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Abstract

Virtualization has become one of the most important security enhancing tech-
niques for embedded systems during the last years, both for mobile devices and
cyber-physical systems (CPSs). In this work, we elaborate a security architec-
ture based on a light-weight virtualization technique, the so called Trusted
Execution Environment (TEE). Since currently available TEEs are either pro-
prietary or highly hardware dependent, we provide a hardware independent
approach by utilizing a microkernel as separation layer. To achieve a flexible
and generic system architecture, we use trusted computing approaches based
on the ideas of the Trusted Computing Group (TCG), as well as mobile security
concepts of the GlobalPlatform, as building blocks for our own architecture.
Thus, we could operate use-cases for mobile devices as well as use-cases based
on trusted computing.

While most microkernel-based systems implement non-essential software com-
ponents as user space tasks and strictly separate those tasks during runtime,
they often rely on a static configuration and composition of their software
components to ensure safety and security. Throughout this work, we extend
our mikrokernel-based system architecture with a Trusted Platform Module
(TPM) and propose a verification mechanism for our microkernel runtime en-
vironment, which calculates integrity measurements before allowing to load
(remote) binaries. As a result, our approach is the first to adopt the main
ideas of the Integrity Measurement Architecture (IMA), which has been pro-
posed for Linux-based systems, to a microkernel. In comparison, however, it
significantly reduces the trusted computing base (TCB) and allows for a strict
separation of the integrity verification component from any rich operating
system, such as GNU/Linux or Android, running in parallel. We discuss the
security of our proposed system architecture and protocols as well as TCB
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reduction by means of prototype implementations on ARM-based embedded
platforms utilizing L4-based microkernel frameworks.

Even though our security architecture is conceptually sound, we identify a
major security threat in this context. This threat is posed by cache-based side
channel attacks. We show that the isolation characteristic of the proposed
microkernel architecture as well as TEEs in general can be bypassed by the
use of a cache timing attack. We elaborate a so called time-driven attack by
which an adversary is able to extract sensitive keying material from an iso-
lated trusted execution domain. To still provide a resilient system architecture
against timing leakage, we discuss and propose several countermeasures. As
this work aims platform independence, we just use multi-core or scheduler fea-
tures for that purpose. We demonstrate the attack and provide evidence about
the effectiveness of our countermeasures in our prototype implementations on
ARM-based platforms.



Zusammenfassung

Virtualisierung ist in den letzten Jahren zunehmend zu einer der wichtigsten
Sicherheitstechnologien für eingebettete Systeme geworden, sowohl für mobile
Geräte als auch Cyber-physical systems (CPSs). Diese Arbeit befasst sich mit
der Herleitung einer Sicherheitsarchitektur basierend auf einer leicht gewichti-
gen Virtualisierungstechnik, welche als Trusted Execution Environment (TEE)
bezeichnet wird. Aktuell verfügbare TEEs sind entweder proprietär oder stark
Hardware-abhängig, deshalb wählen wir einen Hardware-unabhängigen Ansatz
mittels eines Mikrokerns als Separationsschicht. Um eine flexible und generi-
sche Systemarchitektur zu erhalten nutzen wir sowohl Ansätze basierend auf
den Konzepten der Trusted Computing Group (TCG) als auch der GlobalPlat-
form als Bausteine für unsere Architektur. Durch dieses Vorgehen können An-
wendungsfälle für mobile Geräte und Trusted Computing gleichermaßen bedi-
ent werden.

Obwohl die meisten Mikrokern-basierten Systeme nicht essentielle Software-
Komponenten als unprivilegierte Anwendungen im Benutzerkontext imple-
mentieren und diese während der Laufzeit streng voneinander separieren,
werden oft statische Konfigurationen der Software-Komponenten vorausge-
setzt um die IT-Sicherheit und Betriebssicherheit gewährleisten zu können.
Im Verlauf dieser Arbeit wird daher unsere Mikrokern-basierte Systemar-
chitektur um ein Trusted Platform Module (TPM) erweitert und darauf auf-
bauend Verifikationsmechanismen vorgeschlagen. Diese Mechanismen berech-
nen Integritätsmessungen bevor ein (entferntes) Binärprogramm geladen wird.
Demzufolge ist unser Ansatz der erste welcher die Hauptkonzepte von der In-
tegrity Measurement Architecture (IMA), ursprünglich für Linux-basierte Sys-
teme gedacht, mit einem Mikrokernsystem verbindet. Im Vergleich jedoch re-
duziert unser Ansatz die Trusted Computing Base (TCB) signifikant und er-
laubt eine strikte Separierung der Integritätsschutzkomponenten von einem
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parallel laufendem umfangreichen Betriebssystem, wie zum Beispiel Linux
oder Android. Wir diskutieren die Sicherheit unserer System Architektur und
Protokolle sowie die Reduzierung der TCB anhand von Prototypimplemen-
tierungen auf ARM-basierten eingebetteten Plattformen unter Nutzung von
L4-basierten Mikrokernel-Frameworks.

Obgleich unsere Sicherheitsarchitektur konzeptionell stichhaltig ist, können
wir eine gravierende Sicherheitsbedrohung in diesem Kontext ausmachen.
Die Bedrohung besteht in Form eines sogenannten Cache-Seitenkanalangriffes.
Wir zeigen auf, dass die Isolationseigenschaft der vorgeschlagenen Mikrokern-
basierten Architektur und generell von TEEs durch eine zeitbasierte Attacke
auf den Cache-Speicher umgangen werden kann. Es wird eine sogenannte time-
driven Attacke hergeleitet, mit welcher ein Angreifer sensitives Schlüsselmate-
rial aus der vertrauenswürdigen Domäne extrahieren kann. Um trotzdem eine
gegen zeitbasierte Cache-Angriffe widerstandsfähige Systemarchitektur zu er-
möglichen, werden verschiedene Gegenmaßnahmen vorgeschlagen und disku-
tiert. Da diese Arbeit unter anderem Plattformunabhängigkeit zum Ziel hat,
werden nur Multi-core oder generische Scheduler-Eigenschaften genutzt. Wir
demonstrieren den Angriff und belegen die Effektivität der Gegenmaßnahmen
mit unseren Prototypimplementierungen auf ARM-basierten Plattformen.
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1

Introduction

The aerospace industry has been utilizing microkernel-based systems in their
airplanes for decades. Currently, not only the aerospace but also the auto-
motive industry is looking for secure systems based on microkernels or virtu-
alization bringing together security and safety critical components with e.g.,
user controlled infotainment components on a single hardware platform. Dur-
ing the last years, embedded systems have evolved to highly integrated and
interconnected powerful virtualized platforms so called cyber-physical systems
(CPSs) being able to provide the hardware platform for those demands. How-
ever, currently deployed systems in vehicles and airplanes are still separated
on different hardware platforms since severe security concerns especially on
airplanes exist on bringing together critical systems like steering control and
infotainment on one physical hardware platform.

Currently deployed microkernel systems in practice often rely on a static com-
position and configuration of their software components in order to fully ensure
safety and security. That means dynamic loading of remote binaries is usually
not possible or allowed in safety- or security-critical systems. The ability to
dynamically load remote binaries can be a desirable property with legitimate
benefits, e.g., for updating defective software components remotely. A system
which provides that ability must be able to verify the authenticity and integrity
of the binary to preserve its trustworthiness.

On the other side there exist flexible security approaches on desktop and server
computers in form of trusted computing providing flexible security designs.
One approach to measure and verify the integrity of software binaries relies
on a hardware security module (HSM), such as a Trusted Platform Module
(TPM) [Tru11]. As specified by the Trusted Computing Group (TCG), a TPM
can be used to securely store integrity measurements of software binaries, which
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are calculated during authenticated boot, where the current component in the
boot chain hashes the next one before executing it.

Authenticated boot has the drawback that it only protects the bootchain
and does not prevent execution of (potentially malicious) binaries after boot.
To overcome this limitation, the Integrity Measurement Architecture (IMA)
[SZJvD04] has been proposed for Linux-based systems, where integrity val-
ues are calculated during runtime whenever a binary is loaded. Unfortunately,
IMA focuses on Linux-based systems and does not prevent loading of remote
binaries from an unknown source. Further do we see the need to reduce the
trusted computing base (TCB) for the integrity components themselves. Since
IMA as part of the large monolithic Linux kernel and other adaption of IMA
to monolithic hypervisor kernels like Xen, also rely on the correctness of the
corresponding kernel which results in a rather large TCB.

When we started with the research for this work, GlobalPlatform was in the
process of specifying a Trusted Execution Environment (TEE) [Glo10] as light-
weight virtualization environment for embedded systems. Nowadays these kind
of light-wight virtualization concepts find its acceptance in embedded devices
such as mobile phones. For instance, Qualcomm provides a TEE realization
based on ARM TrustZone (TZ) [ARM09] called Qualcomm Secure Execution
Environment (QSEE) which is used to provide on-the-fly-encryption for the
persistent storage in Android-based smartphones. However, TZ implementa-
tions are highly vendor specific, proprietary and not applicable to every em-
bedded system. In case of QSEE, also vulnerabilities in the proprietary TZ
implementation were already published [Ros14].

In this thesis, we address the question on how these three different concepts,
the microkernel for separation, the trusted computing approaches for integrity
and attestation, and the trusted execution environment in combination with
hardware security chips like the TPM can be combined in a generic security
architecture for embedded systems. Further, our architecture approach should
not only be applicable to special CPSs but also to mobile and home network
equipment.

We will elaborate a trusted execution environment based on a microkernel
operating system framework. With the use of the microkernel we address the
goal to reduce the TCB in contrast to approaches based on monolithic kernels
or hypervisors such as IMA.

Further, we will elaborate a TPM-based integrity verification service for this
microkernel-based TEE that allows to securely load remote binaries. The pro-
posed mechanism provides the means to establish the authenticity of a remote
binary, measure its integrity at load-time, and generate verifiable proof of the
system’s integrity for a remote party. With this approach, we enable more
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flexible system designs for future microkernel-based systems not only in the
aerospace and automotive domain but also for mobile devices.

It was generally believed long time that virtualization characteristics such as
the TEE provide an isolated execution environment where sensitive code can
be executed isolated from untrustworthy applications. However, we will show
in this work that this isolation characteristic can be bypassed by the use of
cache timing attacks. Even though it has already been stated that cache timing
attacks may circumvent the virtualization barriers in [GSS+07], we provide
additional practical evidence to that matter.

Especially, we show how this side channel can also be exploited on embed-
ded ARM-based architectures as evolving CPU architectures also opened
this new attack vector to embedded systems. We were able to derive an at-
tack against ARM-based systems from a time-driven approach against x86-
based PC platforms introduced by Bernstein [Ber05b]. With our correspond-
ing work [WHS12], we were the first to examine this kind of attacks on an
embedded light-weight virtualization setup with a realistic attacker model for
real world attack scenarios. During the last years several countermeasures were
proposed and are already in place like the Intel AES-NI Instruction Set Ar-
chitecture (ISA) extension for their x86 processors. However, for embedded
systems there still are some open issues we address within this work, e.g., we
want to answer the question: How could multi-core CPUs effect time driven
cache attacks and how could they be used to mitigate these kind of attacks in
a TEE without relying on special hardware features? Finally, we aim to pro-
vide a timing leakage resilient architecture by proposing hardware independent
countermeasures.

1.1 Contributions

In the following, we discuss our contributions in more detail.

Trusted Execution Environment based on Microkernel Framework
We provide a system architecture which realizes a TEE using a microkernel
framework for embedded systems. Our work can be seen as a merge of the
concepts the Nizza [HHF+05] architecture is providing and the ones provided
by the GlobalPlatform (GP) TEE architecture. Further, our architecture com-
prises a TPM adaption as trust anchor for the trusted part of the system. By
using a microkernel and para-virtualization, we achieve a vendor independent
realization in contrast to ARM TZ or Intel Trusted Execution Technology
(TXT).
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Combining GlobalPlatform and Trusted Computing Approaches
With our overall architecture, we combine the trusted execution approach of
the GlobalPlatform with the concepts for trusted computing of the TCG. Both,
the GlobalPlatform as well as the TCG, provide concepts which are based on
hardware and software layers. We describe how these different concepts can
be mapped to our microkernel-based system architecture. We show how the
TEE can be realized with our microkernel-based architecture. Furthermore, we
provide software abstractions realizing the TCG Software Stack (TSS). This
contributes to the goal of a generic architecture which also directly applies
to mobile devices. We specify a subset of the TPM command set for our em-
bedded use cases. With this we also address our goal of an overall reduced
TCB.

Integrity and Attestation Protocols for Trusted Runtime To pro-
vide trust in our system, especially the trusted runtime environment, we make
use of the IMA approach proposed by Sailer et al. [SZJvD04] for Linux-based
PC-Systems. We introduce new entities in user-space which take over the func-
tions realized in privileged kernel space of their approach. We show that our
approach reduces the TCB compared to the original approach significantly.

Secure Remote Loading Procedure for Trusted Applications In ad-
dition to the integrity and attestation protocols, we want to allow more flexible
binary execution on microkernel systems. To achieve that, we provide a secure
loading service which is able to assure that an encrypted remote binary is ex-
ecuted in a trusted environment on a specific device. Our approach relies on
trusted computing featuring a TPM without relying on application processor-
specific security features, such as ARM TrustZone [ARM09]. We show that
this indeed contributes to the goal of a more flexible microkernel system de-
sign compared to currently deployed static systems by providing an informal
security analyses of the procedure.

Cache-based Side Channel Attack in embedded Virtualization Con-
text We show that our architecture as well as TEE-based or virtualization-
based architectures in general are vulnerable against cache-timing attacks.
We show this by means of an adapted version of Bernstein’s time-driven
cache attack. In contrast to previous work which mainly dealt with either
x86-based hardware architectures or dedicated micro controllers, we provide
results for ARM-based embedded/mobile systems. For this purpose, two dif-
ferent Testbeds are considered in this work, one using the Cortex-A8 and the
other using the Cortex-A9. We also consider different realizations of our TEE,
namely a PikeOS and a Fiasco.OC/L4Re based setup.
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Elaboration of Different Multi-core Scheduler Configurations In ad-
dition to the single core execution, we elaborate different multi-core scheduler
configurations and evaluate their vulnerability against the herein proposed
time-driven cache attack. By comparing the attack results between single- and
multi-core configurations, we are able to show that dedicated cores for crypto
services leak the most information about the key.

Hardware independent Countermeasures against Cache Timing At-
tacks We provide two hardware independent countermeasures to mitigate
cache-based side channel attacks. Our first approach is a randomized multi-
core software implementation of AES which we call RMC-AES. In contrast to
other approaches like bit-slicing which needs single instruction, multiple data
(SIMD) extensions, e.g., Intel MMX and ARM NEON, RMC-AES can be im-
plemented on any 32bit platform. Although, we do not gain good performance,
we step forward to achieve a leakage resilient system implementation with this
approach. Further, we propose a countermeasure which is based on a real-time
scheduler configuration to provide a discrete-time execution for the component
which is executing the cipher. This countermeasure can be used as a drop-in
update to existing systems. We show that by an evaluation on an ARM-based
quad-core processor.
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1.2 Publications

Parts of this thesis have been published. In the following, we provide a brief
overview about these scientific, peer-reviewed articles and which chapters cover
them.

In [WHS12], we propose our cache-based side-channel attack on a
virtualization-based security architecture for embedded systems. This is mainly
covered by Chapter 7. Further, in this context, we provide an evaluation of the
same attack in a different multi-core-based embedded system and propose the
discrete-time countermeasure in [WWAS15], which is also covered by Chap-
ter 7. However, the fundamental architecture of both of them, namely the
microkernel-based trusted execution environment is the fundamental part of
Chapter 5. In [WWAS15], we propose a security architecture and protocols for
remote binary loading, integrity and attestation inside a trusted runtime based
on microkernel systems. This work is covered by Chapter 6 while the high-level
system architecture using trusted computing is part of Chapter 5. Another
work we contributed to, is the joint work with Proskurin et al. [PWS15] which
provides seTPM, a Java Card design and evaluation of a TPM 1.2 and TPM
2.0 compliant TPM emulator. The TPM 1.2 architecture and design of that
work is also part of this thesis and discussed in Chapter 5.

Furthermore, some auxiliary contributions were made in the context of mo-
bile embedded devices which are not part of this work. We contributed to the
joint work of Horsch et al. [HBW+14] in which a secure identity derivation
protocol for mobile devices was proposed and evaluated. In contrast to the
topics covered by this thesis, no trusted execution environment is necessary.
The trustworthiness needed for that protocol relies only on the used Java Card
Secure Element (SE). Concurrently, to the microkernel-based research, we con-
tributed to the trust-me project. This is a follow-up development project to
the work presented in [WHSE15]. In trust-me, we implemented a virtualiza-
tion concept based on so called operating system (OS)-level virtualization for
Android-based mobile devices. The separation is here provided by the OS ker-
nel for several independent user space Android stacks with the consequence
of a larger TCB. However, the performance of this approach is almost native.
The resulting research with the underlying security concept is joint work with
Huber et al. [HHV+15].
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1.3 Outline

In the next chapter we will provide fundamental background information. As
this thesis combines several different research aspects, that chapter will in-
troduce trusted computing, GlobalPlatform trusted execution environments
and secure elements, microkernel in general and the L4 microkernel family
in particular and finally some basics about cache-based side channel attacks
including the AES cipher as sample target.

In Chapter 3, we provide related work on integrity and secure loading to mo-
tivate our system architecture. This chapter provides an insight into why we
choose the microkernel-based approach.

We introduce some scenarios and a coarse attacker model which are used
throughout the whole thesis in Chapter 4. The provided scenarios either further
motivate our architecture or provide a better understanding for the application
of TEEs in general.

We specify and discuss the system architecture in Chapter 5. This chapter
shows how the concepts of trusted computing and GlobalPlatform can be com-
bined in an overall microkernel-based system architecture. We describe a secure
boot process based on the TPM to establish trust into our system. Further,
we show how a GlobalPlatform complaint secure element can be integrated as
TPM replacement.

In Chapter 6, we discuss trusted computing based protocols for integrity and
attestation as well as our concept to securely load remote binaries in the trusted
compartment. We provide a substantial discussion about a prototype imple-
mentation of the provided concept. Further, an informal security evaluation
as well as evaluations of performance and code size of our approach is to be
found in Chapter 6.

Chapter 7 will discuss the whole aspect of cache timing vulnerabilities of TEEs.
We start with a section about related work on cache-based side channels. After-
wards, we discuss the time-driven cache attack on TEEs and several counter-
measures including the discrete-time scheduling approach and RMC-AES. We
provide thorough attack and countermeasure evaluation in different testbeds
under several configurations.

Finally, Chapter 8 concludes this thesis and provides an outlook to further
research directions.



2

Background

Since this thesis covers several research areas, we will give the reader the
corresponding background of each of them. The covered topics are trusted
computing, GlobalPlatform, microkernel systems and cache-based side channel
attacks. As throughout this work, we elaborate a system architecture which
provides adoptions and extensions to trusted computing approaches, we first
introduce some essential background on this topic. This includes the Trusted
Platform Module (TPM) chip as well as the software stack and trusted boot.

We later also combine approaches from the GlobalPlatform into our architec-
ture, such as the Trusted Execution Environment (TEE) and the Secure Ele-
ment (SE). That is why we also provide the basic background on that. Instead
of the original approaches of the TCG which bases their concept on monolithic
operating system architectures, we provide concepts and implementations on
microkernel-based operating systems. We denote the difference of those sys-
tems in general. Background on the L4 microkernel family in particular is
provided as we use two – one academic open source and one commercial kernel
– out of this microkernel family to demonstrate the feasibility of our design and
protocols. Finally, we denote brief background on cache timing side channels
as a main part of this thesis deals with the evaluation and countermeasures of
those kind of attacks in our architecture. This also includes background on the
cryptographic algorithm AES, which we use as representative cipher algorithm
for this purpose.
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2.1 Trusted Computing

Trusted computing is the term for protocols, soft and hardware designs pro-
vided by the TCG. The TCG is a consortium of several industry and research
institutions founded in 2003. It supersedes the former Trusted Computing Al-
liance (TCPA). Their goal is to establish trust into platforms by a hardware-
based root of trust as vendor independent standards.

Since the TCG’s main targets are PC and server platforms, the provided stan-
dards are targeting systems based on monolithic operating system kernels, such
as Linux and Windows. Even though some efforts are made to support mobile
platforms, microkernel-based systems are not targeted by the TCG. With this
work we do transfer some of those concepts to a microkernel-based system.
That is why we provide some trusted computing basics in the following. Note
that this is information derived mainly from [Eck14] and [CYC+08] with some
additions from the TPM Main Specification [Tru11]. Any deeper knowledge
about trusted computing concepts can be found there.

2.1.1 Trusted Platform Module

Centerpiece of the TCG specifications is the TPM which is a cryptographic
co-processor with special hardening against physical and side channel attacks.
Internally, the TPM comprises a true Random Number Generator (RNG), a
set of cryptographic functions, such as a SHA1, HMAC hashing engine and an
RSA crypto engine, limited internal volatile and non-volatile secure storage for
keys and integrity measurements. Furthermore, a TPM is protected by several
active sensors (shield) against physical attacks. A simplified Architecture is
shown in Figure 2.1.

Root of Trust

The Roots of Trust are the start point for the process to establish trust in a
platform. It is immutable to trust the roots of trust without any further vali-
dation. A misbehaviour of a root of trust cannot be revealed. A TCG conform
system contains three such roots of trust, the Root of Trust for Measurement
(RTM), Root of Trust for Storage (RTS) and Root of Trust for Reporting
(RTR).
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Fig. 2.1: Simplified block diagram of the TPM architecture

Root of Trust for Measurement The RTM is used to determine the
integrity of a platform’s configuration during boot. The corresponding com-
putations start with Core Root of Trust for Measurement (CRTM) and are
also called measurements. In the x86-based desktop and server environment
the CRTM is part of the Basic Input Output System (BIOS). The rest of the
RTM’s functionality is implemented inside the TPM. This functionality com-
prises the used hash algorithm for measurements and a secure storage for them.
The specification demands a SHA1 engine and so called platform configuration
register (PCR) registers for volatile storage.

Root of Trust for Storage The RTS is used to protect keys and trusted
data objects. It is represented by an RSA keypair called Storage Root Key
(SRK). The SRK is generated and stored permanently in non-volatile mem-
ory when the TPM is owned by an user. There exist the special command
TPM_TakeOwnership for this. Afterwards the SRK cannot be changed any-
more because it is used as root for all keys including non-migratable ones.
However, a non-migratable key is defined to be bound to a specific TPM and
therefore the key used to encrypt the non-migratable keys must be unique to
that TPM during its usage period after deployment.

Root of Trust for Reporting The RTR is used to provide trustworthy
reports of integrity protected data. The RTR is realized as an RSA key pair
which is called Endorsement Key (EK). The EK is generated during production
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and stored inside persistent memory of the TPM. It is the only key which
cannot be changed during a TPM’s lifetime. However, the EK is never used
directly to attest an identity. This is due to privacy concerns. For this purpose
the TCG specifies identity keys (see below). The TCG specification demands
that the EK should only participate during TPM Ownership insertion and
Attestation Identity Key (AIK) creation and verification.

Platform Configuration Register

A PCR is volatile secure storage for measurement values. Since Version 1.2, a
TPM has at least 24 of such PCR registers. The size of each PCR is 160bit so
that it can store a SHA1 hash. Reading of a PCR is possible in an easy single
operation. Nevertheless, a PCRi can only be written by extending the new
value x to the old value already stored inside of PCRi as shown in Equation 2.1;
|| denotes a concatenation.

extend(PCRi, x) ≡ PCRi ← SHA1(PCRi||x) (2.1)

Clearing a PCR is not possible without a reset of the whole system. This way,
secure hash chains can be established to represent a trusted platform state
afterwards.

