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Institut für Theoretische Physik T30f

Effective field theories for heavy
Majorana neutrinos in a thermal

bath

Simone Biondini
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Zusammenfassung

Schwere Majorana-Neutrinos treten in vielen Szenarien der Physik jenseits des Stan-
dardmodells auf: Im ursprünglichen See-Saw-Mechanismus liefern sie eine natürliche
Erklärung für die kleinen Massen der Neutrinos im Standardmodell, während sie im
Rahmen der einfachsten Leptogenesis-Modelle für die Baryonasymmetrie im Universum
verantwortlich sind. In dieser Doktorarbeit entwickeln wir eine effektive Feldtheorie für
nichtrelativistische Majorana-Teilchen, die analog ist zur effektiven Theorie für schwere
Quarks. Wie wenden die auf diese Weise erhaltene effektive Feldtheorie an, um die Rech-
nungen in einem heißen Medium durchzuführen, welche die früheren Stufen der Evolution
des Universums modellieren sollen. Insbesondere wenden wir dies auf den Fall an, in
dem schwere Majorana-Neutrinos in einem heißen und dichten Plasma der Standard-
modellteilchen zerfallen, dessen Temperatur viel kleiner ist, als die Masse der Majorana-
Neutrinos, aber immerhin viel großer ist, als die elektroschwache Skala. Die thermischen
Korrekturen zu der Zerfallsbreite, die in der effektiven Feldtheorie berechnet wurden,
stimmen mit den aktuellen Ergebnissen überein, welche mit Hilfe von anderen Methoden
gewonnen wurden, wobei die hier vorgestellte Herleitung einfacher zu sein scheint. Indem
wir dieselbe Hierarchie zwischen den Massen der schweren Neutrinos und der Temper-
atur annehmen, berechnen wir systematisch die thermischen Korrekturen zu den direkten
und indirekten CP-Asymmetrien in Zerfällen der Majorana-Neutrinos. Diese gehen als
Schlüsselelemente in die Gleichungen ein, welche die thermodynamische Evolution der
induzierten Leptonenasymmetrie beschreiben, welche eventuell zu der Baryonenasym-
metrie im Universum führt. Wir betrachten den Fall von zwei Majorana-Neutrinos mit
nahezu entarteten Massen, was eine resonante Verstärkung der CP-Asymmetrie zulässt,
sowie ein hierarchisches Spektrum bei dem ein schweres Neutrino deutlich leichter ist,
als die anderen Spezies. Flavoureffekte werden ebenfalls bei der Herleitung der CP-
Asymmetrien bei endlicher Temperatur berücksichtigt. Die hier vorgestellte effektive
Feldtheorie eignet sich auch für eine Vielzahl von unterschiedlichen Modellen, welche
nichtrelativistische Majorana-Fermionen beinhalten.

Abstract

Heavy Majorana neutrinos enter in many scenarios of physics beyond the Standard
Model: in the original seesaw mechanism they provide a natural explanation for the small
masses of the Standard Model neutrinos and in the simplest leptogenesis framework they
are at the origin of the baryon asymmetry in the universe. In this thesis, we develop
an effective field theory for non-relativistic Majorana particles, which is analogous to
the heavy-quark effective theory. We apply the effective field theory so obtained to
address calculations in a hot medium which models the early stages of the universe
evolution. In particular, we apply it to the case of a heavy Majorana neutrino decaying
in a hot plasma of Standard Model particles, whose temperature is much smaller than
the mass of the Majorana neutrino but still much larger than the electroweak scale.
The thermal corrections to the decay width computed in the effective field theory agree
with recent results obtained using different methods, whereas the derivation appears
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to be simpler. Assuming the same hierarchy between heavy neutrino masses and the
temperature, we compute systematically thermal corrections to the direct and indirect
CP asymmetries in the Majorana neutrino decays. These are key ingredients entering
the equations that describe the thermodynamic evolution of the induced lepton-number
asymmetry eventually leading to the baryon asymmetry in the universe. We consider
the case of two Majorana neutrinos with nearly degenerate masses, that allows for a
resonant enhancement of the CP asymmetry, and a hierarchical spectrum with one
heavy neutrino much lighter than the other neutrino species. Flavour effects are also
taken into account in the derivation of the CP asymmetries at finite temperature. The
effective field theory presented here is suitable to be used for a variety of different models
involving non-relativistic Majorana fermions.
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Introduction

Neutrino flavour oscillations, the large matter-antimatter asymmetry of the universe and
dark matter are commonly interpreted as major experimental observations that require
going beyond the Standard Model (SM) of particle physics. Among the many possible
extensions of the SM that have been proposed, a minimal extension would consist in
the inclusion of some generations of right-handed neutrinos. Right-handed neutrinos
are singlet under the SM gauge groups, therefore they are often called sterile neutrinos.
Models have been considered with different sterile neutrino generations and with neutrino
masses spanning from the eV to 1015 GeV scale. We refer to [1, 2] for recent reviews
and a large body of references therein.

The experimental observation of neutrino mixing [3, 4] implies that neutrinos carry a
finite mass. A simple model capable of giving mass to the observed SM neutrinos and at
the same time providing a natural explanation for its smallness is the seesaw mechanism
originally proposed in [5–7]. In this model, right-handed neutrinos, whose mass, M , is
much larger than the electroweak scale, MW , are coupled to lepton doublets like right-
handed leptons in the SM are. The small ratio MW /M ensures the existence of very light
mass eigenstates that may be identified with the observed light neutrinos. Concerning
the baryon asymmetry of the universe, although the SM contains all the requirements
necessary to dynamically generate the asymmetry, it fails to explain an asymmetry as
large as the one observed [8], and now accurately determined by cosmic microwave
background anisotropy measurements [9, 10]. Baryogenesis through leptogenesis in the
original formulation of [11] is a possible mechanism to explain the baryon asymmetry. In
this scenario, heavy right-handed neutrinos provide both a source of lepton number and
CP violation, moreover, they can be out of equilibrium at temperatures where the SM
particles are still thermalized. Finally, together with many other candidates [12], light
right-handed neutrinos, minimally coupled to SM particles like in the seesaw mechanism,
may provide suitable candidates for dark-matter particles [13].

Heavy right-handed neutrinos play therefore a crucial role in models trying to explain
the neutrino masses and mass hierarchy, and in leptogenesis. What qualifies a neutrino
as heavy in this context is that its mass is much larger than the electroweak scale,
and consequently of any SM particle. This allows for a temperature window in the
early universe, where the temperature is larger than the electroweak scale, but much
smaller than the neutrino mass. In this temperature range the heavy neutrino is out of
equilibrium, and therefore contributing to the lepton asymmetry of the universe, while
the SM particles may be seen as part of an in-equilibrium plasma at a temperature T .
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For such temperatures the relevant hierarchy of energy scales is M � T � MW and
it calls for a non-relativistic treatment of the heavy neutrino. Because right-handed
neutrinos can be embedded into Majorana fields, we may want to construct a non-
relativistic effective field theory (EFT) for Majorana fermions along the same line as
a non-relativistic EFT for heavy quarks, the heavy quark effective theory (HQET),
has been built for Dirac fermions [14, 15]. The construction and the application to
leptogenesis of an EFT for Majorana fermions is the original part of the present thesis.

It is a fundamental aspect of leptogenesis to take place during the early stages of the
universe evolution. Therefore Majorana neutrinos are part of a thermal bath made of
SM relativistic degrees of freedom. Interactions with the medium modify the neutrino
dynamics (thermal production rate, mass, ...) and affect the thermodynamic evolution
of the lepton asymmetry. Taking into account properly thermal effects can be achieved
in the framework of quantum field theories at finite temperature. The derivation of
observables at finite temperature poses both conceptual and technical challenges. The
thermal production rate of right-handed neutrinos has been recently studied in [16] in the
relativistic and ultra-relativistic regimes. The non-relativistic regime also turns out to
be interesting for leptogenesis since it is conceivable that the CP asymmetry is effectively
generated when the temperature of the plasma drops below the heavy-neutrino mass. In
this regime the thermal production rate for heavy Majorana neutrinos has been addressed
in [17, 18]. A two-loop thermal field theory computation is necessary to describe the
processes that account for the presence of a heat bath, namely a medium made of SM
particles. The neutrino production rate is then expressed as a series in the SM couplings
and powers of T/M .

In the non-relativistic regime, where the EFT approach may be used, we show how to
simplify the derivation of the neutrino production rate in terms of the neutrino thermal
width as the pole of the heavy-neutrino propagator [19]. The advantages of an EFT
treatment for heavy particles over exploiting the hierarchy M � T in the course of
fully relativistic calculations in thermal field theory are manifold. First, the EFT makes
manifest, already at the Lagrangian level, the non-relativistic nature of the Majorana
particle and a natural power counting in T/M for corrections to a given observable
of interest. Second, it allows to separate the computation of relativistic and thermal
corrections: relativistic corrections are computed setting T = 0 and contribute to the
Wilson coefficients of the EFT, whereas thermal corrections are computed in the EFT as
small perturbations affecting the propagation of the non-relativistic Majorana particles
in the plasma.

Another key ingredient in leptogenesis is the CP asymmetry generated in heavy neu-
trino decays into leptons and antileptons in different amounts. Due to the CP violating
phases of the Yukawa couplings the decay rate into particles can differ from that into
antiparticles. Then the matter-antimatter imbalance in the lepton sector is partially
reprocessed into a baryon asymmetry by the sphaleron transitions in the SM [20]. The
CP asymmetry is originated from the interference between the tree-level and the one-
loop self-energy and vertex diagrams. The contribution from the interference with the
self-energy diagram is often called indirect contribution, while the one from the interfer-
ence with the vertex diagram is called direct contribution. The relative importance of
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the indirect and direct contributions depends on the heavy-neutrino mass spectrum. For
example, the vertex contribution is half of the self-energy contribution in the hierarchical
case, when the mass of one species of neutrinos is much lighter than the others [21, 22].
The situation is rather different when two heavy neutrinos are almost degenerate in
mass. In this case, the self-energy diagram can develop a resonant enhancement that
can be traced back to a mixing phenomenon similar to the one found in kaon physics
[23]. An analysis from first principles has been carried out in [24–26]. The main phe-
nomenological outcome is that the scale of the heavy right-handed neutrino masses can
be lowered down to energy scales of O(TeV) [27], welcoming collider searches.

A recent endeavour aims at treating the CP asymmetry in a finite temperature frame-
work, as for the right-handed neutrino production rate. The lepton-number asymmetry
has been considered for a generic heavy-neutrino mass spectrum, e.g., in [28–32] within
different approaches. Thermal effects are included using thermal masses for the Higgs
boson and leptons and taking into account thermal distributions for the Higgs boson and
leptons as decay products of the heavy Majorana neutrinos. In particular, resumming
thermal masses in the Higgs and lepton propagators is justified in the high temperature
regime T �M [33, 34]. To the best of our knowledge, such results are not on the same
footing of those obtained for the neutrino production rate [17–19], namely, the expansion
in the SM couplings has not been included in the CP asymmetry.

The main difficulty in including systematically interactions involving SM particles of
the heat bath is due to the technical complexity of the required calculation. Indeed a
three-loop calculation in thermal field theory would be needed. Facing the computation
directly in a fully relativistic field theory seems, to date, not an affordable task. The
state of the art can be found in [35], where the most complicated two-loop topology
and the corresponding master integrals at finite temperature are discussed. If we give
up insisting on a fully relativistic treatment and restrict ourselves to the non-relativistic
regime, the EFT developed for heavy Majorana neutrinos may be useful to address
thermal corrections to the CP asymmetry. The three-loop thermal calculation of the
original theory splits into the calculation of the imaginary parts of two-loop diagrams
that match the Wilson coefficients of the effective operators of the EFT, a calculation
that can be performed in vacuum, and the calculation of a thermal one-loop diagram
in the EFT. The program is pretty much close to that carried out for the right-handed
neutrino production rate apart going one loop higher in the matching. In its range of
applicability, the EFT framework provides a significantly simpler method of calculation
and most importantly it provides a way to address systematically thermal corrections
to the CP asymmetry in leptogenesis. The method is applied for two heavy neutrinos
with nearly degenerate masses in [36], whereas the hierarchical case is studied in [37].

The outline of the thesis is as follows. In chapter 1 the origin of the observed baryon
asymmetry is discussed in the contest of the early universe. The basic requirements for
any particle physics model to generate a matter-antimatter imbalance are also addressed.
Then baryogenesis via leptogenesis is introduced in chapter 2, where the simplest real-
ization of thermal leptogenesis in its original formulation by Fukugita and Yanagida is
presented. The right-handed neutrino production rate and CP asymmetry are introduced
that enter the Boltzmann equations governing the time evolution of heavy neutrinos and
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lepton-asymmetry number densities. The results obtained in the thesis rely on EFT and
thermal field theory tools. Therefore chapter 3 and 4 are respectively devoted to a brief
introduction to those subjects. The construction of the EFT for non-relativistic Ma-
jorana neutrinos together with the re-derivation of the thermal right-handed neutrino
production rate in the EFT is the content of chapter 5. The CP asymmetries at finite
temperature are studied in chapter 6 for two heavy neutrinos nearly degenerate in mass,
whereas the results for a hierarchical mass spectrum are collected in chapter 7. The
impact of lepton flavour on our approach is discussed in chapter 8, together with the
expressions of the CP asymmetries in the flavoured case. Finally some conclusions and
outlook are drawn, whereas technical details on the calculations are collected in the
appendices.
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Chapter 1

Baryon Asymmetry in the Early
Universe

In this chapter the basic concepts and notation related to the physics of the early uni-
verse are introduced. To the best of our knowledge, the universe is evolving today from
a very dense and hot phase. The Big-Bang cosmology and the thermal history of the
universe are discussed in section 1.1. The early universe sets the stage for many inter-
esting phenomena, such as the dark matter production, the generation of the baryon
asymmetry and the nucleosynthesis of light elements. In section 1.2 we address in some
detail the framework for a dynamical generation of the baryon asymmetry discussing the
Sakharov conditions together with a toy model to show their implementation. Finally
the baryon and lepton number violation within the SM is presented, which is induced by
the sphaleron processes in the early universe. The discussion aim at showing why one
has to invoke some new physics beyond the SM to quantitatively explain the observed
baryon asymmetry in the universe.

1.1 Big-Bang Cosmology

At least on large scale our universe appears to us as isotropic and homogeneous, and
this matter of fact is often attached to the so-called cosmological principle stating that
the universe looks the same to all observers. The expansion of the universe is a natural
consequence of any isotropic and homogeneous cosmological model based on General
Relativity (GR). The very fact that the universe expands today implies that it was
denser and warmer in the past. On the basis of GR and thermodynamics, we can
extrapolate that matter had higher and higher temperature and density at earlier and
earlier epochs, and that at most stages the entire system was in thermal equilibrium.
The Big-Bang would then be the initial point in space-time from which we can start to
study and address the early universe physics.

The formulation of the Big-bang model began in the 1940s with the idea that the
abundances of light chemical elements had a cosmological origins. In their pioneering
work [38, 39], George Gamow and his collaborators, Alpher and Herman, supposed
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that the universe was hot and dense enough to allow a nucleosynthetic processing of
the hydrogen, and has expanded and cooled down to the present state. Later in 1948,
Alpher and Herman predicted an important consequence of a hot universe [40, 41]: a
transition from a plasma of baryons, electrons and photons to a gas of atoms and free
electromagnetic radiation. At this stage the atomic gas gets transparent to photons, and
a relic background radiation is expected to be associated with this transition. Indeed the
Cosmic Microwave Background (CMB) was detected sixteen years after its prediction
[42] and it has been the first experimental proof that our universe had a hot past.

1.1.1 Dynamics of an expanding universe

We address briefly the dynamics of an expanding universe by using GR. We aim at
capturing the main features relevant to our discussion: in the past the universe was
smaller, denser and hotter. We focus on the epoch in which the universe was filled with
relativistic particles, namely with typical momenta much bigger than their mass. The
present discussion follows standard text book derivations, such as [43].

Starting from the observation of an isotropic and homogeneous universe, its overall
geometry can be described in terms of few independent parameters entering the Einstein
equations of GR. In particular we start from the well known equation

Rµν −
1

2
gµνR = 8πGTµν , (1.1)

that connects the space-time geometry with the energy content of the universe, where
Rµν is the Ricci tensor, R is the Ricci scalar, Tµν is the energy-momentum tensor and
G is the gravitational constant. Natural units c = ~ = 1 are adopted throughout the
thesis. One can find the explicit form of (1.1) for an isotropic and homogeneous metric,
known as Friedmann-Lemaitre-Robertson-Walker (FLRW) metric:

ds2 = dt2 − a(t)

[
dr2

1− κr2
+ r2(dθ2 + sin2 θ dϕ2)

]
, (1.2)

which has a maximally symmetric 3-D subspace of a 4-D space-time. In eq. (1.2) t is the
time variable, (r, θ, ϕ) are the polar coordinates, κ is a constant related to the spacial
curvature. Its possible values are −1, 0 and +1 accommodating a 3-hyperboloid, a 3-
plane and a 3-sphere respectively and describing an open, flat or close universe. The
quantity a(t) is called scale factor and it measures how rapidly the universe expands
through the definition of the Hubble parameter

H(t) =
ȧ(t)

a(t)
, (1.3)

where the dot stands for the time derivative. Assuming a FLRW geometry the left-hand
side of eq. (1.1) becomes (the 00 component)

R00 −
1

2
R = 3

(
ȧ2

a2
+
κ

a2

)
. (1.4)
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Let us now consider the energy momentum tensor on right-hand side in eq. (1.1).
We notice that, for cosmological epochs relevant to us, the content of the universe can
be described as a homogeneous fluid with energy density ε(t) and pressure p(t). If we
consider this fluid as a whole at rest with respect to a comoving reference frame, then the
only non-zero component of the fluid velocity, uµ, is u0 = 1. Hence, the 00 component
of the energy momentum tensor gives

T00 = (ε+ p)u0u0 − g00p = ε . (1.5)

Combining (1.4) and (1.5) we obtain the Friedmann equation:(
ȧ

a

)2

=
8πG

3
ε− κ

a2
, (1.6)

that relates the rate of the cosmological expansion with the total energy density, ε, and
space curvature, κ. The Friedmann equation has to be supplemented with an additional
equation since two unknown functions of time appear: a(t) and ε(t). That equation can
be obtain from the covariant conservation of the energy momentum tensor Tµν , that
brings to

ε̇+ 3
ȧ

a
(ε+ p) = 0 . (1.7)

Last but not the least, we add the equation of state of matter. This is necessary to close
the system of equations that governs the universe expansion, and it can be written as
follows

p = p(ε) , (1.8)

enforcing the pressure to be some function of the energy density. The equation of state
(1.8) is not a consequence of GR.

Since we are going to deal with a heat bath of SM particles at high temperatures,
it is instructive to inspect more closely the Friedmann equation in the case the universe
consists, almost entirely, of relativistic degrees of freedom. Indeed we want to study
the dynamics of very heavy particles inducing a baryon asymmetry in a background of
either massless particles or with a mass much smaller than the typical three-momentum
scale, provided by the temperature of the plasma, T . This epoch in the early universe is
often denoted as radiation dominated era. In the case of a plasma made almost entirely
of relativistic particles, the equation of state in (1.8) reads:

p =
ε

3
. (1.9)

We further assume a flat geometry, κ = 0, which is indeed very close to the real universe,
so that the Friedmann equation (1.6) becomes(

ȧ

a

)2

=
8πG

3
ε . (1.10)
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Inserting the equation of state (1.9) into (1.7) we obtain for the energy density and
Friedmann equation in (1.10) respectively

ε =
K

a4
, (1.11)(

ȧ

a

)2

=
8π

3
G
K

a4
, (1.12)

where K is a constant that embeds the energy density and scale factor at some initial
time t0. One can easily find from (1.12) that a(t) ∝

√
t and hence the Hubble rate

is H = 1/(2t). The energy density as a function of time can be obtained from the
Friedmann equation (1.10), once the scale factor a(t) has been eliminated in favour of t:

ε =
3

8πG
H2 =

3

32πG

1

t2
. (1.13)

Already from this last simple relation we see that the smaller the age of the universe the
bigger the energy density.

It is useful to relate the Hubble parameter with the temperature of the universe. This
will help to clarify that earlier times correspond to higher temperatures. Considering a
relativistic massless particle specie, labelled with the subscript i, as part of a heat bath
in thermal equilibrium and neglecting chemical potentials, the corresponding energy
density reads

εi(T ) = gi

∫
d3p

(2π)3
p fi(p) = gi

{
π2

30 T
4 , (boson) ,

7
8
π2

30 T
4 , (fermion) .

(1.14)

In thermal equilibrium the distribution fi(p) in (1.14) is either the Bose-Einstein or the
Fermi-Dirac distribution, namely

nB =
1

eβE(p) − 1
, nF =

1

eβE(p) + 1
, (1.15)

where E(p) is the energy of the particle, β = 1/T and written in a reference frame at rest
with respect to the thermal bath. For highly relativistic particles the energy is E(p) = p
and p ≡ |p| stands for the modulo of the three-momentum of the particle with internal
degree of freedom gi (for example spin polarizations). Hence for a thermal bath made
of different relativistic particle species, the total energy density is

ε =

(∑
i

gb,i +
7

8

∑
i

gf,i

)
π2

30
T 4 = g∗

π2

30
T 4 , (1.16)

where we define the effective number of degrees of freedom, g∗, as the sum over bosonic,
gb,i, and fermionic, gf,i, degrees of freedom (the latter weighted for the statistical fac-
tor 7/8 coming from the integration of the Fermi-Dirac distribution). In general g∗ is
temperature dependent because the number of relativistic particle species may change
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during the universe evolution. Now we rewrite eq. (1.13) substituting the expression for
the energy density in (1.16) as follows

H =
T 2

M∗Pl
, (1.17)

where we used G = M−2
Pl , where MPl is the Planck mass, and the definition of the

effective Planck mass, which depends on the number of effective degrees of freedom:

M∗Pl =

√
90

8π3g∗
MPl '

1

1.66
√
g∗
MPl . (1.18)

We notice that M∗Pl is temperature dependent because it is a function of g∗. This depen-
dence is rather weak and it is a good approximation to take M∗Pl as a constant discussing
the early universe at some stage of its evolution. Finally by comparing eq. (1.11) and
(1.16) we obtain

T (t) ∝ 1

a(t)
, (1.19)

where the relation holds exactly when the number of relativistic degrees of freedom does
not change over the considered period of time. Due to the weak dependence on g∗ with
the temperature, the relation (1.19) provides an important observation: at a smaller
scale factor corresponds a higher temperature. In summary we say that going back in
time the universe was smaller, denser and warmer.

Let us conclude this section with a brief discussion about thermal equilibrium. We are
going to consider processes that occur in an expanding universe filled with particles. The
rates of interactions between these particles are often much higher than the expansion
rate of the universe, so that the cosmic medium is in thermal equilibrium at any moment
of time. However, we note that as a rule of thumb the most interesting periods in the
cosmological evolution are those when one or another reaction goes out of equilibrium.
In this case the abundance of some particle species freezes out and decouples from the
heat bath. Nevertheless the laws of equilibrium thermodynamics are still useful since
they enable us to estimate the time of departure from equilibrium and determine the
direction of non-equilibrium processes. Moreover most of the constituents of the heat
bath, understood as a background for a given process of interest deviating the equilibrium
conditions, are in thermal equilibrium.

The thermodynamical description of a system with various particle species is usually
made in terms of a chemical potential µ for each type of particle. Given the reaction
involving different particles labelled with Ai and Bj as follows

A1 +A2 + ... +An = B1 +B2 + ... +Bm , (1.20)

the corresponding chemical potentials in thermal equilibrium, or better in chemical equi-
librium, obey to the following relation

µA1 + µA2 + ... + µAn = µB1 + µB2 + ... + µBm . (1.21)
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For example the chemical potential of the photon is zero and for a particle and its
corresponding antiparticle the chemical potentials are the same but opposite in sign.
Let us consider the process e+e− → 2γ. We say that it is in equilibrium if it is equally
likely as the back reaction 2γ → e+e−.

