entire collected data (for each new object)
was divided in two sets, 10 samples for the training and 20
for the testing.

C. Feature Extraction Methodology

Previously, we proposed a novel set of tactile feature
descriptors for texture discrimination task [19]. In this study,
we employed our proposed parameters to extract robust
feature from the measured tactile data during object texture
exploration.

IV. TACTILE TRANSFER LEARNING METHODOLOGY

A. Motivation and problem definition

Consider a scenario in which the Shadow Hand has
already constructed a set of tactile learning models to
discriminate k = 10 different surface textures (see Fig.1-
Prior Objects) with sufficient enough available training
samples. Now the task of the Shadow Hand is to classify
M = 12 new surface textures (see Fig.1-New Objects)
with only one or a very few available training samples
while re-using the previous learned texture models ( Prior
texture models) in an online manner. Our proposed hybrid
tactile transfer learning method has four main steps. 1-
Constructing Prior Texture Models 2- Autonomously
selecting the most relevant multiple texture models for the
new texture recognition (Prior Texture Model Selection)
3.1- Initializing the online learning algorithm with the
constructed prior models 3.2- Constructing the new texture
models while receiving new textures/objects 4- Updating
And Re-weighting the Prior Textures Models. The initial
idea comes from our method in [16], [21] which we
re-designed and extensively improved it for the tactile data.

B. Constructing Prior Texture Models

The Shadow Hand employed the Least Squared Support
Vector Machine (LS-SVM) [22] to construct several prior
texture models. In this case the LS-SVM was trained with
k = 10 prior textures (see Fig. 1-Prior Objects). More
formally, consider a classification scenario with an entire
available set of training data {x`,y}Nk

`=1 where `= 1, . . . ,Nk ,
k = 10 is the number of prior objects/textures, Nk is a
number of training samples of each prior object, X ⊂ Rd

is an input vector describing the `th sample and y ∈ Y is
the corresponding objects’ label. The main purpose is to
construct a function, g j(x) = ŵ j · x ( j = 1, . . . ,k ) that can
divide the unseen test data. In this respect, φ(x) is utilized to
map the input trial samples to a higher dimensional feature

space, in our case, radial basis kernel. In LS-SVM the texture
model parameters (w,b) are obtained by solving

min
w,b

1
2
‖w‖2+

C
2

N

∑
`=1

[y−w ·φ(x`)−b]2 . (1)

where C is a regularization parameter that controls the
bias-variance trade-off. N is the number of the training
samples collected with each prior objects (in our case
N = 30).

C. Prior Texture Model Selection
By slightly modifying the regularization term in LS-SVM

(1), it is possible to construct new discriminating texture
models for the new objects (see Fig.1-New Objects) close
to the already constructed prior models (see Fig.1-Prior
Objects):

min
w,b

1
2
‖w−

k

∑
j=1

λ jŵ j‖2+
C
2

N

∑
`=1

[y−w ·φ(x`)−b]2 . (2)

where ŵ is the parameter describing the prior texture models
and λ is a scaling factor corresponding to ranking the prior
models and decides how much and from where to transfer
the prior tactile knowledge. In other words λ controls to
what degree the new texture models are close to the prior
texture models. The optimization problem (2) has the same
cost function as LS-SVM in which the regularizer term has
been modified to impose closeness between the new texture
models and a linear combination of prior texture models.
The weight factor λ assigned to each prior texture model was
found by minimizing ∑

k
t=1 `t(ỹ,y) subject to ‖λλλ‖2≤ 1 where

ỹ is the leave one out prediction for the t− th sample and
λλλ = (λ1, . . . ,λk) . With this formulation the final prediction
function for the collected testing data is:

g(x) = w ·x+b =

(
k

∑
j=1

λ jŵ j +
T

∑
t=1

αtxt

)
·x+b . (3)

In (3) αt are the coefficients of the support vectors for the
new textures classification problem.

D. On-line Learning Algorithm (PA)
Passive Aggressive (PA) is an open-ended classification

technique [23]. PA algorithm constructs a classification
model continuously at the time of receiving new samples.
More formally, PA estimates the model parameter wt at
every time t receives new data samples and accordingly
predicts the corresponding labels. At t = 1, the PA starts
with w1 = (0, . . . ,0) ∈ Rd , then PA updates the constructed
models while receiving new samples by solving (4).

wt+1 = min
w∈Rd

1
2
‖w−wt‖2 +ηξ , (4)

which results in Eq.(4).

wt+1 = wt +θtytxt (5)



where
θt = min

{
η ,

max{0,1−ywt ·xt}
‖xt‖2

}
(6)

In (4), η is a positive value that governs the influence of
the slack terms. In (5), xt is the current received sample at
time t and yt is the label of the received sample.

