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Deterministic topology optimization

Shape/topology optimization:

ming compliance(d) = fTu(d)

such that: { 1, material
K(d)u(d)=f (governing equation) 0, void
Jd(x)dx < Vo, (volumefraction)
d(x) €[0,1]

(a) domain (b) compliance(d) ~ 50 (c) compliance(d) = 55

Figure: Adjoint-based gradient optimization - O(1000) forward runs
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Stochastic topology optimization

Shape/topology optimization:

compliance(d,8) =f"u(d,6)
K(d,8)u(d,0) =f (governing equation) d(x) = {
Jd(x)dx < Vo, (volume fraction)
d(x) €[0,1]

1, material
0, void
6 ~ m(0), (random materia properties)

>

Stochastic topology optimization

Average design:  ming E [compliance(d,8)] = [fTu(d, 0) 7(8)d6
or:
Robust design:  ming Pr[compliance(d, 0) > co] = [ Lity(q,0)>c, 7(60)d0

such that:

K(d)u(d)=f (governing equation)
Jd(x)dx < Vo, (volume fraction)
d(x) €[0,1]

0 ~ m(0)
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Motivation

Uncertainty quantification
input uncertainties
0~p0) |

model (e.g. PDE| output

L£(u;0,d) =0 = u(o,d) = U(u(e,d))
control/design variables
dep | 2~

@ uncertainties @ € R", ng >> 1
@ design/control variablesd € D c R"™, ng >> 1

@ Goal - Design/Optimization: Can we efficiently optimize w.r.t d
and some output utility U(6,d)

V(d):/U(e,d)p(e)do
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Optimize the expected utility V (d)

/U (6,d)p(6
Solution Strategies:
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Optimize the expected utility V (d)

/U (6,d)p(6
Solution Strategies:

@ Extend deterministic optimization tools:
@ Draw N samples from a distribution q(8) (usually q(8) = p(0))

@ Optimize logVn(d) = %E. ,log M)I)()
@ After some algebra:
u(e,d)p(o
09V (d) = log Va(d) + KL(@(@)p(6ld).  p(6]d) = = th?)
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Optimize the expected utility V (d ):

d):/U(o,d)p(o)de

Solution Strategies:

@ Extend deterministic optimization tools:
@ Draw N samples from a distribution q(8) (usually q(8) = p(0))

@ Optimize logVn(d) = %E. ,log M)I)()
@ After some algebra:
u(e,d)p(o
09V (d) = log Va(d) + KL(@(@)p(6ld).  p(6]d) = = th?)

@ Surrogate (reduced-order) models
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Optimize the expected utility V (d ):

V(d):/U(e,d)p(a)dg, 5V(d) /au (6.d)

Solution Strategies:

@ Stochastic Approximation (Robbins & Monro 1951)

@ Perform gradient ascent/descent i.e.:

d® =d® + ¢ J(d®)

where:
® a >0,ar =0, > 2 0 =+ocand Y 22 Oak < +o00.
@ J(d®)) = unbiased estimator (g—‘é = [ 298] 9) de) (i.e. with
Monte Carlo and a single 6 —sample
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Approach
Optimize the expected utility V (d ):

V(d):/U(e,d)p(a)de

We adopt a sampling approach (Mller 1999) in the joint @ x d space 2:

m(6,d) < U(0,d)p(O)

Note that the d-coordinates of (6,d ) samples from p(8, d) will concentrate
on the maxima of V.

d
g

L U(6,d)

a U(@, d) is assumed positive or in general bounded from below
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Approach

the good:

@ dimensionality becomes less of an issue (Monte Carlo samplers are the
best tools we have to deal with high-dimensional problems)

@ sensitivity w.r.t d can be assessed.
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Approach

@ dimensionality becomes less of an issue (Monte Carlo samplers are the
best tools we have to deal with high-dimensional problems)

@ sensitivity w.r.t d can be assessed.

@ we have to work on the joint space 6 x d

@ Monte Carlo can be very demanding in terms of forward runs.

o multiple local maxima/minima of V (d)
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Approach

Sequential Monte Carlo:

@ A combination of Importance sampling and MCMC that provides
a particulate approximation {(6",d ™) w®}N_ (e.g. Doucet et
al. 2001):

N
(0,d) o< U(0,d)p(8) = > W V550 (8)330(d)

i=1
@ almost sure convergence of expectations of 7-measurable
functions (Del Moral 2004)
@ Operates on a sequence of distributions.

@ In contrast to MCMC, it can overcome trapping in modes of the
distributions
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Approach

We operate on a sequence of distributions (from simple to

Comphcated) (Amzal et al 2003, Johansen et al 2006, Kiick et al. 2006):
m(6,d) o U7(8,d)p(B), ~€0,1]

- m=10

’y]_IO.

Vv(d)
N\
\

=2
I
o
N
o1
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Approach

We operate on a sequence of distributions (from simple to
complicated):

m,(0,d) ocU7(0,d)p(8), ~ €[0,1]

Adaptive SMC (PSK, J. Comp. Phys. 2009, Sternfels, PSK, Int. J. Mult. Comp. Eng 2010)Z

@ If v increases slowly, we do too many forward runs (cost)
@ If v increases too fast we loose accuracy (accuracy)
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Adaptive SMC

@ Generate initial particle population {(8%),d ™), W®}N  from
Ty=0 = p(0) Set Yeurrent = 0.
@ lterate until ~eyrrent = 1.

@ Reweight: Find ynexx based on the relative reduction in the
Effective Sample Size ESS :

) ) | -
wl) — W(i)MWv ESS — (Zleliw('))
Pveurrent (0 ) d ) Zi:l(w(l))z
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Adaptive SMC

@ Generate initial particle population {(8%),d ™), W®}N  from
Ty=0 = p(0) Set Yeurrent = 0.
@ lterate until ~eyrrent = 1.