2.1.2 Type of Keys

There are different kind of keys used in the TCG architecture. The specification
distinguishes between migratable and non-migratable keys. Migratable keys
can be migrated from one to another TPM while non-migratable keys are
bound to the specific TPM. Due to limited space for keys inside the TPM, keys
are usually stored externally on hard disk or flash memory. Only for usage,
they are loaded into a free key slot in the TPM’s volatile memory. Those keys
have to be encrypted to maintain their security.

We already introduced two special non-migratable keys, the EK and the SRK
which form the particular root of trust RTR and RTS as described above. For
this work, also the AIKs and binding keys are of special interest.

Signature Keys

Signature Keys are asymmetric variable length RSA keys. However, the spec-
ification demands a maximum size of 2048 bit to be available for signature
keys. These keys can be used to sign arbitrary application data out side of the
TPM. They could be either created as non-migratable or migratable key pairs.
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Storage Keys

Storage keys are used to securely store data. Usually, other keys like binding
and signature keys are encrypted with storage keys. This is also called key
wrapping. However, storage keys are not used to encrypt symmetric keys.
Storage keys are always 2048 bit RSA private keys which could either be
migratable or non-migratable. The SRK is an example for a non-migratable
storage key.

Binding Keys

The primary use for binding keys lies in the encryption of symmetric keys.
Even if binding keys could be used to encrypt arbitrary data, they can only
encrypt a small amount of data as the TPM only does basic RSA operations
with binding keys. This means the payload size is restricted to the RSA block
size As also binding keys are 2048 bit RSA keys this is 256 byte. Therefore, it
is not reasonable to encrypt other data than symmetric keys.

Identity Keys

Identity keys also called AIKs are special signature keys which are only allowed
to sign data which originates inside the TPM such as PCRs. An AIK can be
seen as an alias for the EK as the EK cannot directly be used to perform
signatures. It is possible to create unlimited amounts of AIKs to generate
several pseudonyms for different applicants. AIKs must be 2048 bit RSA key
pairs. They are non-migratable keys which are always encrypted with a non-
migratable storage key or as such directly with the SRK. Thus, in case the
owner is cleared, it is assured that also all associated identities are destroyed.

Authentication Keys

Authentication keys are symmetric keys used to authenticate the communica-
tion between the host system and the TPM. This so called transport sessions
are used to assure the confidential and integrity protected data exchange be-
tween the application or the operating system and the TPM. Thus, a physical
attacker on the bus cannot eavesdrop the communication between the TPM
chip and application processor. The corresponding authorization protocols are
the Object Specific Authorization Protocol (OSAP) and the Object Indepen-
dent Authorization Protocol (OIAP).
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Fig. 2.2: TCG architecture

Legacy Keys

As the name indicates, those keys are legacy and should not be used. For this
thesis they are therefore not relevant.

2.1.3 TCG Software Architecture

To maintain a trusted platform, the TCG software architecture provides a
modular design that distributes tasks across layers in user- and kernel space
as shown in Figure 2.2). Every layer of the TCG architecture provides an ab-
stract interface towards its respective upper layer. The user space components
comprise the TCG Device Driver Library (TDDL), TCG Software Stack Core
Services (TCS), TCG Service Provider (TSP) and an application making use
of the above layers. In short, the TPM device driver establishes a communica-
tion with the TPM, providing an interface towards user space layers. As can be
seen by this definition, the TCG software architecture is targeting monolithic
operating system kernels such as Linux and Microsoft Windows as common
PC platforms.

2.1.4 Integrity and Attestation

As specified by the TCG, a TPM can be used to securely store integrity mea-
surements of software binaries, which are calculated during authenticated boot,
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where the current component in the boot chain hashes the next one before ex-
ecuting it. Starting from a root of trust for measurement (usually a very small
piece of code in read-only memory), those integrity measurement values are
calculated and securely stored inside the TPM using the RTR.

Figure 2.3 shows the authenticated boot procedure as defined by the TCG for
PC platforms. There, the CRTM is part of the BIOS and measures (calculates
a hash over) itself and stores the result in PCR 0. Further, the BIOS measures
some parts of the hardware (register, memory states) to PCR 1 and Option
ROMs to PCR 2 and PCR 3. Before the actual bootloader code from the Mas-
ter Boot Record (MBR)1 is started, the BIOS measures the MBR and stores
the result to PCR 4. In PCR 5-7 additional information such as transactions of
Option Rom execution, configuration and image files are stored during boot.
Afterwards the bootloader measures the operating system kernel and extends
the value also to PCR 4. Finally, the OS kernel is started.

These integrity measurement values can then be used in a remote attestation to
prove the integrity of the system to a remote verifier. For a remote attestation,
the hash values representing the current platform state are digitally signed by
the TPM using an AIK. This signed platform state also called "Quote" is
sent to the remote party that can verify the signature and check the integrity
measurements by comparing them to known trustworthy reference values. For
a detailed protocol description we refer to [Eck14].

1 The MBR is the first sector of the bootable hard disk in common PC platforms
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Integrity Measurement Architecture

However, the authenticated boot mechanism only collects integrity measure-
ments for components in the boot chain and does not prevent the execution of
(potentially malicious) binaries. That means, after some time those integrity
values stored inside the TPM do no longer represent the actual current plat-
form state, since malicious binaries might have been able to compromise the
system in the meantime. To overcome this limitation, the IMA [SZJvD04] has
been proposed for Linux-based systems, where integrity values are calculated
during run-time whenever a binary is loaded. IMA is included in Linux main-
line kernel since version 2.6.30.

This extension to the authenticated boot chain is depicted in Figure 2.4. After
the OS kernel is loaded, IMA as part of the Kernel measures each binary before
it is executed and stores the result in a measurement list. Each entry of the
measurement list is extended to the PCR 10. As start of the hash chain in
PCR 10 the so called boot aggregate is stored in PCR 10 which is computed
over PCR 0-7 which are specified by the TCG for usage during boot.

IMA is proposed as a Linux Security Module (LSM) module for Linux. The
Linux kernel provides security hooks distributed in the whole kernel code,
allowing an LSM instance to instrument several parts of kernel code execu-
tion. The measurements are made inside the kernel using such a security hook
(file_mmap) which is called whenever a new file is mapped into memory. Thus,
also when the loader code maps the new binary into memory before the execve
system call is invoked, the IMA module enforces the integrity measurement for
loaded binaries. This is sufficient if the binary has no library dependencies or
is statically linked. However, in a Linux system, binaries usually depend upon
shared libraries. Those are mapped by the linker flagged executable into virtual
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memory with the mmap system call. This again invokes the file_mmap hook
which is called whenever a file is mapped into memory and therefore also for
shared libraries the measurement is enforced. Further, in monolithic kernels
not all kernel code is loaded at boot time. Some device drivers are realized as
so called kernel modules which can be loaded into the kernel during runtime by
invoking a sys_init_module system call. Afterwards the module code starts
execution inside the kernel. Thus, Sailer et al. [SZJvD04] propose to implement
a measure call inside the load module routine, because there is no security hook
which could be utilized to instrument the module loading procedure. As IMA
maintains an aggregate of all measured application binaries, libraries and ker-
nel modules in secure storage of the TPM (PCR 10), this aggregate could be
used during attestation and therefore, provide a much more recent state of the
running system, instead of just reporting the state after booting the operat-
ing system. Unfortunately, IMA focuses on Linux-based systems and does not
prevent loading of remote binaries from an unknown source. This presents a
major threat to the system’s integrity. Thus, loading such binaries is usually
not acceptable for systems with safety- or security-critical applications, such
as secure payments or online banking on a smartphone.

2.2 GlobalPlatform

GlobalPlatform is an industry consortium which is similar to the TCG a non-
profit, member driven association. Their focus is on mobile, embedded devices
to incorporate secure chip technology for several secure applications like pay-
ment and Digital Rights Management (DRM)2. In contrast to the TCG which
has members who are strictly supporting the opt-in approach which gives the
user the control of the TPM and let him decide for what purpose he wants to
use it, the GlobalPlatform officially supports DRM use-cases where vendors
control the privileged hard- and software components. The two main topics of
the GlobalPlatform are TEE and SE, which both provide separate compart-
ments to execute critical code, however with different level of security. While
a TEE can be realized as software-only solution, the SE provides a separate
physical hardened security chip similar to the TPM.

2 A statement of the author: We highly disagree with the ideas behind DRM. How-
ever, the industry provides the hardware and some concepts which we can use for
”good” security, namely to provide trust into software systems. This allows to de-
fend against malware and provide integrity protected systems which no intelligence
apparatus easily can manipulate to spy on high value data.
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2.2.1 Trusted Execution Environment

GlobalPlatform has specified a high level system architecture of a trusted ex-
ecution environment (TEE) [BFG+11], as shown in Figure 2.5. This is an
abstract version of security architecture provided in the TEE Client API Spec-
ification [Glo10]. The system architecture consists of two execution domains,
the trusted execution environment for the trusted applications and the rich
environment for the user controlled rich operating system3. It is much more
likely that the rich execution environment (REE) is infected by malware due
to the greater software complexity. The trusted applications are either exe-
cuted in their own virtual machine or are separated in different address spaces
and do not share any memory to allow the deployment of trusted application
by different vendors which may not trust each other. However, each trusted
application depends on the security of the underlying isolation layer, which is
a hardware-based dedicated split of resources. The ARM TZ [ARM09] pro-
vides an implementation of this separation layer for instance. In this thesis
we provide a TEE realization on a software-only solution without the need of
hardware dependent features, see Chapter 5.

3 A rich operation system is a full operating system with drivers, userland and user
interfaces, e. g., Android
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2.2.2 Secure Element

The GlobalPlatform defined SE is the denotation for a security chip residing
in any form factor, such as Universal Integrated Circuit Card (UICC), embed-
ded SE, secure microSD or just an ordinary smart card. The main difference
to standard smart cards is the running firmware on this chip. GlobalPlatform
specifies System Architecture and communication APIs in their Card Spec-
ification [Glo11]. For external communication the specification demands to
use corresponding ISO protocols for smart card communication such as ISO
7816 contact based and ISO 14443 contactless smart cards. There are only
two concrete Implementations for this specification namely the Java Card and
the MULTOS framework. We concentrate on the Java Card framework in this
work, as we believe that it is the more flexible and more popular framework.
The corresponding Java Card specification is 2.2.x.

Java Card Technology The Java Card technology specification comprises
the Java Card Virtual Machine (JCVM), Java Card Runtime Environment
(JCRE) and the Java Card API specification.

1. JCVM specification defines the programming language which is a subset
of the Java language and a light VM for smart cards

2. JCRE specification defines the runtime behavior for Java Cards

3. Java Card API specification defines the programming framework Java
packages and classes for so called Java Card Applets

The JCVM and its underlying vendor specific Smartcard OS together with
the Java Card API abstraction layer form the actual Java Card platform, as
shown in Figure 2.6.
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The advantage of this design approach is that the corresponding smart card
applications (Applets) can be developed in a hardware independent manner.
This is similar to the original idea of Java of an platform independent pro-
gramming language. Thus, in total, the JCVM and JCRE provide hardware
abstraction and an universal programming API for smartcard developers. As
a consequence, the system setup does not rely on certain smartcard platform
or manufacturer, but rather on limitations of the actual smartcard hardware
such as RAM size and cryptographic co-processors.

Furthermore, the design allows to use one smartcard for several different pur-
poses, by just deploying the appropriate Applet during runtime. For instance
on an mobile device, the mobile network operator can install a payment applet
beside its already deployed SIM applet on the UICC. As the JCVM provides a
firewall between those Applets, it is assured that the code and data are strictly
separated similar to major operating systems on desktop or mobile systems.

To distinguish and deploy proper firewall rules each Applet needs a so called
Application Identifier (AID). This AID is registered inside the JCRE as last
step of deployment. In each JCRE exists a privileged applet the card manager
which has control over the firewall and allows for installation of new Applets.
The AID of the card manager is protected and cannot be impersonated by an
ordinary applet.

Communication As the GlobalPlatform specification demands, the commu-
nication between host and Java Card is established by the means of a message
passing protocol using Application Protocol Data Units (APDUs). The corre-
sponding case-4 command APDUs and respective response APDUs as defined
in [ISO05] are depicted in Figure 2.7.

A command APDU consists of 4 byte header and body with a maximum size
of 257 byte. The header is compounded of the instruction class (CLA) and
type (INS), as well as the instructions parameters (P1 and P2). The body
comprises a byte (Lc) which specifies the length of the data to follow, the
actual data and a byte (Le) which defines the expected response size. The
response APDU consist of a variable length body containing the payload data
and a 2 byte trailer which contains the so called status word (SW1 and SW2).
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The maximum payload of a single command APDU is 255 due to the included
Lc byte is interpreted as size. The payload of a response APDU however can
be 256 byte of length due to Le = 0x00 is interpreted as the maximal length
of 256 byte.

2.3 Microkernel Systems

One major goal of this work is reducing the TCB for trusted computing based
applications. A main contributor to achieve that goal provides the use of a
microkernel-based operating system as base for our concepts. Therefore, we
discuss the difference between the microkernel design approach versus the
monolithic kernel design usually applied in TCG based systems. Further, we
give a short introduction to the L4 microkernel family because throughout
this work, we demonstrate our concepts on the Fiasco.OC/L4Re as well as the
PikeOS operating system frameworks which both are using kernels of the L4
family. The following subsections are summarizing information of the survey
given by Elphinstone and Heiser [EH13] and the lecture by Weinhold [Wei14].

2.3.1 Microkernel versus Monolithic Kernel Design

Usually, the purpose of an operating system is to manage resources, which
could either be hardware or software. Hardware resources are CPU, memory,
low-level buses and devices such as a TPM. Software resources also called
system services are for instance file systems and network stacks which also
make use of device drivers. Further, it provides abstraction interfaces to access
those resources, e.g., the read and write API through so called sockets instead
of having to deal directly with TCP/IP packets in the application. Further,
an essential job of the operating system is to provide isolation and controlled
communications between applications in form of message passing.

Generic multi purpose operating systems perform all these tasks in privileged
operation mode (kernel mode or supervisor mode) of the system. This is the
monolithic kernel design approach which is used for instance in Microsoft Win-
dows and Linux-based operating systems. This approach has some major issues
concerning security. As all components are running in privileged mode, each
subsystem of the kernel has access to all kernel-level data. This allows for in-
stance to easily abuse the module/driver loading to instantiate a rootkit inside
the operating system. Also resilience is a problem in the monolithic approach
because a faulty driver can cause the whole system to crash. In total, the whole
software complexity of this approach is hard to manage.
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Fig. 2.8: Microkernel versus monolithic kernel design approach

The microkernel approach moves all the components of the operating system
which do not need privileged instructions out of the kernel to non-privileged
user mode. The software complexity of the kernel is reduced significantly by
just running the essential parts inside the microkernel. However, as a result of
moving all system services to user space, the amount of inter-process commu-
nication (IPC) raises significantly. Thus, the efficient implementation of IPC
is of high importance. That is why early microkernel-based operating systems
lacked performance in comparison to the monolithic approach.However, novel
so called third generation microkernels like current kernels of the l4 family have
fast IPC implementations and performance issues are of no concern anymore.

One of the most important responsibilities of a microkernel (besides handling
IPC and scheduling Threads) is the separation of user space tasks. By strictly
separating tasks with different levels of criticality, a microkernel-based system
is able to provide a trusted runtime environment on the same hardware plat-
form, where untrusted software is also executed at the same time. Similarly
other virtualization-based approaches using a hypervisor provide task separa-
tion. However, conventional hypervisors need device drivers in privileged kernel
mode with the consequence of a larger TCB. Figure 2.8 shows a comparison
between the microkernel and monolithic operating system design approach.

The microkernel runs in privileged mode directly on the hardware. All non-
essential system services, such as memory management (paging) or devices
drivers, are executed in user space and are usually called servers, as they pro-
vide services or device access to other tasks (clients) through IPC. The memory
management servers, however, are usually referred to as pagers. Similarly, all
other services that are usually part of a monolithic kernel, for instance, file
system drivers, are implemented as servers in user space. In addition to those
basic mechanisms and components, the L4 kernel interface implementation Fi-
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asco.OC [LW09] includes a capability system, which is used for securing the
access to kernel objects. In our secure loader concept in Chapter 6, we make
use of capabilities, for instance, when we establish communication channels
between certain tasks. Besides the native microkernel applications, a modi-
fied rich operating system (rich OS) kernel, e.g., a para-virtualized Linux like
L4Linux [HHL+97], can also run as application in user space on top of the
microkernel.

2.3.2 History of the L4 Family

Since we use microkernel systems based on L4 microkernels throughout this
work and L4 is an expansive notation for several different microkernel appli-
cation binary interfaces (ABIs) and implementations, we want to clarify the
notation L4 in the following excursus.

Currently, there are 5 actively developed microkernels which have their root in
the L4 microkernel design by Liedtke [Lie95] and thus are part of the L4 mi-
crokernel family. These are the seL4, OKL4, Nova, Fiasco.OC and PikeOS/P4.

As NOVA only supports x86 and the source of seL4 was not publicly available
until 2014, at the beginning of our work on embedded systems, the latest avail-
able open source microkernel with modern design and ARM support was the
Fiasco.OC. Further, as a commercial implementation of the "v2" ABI the P4
microkernel as part of PikeOS were available for this work due to research co-
operations with the Sysgo AG. PikeOS is widely used in safety-critical avionics
systems and therefore of high interest for us. The corresponding user-space
runtime environments L4Re for the Fiasco.OC and PikeOS are described later
when we discuss our architecture in Chapter 5.

Liedtke’s first L4 microkernel was written in assembler for Intel i486 systems
and later also Pentium at GMD. This version is referenced as the original
L4/x86 kernel in the L4 community. The ABI version of the original imple-
mentation is "v2". There is no ABI v1 because Liedtke was experimenting with
L4 concepts already in earlier work [Lie93a], [Lie93b] were he called the kernel
L3. This lead to the "v2" ABI for which he finally introduced the wording
L4. Form this ABI version "v2" three groups started research and develop-
ment. An overview on the kernel ABIs and their implementations is provided
in Figure 2.9.

System Architecture Group at the University of Karlsruhe The group
around Liedtke in Karlsruhe continued his work and came up with the experi-
mental ABI version X.0 and its implementation L4Ka:Hazelnut. This was the
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Fig. 2.9: Development on the L4 ABI specification and their implementations

their first portable implementation for different processor architectures (Pen-
tium and ARM). Further research work of the group on improving portability
and multi-processor support resulted in the major ABI Revision "v4" which is
also referred to as "X.2". Their implementation called L4Ka::Pistachio closes
their research work on this topic and further development at Karslruhe was
discontinued.

University of New South Wales and NICTA The second research group
around Gernot Heiser is located at the UNSW and NICTA and the spinout
Open Kernel Labs. At UNSW/NICTA the "v2" ABI version was reimple-
mented for Alpha and Mips processors called L4/Alpha and L4/Mips. However,
those implementations were discontinued and the group at UNSW/NICTA
provided ports of L4Ka::Pistachio on Mips, Alpha and 64-bit Power-PC. Later
they also re-targeted the L4Ka::Pistachio implementation for use in resource-
constrained embedded systems, resulting in the "N1" ABI and the "N2" ABI.
The corresponding implementation is called NICTA::Pistachio-embedded or
L4-embedded. This version was used in commercial products of Qualcomm
and the development continued in the "OKL4" ABI and implementation in
the spinout Open Kernel Labs. The OKL4 Kernel in version 2.1 introduces ca-
pabilities for access control. With introduction of the OKL4 v3.0, Open Kernel
Labs started with a proprietary licensing scheme. At UNSW/NICTA the re-
search continues on the "seL4" ABI [KEH+09] and implementation aiming for
formal verification on security and safety. The source code, models and proves
of seL4 are now publicly available under GPL.
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Operating Systems Group at TU Dresden The third group in the L4
community is located at TU Dresden. The Operating Systems group around
Herman Härtig also started with an own implementation of the "v2" ABI
called Fiasco/L4v2. However, they soon started to continuously develop their
own ABI called Fiasco resulting in the implementation L4/Fiasco. Later with
the introduction of capabilities [LW09] similar to the OKL4 kernel Fiasco was
renamed to Fiasco.OC. Further, the design NOVA [SK10] influenced by Fiasco
for hardware-assisted virtualization on x86 platforms was started from scratch.

2.4 Cache-based Side Channels

In this thesis, as a main part we deal with cached-based side channels. We
later demonstrate that our architecture as well as TEEs in general are prone
to cache timing side channel attacks. To better understand the remarks in
Chapter 7, we give now the corresponding background.

A cache timing attack exploits the cache architecture of modern CPUs in the
following way. The cache architecture has influence on the timing behavior of
each memory access. The timing depends on whether the addressed data is
already loaded into the cache (cache-hit) or it is accessed for the first time
(cache-miss). In case of a cache-miss, the CPU has to fetch the data from the
main memory which causes a higher delay compared to a cache-hit where the
data can be used directly from the much faster cache. Modern symmetric as
well as asymmetric cipher algorithms usually make use of lookup tables. These
tables hold precomputed data which is retrieved during cipher execution by key
dependent lookups. This results in individual timing patterns for different keys
for the same plaintext input due to specific collision during cipher execution.

2.4.1 Classification of Attacks

Current research work about Cache-based attacks can be divided into three
different categories, each having a different attacker model:

1. Time-driven attacks
2. Trace-driven attacks
3. Access-driven attacks
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Time-driven

Time-driven attacks [Ber05b, OST05, NSW06, ASK06, BM06] make use of
the cache model in a very general way as they only require timing data of
entire runs of a cryptographic algorithm, e.g., an encryption using AES. This
corresponds to an attacker who has only very limited or coarse information
about the cache.

Trace-driven

Trace-driven attacks [AK06, GKT11] additionally require detailed information
about the cache activity during single runs of the encryption, in particular the
sequence of cache hits and misses caused by the memory accesses performed by
the encryption algorithm. A trace can for instance be captured by profiling the
power consumption while the encryption routine is running. This translates to
an attacker, who has gained a substantial level of knowledge about the runtime
cache behavior which in case of a power profile also requires physical access to
the device.

Access-driven

Finally, access-driven attacks [OST05, GBK11] assume to have knowledge
about the cache-sets accessed by the algorithm. The underlying assumption
is therefore that the attacker can control the cache runtime behavior. In the
Prime+Probe attack [OST05], for example, those areas of the cache that also
hold the lookup tables of the attacked algorithm are filled by a spy process
with own data before the encryption is triggered (Prime). After the encryp-
tion, the spy process measures the access time to its own data to see which
parts have been evicted from the cache by the encryption algorithm (Probe).
Now the attacker can deduce which parts of the lookup tables were accessed
by the encryption and from this infer some or all bits of the secret key.

For an in-depth background on cache-based side channels, we refer to [TOS10]
which also introduces CPU cache architectures in general.

2.4.2 Applicability of Time-driven Attacks in Virtualization
Context

As can be seen from the above explanations, time-driven attacks are the most
widely applicable class of attacks since they do not require a strong attacker
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with fine grained access to the cache. Furthermore, for a time-driven attack, it
is sufficient to see the attacked system as a black box which makes the attack
portable to different CPU architectures.

Bernstein [Ber05b] for instance used this characteristic for a known plaintext
attack to recover the secret key of an AES encryption on a remote server.
However, Bernstein had to measure the timing on the attacked system to get
rid of the noisy network channel between the attacked server and the attacking
client. While this is a rather unrealistic scenario since the server needs to be
modified, it is very relevant in the context of virtualization. In the context of
virtualization, the noise is negligible since local communication channels are
used for controlled inter-domain data exchange. These communication chan-
nels are based on shared memory mechanisms which introduce only a small
and almost constant timing overhead.

2.4.3 Cryptographic Implementations

Exemplarily, we use the AES cipher to demonstrate vulnerabilities and coun-
termeasures against cache-based side channel attacks. Nevertheless, also other
symmetric ciphers such as DES and Clefia [RM11, ZW10] are vulnerable to
this kind of attack as they also use lookup table-based implementations. We
provide information about the original proposed SBox implementation as well
as T-Tables implementation to better understand the demonstrated attack
and countermeasures discussed in Chapter 7. For an in-depth understanding
of AES, we refer to [DR02] as well as for an introduction to the mathematical
basis namely the Galois-Field GF (28), we refer to [Eck14].