Being the particle interactions in the thermal plasma fairly weak, we can take
the equilibrium distributions to be the Bose–Einstein and Fermi–Dirac ones, as antici-
pated when writing (1.15). Upon integrating the distribution function over the three-
momentum one obtains the corresponding number density of the particle species i

ni = gi

∫
d3p

(2π)3
fi(E(p)) , (1.22)

where fi can be either nB or nF in (1.15) and gi are the internal degrees of freedom of
the particle. For example for the photons one finds (mγ = 0 and µγ = 0)

nγ =
2T 3

π2
ζ(3) , (1.23)

where ζ(3) = 1.202, being ζ(x) the Riemann zeta function. More details on the thermo-
dynamics of the early universe can be found e. g. in [43] or in the appendix of [33].

1.1.2 Brief thermal history of the universe

We discussed how the cosmological principle leads to an expanding universe with a hot
past. Going back in time means looking at a smaller and smaller universe filled with
particles at higher and higher temperatures. We can pin point some relevant periods
in the universe evolution, shown in figure 1.1, and we aim at discussing them briefly in
order to arrive at the topic of interest: the generation of the baryon asymmetry in the
universe.

We start with the recombination period, also called photon decoupling or last scat-
tering. The plasma of hadrons, mainly hydrogen, electrons and photons turns into a
gas of atoms. Before recombination the temperature was too high to allow for bound
states of nuclei and electrons, so that the photons were continuously scattered off the
charged particles and trapped in the hot plasma. The transition temperature from the
plasma to the gas of atoms can be naively estimated to be of order of T ∼10 eV, even
though more accurate analysis give fraction of the eV scale, T ∼ 0.3 [43]. From this mo-
ment onwards, the cross section with neutral atoms is so small that the average photon
has not interacted with matter ever since: the medium became transparent to photons.
The CMB carries information about this very moment, giving access to the universe
when its temperature was about 3000 K (T ∼ 0.3 eV) and 370 000 years old. We have
already mentioned that the high degree of CMB isotropy shows that the Universe was
pretty much homogeneous at recombination: the density perturbations were comparable
with temperature fluctuations and were roughly of order δT/T ∼ 10−5. Nevertheless,
these perturbations have grown and have given rise to structures: first stars, then galax-
ies, then clusters of galaxies. The CMB provides the earliest direct probe of universe
structure that we can study in great detail.
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Proceeding back in time we find the Big-Bang Nucleosynthesis (BBN) [44–47]. The
temperature is set by the nuclei biding energy, namely T ∼ 1 MeV. Accurate analysis
provides somewhat smaller temperatures though, namely fractions of MeV. From an
earlier phase where protons and neutrons were free in the hot plasma, as the temperature
dropped during the universe expansion, neutron capture and thermonuclear reactions
became possible. At this stage light elements were formed: mainly Deuterium, D, Helium
isotopes, 3He and 4He, and small amount of Lithium, 7Li. Quantitative calculations
based on GR and kinetic equations provides the primordial abundances of the element
species. These predictions depend on essentially a single parameter, called the baryon-
to-photon ratio and defined as follows

ηB =
nB − nB̄

nγ
, (1.24)

where nB, nB̄ and nγ are the baryon, antibaryon and photon number densities. The final
light-element abundances are highly sensitive to this parameter, which characterizes the
baryon-photon plasma during the nucleosynthesis process. The population of D and 3He
depends on ηB, and the cross sections of the processes leading to the formation of the
heavier elements, like the 4He, inherits the dependence on the baryon-to-photon ratio.
The larger ηB the later the process generating the 4He will stop, and consequently the
smaller the freeze-out abundances of the reacting elements D and 3He. Today the direct
measurement of primordial abundances is pretty accurate, and this is a cornerstone of
the early universe physics and the standard hot big bang cosmology. Indeed there is a
range of ηB which is consistent with all four abundances (D, 3He, 4He and 7Li), which
at (95% CL) reads [45]

4.7× 10−10 ≤ ηB ≤ 6.5× 10−10 . (1.25)

From now on, going back in time requires educated extrapolations. We cannot infer
solid statements on our universe when it was hotter than T ∼ MeV. However, it is
possible and desirable that higher temperatures occurred in our universe. From the
theoretical point of view this offers a very interesting scenario to test the laws of particle
physics to extreme conditions. As we shall see the explanation of a baryon asymmetry
naturally asks for some higher temperature regimes. By assuming that temperatures of
order of the GeV scale and higher were possible, we can list additional epoch comprising
phase transitions. Briefly we can summarize them as follows

1) A transition (better a crossover) from a hadron gas to a quark-gluon plasma where
the chiral symmetry is possibly restored. The transition temperature can be es-
timated from the QCD non-perturbative scale, ΛQCD ∼ 250 MeV , even though
more accurate simulations from lattice QCD provide the crossover to occur at
Tc = 154± 9 MeV [48]. For T ≥ Tc quarks and gluons are not bounded any more
in colourless hadrons, rather they interact as individual particles.

2) Electroweak phase transition. Above the electroweak scale, TW ∼ 100 GeV, the
Higgs condensate is absent and the W ’s and Z boson are then massless. The gauge
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inflationary

Figure 1.1: Stages of the universe evolution from inflation (bottom) to the present era
(top). Typical temperatures, on the left, and age of the universe, on the right, are shown.
Figure from [43].

group would be an unbroken SU(2)L×U(1)Y , and all the SM fermion are massless
as well. Further elaborations on the subject will be provided in the next sections.

3) A more speculative transition is that involving the grand unification scale. This is
related to the hypothesis that at higher energies, TGUT ∼ 1016, the fundamental
strong, weak and electromagnetic forces are unified into a single force. The super-
symmetric extension of the SM provides some motivation for such speculation.

The next cosmological period we can see in figure 1.1 is the reheating phase after
inflation. Here two relevant processes might have occurred that represent a contemporary
challenge in particle physics and cosmology: the generation of the baryon asymmetry
in the universe and the production of dark matter. Since we are going to discuss the
former in the upcoming section we spent some words here on the latter.

There are many experimental observations that suggest the presence of an additional
component in the matter content of the universe. At galactic and sub-galactic scales,
this evidence includes galactic rotation curves [49], the weak gravitational lensing of
distant galaxies by foreground structure [50], and the weak modulation of strong lensing
around individual massive elliptical galaxies [51]. Furthermore, velocity dispersions of
stars in some dwarf galaxies imply that they contain as much as one thousand times more
mass than can be assigned to their luminosity, and the same was observed quite some
time ago at the scale of galaxy clusters in 1933 by Fritz Zwicky [52]. On cosmological
scales, observations of the anisotropies in the cosmic microwave background have lead to
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a determination of the total matter density of Ωmath
2 = 0.1326± 0.0063 [9], where h is

the reduced Hubble constant. Moreover, this information combined with measurements
of the light chemical element abundances leads to an accurate estimate of the baryonic
density given by ΩBh

2 = 0.02273 ± 0.00062 [9]. Taken together, these observations
strongly suggest that more than 80% of the matter in the universe (by mass) consists of
non-luminous and non-baryonic particles, called dark matter.

On the other hand, there is almost total lack of information on dark matter from
the particle physics point of view leading to a difficult assessment of the production
mechanism in the early universe. Besides the fact that dark matter does not interact with
photons, our knowledge of its fundamental interaction is scarce. We demand dark matter
to be generated in the early stages of the universe evolution because it is an essential
ingredient for the clumping of matter in the primordial gravitational potential wells that
eventually formed stars, galaxies and large scale structures. The process of the formation
of large scale structures through the gravitational clustering of collisionless dark matter
particles can be studied using N-body simulations. When the observed structures in our
universe are compared to the results of cold dark matter simulations good agreement
has been found [53]. Here cold means the dark matter to be non-relativistic at time
of structure formation. Many candidates has been put forward e. g. gravitinos and
neutralinos from supersymmetry, axions and sterile neutrinos. We refer to [54–56] for
extensive reviews on dark matter candidates, as well as for discussions on dark matter
production mechanisms in the early universe.

Finally we comment on the epoch of reheating and how some of the issues related to
the Big-Bang Cosmology are treated. This stage comes right after the inflationary stage.
Many of the problems that affect the Big-Bang theory arise from the very special initial
conditions one has to require. At a qualitatively level, the Big-Bang model cannot explain
why our universe is so large, almost spatially flat, homogeneous and isotropic. Another
issue refers to the primordial density perturbations detected in the CMB, which are the
seeds for the generation of the matter structures we see today (stars, galaxies, clusters
and so on and so forth). The hot Big-Bang theory does not contain a way to generate
those perturbations and they have to be put “by hands”. The aforementioned problems
find an elegant solution in the inflationary model, according to which the hot phase of
the early universe was preceded by a phase of exponential expansion. An initially small
region of typical length of the Planck scale, lPl ∼ 1/MPl, was inflated to very large sizes
even larger than those of the visible present universe horizon. This explains eventually
the dilution of any initial anisotropy, the homogeneity and the flatness. Moreover the
model introduces a new field, the inflaton, which drives the exponential expansion and
after the inflation epoch ends, it transfers its energy into the ordinary matter that
populate the early universe. This is usually called the reheating phase. The primordial
matter and energy perturbations are understood as quantum fluctuations of the inflaton
field. The basic ideas of inflation were originally proposed by Guth [57] and Sato [58]
independently, which were reviewed and brought to the modern fashion by Linde [59],
and Albrecht and Steinhardt [60]. The inflationary epoch plays an important role with
respect to the baryon asymmetry in the universe, as we are going to discuss in the
upcoming section, and more in general it provides a reasonable explanation for the
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existence of a thermal bath of particles in the very early stages of the universe evolution.

1.2 Dynamical generation of the baryon asymmetry

Observations suggest that the number of baryons in the universe is different from the
number of antibaryons. The almost total absence of antimatter on Earth, in our solar
system and in cosmic rays indicates that the universe is baryonically asymmetric. A
more accurate reasoning could bring us to admit that matter and antimatter galaxies
could coexist in clusters. However we would expect a detectable background of photon
radiation coming from nucleus-antinucleus annihilation within the clusters [61]. This
argument can be further generalized to large hypothetical domains of matter an anti-
matter in the universe, but the missing observation of any induced distortion on the
CMB discards this possibility. As Cohen, de Rujula and Glashow have compellingly
argued, if there were to exist large amounts of antimatter in the universe they could
only be at a cosmological scale from us [62]. It therefore seems that our universe is
fundamentally matter-antimatter asymmetric.

There are observables to make this statement more quantitative. In particular we
refer to the baryon-to-photon ratio, already introduced in section 1.1, and we recall it
here with the experimental value attached

ηB =
nB − nB̄

nγ
= (6.21± 0.16)× 10−10 . (1.26)

Such precise measurement comes from the study of the CMB anisotropies [10]. As
regards the CMB analysis, the parameter ηB plays a crucial role in determining the
relative amplitudes of even and odd peaks of the power spectrum of the microwave
background. This is in turn related to the acoustic oscillations of the baryon-photon
fluid at the time of recombination. It is astonishing the high level of agreement with
an independent prediction: the abundances of the light elements provided by BBN.
As discussed in the previous section 1.1, the generation of elements like H, 3He, 4He
and 7Li occurred before the last scattering in a hot plasma. It is found that their
abundances can be obtained by an input of a single parameter, ηB. The range for this
parameter, predicted by BBN and written in (1.25), agrees with the value extracted
from the CMB analysis in (1.26) establishing an extraordinary matching between two
independent measurements.

The challenge both from the cosmology and particle physics side is to explain the
observed value in (1.26). The standard cosmological model dramatically fails in repro-
ducing even only the order of magnitude of the baryon-to-photon ratio if we start with a
matter-antimatter symmetric phase at high temperatures. Let us consider the reaction
p + p̄ ↔ 2γ, at temperature of the order of one GeV. Protons and neutrons constitute
the baryon content of the universe at this epoch. As the universe cools down the pro-
cess 2γ → p + p̄ becomes ineffective due to Boltzmann suppression, and therefore the
annihilation process p + p̄ → 2γ takes over. The same reactions stand for neutrons
and antineutrons. Eventually the number of baryons and antibaryons is strongly re-
duced with respect to the photon number density, a straightforward calculation provides
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[43, 63]
nB
nγ
≈ nB̄
nγ
≈ 10−18 , (1.27)

which is far too smaller than the value required for a successful nucleosynthesis, see
(1.25), and than the one in (1.26) from CMB analysis. It is hard to figure out processes at
temperatures below one GeV able to enhance the small ratio between baryon and photon
number densities induced by annihilations (an exception is provided by the Affleck-Dine
Baryogenesis [64]). Because of the strong disagreement between (1.26) and (1.27), we
come to the conclusion that a primordial matter-antimatter asymmetry had to exist
already before BBN, and more specifically at temperatures of the GeV scale.

The observed baryon asymmetry could be set as an initial condition for the universe
evolution. However, it would require a high fine tuning and the ad hoc baryon asymmetry
would have not survived the huge dilution induced by the inflationary epoch. This is
why the scenario of a dynamically generated baryon asymmetry is more appealing. The
dynamical generation of a baryon asymmetry in the context of quantum field theory is
called baryogenesis [65]. Indeed, quoting A. Riotto, “the guiding principle of modern
cosmology aims at explaining the initial conditions required by standard cosmology on
the basis of quantum field theories of elementary particle physics in a thermal bath” [61].

1.2.1 The Sakharov conditions

Assuming a vanishing initial matter-antimatter asymmetry, it can be dynamically gener-
ated in an expanding universe if the particle interactions and the cosmological evolution
satisfy the three Sakharov conditions [65]:

1) baryon number violation,

2) C and CP violation,

3) departure from thermal equilibrium.

In the following B stands for the baryon number understood as the total baryonic charge
of a given process. Any particle physics model that aims at generating an imbalance
between matter and antimatter has to account for the aforementioned necessary condi-
tions. Originally introduced in the framework of GUTs, we briefly discuss the Sakharov
conditions also in relation with the SM of particle of physics in order to show that all
the three requirements are fulfilled. However all attempts to reproduce quantitatively
the observed baryon asymmetry have failed within the SM.

Since we start from a baryon symmetric universe, we need processes that violate the
baryon (antibaryon) number to somehow evolve into a situation in which it holds ηB 6= 0.
Processes are required that change the number density of baryons and antibaryons en-
tering the definition of ηB . If C and CP are exact symmetries, then one can show that
the rate for any process which produces a baryon excess is equal to the rate of the com-
plementary process generating antibaryons. Hence no net imbalance can be produced.
CP violation can be implemented in a model either introducing complex phases in the
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Figure 1.2: Tree level diagrams for the decay processes in (1.30) and (1.31). The heavy
gauge bosons X and Y are the wiggled lines, solid lines stand for fermions. Similar
diagrams for the charge conjugate processes are not shown.

Lagrangian which cannot be reabsorbed by field redefinition (explicit breaking), or if
some Higgs field generates a complex vacuum expectation value (spontaneous breaking).

Of the three Sakharov conditions, the first two can be investigated only after a par-
ticle physics model is specified. The third one, the departure from thermal equilibrium,
can be discussed in a more general way. The baryon number B is odd under C and CP
discrete transformations. Using this property of B together with the requirement that
the Hamiltonian of the system commutes with the combination CPT, where T here is
the time-reversal discrete symmetry, the thermal average of B reads

〈B〉T ≡ 1

Z
tr
[
e−

H
T B
]

=
1

Z
tr
[
(CPT )(CPT )−1e−

H
T B
]

=
1

Z
tr
[
e−

H
T (CPT )−1B(CPT )

]
= − 1

Z
tr
[
e−

H
T B
]

= −〈B〉T . (1.28)

In (1.28) H and Z are the Hamiltonian and the partition function of the system respec-
tively (see also (4.2) in chapter 4 for more details on the partition function). Therefore
we see that in thermal equilibrium 〈B〉T = 0, and the same stands for the antibaryon
number. The outcome is the following: if we start with a baryonic symmetric phase,
processes in thermal equilibrium cannot alter the initial value for the baryon and an-
tibaryon number and hence ηB remains zero. Put in other words, processes generating
a net baryon number are equally likely as those destroying it.

In order to illustrate the Sakharov conditions we choose a toy model, similar to the
one in [66], that is inspired to GUTs. Baryon number violation occurs naturally in
this class of models because quarks and leptons are embedded in the same irreducible
representations. Then heavy gauge bosons and scalars are introduced that can mediate
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interactions leptons and quarks at the same vertex. The toy model consists of some
exotic particles, the gauge bosons X and Y, and four massless fermions, f1, ...f4, each of
the latter carrying a baryon number B1, ..., B4 respectively. The interaction Lagrangian
of the toy model reads

Ltoy
int = g1X f̄2f1 + g2X f̄4f3 + g3Y f̄1f3 + g4Y f̄2f4 + h.c. , (1.29)

where g1, ..., g4 are dimensionless complex coupling constants. The induced decay pro-
cesses are

X → f̄1 + f2 , X → f̄3 + f4 , (1.30)

Y → f̄3 + f1 , Y → f̄4 + f2 . (1.31)

The tree level diagrams for the decay processes are shown in figure 1.2. Let us discuss the
decay rates. At tree level we can parametrize the decay rate for the process X → f̄1 +f2

as follows
Γ(0)(X → f̄1 + f2) = |g1|2AX , (1.32)

where AX contains the two-body phase space factor (the subscript stands for a decaying
X ). For the charge conjugate process, that involves the particles f1 and f̄2 in the final
state, we have

Γ(0)(X̄ → f1 + f̄2) = |g∗1|2AX̄ = |g1|2AX , (1.33)

and we conclude that no asymmetry can be generated at tree level as the kinematic
factors AX and AX̄ are equal. However the first Sakharov condition is already met: we
start from a gauge boson with zero baryon number and we end up with a final state
with a net baryon number B2 +B1 = B2 −B1 for the first process in (1.30). Of course
one has to require B1 6= B2.

Clearly we have to go beyond tree level to obtain different rates for the decay of
X . The one-loop diagrams describing the decay processes (1.30) are shown in figure 1.3,
upper raw. They are built by allowing for the exchange of a virtual heavy scalar Y. This
time the decay width also comes from the interference between tree level and a one-loop
amplitudes that give (we pick only the O(g4) terms)

Γ(1)(X → f̄1 + f2) = g1g
∗
2g3g

∗
4 B
∗
X + g∗1g2g

∗
3g4BX , (1.34)

Γ(1)(X̄ → f1 + f̄2) = g1g
∗
2g3g

∗
4 CX̄ + g∗1g2g

∗
3g4C

∗
X̄ , (1.35)

where BX and CX̄ comprise both the two-body phase space and the one-loop amplitude
corresponding to the triangle topology in figure 1.3. In general the loop amplitude is
a complex quantity, the imaginary part corresponding to the sum of the cuts that put
different particles simultaneously on shell. The explicit calculation gives BX = CX̄ . We
further elaborate the details of a very similar derivation in the case of leptogenesis in
chapter 6. Then we do find a non-vanishing difference in the decay rates

Γ(X → f̄1 + f2)− Γ(X̄ → f1 + f̄2) = 4 Im(g1g
∗
2g3g

∗
4) Im(BX ) , (1.36)

where the decay rates Γ(X → f̄1 + f2) and Γ(X̄ → f1 + f̄2) are understood as the
sum of the tree-level and one-loop contributions as given in eqs. (1.32) and (1.33), and
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Figure 1.3: One-loop diagrams for the decay processes in (1.30) and (1.31). Similar
diagrams for the charge conjugate processes can be drawn.

in eqs. (1.34) and (1.35) respectively. Similarly we have for the other decay mode the
result

Γ(X → f̄3 + f4)− Γ(X̄ → f3 + f̄4) = −4 Im(g1g
∗
2g3g

∗
4) Im(BX ) , (1.37)

the derivation follows closely the one outlined. The loop amplitude in (1.37) is the
same as in (1.36) because the very same particle content (the massless fermions and the
intermediate gauge boson Y) propagates in the triangle topologies a) and b) of figure
1.3. Besides the loop diagrams in the first raw in figure 1.3, one could also consider those
with the X as internal propagating gauge boson. However, this would lead to vanishing
coupling combinations, such as Im(g1g

∗
1g2g

∗
2) = 0, and eventually provide a vanishing

difference in (1.36) and (1.37). It is now clear how the second Sakharov condition
enters: the decay rates for the process X → f̄1 + f2 and X̄ → f1 + f̄2 can be different
due to the interference between tree-level and one-loop diagrams that involve C and
CP violating processes. Moreover, there have to be two distinct heavy gauge bosons,
coupling differently to the fermions and being heavier than the sum of the decaying
products. The latter condition ensures the loop amplitude to have a non vanishing
imaginary part, Im(BX ).

The baryon asymmetry generated in the decays of the heavy gauge boson X can be
expressed as follows

εX =
(B2 −B1)∆Γ(X → f̄1 + f2) + (B4 −B3)Γ(X → f̄3 + f4)

ΓX
, (1.38)

where we define

∆Γ(X → f̄1 + f2) = Γ(X → f̄1 + f2)− Γ(X̄ → f1 + f̄2) , (1.39)

∆Γ(X → f̄3 + f4) = Γ(X → f̄3 + f4)− Γ(X̄ → f3 + f̄4) , (1.40)
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and the total width reads

ΓX = Γ(X → f̄1 + f2) + Γ(X̄ → f1 + f̄2)

+ Γ(X → f̄3 + f4) + Γ(X̄ → f3 + f̄4) . (1.41)

Finally by using the results in (1.36) and (1.37) we obtain for the baryon asymmetry
generated in the X decays

εX =
4

ΓX
[(B2 −B1)− (B4 −B3)] Im(g1g

∗
2g3g

∗
4) Im(BX ) , (1.42)

where we remind that BX is not the baryon number of the heavy gauge boson, but
the factor containing the loop amplitude. In order to have a non vanishing baryon
asymmetry (1.42), both the couplings combination and the loop amplitude have to be
complex quantities.

It is interesting to note that the two heavy gauge bosons cannot be degenerate in
mass. Indeed the baryon asymmetry for the Y heavy gauge boson reads

εY =
4

ΓY
[(B1 −B3)− (B2 −B4)] Im(g1g

∗
2g3g

∗
4) Im(B′Y) , (1.43)

where B′Y is the loop amplitude for a decaying Y boson. If the gauge bosons are mass
degenerate then the condition BX = B′Y holds, and then εX + εY = 0 holds as well. This
is because the two-particle phase space is the same in the decay processes for X and Y,
and the only difference in the corresponding loop amplitudes is the mass of the heavy
intermediate boson (see figure 1.3), whereas all the fermions are massless.

Now we come to the third Sakharov condition: the departure from thermal equi-
librium. In this toy model such condition is achieved as follows. Let us consider the
heavy boson X . If the decay rate ΓX is smaller than the expansion rate of the universe,
the particles X cannot decay on the time scale of the universe expansion. Then the
interactions governing the X dynamics are so weak that they cannot catch up with the
expanding system and the heavy gauge bosons X decouple from the thermal plasma. If
the decoupling occurs when the particles are still relativistic, namely for MX < T , the
heavy bosons remain as abundant as photons, nX ≈ nX̄ ∝ T 3 (see eq. (1.23)), also at
later times. Therefore, at time such that MX ' T , they populate the universe with an
abundance much larger than the equilibrium one:

nX ≈ nX̄ ≈ (MXT )
3
2 e−

MX
T � nγ , (1.44)

which holds for T ≤ MX and it is Boltzmann suppressed when MX < T . The heavy
particles are more abundant than their corresponding equilibrium population at temper-
ature below MX : this is exactly what out-of-equilibrium dynamics means in this class
of models. In other words, the heavy gauge bosons generate the baryon asymmetry
through their CP violating decays and the back reactions, the inverse decays, are expo-
nentially suppressed because the massless fermions populate the thermal plasma with
mean energies much smaller than the heavy states mass, MX .
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In general the out-of-equilibrium condition requires the typical interaction rate for
the gauge boson X to be

ΓX < H|T=MX
, (1.45)

where H stands for the Hubble rate as given in (1.17). Evaluating H at T = MX , one
can obtain from (1.45) a condition on the model parameters. The decay rate goes like
ΓX ∼ |gi|2MX and if the couplings are taken as spanning from 10−2 to 10−3, and g∗ is
taken at about 102, we obtain [61]

MX >
[
10−4, 10−3

]
MPl ≈

[
1015, 1016

]
GeV . (1.46)

Such energy scale window sets the typical mass of the heavy states in GUT models,
within which the first convincing realization for baryogenesis has been proposed [65].
Quite recently it has been suggested that the reheating temperature after the inflation
cannot be higher than 1015 GeV as accounted for the CMB analysis [67]. The ther-
mal production of these heavy particles predicted by GUT models seems then seriously
affected, undermining the very basis of such scenario for a successful baryogenesis.