E. Online Tactile Transfer Learning
This is a hybrid algorithm in which the adapted LS-

SVM provides autonomously the most relevant prior models
k = 10 to the new texture models M = 12. This results in
constructing an initial new texture models:

w1 =

(
k

∑
s=1

λsŵs +
T

∑
t=1

αixi

)
. (7)

The (7) is composed of two parts. The first part is the
linear combination of the weighted prior texture models
where ws is the prior model, λs is the scaling factor (needs
to be updated at each time t), and k is the number of
prior models. The second part represents the received new
training texture samples (T is the number of the samples).
Now, the PA algorithm uses the new initial models w1 in (7)
instead of the w1 = (0, . . . ,0) to learn from the (t+1)− th
new incoming texture samples.

Updating And Re-weighting the Prior Textures Models:
So far, we initialized the PA learning algorithm by integrating
the prior and new texture models. But, still, the prior texture
models are not directly re-weighted during the on-line learn-
ing process. We describe here how the weights of the prior
and new texture models will be updated during the on-line
learning progressively in time. In this case, the prediction
can be made on each new incoming samples by means of
the current constructed texture models in (7) as w1·xt .
The results of the prediction σk,t will be cropped between
(-1,1) and will be used as the (d+ k)− th element (d is the
dimension of a new sample and k is the number of the prior
models) in the feature vector of xt defined as:

x′t = (xt ,σ1,t , . . . ,σk,t) ∈ Rd+k , (8)

where
σk,t = max{−1,min{1,wk

1·xt}} . (9)

The new samples with such a modified representation enters
the online algorithm. At t = 1 online algorithm predicts with
sign(w′1·x′1) in which the w′1 = (w1,1)∈Rd+k. For the t+1
the updating rule in Eq.(5) now is

w′t+1 = w′t +θtytx′t , (10)

where
θt = min

{
C,

max{0,1− yw′t ·x′t}
‖x′t‖2

}
. (11)

and the final predictions are

w′t ·x′t =
t−1

∑
i=1

θiyi( xi·xt︸︷︷︸
New Samples

+ σk,iσk,t︸ ︷︷ ︸
Prior knowledge

) . (12)

Algorithm 1 : Online Tactile Transfer Learning
for t = 1
prior texture selection w1 =

(
∑

k
s=1 λsŵs +∑

T
t=1 αixi

)
initialize PA: w′k,1 = (w1,1) ∈ Rd+k

for t = 1,2, ...,T T = 10
input to PA: xt new comming samples

x′t = (xt ,σ1,t , . . . ,σk,t) ∈ Rd+k , η = 1

σk,t = max{−1,min{1,wk,1·xt}} ⇒ σk,t ∈ [−1,1]

• prediction: ŷt = sign(w′k,t ·x′t)
• error correction: `t = max{0,1− ytw′k,t ·x′t}
• update:

1.set θt = min
{

η , max{`t}
‖x′t‖2

}
2.update: w′k,t+1 = w′k,t +θtytx′t

Hence w′t is composed of two parts, one part is the knowl-
edge coming from the new instances in sequence and the
other part is the prior texture knowledge (see Algorithm 1).

V. EXPERIMENTAL RESULTS

In this section we show empirically the effectiveness and
consistency of our proposed online tactile transfer algorithm.

A. Constructing Prior Tactile Models
In order to construct 10 prior texture models LS-SVM

classifier was employed. The entire training samples (30
training samples for each prior texture) were split in two
parts, 70% for training and 30% for the testing. Five-fold
cross validation was applied to find the optimal kernel pa-
rameter and regularizer value C. LS-SVM was then re-trained
with the entire collected training data and the obtained
optimal parameters to construct 10 prior texture models. The
learned texture models (w,b) ∈ R10 were then evaluated by
predicting on unseen collected test data (20 test samples for
each class of prior texture). The Shadow Hand using LS-
SVM could classify successfully 10 prior textures with 100%
recognition accuracy.

B. Evaluating The Proposed Online Transfer Learning
The Shadow Hand used the proposed tactile transfer

learning technique to recognize 12 new objects via their
textures. The proposed algorithm enabled the Shadow Hand
to re-use k = 10 already constructed prior texture models
while learning from a very few new training samples. In this
scenario, the new textures/objects (see Fig.1-New Objects)
entered to the proposed hybrid online transfer learning se-
quentially one after one to construct new hybrid learning
models. At each time t = 1, ...,10, the constructed leaning
models were evaluated by predicting on unseen new test data.
The prediction results were reported as a recognition rate in
Fig. 3-(A).