AES SBox Implementation

As original proposed as Rijndael algorithm by Daemen et al. [DR02] and ac-
cepted by NIST as the AES standard [NIS01] in 2001, the AES cipher algo-
rithm is a symmetric block cipher consisting of a key schedule and repeated
round transformations. The NIST specifies the key length n = 16, 24 or 32
Byte, by a fixed block length Nb = 128 (bit). In this work, we stick to n = 16
Byte key length.

An input plaintext is then denoted as p = {p0, ..., p15} and the AES key as
k = {k0, ..., k15} while pi and ki addresses the respective ith Byte. The resulting
ciphertext of an AES encryption is respectively denoted as c = {c0, ..., c15}.
An AES encryption produces the ciphertext c and uses p and k as input as
denoted in Equation 2.2
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c = encAES(p, k) (2.2)

After an initial key schedule the KeyExpansion, a set of round keys is generated
as denoted in Equation 2.3,

Kr = {Kr
0 , ...,K

r
15}, for r ∈ [0, 10] (2.3)

while for the first round r = 0, it holds that

K0 = k

This is important as we use this fact in the heuristic for the correlation in our
timing attack.

Further, for 16 byte keys it is noteworthy to say that the KeyExpansion is
reversible. This means an attacker who guesses any round key Kr correctly
can compute any other round key and therefore also k.

The actual round operations are called SubBytes, ShiftRows, MixColumns and
AddRoundKey and successfully applied to a state s which is denoted as sr =
{sr0, ..., sr15} during a round r. After an initial AddRoundKey, for n = 16, 10
rounds of the just mentioned 4 operations are performed in exact this order,
except in the last round the MixColumns step is omitted, resulting in the
following high-level encryption algorithm 1.

Algorithm 1 AES high-level encryption
1: procedure encAES(p, k)
2: K = KeyExpansion(k)
3: s0 = AddRoundKey(p, K0)
4: for r in 1 to 10 do
5: sr = SubBytes(sr−1)
6: sr = ShiftRows(sr)
7: if r != 10 then
8: sr = MixColumns(sr)
9: sr = AddRoundKey(sr, Kr)
10: c = sr

11: return c

For us it is not interesting what happens in detail in the operations themselves,
except the AddRoundKey operation, which is nothing more than the bit-wise
XOR of the corresponding input parameters.

AddRoundKey(sr,Kr) ≡ sr ⊕Kr (2.4)
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However, in SubBytes a non linear operation is performed which makes use
of the AES Sbox SRD. This SBox is realized as memory lookup table, which
makes it vulnerable to cache-based timing attacks.

The decryption process is not relevant for this thesis, however for the sake of
completeness it is described here. A decryption happens the same way while c
and p are exchanged as input and output parameters denoted as

p = decAES(c, k) (2.5)

Further, all operations are inversed in their order as well as the operations
themselves, resulting in the straightforward decryption algorithm 2.

Algorithm 2 AES straightforward decryption
1: procedure decAES(c, k)
2: K = KeyExpansion(k)
3: s10 = c
4: for r in 10 downto 1 do
5: sr = AddRoundKey(sr, Kr)
6: if r != 10 then
7: sr = InvMixColumns(sr)
8: sr = InvShiftRows(sr)
9: sr−1 = InvSubBytes(sr)
10: p = s0

11: return p

Especially, this mean that the SBox in InvSubBytes is exchanged with the
inverse SBox S−1RD. Thus, attacks on the decryption process can be performed
analogous to the encryption. However, it is not possible to attack the AES key
k directly, but the round key K10. Since the key schedule is reversible for 16
byte keys, it is feasible to compute k out of K10.

AES T-Table Implementation

The T-Tables implementation is an efficient way to pre-compute the round
operations in 4 lookup tables T0, T1, T2, T3 which consist of 256 32bit words,
resulting in 1KB of size each. With those tables the state could be computed
by 32bit word operations in form of lookups and bit-wise XOR operations. We
denote the word representation of state s as

sri = {sr4i, sr4i+1, s
r
4i+2, s

r
4i+3}
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and the word representation of the round key

Kr
i = {Kr

4i,K
r
4i+1,K

r
4i+2,K

r
4i+3} for i ∈ [0, 3]

The resulting state transformation during a round r with r ∈ [1, 10] using 4
state words is then carried out as depicted in Equation 2.6.

sr0 = T0[s
r−1
0 ]⊕ T1[s

r−1
5 ]⊕ T2[s

r−1
10 ]⊕ T3[s

r−1
15 ]⊕Kr

0

sr1 = T0[s
r−1
4 ]⊕ T1[s

r−1
9 ]⊕ T2[s

r−1
14 ]⊕ T3[s

r−1
3 ]⊕Kr

1

sr2 = T0[s
r−1
8 ]⊕ T1[s

r−1
13 ]⊕ T2[s

r−1
2 ]⊕ T3[s

r−1
7 ]⊕Kr

2

sr3 = T0[s
r−1
12 ]⊕ T1[s

r−1
1 ]⊕ T2[s

r−1
6 ]⊕ T3[s

r−1
11 ]⊕Kr

3 (2.6)

The initial state s0 is just the bit-wise XOR of the plaintext with the first
round key.

s0 = p⊕K0 ⇒ s0 = p⊕ k (2.7)

For the final round a special Table T4 is used which does not include the
MixColumn operation.

The T-Tables are generated out of the original SBox S = SRD and its inverse
S−1 = S−1RD by the following concatenations:

T0 = {S−1, S, S, (S ⊕ S−1)}
T1 = {(S ⊕ S−1), S−1, S, S}
T2 = {S, (S ⊕ S−1), S−1, S}
T3 = {S, S, (S ⊕ S−1), S−1}
T4 = {S, S, S, S} (2.8)

We do not describe the decryption with T-Tables as this is not necessary to
understand the topics discussed in this theses. For further readings we refer to
the book of Daemen et al. [DR02] and the AES standard [NIS01].
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Related Work on Integrity and Secure Loading

In this chapter, we discuss related work on integrity verification approaches,
hardware-based attestation mechanisms to prove the integrity to a remote
verifier, and hypervisor-based techniques for protecting virtualized systems.
We also denote how those work differ from our following microkernel-based
approach.

Remember related work on cache-based side channels is provided separately
in Chapter 7. This chapter covers architecture and trusted computing related
work concerning the following Chapters 5 and 6.

3.1 Hardware-based Attestation Mechanisms

In the field of integrity verification, authenticated boot in combination with a
TPM as specified by the TCG was one of the first approaches to establish a
cryptographic set of integrity measurements for all components involved in the
boot process as described in Chapter 2.1.4. Unfortunately, this approach does
not include all components of the operating system and the applications, which
are loaded during run-time. To overcome this limitation, Sailer et al. [SZJvD04]
proposed the Integrity Measurement Architecture (IMA) for the Linux kernel
(see Chapter 2.1.4), which measures the integrity of every binary that is ex-
ecuted. Jaeger et al. [JSS06] then extended IMA with a mechanism based
on SELinux, which also verifies information flows at runtime. However, both
approaches must be realized as part of the monolithic Linux kernel, whereas
our integrity measurement components are implemented as unprivileged user
space servers, which are strictly separated by a very small microkernel.



32 3 Related Work on Integrity and Secure Loading

Based on the techniques for collecting integrity values, the concept of a remote
attestation enables a system to prove its integrity to a remote verifier. In a
traditional hash-based remote attestation as specified by the TCG [Tru11],
the prover sends a set of aggregated integrity measurements signed by the
TPM together with a Storage Measurement Log (SML) to a remote verifier,
which can evaluate the SML and check the signed integrity measurements.
Other schemes generalize this hash-based approach by proposing a property-
based [SS04], semantic [HCF04], or logic-based attestation [SdBR+11].

In total, research about TPM-based integrity protection has diverged into
different directions. Parno et al. [PMP10] have conducted a comprehensive
survey on this. For the interested reader, we refer to their work to get an
complete overview on TPM-based integrity approaches.

3.2 Mobile Devices

For mobile devices, recent attestation concepts [BDH+11, MMSS13, NKZS10]
focus on providing verifiable proof for the integrity of mobile operating systems,
such as Android, because of their increasing popularity.

Nauman et al. [NKZS10], for instance, propose a remote attestation for An-
droid systems. To collect measurements, they extended the ClassLoader of the
Dalvik VM, Android’s process virtual machine [SN05, p. 38], which allows to
execute Java binaries. However, for native applications that do not run in the
Dalvik VM and the Dalvik binary itself, they still rely on IMA.

In contrast to our approach, those concepts cannot prevent loading of unknown
binaries, since they only measure the integrity of binaries and attest the trust-
worthiness of the system afterwards. In terms of separation, those approaches
mainly depend on the weak separation mechanisms within the Android kernel.

3.3 Virtualization Approaches

To improve isolation, virtualization-based approaches propose to separate the
measurement code from the operating system kernel by implementing it in
a privileged virtualization environment. Härtig et al. [HHF+05] proposed the
Nizza security architecture for microkernel-based systems. However, the focus
of this theoretical concept lies in the separation of applications, the reduction
of the TCB, and only briefly mentions a need for a TPM-based attestation.
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Focus on mobile platform security by running Android on top of a microkernel
is provided by Lange et al. [LLL+11].

Other existing mechanisms [SVJ12, MLQ+10, MPP+08, BCG+06, SPvD05]
are either based on KVM or Xen for x86 architectures, a hypervisor, or a
trusted execution environment utilizing hardware features of the x86 architec-
ture. Schiffman et al. [SVJ12] proposed an attestation mechanism for virtu-
alized systems, which includes a local representative (proxy) of the backend
system. Similar to our local attestation approach which we will discuss in
Chapter 6, this reduces the gap between time of measurement and the attesta-
tion. However, they do not focus on providing a minimal TCB for their proxy
as they rely on KVM as their hypervisor utilizing IMA. Furthermore, none of
the concepts deal with a TCB-reduced microkernel application scenario, such
as in the following discussed secure offline payment use case, on an embedded
ARM platform with a real TPM chip for measurements combined by a runtime
loading mechanism for external binaries.
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Scenarios and Attacker Model

In this chapter, we want to state the main scenario denoted as Secure Offline
Payment which motivates a microkernel-based security architecture for load-
ing and verifying integrity of a remote binary into a trusted runtime as we
will propose in Chapter 6. Further, we will introduce standard scenarios for
TEEs as specified by the GlobalPlatform (see Chapter 2.2.1) in general, which
also directly apply to our herein proposed architecture. We identify a major
threat to the separation by means of those scenarios, namely a cache-based
side channel which may allow to extract, e.g., symmetric session or master
keys. Based on these scenarios, we specify our coarse attacker model.

4.1 Scenario: Secure Offline Payment

For our secure loading mechanism, which assures the authenticity of a remote
binary and measures the integrity to be able to provide verifiable proof for a
remote attestation, we assume a scenario we refer to as Secure Offline Payment.

In our scenario, we have two parties, a payment service provider (e.g., a bank)
and a customer who is using, for example, a smartphone with our microkernel-
based system architecture. We presume that the customer’s microkernel-based
system is equipped with a hardware-based security module, such as a smart
card or a TPM, which can be used to provide secure storage. The payment
provider on the other hand is a remote party, which provides secure payment
services by sending a trusted application that handles the (offline) payment
transactions, to its customers’ systems. The trusted application is protected
with a device-specific key stored inside the SE and transferred to the corre-
sponding device, which the customer has registered to the service provider
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in an initial setup procedure. After a verification of its authenticity and in-
tegrity (via remote attestation), the trusted application handles the offline
payments and securely stores the transaction data in an application-specific
secure storage. As soon as the device is connected to the Internet, the trusted
application synchronizes all offline payments with the backend after providing
proof via attestation that the system including the trusted application is still
trustworthy.

The trusted payment application may also include a verification service com-
ponent (also referred to as challenger), which can verify attestation results
locally. The challenger then effectively represents the remote verifier on the
local system as proposed in [SVJ12]. As indicated, that allows for a local ver-
ification of the attestation results and only requires one traditional remote
attestation (for the system with the challenger). After a successful remote at-
testation, the challenger can verify attestation results on behalf of the remote
verifier. As a result, the effects of the time of check to time of use (TOCTOU)
problem can be reduced significantly.

TOCTOU is the generic problem definition for a race condition between the
result of a condition check in our case the attestation result and the later
use of the result, the prove against the valid system states on the remote
system. An attacker could use this time interval to alter the system state and
perform malicious operations undetected. Hence, it is desirable to keep this
time window as small as possible.

4.2 Generic TEE Usage Scenarios

We now state general valid usage scenarios of TEEs, which assumes an attacker
is restricted to the rich environment. Assets inside the trusted environment
are protected by separation throught the virtualization layer. These scenarios
should also enable a deeper understanding why it is reasonable to make use of a
TEE to improve security in comparison to directly running all services inside
one operating system. Attacking these kinds of usage scenarios, we address
mainly in Chapter 7.

4.2.1 Scenario: TEE Secure VPN

We assume a TEE which separates two compartments, a trusted environment
which provides crypto services and an untrusted environment which runs user
applications. The secret keys used for encryption are highly critical values and
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Fig. 4.1: Secure VPN using trusted AES server to protect the key k from an
attacker in the rich environment

thus are only accessible in the trusted environment. A viable usage scenario
is, e.g., to establish a VPN tunnel in the following way. The network protocol
stacks of a rich operating system kernel are used in the untrusted environment
while the payload is encrypted by a driver using an encryption service inside
the trusted environment. Hence, secret session keys as well as globally used
master keys cannot be compromised by an attacker in the rich OS. For instance
if the VPN key is shared between all company devices and only those devices
are allowed to enter the company network, one compromised device will allow
to connect any device to the VPN afterwards.

A concrete attack scenario could then look as follows. An AES encryption
server runs in the trusted environment. To launch an encryption, a user appli-
cation or directly a virtual driver inside the rich environments OS kernel simply
stores the plaintext in shared memory and calls the AES server through IPC.
The ciphertext is then written back to the shared memory. This scenario is
visualized in Figure 4.1. Usually, the TEE is secure against such an attack. We
derive an attacker model which shows the contrary.

4.2.2 Other Generic Scenarios Using Crypto Services

The AES server can also be used for several encryption services like on-the-
fly storage encryption. Similar to the VPN setup, the symmetric master key
for the actual file system partition is then only available inside the trusted
environment. Another scenario is transparent voice encryption which can make
use of the protected crypto server. The actual audio stream de- and encoding
is done in the rich environment while the resulting audio packages can be en-
and decrypted by the AES server inside the trusted environment.
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4.3 Attacker Model

A general attacker model based on the TEE scenarios (Secure VPN and generic
Crypto Services) as well as our Secure Offline Payment denotes as follows. We
assume a remote attacker, who is able to read, drop, and manipulate messages
if they are unprotected and sent via an unsecured communication channel. The
attacker can also initiate communication, create new messages and try to re-
play old ones. However, we assume that the attacker is not capable of breaking
cryptographic security functions, such as a state-of-the-art encryption, mes-
sage authentication codes, or cryptographic hash functions. That means the
attacker is not able to decrypt an encrypted message or forge a message au-
thentication code for a modified message without knowing the correct key. In
addition, the attacker might be able to compromise the rich OS by exploiting
its software components. However, the attacker is not able to modify hardware
components, which would require physical access to the device. As a conse-
quence, we can assume that removing hardware components, such as the TPM
or a SD memory card, is not possible.

Furthermore, in the VPN scenario, an attacker wants to determine the key
used by the AES server. In the secure offline payment scenario, he wants to
determine the authentication key or a symmetric session key. Both of them are
assets inside a trusted component inside the trusted environment. As he has
full access to the rich OS in the untrusted environment, he is able to launch as
many encryptions as he likes with chosen plaintexts. This he could do either
by hijacking running processes or deploying own code that directly uses the
kernel of the rich OS. The attacker is therefore able to launch a time-driven
cache attack, which we will discuss in detail in Chapter 7. Note that we provide
a more detailed attacker model for this kind of attacks within that chapter.



5

Microkernel-based System Architecture

Before we get down to our proposal for integrity and secure loading for generic
embedded systems, we introduce our microkernel-based system architecture in
a general way. Inside this chapter, we mainly address our goal of a flexible
and generically applicable security architecture for both mobile and embedded
systems in general. We will discuss how we can use the security approaches
of the mobile device focused GlobalPlatform and the trusted computing ap-
proaches which are mainly adopted in x86-based servers or personal computers,
as building blocks for our architecture to achieve that goal. Further, we pro-
vide architectural measures to reduce the TCB on kernel level as well as for
the integrity components themselves. These measures will then be quantified
by an overall evaluation in Chapter 6. After introducing and identifying those
building blocks, we contemplate in more detail how each of them contribute
to our virtualization-based system architecture using a TPM as trust anchor.

Note that parts of the herein proposed system architecture were published
in [WHS12, WWHW14, WWAS15, PWS15].

5.1 Combining GlobalPlatform with Trusted Computing
Approaches

We combine both the hardware and software components of the GlobalPlat-
form and trusted computing into our architecture as shown in Figure 5.1. We
identify the following four major components as building blocks for our archi-
tecture.
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Fig. 5.1: Combining building blocks of GlobalPlatform and trusted computing
to a system architecture for generic embedded platforms

1. Trusted Execution Environment (TEE)
2. Secure Element (SE)
3. TCG Software Stack (TSS)
4. Trusted Platform Module (TPM)

Hardware Components The GlobalPlatform defines hardware assisted
generic application protocols using a so called SE. This is usually a Java Card
based smart card as described in Chapter 2.2 and is programmable for spe-
cific protocols. The TCG however defines the TPM very specific for several
application protocols, e.g., remote attestation. Thus, our architecture in a first
step provides a TPM as well as a secure element side by side on an embedded
platform. In a second step as the GlobalPlatform SE provides the ability to
program the firmware of the SE for specific application protocols, we can move
the hardware TPM inside the SE by instantiating an SE application seTPM
which implements the TPM behaviour inside the GP SE. Thus, we are able
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to run trusted computing protocols on mobile phone devices, as those already
have the SE either integrated or can be upgraded by an additional SE. In con-
trast to a generic embedded device, to which also a physical TPM chip could
be added as we show with our prototype implementation in Chapter 6.

Software Components The above described components are only the hard-
ware parts of the particular group. However, the software parts are differ-
ent. The GlobalPlatform describes a so called Trusted Execution environment
which is kind of a virtualization-based separation architecture to divide se-
curity critical parts of applications from a rich operating system. A detailed
description about the TEE was given in Chapter 2.2.1. We realize this idea
with a microkernel-based operating system framework. The TCG defines the
TSS, which is in the x86 world rather large software stack and contradicts
the idea to keep the TCB small. Thus, we compress the TSS to a small TPM
library which is running directly on top of the microkernel separated from
the rich operating system. Thus, we are able to run trusted computing based
applications inside the trusted execution environment, see Chapter 6.

5.2 Virtualization-based Security Architecture

Virtualization techniques can be used to provide strong isolation of execu-
tion environments and thus enable the construction of compartments. One
compartment can then be used to execute sensitive transactions while the
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other compartment is used for transactions with a lower trust level. This de-
sign process is already partly employed by smartphone architectures. The for-
mer Dalvik VM on Android Version less then 5.0, or the Art VM on current
Android versions provides some sort of process virtualization [SN05, p. 83],
however, without providing the same level of isolation achieved by system vir-
tualization [SN05, p. 369]. Due to the insecurity of current smartphones’ and
other embedded systems’ architectures, virtualization solutions based on either
full system virtualization or light-weight solutions of separate execution envi-
ronments such as TEE implementations are more and more used to increase
security and reliability. Furthermore, the TPM does not export any symmetric
cryptographic functionality to the host system. This means symmetric session
keys are always accessible in RAM of the operating system. Compared to our
attacker model in Chapter 4, even if we use the secure storage of the TPM
to protect a symmetric key, this key is vulnerable during runtime of the sys-
tem. Thus, we also decided to use a TEE approach as fundamental building
block of our system architecture. This way we can assure off-line (physical)
protection of asymmetric and symmetric keys provided by the TPM as well
as runtime protection for asymmetric keys. The missing runtime protection
for symmetric keys is then provided by the isolation mechanism of the TEE.
Further, for GlobalPlatform based applications also the SE can be used to
protect symmetric and asymmetric keys during runtime. This is visualized in
Figure 5.2.

5.2.1 Trusted Execution Environment

In contrast to the suggestion of GlobalPlatform to use a separate TEE kernel
inside the trusted environment, we propose an architecture based on only one
microkernel running as separation layer between execution domains as well
as the trusted applications. In other words, we do not have an explicit TEE
kernel, but merge the separation layer with it. Instead of running the crypto
services and secure devices drivers inside the TEE kernel, we make use of the
microkernel feature and run those as separated user space applications directly
on top of the microkernel. The rich environment is encapsulated inside a user
space para-virtualized rich OS kernel. This is visualized in Figure 5.3.

In our architecture, we also reuse the communication stacks of the rich OS
for external communication, since we assume that the network is untrusted
anyway. As a result, we keep the TCB small, as we do not rely on network
drivers and communication stacks, e.g., for USB, TCP, or UDP, inside the
trusted runtime environment. We design a component called communication
server (Com Server) in the trusted environment and a communication client
(Com Client) as virtual device driver inside the rich OS to provide network
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Fig. 5.3: Microkernel-based trusted execution environment

connectivity for trusted applications inside the trusted runtime as shown in
Figure 5.3. Remember compared to our attacker model in Chapter 4, the com-
munication is untrusted and the trusted application needs to run protocols
which ensure authenticity and confidentiality themselves.

Throughout this work, we show the realization of our system architecture,
in two concrete microkernel frameworks, PikeOS and Fiasco.OC/L4Re. Their
particular underlaying kernels are part of the L4 family as described in Chap-
ter 2.3.2.

L4Re Components as Trusted Runtime

The runtime environment for the Fiasco.OC microkernel, which is known as
L4Re [LW09], mainly consists of a root task (MOE ), a root pager (Sigma0 ),
and an init process (Ned). Those main tasks establish a trusted runtime en-
vironment, allow for executing native microkernel tasks, and also provide the
basis for running a rich operating system.