1.2.2 Baryogenesis: a call for New Physics

Baryogenesis can already be implemented in SM framework, however, there are severe
limitations in providing a quantitative solution for the baryon asymmetry generation.
Indeed in order to reproduce the experimental value in (1.26) some new physics is needed
together with an interesting and challenging overlap between cosmology and particle
physics. As anticipated before, the SM contains all the ingredients required by the
Sakharov conditions. The following discussion will also help to set some important and
relevant aspects for the topic in the next chapter: baryogenesis via leptogenesis.

Let us start with the baryon number violation in the electroweak theory. In the SM
the baryon and lepton number, B and L, are called accidental symmetries. They are
individually conserved at tree level but are violated at quantum level via Adler-Bell-
Jackiw triangular anomalies [68, 69]. More specifically in 1976 t’Hooft realized that
non-perturbative effects [70], called instantons, may induce processes which violate the
combination (B+L) but conserve (B−L). The probability for these processes to occur
today in our universe is pretty much low, being exponentially suppressed. However, in
the early stages of the universe evolution, namely at much higher temperatures, baryon
and lepton number violation processes could occur more likely enough to play a role in
baryogenesis. Let us express the baryon and lepton numbers as follows

B =

∫
d3xJB0 (x) , L =

∫
d3xJL0 (x) , (1.47)

where the currents read

JBµ =
1

3

∑
i

(
Q̄iγµPLQi + ŪiγµPRUi + D̄iγµPRDi

)
, (1.48)

JLµ =
∑
i

(
L̄iγµPLLi + ĒiγµPREi

)
. (1.49)
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Q1 =

(
u
d

)
L

uR dR L1 =

(
νe
e

)
L

eR

B
L

1/3
0

1/3
0

1/3
0

0
1

0
1

Table 1.1: SM fermions and their baryon and lepton numbers for the first generation.
The particles are given as SU(2)L doublets and singlets.

The fields Qi stand for the SU(2)L doublet quarks, Ui and Di for the SU(2)L singlets
quarks, then Li refers to the SU(2)L lepton doublets and Ei for the SU(2)L lepton
singlets. The left- and right-handed chiral projectors are PL = (1 − γ5)/2 and PR =
(1 + γ5)/2, the index i refers to the fermion generation. For example we have E1 = e,
E2 = µ and L3 = (ντ , τ)T for leptons, U1, U2 and U3 are the SU(2)L singlet up, charm
and top quarks respectively. We summarize the B and L numbers in table 1.1 for the
first generation (they read the same for the second and third generation). The baryon
and lepton number are classically conserved but the divergences of the currents in (1.48)
and (1.49) do not vanish at quantum level

∂µJBµ = ∂µJLµ =
Nf

32π2

(
g2W a

µνW̃
a,µν − g′2FµνF̃µν

)
, (1.50)

where W a
µν and Fµν are the SU(2)L and U(1)Y field strength tensors respectively, with

corresponding gauge couplings g and g′, and Nf is the number of the fermion generations,

W̃ a,µν and F̃µν the dual field strength tensors. From (1.50) it is clear that

∂µ(JBµ − JLµ ) = 0 , (1.51)

so that (B − L) is conserved. On the other hand, the combination (B + L) is violated
and we have

∂µ(JBµ + JLµ ) = 2Nf∂µKµ , (1.52)

with

Kµ = − g2

32π2
2εµνρσW a

ν (∂ρW
a
σ +

g

3
εabcW b

ρW
c
σ)

+
g′2

32π2
εµνρσBνBρσ . (1.53)

It is important to notice that the violation of the current combination (1.52) is
related to the vacuum structure of the electroweak theory. There are infinite degenerate
ground states separated by a potential barrier as shown in figure 1.4, and a topological
charge called Chern-Simons number, Ncs, is attached to each of the vacua. The change
of the baryon (lepton) number with time can be then associated with the change in the
Chern-Simons number, that is in turn due to a change from a vacuum state to another:

∆B ≡ B(tf )−B(ti) = Nf [Ncs(tf )−Ncs(ti)] = Nf∆Ncs , (1.54)
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Figure 1.4: Vacuum structure of the electroweak theory, three different degenerate state
are shown. Chern-Simon numbers, Ncs = 0,±1, are along the x axis and are related to
the field configurations. The sphaleron energy corresponds to the height of the barrier.
At T = 0 transitions are possible only via tunnelling, whereas at finite temperature they
can be induced by thermal fluctuations. Figure adapted from [71].

where ti and tf are the initial and final time respectively and Nf the number of fermion
generations. Going from one ground state to another implies having ∆Ncs = ±1, ±2 ...
as also shown in figure 1.4. In the SM there are three fermion generations, so that
∆B = ∆L = Nf∆NCS = ±3n, with n a positive integer. That is to say that a vacuum
to vacuum transition changes ∆B and ∆L by multiples of three units, and each transition
generates 9 left-handed quarks (3 colors for each generation) and 3 left-handed leptons
(one per generation).

In a semi-classical view, the probability of going to one vacuum state to another is
determined by an instanton configuration. The transition rate has a very different form
whether it is calculated at zero temperature or at finite temperature. In the former
case, the probability of baryon and lepton non-conserving processes has been computed
by t’Hooft and it is highly suppressed by a factor e−4π/αW ≈ O(10−165) [70], where
αW = g2/(4π). The instantons do not threaten the stability of the proton [70]. In a
thermal bath the situation may be quite different. It was suggested by Kuzmin, Rubakov
and Shaposhnikov that transitions between vacua can be induced by thermal fluctuations
of the electroweak field configurations [20]. So instead of tunnelling from one vacuum
to another we may have a transition induced by thermal fluctuations over the barrier
(see figure 1.4). In the case temperatures are larger than the typical barrier height the
exponential T = 0 suppression is weakened and the (B + L) violating processes may
profuse and be in equilibrium in the expanding universe.

Finite temperature transitions among different ground states of the electroweak the-
ory are governed by the sphaleron configurations which are static configurations corre-
sponding to unstable solutions for the equation of motion of the theory [72]. The tran-
sition rate is quite different according to the corresponding temperature to be higher or
lower than TW , the temperature of the electroweak phase transition. In particular for
T < TEW one finds the transition rate per unit volume [73]

ΓB+L

V
= µM4

W

(
MW

αWT

)3

e
−
Esph
αWT , (1.55)

where MW is the W boson mass, µ a constant of order one and Esph ≡ MW (T )/aW is
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the sphaleron energy. The latter is temperature dependent through the finite temper-
ature expectation value of the Higgs boson. The rate is still pretty much suppressed
at temperatures below the electroweak scale. However the exponential suppression is
expected to vanish when the electroweak symmetry is restored. In the symmetric phase,
T > TEW the same rate has been found to be [74]

ΓB+L

V
∼ α5T 4 ln

1

αW
. (1.56)

Hence at temperature of order T ∼ 102 GeV, the baryon number violating processes
are not suppressed and are in equilibrium up to temperature of order O(1012) GeV [75].
The first Sakharov condition is satisfied in the early universe already within the SM.

Let us come to the C and CP violation in the SM. It is known that C is maximally
violated since only left-handed fermions couple to the SU(2) gauge fields. The CP vio-
lation was observed in the quark sector, more specifically in strange and beauty mesons
decays [76–78]. Then the second Sakharov condition is also fulfilled. However the CP
phases provided within the quark sector are far too small to account for ηB ∼ O(10−10).
In short, the only CP phase in the SM originates in the CKM matrix, connecting the
mass and interaction (electroweak) eigenstates of the left-handed quarks [79]. There is a
more quantitative way to express the amount of CP violation by means of the Jarlskog
invariant that comes out to be J ∼ O(10−20) [80]. Being not present any significant
enhancement of the baryon asymmetry due to processes within the SM in the early uni-
verse [81, 82], it seems impossible to fill the many orders of magnitude gap to reproduce
the baryon-to-photon ratio in eq. (1.26).

Let us come to the third Sakharov condition. The departure from thermal equilib-
rium in the SM is provided by the electroweak phase transition. This mechanism gives
the name to a class of models, which the SM belongs to, that provides the generation
of the baryon asymmetry: electroweak baryogenesis. However in order to provide a suf-
ficient deviation from equilibrium, the electroweak transition is required to be strongly
first order and this sets a severe bound on the Higgs mass, mφ ≤ 72 GeV [83]. Thus,
viable models of electroweak baryogenesis need a modification of the scalar potential
such that the nature of the electroweak phase transition is modified, together with new
sources of CP violation (for example see [84, 85]).

In summary, despite the Sakharov conditions are comprised in the SM, we can-
not achieve a successful baryogenesis. Additional sources of CP violation are invoked,
together with some alternative mechanism for a strong enough departure from ther-
mal equilibrium: the generation of the observed baryon asymmetry requires some new
physics. Besides GUT baryogenesis, briefly discussed in the toy model in section 1.2,
alternatives comprise Affleck–Dine mechanism [64] and spontaneous baryogenesis [86].
Another interesting and appealing framework is baryogenesis via leptogenesis [11] (see
Chapter 2). In this class of models an asymmetry is generated in the leptonic sec-
tor. Then due to the connection between baryon and lepton number provided by the
sphaleron transitions, the lepton asymmetry is partially reprocessed into a baryon one.
We already set the basis for leptogenesis discussing the toy model for GUT baryogenesis.
Indeed new heavy states are added to the SM particle content: in its original formu-
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lation, heavy neutrinos with a large Majorana mass. In the following we discuss how
baryon and lepton asymmetries can be related to each other.

1.2.3 Relating baryon and lepton asymmetries

In this section we deal with the relation between baryon and lepton number at high
temperatures. Beside being an interesting application of sphaleron transitions and equi-
librium dynamics, such discussion introduces a fundamental ingredient for leptogenesis.
Our aim is to show that a matter-antimatter imbalance stored in the baryon sector im-
plies a lepton asymmetry and viceversa. In the present discussion we stick to the SM
particle content and the derivation follows the one given in [71, 87].

Let us consider a weakly coupled plasma at temperature T . We can assign a chemical
potential µi to each of the quarks, leptons and Higgs field in the heat bath. Since there
are left-handed lepton and quark SU(2) doublets, right-handed quarks and lepton SU(2)
singlets (see table 1.1) and one Higgs doublet, we can assign 5Nf +1 chemical potentials,
where Nf stands for the number of fermion generations. If we consider the degrees of
freedom in the thermal bath as massless, the asymmetries in the number densities of
particle and antiparticles read

ni − n̄i =
giT

3

6

{
βµi +O((βµi)

3) ,

2βµi +O((βµi)
3) ,

(1.57)

where the first line holds for fermions, whereas the latter for bosons and gi stands for the
internal degrees of freedom of the particle (antiparticle). The key observation is that one
can deduce the particle-antiparticle asymmetries from the chemical potentials. We can
find some relations among the chemical potentials of the different particles participating
the interactions in the early universe [88]. Quarks, leptons and Higgs bosons interact
via Yukawa and gauge couplings and, in addition, via the non-perturbative sphaleron
processes. In thermal equilibrium all these processes yield constraints between the vari-
ous chemical potentials. The effective 12-fermion interactions induced by the sphalerons
lead to ∑

i

(3µQi + µLi) = 0 . (1.58)

where the sum runs over the quark and lepton generations (the meaning of the index is
the same as given in 1.2.2). The SU(3) QCD instanton processes [89], which generate an
effective interaction between left- and right-handed quarks, provide the following relation∑

i

(2µQi − µUi − µDi) = 0 . (1.59)

A third condition, valid at all temperatures, is obtained by requiring that the total
hypercharge of the plasma vanishes. From eq. (1.57) and the known hypercharges one
derives ∑

i

(
µQi + 2µUi − µDi − µLi − µEi +

2

Nf
µφ

)
= 0 , (1.60)
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where µφ is the chemical potential of the Higgs doublet (all the components have the
same chemical potential). The Yukawa interactions yield relations between the chemical
potentials of left-handed and right-handed fermions (with different flavours)

µQi − µDj − µφ = 0 , µQi − µUj + µφ = 0 , µLi − µEj − µφ = 0 . (1.61)

The relations (1.58)-(1.61) hold if the corresponding interactions are in thermal equi-
librium. In the temperature range 102 GeV < T < 1012 GeV, gauge interactions are
in equilibrium. On the other hand, Yukawa interactions are in equilibrium in a more
restricted temperature range that depends on the strength of the Yukawa couplings [88].
We ignore this slight complication in the present discussion.

We define the baryon- and lepton-asymmetries number density as follows according
to (1.57)

n∆B =
gB
6

∆B T 2 , n∆L =
gL
6

∆LT 2 , (1.62)

with

∆B =
∑
i

(2µQi + µUi + µDi) , (1.63)

∆L =
∑
i

(2µLi + µEi) . (1.64)

and we assume that the asymmetry in each generation is the same, e. g. µLe = µLµ =
µLτ ≡ µL. Then gB and gL are the degrees of freedom of the baryons and leptons. The
relations (1.58)-(1.61) can be solved them in terms of a single chemical potential. If one
takes µL the baryon and lepton asymmetries are found to be [87]

∆B = −4

3
NfµL , (1.65)

∆L =
14N2

f + 9Nf

6Nf + 3
µL . (1.66)

This implies the important connection between the ∆B, ∆(B−L) and ∆L asymmetries,
that reads [90]

∆B = cs∆(B − L) , (1.67)

∆L = (cs − 1)∆(B − L) , (1.68)

with

cs =
8Nf + 4

22Nf + 13
. (1.69)

Looking at (1.67) one finds that, in order to have a baryon asymmetry, B − L violating
interactions have to occur in the early universe. Moreover, since the B−L combination
is conserved by sphaleron interactions, the baryon asymmetry today is the same as the
one present at the freeze-out of the sphaleron processes. There is another way to look
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at the relations (1.67) and (1.68). An asymmetry generated in the lepton sector induces
automatically a baryon asymmetry when sphalerons are in equilibrium:

∆B =
cs

cs − 1
∆L. (1.70)

A baryon asymmetry can be achieved also in those models where only lepton number is
violated. This welcome the possibility to explain the generation of a matter-antimatter
imbalance via lepton violating processes, namely baryogenesis via leptogenesis.
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Chapter 2

Baryogenesis via Leptogenesis

The Sakharov conditions were first implemented in the contest of GUTs where heavy
scalar or gauge boson decays generate the imbalance between baryons and antibaryons.
However the necessary conditions for the generation of a matter-antimatter asymmetry
can be embedded in different scenarios besides GUT models. Indeed, one of the most
promising framework for explaining the baryon asymmetry in the universe is via leptoge-
nesis [11]. In its original formulation, the new heavy states are Majorana neutrinos with
large Majorana masses that decays into leptons and antileptons in different amounts.
The net asymmetry in the lepton sector is then partially reprocessed into a baryon one
through the sphaleron transitions in the SM [20], that connect the baryon and lepton
number.

The increasing popularity of leptogenesis is also due to its deep connection with
neutrino physics. The recent amount of literature on leptogenesis has been triggered
by the discovery of neutrino oscillations [3]. Such experimental evidence has shown
that the strict prediction of the SM, namely that neutrino are massless, is wrong and a
mechanism to account for neutrino masses is necessary. The absolute neutrino mass scale
cannot be inferred by means of oscillation data: only two mass squared differences are
available. Complementary experimental searches provide upper bounds on the absolute
neutrino mass scale. It comes out that neutrino masses lies in the eV scale and then
the question why these particles are much lighter than other SM fermions arises quite
naturally. In section 2.1 this topic is briefly introduced. Then in section 2.2 we discuss
the simplest realization of leptogenesis. An interesting development, especially from the
phenomenological point of view, is addressed in section 2.3 with a brief discussion on
resonant leptogenesis. Finally the recent advancements as regards the thermal aspects
of leptogenesis together with open challenges are presented in section 2.4.

2.1 Neutrino oscillations and seesaw type I

Neutrino oscillation experiments have shaped and fixed an important feature for the most
elusive SM particles: neutrinos mix and therefore different neutrino mass eigenstates
exist. The weak and mass eigenstates are not the same and they are connected with a
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Figure 2.1: Normal (left) and inverted ordering (right) for the neutrino mass squares.
The color code assigns the corresponding flavour content to the squared mass. Figure
from [97].

unitary transformation:

νL,f =
n∑
i=1

UfiνL,i . (2.1)

In (2.1) νL,f stands for the left-handed neutrino of flavour f = e, µ, τ , νL,i is the left-
handed neutrino with a definite mass mi. The left-handed neutrino fields (right-handed
antineutrinos) are the chiral field component participating the weak interactions in the
SM. All compelling neutrino oscillation data can be described assuming 3-neutrino mix-
ing in vacuum, so that n = 3 in (2.1). According to this choice Ufi is a 3 × 3 matrix, often
called leptonic-mixing matrix or Pontecorvo–Maki–Nakagawa–Sakata (PMNS) matrix
[91–93]. Similarly to the mixing matrix in the quark sector, the leptonic-mixing matrix
is expressed in terms of some physical parameters: in this case 3 mixing angles and three
complex phases, two Majorana phases and one Dirac phase. The matrix reads [94, 95]

U =

 c12 c13 s12 c13 s13 e
−i δ

−s12 c23 − c12 s23 s13 e
i δ c12 c23 − s12 s23 s13 e

i δ s23 c13

s12 s23 − c12 c23 s13 e
i δ −c12 s23 − s12 c23 s13 e

i δ c23 c13

 diag
(
ei ρ, 1, ei σ

)
,

(2.2)
where sij ≡ sin θij and cij ≡ cos θij and θij stand for the mixing angles, δ is the Dirac
phase and σ and ρ are the Majorana phases. On the basis of the existing neutrino data it
is impossible to establish weather the massive neutrinos are Dirac or Majorana fermions.
Recent and updated values for the mixing angles can be found in [96].

Moreover oscillation experiments show that at least two neutrinos have to be massive.
The oscillation data are sensitive to two independent mass squared differences [96]:

∆m2
21 = 7.54× 10−5 eV2 , |∆m2

31(32)| = 2.47× 10−3eV2 . (2.3)

The numbering of the massive neutrinos νL,i is arbitrary. We adopt here the convention
which allows to associate θ13 with the smallest mixing angle in the PMNS matrix U , and
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∆m2
21 > 0 and |∆m2

31(32)| with the parameters which drive respectively the solar and

the atmospheric oscillations. Hence the mass squared differences in (2.3) are sometimes
denoted as ∆m2

sol and ∆m2
atm respectively. The subscripts of the latter notation are in-

herited from the type of neutrinos used in the experiments, namely solar or atmospheric.
Due to the nature of the available observables, there is some degree of uncertainty in the
hierarchy of the neutrino mass eigenstates. We find then two viable options, as shown in
figure 2.1: a first one is called normal ordering (NO) and corresponds to m1 < m2 < m3

with
m2

3 −m2
2 = ∆m2

32 and m2
2 −m2

1 = ∆m2
21 . (2.4)

On the other hand a second option is represented by the inverted ordering (IO), namely
m3 < m1 < m2 and in this case we write

m2
3 −m2

1 = ∆m2
31 and m2

2 −m2
1 = ∆m2

12 . (2.5)

It may be convenient to introduce the atmospheric neutrino mass scale [98]

matm ≡
√

∆m2
atm + ∆m2

sol = (0.049± 0.001) eV , (2.6)

and the solar neutrino mass scale

msol ≡
√

∆m2
sol = (0.0087± 0.0001) eV , (2.7)

in order to have a rough idea of what scale for neutrino masses one can reasonably
expect. However, the lightest neutrino mass can be arbitrarily small, down to the limit
of being massless.

Upper bounds on the lightest neutrino mass, or in general on the absolute neutrino
mass scale mi, are provided by complementary experiments to those studying oscil-
lations. We mention experimental techniques based on tritium beta decay [99], the
neutrinoless double beta decay (00νβ) [100–102] and cosmological observations from the
WMAP collaboration [103, 104]. The last one provides a stringent bound on the sum of
neutrino masses ∑

i

mi ≤ 0.58eV (95% C. L.), (2.8)

which translates in an upper bound on the lightest neutrino mass: m1 <∼ 0.19 eV.
Within the SM, neutrinos are massless and come as left-handed fields that couple

to electroweak gauge bosons. Right-handed neutrinos and left-handed antineutrinos are
not introduced in the SM particle content. A way to naturally implement a mass for
neutrinos is to make a carbon copy of all the other Dirac fermions: allow for helicity
transitions from left-handed to right-handed fields, so that right-handed neutrino fields
are necessary to build a Dirac mass term. Clearly these states do not participate the
weak interactions, and the right-handed neutrinos (left-handed antineutrinos) are inert
or sterile, i.e. neutral under the SU(2)L×U(1)Y gauge group. A neutrino mass term
is then generated via the coupling with the Higgs field. The price to pay is that one
makes drastically more broadened the Higgs-fermion Yukawa couplings range in order
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to account for such small fermion masses (recall that mν ∼ O(eV) � me ≈ 105eV).
However a unique feature of neutrinos has to be taken into account: the neutrino is the
sole elementary fermion in the SM which may be its own antiparticle, more precisely a
Majorana fermion.

A minimal extension of the SM, able to explain not only why neutrinos are massive
but also why they are much lighter than all the other massive fermions, is represented
by the seesaw mechanism [5, 6]. There exist different realizations of such mechanism,
however in the minimal seesaw type-I, one adds right-handed neutrinos, νR,I , to the SM
Lagrangian with a Majorana mass term that violates lepton number. In the case that
right-handed neutrinos are represented by Majorana fermion fields, the Lagrangian may
be written as follows [11] (we adopt some of the notation of [105]):

L = LSM +
1

2
ψ̄Ii/∂ψI −

MI

2
ψ̄IψI − FfI L̄f φ̃PRψI − F ∗fI ψ̄IPLφ̃†Lf , (2.9)

where ψI = νR,I+νcR,I is the Majorana field comprising the right-handed neutrino νR,I of
type I = 1, 2, 3 and mass MI ; LSM is the SM Lagrangian with unbroken SU(2)L×U(1)Y
gauge symmetry (see eq. A.1 in appendix A), φ̃ = iσ2 φ∗ embeds the SM Higgs doublet,
Lf is the SM lepton doublet of flavour f , FfI is a complex Yukawa coupling, and the
right-handed and left-handed projectors are denoted by PR = (1 + γ5)/2 and PL =
(1 − γ5)/2 respectively. Without loss of generality, we have chosen the basis where the
Majorana mass term is diagonal.