@ Reweight: Find ynexx based on the relative reduction in the
Effective Sample Size ESS :

) . N -
w® = w“’MW, ESS — (Zh;:li""('))
p’Ycurrem(e 7d ) Zi:l(w(l))z

@ Resample: If ESS drops below a specified threshold (typically
N/2), then resample.
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Adaptive SMC

@ Generate initial particle population {(8%),d ™), W®}N  from
Ty=0 = p(0) Set Yeurrent = 0.
@ lterate until ~eyrrent = 1.

@ Reweight: Find ynexx based on the relative reduction in the
Effective Sample Size ESS :

) . N )
W(i) —W(i)M ESS (Zizlw(l))Z

Pveurrent (e(i)7 d (i)) ’ ZiN:l(W(i))z

@ Resample: If ESS drops below a specified threshold (typically
N/2), then resample.
@ Rejuvenate: Move particles using a p-,., -invariant MCMC kernel:
@ We employed a Metropolis-adjusted Langevin (MALA) sampler which
implies calculation of U as well as derivatives %
@ These were calculated using adjoint formulations

@ Set “Yeurrent = “Ynext
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Multi-resolution Adaptive SMC

o Ii;

(a) resolution 1 (b) variance of d
(c) resolution 2 (d) variance of d

(e) resolution 3
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Multi-resolution Adaptive SMC

@ Coarser: m¢(d, 8) o< Uc(60,d)p(0)
@ Finer: m(d, 0) o< Us(6,d )p(6)
@ Bridge: 7¢t ,(d, ) oc Uz 7(8,d)U] (6,d)p(8)

T (d ) 77f:f,’¥1 (d ) 7ch“,’¥2 (d ) it (d )
/\ 7, =0.75 4
Yo = 0 Ys = 1

bridging resolutions

coarser finer

Figure: Resolution-bridging densities (PSK, J. Comp. Phys. 2009)

Continuum Mechanics Group p.s.koutsourelakis@tum.de SIAM CSE 2013, February 26 2013



SMC/MCMC on implicitly defined manifold

@ MALA:

Stepl: dp=di+ ZVlogn(di) +o0z1, z1~N(0,)
<d1=d2+%2V|097T(d2)+0227 ZzNN(OJ))

m(d2)p(da—d1) _ m(d2)p(z2)

Step 2 p(accept) = Tq )o@ 5d,) = =(dr)p(z,)
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SMC/MCMC on implicitly defined manifold

@ MALA:
Stepl: dp=di+ % Vlognr(di) +o0z1, z1~N(0,1)

(dl =do+ %2V|097T(d2)+0227 Zy ~ N(Q'))

w(d2)p(d2—d1) _ w(d2)p(z2)
m(d1)p(di—dz) — w(d1)p(z1)

Step2: p(accept) =

@ MALA on manifold V (d) = Vo:

Step 1 dI:d]_—‘r%Zngﬂ'(dl)‘f'o'Zl, 23 ~N(0,1) 1471 vv(dy)
Step2: d, = arg ming ey (d)=v, |d dif?

w(do)p(dz—d7) _ m(d2)p(z2)
Step3: p(accept) = i)p(di—ﬂi D = @t
dé Vlogp(dy) ¥ log p(dy)

o
) i\ / VV(02)
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Numerical lllustration

oﬂi

(a) domain (b) compliance(d

Figure: Deterministic topology optimization - O(1000) forward runs

>

Stochastic topology optimization

@ dim(d) = 5120 (design variables), dim(@) = 5120 (random variables)
@ log6 ~ N(pg, Xo)

o E[@i] =3
@ X,Cov[logf(x;),logf(x;)] = e~ xi—xil/b
9 lp = 0.1 (correlation length)

@ Objective: ‘ maxgq Pr[compliance < 100] ‘
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Numerical Illlustration

o e oe 0w 0 o o
o4 T b 0 o o
02 PP a2 02 02 02
o FE 0z a0 s

(a) mean-variance (b) mean (c) mean+variance

Figure: Stochastic topoloy optimization - 180, 000 forward runs
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Numerical lllustration

Multi-resolution inference

(b) mean-variance (c) mean (d) mean+variance

Figure: Resolution 1 - Cost 3 runs of reference(finest) model
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Numerical lllustration

Multi-resolution inference

(b) mean-variance (c) mean (d) mean+variance

Figure: Resolution 2 - Cost 7 runs of reference(finest) model
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Numerical lllustration

Multi-resolution inference

(b) mean-variance (c) mean (d) mean+variance

Figure: Resolution 10 - Cost 80 runs of reference(finest) model
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Numerical lllustration

Multi-resolution inference

(b) mean-variance (c) mean (d) mean+variance

Figure: Resolution 20 - Cost 506 runs of reference(finest) model
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Numerical lllustration

Multi-resolution inference

(b) mean-variance (c) mean (d) mean+variance

Figure: Resolution 20 - Cost 886 runs of reference(finest) model
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Numerical lllustration

Multi-resolution inference

(b) mean-variance (c) mean (d) mean+variance

Figure: Resolution Final - Cost 56, 641 runs of reference (finest) model
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Conclusions

@ A general, non-intrusive approach that converts the optimization
problem to a sampling one.

@ Suitable for high-dimensional problems in terms of random and
design variables.

@ Can make use of derivatives (available through adjoint
formulations) to expedite inference

@ Can exploit various sequence of distributions (defined through
less-expensive, approximate models) to expedite computations

@ Open questions:

@ Can we identify all optima?
@ Can we actually estimate V (d)?
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