The root task, MOE, which is the first task started by the kernel, inherits all
resources that are not occupied by the microkernel (Fiasco.OC) at startup.
The memory management, however, is delegated to Sigma0, which handles all
memory that is not used by the microkernel and acts as the root pager for
the entire system. The init process, Ned, is able to start other applications
by loading a runtime binary (l4re_kernel in Figure 5.4 denoted as l4re) in
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a new application context. After it is switched to the newly created context,
the loader code of l4re_kernel loads the actual application binary in its con-
text. With this approach, each new application has the L4Re runtime code
for communication and memory abstractions, denoted as dataspaces, mapped
into its virtual memory. This aspect is also very important for our secure load-
ing approach described later on in Chapter 6. Ned also provides the ability to
configure IPC between applications, including the capability settings for the
corresponding access rights inside the Fiasco.OC microkernel. Additionally, to
these L4Re standard components we need to realize the Com Driver inside
L4Linux and the Com Server as well as the crypto services inside the trusted
environment as L4Servers and L4Clients the high-level user space abstraction
for IPC of L4Re. We discuss this in more detail when we describe our pro-
totype implementation in Chapter 6.2. The signaling of new data is provided
by this mechanism while the payload data are delivered over shared memory
(smem). Similarly the communication between crypto services such as an AES
server and the L4Linux kernel is handled. Remember the TEE usage scenario
secure VPN. An AES driver inside the L4Linux kernel uses the AES server
inside the trusted environment. The signaling is done over synchronous IPC
while the payload – plain and cipher text of network packets – are written and
read from shared memory.
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5.2 Virtualization-based Security Architecture 45

Multicore System on Chip (SoC)

Rich Environment (Partition 1) Trusted Environment (Partition 2..n)

Rich OS Kernel (ELinOS) AES Driver

P4 Microkernel

U
np

riv
ile

ge
d 

U
se

r 
m

od
e

P
riv

ile
ge

d
m

od
e

User 
Applications

Trusted
Applications

AES Server

PikeOS System Software (System Partition 0)

Crypto
Services

Secure
Devices

Device
Devices

Protocol
Stacks

smem smem

Fig. 5.5: TEE adapted to PikeOS

Using PikeOS to realize a TEE

PikeOS distinguishes between resource and time partitions. A resource parti-
tion in PikeOS denotes a separate address space protected by the microkernel,
while time partitions are used to assign computation time to threads. The
P4 microkernel itself only implements the basic mechanism for IPC, schedul-
ing, and separation of address spaces in privileged processor mode. Device
drivers, higher level abstraction for inter-partition communication as well as
virtual memory management are implemented in the user-space abstraction
layer, called PikeOS System Software (PSSW). Native device drivers for se-
cure devices can be implemented in their own partition also in user-space.
Figure 5.5 illustrates this architecture. In our context, the architecture com-
prises a rich environment which runs the untrusted user applications in one
partition as well as a trusted environment that hosts the security and safety
relevant trusted applications each in their own partition. Both environments
are allowed to communicate with each other using protocol messages transmit-
ted via the virtualization layer, which in that case is the P4 microkernel and
its user-space abstraction layer PSSW. To exchange data between the trusted
and untrusted applications, shared memory is used. The user applications may
use the trusted applications via special device drivers integrated into the rich
OS kernel. This is visualized in Figure 5.5 by the exemplary trusted crypto
service AES server and the AES driver, its corresponding counter part in the
rich OS Kernel.
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5.3 Trusted Computing

Since we just have constructed a trusted execution environment which pro-
vides separate execution domains by the use of a microkernel, we also have to
assure to establish trust into one of these domains by further means. Hence, we
integrate the trusted computing building blocks, TPM and TSS as described
in Section 5.1 into this architecture. To be able to run trusted computing
based protocols inside the trusted environment, as a first step, we have to add
support for a TPM or the already mentioned seTPM. As both are API com-
patible from a software and architecture perspective our architecture allows to
use either of which. The only point in which they differ are the low-level device
driver. A visualization of the TPM integration in our architecture is provided
in Figure 5.6. We use a user-space component, the TPM Server (TS) which
provides an TPM abstraction (tpm::) for other client components. This in-
cludes our tiny TPM library as well as the low-level device drivers. As a client
application making use of the TPM abstraction we design a separate compo-
nent the Integrity Server (IS). This is later used to implement our integrity
and attestation protocols in Chapter 6.

5.3.1 Tiny TPM Library

Figure 5.7 shows the mapping from the TSS layers to our user-space TPM
server. The critical kernel level driver is moved into user mode directly inside
the TPM server. This makes the separate TDDL obsolete.

Further for the TPM server outer interface, which can be used for instance by
the IS, we define a very small API which consists of only the following com-
mands: Pcr_read, Extend, Quote, CreateWrapKey, MakeIdentity, LoadKey2,
Seal and Unseal.
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Fig. 5.7: TSS mapping to our microkernel-based framework

We specify that all of these commands are directly mapped to the correspond-
ing TPM commands in part 3 of the specification. Complex session handling
like OSAP should be completely hidden inside the TPM server.

The lower API between TPM server and the TPM is specified by the TPM
command specification. However, we only need a subset to allow our concepts
for secure boot, integrity and attestation to work. We specify the following
subset of commands as sufficient for our embedded platform, in contrast to
the TCG specified concepts for several use cases which are applicable for PC
and server platforms. For instance, we do not need to migrate keys as we
provide a special provisioning phase for our integrity and attestation protocols
which we will discuss in Chapter 6.1.2. Therefore we can strip down those
kind of commands and reduce the TCB even further. Due to this provisioning
phase, we are also able to use the result of MakeIdentity to extract and sign
the AIK’s public key directly and do not need the TPM_ActivateIdentity
command for this purpose. Our reduced TPM command specification and
mapping to the high-level TPM server API (tpm::) is shown in Table 5.1.
The first column provides the TPM command ordinal as defined in the TPM
command specification. The second column shows the mapping to the high-
level API which has to be provided by the TPM server if its prepended with
"tpm::". Otherwise the second column shows the general purpose for which it
is needed; bootloader means that those commands are only needed during boot,
which is described in the next section. initial setup describes commands which
only are needed once when the platform is personalized. Those commands
could be either executed by the bootloader or during the already mentioned
provisioning phase. internally used denotes commands which are usually not
used directly, but are needed to provide, e.g., secure session initialization to
instantiate preconditions for other commands of which the execution would be
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Table 5.1: Reduced TPM command specification

TPM Command TPM Server (tpm::) / Purpose
TPM_ContinueSelfTest bootloader
TPM_CreateWrapKey tpm::CreateWrapKey
TPM_Extend tpm::Extend
TPM_GetCapability bootloader
TPM_GetRandom internally used
TPM_LoadKey2 tpm::LoadKey2
TPM_MakeIdentity tpm::MakeIdentity
TPM_NV_DefineSpace bootloader
TPM_NV_ReadValue bootloader
TPM_NV_ReadValueAuth bootloader
TPM_NV_WriteValue bootloader
TPM_NV_WriteValueAuth bootloader
TPM_OIAP internally used
TPM_OSAP internally used
TPM_OwnerClear initial setup
TPM_PCRRead tpm::Pcr_read
TPM_PhysicalEnable initial setup
TPM_PhysicalSetDeactivate bootloader
TPM_ReadPubek initial setup
TPM_ResetLockValue initial setup
TPM_Seal tpm::Seal
TPM_SelftestFull bootloader
TPM_Startup bootloader
TPM_TakeOwnership initial setup
TPM_Quote tpm::Quote
TPM_Unseal tpm::Unseal
TSC_PhysicalPresence initial setup

denied by the TPM firmware otherwise. We do not provide further details on
the TPM commands now as this is done in Chapter 6. There, we also show the
feasibility of the API mapping and that the reduced command set is indeed
sufficient by a prototype implementation based on L4Re.

As a consequence, the TCB for trusted computing based applications is re-
duced significantly in comparison to a full blown TSS like The open-source
TCG Software Stack (TrouSerS) which is used in server or desktop environ-
ments, see the code size evaluation of our prototype implementation in Chap-
ter 6.3. Concerns about the security are handled by an informal security anal-
yses as part of our evaluation in that Chapter, too.
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5.3.2 Establishing Trust

Further, to establish trust, we need a secure or trusted boot. On embedded de-
vices, usually a multi stage boot loader mechanism is deployed. Usually there
is only a small amount of SRAM which is set as starting point in the SoC’s
ROM code which initiates the boot. This SRAM retains only a very small
loader which contains just a few rudimentary device drivers to access and exe-
cute the second stage bootloader which resides in flash or external storage. The
second stage bootloader then initializes the rest of the hardware needed to boot
the Operating system. We propose a TPM based secure boot, which extends
the ROM as CRTM. A TPM-based trusted boot as proposed by the TCG
usually looks as follows. Each component in the boot process measures the
next component before it executes that component. The measured SHA1 hash
is extended into the next free PCR register of the TPM (see Chapter 2.1.4).
Ideally, the first stage bootloader is measured by the boot ROM. The problem
is that it is not possible to alter the SoC’s ROM code after production. Thus,
if the vendor does not provide a fuse based secure boot, it is not possible to
sign the bootloader code with an own key. However, if the boot order of the
device can be configured to start from another read only memory, one could
use this to replace the SoC’s internal ROM as CRTM. For instance, the beagle
board provides hardware means to configure the boot order to start from SD
card instead of internal flash. We propose to place the first bootloader to a
write once read many WROM-SD card in that case. Thus, the SD card as an
external ROM containing the first stage bootloader forms the CRTM. Under
the assumption that the attacker has no physical access to the hardware as
we stated in our attacker model (Chapter 4), this in fact provides a CRTM as
the attacker cannot alter the boot chain. Each stage of the bootloader has to
include the TPM library which we specified above. Sharing this code with the
TPM server the TCB can be reduced even more.

During an initialization phase, the first stage bootloader takes ownership
(TPM_TakeOwnership) of the TPM to insert the authentication data for
owner authorized commands and to create the SRK. Further, it initializes
space in the non-volatile memory using TPM_NV_DefineSpace and places a
random value as secret inside that area. The size of the secret is the same
as the block size of the used hashing algorithm which in case of SHA1 is 20
byte. We later use this secret to protect the reference values (hashes) of the
bootloader binaries. The TPM allows to specify the data area to be writable
only once, thus we are able to protect the secret of being overwritten by any-
one after initialization. Further, to make sure an attacker may not be able to
update the reference values after boot, the last stage bootloader has to lock
the area inside non-volatile memory containing the secret.
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Algorithm 3 Secure boot algorithm – normal boot
1: procedure secure_boot
2: PCR0 = TPM_Extend(PCR0, bin_current′1)
3: for i in 1 to n do
4: bin_current′i+1 = h(h(bin_currenti+1)||secret)
5: PCRi = TPM_Extend(PCRi+1, bin_current′i+1)
6: (error, bin′i+1) = TPM_Unseal((PCR0, ...,PCRi),Kdec, blob(bin

′
i+1))

7: if error 6= TPM_SUCCESS then
8: halt
9: if bin′i+1 6= bin_current′i+1 then
10: halt
11: if i = n then
12: lock NV_area
13: exec(bini+1);

The reference values bin′ are sealed to the corresponding platform state during
each stage i of the boot process as depicted in Equation 5.1.

bin′i+1 = h(h(bini+1)||secret);
PCRi = TPM_Extend(PCRi, bin

′
i+1));

blobi+1 = TPM_Seal((PCR0, ...,PCRi),Kenc, bin
′
i+1)

∀i ∈ [1..n] (5.1)

The reference values can be sealed by any storage key Kenc loaded into the
TPM. However, due to limited space in first stage bootloaders, we recom-
mend to use the SRK which is directly available after the TPM is owned with
TPM_TakeOwbership. As the first stage bootloader is part of the CRTM in
our case, it has to measure itself (bin1) and the next stage bootloader binary.
Therefore, it additionally performs stage zero (Equation 5.2):

bin′1 = h(h(bin1)||secret);
PCR0 = TPM_Extend(PCR0, bin

′
1);

blob1 = TPM_Seal((PCR0),Kenc, bin
′
1)

(5.2)

During normal boot operation, Algorithm 3 then checks the integrity of the
current binaries in each boot stage and stops execution if an integrity violation
due to either compromised sealed blobs or exchanged binaries is detected.
Again note that stage zero is performed in advance to stage 1 inside the first
stage bootloader.

In each stage, the current platform state is extended by the hash of the next
stage binary (bin_current′i+1). Then the actual stage tries to unseal the ref-
erence value bin′i+1. This only works if the platform state represents the same
state as used for the generation of the sealed blob. However, this is not enough
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to guarantee a trusted platform state, we still have to compare the hash values
contained in the sealed blob with the currently calculated ones.

As mentioned before, we protect the sealed reference values with the secret.
This is concatenated to the corresponding binary’s hash value and sealed to the
corresponding platform state. Thus, an attacker may not be able to generate
a correct hash chain as the secret is locked after secure boot procedure during
runtime. Thus, in case the sealed blob was exchanged during runtime, at the
next boot the check in the corresponding boot stage will fail due to mismatch
of the corresponding hash chains. This is necessary as an attacker might be able
to use the SRK or any storage key which resides in persistent flash memory
to seal new hash values. An overview of the TPM-based secure boot approach
for an embedded SoC is given by Figure 5.8. A concrete realization of this
procedure for a two stage bootloader including a prototype implementation
and security analyses using the ARM Cortex-A8-based BeagleBoard (see also
Chapter 6.2) is provided by Lorenz [Lor12].
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5.4 GP Secure Element as TPM

In the following, we sketch the idea of replacing the TPM by a Java Card secure
element. This allows us to transparently apply our herein proposed architecture
directly to mobile devices on which we cannot alter hardware, meaning adding
an additional TPM chip. Note an evolved version of seTPM with TPM 2.0
abilities is published in [PWS15]. Due to the obtained flexibility by the Java
Card design, it is also feasible to switch crypto and hashing algorithms. For
instance, we are able to replace the outdated SHA1 hash engine by a Java
Card implementation of the KECCAK (SHA3) algorithm.

The resulting architecture adaption to a mobile device is shown in Figure 5.9.
Our architecture comprises a mobile device or generic embedded device which
runs a trusted execution environment as described above.

Further, the architecture comprises the data transfer management system
which includes the Card Acceptance Device (CAD) and the corresponding
seTPM driver. The seTPM device driver is replacing the TPM device driver
in our TPM server. The CAD connects the host system with the Java Card
secure element. This could be either a conventional Smart Card/RFID reader
which is connected over serial or USB to the host system or if the secure
element is embedded in a microSD card a simple microSD card slot.

Finally, the main part of the architecture is inside the GlobalPlatform SE
represented by the seTPM Applet. This Applet needs to implement a TPM
command interpreter and emulate the TPM commands as specified by the
TCG. For our concepts, it is sufficient that the commands from Table 5.1 are
emulated inside the seTPM Applet. This reduces code size of the Applet in
contrast to a full TPM specification. Since current smart card hardware have
limited space for executable code due to expensive EEPROM, it is advisable
to save code size.
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5.4.1 Communication

A further aspect of the seTPM architecture is the communication between
TPM server and the seTPM Applet. At an abstract communication layer the
TPM server exchanges TPM commands with the seTPM Applet. However,
the Java Card framework uses APDU communication between host and the
smartcard. Thus, at first we provide a mapping or an encapsulation of the
TPM specified communication to the ISO 7816-4 APDU message protocol.
In order to facilitate the interpretation of the APDU commands inside the
seTPM main processing loop, we map individual TPM request meta data
to the header of the command APDU as shown in Table 5.2. We could not
just pack each TPM command and response as payload in a command or
response APDUs due to size limitations. A command APDU can only handle
255 byte of payload (MAX_APDU_PAYLOAD) because the command APDU entry
Lc which represents the APDU size is only one byte. On the other side, the
TPM specification includes TPM command sizes up to 4KByte. As a result,
we use chaining of APDUs to deliver a full TPM command or response in
several chained command or response APDUs.

In case a TPM request exceeds this size, the APDU entry CLA signalizes data
to follow with a set chaining bit. The chaining bit is the least significant bit
of the CLA header entry. Chained TPM requests reuse the header of the first
transmitted command APDU. The end of a TPM request chain is identified by
a clear chaining bit. Besides, only two bytes (MSB and LSB) of ordinals within
TPM requests carry significant information. Because of that and restricted
space in the APDU header, we only map those two bytes and discard the
remaining bytes. Note that the full TPM command header is included in the
payload anyway.

As response APDUs do not include a header we just pack the response into
(if necessary chained) response APDUs. The status word is used to signal the
data management system about additional data. The corresponding driver of
the CAD is then responsible to reconstruct the full message.

Table 5.2: seTPM APDU header definition

APDU Header TPM Request Header Parameter
CLA 0xB0 | CLA xor 0x01
INS TAG[0]
P1 ORDINAL[3]
P2 ORDINAL[0]
Lc PARAMSIZE[0] | MAX_APDU_PAYLOAD
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Fig. 5.10: Transparent data transfer management system using PC/SC

5.4.2 Transparent Data Transfer Management System

As we already mentioned the data transfer management system is responsible
to deliver the payload of the APDU to the application or in our case the ab-
straction layer (tiny TPM library) inside the TPM server. As a Java card can
be of any format we could reuse the corresponding PC/SC user level framework
and the corresponding low-level USB, SDIO and other bus drivers of the rich
OS. This is possible due to the end-to-end BUS encryption between the corre-
sponding TPM application and the TPM itself. Thus, we do not need to trust
the involved soft and hardware layers during the communication as the OSAP
and OIAP sessions provide authenticated and encrypted communication. The
corresponding endpoints are in the TPM server inside the trusted environment
and the TPM applet of the seTPM hosting smartcard. An example using the
PC/SC subsystem of the rich OS is shown in Figure 5.10.

One pre-condition for the secure communication is obviously that during
Take_Ownership when the credentials for the secure communications are es-
tablished on both sides, the rich OS must not be compromised. Thus, we have
to do the Take_Ownership in a controlled initial setup phase without any
remote network connection.

Another mandatory pre-condition is that any generated authdata is kept in
the TPM server. It is a known issue [CR10] of the OSAP and OIAP protocols in
scenarios in which authdata is shared, for instance for accessing the SRK. The
session key S is derived by an HMAC with the authdata key and two publicly
exchanged Nonces ne, no. Thus, an attacker who has access to authdata and
who has observed the nonce exchange could easily derive the session key S by
computing:
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S = HMACauthdata(ne, no)

However, as our architecture above specifies the TPM server as the trusted
instance which is the only process directly communicating with the TPM, we
can assure that authdata is only available within the TPM server.

Obviously, with this approach we are not able to realize a secure boot as
described above but we are still able to run an authenticated boot procedure
and attest the system integrity after the system has fully booted. Further,
this approach also has the drawback that it is vulnerable against availability
of the system as the attacker inside the rich OS just can block access to the
smartcard which hosts seTPM. However, availability is not part of our attacker
model, as also blocking access to the network of which drivers and stacks are
located in the rich OS would make remote attestation infeasible. To mitigate
this attack we propose to stop executing trusted applications after a certain
timeout on the TPM connection inside the TPM server. This is possible as
we have full control over timers and execution inside the trusted runtime in
contrast to several trusted execution environments using the ARM TZ which
do not have a scheduler inside the secure world. Note that within this work, we
do not provide any implementation details and evaluation about the seTPM-
Applet itself. This is provided in the joint work [PWS15]. Furthermore, for our
herein provided concepts, we strongly believe it is sufficient to examine the real
TPM chip only. The seTPM is just a transparent hardware replacement for the
real TPM chip to make our architecture and evaluation results transparently
applicable to mobile devices which possess an SD card slot but provide no
option to connect a real hardware TPM chip.

5.5 Summary

In this chapter, we derived our global system architecture which combines ap-
proaches from the two working groups TCG and GlobalPlatform. We showed
how we integrated the appropriate components which we denoted as building
blocks both in hard- and software into a microkernel-based system architec-
ture. We gave two realization examples for the TEE, namely one with Fi-
asco.OC/L4Re and the other with PikeOS, a widely used real-time operating
system framework in the avionics industry which provides partition separa-
tion according to ARNIC-653 [Aer97]. Further, we described how to establish
trust during boot and we specified a reduced TSS and TPM command set
which allows us to reduce the TCB. We also defined some user space compo-
nents like the TPM server (TS) and the integrity server (IS) which we need
for the following Chapter 6. We finally discussed the architecture of seTPM a
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Java Card-based TPM replacement, and the integration into our microkernel
architecture to enable trusted computing on mobile devices.

All the described components together form the basic architecture which pur-
sue the goal to provide a flexible architecture for mobile and generic embedded
systems. Our approach enables the direct application of trusted computing
based use-cases as well as GlobalPlatform mobile device use-cases. Further,
due to the combination, we were able to improve the security for TPM-based
secure storage, by the means of providing the missing runtime protection for
symmetric session keys with the TEE concept.



6

System Integrity for the Trusted Environment

In the last chapter, we generally discussed the overall system architecture.
In this chapter, we elaborate the trusted computing related building blocks
even further. We do this by proposing a detailed system architecture with a
TPM-based integrity verification service for the just derived microkernel-based
trusted execution environment that allows to securely load remote binaries.
The proposed mechanism provides the means to establish the authenticity of
a remote binary, measure its integrity at load-time, and generate verifiable
proof of the system’s integrity for a remote party. In addition, our secure load-
ing service is able to assure that an encrypted remote binary is executed in a
trusted environment on a specific device without relying on processor-specific
security features, such as ARM TrustZone [ARM09]. By implementing the
integrity verification and secure loading service as native microkernel tasks,
we can also separate it from the rest of the system. So, compared to IMA
(see Chapter 2.1.4), it does not rely on the trustworthiness of a rich operat-
ing system. That way, our approach not only adopts the main ideas of IMA
for Linux-based systems to a microkernel system, it also reduces the trusted
computing base for the integrity measurement components. After introducing
the theoretical concept, we demonstrate the feasibility of our approach by a
practical implementation. By means of this implementation we discuss code
size, security and performance in a subsequent evaluation.

As a reminder, parts of this chapter were published in [WWHW14].
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Fig. 6.1: Secure loading of a remote binary into our trusted runtime environ-
ment

6.1 Concept

In the following sections, we present the concept of our integrity verification
and secure loading mechanism. In Section 6.1.1, we first specify the relevant
components involved in verifying and loading remote binaries. After that, we
discuss the necessary steps for the provisioning of our protocols in Section 6.1.2.
We then describe the measurement in more detail in Section 6.1.3. Finally, we
give a mapping for the remote attestation challenger protocol in Section 6.1.4,
which provides local attestation abilities inside the microkernel runtime.

6.1.1 Loading External Trusted Applications

Our concept for loading external binaries from a secure backend system into
the trusted runtime environment is depicted in Figure 6.1. It shows the entire
loading architecture including all components until an external binary is loaded
and measured in its final context inside the trusted runtime. Before we discuss
the procedure in detail, we introduce the involved entities:

Backend System (B) The backend system B is the remote server, which
wants to deploy an external binary to the embedded system over the network.
B signs the binary bin with it’s private key BKpriv and then encrypts it with
the trusted runtime’s public key TKpub using a hybrid encryption. The binary
is encrypted with a random session key KS while that key is encrypted with
TKpub of the trusted runtime to which the corresponding private key TKpriv
is only accessible inside the hardware TPM.
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Trusted Application (T) The trusted application T is the final context
where the measured binary bin is loaded and executed by loader L.

Loader Client (LC) The loader client LC is part of the untrusted runtime’s
rich operating system and acts as a relay between the trusted remote side and
the trusted runtime. It just forwards the encrypted binary it requested from
the trusted remote site to the loader server LS inside the trusted runtime over
a well-defined interface.

Loader Server (LS) The loader server handles requests from LC and is
responsible for starting new applications. It copies a runtime binary which
contains the loader L into a new application context T and gives access to
the encrypted binary to L. Also LS is responsible for generating the trusted
runtime’s nonce to enable freshness verification in L.

Loader (L) The loader L is the instance of a runtime binary, which is
executed by LS in the context T. It decrypts the symmetric session key using
the TPM server’s unbind mechanism. With the retrieved session key KS , L
is able to decrypt the encrypted binary ebin, retrieving the actual binary bin
into a new private memory region. After checking the signature involving the
nonce from LS with the backend’s public key BKpub, it measures the bin by
computing a hash and using the IS to store the measurement.

TPM Server (TS) The TPM server TS is responsible to handle the hard-
ware TPM by providing a high-level interface to other clients, e.g., the integrity
server IS or the Loader L. If access to TS is granted to the untrusted runtime,
the TPM server needs to restrict access to certain resources inside the hardware
TPM. For example, the untrusted runtime must not use the trusted runtime’s
decryption key (cf. Section 6.1.2).

Integrity Server (IS) The integrity server IS manages a measurement list
ML, which contains hash values of each started binary. It handles requests of
L, in which the measurement results of the loading procedure are included. IS
further uses TS to protect the measurement list inside a PCR of the TPM.