The physical mass states for the right-handed neutrinos can naturally be much larger
than the electroweak scale, being the ψI field a singlet under the SM gauge group. The
Lagrangian in (2.9) is valid at high energies and makes right-handed neutrinos participate
in particle interactions in the early universe. However, at temperatures below TW , we
can replace the Higgs filed with its vacuum expectation value, v, and we define a Dirac
mass matrix as (mD)fI ≡ FfIv. The Lagrangian in (2.9) then reads

L = LSM +
1

2
ψ̄Ii/∂ψI −

MI

2
ψ̄IψI − (mD)fI ν̄fPRψI − (m∗D)fI ψ̄IPLνf , (2.10)

where νf stands for the active (left-handed) SM neutrino with flavour f . The neutrino
mass matrix takes the form (

0 mD

mT
D M

)
, (2.11)

which can be block diagonalized in the seesaw limit mD � M leading to two different
sets of eigenvalues: a light and a heavy one. Three light eigenvalues are suppressed by
a factor mDM

−1 and correspond to the small active neutrinos masses that are found by
diagonalizing the mass matrix obtained by the seesaw formula [5–7]

mν = −mD
1

M
mT
D , (2.12)

where mν is a 3×3 matrix of active neutrino masses, mixing angles, and (possible)
CP-violating phases. An analysis of eq. (2.12) shows that the number of right-handed
neutrinos must be at least two to fit neutrino oscillation data. If there were only one
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sterile neutrino, then the two active neutrinos would be massless. The matrix mν in
(2.12) can be diagonalized by a unitary matrix Uν [94, 95]

Dν ≡ diag (m1,m2,m3) = −U †νmνU
∗
ν . (2.13)

In a basis where the charged lepton mass matrix is diagonal (terms not displayed in (2.9),
see (8.1)), the unitary matrix Uν coincides with the leptonic mixing matrix in (2.2). The
masses M1, M2 and M3 correspond, in a good approximation, to the eigenstates of the
Majorana mass matrix, already diagonal in the Lagrangian (2.9) and they are the set of
large eigenvalues of the neutrino matrix in (2.11). In this way the lightness of ordinary
neutrinos is explained just as an algebraic by-product. If the largest eigenvalue in the
Dirac neutrino mass matrix, mD, is assumed to be of the order of the electroweak scale,
as for the other massive fermions, then for example the atmospheric neutrino mass scale
matm can be naturally reproduced for M3 ∼ 1014− 1015 GeV, close to the grand-unified
scale [94, 95]. This is the minimal version of the seesaw mechanism. Other options are
viable [106–109] which are not addressed here.

The seesaw formula (2.12) allows the mass of singlet neutrinos to be a free parameter.
Indeed multiplying mD by any number x, namely changing the Yukawa couplings, and
MI by x2 does not alter the right-hand side of the formula. Therefore, the choice of MI

is a matter of theoretical prejudice that cannot be fixed by active-neutrino experiments
alone. In the following we mention three benchmark examples [1]:

• MI >∼ 109 GeV: this mass scale is motivated by embedding the Lagrangian (2.9)
in GUT scenarios [110], such as SO(10) unification [111, 112]. For mD of order of
the electroweak scale, hence F of order one, right-handed neutrino masses MI ∼
109− 1014 GeV allow for the explanation of neutrino oscillation data via (2.12). A
baryon asymmetry can be attained within such a framework via standard thermal
leptogenesis (see section 2.2).

• If one assumes the Majorana matrix MI to have two eigenvalues of the order
of the electroweak scale, O(102) GeV, and one in the keV range, we reduce to
the so-called neutrino minimal standard model (νMSM) [113]. This choice does
not demand any new scale between the Planck and the electroweak scale, but
it does require small Yukawa couplings F . Besides accommodating successfully
neutrino oscillations data, the model can be adjusted to account for both the
baryon asymmetry generation via leptogenesis and a viable dark matter candidate.

• Right-handed neutrino masses at the eV scale may explain the anomalies seen in
some short baseline and reactor neutrino experiments [114] and/or account for the
fits on cosmological data that require additional radiation (relativistic particles)
[115, 116].

For more details we refer to extensive reviews on right-handed neutrino phenomenology
and implications in cosmology [1, 2]. As far as we are concerned with leptogenesis in the
thesis, we focus on right-handed neutrino mass ranges that allow for the generation of
a matter-antimatter asymmetry in the early universe. The Lagrangian in (2.9), besides
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accommodating the neutrino oscillation data, provides new heavy fields suitable for a
successful implementation of baryogenesis via leptogenesis, which is the subject of the
next two sections.

2.2 Vanilla leptogenesis

In this section we come back to the matter-antimatter generation and we discuss how
leptogenesis works. In order to introduce all the basic concepts on the subject we start
with the simplest and original realization of leptogenesis, often called vanilla leptogenesis
[94]. Despite the various assumptions and simplifications, this scenario comprises all the
main ideas behind leptogenesis and enables us to highlight important connections with
the active (low mass) neutrino parameters.

In this scenario three right-handed neutrinos with large and hierarchically ordered
Majorana masses, far above the electroweak scale, are introduced and participate the
dynamics in the early inverse. Yukawa interactions among right-handed neutrinos, SM
lepton and Higgs doublets in the thermal bath allow for an equilibrium abundance of
these heavy states in the very early stages of the universe after inflation. This requires
the reheating temperature to be at least of order of the lightest heavy neutrino mass, M1.
Since in most models of neutrino masses embedding the type-I seesaw the lightest RH
neutrino mass is M1 � 1015 GeV, the condition of thermal leptogenesis can be satisfied
compatibly with the upper bound on the reheating temperature, TRH <∼ 1015 GeV, from
CMB observations [67]. As mentioned a hierarchically ordered spectrum for the heavy
Majorana neutrino mass pattern is assumed, in particular one usually requires that
M1 � M2,3. This last condition has an important consequence: the CP asymmetries
are effectively generated by the decays of the lightest heavy neutrino. Indeed, any
previous asymmetry due to the heavier states is erased by the fast interactions mediated
by the lightest heavy neutrino. Therefore it suffices to consider only the decays of νR,1
into leptons and antileptons as being relevant for the generation of a matter-antimatter
imbalance.

The following discussion is similar to that carried out in the contest of GUT baryo-
genesis in section 1.2. We recall that leptogenesis belongs to models where the matter-
antimatter asymmetry is generated in decays of very heavy particles. We shall introduce
two key ingredients: the heavy neutrino decay widths (and production rate) and the CP
asymmetry. The heavy neutrino decay processes

νR,1 → `f + φ , (2.14)

νR,1 → ¯̀
f + φ† , (2.15)

violate the lepton number, L. We denote with `f a lepton, either charged or neutral,
belonging to the SU(2)L lepton doublet. For a Majorana neutrino, the condition ψc =
Cψ̄T = ψ, is invariant with respect to global U(1) gauge transformations of the field ψ
carrying a U(1) charge, Q, only if Q = 0. As a result, ψ cannot carry non-zero additive
quantum numbers, such as a lepton number L. Since the Higgs boson do not carry
any lepton number, the processes (2.14) and (2.15) violate lepton number by one unit

40



νR,I

ℓ̄f

φ†

νR,I

ℓf

φ

a) b)

Figure 2.2: Tree-level diagrams for the decay processes νR,1 → `f+φ and νR,1 → ¯̀
f+φ†.

Double solid lines stand for heavy right-handed neutrino propagators (forward arrow
corresponds to 〈0|T (ψψ̄)|0〉), solid lines for lepton propagators and dashed lines for
Higgs boson propagators.

|∆L| = 1, as well as the inverse decay processes do. The first Sakharov condition is met.

The decay widths into leptons and antileptons can be calculated straightforwardly
from (2.9). At tree level, namely at order |F |2 in the Yukawa couplings, they read as
follows

Γ(νR,1 → `f + φ) =
|Ff1|2
16π

M1 , (2.16)

Γ(νR,1 → ¯̀
f + φ†) =

|Ff1|2
16π

M1 , (2.17)

and the corresponding diagrams are given in figure 2.2. We see that the leptonic and
antileptonic widths in (2.16) and (2.17) are the same and therefore, at this order, no
lepton asymmetry can be generated in the heavy Majorana neutrino decays. Indeed we
can define a CP asymmetry, which is the analogue of that written in (1.38), as follows

ε1f =
Γ(νR,1 → `f + φ)− Γ(νR,1 → ¯̀

f + φ†)∑
f Γ(νR,1 → `f + φ) + Γ(νR,1 → ¯̀

f + φ†)
, (2.18)

where the difference in the numerator is due to the corresponding lepton number of
the final state: L = +1 and L = −1 for a lepton and an antilepton respectively. The
asymmetry is then normalized to the total width, summed over the lepton flavour f . The
quantity ε1f is a measure of the CP asymmetry generated by the decay of the lightest
heavy neutrino, and we will refer to it in this way. We notice that the CP asymmetry
carries two indices, one related to the heavy neutrino species and one to the flavour of
the lepton (antilepton) produced in the decays.

An assumption of vanilla leptogenesis is the single-flavour approximation, or un-
flavoured regime. In short, this amounts at assuming that the leptons and antileptons
which couple to the right handed neutrinos maintain their coherence as flavour super-
positions throughout the leptogenesis era. Therefore the interactions occurring in the
thermal bath do not distinguish different lepton flavours. The unflavoured regime is
found to be an appropriate choice at high temperatures, namely T > 1012 GeV, while
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Figure 2.3: One-loop self-energy and vertex diagrams that interfere with the tree level
diagrams for the decay process νR,1 → `f + φ. The notation of the particles is the
same as given in figure 2.2. The neutrino propagators with forward-backward arrows
correspond to 〈0|T (ψψ)|0〉 or 〈0|T (ψ̄ψ̄)|0〉. Similar diagrams exist for the decay process
νR,1 → ¯̀

f + φ†.

the different lepton flavours are resolved at lower temperatures [117, 118]. According to
the unflavoured regime the expression in (2.18) reads

ε1 =

∑
f Γ(νR,1 → `f + φ)− Γ(νR,1 → ¯̀

f + φ†)∑
f Γ(νR,1 → `f + φ) + Γ(νR,1 → ¯̀

f + φ†)
. (2.19)

where the sum runs over the SM lepton flavours. We refer to the unflavoured version of
the CP asymmetry in the rest of the discussion and we define the total width as follows

Γ1 =
∑
f

Γ(νR,1 → `f + φ) + Γ(νR,1 → ¯̀
f + φ†) =

|F1|2
8π

M1 . (2.20)

Similarly to the GUT toy model in section 1.2, the CP asymmetry in leptogenesis
is originated from the interference between the tree-level diagrams, shown in figure 2.2,
and the one-loop self-energy and vertex diagrams in figure 2.3. The lepton appears
as the final state and the corresponding diagrams with an antilepton in the final state
are not shown. The contribution from the interference of the tree-level diagram with
the self-energy diagram is often called indirect contribution, while the one arising from
the interference with the vertex diagram is called direct contribution. The relative
importance of the indirect and direct contributions to the CP asymmetry depends on
the heavy neutrino mass spectrum. For not too degenerate neutrino masses, the direct
contribution reads (second line shows the hierarchical limit) [22, 34]

ε1,direct =
Mi

M1

[
1−

(
1 +

M2
i

M2
1

)
ln

(
1 +

M2
1

M2
i

)] Im
[
(F ∗1Fi)

2
]

8π|F1|2

=
M1�Mi

− 1

16π

M1

Mi

Im
[
(F ∗1Fi)

2
]

|F1|2
+O

(
M1

Mi

)3

, (2.21)

whereas the contribution originated by the interference of the tree level process with the
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self-energy diagram reads (second line shows the hierarchical limit) [22, 34]

ε1,indirect =
M1Mi

M2
1 −M2

i

Im
[
(F ∗1Fi)

2
]

8π|F1|2

=
M1�Mi

− 1

8π

M1

Mi

Im
[
(F ∗1Fi)

2
]

|F1|2
+O

(
M1

Mi

)3

. (2.22)

where Mi are the heavier states, with i = 2, 3, and a sum over the repeated index i is
understood. Due to the assumption M1 � Mi, one selects automatically the situation
where the heavy neutrino mass difference, |M1 − Mi| is much bigger than the heavy
neutrino widths or the mixing terms. This is a relevant aspect we are going to discuss
in section 2.3. The second Sakharov condition is also met: given that the Yukawa
couplings are complex, the C and CP violation arise from the interference between the
decay process at tree level and one-loop, the latter generating a non-zero absorbative
term. Details on the calculation of the CP asymmetry are provided in chapters 6 and 7,
where we study the problem within an EFT approach.

We address the third Sakharov condition, namely the out-of-equilibrium dynamics.
The required deviation from thermal equilibrium is provided by the expansion of the
universe. When the temperature has cooled down to values of order of the heavy neu-
trino mass, their equilibrium number density should become exponentially suppressed.
However, if the heavy neutrinos are sufficiently weakly coupled with the heat bath, they
cannot follow the rapid change of the equilibrium particle distributions, remaining as
abundant as earlier times. This is made manifest when the temperature drops below
M1 and we can say that the deviation from thermal equilibrium consists in a too large
number density of heavy neutrinos with respect to their equilibrium density [61]. In par-
ticular this requires the total decay width given in (2.20) to be smaller than the Hubble
rate, H, at the time defined by T ∼M1. Strictly speaking we have to impose

ΓT=0
1 < H(T = M1) , (2.23)

where the superscript in the total width signals that it is taken in the zero temperature
limit [87, 119], hence it corresponds to the quantity in (2.20). One can rephrase both the
total width and Hubble rate in term of low mass neutrino parameters [120] by defining
the decay parameter [119] as follows

K1 ≡
ΓT=0

1

H(T = M1)
=
m̃1

m∗
, (2.24)

where the effective neutrino mass and the equilibrium neutrino mass read respectively
[120]

m̃1 =
|F1|2v2

M1
, (2.25)

m∗ ' 8π
√
g∗ 1.66

v2

MPl
' 1.1× 10−3 eV . (2.26)
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Figure 2.4: Evolution of the heavy neutrino and the B−L abundance for typical lepto-
genesis parameters: M1 = 1010 GeV, m̃1 = 10−3 eV and ε1 = 10−6. The normalization
for the heavy neutrino and B−L number density are calculated in a portion of comoving
volume that contains one photon at the onset of leptogenesis [119] (Figure from [31]).

We notice that the decay parameter might be already improved at the level of its def-
inition inserting a finite temperature version of the decay width for T ∼ M1, which
does exist [16]. The effective neutrino mass can be also understood as a measure of the
strength of the coupling between νR,1 and the thermal bath. The deviation from thermal
equilibrium is naively established requiring m̃1 < m∗ according to (2.23) and (2.24).

2.2.1 Boltzmann equations, weak and strong washout

In order to see if the leptogenesis may explain the observed baryon asymmetry a detail
and careful numerical analysis is needed. The quantitative description of this non-
equilibrium dynamics is achieved in terms of kinetic rate equations: the Boltzmann
equations [121] or their quantum mechanical generalization known as Kadanoff-Baym
equations [31, 122–124]. It is shown that successful leptogenesis is possible for m̃1 < m∗
as well as m̃1 > m∗ [119]. These two situations are called weak and strong washout
respectively. In the present discussion, a washout process is what works against the
generation of a the lepton asymmetry. For example, in a simplified version of the pro-
cesses relevant to leptogenesis, one can could think of heavy neutrino decays in (2.14)
and (2.15), that generate a lepton asymmetry, whereas the corresponding inverse decays
`f + φ→ νR,1 and ¯̀

f + φ† → νR,1 erase the matter-antimatter imbalance.

From eqs. (2.25) and (2.26) we see that m∗ is a fixed parameter whereas m̃1 can
be related to the experimental data providing the light neutrino mass scale. One can
show that m̃1 ≥ mmin [125], where mmin is the smallest light neutrino mass. Then if
one takes m̃1 ≥ msol [126] the strong wash out condition is satisfied, namely it holds
m̃1 > m∗. In this regime decays and inverse decays rapidly thermalize at T ∼ M1 so
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that any initial asymmetry possibly present before the onset of leptogenesis is erased.
This may be understood in terms of the decay parameter in (2.24). Being K1 ≈ O(10)
for m̃1 ≥ msol, or K1 ≈ O(50) if we take m̃1 ≥ matm, the heavy neutrinos remain
coupled with the thermal bath even at temperatures T < M1 and their distribution
tracks closely the equilibrium one. Moreover the dependence on the initial conditions
is absent in the strong washout regime and leptogenesis may be highly predictive also
in its simplest formulation. The weak washout regime shows opposite features. The
asymmetry generated before the onset of leptogenesis, for T > M1, is not erased by fast
processes at T ∼ M1. Hence the assumptions on the initial abundance of right-handed
neutrinos, either a vanishing or an equilibrium one, as well as the asymmetry generated
for temperatures bigger than M1 enter the quantitative description [119].

It is conceivable that the heavy neutrino decays leading to the generation of the
matter-antimatter asymmetry occur in the non-relativistic regime, i. e. T < M1. This is
true both for the strong and weak washout. The difference is that the lepton asymmetry
is generated right after the time T ∼ M1 in the strong washout, being neutrinos very
close to the equilibrium distribution, whereas in the latter case the matter-antimatter
imbalance is typically generated at later times. In figure 2.4 we show the evolution
of the heavy neutrino and B − L abundances, in turn related to baryon and lepton
asymmetries, in the case of m1 ∼ m∗. Such results are obtained from the rate equations
that we discuss right now.

We introduce the Boltzmann equations for a simplified situation: we take into ac-
count only the inverse decays of the heavy neutrinos as washout process that may erase
the matter-antimatter asymmetry [119]. A detailed study of the Boltzmann equations
for leptogenesis involving the complete class of relevant processes is found e. g. in [127].
Indeed we are interested in introducing the role of the total width, the right-handed
neutrino production rate and CP asymmetry in the rate equations governing the evolu-
tion of the lepton asymmetry. However for consistency one has to include the |∆L| = 2
scattering processes like `φ ↔ ¯̀φ† and `` ↔ φφ, to take care of the real intermediate
state subtraction [121, 122]. In this simplified scenario the Boltzmann equations read
[29, 119]

szH
dYνR,1
dz

= −
(
YνR,1
Y eq
νR,1

− 1

)
γνR,1 , (2.27)

szH
dY∆L

dz
= ε1

(
YνR,1
Y eq
νR,1

− 1

)
γνR,1 −

Y∆L

Y`
γ|∆L|=2 , (2.28)

where Yi = ni/s are the number densities normalized to the entropy density s =
(2π2)g∗T

3/45, so that the reduction of the particle number density due to the universe
expansion is already accounted for (recall the relation between the scale factor and the
temperature, a ∝ T−1, in eq (1.19)). Then H is the Hubble parameter and z = M1/T ,
the latter being a variable suitable to study the particle evolution, Y∆L = 2(Y` − Y¯̀),
where the factor of two comes from the SU(2)L lepton doublet. For a detailed derivation
of the Boltzmann equations for leptogenesis we refer to [33, 128].

The first relevant quantity for the rate equations in (2.27) and (2.28) is the space-
time density of the rate at which the thermal plasma at temperature T creates quanta
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of the lightest right-handed neutrino. In thermal equilibrium, the creation rate equals
the destruction rate, such that both quantities are usually named equilibrium interaction
rate. Even though we are interested in out-of-equilibrium dynamics to address the lep-
ton asymmetry generation, the right-handed neutrino production rate can be extracted
in terms of an equilibrium distribution function by assuming kinetic equilibrium (in
this case the non-equilibrium distributions functions are proportional to the equilibrium
ones). At leading order γνR,1 is given by the thermal average of the total decay rate
given in (2.20), it reads [17]

γLO
νR,1

= 2

∫
d3k

(2π)3

ΓT=0
1

EνR,1
nF (EνR,1) , (2.29)

where EνR,1 =
√
k2 +M2

1 and nF is the Fermi-Dirac distribution, the factor of two is due
to the spin polarization of the heavy neutrino. It is possible to simplify the expression
given in (2.29) as follows

γLO
νR,1

=
T 3

π2

|F1|2M1

8π
z2K1(z) , (2.30)

where K1(z) is the modified Bessel function of the first kind (see for example [129]). The
expression in eq. (2.30) enters the standard numerical analysis for leptogenesis.

The second key ingredient is the CP asymmetry defined in (2.19). The lepton asym-
metry arises because the decay rate of right-handed neutrinos into matter differs from the
one into antimatter. The CP asymmetry quantifies how efficiently a matter-antimatter
symmetry is generated in the heavy neutrino decays. In vanilla leptogenesis typical val-
ues are ε1 ∼ 10−6 [33, 87, 119] that eventually provide ηB ∼ 10−10 (the CP asymmetry is
reduced by other efficiency factors, such as heavy neutrino over entropy number density
for T �M1 and washout processes [33]). The lepton asymmetry induced by the out-of-
equilibrium decays of the heavy neutrinos is then reprocessed into a baryon asymmetry
thanks to the sphaleron transitions. The rate of change is established by the relations
(1.69) and (1.70), that for three fermion generations gives ∆B = −(28/51)∆L. In the
case of a hierarchically ordered neutrino mass the CP asymmetry can be read off (2.21)
and (2.22).

Let us conclude this section by shortly discussing the Davidson-Ibarra bound for
vanilla leptogenesis [130]. Especially in this framework, the information attained from
the experiments looking at neutrino oscillations and mixing parameters can shed light
and provide constraints on leptogenesis . The Davidson–Ibarra bound sets a lower bound
on the lightest heavy neutrino mass [130], M1 & 109 GeV, which is obtained combining
the observed baryon asymmetry and the light neutrino masses. This bound gives a clear
hint on the energy scale of leptogenesis, at least in its simplest realization, together
with the typical temperatures needed for a thermal production of the heavy neutrinos in
the early universe. Indeed it implies that the right-handed neutrinos must be produced
at temperatures T >∼ 109 GeV which in turn implies the reheating temperature after
inflation to be of the same order to ensure thermal production of right-handed neutrinos
in the early universe. Such bound holds if and only if the following conditions apply: νR,1

46



dominates the contribution to leptogenesis, the mass spectrum of the heavy neutrinos is
hierarchical, M1 �M2,M3, and leptogenesis occurs in the unflavoured regime. Violation
of one or more of these conditions allows for lowering down the leptogenesis scale and
searching for heavy neutrino at present day colliders.

2.3 Resonant leptogenesis

In the previous section we have introduced the CP asymmetry as a key ingredient for
the generation of a lepton asymmetry, eventually leading to the observed baryon asym-
metry. Moreover we have presented the case where the lightest neutrino dominates the
contribution to leptogenesis. We consider now the case where two neutrinos are on the
same footing with respect the CP asymmetry generation. We label them as neutrino of
type 1 and type 2 with masses M1 and M2 respectively.

The one-loop processes necessary to obtain a different decay rate into leptons and
antileptons are shown in figure 2.3. The same topology stands for the neutrino of type 2.
Let us consider the contribution arising from the self-energy diagram, namely the indirect
asymmetry, given in eq. (2.22). It is straightforward to grasp what happens in the case
of nearly degenerate masses for the heavy neutrinos. By assuming two heavy neutrinos
with masses M1 and M2 = M1 + ∆, with ∆ � M1, the indirect contribution goes like
∼ 1/∆. A similar behaviour is not shown in the direct CP asymmetry in eq. (2.21).
For very small values of the mass splitting, ∆, the indirect CP asymmetry may become
several order of magnitudes larger than the direct CP. This raises concerns about the
validity of perturbation theory that breaks down in the degenerate limit ∆→ 0.

A more accurate analysis shows that the physics behind this apparent ill-defined
situation is well known: the indirect CP asymmetry can be regarded to be the analogue
of mesonic states mixing, for example in the kaon system [131], as it has been originally
proposed in [23]. Later on different approaches have been considered in order to regu-
larize the ∆ → 0 limit and obtain a meaningful result for the indirect CP asymmetry.
Among them, we mention briefly the one based on an effective LSZ-type formalism that
aims at comprising both the mixing and the decays of heavy neutrinos [27, 132]. Indeed
the approach is rather close to what we are going to present in chapter 6 in an effective
field theory fashion. The idea is that the heavy neutrino may undergo many interactions
before decaying effectively into a lepton and Higgs boson pair. The neutrino with mass
M1 can turn into a neutrino with mass M2 and back many times before decaying. One
obtains, in the case of two heavy neutrinos, a 2×2 propagator matrix: finite widths and
mixing vertices are resummed in the expression of the neutrino propagators that can
be safely used in constructing meaningful amplitudes. For example, the CP asymmetry
induced in the decays of the neutrino of type 1 is found to be [132]

ε1,indirect =
Im
[
(F ∗1F2)2

]
8π|F1|2

M1M2(M2
1 −M2

2 )

(M2
1 −M2

2 )2 +M2
1 Γ2

2

, (2.31)
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where the decay width for the neutrino of type 2 is defined as follows

Γ2 =
|F2|2M2

8π
, (2.32)

in complete analogy with the total width in (2.20) for the neutrino of type 1. In the
limit M1 → M2, namely ∆ → 0, the quantity in (2.31) is regularized by the neutrino
type 2 width. A similar expression holds for the indirect CP asymmetry in the neutrino
type 2 decays, where the width regularizing the observable is Γ1.