C. Base Line
In order to compare our proposed method with the tradi-

tional online learning method, the traditional PA algorithm
was employed to construct surface texture models while
receiving new training samples continuously over time (one
new texture per time (t = 1, · · · ,10). The new constructed
learning models at each time t were evaluated by predicting
on unseen new test data (20 test samples per new textures).
The classification results were reported as a recognition rate
in Fig. 3-(A). The value for η was fixed to 1 in both hybrid
online transfer learning and PA online leaning (base line).
Fig. 3-(A) shows that using our proposed hybrid online trans-
fer learning method the Shadow Hand could discriminate 12
new textures with 97% recognition accuracy while using only
one new training sample plus ten prior models. By increasing
the number of training samples from one to ten, the Shadow
Hand achieved 100% recognition accuracy. The results in
Fig. 3-(A) illustrates that our proposed method outperforms
the traditional online learning.
The computational cost of the online tactile transfer learn-
ing approach is O(T 2 + N3 + kN2). In other words, the
computational complexity of our proposed algorithm is the
sum of the computational cost of the PA algorithm (O(T 2))
and adapted LS-SVM (O(N3) + O(kN3)). T is the total
number of new textures, k is the number of the prior texture
models, and N is the number of the trials used to construct
the hybrid leaning models with adapted LS-SVM. In our
proposed method only a few number of trials entered to the
adapted LS-SVM in order to construct the learning models
(7). Hence, the term (O(N3) + O(kN3)) in the proposed
method is negligible. Therefore, our proposed method and
PA online algorithm have similar computational complexity.
It is worth to mention that growing the number of prior
textures increases the probability to find more useful and
related prior models for the new textures. Moreover, it is
important to mention that our proposed method will have
substantially higher performance if the texture properties of
the prior and new objects will be more similar to each other.

D. Decreasing The Number Of Prior Tactile Knowledge
In this scenario 5 out of 10 prior objects randomly selected

to construct the new prior models. All procedure explained
in V-A, V-B, V-C was reaped with randomly selected 5 prior
objects. Moreover, in order to evaluate the robustness of
our proposed tactile learning algorithm, the experiment was
repeated 50 more times. Fig. 3-(B) illustrates the averaged
recognition rate over 50 experiments. The results in Fig. 3-
(B) shows that our proposed method outperforms the tra-
ditional online learning. In this scenario, the Shadow Hand
achieved 94% and almost 100% recognition accuracy with
only one and ten trials, respectively. Although having more
prior knowledge increases the chance to find more relevant
prior information for new tasks (therefore, higher recognition
rate), it increases the computational complexity of the trans-
fer learning algorithm. For instance the computation time of
our algorithm with 10 and 5 prior knowledge was 360 ms and
330 ms, respectively (PC with Intel(R) Core(TM) i7-4510U

CPU@2.00 GHz 2.60 GHz 32 GB Ram). This becomes more
serious when the number of prior knowledge will increase
to 100,000 or 1,000,000. Solving such a constrain in any
transfer learning approach can be a new challenge to tackle
for the future research.

E. Negative Knowledge Transfer Consistency Experiment

In transfer learning scenario the constructed prior models
are not always relevant to new object/texture models. If the
prior models are dissimilar to the new models, brute force
transfer can degrade the recognition performance, generating
so called negative knowledge transfer. Ideally, a transfer
learning method should be beneficial between prior and new
models while avoiding negative transfer when the object
surface textures are not a good match. We show that our pro-
posed tactile transfer learning technique is robust against of
the negative knowledge transfer. In this respect, Expectation
Maximization algorithm was employed to find out which of
the new textures are similar or dissimilar to the prior textures.
In this case, the EM was trained with entire training samples
(10 samples per each texture) to cluster 20 objects (both
prior and new object textures). The EM then was evaluated
by unseen test data (20 samples per each texture). Fig. 4
illustrates the resulted confusion matrix. Regarding to the
obtained confusion matrix, Spray, Metal ruler, Pine apple,
and String ball did not have any similarity with the prior
object in terms of surface texture properties (see Fig. 1-Prior
Objects). In this scenario, Spray, Metal ruler, Pine apple, and
String ball were selected as a set of new textures while the
prior textures were remain same. The hybrid online transfer
learning was employed to discriminate the four new textures
and traditional PA was used as a base line. The rest of the
procedure was similar to V-B.
Fig. 3-(C) illustrates the classification results in terms of
recognition accuracy. The results clearly show that the ob-
tained recognition performance while using the proposed
hybrid online transfer learning is similar to the performance
achieved while using the traditional PA. This means that our
algorithm stopped transferring irrelevant prior knowledge to
new task.

VI. CONCLUSION

In this study we focused on tactile knowledge transfer
across texture categories. We proposed an online tactile
transfer learning method to provide the robotic systems
with the ability of re-using previously learned tactile models
(prior models) to discriminate new textures with a very few
available training samples.
In this study, the distributions of the tactile information in
both prior knowledge and new tasks were similar. In future
we will solve the problem in which the data distributions
(feature space) in both prior and new data are different. It is
also interesting interesting if it will be possible to transfer
tactile information to new tasks in which prior and new
tactile data are measured by different types of tactile sensors
(different in characteristic and technology).



Fig. 3. Figure (A) and (B) show the recognition results on a separate test data for the online tactile transfer learning and traditional PA online learning
(No-Transfer) methods. In these experiments 10 and 5 prior texture models were re-used in (A) and (B) respectively by the Shadow Hand. Figure (C)
shows the recognition results corresponding to the hybrid tactile transfer learning and traditional transfer learning (No-Transfer) in which the new surface
textures were dissimilar to the prior textures. The recognition results on the new test set were plotted as a function of the number of the training samples

Fig. 4. This figure shows the confusion matrix for the clustering of 20
objects via texture properties using EM method.
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