It is immutable for our concept that proper access control to certain objects
and IPC between the above described entities are instantiated. Our proto-
type implementation uses the capability system from the microkernel for this
purpose. This is discussed in Section 6.2.4.
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Loading Procedure Our loader concept is based on a special startup pro-
cedure, which is for instance provided by L4Re. Instead of directly loading
the binary, the init process loads an instance of a runtime binary into a new
context. That runtime binary then loads and executes the actual binary in its
own context. Therefore, we are able to decrypt the binary directly in its target
context using the runtime binary. This assures that the binary can only be
executed in the trusted runtime. Also strong isolation in terms of confidential-
ity to other externally loaded trusted applications is assured at any time, due
to the binary’s plaintext is only available in its own context. The unprotected
version never passes any shared resource, where it may leak information to
others using those shared resources at the same time. If for instance we did
not apply the encryption with a key only usable in the trusted environment, an
attacker could execute the binary anywhere skipping the signature check and
also the measurement in a non-secure context. However, due to the encryption
with the trusted runtime’s public key bound only to one specific TPM, the bi-
nary can only run in one specific devices’ trusted environment. We discuss this
assumption later in our security analyses in Section 6.3.2. This further allows
us to utilize a modified version of the challenger protocol from IMA [SZJvD04]
for local attestation (see Section 6.1.4) as first routine in the external binary.
If the local attestation fails, the binary can instantly decide to stop execution
on its own, without any further backend communication. This mitigates the
TOCTOU problem which we introduced in Chapter 4, as the time window be-
tween measuring the binary and its actual attestation approval is rather small
since all operations are performed directly in the trusted runtime. To protect
the trusted runtime from being compromised by random binaries generated by
an attacker in the untrusted rich OS we need to apply a signature before the
encryption inside the backend system. Furthermore, to prevent replay attacks
the trusted runtime generates a nonce, which is sent in combination with the
initial request to the backend. A formal representation about the just described
loading procedure is depicted in Figure 6.2.

6.1.2 Provisioning

The necessary cryptographic keys and certificates of our protocols need to be
generated and exchanged between the backend system and the device. There-
fore, we need a provisioning (or activation) phase before the device can be
used.

As it is not advised to use the Endorsement Key (EK) directly, we let the TPM
generate a non-migratable storage key pair TK for encryption/decryption and
store the resulting public key TKpub in the backend system. If the backend
later encrypts data with this key, it is assured that this data can only be
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1. R : requests nonce from LS
2. R→ B : nonce, request for ebin
3. B : generates symmetric session key KS

4. B : Sig = sign({bin, nonce},BKpriv)

5. B : ebin[0] = encrypt({KS},TKpub) // asymmetric
6. B : ebin[1] = enc({bin, Sig},KS) // symmetric
7. B→ LC : ebin
8. LC→ LS : ebin
9. LS start L

10. L→ LS : requests encrypted binary ebin
11. LS→ L : ebin
12. L↔ TS : KS = decrypt({ebin[0]},TKpriv)

13. L : {bin,Sig} = dec({ebin[1]},KS)

14. L : verify({bin, nonce},Sig,BKpub)

15. L↔ IS : runs measurement protocol (see below)
16. L : starts bin

Fig. 6.2: Secure remote loading procedure

decrypted on the device with that specific TPM. We use the TPM command
CreateWrapKey for this purpose, it not only encrypts the key pair with the
TPM’s Storage Root Key (SRK), but also binds its usage to a certain platform
state. Remember, we cannot use an AIK here since AIKs merely are signature
keys; see Chapter 2.1.2. The embedded platform needs to create the key pair
in the following manner. The device is booted into a safe system state after
initial setup of the trusted runtime. At this point, only boot time integrity
protected applications are running. The CreateWrapKey command is issued
with current platform registers’ state. As a consequence, the resulting wrapped
key is bound to a platform state before any untrusted component is started.
After roll out, the init process always needs to start the TPM server in advance
of the untrusted runtime components, as TS loads the wrapped key for usage
into the TPM. Later on, it is not possible to access the wrapped key anymore
as the first user application which is not part of the measurement setup, for
instance the untrusted runtime’s rich OS kernel, changes the platform state. TS
also denies access to the key slot which is used for TKpriv through its external
API as TKpriv is only used internally in the TPM server itself. Remember TS
is the only software component which communicates with the TPM directly
after the system is fully booted. Assuming proper resource access rights to
the device resources, it is not feasible by untrusted applications to access the
TPM by-passing the TS or the trusted runtime. This prevents an untrusted
user application to use TK. The same procedure is done for an attestation key
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1. L : hi := h(bini) = SHA1(bini)

2. L→ IS : hi

3. IS : append(ML, hi)

4. IS↔ TS : extend(hi,PCR#)

Fig. 6.3: Measurement protocol

pair AIK which we need for attestation. Since we only have one attestation
key pair in our concept, we denote this as AIK in the following. However,
instead of CreateWrapKey the MakeIdentity command is used to generate
the encrypted key pair. On the other side, to provide the ability to verify
code signatures on the embedded system’s trusted runtime, we need a PKI
infrastructure, maintaining also certificate revocation and recertification in
case of a certificate is going to expire. The initial root certificate CApub for the
backend’s code signing key BKpub is delivered in the read-only storage of the
embedded device during provisioning.

6.1.3 Measuring Integrity

In this section, the measurement of applications is contemplated. The mea-
surement takes place before the application is being started. Measured are all
applications running locally on the system, except for the measurement com-
ponents itself, as stated above these components have to be measured and
integrity checked during boot by the secure boot.

Figure 6.3 shows the measurement protocol for a binary bini, where i specifies
a certain binary. For i = 1, measurement is calculated and stored inside the
TPM as follows:

1. Before the binary bin1 is started, the loader L calculates a hash value
h1 := h(bin1) = SHA1(bin1) over the binary file of bin1.

2. h1 is sent to the integrity server.
3. The integrity server appends this measurement entry h1 to its measure-

ment list (ML) which holds all measurements performed before.
4. Then the integrity server uses the TPM server to aggregate h1 into a

PCR using the TPM_extend command. The aggregate is calculated securely
inside the TPM as follows: PCR ← SHA1(PCR |h1), where | denotes a
concatenation.

The protocol is also run for any new binary bin2 to binn so that the PCR con-
tains an aggregate of all measured binaries bin1. . . binn which were executed
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1. C : generates nonce
2. C → IS : nonce
3. IS→ TS : nonce
4. TS : loads AIKpriv into TPM
5. TPM : SigTPM = sign({PCR,nonce},AIKpriv)

TS : Quote = {PCR,SigTPM}
6. TS→ IS : Quote
7. IS→ C : Quote,ML
8. C : verify({AIKpub},SigAIK,CApub)

9. C : verify({Quote},SigTPM,AIKpub)

10. C : calculates A = aggregate(aggregate(ML),nonce)
11. C : checks if A == PCR
12. C : checks if A ∈ whitelist WL

Fig. 6.4: Challenger protocol

inside the trusted runtime. Because measurement takes place before the appli-
cation is started, the application has no influence on its measurement process,
but it could try to alter a PCR value after it has been started. However, this
is prevented by the TPM chip, which does not allow to set PCRs to arbitrary
values.

6.1.4 Attesting Integrity

The measurements of the loaded applications alone do not provide a trustwor-
thy system. For this, there must be an instance that evaluates if the aggregate
of all measured applications represents a trusted state of the system. This is
accomplished by a trusted challenger instance. Usually, this is done remotely
by the trusted backend. However, due to our secure loading concept, where we
can assure that the binary could only be executed in the trusted environment,
the trusted backend can embed the challenger into the application itself. The
application can verify the system state locally directly after execution. For
this purpose, a current white list is embedded in the application binary itself.
Figure 6.4, shows the challenger protocol adapted from IMA [SZJvD04] to
our microkernel based trusted runtime for local and remote attestation. The
detailed protocol sequence depicts as follows:

1. A nonce value is generated. It prevents replaying old trustworthy system
states instead of the current one.

2. The challenger C sends a request for the current measurement list to the
integrity server IS. Further, C also passes the nonce value to IS.
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3. IS forwards the nonce to the TPM server TS.
4. The TPM server first needs to load the private attestation key AIKpriv

into the TPM.
5. After that the TPM_Quote command is invoked for the PCRs involved dur-

ing boot and the PCR used for protecting the measurement list ML. The
TPM returns the PCR contents to TS. Furthermore, it extends the indi-
cated PCR with the nonce value in a temporary register and signs it with
AIKpriv. The signature is also passed back to TS.

6. The PCR values as well as the signature returned as Quote by the TPM
are passed back to IS.

7. The integrity server transfers ML to the challenger, as well as the Quote,
which contains the PCR contents and the signature of the nonce-extended
PCR contents.

8. C checks if the TPM’s AIKpub is valid. For this purpose, it traverses the
certificate chain until it finds a valid signature. In Figure 6.4, this is indi-
cated by SigAIK, which is verified with the root CA’s public key CApub.

9. If the preceding step succeeds, C verifies with AIKpub whether the signa-
ture fits to the signed data, i.e., the nonce extended PCR contents.

10. In the case of success, the challenger calculates the aggregate A of the
ML. For this purpose, it iterates over the hash values contained in ML
and calculates A← SHA1(A |hi) for each binary hash hi in the list. Since
hashing is not commutative, the order has to be exactly the same as during
aggregation of the measurements during the measurement protocol. At the
end, the nonce value has to be added, i.e., A← SHA1(A |nonce).

11. The aggregate A should now equal the value as the PCR contents returned
by the integrity server including the nonce.

12. If this condition is fulfilled, and the aggregate is in the whitelist WL, then
the system is regarded as trustworthy by the challenger. Otherwise the
challenger will not trust the system and terminates execution in the local
case.

With both the measurement and the challenger protocol we now can accom-
plish the security objective of platform integrity.
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Fig. 6.5: Prototype platform OMAP 4 utilizing dual-core ARM Cortex-A9

6.2 Implementation in L4Re

For a concrete implementation of the proposed loading and integrity proto-
cols we use the Fiasco.OC/L4Re framework as pointed out in Chapter 5. As
hardware platform, we used the BeagleBoard1 as well as the PandaBoard1.
The BeagleBoard shown in Figure 6.6 is based on an ARM Cortex-A8 sin-
gle core SoC (TI OMAP3) and the PandaBoard (Figure 6.5 is based on an
ARM Cortex-A9-based dual-core SoC (TI OMAP4). Both represent modern
hardware of widely used, low-cost and mid-range smartphones. We connected
a TPM chip according the TPM v1.2 specification [Tru11] over the Inter-
Integrated Circuit (I2C) bus to our development boards. Note that the Back-
end is out of scope of the implementation as we want to show the feasibility of
the implementation on the mobile/embedded device. That the Backend side
could be implemented is beyond question.

1 http://beagleboard.org, http://pandaboard.org
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Fig. 6.6: Prototype platform OMAP 3 utilizing ARM Cortex-A8

6.2.1 IPC Abstraction in L4Re

For IPC between applications inside L4Re, a C++ abstraction framework
based on IOStreams is available. We utilize this framework for the communica-
tion between our components. To establish connections between applications,
the init process Ned is used. Ned connects applications usually over a new com-
munication channel inside its Lua configuration script. Further, Ned builds the
applications’ initial set of capabilities which include access to those channels.
On server side as well as client side, the reference to a capability for a channel
can then be requested from the application’s environment. The references are
only local to the initial startup. Therefore, we have to provide other means
to establish the communication between the external binary which is started
during runtime and the initially started services. We use a global namespace
for that and provide the capability to access this namespace over Ned. The
server needs to register its server object to that namespace instead of the com-
munication channel created by Ned’s Lua script. Despite that, the client server
communication over the IOStreams works the same as if the connections would
have been accomplished with the Lua mechanism.

6.2.2 TPM Library

We implemented a simple C library, which contains all necessary TPM com-
mands for our concept as specified in Chapter 5.3.1. This library is de-
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signed to run standalone. Due to performance reasons, we made one ex-
ception, we use an external crypto library for host-side SHA1 computations
instead of our TPM based SHA1 implementation since the used TPM chip
only provides a rather slow software I2C implementation. In case of the boot
loader, this is PolarSSL and for L4Re we use the provided libcrypto pack-
age. From a high level point of view, we need and implemented the follow-
ing commands: TPM_Unseal, TPM_MakeIdentity, TPM_LoadKey2, TPM_Quote,
TPM_Extend. Those commands depend on several other commands, e.g., for
initializing the TPM and handling OSAP sessions which provide low-level bus
encryption. We implemented those commands according to the TPM command
specification. Whenever possible, command parameters are hard-coded for our
specific application scenario. This keeps the function header as simple as possi-
ble, and makes our API less error-prone. For instance, our TPM_MakeIdentity
function only takes pointers for output buffer and size of the resulting key
structure. The key parameters to generate an AIK key pair are directly speci-
fied in the function itself. This reduces errors in higher abstraction layers since
wrong key type, encryption and signature schemes could not be set acciden-
tally.

6.2.3 TPM Integration

To protect the boot chain we integrated our TPM library in U-Boot, which is
the bootloader of both of our prototype boards. Further, we implemented the
necessary driver to access the TPM inside the bootloader. For the low-level
connection to the TPM, we ported parts of the Linux 3.0 driver for OMAP
boards and also the tpm_tis driver, which is needed for the Infineon TPM
chip, to U-Boot.

In L4Re, we completely reuse our small TPM library for U-Boot. Also the
low-level I2C device driver components are completely reused. However, we are
not able to directly access the memory-mapped I2C device with the physical
addresses used in the boot loader code. L4Re provides the IO Server which
can be used to forward a physical memory region to several user space device
servers. We configured the I2C memory region of the bus where the TPM is
connected to be handled by the IO Server, e.g., for the PandaBoard:

i2c4 => new Device() {
.hid = "I2C";
new-res Mmio(0x48350000 .. 0x48350fff);

}

The IO Server can also be configured for handling and redistribution of IRQs.
However, the TPM does not provide interrupt support for asynchronous noti-
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Fig. 6.7: Implementation of secure loading of an external binary into trusted
runtime environment

fications. Instead, it is required to check the status register for completion by
a polling mechanism. Thus, it is sufficient to map the above shown memory
region into user space without taking care of an IRQ mapping.

Our implementation comprises a TPM server which on the one side is a client
to the IO server handling low level I2C communication and on the other
side provides high level TPM functionality as server for other applications.
In our case, these are the integrity server and the loader inside the runtime bi-
nary l4re_kernel. The TPM server interface is rather simple and only maps to
the high-level commands Extend, Quote, CreateWrapKey, MakeIdentity and
LoadKey2. For those commands Opcodes are defined in a header file which the
corresponding clients include to easily call those functions through IPC. For
TPM commands with small payload, such as Extend or Quote, the payload
can directly be transferred over the IPC IOStream. However, for key genera-
tion commands like CreateWrapKey or MakeIdentity we cannot transfer the
payload through IPC due to size limitations. Instead, a shared memory page
is used. The encrypted key structure is written on a previously created shared
memory page in the TPM server’s context.

6.2.4 Loading Binaries

In our implementation, we extend the init process Ned by our loader server
LS to allow a dynamic loading of remote binaries. The original version of Ned
only provides the ability to do this with a Lua script for binaries, which need
to be known at startup and stored in the ROM file system that must also be
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part of L4Re. LS is realized as a thread inside of Ned. After Ned has done
all its initial setup and generated server loops in several threads for the initial
environment, we register another server loop at the end of the main thread for
LS. The corresponding loader client LC in our implementation is realized as
stand alone L4Re application which loads a binary from the global ROM file
system. It stores that file in the temporary binfile dataspace which is shared
between LS and LC. Later on, LS should be part of the L4Linux server and
can be realized as a Linux kernel module which copies the actual binary bin
from L4Linux user space to Ned in the way depicted in Figure 6.7. Access to
the shared dataspace between LC and Ned is given by Ned to LC through a
global namespace. This is discussed in detail in Section 6.2.5. Further, an IPC
channel using the previously mentioned C++ IPC abstraction is set up using
the standard Lua mechanism during Ned’s initial startup. This channel is used
from LC to notify LS as soon as a binary is completely copied from ROM to
the shared dataspace. Then LS starts the runtime binary l4re_kernel in a new
address space for Task T by executing a second Lua file. This internal default
Lua file is read to configure the command line arguments and capabilities
of the binary, especially access to the global namespace including the shared
dataspace binfile, as depicted in Figure 6.8. Before the Lua interpreter for
the second Lua file is started, the capability of the dataspace is registered to
the global namespace where the new Task T is given access to. The l4re_kernel
includes the loader which then reads the binary from the dataspace and starts
the binary in its context. One important part here concerning security is that
the binary which is measured may not be loaded out of a shared dataspace
where the untrusted loader client LC has write access to, we discuss this in
detail in Section 6.3.2.

6.2.5 Capability Transfer

To transfer the capabilities needed for IPC communication and access to shared
memory, we use global namespaces as depicted in Figure 6.8. We create these
namespaces already in MOE the root task, where they can be registered to the
global environment which then is easily accessible in Ned from inside Lua code
and native C++ code. As the loader client LC is part of the untrusted runtime,
access to resources, which are part of the integrity and attestation framework is
forbidden by our implementation. We introduce the ldrs namespace for com-
munication between LS and LC and the ims namespace for communication
between the entities inside the trusted runtime. Access to the namespaces is
configured by Ned and access to the ldrs namespace is given on read-only basis
to LC. This means that LC cannot create objects inside of the ldrs namespace,
preventing the untrusted runtime to create other than the specified commu-
nication channels to the trusted runtime. Objects inside of the namespace,
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Fig. 6.8: Access to global namespaces and capabilities to server objects for
IPC and data exchange

however, can be registered writable by Ned. LS registers the binfile object
with write permissions inside the ldrs namespace. Further, for IPC commu-
nication the ldr-obj is registered by LS. On the other side, Ned configures
access to the ims namespace with write access to the integrity server IS as IS
needs to register the im-obj to which the L inside the l4re_kernel runtime bi-
nary can send IPC calls to conduct the measurement and challenger protocols.
Also Ned registers the binfile object read-only to that namespace, thus L
can access it for decryption and loading. The communication between TS and
IS is not done over namespace but standard local IPC channels configured by
the first Lua script during initial startup of Ned. In total, Ned can be seen as
firewall between untrusted and trusted runtime.

6.2.6 Integrity and Attestation

We implemented IS as L4Re server. IS provides a public interface for the mea-
surement and the challenger protocol. At startup the IS registers the im-obj
in the global ims namespace to export two functions, one for the measurement
and one for the challenger protocol, over the C++ IOStream abstraction for
IPC.

We have a simple Tpm class inside of IS which provides the client side implemen-
tation of the TPM server interface described above. This class mainly hides the
IOStream and shared memory communication for a simpler implementation
of the challenger and measurement protocols.
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Measurement Protocol We now describe some details about the imple-
mentation of the measurement protocol (Figure 6.3). The Loader L inside of
the l4re_kernel registers the ims namespace and queries for the im-obj to es-
tablish the connection to the integrity server. L copies the received binary bin
from the shared dataspace into a new local dataspace and computes a SHA1
hash of the received binary. Then, L calls the integrity measurement routine
over IPC and sends the SHA1 hash and filename of the just measured binary
over the IOStream to IS. The call returns, when the protocol is finished with
a success or an error code. IS uses the Tpm class method extend() to send the
SHA1 hash of the binary over TS to the TPM. Further, IS creates a new list
item which contains the filename and hash value, which then is appended to
the measurement list.

Challenger Protocol The implementation of the challenger protocol (Fig-
ure 6.4) is more complex than the measurement protocol. However, from a
client perspective (we implemented a challenger application C for this) the
main protocol is hidden and done in only one initial call over IPC including
the nonce for freshness generated by the challenger. However, the results of the
attestation are delivered in a single data structure containing the AIK’s public
key as well as the raw signature returned by TPM_Quote and the measure-
ment list ML. The TPM server returns the AIKpub in the TPM_Key12 format.
The Tpm class abstraction transparently does the conversion of the TPM_Key12
to the raw 2048 bit RSA key for signature verification. In our current im-
plementation, we also generate a new AIK key pair with TPM_MakeIdentity
when IS requests the AIKpub on behalf of the challenger C, due to the lack
of persistent storage in our trusted runtime. At the end of the protocol, when
the IPC returns, C needs to do the verification steps 8 to 12 of the protocol
(Figure 6.4). The necessary information are read and parsed from the shared
memory. For this purpose we have implemented the tpm_extend() function in
software which computes the aggregate over all hash values contained in ML
and the nonce. To verify the signature from TPM_Quote which is an RSA
encrypted hash over a TPM_QUOTE_INFO structure, C needs to recreate this
structure with its locally computed values for the aggregate and nonce and
also compute a fresh hash value over this structure. If the comparison of the
fresh hash and the decrypted hash are equal and also the hash is contained
in the whitelist WL the system is trustworthy and the program execution can
continue.
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6.3 Evaluation

In the following, we evaluate our concept and prototype regarding code size,
security and performance.

6.3.1 Reduced TCB

In this section, we show that the TCB of our approach is much smaller com-
pared to approaches, which rely on a rich OS kernel like Linux for measuring
integrity values.

The trusted runtime allows individual composition of the TCB for each user
level task. As for instance the TPM server uses the IO server for mapping the
right memory to the TPM chip, the IO Server is also part of the TCB for
the TPM server. Further, MOE as the root task and Sigma0 as root pager
are also part of the TCB for every other task. This results in the following
per-application TCB:

Sigma0: Fiasco.OC, Sigma0
MOE: Fiasco.OC, Sigma0, MOE
l4re: Fiasco.OC, Sigma0, MOE, l4re
Ned: Fiasco.OC, Sigma0, MOE, l4re, Ned
IO: Fiasco.OC, Sigma0, MOE, l4re, Ned, IO
TS: Fiasco.OC, Sigma0, MOE, l4re, Ned, IO, TS
IS: Fiasco.OC, Sigma0, MOE, l4re, Ned, IO, TS, IS

All these applications together form the TCB for our external binary load-
ing implementation, which is protected by the boot time integrity protection
mechanism in U-Boot. To estimate the size of the TCB we counted the lines
of source code for all these components in the L4Re source tree as well as the
libraries on which they depend. We used the tool cloc2 for this. For the rich
OS kernel as well as the microkernel we striped out the architecture dependent
code for other architectures and only count the ARM specific code to the TCB.

For the rich OS, in our case L4Linux, we count ≈9.5 MLOC. This also in-
cludes the IMA code. An Android version with additional vendor drivers for
modern smartphones would even have more lines of code. In comparison to
the monolithic L4Linux kernel, we measured about 95 kLOC for Fiasco.OC.
This also includes the in kernel debugger jdb with about 20 kLOC. For the

2 CLOC Count Lines of Code: http://cloc.sourceforge.net/
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Table 6.1: Code sizes

TPM Server
TrouSerS tpm

library
tpm
driver

i2c
driver

total

LOC 74687 1908 398 751 3308

Additions to L4Re
entity IS TS LS L MOE total
LOC 703 251 215 206 6 1381

Overall TCB
ARCH L4Linux L4Re Fiasco.OC total

total (kLOC) ≈11,000 ≈751 ≈120 ≈871
arm (kLOC) ≈9,500 ≈751 ≈95 ≈851

trusted runtime including all libraries needed for our integrity measurement
and loader service we measured ≈750 kLOC.

Code size of our Addition to L4Re In the following, we estimate the
additional size of code we introduce with our integrity setup to L4Re. The
results are summarized in Table 6.1.

Our integrity server is very small with 703 lines of code. This includes the
challenger and measurement protocol implementation. The TPM server has
3308 lines of code. However, as the TPM server shares the TPM library and the
I2C driver with the U-Boot code, we subtract this from the size of the runtime
environment, as this is already counted to the TCB by the bootloader. Thus,
the addition to the TCB at this stage is only 251 LOC by the TPM server.
Further, compared to a full TSS implementation like TrouSerS with about 74
kLOC in version 0.3.13, our tiny TPM library indeed significantly reduces the
TCB additionally of approximately 72 kLOC. The exact values are compared
in Table 6.1.

The loader server LS adds 215 LOC to the original Ned of L4Re. Additionally,
to integrate the measurement code for L into l4re_kernel, we added 206 LOC
to the original loader.cc. To register the ims and ldrs namespaces in MOE’s
root namespace, we only had to add 3 lines for each namespace. In total we
added 1381 LOC to L4Re.