The expression of the CP asymmetry given in (2.31) provides an interesting specu-
lation: requiring the following condition

M1 −M2 ≈
Γ2

2
, (2.33)

the indirect CP asymmetry get resonantly enhanced and its expression reads

ε1,indirect ≈
1

2

Im[(F ∗1F2)2]

|F1|2|F 2
2 |

. (2.34)

Thus, in the resonant case, the asymmetry is suppressed by neither the smallness of the
light neutrino masses, nor the smallness of their mass splitting, nor small ratios between
the heavy neutrino masses. Actually, the CP asymmetry could be of order one, more
precisely ε1,indirect <∼ 1/2, if we further require [132]

Im
[
(F ∗1F2)2

]
|F1|2|F2|2

≈ 1 . (2.35)

The fact that the asymmetry could be large, independently of the sterile neutrino masses,
allows for the possibility of low scale leptogenesis, down to the TeV scale (one at least
requires sphalerons to be in equilibrium to reprocess the lepton asymmetry into a baryon
one). Searches for the heavy neutrino states have been undertaken at the LHC [133–135]
without positive result so far. Indeed the Yukawa couplings are pretty small due to the
seesaw type-I scheme, see (2.12). The parameter space can be also explored with indirect
searches like the effect of low heavy neutrino mass state in rare decays [136–138], when
the νMSM is considered.

With resonant leptogenesis, the Boltzmann equations are different [132]. The densi-
ties of neutrino type 1 and type 2 are followed, since both contribute to the asymmetry.
Moreover the relevant time scales are different with respect vanilla leptogenesis. For
instance, the typical time scale to build up coherently the CP asymmetry is particu-
larly long, of order 1/∆ , and it can be larger than the time scale for the change of the
abundance of the sterile neutrinos. This situation implies that for resonant leptogenesis
quantum effects in the Boltzmann equations can be significant [25, 26, 139, 140].

Finally different approaches lead to different results for the regulator in (2.31). These
are reviewed and scrutinised in [25], where the authors provide a first principle analysis
of the CP asymmetries obtained form the Kadanoff-Beym equations. Similar derivations
from first principle are found in [24, 26].
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2.4 Open challenges in thermal leptogenesis

Leptogenesis takes place in the early universe: a hot and dense plasma made of thermal-
ized SM particles sets the stage for the heavy neutrinos dynamics. On general grounds
thermal effects are expected to play a role and a first quantitative study on the subject
can be found in [29]. The authors show how thermal corrections affect several ingredi-
ents in the analysis: coupling constants, particle propagators (of the SM particles) and
CP asymmetries.

Renormalization of gauge and Yukawa couplings in a thermal plasma is studied in
[141]. In practice, it is a good approximation to use the zero-temperature renormalization
group equations for the couplings, with a renormalization scale µ ∼ 2πT [29]. The value
µ > T is related to the fact that the average energy of the colliding particles in the
plasma is larger than the temperature (this can be related to the expressions of the
thermal condensates of the Higgs, fermions and gauge bosons, that show powers of π).
In the thermal plasma, any particle with sizeable couplings to the background acquires a
thermal mass which is proportional to the plasma temperature [142, 143]. Consequently,
decay and scattering rates get modified. Explicit expressions for the thermal masses that
enter the relevant leptogenesis processes are collected in [29]. The relevance of thermal
masses depends on the temperature regime though.

Let us consider the decays and inverse decays of the heavy neutrino with massM1 into
a lepton and a Higgs boson. Since thermal corrections to the Higgs mass are particularly
large, mφ(T ) ≈ 0.4T , decays and inverse decays become kinematically forbidden in the
temperature range mφ(T ) − m`(T ) < M1 < mφ(T ) + m`(T ). Rough estimates give
the kinematically forbidden range 2 <∼ T/M1 <∼ 5 [33]. However we notice that if the
heavy neutrino number density and its L-violating reactions reach thermal equilibrium
at T ∼ M1, any memory of the specific conditions at higher temperatures is erased
quite efficiently. Consequently, in the strong washout regime, these corrections have
practically no effect on the final value of the baryon asymmetry.

In temperature range T < M1, which we call non-relativistic regime, thermal cor-
rections to the heavy neutrino production rate have been addressed in [17]. This is one
of the key ingredients entering the Boltzmann equations (2.27) and (2.28). The authors
provided a first NLO evaluation of the neutrino production rate. In particular they take
into account radiative and thermal corrections to γνR,1 . The latter are shown to be of
the form gSM(T/M1)n for dimensional reasons. The leading thermal correction, propor-
tional to the Higgs four-coupling, λ, has been evaluated in [17]. Then the calculation has
been further extended in [18] where the contributions proportional to the top-Yukawa
coupling, λt, and the SU(2)L×U(1)Y gauge couplings, g and g′, have been included. A
two-loop calculation in a relativistic thermal field theory has been performed in both the
derivations. In [19] we used an effective field theory approach to describe the interac-
tion between non-relativistic Majorana neutrino and SM particles at finite temperature,
assuming M1 � T . We simplify the derivation of NLO thermal corrections to the neu-
trino production rate over exploiting EFT techniques, namely implementing from the
beginning the non-relativistic nature of the heavy neutrinos. This will be the subject of
chapter 5.
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We notice that without embedding the SM couplings in the expression of the heavy
neutrino production rate, the observable is taken as if it were in vacuum (a part from
the thermal average performed on the heavy neutrino distribution density, see (2.29)).
Indeed without the NLO corrections the heavy neutrinos do not see the surrounding
thermal plasma and they just decay into Higgs-lepton pair due to the Yukawa interaction.
Providing thermal corrections as an expansion in the SM couplings allows an actual
description of the right-handed neutrino in a heat bath. The right-handed neutrino
production rate has been recently embedded in the rate equations for leptogenesis in the
non-relativistic regime [144], where it is highlighted as well as in [17], that the analogue
NLO expression for the CP asymmetry is still missing. The thermal production rate
of right-handed neutrinos has been addressed in the relativistic and ultra-relativistic
regime in [16].

CP asymmetries are the second key ingredient in the rate equations describing the
evolution of the lepton asymmetry. They are expected to be affected by thermal cor-
rections as well. Indeed in [28, 29] a first attempt to generalize the CP asymmetries at
finite temperature has been carried out in the framework of thermal field theory: the
zero-temperature propagators were replaced with their finite temperature versions in
the matrix elements of the Boltzmann equations. In so-doing the cuts on the one-loop
amplitude generating the absorbative part get a temperature dependence because of the
distribution function of the internal particles put on-shell. In [29] the effect of thermal
masses, for the Higgs and lepton doublets, has been also included in the evaluation of the
CP asymmetry. A hierarchically ordered spectrum for the neutrino mass is considered
in these works.

A novel approach to thermal leptogenesis has been recently developed in the contest
of non-equilibrium quantum field theory [145–147]. The formalism provides a first prin-
ciple derivation of the classical Boltzmann equations that can be recovered from their
quantum version known as Kadanoff–Baym equations [148–151]. The latter are evolu-
tion equations for two-point functions in which a loop expansion can be performed in the
close-time-path (CPT) formalism. In this contest thermal corrections to the CP asym-
metries induced by the vertex and self-energy diagrams are studied in [30, 123, 124]. The
corresponding results differ from the findings in previous works [28, 29]. Thermal correc-
tions obtained by substituting naively thermal propagators in the one-loop self-energy
and vertex diagram in figure 2.3 provides [28, 29]

ε1(T ) = εT=0
1 (1− nF (E`) + nB(Eφ)− 2nF (E`)nB(Eφ)) , (2.36)

whereas the derivation within CTP gives [30, 123, 124]

ε1(T ) = εT=0
1 (1− nF (E`) + nB(Eφ)) , (2.37)

where nF (E`) and nB(Eφ) are the lepton and Higgs distribution functions and εT=0
1

stands for the zero temperature CP asymmetry given in (2.22) and (2.21). Some com-
ments are in order. The authors of [28] noticed that there is a cancellation of the thermal
contributions in their result. Indeed if the same argument E = Eφ = E` is kept in the
distribution functions, it holds nB(E) − nF (E) = 2nB(E)nF (E). Physically this can-
cellation can be understood as a compensation between stimulated emission and Pauli
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blocking. Only if the the Higgs boson and the lepton enter with the same energy, an
exact cancellation holds. In [29] this issue was solved by inserting the (different) thermal
masses for the lepton and the Higgs boson. However the result in (2.36) is missing a
contribution that is not included in the naive substitution of the thermal propagators in
the T = 0 topology of the one-loop diagrams shown in figure 2.3. The CTP formalism
provides an additional term, exponentially suppressed, that cancels exactly the term
quadratic in the distribution functions in (2.36). We discuss a similar issue in some
detail in chapter 5 for the heavy neutrino thermal width. Clearly the SM couplings are
not comprised in the results (2.36) and (2.37), a part from their inclusion in the thermal
masses, which well justified in the regime T �M1.

A thermal treatment of the lepton-number asymmetry in the resonant case, i.e.
when the mass difference of the heavy neutrinos is of the order of magnitude of their
decay widths, can be found for instance in [25], where the Boltzmann equations are
superseded by the Kadanoff–Baym equations. The lepton-number asymmetry has been
also considered for a generic heavy neutrino mass spectrum, such as in [26, 30–32] within
different approaches. The thermal effects considered include using thermal masses for
the Higgs boson and leptons and taking into account thermal distributions for the Higgs
boson and leptons as decay products of the heavy Majorana neutrinos.

In the following chapters, we aim at treating systematically thermal effects to the CP
asymmetry in the non-relativistic regime, namely when the temperature of the plasma
is smaller than the heavy neutrino mass scale. These effects lead to corrections in
terms of series in the SM couplings and in T/M in the same way as they do for the
heavy Majorana neutrino production rate [17, 18]. The calculation is based on the EFT
approach developed for and tested on the right-handed neutrino thermal production rate.
To our knowledge a NLO treatment of the thermal correction to the CP asymmetry
has been not presented. We will derive such thermal corrections for the case of two
Majorana neutrinos with nearly degenerate masses in chapter 6 , whereas we address
the hierarchical case in chapter 7. Finally the results for flavoured CP asymmetries at
finite temperature are shown in chapter 8.
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Chapter 3

Effective field theories

In this chapter the main concepts about effective field theories are introduced. In particu-
lar we are going to provide and discuss the topics and techniques necessary to understand
the results given in chapters 5-8. In section 3.1 the main idea behind EFTs is presented
together with the example of the Fermi effective interaction. A general strategy to con-
struct an EFT starting from a given fundamental theory is provided in section 3.2, where
we also show explicitly how to obtain a low-energy effective Lagrangian. Finally in sec-
tion 3.3 the heavy quark effective theory (HQEFT) is introduced, being the prototype
for the development of the EFT describing heavy Majorana neutrinos interacting with
light SM fields.

3.1 What is an EFT?

Nature comes to us in many scales. We can think of galaxies, our Earth, molecules
and nuclei that are very different sizes and held together with rather disparate binding
energies. However it is true that we do not have to understand what happens at all
scales at once in order to figure out how a physical system works at a particular scale of
interest.

For example, the derivation of the chemistry laws can be traced back to the electro-
magnetic interactions. However it does not help much starting a quantitative analysis
from the fundamental Quantum Electro Dynamics (QED) among quark and leptons.
In order to understand the most relevant physics at the atomic scale, it will suffice a
simpler description in terms of non-relativistic electrons orbiting around and bounded to
the nucleus through a Coulomb potential. Thus, at good approximation, the behaviour
of chemical elements can be understood in terms of the electron mass and the fine struc-
ture constant α ≈ 1/137, whereas the proton mass is a higher energy scale necessary to
assess the possible relevant corrections.

In order to study a particular system it is necessary to single out the most relevant
degrees of freedom which are the building blocks to attain a simple description of the
problem at hand. It is crucial to make the appropriate choice of these variables capable
to capture the most important effects at a given scale. The degrees of freedom that
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Figure 3.1: The diagrams describing the process b → c`ν̄` are shown both in the
fundamental theory (left) and in the effective theory (right). Wiggled line stands for the
W boson, which is shrunk into a point, the crossed vertex, in the four-particle effective
interaction.

become relevant at any higher energy scale are not taken into account and do not appear
explicitly in the formulation of the theory. At this point we mention another useful
example for the discussion. A heavy particle cannot be created at an energy scale
smaller than its mass, M . Therefore a theory, and its corresponding Lagrangian, valid
at such small energies does not contain this degree of freedom. This is rigorously ensured
by the decoupling theorem proved by Appelquist and Carazzone [152], who showed that
heavy degrees of freedom actually decouple at energy scales much lower than their mass.
In this respect, decoupling means that any effect of the heavy degrees of freedom is, up
to logarithmic contributions, suppressed by inverse powers of the heavy scale M . In the
strict heavy mass limit, M →∞, the heavy state does not provide any correction.

Before going to the principle of construction of an EFT, let us briefly discuss the
effective four-fermion interaction mediated by the W boson. This will serve to illustrate
some of the main points and it is also a relevant example in the realm of particle physics.
Let us consider the decay b→ c`−ν̄`, shown in figure 3.1 (on the left). We can write the
process amplitude exploiting the full SM Lagrangian that comprises, at tree level, two
left-handed fermion currents and the W boson propagator. Let us look at the energy
scales appearing in the problem. They are the b quark and c quark masses, mb and mc,
the lepton masses which are already negligible with respect to the heavy quark masses,
the W boson mass, MW , and the maximal momentum transfer q2

max = (mb − mc)
2.

Given mb ≈ 5 GeV, mc ≈ 1.3 GeV and MW ≈ 80 GeV , we can perform an expansion
for the W boson propagator in momentum space (Feynman gauge)

1

q2 −M2
W

= − 1

M2
W

(
1 +

q2

M2
W

+ · · ·
)
, (3.1)

being the momentum transfer q ≤ qmax � MW , and the dots stand for higher order
terms in q/MW . This corresponds to an expansion of the W propagator into local terms
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as follows

〈0|T
(
W+
µ (x)W−ν (0)

)
|0〉 = −

∫
d4q

(2π)4

i gµν
q2 −M2

W

e−iq·x

=
i gµν
M2
W

(
1− ∂2

M2
W

+ · · ·
)
δ4(x) . (3.2)

The above expansion has a simple physical interpretation in terms of distances and
interaction ranges: the distance scale of the W boson propagation is of order 1/MW

which is seen as local at typical distances of order 1/q (by assumption 1/q � 1/MW ).
In summary, instead of using the full SM Lagrangian, one can exploit the leading term of
the expansion in inverse powers of the W boson mass to effectively describe the transition
b→ c`ν̄`. The corresponding Lagrangian reads

LFermi = − g2

2M2
W

(
b̄γµPLc

)
(ν̄`γ

µPL`) + h.c. , (3.3)

where g is the coupling of the SU(2)L gauge group and PL = (1−γ5)/2 is the left-handed
projector. In this way the well-known Fermi interaction is recovered, which is the leading
term in the systematic expansion shown in (3.2).

Clearly the typical energies involved in the transition are of the order of the mb (if
we further take mc � mb), so that there is not enough energy to produce a real W
boson which is not included as a dynamical field in the low-energy theory (3.3). The
weak decay and the corresponding transition amplitude are well described by an effective
interaction shown in figure 3.1 (on the right) and induced by the dimension-six operators
in (3.3). We notice the appearance of an effective coupling with mass dimension −2,
which can be determined by requiring that the low-energy Lagrangian, LFermi, provides
the same physical result of the full SM theory in the low-momentum region, q � MW .
A systematic improvement of the effective Lagrangian (3.3) is possible. According to
the propagator expansion in (3.2), one would obtain higher order fermionic operators
that improve the accuracy at relative order (q/MW )2 and so on and so forth.

Having introduced some relevant aspects when dealing with low-energy effective the-
ories, we move now to a more detailed discussion on how to refine the ideas discussed so
far.

3.2 Principles of construction

The starting point for the construction of any EFT is the presence of separated energy
scales, at least two. The main point is that the physics at a given scale does not sensibly
depend on the details of the physics at the other higher scales. Then one has to identify
the parameters of the system that are very smaller or bigger than the relevant scale
of interest, and put them to zero and to infinity respectively. Despite this sounds a
sensible approximation to treat the problem, a systematic improvement is possible in
terms of corrections induced by the higher energy scales neglected at first. The following
discussion is based on [153].

55



Let us take the Lagrangian that describes a given physical system and we label it
simply as L. We assume that in the theory described by L there is a separation of
the energy and momentum scales, m and M , such that M � m (the large and small
scales do not have to be necessarily parameters of the fundamental Lagrangian, L). Say
that we are interested in the physics at the scale m, which is the small scale in the
problem at hand. From the fundamental theory, we want to extract a second theory
valid only at low energies, namely that describes degrees of freedom with typical energy
and momentum of order m. Of course the low-energy theory, with Lagrangian LEFT, has
the same infrared (IR) behaviour of the fundamental theory (but a different ultraviolet
(UV) one). It is useful to introduce a cutoff scale, Λ, that enables us to separate the high
energy modes of order M from those of order m: M � Λ � m. The EFT comprises
and describes the dynamics of degrees of freedom with typical energies smaller than Λ
and the higher energy modes are said to be integrated out from the theory. Indeed they
do not appear explicitly in the low-energy theory.

We write the EFT Lagrangian and explain the procedure to specify its field content
and parameters. It reads

LEFT =
∑
i

ci

(
Λ

M

) O(di)
i (Λ,m)

Mdi−4
. (3.4)

The Lagrangian is organized in terms of operators, Oi, of arbitrary dimension, di, that
develop a dependence on the low-energy scale m and on the cutoff scale Λ. The latter
cancels against the dependence of the matching coefficients, ci, on the very same scale.
Indeed the cutoff scale cannot appear in the observables obtained from (3.4), being Λ an
auxiliary scale introduced for the construction of the EFT. The matching coefficients are
also called Wilson coefficients and they include the contributions from the high energy
and momentum modes of order M .

The effective operators are constructed with the fields that are still dynamical at
the scale m and the operator dimension fixes the corresponding relative importance at
low energies. We can distinguish three types of operators: relevant (di < 4 ), marginal
(di = 4) and irrelevant (di > 4). The definition refers to their behaviour at small
energies. In our example of the Fermi four-fermion interaction in (3.3), dimension-six
operators appear and their effects scale as powers of q/MW . Therefore they are small
at small energies but this does not mean they are not important: the dimension-six
operators in (3.3) give the leading contribution to describe weak decays at energies
smaller than the electroweak scale.

We now list the main steps to build the EFT in eq. (3.4):

1) identify the hierarchy of scales in the physical system (M � m) and the corre-
sponding high- and low-energy degrees of freedom. The latter will be the field
content of the low-energy Lagrangian;

2) constrain the from of the effective Lagrangian by symmetry arguments. The sym-
metry set of the fundamental Lagrangian, L, can be entirely or only in part present
in the LEFT. One has to consider only the symmetry sub-set that corresponds to
the low-energy theory;
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3) write down the most general Lagrangian as in eq. (3.4) made of the light degrees
of freedom and satisfying the symmetries specified in the previous two points. If
the large scale M corresponds to the mass of a heavy particle, then the string of
operators in eq. (3.4) stands for local interactions between the low-energy degrees
of freedom (as the Fermi interaction in (3.3));

4) the EFT comes with a power counting, namely the ratio m/M induced by the
form of the Lagrangian (3.4). This clearly defines the number of operators with
increasing dimension to be included in the low-energy Lagrangian to achieve the
desired accuracy of a given physical observable, say at order (m/M)n. One has
to include a finite number of operators and parameters, the Wilson coefficients
ci, and hence only a finite number of divergent amplitudes can appear due to the
series truncation. The EFT is therefore renormalizable order by order ;

5) determine the parameters of the EFT Lagrangian through the matching. This
procedure provides the explicit form of the coefficients in (3.4) and then the EFT
is ready to use. Basically one has to evaluate Green’s functions both in the fun-
damental theory and in the EFT, and match the two sets so obtained at energies
smaller than the cutoff scale Λ, where M � Λ� m. Indeed the EFT is expected
to reproduce exactly the fundamental theory in the low-energy domain, in which
the two quantum field theories have to provide the same physical results.

The points listed above provide a general scheme to obtain an EFT starting from a
given fundamental theory, the latter being valid for a wider range of energy scales. On
the other hand the EFT is valid in the low-energy domain and it is a simpler theory
suited to address observables in its range of applicability. We notice that what we called
fundamental theory can in turn be itself an EFT and the given procedure can be iterated.
In this case a tower of EFTs can be obtained (we discuss such case in chapter 7).

Some more comments are in order regarding the matching procedure. This is the
most technical and involved step from the computational point of view. As already men-
tioned Green’s functions are calculated in the fundamental theory and matched to those
obtained in the EFT. The matching is organized order by order in the expansion pa-
rameter, namely m/M in our notation. This expansion is performed in the fundamental
theory side and eventually matches the operator expansion on the EFT side. Because
the matching occurs at a scale much smaller than M , any external momenta qj of order
m allow for an expansion in powers of qj/M in the Green’s functions of the fundamental
theory.

A regularization scheme has to be adopted for dealing with divergent amplitudes,
since loop diagrams may enter the Green’s functions exploited in the matching. A
useful and common choice is Dimensional Regularization (DR) [154]. In DR scaleless
integrals vanish by construction and this turns out to greatly simplify the matching
procedure. Indeed any lower scale appearing in the physical system can be set to zero
in the matching, that is realized at energy smaller than the cutoff Λ. Being m the
natural scale of the low-energy theory, all loop diagrams on the EFT side vanish because
m → 0 and they effectively become scaleless. Due to the presence of loop amplitudes,
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Figure 3.2: Tree level diagram in the full theory (left-hand side of the equality) con-
tributing to the matching of the dimension-six operator in the EFT (right-hand side of
the equality). Solid lines stand for fermions, whereas the dashed line for the heavy scalar
particle. The effective vertex is shown in a black dot.

UV divergences appear in the fundamental theory and they are accounted for standard
renormalization procedure. The main consequence is a possible induced dependence on
the renormalization scale µ for the Wilson coefficients, typically through logarithms of
µ/M . This way the matching coefficients contain the effects of the high energy scale and
degrees of freedom. Eventually the scale µ does not appear in the observables.

We conclude this section by mentioning that EFTs have been widely used in different
contexts, from very small systems in particle physics, nuclear and atomic physics up to
the description of the largest structures in our universe. The literature on the topic is
really vast and we quote here few examples about particle physics [153, 155–158]. In
this thesis we are going to show a novel application of the EFT approach to treat the
dynamics of heavy Majorana neutrinos in a thermal bath (see chapters 5-8).

3.2.1 An example for a matching calculation: a heavy scalar particle

In this section we shall consider a simple example in order to illustrate the general
procedure to obtain an EFT. Moreover some notation adopted throughout the thesis is
introduced. Let us consider a fermion and its antifermion with mass m described by the
field ψ, and a scalar particle with mass M described by the real field ϕ. We allow them
to be interacting fields and the corresponding Lagrangian reads

L =
1

2
(∂ϕ)2 − 1

2
M2ϕ2 + ψ̄i/∂ψ −mψ̄ψ + g̃ϕψ̄ψ . (3.5)

Despite the very simple field and interaction content in eq. (3.5), we can already practice
the EFT language. The two kinetic terms and the interaction term are marginal opera-
tors, indeed of dimension four. The dimensionless coupling constant g̃ is responsible for
the Yukawa interaction between fermions and the scalar. On the other hand the mass
terms are relevant operators. Their coefficients are of dimension two,

[
M2
]

= 2, and
one respectively, [m] = 1.
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Let us now consider the process of a fermion-fermion scattering in this theory: f f →
f f , shown in the left-hand side of the equality in figure 3.2. How does the same process
appear at typical energies of order m � M? We can guess by analogy with the weak
decays discussed in section 3.1 that we are going to obtain a local four-fermion interaction
as well. In this low-energy theory the heavy scalar does not appear as a physical degree
of freedom and we can only have light fermions with energies smaller than M . Our
aim is to construct explicitly the EFT for this toy model and show the techniques used
throughout the thesis. The EFT Lagrangian reads (see 3.4)

LEFT = ψ̄i/∂ψ −mψ̄ψ +
c̃

M2
(ψ̄ψ)(ψ̄ψ) + · · · (3.6)

The dots stand for higher order operators with higher dimensions, c̃ is the matching
coefficient and ψ describes fermions with energy smaller than M . The heavy scalar
particle is not explicitly present in the theory, since energy and momenta of order M are
integrated out. The effects of the heavy scalar are embedded into a local interaction,
namely the dimension-six operator in (3.6). It corresponds to the leading term of the
operator string we can consider in the EFT and it is an irrelevant operator because its
dimension is d = 6.