Total TCB Code Size If we now compare our solution, which is in total,
Fiasco.OC plus L4Re including our additions, to other approaches which rely
on a Linux kernel, this is 851 kLOC versus 9.5 MLOC. We are one order of
magnitude smaller in code size. For this comparison, we do not need to take the
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boot loader into account, as this needs to be count 1:1 to both approaches. For
our approximation, we subtracted the architecture-dependent code for other
architectures except ARM from the Linux kernel arch directory and from the
Fiasco.OC kern directory.

6.3.2 Attack Prevention

In this section, we present common attack goals and discuss how our concept
can prevent those attacks.

Run Arbitrary Code undetected in Trusted Runtime To prevent
an attacker from running arbitrary code in the trusted runtime, we have to
assure that our measurement code is called before the binary gets executed and
that the correct binary is measured. Then, when a challenger later runs the
attestation challenger protocol, it will recognize the untrusted system state. As
the l4re_kernel is loaded before the actual binary and the measurement code is
part of the l4re_kernel, it is assured that the binary is measured. To guarantee
that the correct binary is measured, it is immutable to set proper access rights
for shared dataspaces. Further, it is necessary to copy the binary to a private
context inside the trusted runtime. From a complexity point of view in this
scenario, one would give the loader client direct access to the dataspace shared
between Ned and l4re_kernel for transferring the binary. However, the loader
client needs write access to that dataspace to place the binary there. This
write access is permanently given to LC. The problem arises that the signature
check and measuring of the binary is not atomic. If the binary would be loaded
directly out of that shared dataspace, the attacker can watch for the moment
in time where the signature and measurement has finished successfully and
then replace the application code with arbitrary code. However, if the binary
is copied to another context not accessible by LC before it is measured and the
signature verification takes place, the process is kind of atomic from outside of
the trusted environment. This is accomplished by the decryption, where the
plain text is retrieved to a private buffer in context of the trusted Task T.

Execute Code in Trusted Runtime In contrast to the previous attack,
where the challenger of another application or remote challenger can later
detect the untrusted system state, now the attack is defined successful if the
binary is executed at all. We prevent this attack by signing the code with
the backend’s private key BKpriv. The signature is checked before execution
and only authentic code from the backend system is allowed for execution.
However, to verify the authenticity of the code we need the ability to verify
the certificate of the backend system including all implications of a PKI, as
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described in Section 6.1.2. A limitation of the prototype implementation is
the lack of those PKI services. However concerning, code size of the TCB on
the embedded device, this would be of no real concern as the corresponding
crypto library is already used for SHA1 computation and thus already part of
the TCB.

Run Binary in Untrusted Environment To prevent an attacker from
executing a trusted remote binary in the compromised untrusted rich OS,
the binary is encrypted with a random session key KS . As TKpriv needed for
decryption of KS is only known inside the trusted environment and bound to
the TPM, it is not possible to decrypt the binary without the TPM. Further,
the wrapped key of TK is stored in a memory region of the trusted runtime.
If the encrypted key would be accessible from inside L4Linux for instance
through the ROM file system which is part of every L4Task started by Ned,
the untrusted L4Linux could load the trusted environment’s private key into
the TPM if access to the TPM is granted to the Linux virtual machine. In our
prototype, it suffice to restrict the TPM access to the trusted runtime only.

Compromise Integrity Services and Communication Communications
between our user space components are firewalled by LS using separate names-
paces. Hence, the only interface where an attacker can compromise the trusted
runtime is the one exported by LS. This Interface is strictly controlled and pro-
tected by the capability system of the microkernel as described in Section 6.2.5.
Further does the microkernel protect the boundaries of the shared dataspace,
which is allocated and configured inside LS. Untrusted code execution, which
may compromise components of our integrity and attestation framework from
inside the trusted runtime later, is successfully prevented by code signing as
described above. Attacks on the communication between backend and trusted
runtime are prevented by the loading procedure, which assures confidentiality,
authenticity and integrity of the message ebin.

Extracting the symmetric session key

From a protocol level, an attacker may only gain access to the symmetric Key
KS if he has either access to the backend system B or to TS. However, in
our architecture the backend system is defined as trusted and attacks to gain
access to the backend system are out of scope of this work. Further access to
TS is prohibited through the microkernel address separation. However, as an
attacker inside the rich OS can compromise LC, it is feasible to mount a time-
driven cache attack. Explicitly the decryption dec(KS , {ebin[1]}) (Step 13) of
the loading procedure as shown in Figure 6.9 is the target. Steps introduced



76 6 System Integrity for the Trusted Environment

1. R : requests nonce from LS
2. R→ B : nonce, request for ebin
3. B : generates symmetric session key KS

4. B : Sig = sign({bin, nonce},BKpriv)

5. B : ebin[0] = encrypt({KS},TKpub) // asymmetric
6. B : ebin[1] = enc({bin, Sig},KS) // symmetric
7. B→ LC : ebin

replay loop
LC start timing
LC randomly choose ebin[1]

8. LC→ LS : ebin
9. LS start L

10. L→ LS : requests encrypted binary ebin
11. LS→ L : ebin
12. L↔ TS : KS = decrypt({ebin[0]},TKpriv)

13. L : {bin,Sig} = dec({ebin[1]},KS)

14. L : verify({bin, nonce},Sig,BKpub)

verify fails
LC stop timing

15. L↔ IS : runs measurement protocol
16. L : starts bin

Fig. 6.9: Timing attack on loading procedure

by a Man-in-the-Middle attacker inside the rich OS are highlighted in red.
The attacker runs an replay loop by altering the ebin[1] as random chosen
plaintexts. The signature verification then obviously will fail, due to signature
mismatch and an old nonce. However, the timing of the symmetric crypto
algorithm which in our case is AES leaks information about KS . This is a
major threat to our system architecture. We deal with those kind of attacks
separately in Chapter 7.

Extracting the asymmetric keys

Even though asymmetric cryptography is also vulnerable against cache-based
side channel attacks, in our concept asymmetric encryption is performed only
inside the TPM which does not have a cache and thus provides timing constant
results. For the asymmetric keys used inside the backend, we make the same
assumption as for KS : the backend is defined trusted and out of scope of this
work.
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Fig. 6.10: Loader performance results for binaries with different size

6.3.3 Performance

We measured the performance of our measurement protocol on the OMAP4
based PandaBoard for several binary sizes starting at 200 kByte up to 9 MByte.
The results are depicted in Figure 6.10. We measured 13.7 MByte/s through-
put for AES_256 and 595.1 verify operations per second for RSA_2048. The
resulting accumulated timing is shown in the plot as blue line (Decrypt) for
AES and green line (Verify) for RSA. The signature verification is indepen-
dent of the binary size and could be neglected as we only have one signature
to verify during binary loading. We identified one major time consumer in our
setup, which is the Unseal command used for decryption of the session key KS .
We measured about 701 ms (Unseal) for this. The measurement generation in-
cluding SHA1 computation and saving the hash value as well as extending it
to the TPM is represented by the purple line (l4re_kernel). This is less then
300 ms for binaries up to 1 MByte. The plot also shows that the measurement
protocol duration time increases linear with the binary size, which is caused by
the SHA1 calculation, as TPM_Extend and the measurement list maintenance
operations are independent of the binary size. The external loading of the bi-
nary is represented by the cyan line (Loader Server). In total, we see that the
load time increases linear with the binary size and that the TPM is more or
less the bottleneck. This is caused on the one hand due to the unoptimized
implementation of the TPM driver, as we set polling timings rather conserva-
tively. On the other hand, TPM chips are designed to optimize costs and not
performance.
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6.4 Summary

In this chapter we discussed integrity and secure loading of dynamic bina-
ries in static microkernel contexts. Embedded systems based on microkernels
are often statically configured to ensure safety and security. Consequently, the
dynamic loading of remote binaries is usually not possible or allowed, since
remote binaries might potentially compromise the trustworthiness, which is
often not acceptable for safety- and security-critical applications. That is why
we proposed an integrity verification and secure loading mechanism, which
measures the integrity of a remote binary and securely stores the measure-
ment inside the TPM before loading the binary. As a result, we adopted the
main ideas of IMA to a microkernel. Furthermore, our approach separates the
integrity measurement components from the rest of the system while reducing
its TCB at the same time. Our prototype implementation additionally does
not rely on processor-specific security extensions, such as ARM TrustZone,
which many low-cost embedded platforms do not support. In the evaluation of
our concept and implementation, we also showed that common attacks, which
compromise systems by executing malicious remote binaries, can be detected
and prevented. One exception remains for our attacker model. The symmet-
ric session key is vulnerable to cross-VM cache-based timing attacks. We deal
with the described attack in far more detail in Chapter 7.



7

Security of the Separation Layer

In this chapter, we get more specific about the isolation characteristics of our
virtualization architecture. Although the proposed architecture in Chapter 5
provides strong isolation due to the isolation abilities of the microkernel to
run para-virtualized untrusted rich operating systems, we show that this is
not sufficient against an attacker as described in Chapter 4. Such an attacker
is able to mount a cache-based side channel attack to circumvent the isolation
mechanism.

At first we state related work on cache-based side channels in Section 7.1
to motivate our own attack vector and countermeasures. In Section 7.2, we
then derive a time-driven cache attack from Bernstein [Ber05b] and show the
vulnerability of TEEs, such as our own microkernel-based architecture or the
GlobalPlatform TEE implementations using ARM TZ. Practical results on
ARM-based embedded platforms are provided in Section 7.3.

We also performed Bernstein’s original attack locally, measuring the timing
not in the attacked system as Bernstein but in the attacking client application.
We provide our results on this in Section 7.4 before we proceed dealing with
countermeasures in Section 7.5.

Parts of this chapter were published in [WHS12, WWAS15].

7.1 Related Work on Cache-based Side Channels

In [Ber05b], Bernstein proposes a cache-based timing attack to recover the
secret key of an AES encryption on a remote server. Bernstein’s paper con-
tained no thorough analysis of the attack and no explanation why the at-
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tack is successful. Neve et al. fill this gap in [NSW06, Nev06] by presenting a
full analysis of Bernstein’s attack methodology and explaining the correlation
model. They argue that Bernstein’s original technique cannot be used easily
as a real remote-only attack where timings need to be measured by the at-
tacker. Moreover, they improve Bernstein’s attack by also considering second
round information and thus lowering the number of required samples. To get
accurate timings, Bernstein avoided the noisy network channel between the
attacked server and the attacker by measuring the encryption time directly on
the server, which is a rather unrealistic scenario since the server needs to be
modified. In virtualization environments, however, the noise is negligible since
local communication channels with only a small and almost constant timing
overhead are used, as we will show in our evaluation in Section 7.3.

7.1.1 Attacking Virtualization

Ristenpart et al. [RTSS09] consider side-channel leakage in virtualization en-
vironments on the example of the Amazon EC2 cloud service. They show that
there is cross virtual machine (VM) side-channel leakage. They used the access-
driven Prime+Probe technique from [OST05] for analyzing the timing side-
channel. However, Ristenpart et al. were not able to extract a secret encryption
key from one VM. In the following sections, we consider a virtualization-based
system in which the trusted environment runs an AES server. Under the as-
sumption that the untrusted environment could be hijacked by an attacker, we
showed that a man-in-the-middle attack via an adapted version of the cache-
timing attack by Bernstein [Ber05b] is generally able to significantly reduce the
key space, thus making brute-force attacks feasible. The impact of noise un-
der realistic workloads is examined by Spreitzer and Plos [SP13], who evaluate
time-driven attacks on conventional mobile devices (ARM Cortex-A8 and A9).
Unlike our approach, they consider noise induced by the Android operating
system and applications running simultaneously on the device. However, they
do so using a slightly unrealistic attacker model where the attacker captures
timings in the very same process where the AES encryption routine is imple-
mented and called, which likely reduces the effects of the OS and concurrent
processes. Recently Liu et al. [LYG+15] showed a practical attack on several
versions of GnuPG inside a cross-VM server scenario similar to the one of Ris-
tenpart et al. [RTSS09] also using the Prime+Probe technique from [OST05].

7.1.2 Countermeasures

There are several ways to defend against time-driven cache timing attacks: One
option is to switch to hardware-based implementations as provided by some
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processor manufacturers, e.g., Intel with its AES-NI instruction set [Gue12],
thus entirely avoiding cache-based attacks against the algorithm. If no hard-
ware support is available, it is possible to change the implementation of the
algorithm itself and get rid of the table lookups or randomize them. While
earlier software-based suggestions [MN07, Kön08] as well as our RMC-AES
(see section 7.5) are generally slow1 compared to table-based implementa-
tions, Käsper et al. [KS09] present an efficient constant-time implementation
based on bit-slicing that is suitable for stream and packet encryption and is
also available for ARM-based systems using the NEON SIMD instruction set
extension.

Kim et al. [KPMR12] present a novel countermeasure against cache-based
side channel attacks in a virtualization environment called STEALTHMEM.
This countermeasure works at hypervisor level by assigning dedicated cache
lines to each CPU in a group of CPUs with shared L3 cache. These so-called
stealth cache lines are never evicted; therefore, sensitive data, such as S-boxes
in AES, can be stored in these cache lines without introducing cache or timing
side channels for an attack. Stefan et al. [SBY+13] propose instruction-based
scheduling to prevent cache-based timing attacks on a single CPU. Instead of
having a fixed amount of time, a process has a fixed amount of instructions it
can execute before the next process is scheduled. The authors examine a simple
timing attack and show that this attack is prevented by the proposed sched-
uler with negligible increase in the size of binaries and execution time. These
countermeasures require considerable changes to the hardware, the hypervi-
sor, or the cryptographic algorithms, whereas neither of which is necessary for
our discrete-time approach as we will described in Section 7.5. Varadarajan et
al. [VRS14] have proposed a similar approach to our discrete-time scheduler
scheme for cloud systems which they call soft-isolation. In contrast to our ap-
proach for real-time based schedulers, their approach relies on a feature of the
Xen hypervisor scheduler called minimum run time (MRT) guarantee.

7.2 Attacking Trusted Execution Environment

For our attack setup, we focus on a virtualization-based system architecture of
an embedded mobile device as stated in Chapter 5. In the following, we show
that an attacker who has overtaken the rich OS in the untrusted environment-
can circumvent the isolation mechanism with a cache timing side-channel.

1 Implementation [MN07] reaches its maximal performance only when processing
128 blocks in parallel.
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Table 7.1: Mutual authentication protocol using symmetric AES encryption

Verifier B Prover A
shared key: k shared key: k
rB := rnd() rA := rnd()

connect()←−−−−−−−−−−−−−−
IDB , rB−−−−−−−−−−−−−−→

mA := h(rB ||rA||IDA)
IDA, rA, cA cA = encAES(mA, k)←−−−−−−−−−−−−−−

m′A := h(rB ||rA||IDA)

cA
?
= encAES(m

′
A, k)

mB := h(rA||IDB)
cB := encAES(mB , k) cB−−−−−−−−−−−−−−→

m′B := h(rA||IDB)

cB
?
= encAES(m

′
B , k)

7.2.1 Authentication Scheme

To keep the trusted computing base (TCB) small and to reduce implemen-
tation complexity, the drivers and communication stacks of our system archi-
tecture as well as TEE architectures in general, are implemented in the rich
operating system executed in the untrusted environment. Thus, to achieve for
example authenticity of a transaction in an online banking application running
in the trusted environment, a protocol resistant to man-in-the-middle attacks
has to be used. The protocol’s end points have to be in the trusted environ-
ment and not in the rich OS since the rich OS could be compromised. When
the trusted application wants to communicate with its backend system, it has
to prove its authenticity against the backend and vice versa. For this purpose,
a mutual authentication protocol as shown in Table 7.1 between both parties
needs to be employed. Note that this is only a simple example authentication
scheme and also more sophisticated authentication schemes could be used. We
assume that both parties have negotiated a secret symmetric key. The protocol
uses random nonces as challenges and AES with the shared secret key k to
generate the responses. Also an identifier of the particular sender is included
in the encrypted response. Before the execution of the encryption, this ID
is concatenated with the challenges. Further, this concatenation is hashed to
prevent concatenation attacks.

Both verifier and prover execute the mutual authentication protocol depicted
in Table 7.1. The prover in this case is the trusted application whereas the
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Table 7.2: Timing attack on a trusted application

Untrusted VM
To/From remote To/From trusted

connect() connect()←−−−−−−−−−−−−−− ←−−−−−−−−−−−−−−
IDB , rB IDB , rB−−−−−−−−−−−−−−→ startClk() −−−−−−−−−−−−−−→

IDA, rA, cA IDA, rA, cA←−−−−−−−−−−−−−− stopClk() ←−−−−−−−−−−−−−−
mA := h(rB ||rA||IDA)

...

verifier is a remote backend system. The untrusted environment is not taking
part in the protocol and just acts as transparent relay. After execution of this
scheme, the prover A has proven to the verifier B the knowledge of the secret
k and vice versa. Further, the freshness of the communication is provided by
this scheme. This simple mutual authentication is used to demonstrate the
vulnerability of virtualization-based trusted execution environments against
the timing attack depicted in the next section.

Our introduced authentication scheme is secure against man-in-the-middle at-
tacks on protocol level. However, due to the fact that the untrusted environ-
ment is relaying the messages between the client application and the remote
server, our attacker can use a time-driven cache attack to at least partially re-
cover the AES-encryption key k. To this end, we use a template attack derived
from the attack in [Ber05b] which is conducted in two phases, first the pro-
filing phase (offline and online) and second the correlation phase. We assume
that an attacker has gained access to the rich operating system. The attacker
is then able to execute a small attack process which is used to generate the
timing profile.

7.2.2 Profiling Phase

The profiling phase is run twice, one time offline with a known key k and
a second time online on the real target with an unknown key k′. However,
the malicious program which is running on the attacked system only has to
generate the online profile. The profiling phase in this context looks as follows.
The attacker process has to hook into the messaging system between rich
OS and the trusted execution environment as depicted in Table 7.2. Since
the protocol stack is implemented in the rich OS, this could be done in the
rich OS kernel. Thus, the attacker is able to capture the server’s challenge
rB and measure the time between relaying this challenge to the client and
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receiving the client’s response message. This provides him the timing of the
AES encryption of the known plaintext mA = h(rB ||rA||IDA), of course with
the noise introduced by the hashing and other operations executed in addition
to the actual encryption.

To recover the key in the later correlation phase, a several millions of challenge-
response observations are needed to deal with the noise by averaging over all
samples as we will show with our evaluation in Section 7.3. Therefore, the at-
tacker has to increase the number of challenge-response pairs to be collected.
To achieve this, he has several options depending on the used implementation
of the virtualization layer and the client application. In TEE implementations,
like the GlobalPlatform TEE, an untrusted user application may be used to
initiate the trusted application. Thus, a malicious program could initiate the
trusted application as well and some kind of trigger application could be used
to initiate the authentication process of the trusted application. The connec-
tion request to the remote server can be blocked by the attacker as he has
full control over the untrusted rich operating system and thus can intercept
any communication. Instead of relaying the connection request to the remote
server, the attacker establishes a local fake connection and sends an own gen-
erated nonce to the trusted application. After receiving the answer with the
ciphertext, the attacker can send a connection reset and depending on how the
trusted application is implemented, the protocol will just restart and a new
challenge can be sent. If we consider a mobile device with many sensors the
attacker can hide its activity from the user by only performing the attack if
those sensors signalize that the phone is not used interactively. For instance if
the accelerometer indicate that the device is not moving and the display is off,
it is much likely that the phone lies unused on a table. If the attacker addition-
ally considers that the phone is connected to the charger, he also could hide
the battery drain induced by the computational expensive crypto operations.
Thus, the attack obviously takes even longer, but remains undetected and it
is more likely to retrieve the necessary amount of samples.

7.2.3 Correlation Phase

After receiving sufficient challenge-response pairs for the online timing profile,
the attacker can correlate the profiles to recover at least partially the key k′.
We provide detailed measurement results in Section 7.3. We use a correlation
based on timing information during the first round of AES. It would be pos-
sible to also use information from the second round to reduce the amount of
samples needed. However, to show that time-driven cache attacks are a threat
to virtualization-based systems, it is sufficient to use the easier first round
attack.
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At first we define the function timing() which computes the timing difference
between the start and end of an operation. During the first run of the profiling
phase, for each plaintext p, the overall encryption time is stored accumulated
in a matrix t which is indexed by the byte number 0 ≤ j < 16 and the byte
value 0 ≤ b < 256.

tj,b = tj,b + timing(encAES(p, k)) (7.1)

Further, the total amount of captured samples for each plaintext byte value is
traced in a matrix tnum as shown in Equation 7.2.

tnumj,b = tnumj,b + 1 (7.2)

After several samples the matrix v which is computed as depicted in Equa-
tion 7.3 is stored in the profile.

vj,b =
tj,b

tnumj,b
− tavg (7.3)

tavg shown in Equation 7.4 is the accumulated timing measurements of all
plaintexts pm divided by the total number of encryptions l.

tavg =

∑l
m=0 timing(encAES(pm, k))

l
(7.4)

During the online part of the profiling phase, the matrices t′ and tnum′ are
generated and the output v′ is generated for the unknown key k′.

Finally, for every key byte j the correlation c for each possible value 0 ≤ u <
256 is computed as shown in Equation 7.5.

cj,u =

255∑
w=0

vj,w · v′j,(u⊕w) (7.5)

The output list of possible keys is sorted according to the value of c. Thus,
key candidates with highest correlation c are added first to the output list.
Further, the key values with the lowest correlation below a certain threshold
as defined in [Ber05b] are sorted out. However, this threshold needs to be
chosen carefully depending on the hardware.

Understanding Bernstein’s correlation Bernstein himself did not provide
a theoretic background why this attack works. However, Neve [Nev06] did an
in-depth analysis of Bernstein’s attack technique and showed that the following
heuristic holds for pi ⊕ ki, p′j ⊕ k′i as the results of the first AddRoundKey
operation (see Equations [2.4, 2.7]) during offline profiling respectively online
attack phase.
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Heuristic: the pairs satisfying the equality

pi ⊕ kj = p′j ⊕ k′i

will have a matching timing-profile. [Nev06, p. 48]

As Bernstein computes the timing matrix for ti,j and t′i,j according to Equa-
tion 7.1 he averages out the individual timings of each possible value for a byte
j ∈ [0, 15]. Thus, for each byte an own timing profile is generated out of ran-
dom plaintext encryptions depending only on k or respectively k′. As a result,
the heuristic is applicable and indeed gives the above described correlation
between t and t′ respectively v and v′.

Finally, the unknown key k′ can be recovered by Equation 7.6

k′j = pj ⊕ kj ⊕ p′j

⇒ k′j = pj ⊕ p′j , for kj = 0
(7.6)

7.3 Evaluation of TEE Attack – Empirical Results

For practical analyses of the above described attack, we built two testbeds
based on embedded ARM SoCs with an L4 microkernel as virtualization layer.
The first testbed represents low-cost mobile phone devices and utilizes a single-
core processor while the second one represents current virtualized cyber phys-
ical systems with a quad-core processor.

7.3.1 Testbed1 – Mobile Phone

As hardware platform for the first testbed, we decided to use the BeagleBoard
in revision c4 because it is widely spread community driven open source board
and also comparable to the hardware of currently available low-cost smart-
phones, for instance the Apple former iPhone 3G as well as some Android
smartphones. This is the same platform we used to initially implement our
security architecture of Chapter 5 and protocols in Chapter 6. It is based on
Texas Instruments’ OMAP3530 SoC which includes a 32-bit Cortex-A8 core
with 720MHz as central processing unit. The Cortex-A8 implements a cache
hierarchy consisting of a 4-way set associative level 1 and an 8-way set associa-
tive level 2 cache. The L1-cache is split into instruction and data cache. The
cache line size of both is 64 byte. For precise timing measurement, we used
the ARM CCNT register, which provides the current clockcycles, the CPU
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Fig. 7.1: Linux trigger application (simulating malware) connecting through
L4Linux kernel services to trusted application executed as L4Server

spent since last reset. This is a standard feature of the Cortex-A8 and thus
also available in current smartphones. However, it needs system privileges by
default.

We implemented our TEE as described in Chapter 5 using the Fiasco.OC/L4Re
realization shown in Figure 5.4 and employed the mutual authentication
scheme from Table 7.1 in the trusted environment. We give a short recap on
this: The Fiasco.OC microkernel in cooperation with the L4Re provides the
functionality of a hypervisor for para-virtualized Linux machines. Further, it
enables real time application and security applications to run directly on top of
the microkernel in separated address spaces (L4Tasks) besides the Linux VMs.
In fact, the L4Re virtualization runs Linux in user mode also in an L4Task.
Further, each Linux application is executed in its own L4Task, however, with
a special restriction that the L4Linux machine where the application belongs
to is the registered pager of that task.

The rich OS is simulated by an L4Linux system. In L4Re an IPC mechanism in
form of a C++ client server framework exists, see also Chapter 6.2.1. This pro-
vides a synchronous control channel. The trusted application is implemented
as a L4Server while the client part is implemented in the L4Linux kernel. A
user level application is implemented on top of the L4Linux kernel to trigger
the authentication of the trusted application. Instead of real challenges of a
remote server, we also used this trigger application to generate random nonces
as server challenges. This approach makes no difference to the timing mea-
surement. The actual plaintext data (the remote server’s nonce rB) is written
to a shared memory page by the client. The client, in our case the L4Linux
kernel, requests this shared page in advance from the trusted application. The
trusted application L4Server registers the page in the microkernel and trans-
fers the capability for the page through the established IPC control channel to
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the Linux kernel. A detailed view of the software architecture of this attack is
provided in Figure 7.1. As the rich OS is running in user mode, it is necessary
to enable the access to the CCNT register beforehand in system mode. We
used the boot loader U -Boot to set this instruction before the microkernel
is executed. However, if the TEE would be realized for example with ARM
TrustZone [ARM09], the rich OS is executed in the so called NormalWorld.
The SecureWorld of the processor is used for the trusted execution environ-
ment. An attacker could then access the CCNT register directly from the rich
OS kernel since access rights of the NormalWorld’s system mode are sufficient.
Also in newer versions of Fiasco.OC and L4Re for the Cortex-A9-based Panda-
Board which we used to demonstrate the secure loading approach in Chapter 6
is the CCNT register enabled for user mode access per default.

7.3.2 Testbed2 – Cyber Physical Systems

As second testbed we elaborated the following setup which represents an em-
bedded system as part of currently deployed cyber physical systems, e.g., in
aircrafts. The untrusted runtime is implemented using the para-virtualized
Linux distribution ELinOS (version 5.2) including the necessary code for the
attacker to conduct the timing attack. The AES server in the trusted runtime
is implemented as an application based on the native PikeOS API (version 3.3).
Obviously, both applications have their own partition. To enable the commu-
nication between the two partitions, two unidirectional queuing ports and a
shared memory page were set up. The rich OS and the AES server use these
ports to communicate via a simple handshake protocol and use the shared page
as buffer for plain- and ciphertexts. Queuing ports are unidirectional commu-
nication channels defined in the ARNIC-653 [Aer97] standard that can be set
up between two partitions statically at compile-time and then initialized at
run-time by the applications. A detailed view of the software architecture of
this attack is provided in Figure 7.2.

As hardware platform, we chose the Freescale i.MX6 SabreLite board (shown in
Figure 7.3) which comprises a Quad-Core ARM Cortex-A9 CPU with 1.2GHz.
We did not use the PandaBoard as in Chapter 6 as it only comprises a dual core
CPU. However, they share the same micro architecture and thus the results
can be mapped to that system to. The cache architecture consist of a 32KB
I- and D-Cache (L1) per Core and a 1MB shared L2 cache. The L1 cache
is 4-way associative and has a cache line size of 32 byte. For precise timing
measurements, we again used the ARM CCNT register as in Testbed1.
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Fig. 7.2: Linux trigger application (simulating malware) connecting through
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7.3.3 Measurement Setup

The side-channel leakage depends on the used AES implementation. We will
evaluate this by analyzing different AES implementations on Testbed1 using
our authentication protocol shown in Table 7.1.

During the profiling phase, we used the null key for the offline part and for the
online part we generated the randomly chosen key k′:

k′ = 0x 2153 fc73 d4f3 4a98 1733 bb3f 1892 008b

Further, we encrypt the plaintext generated by the trigger application directly
and do not perform the hashing operation as described in the protocol. The
reason for this is that the hashing generates more noise and makes the compar-
ison between the different AES implementations less clear. Nevertheless, we
provide the measurement result with the full protocol implementation exem-
plary for the AES implementation of Bernstein [Ber05a] in Testbed1. However,
noise is not really considered in our work but clearly has an impact on the mea-
surements as we show in Section 7.4.

We generate a profile every time when additionally 100K samples for each
possible plaintext byte value are observed until 2M of each such samples were
reached. To generate N samples for each possible value of all plaintext bytes,
approximately N · 256 messages with 16-byte random plaintexts have to be
observed.
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Fig. 7.3: Prototype platform i.MX6 utilizing quad-core ARM Cortex-A9

To analyze the success rate of our timing attack, the effect of a broad range
of parameters was examined. For the comparison between different values for
these parameters, two criteria were used.

1. The number of different candidates for each key byte

2. The average position of the correct candidates in the ordered output lists

The first one directly gives information about how much the key space could
be reduced by the attack. To quantitatively measure the effectiveness of the
attack, this is therefore the best parameter. In the best case only one candidate,
namely the correct one, remains for each byte and the key is hence revealed
completely. But even only a significant reduction of the number of candidate
bytes is already valuable to the attacker as he then can launch a brute-force
attack in the reduced key space with the remaining possible values. However,
this score does not use all information of the output of the attack. As the
list of possible candidates for each key byte is ordered, it is interesting to
know at which position in these lists the correct values can be found. This
is a measure for the ability of the attack to separate the correct hypotheses
from the other remaining ones. In the best case, the correct value for each key
byte always has the highest correlation and is therefore at first position in the
list. That information is also of high interest to an attacker as he can use this
information to significantly speed up his brute-force attack. Since he knows the
correlation of all remaining possible byte values, he can order the possible keys
by the correlation and then test for candidates with higher correlation first.
This will usually require much less than the average n

2 guesses, n being the
number of key candidates. Another approach to reduce brute-force complexity
could be to use the key-rank estimation procedures proposed by Veyrat et
al. [VCGS13, VCGRS13] as shown by Spreitzer and Gérard [SG14].
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Table 7.3: Timing profile comparison between the different implementations

Implementation Time (in cycles) Variation Time AES
min max min max median interval (in cycles)

Barreto offline 0 33745.96 33772.29 -9.57 16.77 -0.47 26.34 ≈ 4231
[BBR00] online k′ 33745.71 33772.31 -9.87 16.73 -0.49 26.59 ≈ 4230
OpenSSL offline 0 33584.26 33605.61 -8.04 13.31 -0.16 21.35 ≈ 4222
[The11] online k′ 33585.64 33607.81 -8.99 13.18 -0.14 22.17 ≈ 4221
Bernstein offline 0 33731.61 33778.54 -11.44 35.49 -0.94 46.93 ≈ 4546
[Ber05a] online k′ 33745.04 33781.29 -5.24 31.00 -0.78 36.24 ≈ 4573
Gladman offline 0 35139.63 35158.00 -6.26 12.10 -0.16 18.37 ≈ 5689
[Gla08] online k′ 35139.48 35157.03 -5.72 11.82 -0.16 17.55 ≈ 5689
Niyaz offline 0 59266.99 59280.43 -8.39 5.05 0.03 13.44 ≈ 24840
[PK] online k′ 59265.01 59278.61 -8.88 4.72 0.01 13.60 ≈ 24834

7.3.4 Results for Testbed1

We evaluated a broad range of different AES implementations as shown in
Table 7.3. The implementations of Bernstein [Ber05a], Barreto et al. [BBR00]
and OpenSSL [The11] are optimized for 32-bit architectures like the Cortex-A8
whereas Gladman’s [Gla08] is optimized for 8-bit micro controllers. Niyaz’ [PK]
implementation is totally unoptimized. As there are many OpenSSL versions
in use, for our tests we explicitly used the C implementation of Version 1.0.0d.
Due to the massive amount of samples we took over three weeks, we parallelized
the measurements to several different BeagleBoards. This also could have an
influence due to different Versions of u-boot were deployed, depending on the
production charge.

Table 7.3 visualizes the online and offline profile of each implementation. The
first column shows the minimum and maximum of the overall timing in CPU
cycles which is used for the correlation. The second column shows information
about the variation of this timing computed over all measurements. To make
propositions over the signal to noise ratio, we also provide the average time
spent in the AES encryption method. In Figure 7.4, the result of the correlation
is shown. The plots depict the decreasing possibilities for each key byte by
increasing samples. For each implementation, a subfigure is provided which
plots the left choices m with m ∈]0; 256] in z-direction for each key byte ki
with i ∈ [0; 15] from left to right, while the amount of samples N for the online
profile with N ∈ [100K; 2M ] is plotted in y-direction from behind to front. For
this result, a constant sample amount of 2M was used for the offline profile
with the null key.
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(e) OpenSSL

Fig. 7.4: Reducing key space by timing attack of different AES implementa-
tions



7.3 Evaluation of TEE Attack – Empirical Results 93

Barreto

The implementation of Barreto et al. [BBR00] which is part of many crypto
libraries is showing a high vulnerability against this time-driven attack. Barreto
uses four lookup tables, each of 1 KByte in size. Thus, the lookup tables do
not fit into one cache line. Additionally for the last round, a fifth lookup table
is used. This type of implementation is also called T-Tables implementation
which is described in Chapter 2.4.3. After 100K samples, only key byte 3 and
7 have more than 200 possibilities left and for key byte 9, the choices are
above 50. The other 13 key bytes are all below 50. After 800K almost any key
is pinpointed to 4 choices except key byte 9. However, this seems to be the
limit for this implementation. That means, using additional samples do not
improve the results any further. After 1.6M samples also for key byte 9 the
limit is reached and only 4 choices are left. Nothing changes afterwards until
2M samples are reached. See Figure 7.4a.

OpenSSL

The OpenSSL implementation [The11] is almost the same as the implemen-
tation of Barreto et al. However, the results of both implementations differ.
For the OpenSSL implementation, the limit is reached at 16 choices per key
byte. Furthermore, the attack was not able to reduce the key space for key
byte 4 at all. One could believe that the results of Barreto’s implementation
and the results of OpenSSL have to be the same as the encryption function is
exactly performing the same operations. However, as listed in Table 7.3, the
overall time which is measured during the attack is about 200 cycles higher for
Barreto et al.’s implementation because of the encryption function definition.
Barreto et al. pass parameters by value which are passed by reference in the
OpenSSL encryption function header. Also the performed operations outside
the measurement in the trigger application influences the cache evictions. In
total, this causes more cache evictions and thus a higher variation of the AES
signal, resulting in better correlation behaviour. Another explanation could be
that we measured on different boards where the boot loader configured the
frequency of the processor differently than the other.

Gladman

The same holds for the implementation of Gladman [Gla08] which we compiled
with tables and 32-bit data types enabled. Here, also the choices for several
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Table 7.4: Correlation results after 100K samples of online profile received
with the C version of Bernstein’s AES implementation; offline profile with 2M
samples

Choices Byte# Key Values
←− higher correlation c

20 0 21 20 23 22 fc 25 26 ..
4 1 53 52 51 50

256 2 fc cb 9b a1 fd a6 a4 ..
80 3 73 70 76 71 75 74 72 ..
10 4 d4 d6 d5 d7 d3 0a df ..
4 5 f3 f1 f0 f2
6 6 4a 49 4b 48 4f 4d
3 7 98 9a 99

Choices Byte# Key Values
←− higher correlation c

23 8 17 15 ce c9 13 12 ca ..
27 9 33 31 32 ec ea 30 ed ..
4 10 bb b8 ba b9
27 11 3f 3e 3c 3b 3a e2 e5 ..
4 12 18 1b 19 1a
11 13 92 90 91 93 97 96 9a ..
51 14 00 c0 01 02 20 e9 21 ..

256 15 8b 06 93 8f 33 b3 0f ..

key bytes are reduced to 16 possibilities. However, Gladman uses both the Ri-
jndal SBoxes the SBox SRD and its inverse S−1RD for encryption. However, the
concatenation of the SBoxes which results in the T-Tables implementation is
done on demand only partially for the current state computation. Therefore,
the performance is comparable to the T-Tables implementation but less mem-
ory expensive. Thus, only two 256-byte lookup tables are stored in memory
which means the signal to noise ratio is even worse than in the other large
table-based implementations. Further, there are less competitive lines for the
lookups reducing cache evictions by AES itself drastically. Even though other
variables used during the computation can compete with the same lines in
cache, this reduces the amount of cache evictions a lot in comparison to the 4
KByte tables implementations. So, there is no reduction of the key space for
four key bytes at 2M samples.

Niyaz

The implementation of Niyaz [PK] seems almost secure against this attack as
shown in Figure 7.4d. Niyaz implementation is the reference implementation
of Rijndal, described as SBox implementation in Chapter 2.4.3. This imple-
mentation uses also only the 256 byte Sbox SRD for encryption. Further, as
the cache is 4-way associative with a cache line size of 64 byte, the lookup
table fits into one cache block at once. This makes evictions by AES itself
nearly impossible. Thus, the timing leakage generated by the SBox lookups
is reduced. Further, the unoptimized code beside the table lookups in the en-
cryption method will decrease the signal-to-noise ratio to make it even harder
to extract information from the measurements using the correlation.
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(b) Bernstein with hashing

Fig. 7.5: Impact of noise caused by hashing for full mutual authentication
protocol using Bernstein’s Poly1305-AES

Bernstein

Our results show that Bernstein’s AES implementation is most vulnerable
to our cache timing attack. However, we used the C compatibility version
which is part of his Poly1305-AES [Ber05a] message authentication code since
no ARM implementation is available. This implementation is the only one
which totally leaks the secret key k′. Already after 400K samples, the key
is almost completely recovered by the correlation and only 2 key bytes need
to be computed using brute-force. Further, during the correlation phase, the
possible key bytes are sorted by the correlation. Thus, already after 100K,
the correct key k′ can be extracted as shown in Table 7.4. The first column
of Table 7.4 shows the possible choices which are left after correlation. In
the second column, the corresponding key byte index is listed while the third
column shows the key values sorted by their correlation c. The values with
highest correlation are also the correct bytes of k′ we introduced in this section.
The correct values are printed bold in the table.

For this implementation, we also executed the attack with the full mutual
authentication protocol, with hashing enabled. We used the reference SHA1
implementation of the L4Re crypto package. In Figure 7.5b, it can clearly be
seen that the additional noise generated by the hashing function increases the
amount of samples needed for the attack significantly.
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Table 7.5: Summary of results for different scheduler configurations

No. Utilized
Cores

Scheduler Configuration Average
Position

Remaining
Key-space

1 1 1 Core shared (Single) 3.625 ≈ 280.2

2 4 4 Cores shared (Quad) 4.25 ≈ 281.7

3 4 4 Cores Server, 1 core shared rich OS (Server) 4.0 ≈ 282.8

4 2 1 Core dedicated each 4.0 272

5 4 2 Cores dedicated each 4.375 ≈ 272.7

7.3.5 Results for Testbed2

We used Testbed2 mostly to analyze several multi-core configurations of the
PikeOS scheduler. For all the experiments summarized in Table 7.5, normal
priority-based scheduling was used and the profiling and attack phase were
done on the same device. This might not always be possible in a real-world
setting, but was done to have an optimal setting for the evaluation. If not
stated otherwise the attacked key was and both profiling and attack phase
were conducted with 512 million samples to have approximately 2 million
samples for each possible key candidate as in the section before for Testbed1.

Identifying and Tuning of Attack Parameters for Testbet2

To reduce the noise in the measurements, Bernstein disregards all measure-
ments above a certain threshold. In the original code, this threshold was set
to a value fitting the timing behavior of his implementation. This value was
therefore changed in this implementation. To evaluate the effect of this clip-
ping, two different thresholds were investigated both with 512 million samples
for attack and profiling phase. The threshold that was initially set to about
30,000 clock cycles higher than the average of the timing samples was compared
to the threshold 20,000 above average. The results are displayed in Figure 7.6a
and Table 7.6a. The results clearly show that the lower threshold leads to a
significant lower reduction of the key space. This implies that the timings ly-
ing in the interval between the two thresholds indeed contained information
about the key. This also complies to the findings in [SG14], which show that
the minimal timing attack of [AE13] does not leak any information on ARM.

One parameter that comes to mind very quickly when thinking about analyz-
ing a side channel attack is the number of samples. One would assume that an
increasing number of samples automatically results in a higher success rate as
the noise gets averaged out more and more, leaving only the relevant informa-
tion behind. To verify this assumption, we conducted the attack with 256, 512
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(a) Clipping thresholds (b) Increasing samples

Fig. 7.6: Histograms describing the numbers of possible candidates for all
bytes of the key and for varying clipping thresholds and samples

and 1024 million samples. The results are displayed in Figure 7.6b. Table 7.6b
shows the average position of the correct key byte candidates. As expected,
increasing the number of samples does in fact also increase the success rate
of the attack. However, the increase of the success rate shows a logarithmic
behavior. This behavior is derived directly from the cache architecture. As
only the upper k bits of a data word are used to index the cache lines, the
timing behavior is independent of the lower bits. In the best case, the attack
could therefore only reveal the upper k bits of each key byte. This explains the
observed boundary of the reduction of the key space. It furthermore explains
why the remaining number of possible values per byte is in almost all cases a
power of 2. A similar behavior was described by Neve et al. [NSW06].

Single-core vs. Quad-core

The PikeOS scheduler allows the use of a CPU mask to specifically select the
cores that shall run a partition. As each core has its own L1 cache but all
cores share the L2 cache, it is interesting to examine how the success rate
of the attack changes when only one or all cores are used. To do this, three
different configurations were regarded. For the first one both partitions were
run by a single shared core (configuration 1) while for the second one both
partitions were run on all four cores (configuration 2). The third configura-
tion involved the AES server running on all four cores (configuration 3) while
ELinOS was assigned only one core. Note that the AES server application
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Table 7.6: The average position of the correct key byte candidates for the
different clipping thresholds and numbers of samples

(a)

Clipping Threshold Average Position
+30k 3.625
+20k 4.3125

(b)

Number of Samples Average Position
256M 5.5625
512M 4.0
1024M 3.875

itself does not implement any concurrent block computation. The results are
depicted in Figure 7.7a and Table 7.5.

It can be seen that configuration 1 gave the best results for both criteria, and
scenario 2 yielded the worst. This is understandable since in the first scenario,
the T-tables are stored in a single L1 cache and the L2 cache, whereas in
scenario 2 the T-tables are most likely scattered over the four L1 caches and
the L2 cache. This decreases the signal to noise ratio with high certainty and
thus lowers the success rate. Additionally, when both the rich OS and the AES
server use the same core, their cache usage will interfere which also reduces the
quality of the timing samples. This effect is visible in the difference between
scenarios 2 and 3. Although the AES server uses four cores in scenario 3 as
well, it only interferes with the other application in one of them which leads
to an overall better success rate of the attack.

Dedicated Cores

Using a dedicated core for the AES server is expected to be not advisable
because it reduces the noise. Therefore, it was investigated how the success
rate of the attack is affected when the two partitions have one or two cores for
their own in comparison to configuration 1 where both partitions share only
one core. The results are shown in Figure 7.7b. The use of dedicated cores
leads to a significantly better success rate in terms of the total number of re-
maining key candidates. The setup with one dedicated core also shows a slight
decrease in the average position of the correct key byte values. As it can be
seen, assigning one core to each partition (configuration 4) thereby results in
a slightly better attack result than using two dedicated cores (configuration
5). This can be explained by the already discussed effect of using multiple
L1 caches. However, the slight increase of the average position compared to
the scenarios where 4 cores are utilized seems to be caused by measurement
inaccuracies. In summary, when using an ordinary priority-based scheduling
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(a) Shared scheduler configurations (b) Dedicated scheduler configurations

Fig. 7.7: Histograms describing the numbers of possible candidates for all
bytes of the key and for varying scheduler configurations.

scheme on a multi-core system without any countermeasures, it is not recom-
mended to use a dedicated core for the cryptographic algorithm as this would
reduce the noise significantly.

7.3.6 Comparing Results of Testbed1 and Testbed2

In this section we compare the results from the OpenSSL implementation of
Testbed1 (mobile device) and Testbed2 (cyberphysical system). This is more or
less a comparison between the CPU architectures and the utilized microkernel
frameworks. Note that we use the same key for both setups as described in Sec-
tion 7.3.3 to provide comparable results. For the Cortex-A8-based Testbed1,
we were able to reduce the byte value space of almost all bytes to 16 possibil-
ities for the OpenSSL implementation of AES. For byte 3, no reduction was
possible which seems to be an error of measurement, while bytes 7, 11 and 15
could only be reduced to 32 respectively 24 possible values. This result was
achieved with 2 million samples for each byte value, translating to the overall
number of 512 million samples.

The best result achieved in terms of the reduction of the key space for
the Cortex-A9-based Testbed2 draws a very different picture. For one ded-
icated core for the ELinOS and the AES partition respectively, the high-
est reduction found was a reduction down to 8 possible values for the bytes
2,3,6,7,10,11,14,15. For the remaining bytes a reduction was possible only down
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Fig. 7.8: Results on Cortex-A8 (Testbed1) compared to Cortex-A9 (Testbed2)

to 64 different values. This pattern is interesting in itself as every consecutive
2-byte tuple seems to be highly correlated in the reduction capability. However,
it is also very different from the result stated above. For this implementation,
the maximally achieved reduction is twice as high as for Testbed1. Neverthe-
less, only half of the bytes could be reduced that far while for Testbed1 nearly
all byte spaces could be reduced to the respective minimum. Then again, in
the Testbed2 all bytes could be reduced to at least 64 different values. This
was not the case for Testbed1 which is using the Fiasco.OC kernel. Both im-
plementations have in common that there seems to be a limit for the reduction
of the key space that depends on the implementation. This was already men-
tioned above. The two results are compared in Figure 7.8. The difference of
the reduction pattern reflects the different cache architectures in terms of the
cache line size. On the Cortex-A8 with a 64 Byte cache line size every fourth
key byte is harder to reduce, while on the Cortex-A9 with 32 Byte cache line
size every first 2 bytes are harder to reduce. Both pattern repeat every 4 bytes,
this is due to both caches are 4-way associative.

The total number of possible keys was reduced to 272 for the worst PikeOS
setup (Testbed2) and to roughly 270 for the Fiasco setup (Testbed1) showing
a slight advantage for the PikeOS setup. However, compared to the setup
utilizing only one core with a reduction of key space to ≈ 280.2, the PikeOS
setup is about three orders of magnitude harder to attack.
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7.4 Reproducing Bernstein’s Attack in local Environment

Bernstein stated in [Ber05b] that modern cache-architectures are vulnerable
against statistical timing attacks which we now called time-driven cache at-
tacks. He showed a practical attack setup on an Intel Pentium III based ma-
chine as shown in Figure 7.9. Nevertheless, he provides a rather unrealistic
measurement setup. Instead of really attacking the remote host from the client,
he let the server under attack provide the timings. Thus, the noise of the op-
erating system and the network channel is completely eliminated.

Thus, our first approach was to run his attack locally, measuring the timing in
the client application. For that purpose we came up with the following attack
setup shown in Figure 7.10. Instead of using two separate machines, we just
use the same kernel connecting the client and server application over the Linux
kernel’s loopback network interface.

Further, as first virtualization setup we thought about a full system virtual-
ization using two para-virtualized L4Linux machines on top of the Fiasco.OC
microkernel. Both VMs using the Linux kernel’s network stack on top of a vir-
tual ethernet interface communicating over a shared memory with each other.
This setup is shown in Figure 7.11.