We want to describe the ff → ff scattering at tree level, therefore the asymptotic
states are four fermions and the corresponding Green’s function we need for the matching
reads

− i
∫
d4x eiq1·x

∫
d4y

∫
d4z eiq3·ye−iq4·z 〈Ω|T (ψµ(x)ψ̄ν(0)ψα(y)ψ̄β(z))|Ω〉, (3.7)

where |Ω〉 is the ground state of the fundamental theory. Then µ, ν, α and β are Lorentz
indices and q1, q2, q3 and q4 are the external momenta carried by the scattering fermions.
Here and in the rest of the thesis we consider for the diagrammatic counterpart of the
Green’s functions the quantity −iD, where D is a generic Feynman diagram amputated
of the external legs. In order to match the Green’s function in eq. (3.7), one has to
evaluate it in the fundamental theory (3.5) and then expand the result in powers of
qj/M . Indeed we want to device the low-energy theory where particles carry energies
and momenta qj ∼ m � M . We focus here on a tree level matching and discard
loop amplitudes. The tree-level diagram in the fundamental theory for the f f → f f
scattering is shown in figure 3.2, and one obtains the following result

−i
∫
d4x eiq1·x

∫
d4y

∫
d4z eiq3·ye−iq4·z 〈Ω|T (ψµ(x)ψ̄ν(0)ψα(y)ψ̄β(z))|Ω〉

= − g̃2

(q1 − q2)2 −M2
δµνδαβ =

g̃2

M2
δµνδαβ + · · · , (3.8)

where we retain only first term in the expansion (q1 − q2)/M � 1. To keep the no-
tation simple we drop, here and in the rest of the thesis, propagators on external legs
and we label to so-obtained amputated Green’s function with the same indices as the
unamputated ones.
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Λ
QCD

q̄

Figure 3.3: Schematic representation of a heavy-light meson, with valence quark Q and
antiquark q̄. The typical momentum transfer between the heavy quark and light partons
(yellow dots) in the bound state is of order ΛQCD.

As regards the EFT we have to evaluate the diagram on the right-hand side of the
equality shown in figure 3.2 by using the Lagrangian (3.6). The result reads

−i
∫
d4x eiq1·x

∫
d4y

∫
d4z eiq3·ye−iq4·z 〈Ω|T (ψµ(x)ψ̄ν(0)ψα(y)ψ̄β(z))|Ω〉

=
c̃

M2
δµνδαβ . (3.9)

Comparing eqs. (3.8) and (3.9), namely matching the Green’s functions, we obtain the
Wilson coefficient of the dimension-six operator: c̃ = g̃2. This enables to use the low-
energy theory instead of the fundamental theory, the former being exactly equivalent to
the latter at order (qj/M)0 (this is the order at which we worked here).

Of course we can include higher order operators in the low-energy Lagrangian, that
contain derivatives acting on the fermion fields. Accordingly one has to go further in the
expansion in powers of qj/M shown in (3.8), in order to match the new terms induced by
the additional higher order operators on the EFT side. The accuracy of the low-energy
Lagrangian is systematically improved this way.

3.3 An EFT prototype for heavy particles: the HQEFT

In the following chapters we are going to discuss the dynamics of heavy Majorana neu-
trinos in a thermal bath of SM particles. In particular we want to study the medium
induced modifications on the neutrino width and on the CP asymmetries generated in
heavy-neutrino decays. It is conceivable that the generation of the CP asymmetry takes
place when the Majorana neutrinos are non-relativistic, namely when their typical three-
momentum is much smaller than their mass. In this case, at variance with the examples
discussed so far, the heavy particle is a fundamental ingredient of the low-energy theory:
its non-relativistic (low-energy) excitations participate the dynamics by interacting with
the light fields. Here we discuss the original formulation for such EFT: the heavy quark
effective theory (HQEFT) [14, 159–162], that provides the prototype for developing the
EFT for non-relativistic Majorana fermions.

The physical system described by the HQEFT is a heavy-light meson, a color singlet
state made of a quark and an antiquark bound by the non-perturbative gluon dynamics.
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In particular the up, down and strange quarks are understood as light quarks, whereas
the charm and bottom quarks are taken as heavy (the top quark does not provide bound
states). This distinction is also based on the comparison between quark masses and
the dynamically generated scale in QCD, that is ΛQCD. Let us label such heavy-light
meson with Qq̄, assuming the bound state made of a valence heavy quark Q and light
antiquark q̄ with mass mQ � ΛQCD and mq � ΛQCD respectively. We give a simplified
representation of such system in figure 3.3. The typical size of such bound state is of
order 1/ΛQCD, which is also the natural momentum transfer between the heavy and
light partons in the meson.

An important consequence of the comparison among typical momentum transfer,
sizes and mass scales in the heavy-light meson is the following: the velocity of the heavy
quark, v, is almost unchanged by the strong interaction dynamics in the bound state.
Assuming the momentum of the heavy quark to be mQv, the effect of the interactions
with light partons mediated by the binding gluons can amount at changing the heavy
quark momentum by ∆p ≈ ΛQCD, and hence ∆v ≈ ΛQCD/mQ. Moreover the heavy
quark is a non-relativistic object in the heavy-light meson because its mass is bigger
than the three-momentum of order ΛQCD. It holds v < 1 and benchmark values are
v ∼ 0.3(0.5) for beauty (charm) mesons.

Our aim is to show the field content of the EFT that describes the physics at ener-
gies much smaller than the heavy-quark mass. The procedure to obtain such low-energy
theory is the same discussed in the previous sections. However, in this case, the funda-
mental theory is a more involved one, namely QCD. It contains positive powers of the
heavy-quark mass, and it reads

LQCD = −1

4
F aµνF aµν + Q̄(i /D −mQ)Q+ q̄i(i /D −mqi)qi , (3.10)

where counterterms are understood and as well as the sum over the light quarks index
i. The first term is the Yang-Mills sector describing the gluons, a is the color index, µ
and ν are Lorentz indices. Regards the fermion sector we distinguish the heavy quark
term from the light quarks one. Colour, Lorentz and flavour indices are understood in
the quark terms. The covariant derivative is Dµ = ∂µ + igsA

a
µT

a, where T a are the
SU(3) generators in the adjoint representation, gs is the strong coupling constant and
Aaµ are the gluon fields. The effective theory is constructed by making sure that Green’s
functions in the effective theory are equal to those in QCD at a given order in 1/mQ

and αs = g2
s/(4π).

3.3.1 The HQEFT Lagrangian

In order to construct the HQEFT we have to integrate out energy modes of order mQ.
We know from (3.4) that positive powers of mQ are not present anymore in the EFT
Lagrangian, at variance with the QCD Lagrangian (3.10). We proceed as follows to
derive the effective Lagrangian in the heavy mass limit for a non-relativistic heavy quark
in the heavy-light meson. We consider an off-shell heavy quark interacting with the
surrounding light fields. Its momentum can be written as pµ = mQv

µ + kµ, with v2 = 1.
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In particular the four-momentum k determines the amounts of which the heavy quark is
off-shell due to the interactions. We call it residual momentum and it is of order ΛQCD

by construction. This condition allows for a simplification of the Dirac heavy quark
propagator

〈0|T (Q(x)Q̄(0))|0〉 =

∫
d4p

(2π)4

i(/p+mQ)

p2 −m2
Q + iη

e−ip·x . (3.11)

By taking the heavy quark propagator in momentum space and substituting the parametriza-
tion pµ = Mvµ + kµ, we obtain for k ∼ ΛQCD � mQ

i(/p+mQ)

p2 −m2
Q + iη

=
i(mQ/v +mQ + /k)

2mQ v · k + k2 + iη
=

1 + /v

2

i

v · k + iη
+O

(
1

mQ

)
, (3.12)

where higher order corrections besides the leading term are not shown. They vanish
in the strict heavy mass limit, mQ → ∞. We notice that the heavy quark propagator
contains a velocity-dependent projector

P̂ ≡ 1 + /v

2
, (3.13)

that is also called non-relativistic projector and in the heavy-quark rest frame vµ = (1,0)
it becomes P̂ = (1 + γ0)/2.

The original heavy quark field, Q(x), can be decomposed into a large component
H(x), whose energy is of order mQ and a small component h(x), whose energy is much
smaller than mQ, by using the non-relativistic projectors

Q(x) =
1 + /v

2
Q(x) +

1− /v
2

Q(x) = h(x) +H(x) , (3.14)

where P̌ = (1−/v)/2 complete the basis of the velocity projectors. The small component
field, h(x), is the degree of freedom that remains dynamical in the low-energy theory,
whereas the field H(x) is integrated out and it will not appear in the EFT. Then h(x) is
the field, made of two independent components, that describes in the HQEFT Lagrangian
the low-energy modes of the heavy quark. Moreover it annihilates a heavy quark but
does not create an antiquark. The field h(x) satisfies

1 + /v

2
h(x) = h(x) , (3.15)

and the equal time anti-commutation relations [163]{
hα(t,x), hβ(t,y)

}
=

{
h̄α(t,x), h̄β(t,y)

}
= 0 , (3.16){

hα(t,x), h̄β(t,y)
}

=
1

v0

(
1 + /v

2

)αβ
δ3(x− y) . (3.17)

From the expansion of the full propagator in (3.12) and the discussion on the low-energy
degree of freedom for the heavy quark, we write the HQEFT Lagrangian at leading order
in the 1/mQ expansion, namely in the static limit, as follows

L(0)
HQEFT = h̄ (iv ·D)h . (3.18)
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Due to the presence of a covariant derivative in (3.18), we can also specify the heavy
quark-gluon vertex at tree level to be −igsT avµ instead of −igsT aγµ. This change is due
to the sandwich of the gamma matrix between two propagators of the non-relativistic
heavy quarks, giving P̂ γµP̂ = vµP̂ .

An analogous derivation can be made by defining the original heavy quark field as
follows

Q(x) = e−imQ v·x [h(x) +H(x)] , (3.19)

where the exponential prefactor has the effect of subtracting the quantity mQv
µ from

the heavy quark momentum. Substituting the decomposition (3.19) for Q(x) into the
QCD Lagrangian (3.10) and neglecting any effect of the large component H(x) one gets
back the Lagrangian (3.18). However this last procedure allows for considering the higher
order corrections in the heavy quark mass expansion. It is beyond the present discussion
to derive those corrections and we refer to [164] for details. Only the strategy is outlined
here. If one keeps the large component field H(x) when plugging the decomposition
(3.19) into the Lagrangian (3.10), the HQEFT Lagrangian is found to be

LHQEFT = h̄ (iv ·D)h− H̄(iv ·D + 2mQ)H + h̄ i /DH + H̄ i /D h . (3.20)

One may see that the large component field, H(x), describes the heavy quark field
excitations of order mQ, whereas the small component, h(x), does not. It is useful to
define the perpendicular component of the covariant derivative with respect to the four
velocity, Dµ

⊥ = Dµ− (v ·D)vµ. This provides the substitutions /D → /D⊥ in (3.20). Since
the field H(x) corresponds to quantum excitations of order mQ, it can be integrated out
when the assumptions of the HQEFT are valid. This is done by solving the equations
of motion for H(x) derived form the Lagrangian (3.20) so that the field H(x) can be
eliminated in favour of h(x). Finally the correction at order 1/mQ to the free HQEFT
Lagrangian (3.18) reads

L(1)
HQEFT = −h̄ D2

⊥
2mQ

h− gs h̄
σµνF

µν

4mQ
h , (3.21)

where σµν = i[γµ, γν ]/2 and Fµν = [Dµ, Dν ] is the field strength tensor. The first term in
eq. (3.21) is the heavy-quark kinetic energy and the second term is the magnetic moment
interaction, the latter describes the interaction between the heavy quark and the gluons
carrying energy and momenta of order ΛQCD � mQ. The operators in eq. (3.21) are of
dimension five and hence suppressed in one power of the high energy scale mQ whose
corresponding energy modes have been integrated out.

3.3.2 Concluding remarks

The formalism shown with the example of the HQEFT is quite general. It applies every
time we want to keep non-relativistic excitations of a heavy particle in the low-energy
theory. What do we mean exactly for a heavy particle in the EFT framework? We call a
particle heavy if its mass, M , is much larger than any other scale, E, characterizing the
system. The scale E may include the spatial momentum of the heavy particle, scales that
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νR k ∼
T

Figure 3.4: Schematic representation of a heavy Majorana neutrino in a heat bath of SM
particles (yellow dots). The typical momentum transfer between the heavy right-handed
neutrino and the light SM fields is of order of the temperature T .

appear from dimensional transmutation like ΛQCD, symmetry breaking scales, masses of
other particles, the temperature of a medium and any other energy or momentum scale
that describes the heavy particle and its environment [165]. Under this condition the
heavy particle turns out the be also non-relativistic.

Our aim is to describe the dynamics of heavy Majorana neutrinos in a thermal bath
of SM particles. Then the temperature enters to describe the hot plasma in which the
heavy neutrinos find themselves. Moreover we are interested in the regime M � T ,
relevant for leptogenesis, and this enables us to adopt an EFT approach. The situation
is sketched graphically in figure 3.4, where the heavy neutrino is in a thermal bath
of SM particles modelling the early universe. The heavy Majorana neutrino is kicked
continuously by light particles in the heat bath with momentum transfer of order T .
From the EFT prospective it does not make any difference if the small scale is the
temperature instead of ΛQCD like it was for the HQEFT. In matching the fundamental
theory onto the low-energy one, the small scales can be put to zero. According to our
assumption on the hierarchy between M and T , we can set T → 0. Hence the matching
can be done at zero temperature.

The EFT we are going to obtain comprises non-relativistic excitation of the heavy
Majorana neutrinos and the light SM particles. The dynamical scale of the EFT is the
temperature of the heat bath and therefore the observables calculated in this theory
may depend on the temperature. This is why we need to introduce some notation and
topics about the thermal aspect of the problem at hand. We do this in the next chapter
discussing thermal field theory. Finally we stated that the field h of HQEFT annihilates
a heavy quark but it does not create an heavy antiquark. To account for an heavy anti-
quark one has to consider the charge conjugate field of Q(x) and redo the decomposition
in a small and large component. This reflects the Dirac nature of the heavy-quark field.
In this thesis we deal with heavy Majorana neutrinos and the main difference with the
heavy quark is that we take the neutrinos to be Majorana particles: the field is equal
to its charge conjugate. This is an element to keep in mind when constructing the
low-energy theory as we are going to show in chapter 5.
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Chapter 4

Thermal field theory in a nutshell

In this chapter we deal with the formalism of thermal field theory, namely we discuss the
quantum field theory techniques that allow for perturbative calculations of observables
involving particles in a medium. In section 4.1 we introduce the physics context for
which thermal field theory is needed and we show how to obtain the thermal version
of a scalar field propagator in section 4.2. The imaginary-time formalism is briefly
discussed, whereas some more details are provided for the real-time formalism adopted
in the following chapters. We provide a comparison between the two formalizations of
thermal field theory in section 4.3 by explicitly calculating tadpole diagrams in the λφ4

theory. In section 4.4 the physical correlators are introduced and we discuss the analytic
continuation from imaginary to real times. Finally we address the particle production
rate for the case of right-handed neutrinos as a relevant application of the thermal field
theory formalism in section 4.5.

4.1 Why thermal field theory?

Thermal field theory is used to describe a large ensemble of interacting particles in a
thermodynamical environment. This might seem the same as the classical statistical
mechanics. However there are some important differences with the older and more
familiar kinetic or many-body theory [166, 167]: the usage of the path integral approach,
the possibility to account for non-abelian interactions like QCD, a Lorentz-covariant
formulation. A quantitative study and understanding of phase transitions in quantum
field theory has been the first success of thermal field theory.

Before coming closer to the formalism, let us consider some relevant applications
of thermal field theory on the particle physics and cosmology side. If one is interested
in studying hot and dense plasmas, then the early universe is a good example. In-
deed at any time before recombination the mean free path between subsequent particle
interactions was much smaller than the entire system size, so that one can speak of a
thermalized medium. This is also strongly supported by CMB analysis which shows that
the universe at the time of the last scattering exhibits an almost uniform black-body
radiation spectrum, up to small fluctuations δT/T � 1. Going back in time and higher
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p1

p2

q1

q2 q3 q4

p1

p2

q1

q2 q3 q4

Figure 4.1: A many-particle scattering reaction is shown. The momenta of the two
incoming particles are p1 and p2, whereas q1, ... , q4 are those of the four out-coming
particles. The red box on the right panel stands for a thermal average of the same
process on the left. Figure adapted from [169].

in temperatures, it is expected the universe to behave as a thermodynamical system in
which very interesting processes happened. Contemporary challenges in the field include
dark matter production, the generation of the baryon asymmetry in the universe, the
reheating dynamics after the inflation. It is important to notice that weak (or very
weak) interactions play the major role in driving the production, decay rates and relic
abundances of particles in the early universe.

Another important example is the hot QCD medium which is established in the
transition, better a crossover, from the hadron phase to a quark-gluon plasma (QGP) at
high temperatures. Being the original idea rather old [168], accurate lattice simulations
provides nowadays the crossover temperature Tc = 154±9 MeV [48]. The way to achieve
and study the QGP is by making heavy ions collide at relativistic energies. In this case
we have a system dominated by strong interactions, and the maximal temperature is
of order of few hundreds of MeV. The advantage with respect to the early universe is
that we can have direct access to the hot QCD medium in present day experiments
at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory and
at the Large Hadron Collider (LHC) at CERN. Typical interesting observables are the
yields of different particles, jet quenching, transport coefficients and the hydrodynamics
parameters of the plasma, like the temperature.

In both the cases, interactions among particles occur in a medium that may be char-
acterized by some thermodynamical parameters. Despite the different questions one
addresses in studying the early stages of the universe and the QGP, there are some
similarities especially regards the calculation techniques. Even though strong interac-
tions drive the dynamics of the QGP formation and evolution, at high temperatures
(energies), they become weaker due to asymptotic freedom. Resummation techniques
developed and adopted in one field can then be exploited also for the other. In the end,
either in the case of QGP or the early universe, we are interested in calculating observ-
ables in a rigorous way by means of a quantum field theory at finite temperature. We
highlight here the main difference between the early universe and the medium produced
in the heavy ion collisions: the latter expands much faster. This makes more difficult to
attain thermal equilibration in the QGP than in the early universe.
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Let us now come closer to the formal foundation of thermal field theory. We want to
compare the two situations shown in the left and right panel of figure 4.1. On the left, a
complicated process at zero temperature is shown where there are two incoming particles,
with momenta pi, and four out-coming particles, with momenta qj , the latter created by
the interactions. The calculation of a multi-particle scattering is, in general, technically
very complicated. We look now at the same process from a different prospective, as
shown on the right of figure 4.1. With the solid red box we mean that we only care
of some average properties of the system governed by the same interactions as for the
T = 0 case. If we observed the system for a long enough period of time, the statistical
description could be invoked and the problem be treated in terms of few quantities
characterizing the entire system. Examples are the temperature, the chemical potentials
and some conserved charges. Hence a multi-scattering process like the one to the left
of figure 4.1 become more tractable if understood as a thermal system. Of course it is
important to understand under which conditions one can adopt a statistical description
starting from the microscopic and quantum mechanical view. Let us put this way:
consider a system defined by an initial state and a Lagrangian (Hamiltonian) describing
the microscopic interactions. Then the system has some dynamical thermalisation scale,
and only if we observe the system over time periods longer than that scale, we are able
to appreciate a thermodynamical behaviour.

The starting point of thermal field theory calculations is the definition of the expec-
tation value of a given observable in a thermal bath:

〈A〉β =
1

Z
tr
{
e−βH A

}
, (4.1)

where H is the Hamiltonian of the system and Z is the partition function of the system
in turn defined by

Z = tr
{
e−βH

}
. (4.2)

Then β = 1/T , T being the temperature and we recall that we take the Boltzmann
constant equal to one. The trace is performed over all the accessible states of the system,
either discrete or continuous states. A common choice is to consider the eigenstates of
the Hamiltonian operator, namely H|n〉 = En|n〉, as adopted throughout the thesis. For
simplicity the chemical potential in the Boltzmann factor is not considered, µ = 0. We
notice that we already used the definition (4.1) in chapter 1 when discussing the baryon
number in thermal equilibrium (see eq. (1.28)).

There exists two different and equivalent formulations of thermal field theory: the
imaginary-time formalism (ITF) and real-time formalism (RTF). Matsubara was the
pioneer in the former [170], where a purely imaginary time was included in the evolution
operator. On the other hand, Schwinger, Mills and Keldysh developed an alternative
formalism by choosing a particular contour in the complex plane to allow for real times
[145, 146]. In the following both the realizations of thermal field theory are discussed
and we highlight differences between them. We remind the reader to text books like
[171, 172] for an extensive treatment of the subject.
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4.2 Green’s functions at finite temperature

Thermal field theory can be also seen as a combination of quantum field theory and
statistical mechanics. In order to address perturbative calculations in a hot and dense
medium we need to understand how the T = 0 formulation of the Feynman rules changes
in the finite temperature case. It is usual to start the study of quantum field theory
by looking at the free propagation of a scalar particle with mass m, described by the
field φ, and obtain the corresponding two-point Green’s function. In the following we
want to address the same quantity at finite temperature. Throughout the chapter we
discuss mostly a scalar field theory to introduce the fundamental techniques of thermal
field theory.

In order to set the notation we recall the free scalar in-vacuum propagator, that
corresponds to a quantum field theory at zero temperature. The scalar propagator is
defined by

i∆(x− y) ≡ 〈0|T (φ(x)φ(y)) |0〉 , (4.3)

where the time ordered product of the scalar fields is defined as follows

T (φ(x)φ(y)) =

{
φ(x)φ(y) , x0 > y0

φ(y)φ(x) , x0 < y0
, (4.4)

and it has not to be confused with the same symbol used also for the temperature.
The field φ can be expressed in terms of a Fourier decomposition with creation and
annihilation operators, it reads

φ(x) =

∫
d3k

(2π)3

1

2Ek

[
a(k) e−ik·x + a†(k) e+ik·x

]
. (4.5)

In (4.5) k = (k0,k) is the four momentum of the scalar field and the energy is given by
Ek = k0 =

√
k2 +m2, a(k) is the annihilation operator and it acts on the vacuum state

as follows a(k)|0〉 = 0, whereas a†(k) is the creation operator. Then using the expression
for the scalar field (4.5) in the definition of the propagator (4.3) one obtains

i∆(x− y) =

∫
d4k

(2π)4

i

k2 +m2 + iη
e−ik·(x−y) , (4.6)

that provides the corresponding Feynman rule for the propagation of a scalar particle,
from the space-time point x to y, if x0 < y0, and from y to x in the other case.