However, it turned out that the operating systems’ network stack and schedul-
ing introduced too much noise to get viable results in both cases. For the Linux
native setup, we at least got a small reduction of the key space as shown in
Figure 7.12.

For reference values, we performed the same measurements for the Linux local-
host scenario on our Testbed1 hardware platform using the same parameters
as in Section 7.3. Hence, we measured the same AES implementations of Bar-
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reto, Bernstein, Gladman, Niyaz and OpenSSL. The results are summarized
in Figure 7.12 for the adapted original setup with timing measurement in the
server respectively Figure 7.13 with timing measurement in the client. What
we clearly can see is that the use of the Linux kernels loop back network device
and UDP/IP stack already introduce many noise which makes a key recovery
almost impossible. The shm network interface of L4Linux used in the virtual-
ization setup with two L4Linux machines introduces even more noise as there
are also two user space para-virtualized Linux kernels involved. As a result we
did not complete our measurements with any reduction of the key space.

We also conducted the attack in Bernstein’s original setup shown in Figure 7.9
on our Testbed1 hardware. Instead of BSD we used a Linux 3.0 distribution
on two interconnected BeagleBoards. We used a direct link-to-link connection
without any switch in between the two hosts. However, the attack was not
reproducible in this setup. This is similar to what Neve et al. [NSW06] also
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stated for their experiments with the original x86-Setup with client timing
measurements.

Nevertheless, these steps brought us from the rather unrealistic attacker model
of Bernstein’s original attack setup to the former described realistic attack not
only applicable on our microkernel-based TEE architecture, but also on other
TEE architectures.
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(e) OpenSSL

Fig. 7.12: Reducing key space in local host setup (client timing) of different
AES implementations
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Fig. 7.13: Reducing key space in local host setup (server timing) of different
AES implementations
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7.5 Countermeasures

The first countermeasure we will discuss in this section is the RMC-AES which
we more or less see as a dead end due to performance issues. However, for single
operations in authentication protocols it may still be an option. As second one
we provide the discrete-time countermeasure which is very cheap regarding
development costs as it is only a scheduler configuration. We published this
also in Contribution [WWAS15]. Further, we discuss similar approaches of
others.

7.5.1 RMC-AES Counter Mode

To prevent the timing side channel we came up with the idea of a randomized
algorithm executed on a multi-core platform which we call RMC-AES ran-
domized multi-core AES. In contrast to other approaches like bit-slicing which
produces a constant time execution due to completely avoid table lookups,
our approach does not completely redesign the algorithm but splits the table
lookups randomly across the available cores. Thus, our approach works plat-
form independent as the original T-Tables implementations, while bit-slicing
only works for platforms which provides 128 bit registers and SIMD like Intel
MMX2. Even though, for newer ARM architectures the NEON extension also
provides 128 bit registers and instructions, for embedded platforms in general
it need not be the case that such CPU architecture extensions exist.

Design

Usually a T-Tables implementation does 4 operations including XOR (⊕) and
table lookups in one round of AES, see Chapter 2.4.3. These operations are
independent. As a consequence we could execute them concurrently on different
CPU cores using the CPU cores’ individual cache for the lookups. Thus, if we
randomize those lookups across the available cores, we are able to produce
a random lookup pattern for each of the cores resulting in an unpredictable
cache timing behavior. This idea is sketched in Figure 7.14.

However, we have to do a synchronization between the cores after each round
as the result is needed for the next round. This is an expensive operation and
thus, we came up with the idea to combine the approach with the counter
mode of AES which allows us to encrypt multiple blocks in parallel. We now

2 Intel MMX: Intel Multi Media Extension
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Core[1] Core[2] Core[3]Core[0]
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T4 XOR rK[0] T4 XOR rK[1] T4 XOR rK[2] T4 XOR rK[3]

sync

sync

sync

Randomize operation order on the cores to prevent timing attack 

Fig. 7.14: Encrypting one block AES with randomized lookups

concurrently compute a fixed number N of AES blocks. We define those N
AES blocks as the RMC-AES block. Furthermore, N is a security parameter
of the algorithm. A higher value of N produces more different timing patterns
for each AES key byte, namely N · 4! · 10 while 4! · 10 are the possible timing
profiles for the generic approach without the additional ctr mode.

We introduce an intermediate lookup table for block indices denoted as CTR
which we can use for counter and input output mapping. This index lookup
table is then shuffled before each RMC-AES block computation. As a result,
the temporary memory consumption compounds as follows, three arrays, input
output and index array with each of the size N · AES_BLOCK_SIZE = N · 16.
To reduce indices in the description of Algorithm 4, we denote this step as
Shuffle() with those three arrays as parameters which are shuffled simultane-
ously. During each round the algorithm only computes one of the partial state
word sr,io while o denotes the operation/index of the total status word and r
the corresponding round as described for the original T-Tables implementation
(see definition in Chapter 2.4.3), i is the index of the corresponding AES block
inside the RMC-AES block.
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We denote the capitalized parameter P = P 0, P 1...PN as the total input plain-
text RMC-AES block while C is the same size output block C = C0, C1...CN .

Algorithm 4 RMC-AES encryption
1: procedure encRMC_AES(P,Nonce, k)
2: K = KeyExpansion(k)
3: Generate(CTR)
4: Shuffle(CTR,C, P )
5: for i in core ∗N/4 to (core+ 1) ∗N/4 do
6: CTRi = ctr128_get_counter(Nonce, i)
7: o = select(0 to 3)
8: s0,io = ctri ⊕K0

o

9: for r in 1 to 9 do
10: for i in core ∗N/4 to (core+ 1) ∗N/4 do
11: o = select(0 to 3)
12: sr,io = T0[s

r−1,i
0+4∗o]⊕ T1[s

r−1,i
5+4∗o]⊕ T2[s

r−1,i
10+4∗o]⊕ T3[s

r−1,i
15+4∗o]⊕Kr

o

13: (with all index computations mod 16)

14: for i in core ∗N/4 to (core+ 1) ∗N/4 do
15: o = select(0 to 3)
16: s10,io = T4[s

9,i
0+4∗o]⊕ T4[s

9,i
5+4∗o]⊕ T4[s

9,i
10+4∗o]⊕ T4[s

9,i
15+4∗o]⊕K10

o

17: (with all index computations mod 16)
18: Ci = P i ⊕ S10,i

19: return c

Prototype Implementation

We implemented the above described algorithm, by replacing the
aes_ctr_mode module in OpenSSL. The used OpenSSL version was 1.0.1c.
As described above, our performance concerns were justified. We tried to min-
imize overhead by introducing thread pools which are synchronized with bar-
riers. We used a fast barrier implementation by Lockless Inc.3, as our synchro-
nization primitive. Even though, barriers are not the fastest synchronization
mechanism, the performance of our algorithm implementation is quite slow in
general. This is due to we contradict any CPU architectural constraints here.
Usually, in CPU architectures there are branch prediction and pipelining. As
our implementation intentionally only executes partially on each core, which is
also decided at runtime on randomly shuffled index lookups, those mechanisms
do not provide good results anymore. The performance results are depicted in
Figure 7.15. We did the measurement on our multi-core platform of Testbed2.
3 http://locklessinc.com/articles/barriers/
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Fig. 7.15: Performance of RMC-AES for different values of N

However, we measured performance on a Linux system based on Linux 4.0.1
using the OpenSSL speed application. As one can see the best results are
achieved for 4k buffers and N = 256 with about 300kB/s. This is a good
choice anyway because this is usually the size of a memory page. For instance,
our AES server in the trusted execution environment in both of the above
prototype implementations for PikeOS and L4Re uses exactly one 4k memory
page as input and output buffer.

7.5.2 Discrete-time Countermeasure

One main pitfall of novel countermeasures is that some of them require
changes to already established systems that are too substantial to be eas-
ily implemented, hence making these countermeasures practically irrelevant.
The discrete-time countermeasure that is presented in the following therefore
aims at making cache-based time-driven attacks infeasible for attackers while
demanding as few changes and inducing as little overhead as possible. Our
discrete-time countermeasure targets a PikeOS scheduler configuration, there-
fore we do a short re-cap of scheduling in PikeOS in the following subsection.

Scheduling in PikeOS

PikeOS features a special scheduler that uses a combination of time-driven and
priority-based scheduling to account for the different needs of the applications.
To allow for deterministic real-time responsiveness, the scheduler uses a time-
driven approach. Every real-time application is statically assigned to a time
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slot of a defined length. The length of these time slots can vary between appli-
cations but has to stay within a certain relation to the length of the other time
slots. Every application is periodically scheduled for the length of the slot it is
assigned to. As every partition gets assigned a defined amount of CPU time at
defined points in time, they are able to schedule real-time processes themselves.
This, so far, is a standard approach for scheduling real-time applications. To
also support non real-time applications, a straightforward extension of this
approach is to just create a new time slot and assign all applications without
timing constraints to it. Within this slot, a standard round robin scheduling
scheme can be applied. However, this approach is inefficient since it wastes a
lot of CPU time. The PikeOS scheduler refines this approach to a more ef-
ficient strategy. It might occur that the processes of a real-time application
finish before its time slot end or that it does not have any processes to run at
all. As it would harm the temporal determinism, the scheduler cannot simply
switch to the next application in this situation. Rather than wasting this time,
the PikeOS scheduler uses this excess CPU time to schedule applications with
no real-time constraints. For this purpose, it leverages priority-based schedul-
ing. All real-time applications are assigned the same mid-level priority number
while low priority numbers are assigned to the other applications. Now, the
scheduler continues to schedule the real-time applications periodically but uses
the excess time to schedule the low-priority non real-time applications in a
round robin fashion. In this way, no computing time is wasted and the overall
amount of time needed to execute all applications decreases drastically when
compared to a standard RTOS scheduler.

Configuring the Scheduler

Assume the rich OS and the trusted environment are implemented as partitions
in PikeOS and are hence handled by the scheduler. Now assume the attacker
has compromised the rich OS and is able to launch the timing attack against
the AES server that runs in a trusted partition as stated as Scenario Secure
VPN in Chapter 4.2.1. In order for the attacker to successfully carry out the
attack, two conditions must be fulfilled:

1. He must be able to retrieve enough samples from the AES server, in the
order of several hundred millions.

2. The samples must leak enough information for the correct hypothesis on
the key to yield a higher correlation on average than all wrong hypotheses.

The discrete-time countermeasure aims at these two points. It works straight-
forward in that both applications, the rich OS and the AES server in the
trusted environment, are treated as real-time applications such that each is
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assigned an own time slot. Note, that it is not necessary for either of the two
applications to have any real-time time constraints in order for the scheduler
to be configured as described above. Using this configuration of the sched-
uler the time measured by the attack for one encryption tenc is now given by
Equation 7.7.

tenc = n · tOS +m · tserv (7.7)

with tOS being the length of the time slot of the rich OS and tserv being the
length of the time slot of the AES server. The two variables n and m represent
the number of executions of the two time slots. Note that we ignore negligible
timing quantities that are independent of the AES server, such as the remaining
time in the slot of the rich OS after the encryption was requested and the time
passing in the first slot of the rich OS after the encryption is done before the
attacker’s process is scheduled. As it can be easily verified the time is always a
multiple of the two time slot lengths which gives rise to the countermeasure’s
name. This has two major effects on the attack. Firstly, as the scheduling for
these two applications is strictly time-driven, the rich OS will be scheduled a
number of times while still waiting for the encryption to finish and hence being
idle. This will increase the time needed by an encryption in a way that, given
carefully chosen values for tOS and tserv, a single encryption as it is needed for
benign purposes can still be done without noticeable delay. However, a number
of encryptions as needed for an attack will take a significantly larger amount
of time. This already will make an attack time-wise more difficult. Secondly, as
the information that can be gained by one sample is now very coarse-grained,
there is only a very small correlation left between the timing information and
occurring cache-misses or hits. This will make it very hard for the attacker
to distinguish the correct key hypothesis from false ones and will increase the
number of necessary samples. Therefore, the discrete-time countermeasure is
a strong shield against the kind of attacks considered here. Furthermore, the
countermeasure requires no change of any kind in the code and also causes
arguably only little timing overhead. It is also straightforward to implement,
can be extended to multiple applications and is most likely also applicable to
other RTOS schedulers working in a similar manner as the PikeOS scheduler.
Although not in the focus of this work, access-driven attacks can be prevented
similarly by a simple configuration in the scheduler to flush the cache when
switching partitions.

7.5.3 Evaluation of the Discrete-time Countermeasure

To evaluate the effectiveness of the discrete-time countermeasure, a range of
different scheduler configurations was tested. The ELinOS and the AES server
partition were assigned one time slot each and the length of these slots was
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Table 7.7: Performance comparison of the countermeasure

Scheduling Scheme Average Clock Cycles per AES-block
one block (16 Byte) one page (4 KByte)

Priority-based ≈ 125, 000 ≈ 1770

Discrete-time ≈ 210, 000 ≈ 2286

then varied. It was quickly found that the length of both slots would have
to be in a certain relation in order to ensure that the rich OS and the AES
server work correctly. One configuration that led to a behavior of the system
indistinguishable from the behavior with simple priority-based scheduling was
found to be to set the slot length to 5 ticks for both partitions. The default
duration of one tick was set to 1 ms. Using this configuration, the delay of
single AES encryptions increases significantly by roughly about 70% while in
contrast the encryption of a whole buffer with the size of a memory page
may be conducted with only a small overhead of less than 30%, see Table 7.7.
This configuration was therefore chosen for the attack. Both partitions were
assigned one dedicated core and the rest of the setup remained unchanged
from previous experiments.

After running the profiling phase for one day we were able to retrieve ≈ 34
million samples. To capture the whole amount of 512 million samples for both
phases, this means a total run-time of about one month for the above config-
uration of the scheduler. Remember that due to the different timing behavior
induced by the countermeasure an even higher number of samples is needed in
order to recover the key as good as possible. Therefore, it is reasonable to as-
sume that for the attack to produce a useful output at least twice the number
of samples and hence, with the overhead caused by our countermeasure, even
more than twice the time is needed. Even if the attacker would do the profiling
phase off-line, he would still need to be able to access the system for about one
month. It is very unlikely that such a computational intensive attack would
remain unnoticed for the entire time frame. Furthermore, depending on the
actual use of the AES server, a rescheduling of the key might occur during that
time, too. It can be seen from this that the proposed countermeasure indeed
protects a device very well while simultaneously requiring almost no effort
to be set in place. Also, the user experience does not change with the coun-
termeasure which might be an important factor for the mobile device market.
The different run-times of one encryption for priority-based scheduling and the
countermeasure are shown in Table 7.7. For a more thorough evaluation of the
discrete-time countermeasure, additional experiments need to be conducted.
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Comparison to other Countermeasures

In [KPMR12] and [SBY+13], two novel countermeasures against cache-based
attacks are introduced. Since these countermeasures target the same class of
attacks as the discrete-time countermeasure, it is interesting to compare their
approaches with ours. As the focus of this work was put on time-driven attacks,
the comparison will focus on this aspect as well.

The STEALTHMEM countermeasure [KPMR12] tries to prevent both active
and passive time- and access-driven attacks in virtualization environments. To
that end, it uses dedicated cache lines in the shared cache for each CPU. De-
pending on the variant of STEALTHMEM used, this either reduces the total
available amount of memory and shared cache, or it takes extra time to ensure
that the stealth cache lines are not evicted from the cache. Both variants im-
ply a small penalty in performance of about 5.9% and 7.2% respectively, and
AES encryptions of 50,000 bytes are about 5% slower with the first variant.
Unlike the STEALTHMEM approach, the discrete-time countermeasure has
no impact on the available cache and system memory. However, due to the
larger time slots in our countermeasure, the overall performance degrades by
about 30% for AES encryptions on 4 KB of data, as explained above. To use
STEALTHMEM, the hypervisor is extended with a special driver offering an
API to the VMs that manages access to the dedicated cache lines. For Win-
dows Server 2008 R2 with Hyper-V, this amounts to 5,000 lines of C code to
be added to the hypervisor and 500 lines of C code added to the Windows
boot loader modules. Furthermore, the implementations of cryptographic al-
gorithms have to be modified to make use of the stealth cache lines via the
provided API. For using our discrete-time countermeasure on the contrary,
only a reconfiguration of the scheduler is needed. Neither the system nor the
implementation of the cryptographic algorithm has to be changed. Also note
that the required modification of the algorithm presents a potential pitfall. If
not done correctly, some leakage remains and therefore breaks the counter-
measure. Moreover, the amount of available cache lines that can be reserved
for a core is limited so it has to be made sure that all relevant lookup tables
fit inside to prevent information leakage.

The instruction-based scheduling scheme suggested in [SBY+13] aims at pre-
venting cache-based attacks that exploit certain scheduling-induced race con-
ditions between processes that arise due to the dependency of the execution
time on the cache content. Both methods are similar in that they use a fixed
value as their criterion for the scheduling. As the name implies, instruction-
based scheduling uses a specified number of executed instructions as scheduling
criterion. This prevents only those attacks that try to exploit the mentioned
race conditions – but only when the processes are run on a single-core. Fur-
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thermore, it is not sufficient to prevent time-driven attacks such as Bernstein’s,
since an attacker can still measure the total execution time which still depends
on the cache. The discrete-time countermeasure on the other hand prevents
this kind of race conditions even with multiple cores, and masks the overall
execution time of an AES encryption. Also, instruction-based scheduling is
a novel approach and hence not widely supported by current microkernels.
Therefore, extra effort has to be done to integrate it into existing systems or
implement a new one which supports instruction-based scheduling. This is not
the case for the discrete-time method, where our countermeasure can be read-
ily configured. With respect to the overhead, both methods are fairly similar
as they do not need any adaption of the applications and only induce a small
time overhead.

7.6 Summary

In this chapter, we stated an attack scenario using a time-driven cache at-
tack against mobile devices such as smartphones (Testbed1) or embedded
devices used in cyber-physical systems (Testbed2). We have shown that the
isolation characteristic of virtualization environments can be circumvented by
this kind of attacks. For that purpose, we evaluated the attack for differ-
ent AES implementations on Testbed1 as well as different scheduler config-
urations on Testbed2. The results show that dedicated cores for the crypto
routine provide the most timing leakage. Further, we compared the results
of both virtualization-based TEEs. We showed that using a shared core, the
PikeOS setup of Testbed2 is about three orders of magnitude less vulnerable
in reduction of key space, but at least almost one order of magnitude in the
worst configuration using dedicated cores. Furthermore, we discussed several
countermeasures. We provided a randomized variant of the T-Tables software
implementation as well as the scheduler-based discrete-time countermeasure
against time-driven cache attacks. We conclude that the RMC-AES approach
can be seen as a dead end for research on general purpose CPUs due to per-
formance issues on these kind of hardware. However, both countermeasures
indeed close the open attack vector to our integrity and secure loading pro-
tocols described in Chapter 6. Compared to other novel countermeasures, the
countermeasures do not depend on any hardware, software architecture or al-
gorithm changes. Thus, the discrete-time approach can be used as a drop-in
configuration update for running CPSs, or other embedded platforms using a
configurable scheduler. However, since the bit-sliced implementation for ARM
NEON is available in newer OpenSSL versions since 2013, we propose to use
this for ARM-based systems.
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Conclusion

With concepts of trusted computing we can also improve the security of generic
embedded and mobile devices. In this thesis, we saw an approach to merge
those concepts with the provided software and hardware solutions of the major
mobile working group GlobalPlatform. The use of those concepts as building
blocks for our system architecture, allows us to generate a flexible generic
system architecture which simultaneously supports trusted computing based
applications as well as GlobalPlatform mobile applications.

A first step to use trusted computing based concepts such as the remote load-
ing procedure which could also be used to securely update trusted components
inside a trusted runtime, this thesis provided an architecture using a TPM chip
connected to an embedded platform. This however, would restrict the applica-
tion to new hardware designs. Therefore, as a second step to allow our concepts
also to work on genuine mobile devices, we proposed an architecture relying
on a SE-based TPM emulation. From an application program perspective this
makes no difference to an off-the-shelf hardware TPM chip.

On the software side, this thesis provided an approach using the TPM or
seTPM inside of a trusted environment for integrity and secure loading of
remote binaries. The proposed architecture utilizes a microkernel framework
to separate the untrusted compartment including a possible attacker from this
trusted environment. As a consequence, we adopted the ideas of the Linux-
based IMA [SZJvD04] being able to reduce the TCB due to our microkernel
approach. Further, we showed the feasibility of the provided concepts inside a
prototype implementation on an ARM-based embedded system.

The provided system architecture relies on the concept of the so called TEE
which provides software isolation using a microkernel to separate the trusted
compartment from untrusted user and system code. However, we saw in Chap-
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ter 7 that this isolation alone cannot totally resist our attacker model. For a
strong remote attacker it is feasible to mount a cache-based side channel attack.
We evaluated this in two testbeds representing current mobile and embedded
system platforms using ARM-based System on Chips (SoCs).

We also addressed the question of how multiple CPU cores of modern em-
bedded and mobile devices could affect the vulnerability to cache based side
channels by an empirical evaluation in an adequate testbed using a quad-core
ARM SoC.

As a consequence we have to deal with such kind of attacks to provide a
leakage resilient trusted environment. We saw several countermeasures which
are mounted on different levels in software and hardware. Our first approach
to provide a random execution of table lookups on the example of AES is
a software and architecture independent solution. Even though our prototype
implementation is not performing very well on multi core CPU architectures, it
requires further research if other processor architectures or hardware assisted
implementations, e.g., on GPUs could improve this. Our second approach is
a scheduler configuration which also may apply to other ciphers and not just
the AES cipher which we used exemplary in this thesis. Until, hardware in-
structions such as the Intel AES-NI are not available for embedded systems,
we have to stick with software solutions such as the herein provided ones trad-
ing performance. However, for newer ARM-based systems it is also possible to
replace vulnerable AES implementations by the bit-sliced NEON implemen-
tation of OpenSSL inside the trusted environment. Nevertheless, this is only
a specific solution and is not applicable on all generic embedded systems and
other symmetric cipher algorithms.

Further Research Directions

At the time of this writing, the trusted computing community is in the pro-
cess to establish a new TPM specification. The TPM 2.0 specification includes
some updates to the hardware chip which provides more flexible usage concern-
ing the cryptographic and hash engines. It is to be examined how the herein
proposed concepts can be mapped to that new specification. In [PWS15], we
already made a proposal on how seTPM can be used to ease the transition from
TPM 1.2 applications to TPM 2.0 applications by deploying two TPM Applets
sharing some resources such as PCR registers and keys. Further research on
how practical this could be is necessary. In our auxiliary contribution trust-
me [HHV+15], we elaborate another light-weight isolation approach which al-
lows separate user lands on top of a Linux kernel on Android mobile devices. It



8 Conclusion 117

would be an interesting research topic to elaborate on how this architecture can
be combined with the herein proposed architecture. For instance using some
kind of virtual TPM inside a user space Linux/Android container, or use the
trusted environment to protect some assets of the Container Management or
Security Management which form together the privileged virtualization layer
in [HHV+15].

The whole field of cache-based side channel attacks made progress in the last
years. We exemplary used a time-driven attack based on Bernstein’s original
attack to show the vulnerability of TEEs to such kind of attacks. However, fur-
ther research has to elaborate if the current more sophisticated attacks such
as access-driven ones can also provide better attack results on the herein pro-
posed architecture. For instance the recently demonstrated attack in [LYG+15]
showed that the Prime+Probe approach of [OST05] is practical for cloud-based
shared hosted virtual server environments. This would also be interesting to
be researched for our architecture. In this field, it is also interesting to use
alternate techniques to generate a concrete timing pattern on an ARM-based
processor architecture. Since ARM Cortex-A8, the so called performance reg-
isters were introduced. In this thesis, we only elaborated the CCNT register
which provides clock cycles to generate a timing profile. However, those perfor-
mance registers also include registers to explicitly count cache hits and misses
which could be used to generate a cache profile during cipher execution.
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