Let us now come to the finite temperature case. According to the definitions in (4.1)
and (4.2) , we have to change the expectation value for the two-point Green’s function
as follows

i∆T (x− y) ≡ 〈T (φ(x)φ(y))〉β =
1

Z

∑
n

〈n|T (φ(x)φ(y)) |n〉 e−βEn , (4.7)

where the superscript, β, stands for the thermal version of the scalar propagator. In
order to obtain a more explicit form for the two-point function, one has to insert the
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field decomposition (4.5) in into the definition (4.7). The multi-boson states |n〉 are
obtained by the creation operator acting repeatedly on the vacuum state of the theory,
namely

|n〉 = |n1(k1), n2(k2), ...〉 =
∏
i

[
a†(ki)

]n(ki)√
ni(ki)!

|0〉 . (4.8)

Because the eigenstates are orthonormal one derives for (4.7) the following expression

i∆T (x− y) =
1

Z

∫
d3k

(2π)3

1

2Ek

∑
n

e−βEn
[
(n(k) + 1)e−ik·(x−y) + n(k)eik·(x−y)

]
, (4.9)

where n(k) is the occupation number of a bosonic state with three-momentum k. We
can simplify the sum over the eigenstates |n〉 weighted by the Boltzmann factor. We use
the definition of the Bose-Einstein distribution

nB(Ek) ≡
1

Z

∑
n

n(k) e−βEn =
1

eβEk − 1
, (4.10)

and we finally obtain

i∆T (x− y) =

∫
d3k

(2π)3

1

2Ek

[
(nB(Ek) + 1)e−ik·(x−y) + nB(Ek)e

ik·(x−y)
]
. (4.11)

There is a physical interpretation of the thermal scalar propagator in (4.11). As in the
zero temperature case we have, for y0 < x0, the creation of a scalar particle at the
space-time point y and the corresponding annihilation at x. However, in addition, there
is a medium induced creation and annihilation of scalar particles at different energies,
governed by the Bose-Einstein factor nB(Ek) that acts as a statistical weight. For
T → 0 (β →∞) we recover the in-vacuum result (one can see this integrating on k0 the
expression given in (4.6)).

4.2.1 Imaginary-time formalism

We now look at the derivation of the two-point Green’s function from a different prospec-
tive. Moreover we allow also for the interaction term between scalar fields with a four-
particle interaction, the Lagrangian reads

Lλφ4 =
1

2
(∂φ)2 − 1

2
m2φ2 − λ

4!
φ4 . (4.12)

We are going to use this simple field theory to provide the complete set of Feynman rules
at finite temperature: the scalar propagator (it has been already derived, we will just
show an equivalent expression of (4.11)), the interaction vertex and the way to express
loop integrals.

In the imaginary-time formalism, a purely imaginary time is incorporated in the
evolution operator. Indeed, one can regard the Boltzmann factor in (4.1), and hence
that in (4.7), as an evolution operator once the following assignment is made

β ≡ τ = it . (4.13)
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Therefore we can think of an operator evolving in time according to

A(τ) = eτHA(0)e−τH . (4.14)

Since τ is complex the transformation is unitary. It is possible to obtain a partition
function for the theory in (4.12), a generating functional with a source, and hence a dia-
grammatic approach as in the zero temperature case. There is however a first important
difference. Having defined an imaginary time τ = β we enforce the evolution operator
to be restricted only to a finite time interval. Indeed we have given up the time variable
in favour of the temperature. One can see this looking at the two-point function for the
scalar field. By taking the space-time arguments of the field operator as x = (τx,x) and
y = (τy,y), with τx = τ and τy = 0, one obtains (0 ≤ τ ≤ β)

∆T (x− y) = ∆T (τ,x− y)

=
1

Z
tr
[
e−βHT (φ(τ,x)φ(0,y))

]
=

1

Z
tr
[
e−βHφ(τ,x)φ(0,y)

]
=

1

Z
tr
[
e−βHeβHφ(0,y)e−βHφ(τ,x)

]
=

1

Z
tr
[
e−βHφ(β,y)φ(τ,x)

]
=

1

Z
tr
[
e−βHT (φ(τ,x)φ(β,y))

]
= ∆T (τ − β,x− y) . (4.15)

This kind of property for the propagator is named a Kubo-Martin-Schwinger (KMS)
relation [173, 174]. More in general it can be written as

∆T (τ,x− y) = ∆T (τ + nβ,x− y) , n ∈ Z . (4.16)

This has an important consequence: the time argument is restricted to the interval
[0, β]. It is rather clear that one loses contact with real-time quantities within the ITF,
and that one is restricted to the evaluation of static thermodynamical quantities. This
is the context in which such formalism was originally derived. In order to calculate
time-dependent quantities from the ITF, one has to perform a non trivial analytical
continuation to real times after all the diagrams of interest are calculated.

As in the zero temperature case, the evaluation of Feynman diagrams is easier in
momentum space. Then we address a second aspect of the imaginary-time formalism:
the Matsubara sum. Going to imaginary times 0 ≤ it ≡ τ ≤ β, and summing over
discrete energies k0 ≡ ωn = 2πiTn instead of integrating∫

dk0

(2π)
→ iT

+∞∑
n=−∞

, (4.17)

the propagator in (4.11) can be rewritten as

i∆T (x− y) = iT

+∞∑
n=−∞

∫
d3k

(2π)3

i

k2 −m2
e−ik·(x−y) , (4.18)

where k in the denominator and the exponent is the four-momentum. An explicit deriva-
tion of (4.18) can be found, e. g., in [175]. We see that the scalar propagator acquires a
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non-trivial dependence on the temperature via the so-called Matsubara frequencies, ωn.
The interaction vertex is left untouched. In summary, we can list the Feynman rules for
the model Lagrangian in (4.12) in momentum space in ITF as follows

1) the scalar propagator is

=
i

k2 −m2
, (4.19)

with the k0 = 2πiTn, namely restricted to the Matsubara frequencies;

2) the vertex is (as in the T = 0 case)

= −iλ ; (4.20)

3) in loop integrals we have to make the replacement for the loop momentum ` as
follows ∫

d4`

(2π)4
→ ∑∫ ≡ iT +∞∑

n=−∞

∫
d3`

(2π)3
, (4.21)

where `0 takes discrete values over the Matsubara frequencies;

4) topologies and symmetry factors are the same as in the T = 0 case.

4.2.2 Real-time formalism

We already mentioned that the ITF was originally derived to calculate static quantities,
for instance the free energy or the pressure. If one is interested in real-time quantities
that evolve with time, one can still stick on the ITF and perform an analytic contin-
uation to real times after the Matsubara sums have been carried out. This procedure
may be cumbersome and one could better start with the real time variables from the
very beginning. The RTF of thermal field theory is suited for addressing time evolv-
ing observables, such as phase transitions. Non-equilibrium dynamics is more naturally
accounted for in the RTF. The price to pay is the so-called doubling of the degrees of
freedom that make the calculations rather involved. RTF provides a more transparent
organization of the thermal content in actual calculations since the in-vacuum and finite
temperature terms in particle propagators are disentangled from the beginning.

The aim of this discussion is to provide the same set of Feynman rules (4.19)-(4.21)
for the λφ4 theory in the RTF. The way to allow for real time arguments in the Green’s
functions is to consider a particular contour in the complex t plane, as shown in figure
4.2. The Schwinger–Keldysh contour is a deformation of the straight line in the complex
plane from t to t− iβ one has to consider in the ITF. Let us describe the path in figure
4.2. We start with C1, standing for the path from the initial time ti ≡ −t0 on the
negative real axis, with t0 > 0, to a positive valued real time t0. One moves down from
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−t0 − iσ

−t0 − iβ

Figure 4.2: Schwinger–Keldysh contour [145, 146] in the complex time plane for a given
choice of 0 < σ < β. The red dots stand for the boundaries along the paths C1, ..., C4.

there according to the path C2, where the time gets an imaginary part t0 − iσ, with
0 < σ < β. Then one goes back to a negative real part moving horizontally along C3

arriving at −t0 − iσ. Finally along C4 we end up with −t0 − iβ. This is the choice for
the contour if one aims at working with real times. Taking now t0 →∞ the entire real
time axis is spanned.

The generating functional of the theory has to be evaluated on the Schwinger–
Keldysh contour. By analytic reasons it can be shown that the contributions along
the path C2 and C4 can be neglected, indeed factorizing in the generating functional
as constants irrelevant to the field dynamics [176]. Therefore we are left with the pos-
sibilities for the two-point function time arguments, x0 and y0, to lie either on C1 or
C3. This suggest that the propagators at finite temperature have a richer structure
than the in-vacuum counterparts. In terms of ensemble averages they have the following
expressions

i∆T
11(x0 − y0,x− y) = 〈T (φ(x)φ(y))〉β , x0 ∈ C1 and y0 ∈ C1 (4.22)

i∆T
12(x0 − y0,x− y) = 〈φ(y)φ(x)〉β , x0 ∈ C1 and y0 ∈ C3 (4.23)

i∆T
21(x0 − y0,x− y) = 〈φ(x)φ(y)〉β , x0 ∈ C3 and y0 ∈ C1 (4.24)

i∆T
22(x0 − y0,x− y) = 〈T (φ(x)φ(y))〉β , x0 ∈ C3 and y0 ∈ C3 , (4.25)

where T stand for the anti-time ordering along the C3 branch. We call a field of “type 1”
that having the time coordinate on the upper brunch, C1, whereas for fields of “type 2”
the time variable lies on the lower branch, C3. Because of the orientation along the
contour, times on the lower brunch come always after those on the upper one and times
on the lower brunch are conversely ordered (a later time comes first). The necessary
appearance of the field of type 2 in the construction of the RTF stands for the doubling
of the degrees of freedom mentioned before.

Let us briefly comment on the quantum field theory structure when adding fields of
type 2. First, they never enter matrix elements as asymptotic states but they appear
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only in internal lines. They are indeed not physical and they act as ghost fields (not to
be confused with the Fadeev–Popov ghost though). Second, the real-time propagator
can be recast in a 2×2 matrix, according to the different combinations of the field of
type 1 and 2:

∆T (x− y) =

(
∆11(x− y) ∆12(x− y)
∆21(x− y) ∆22(x− y)

)
, (4.26)

The off-diagonal elements are often denoted as the Wightman propagators, ∆< and
∆> instead of ∆12 and ∆21 respectively. In order to write explicitly the propagator
components we have to choose the value of the parameter σ and we stick to the popular
choice σ = 0. This is also the original one adopted by Schwinger–Keldysh. Not setting
σ = 0, the parameter will enter explicitly the propagator expression [172]. We give the
2×2 propagator matrix in momentum space, for a detailed derivation we refer to [171].
It reads:

i∆T (k) =

(
i

k2−m2+iη
θ(−k0) 2πδ(k2 −m2)

θ(k0) 2πδ(k2 −m2) − i
k2−m2−iη

)

+ 2πδ(k2 −m2)nB(|k0|)
(

1 1
1 1

)
.

(4.27)

As one may see from (4.27), there is a more transparent separation between the vacuum
and thermal part than the propagator in ITF. Indeed for the physical propagator ∆T

11(k)
we simply have the sum of the in-vacuum scalar propagator and a thermal piece, the
latter manifestly disentangled from the former. This was not the case for the Matsubara
propagator in (4.18) where the temperature dependence is somehow encrypted in the
Matsubara frequencies. Moreover the thermal part is made of a Dirac delta function,
that enforces the thermal particles to be on-shell, and weighted by the Bose-Einstein
distribution. This clearly shows that the thermal propagator comprises thermalized on-
shell particle contributions even in the free case. It is also clear that in the in-vacuum
limit, T → 0, one reduces to the zero temperature scalar propagator.

We are now ready to write the set of Feynman rules for the λφ4 theory:

1) the physical propagator, ∆11(k), reads

11 = i∆11(k) =
i

k2 −m2 + iη
+ 2πnB(|k0|)δ(k2 −m2) . (4.28)

The other propagators in eq. (4.27), namely ∆12(k), ∆21(k) and ∆22(k), are drawn
as (4.28) accounting for different labels of the dashed line, 12, 21 and 22 respec-
tively;

2) regarding the the four-particle vertex, fields of type 1 are not mixed with fields of
type 2. The vertex involving fields of type 2 has a relative minus sing coming from
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the anti-time ordering:

1 = −iλ , 2 = iλ ; (4.29)

3) for any loop one has to integrate on the loop momentum ` as in the T = 0 case∫
d4`

(2π)4
, (4.30)

and one has to include, when necessary, internal lines with fields of type 2;

4) topologies and symmetry factors are the same as in the T = 0 case.

The Feynman rules in the two formalisms of thermal field theory are quite different.
In the RTF there is a closer contact with the corresponding T = 0 theory despite the
addition of the field of type 2.

Before addressing an actual calculation, we further comment on the real time 2×2
propagator in eq. (4.26). The four components of the propagator are not independent.
This can be traced back to the periodicity condition on the propagators in the ITF that
we have discussed (see 4.15). So we can think of Kubo-Schwinger relations also in the
RFT, that reads as follows

∆11 −∆12 −∆21 + ∆22 = 0 . (4.31)

It is rather straightforward to verify it, one has just plug in eq. (4.31) the compo-
nents explicitly given in (4.27). We introduce a useful representation of the RTF, called
Keldysh representation. It is constructed by linear combinations of the two-point Green’s
functions in eq. (4.26). The propagator components are called retarded, advanced and
symmetric and they read respectively

∆R ≡ ∆11 −∆12 , ∆A ≡ ∆11 −∆21 , ∆S ≡ ∆11 + ∆22 . (4.32)

The three propagator components are sufficient because of the relation (4.31) and ex-
plicitly they read

i∆R(k) =
i

k2 −m2 + isgn(k0)
, (4.33)

i∆A(k) =
i

k2 −m2 − isgn(k0)
, (4.34)

i∆S(k) = 2πδ(k2 −m2) [1 + nB(|k0|)] . (4.35)

The poles are both above (below) the real axis for the retarded (advanced) propagator;
only the symmetric propagator contain a thermal distribution. The latter usually helps
in pin pointing the thermal contribution in actual calculations.
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An analogous derivation holds for the thermal propagator of a massive particle with
spin. As for the scalar propagator one finds a 2×2 matrix in the real-time formalism,
whereas the Bose–Einstein distribution is replaced by the Fermi–Dirac one. The fermion
propagator reads [171, 172]

iST (k) = (/k +m)

[(
i

k2−m2+iη
θ(−k0) 2πδ(k2 −m2)

θ(k0) 2πδ(k2 −m2) − i
k2−m2−iη

)

− 2πδ(k2 −m2)nF (|k0|)
(

1 1
1 1

)]
.

(4.36)

The four components are not independent and the corresponding condition of eq. (4.31)
may be obtained for the fermion propagator. Moreover we can define the advanced,
retarded and symmetric propagators in complete analogy with the bosonic case:

iSR(k) =
i(/k +m)

k2 −m2 + isgn(k0)
, (4.37)

iSA(k) =
i(/k +m)

k2 −m2 − isgn(k0)
, (4.38)

iSS(k) = 2π (/k +m) δ(k2 −m2) [1− nF (|k0|)] . (4.39)

Regards the fermion propagator in the ITF we observe that the periodicity condition
on the two-point point Green’s function is

ST (τ,x− y) = (−1)nST (τ + nβ,x− y) , n ∈ Z, (4.40)

where the minus sign comes from the anti-commutating fermion fields, and from that
the Matsubara sum goes on k0 = 2πiT (n+ 1), with n ∈ Z.

4.3 Comparison between the ITF and RTF: a tadpole com-
putation

In order to show an application of both the ITF and RTF, we consider the calculation
of the tadpole diagram in the λφ4 theory, as shown in figure 4.3. Besides the purpose to
discuss a comparison between a loop computation in the two formalisms, this example
is also of particular relevance to the thesis. Indeed thermal contributions to the heavy
neutrino width are encoded in tadpole diagrams in the EFT (see chapter 5).

Let us start with the ITF. Using the Feynman rules given in section 4.2 we write the
self-energy induced by the tadpole diagram, Πtad, as follows

−iΠtad = −iλ 1

2
iT
∑∫ i

(`0)2 − `2 −m2

= i
λ

2
T

+∞∑
n=−∞

∫
d3`

(2π)3

1

(2πiTn)2 − E2
`

(4.41)
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Figure 4.3: The tadpole diagram in λφ4 theory.

where the diagram has to be understood as amputated of the external legs and 1/2
is the symmetry factor. The energy has been substituted with the Matsubara modes.
To simplify the expression in (4.41), we make the substitution E = E`/(2πT ), and we
evaluate the series on the integer n

+∞∑
n=−∞

1

n2 + E2
= 2

+∞∑
n=1

1

n2 + E2
+

1

E2
(4.42)

=
π

E coth(πE) =
π

E

(
1 +

2

e2πE − 1

)
, (4.43)

where we used the representation for the coth(πx) that reads [129]

coth(πx) =
1

πx
+

2x

π

+∞∑
n=1

1

n2 + x2
. (4.44)

At this point the Matsubara sum has been performed, whereas the integration in the
three-momentum is left. We substitute back into (4.41) the result of the Matsubara sum
in (4.43) and we obtain

Πtad =
λ

4

∫
d3`

(2π)3

1

E`
(1 + 2nB(E`)) . (4.45)

The in-vacuum and thermal contribution are now disentangled. The in-vacuum term is
UV divergent and one can take care of it by standard renormalization. Moreover the
renormalization of the T = 0 suffices to make the theory finite at T 6= 0. The reason may
be understood as follows: the temperature scale does not modify the theory at distances
much smaller than 1/T , and therefore the short-distance singularities are the same as in
the T = 0 case. We focus on the thermal part that can be evaluated analytically for a
massless scalar, m = 0, and it gives

ΠT
tad ≡ δm2

T =
λ

24
T 2 . (4.46)

The result in eq. (4.46) can be understood as a thermal correction to the mass of the
scalar field at order λ. If one considers also the T = 0 correction to the mass coming
from the first term in (4.45), after having subtracted the divergent part, the overall
correction to the mass reads δm2 = δm2

T=0 + δm2
T .

Let us now move to the calculation of the very same diagram in the RTF. The self
energies are assigned the same index labelling as the propagators. Therefore we can have
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= +
211 1 1 1 1 1

Figure 4.4: The tadpole diagram in λφ4 theory for the physical type 1 field. The tadpole
diagram comprises two contributions: Πtad,11 and Πtad,22. In the latter the non-physical
type 2 field enter.

Π11, Π12, Π21 and Π22. The relevant self-energies are Π11 and Π22, as shown in figure
4.4. The external fields have to be the physical ones, namely of type 1. The self-energies
Π12 and Π21 do not exists in this theory since all the legs of a vertex must have the same
index. Then we write, following the Feynman rules in RTF given in eqs. (4.28)-(4.30)

− iΠtad,11 = −iλ 1

2

∫
d4`

(2π)4

(
i

`2 −m2 + iη
+ 2πnB(|`0|)δ(`2 −m2)

)
, (4.47)

where the propagator ∆11(`) enters and the 1/2 is the symmetry factor. Here the zero
temperature and thermal contributions are already disentangled from the very beginning.
Again one can notice the divergent part arising from the T = 0 momentum integration.
By considering only the thermal part in (4.47) we can write

ΠT
tad,11 =

λ

2

∫
d4`

(2π)4
2πnB(|`0|)δ(`2 −m2)

=
λ

2

∫
d3`

(2π)3

nB(E`)

E`
, (4.48)

which is the same as we found in eq. (4.45) for the in-medium contribution. It is clear
that simplifying further the last result in (4.48), we find, in the m = 0 case, the same
expression for the self-energy

ΠT
tad,11 ≡ δm2

11,T =
λ

24
T 2 . (4.49)

Calculating the self-energy with the field of type 2 we find exactly the same result as in
(4.49)

ΠT
tad,22 ≡ δm2

22,T =
λ

24
T 2 , (4.50)

and also for the T = 0 parts one finds the same contribution coming from Πtad,11 and
Πtad,22. Hence δm2

11 = δm2
22, where we include the in-vacuum contributions in the mass

corrections. We can express the one-loop resummation for the ∆11 propagator as follows

i∆
(1)
11 = i∆11 + (−iδm2

11)(i∆11)2 + (iδm2
11)(i∆12)(i∆21)

= i∆11 − iδm2
11

[
(i∆11)2 − (i∆12)(i∆21)

]
, (4.51)
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where with i∆
(1)
11 and i∆11 we mean the one-loop resummed and leading order scalar

propagator respectively. We conclude this section by highlighting that the perturbative
expansion in (4.51) is well defined. The pinch singularities, that would appear within a
naive perturbation theory involving only type 1 fields [177], cancel out in the combination
of the propagators constructed with the type 2 fields.

4.4 Self-energies and discontinuities

In the previous section we introduced the RTF of thermal field theory for the λφ4 theory.
We aim at providing a more general treatment in the present section. We have already
mentioned that the RTF is a suitable choice if one is interested in calculating time
dependent observables. These are usually expressed in terms of a Minkowskian time, t,
and the temperature, T . The production rate of weakly interacting particles, oscillations
in a hot and dense plasma, transport coefficients such as thermal conductivities are
examples of such observables. From the practical point of view, most of the observables
can be obtained calculating two-point functions of elementary or composite operators.

Since we are going to use coordinates both in Minkowsky and Euclidean space, we
recall some notation in short. We denote Euclidean space-time coordinates by X = (τ,x)
and momenta K = (kn,k), whereas the Minkowskian counterparts with x = (t,x) and
k = (k0,k). The Matsubara energy modes are understood in the Euclidean momentum
and the Wick rotation is τ → it (kn → −ik0). The scalar products are defined as usual,
namely X ·K = τkn − x · k and x · k = tk0 − x · k.

4.4.1 Bosonic case

We consider complex field operators that describe bosonic degrees of freedom. We denote
with φi and φ†j such operators, where the subscript may be understood as labelling a
generic quantum number. If these operators are in momentum or coordinate space
is made explicit by their arguments. We can define the following class of correlation
functions

Π>
ij(k) =

∫
d4x

(2π)4
〈φi(x)φ†j(0)〉β eix·k , (4.52)

Π<
ij(k) =

∫
d4x

(2π)4
〈φ†j(0)φi(x)〉β eix·k , (4.53)

ρij(k) =
1

2

∫
d4x

(2π)4
〈
[
φi(x), φ†j(0)

]
〉β eix·k , (4.54)

where Π>
ij and Π<

ij are called Wightman functions and ρij is the spectral function. We do
not introduce a fourth correlation function, the statistical correlator, being not relevant
for our discussion (its definition can be found e. g. in [171, 178]). Our goal is to derive
the relation between the different correlators and to show that they can be expressed in
terms of the spectral function. Moreover we want to establish the equation capturing the
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analytic continuation from the ITF to the RTF. The retarded and advanced correlators
can be defined as follows

ΠR
ij(k) = i

∫
d4x

(2π)4
〈
[
〈φi(x) , φ†j(0)

]
θ(t)〉β eix·k , (4.55)

ΠA
ij(k) = i

∫
d4x

(2π)4
〈−
[
〈φi(x) , φ†j(0)

]
θ(−t)〉β eix·k . (4.56)

It is worth noticing that the retarded propagator involves only positive times, and then
due to

eik0t = eitRek0e−t Imk0 , (4.57)

there is an exponentially suppressed factor for k0 > 0. Therefore ΠR
ij is an analytic

function in the upper-half k0-plane. The same holds for the advanced propagator in
the lower-half k0-plane. This turns out to be particularly useful and does not apply in
general for the other correlation functions.

We complete the list with two more correlators one may encounter in practical com-
putations. They are the time-ordered two-point correlator:

ΠT
ij(k) =

∫
d4x

(2π)4
〈φi(x)φ†j(0)θ(t) + φ†j(0)φi(x)θ(−t)〉 eix·k , (4.58)

which is the thermal counterpart of the zero-temperature version used in perturbation
theory, and the Euclidean correlator

ΠE
ij(K) =

∫
d4X

(2π)4
〈φi(X)φ†j(0)〉 eiX·K , (4.59)

the latter appears typically in non-perturbative calculations. Being restricted to 0 ≤
τ ≤ β, the Euclidean correlator is also time-ordered and can be evaluated by standard
imaginary-time functional integrals.

It turns out that all correlators can be related to each other (as we have briefly
discussed for the free propagators in the previous section) and expressed in terms of the
spectral function. The latter can be in turn related to an analytic continuation of the
Euclidean correlator in (4.59). To show these statements we start with the Wightman
correlators in (4.52) and (4.53). A complete set of the Hamiltonian eigenstates can be
inserted in their definition and one finds (details can be found in [171, 178])

Π<
ij(k) = e−βk0Π>

ij(k) . (4.60)

This is a KMS relation for the correlators in RTF. From eqs. (4.52)-(4.54) and (4.60) we
find that

ρij(k) =
1

2

[
Π>
ij(k)−Π<

ij(k)
]

=
1

2

(
eβk0 − 1

)
Π<
ij(k) , (4.61)

and inverting the relation either for Π>
ij(k) or Π<

ij(k) one obtains

Π<
ij(k) = 2nB(k0)ρij(k) , (4.62)

Π>
ij(k) = 2 [1 + nB(k0)] ρij(k) . (4.63)
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Let us come to ΠR(k) and ΠA(k). One has to interpret the commutator in (4.55)
as an inverse transformation of the spectral function definition in (4.54). Inserting the
representation for the θ(t)

θ(t) = i

∫ ∞
−∞

dω

2π

e−iωt

ω + iη
, (4.64)

we obtain the following result for the retarded correlator

ΠR(k) = i

∫
d4x

(2π)4
2θ(t)eik·x

∫
d4p

(2π)4
ρij(p) e

−ip·x

=

∫ ∞
−∞

dp0

π

ρij(p0,k)

p0 − k0 − iη
. (4.65)

A similar expression for the advanced correlator holds

ΠA(k) =

∫ ∞
−∞

dp0

π

ρij(p0,k)

p0 − k0 + iη
. (4.66)

Making use of
1

x± iη = P

(
1

x

)
∓ iπδ(x) , (4.67)

we obtain, assuming ρij real, the relations

Im ΠR(k) = ρij(k) , Im ΠA(k) = −ρij(k) . (4.68)

We move to the Euclidean correlator. Its expression in terms of the spectral function
reads [171, 178]

ΠE
ij(K) =

∫ ∞
−∞

dp0

π

ρij(p0,k)

p0 − ikn
, (4.69)

and comparing (4.65) and (4.69), we can write

ΠR
ij(k) = ΠE

ij(kn → −ik0,k) . (4.70)

The relation in (4.70) captures the meaning of the analytic continuation from the ITF,
related to the Matsubara sums, and the physical Minkowskian space-time, related to
the RTF [179, 180]. The two-point correlators defined in this section may be seen as
propagators, at zeroth order in perturbation theory, or as self-energies so that a loop
expansion can be implemented.

We notice that the spectral representation of the Euclidean correlator in (4.69) can
be inverted, once performed the limit p0 → k0, by using (4.67). One finds

ρij(k) =
1

2i
Disc ΠE

ij(kn → −ik0,k)

=
1

2i

[
ΠE
ij(−i(k0 + iη),k)−ΠE

ij(−i(k0 − iη),k)
]

= ImΠE
ij(K)

∣∣
kn→−i[k0+iη]

. (4.71)

The set of correlators in eqs. (4.52)-(4.54) can be defined for fermion field operators
as well. Since there is no conceptual difference but the fact that one deals with anti-
commutating field, we do not show them here. A detailed discussion is found in [178].
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4.5 Particle production rates: right-handed neutrinos in a
heat bath

In this final section of the chapter we derive an observable within the thermal field theory
formalism: the particle production rate in a thermal bath. This observable is relevant to
the topics and content of the present thesis. We are going to show the framework adopted
in one of the first quantitative derivation of the right-handed neutrino production rate
at finite temperature [18, 105].

Our starting point is a physical system where some particles interact strongly enough
to keep thermal equilibrium, whereas some others interact weakly and cannot maintain
thermal equilibration (their distribution is not the equilibrium one). The latter particles
decouple from the thermal bath, either escaping the system if it is of finite size or staying
within the system without interacting anymore. We can quote typical examples: the
decoupling of weakly interacting particles in the early universe like dark matter or heavy
particle responsible for baryogenesis, the production of electromagnetic hard probes like
muons or photons in the QGP generated in heavy-ion collisions experiments.

Let us start by considering a concrete model: the addition of right-handed (sterile)
neutrinos to the SM Lagrangian. This model may account for a successful leptogenesis
and also it provides a dark matter candidate (within the νMSM). The Lagrangian has
been already discussed in chapter 2 when we introduced leptogenesis in eq. (2.9). Here
we consider only one right-handed neutrino species, νR, embedded in the Majorana field
ψ = νR + νcR and the Lagrangian reads

L = LSM +
1

2
ψ̄i/∂ψ − M

2
ψ̄ψ − Ff L̄f φ̃PRψ − F ∗f ψ̄PLφ̃†Lf , (4.72)

where we suppress the index generation for the right-handed neutrino and LSM contains
the thermalized degrees of freedom. The goal is to derive an equation that relates the
right-handed neutrino production rate to Green’s functions at finite temperature.

We consider the density matrix ρ̂ describing all the degrees of freedom in the thermal
bath, the thermalized SM particles and the right-handed neutrinos. We denote the
density matrix with a “hat” in order not to confuse it with the spectral function, ρ
(accordingly we denote the Hamiltonian as Ĥ in this section). The time evolution for
the density matrix can be written as follows

i
dρ̂(t)

dt
=
[
Ĥ, ρ̂(t)

]
, (4.73)

where Ĥ is the full Hamiltonian that can be split as follows

Ĥ = ĤSM + Ĥψ + Ĥint . (4.74)

In (4.74) ĤSM refers to the SM degrees of freedom, Ĥψ is the free Hamiltonian for the

right-handed neutrinos and Ĥint describes the interactions between the right-handed
neutrinos and SM particles and reads

Ĥint =

∫
d3x

[
Ff L̄f φ̃PRψ + F ∗f ψ̄PLφ̃

†Lf

]
. (4.75)
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All the fields have to be interpreted as field operators.
In order to solve the equation for the density matrix (4.73), we need to set an initial

condition. We assume that the initial population of right-handed neutrinos is zero and
then we can write

ρ̂(0) = ρ̂SM × |0〉〈0| , (4.76)

where |0〉 is the vacuum state for right-handed neutrinos and

ρ̂SM =
1

ZSM
e−ĤSMβ , (4.77)

where ZSM stands for the SM partition function and β = 1/T . We have to formulate the
evolution of the density matrix in terms of quantities in the interaction picture, hence
we split the Hamiltonian in the free Ĥ0 = ĤSM + Ĥψ and interacting part, Ĥint. We put

in the free part the whole ĤSM because the interactions among SM degrees of freedom
cannot change the number of right-handed neutrinos. Then one obtains

i
dρ̂I(t)

dt
=
[
ĤI , ρ̂I(t)

]
, (4.78)

where
ρ̂I ≡ eiĤ0tρ̂e−iĤ0t , ĤI ≡ eiĤ0tĤinte

−iĤ0t , (4.79)

are the density matrix and interaction Hamiltonian in the interaction picture respec-
tively. Now we can use perturbation theory with respect to ĤI and obtain for the
density matrix

ρ̂I(t) = ρ̂(0)− i
∫ t

0
dt′[ĤI(t

′), ρ̂0]+(−i)2

∫ t

0
dt′
∫ t′

0
dt′′[ĤI(t

′), [ĤI(t
′′), ρ̂0]]+ · · · , (4.80)

where ρ̂(0) ≡ ρ̂I(0) and the dots stand for higher order terms in the perturbative ex-
pansion. We stress that the perturbative series breaks down if the abundance of right-
handed neutrinos is too close to the equilibrium one, and we cannot rely anymore on
small changes of the initial vanishing abundance. We have to assume t < teq, where teq

is the time for the right-handed neutrino equilibration.
Now we make the connection between the density matrix and the number operator

of the right-handed neutrinos. Let us write down the Fourier decomposition of the
Majorana neutrino fields as follows

ψ(x) =

∫
d3k

(2π)3

1

2Ek

∑
s

[
as(k)u(k, s) e−ik·x + a†s(k)v(k, s) e+ik·x

]
, (4.81)

ψ̄(x) =

∫
d3k

(2π)3

1

2Ek

∑
s

[
a†s(k)ū(k, s) e+ik·x + as(k)v̄(k, s) e−ik·x

]
, (4.82)

where the sum is understood over the spin polarizations of the Majroana fermion, then
k0 =

√
k2 +M2 and the spinor sums read∑

s

u(k, s)ū(k, s) = /k +M ,
∑
s

v(k, s)v̄(k, s) = /k −M . (4.83)
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The creation and annihilation operators satisfy{
as(k), a†r(q)

}
= (2π)3δ3(k− q)δsr , (4.84)

and we notice that only one type of creation operator is needed because of the Majorana
nature of the fermion. Then the right-handed neutrino number operator can be defined
as follows [105]

dnνR
d3x d3k

≡ 1

V

∑
s

a†s(k)as(k) , (4.85)

and the distribution function that really gives the number of right-handed neutrinos in
the thermal bath per d3x and d3k reads

dnνR(x,k)

d3x d3k
= tr

[
dnνR
d3x d3k

ρ̂I(t)

]
. (4.86)

Indeed an equivalent form for the thermal expectation value of a given operator in (4.1)

can also be written as 〈A〉β = tr {ρ̂A}, due to the definition ρ̂ = 1/Ze−βĤ . We plug
in (4.86) the time derivative of the perturbative expansion for ρ̂I(t) in (4.80). The first
term leads to a time-independent result, the second term is linear in the creation and
annihilation operator and then we still obtain a vanishing quantity. The first non-trivial
term is the one comprising the interaction Hamiltonian twice and gives

dnνR(x,k)

d4x d3k
= − 1

V
tr

{∑
s

a†s(k)as(k)

∫ t

0
dt[ĤI(t), [ĤI(t

′), ρ̂0]]

}
≡ R(T,k) , (4.87)

where R(T,k) is called particle production rate and it is understood as a function of the
three-momentum of the right-handed neutrinos and the temperature of the plasma. The
expression in (4.87) is obtained at order F 2 in the Yukawa couplings. Inserting the field
operators (4.81) and (4.82) in the interaction Hamiltonian in (4.75) we can rewrite it as
follows

Ĥint =

∫
d3x

∫
d3k

(2π)3

1

2Ek

∑
s

[
J†k,s(x)as(k)e−ik·x + a†s(k)Jk,s(x)eik·x

]
, (4.88)

where the following definitions hold

Jk,s(x) = −Ff ′ j̄f ′(x)PRv(k, s) + F ∗f ū(k, s)PLjα(x) , (4.89)

J†k,s(x) = −F ∗f v̄(k, s)PLjf (x) + Ff ′ j̄f ′(x)PRu(k, s) , (4.90)

with

jf (x) = φ̃†(x)Lf (x) , j̄f ′(x) = L̄f ′(x)φ̃(x) . (4.91)

Now the setting is complete and we list the steps to be performed with the intermediate
results:
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1) we insert the interaction Hamiltonian (4.88) in the particle production rate in
(4.87), and we get rid of the right-handed neutrino creation and annihilation oper-
ators by using (4.84). In the trace evaluation only terms of the type 〈0|aa†aa†|0〉
survive and one finds

R(T,k) =
1

V

1

(2π)32Ek

∑
s

∫ t

0
dt′
∫
d3x

∫
d3x′

×〈J†k,s(x′)Jk,s(x)eik·(x−x
′) + J†k,s(x)Jk,s(x

′)e−ik·(x−x
′)〉 . (4.92)

The expectation value now refers exclusively to ρ̂SM.

2) Substituting the expression (4.89) and (4.90) in (4.92), we notice that correlators
of the type 〈jf ′(x′)jf (x)〉 and 〈j̄f ′(x′)j̄f (x)〉 vanish. This is due to the conservation
of lepton number in the SM. The particle production rate becomes

R(T,k) =
1

V

1

(2π)32Ek

∑
s

∫ t

0
dt′
∫
d3x

∫
d3x′F ∗f Ff ′

×〈
[
v̄(k, s)PL jf (x′) j̄f ′(x)PRv(k, s) + j̄f ′(x

′)PRu(k, s)ū(k, s)PL jf (x)
]

×eik·(x−x′) + (x↔ x′)〉 . (4.93)

3) We can use the completeness relations for the spinors in (4.83). To this aim we
have to write for example

v̄(k, s)PLjf (x′) jf ′(x)PRv(k, s) = tr
{
v(k, s)v̄(k, s)PLjf (x′) jf ′(x)PR

}
, (4.94)

and the sum over the spin polarization may be now used. The combination involv-
ing the particle spinor u(k, s) is already in a form suitable for a direct evaluation
of the spin sum. The terms proportional to the neutrino mass M get projected
out by the chiral projectors and the rate reads

R(T,k) =
1

V

1

(2π)32Ek

∑
s

∫ t

0
dt′
∫
d3x

∫
d3x′F ∗f Ff ′

×〈
{

(PR /k PL)βα
[
jαf (x′) j̄βf ′(x) + j̄βf ′(x

′) jαf (x)
]}

eik·(x−x
′)〉

+(x↔ x′) . (4.95)

where we have now made explicit the Lorentz index carried by the lepton doublet
operator and contracted with the corresponding right-handed neutrino Lorentz
index.

4) We have to rewrite the two-point correlator

〈jαf (x′) j̄βf ′(x) + j̄βf ′(x
′) jαf (x)〉 . (4.96)
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This can be understood as self energies of the right-handed neutrino and using the
Wightman correlation functions for fermion fields, we write (these expression are
the fermionic counterpart of (4.52) and (4.53) for bosonic operators)

Π>,αβ
ff ′ (k) ≡

∫
d4x

(2π)4
eik·(x−x

′)〈jαf (x) j̄βf ′(x
′)〉 (4.97)

Π<,αβ
ff ′ (k) ≡

∫
d4x

(2π)4
eik·(x−x

′)〈−j̄βf ′(x′)jαf (x) 〉 . (4.98)

Inverting the relations (4.97) and (4.98) after exploiting translational invariance to
recast the space-time arguments as written in (4.96), we obtain for the combination
in (4.96) the following expression

〈jαf (x′) j̄βf ′(x) + j̄βf ′(x
′) jαf (x)〉 =

∫
d4q

(2π)4
e−iq·(x−x

′)
[
Π>,αβ
ff ′ (−q)−Π<,αβ

ff ′ (q)
]
.

(4.99)

5) We still have to perform the integration over the time and space coordinates that
appear in the production rate. The result reads, taking the limit for large time t

lim
t→∞

∫
d3x

∫
d3x′

∫ t

0
dt′
[
ei(k−q)·(x−x

′) + e−i(k−q)·(x−x
′)
]

= V (2π)4δ4(k − q) ,
(4.100)

that allows to cancel the factor 1/V in the production rate and remove the inte-
gration on the momentum q in (4.99). Then we find (Ek = k0)

R(T,k) =
1

(2π)32k0
F ∗f Ff ′tr

{
/kPL

[
Π>
ff ′(−k)−Π<

ff ′(k)
]
PR

}
, (4.101)

where we have written the trace over the Lorentz indices for the spinor part.

6) Using the definition of the self-energies in terms of the spectral function ρff ′

Π>
ff ′(−k) = 2 [1− nF (−k0)] ρff ′(−k) = 2nF (k0)ρff ′(−k) , (4.102)

Π<
ff ′(k) = −2nF (k0)ρff ′(k) , (4.103)

we finally obtain

R(T,k) =
nF (k0)

(2π)3k0

3∑
f=1

|Ff |2tr {/kPL [ρff (−k) + ρff (k)]PR} , (4.104)

because within the SM the lepton flavour conservation forces f = f ′.

If the thermal plasma is charge symmetric ρff (−k) = ρff (k) and the two terms in
(4.104) can be combined.

The result in (4.104) is the master equation adopted in recent works that address
the right-handed neutrinos production in a thermal plasma of SM particles [18, 105].
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This observable is of particular relevance for understanding quantitatively leptogenesis
and/or the dark matter in the early universe. We make one further comment: the
spectral function can be traced back to self-energies at finite temperature, in particular
as we shown in (4.70) and (4.71)

ρ = ImΠR = ImΠE
kn→−i[k0+iη] . (4.105)

Hence, defining a differential decay rate in accordance with [17] as

dnνR(k)

d4x d3k
≡ 2nF (k0)

(2π)3
Γ(k) , (4.106)

we can establish a correspondence between the imaginary part of the self-energies, ΠE

or ΠR, and a thermal width as follows

Γ(k) =
1

k0
ImΠE(K)kn→−i[k0+iη] = ImΠR(k) , (4.107)

where we have used the relation given in (4.105). The thermal width for a non-relativistic
Majorana neutrino at order |F |2 and at leading order in the SM couplings reads [17, 18]

Γ(k) =
|F |2M1

8π
√
k2 +M2

{
1− λ T

2

M2
− |λt|2

[
21

2(4π)2
+

7π2

60

(
T 4

M4
+

4

3

k2T 4

M6

)]
+ (3g2 + g′2)

[
29

8(4π)2
− π2

80

(
T 4

M4
+

4

3

k2T 4

M6

)]}
. (4.108)

The thermal width is the object we exploit to derive the neutrino production rate within
the EFT approach. In particular the thermal width can be understood as the pole of
the non-relativistic heavy Majorana neutrino propagator in the low-energy theory, as we
are going to show in chapter 5.
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Chapter 5

EFT approach for right-handed
neutrinos in a thermal bath

The subject of this chapter is the dynamics of a heavy Majorana neutrino in a ther-
mal bath of SM particles. In particular we aim at treating the problem from an EFT
prospective: figure out the different energy scales appearing in the system, pick the
suitable degrees of freedom to describe the physics at a given scale and construct a
low-energy Lagrangian specifying its parameters. Our assumption is that the heavy-
neutrino mass is much larger than the temperature of the thermal bath. Therefore, as
discussed in chapter 3, the temperature scale can be set to zero in the matching as well
as any other low-energy scale. The heavy neutrinos are non-relativistic particles in the
EFT and we derive the corresponding Majorana propagator in section 5.1. Then we
study the operator content of the EFT Lagrangian describing the interactions between
the non-relativistic excitations of the heavy Majorana neutrino and SM particles (Higgs
boson, fermions and gauge bosons) in section 5.2, together with the expressions of the
Wilson coefficients. As a proof of concept and a non-trivial application of the EFT
we derive the thermal width at order |F |2 and at leading order in the SM couplings in
section 5.3. Finally in section 5.4 the convergence of the T/M expansion to the exact
result is addressed, being a critical issue of the presented EFT approach.

5.1 Non-relativistic Majorana fermions

In this section, we derive some general properties of a free Majorana fermion in the limit
where its mass M is much larger than the energy and momentum of any other particle
in the system. Our aim is to identify the low-energy modes, write the Majorana free
propagator and construct the corresponding Lagrangian. Low-energy modes are those
that may be excited at energies below M . In the next sections, we will identify the
Majorana fermion studied here with a Majorana neutrino, and the low-energy degrees
of freedom with the low-energy modes of the neutrino and the SM particles.

If ψ is a spinor describing a relativistic Majorana particle, then

ψ = ψc = Cψ̄ T , (5.1)
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where ψc denotes the charge-conjugate spinor and C the charge-conjugation matrix that
satisfies C† = CT = C−1 = −C and C γµT C = γµ.1 Thus a Majorana spinor has only
two independent components. It is different from a Dirac spinor that has instead four
independent components corresponding to a distinguishable particle and antiparticle.
The relativistic propagators for a free Majorana particle are:

〈0|T (ψα(x)ψ̄β(y))|0〉 = i

∫
d4p

(2π)4

(/p+M)αβ

p2 −M2 + iη
e−ip·(x−y) , (5.2)

〈0|T (ψα(x)ψβ(y))|0〉 = −i
∫

d4p

(2π)4

[
(/p+M)C

]αβ
p2 −M2 + iη

e−ip·(x−y) , (5.3)

〈0|T (ψ̄α(x)ψ̄β(y))|0〉 = −i
∫

d4p

(2π)4

[
C(/p+M)

]αβ
p2 −M2 + iη

e−ip·(x−y) , (5.4)

where α and β are Lorentz indices and T stands for the time-ordered product. Note
that, due to the Majorana nature of the fermions and at variance with the Dirac fermion
case, the combinations 〈0|ψψ|0〉 and 〈0|ψ̄ψ̄|0〉 do not vanish. This is a feature that has to
be accounted for in the relativistic theory when computing amplitudes, since Majorana
fields may be contracted with vertices involving either particle or antiparticle fields.

In order to identify the low-energy modes of a heavy Majorana field, ψ, let us assume
first that ψ, rather than a Majorana field, is a Dirac field describing a heavy quark. Low-
energy modes of a non-relativistic Dirac field have been studied in the framework of
HQEFT [181] as we have briefly discussed in chapter 3 (see section 3.3). We repeat part
of the discussion here by rearranging slightly the notation in order to show differences
and similarities with Majorana fermions. In a given reference frame, the momentum
of a non-relativistic heavy quark of mass M is Mvµ, where v2 = 1, up to fluctuations
whose momenta, kµ, are much smaller than M . These fluctuations may come from the
interactions with other particles that, by assumption, carry energies and momenta much
smaller than M . The Dirac field describing a heavy quark can be split into a large
component, ψ>, whose energy is of order M , and a small component, ψ<, whose energy
is much smaller than M :

ψ =

(
1 + /v

2

)
ψ +

(
1− /v

2

)
ψ ≡ ψ< + ψ> . (5.5)

According to the above definition: (1 + /v)/2 × ψ< = ψ< and (1− /v)/2 × ψ> = ψ>.
The small component field, ψ<, is eventually matched into the field h of HQET. This is
the field, made of two independent components, that describes in HQET the low-energy
modes of the heavy quark. It satisfies

1 + /v

2
h = h . (5.6)

The field h annihilates a heavy quark but does not create an antiquark. It satisfies the

1 A possible choice for C is C = −iγ2γ0.

88



following equal time anti-commutation relations [163]:{
hα(t,x), hβ(t,y)

}
=

{
h̄α(t,x), h̄β(t,y)

}
= 0 , (5.7){

hα(t,x), h̄β(t,y)
}

=
1

v0

(
1 + /v

2

)αβ
δ3(x− y) . (5.8)

The charge conjugated of (5.5) is

ψc =

(
1− /v

2

)
(Cγ0ψ∗<) +

(
1 + /v

2

)
(Cγ0ψ∗>) , (5.9)

whose small component, Cγ0ψ∗>, may be eventually matched into a HQET field, made
again of two independent components, that describes the low-energy modes of a heavy
antiquark. Clearly this field is independent from the one describing the heavy quark: it
annihilates a heavy antiquark but does not create a quark. It satisfies similar equal time
anti-commutation relations as the field h.

Let us now go back to consider ψ a field describing a heavy Majorana particle whose
momentum in some reference frame is Mvµ up to fluctuations, kµ, that are much smaller
than M . Like in (5.5) we may decompose the four-component Majorana spinor into a
large and a small component. From (5.1) it follows, however, that in this case (5.5) and
(5.9) describe the same field, hence

ψ< = Cγ0ψ∗> , ψ> = Cγ0ψ∗< . (5.10)

This implies that the small component of the Majorana particle field coincides with the
small component of the Majorana antiparticle field. In the EFT that describes the low-
energy modes of non-relativistic Majorana fermions, both the particle and antiparticle
modes are described by the same field N . The field N matches ψ< in the fundamental
theory and fulfils

1 + /v

2
N = N . (5.11)

This is consistent with the Majorana nature of the fermion: we cannot distinguish a
particle from its antiparticle. Note that, while in the fundamental theory a Majorana
fermion and antifermion are described by the same spinor ψ that is self conjugated,
in the non-relativistic EFT a Majorana fermion and antifermion are described by the
same spinor N that is not self conjugated but has by construction only two independent
components. Analogously to the field h in HQET, the field N annihilates a heavy Ma-
jorana fermion (or antifermion). It satisfies the following equal time anti-commutation
relations: {

Nα(t,x), Nβ(t,y)
}

=
{
N̄α(t,x), N̄β(t,y)

}
= 0 , (5.12){

Nα(t,x), N̄β(t,y)
}

=
1

v0

(
1 + /v

2

)αβ
δ3(x− y) , (5.13)

which may be also derived from the full relativistic expression of the Majorana spinors
given in [182]. Finally, we provide the expression for the non-relativistic Majorana
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propagator. Starting from eqs. (5.2)-(5.4), projecting on the small components of the
Majorana fields and putting pµ = Mvµ + kµ, where k2 �M2, we obtain in the large M
limit (keeping only the (1/M)0 term)

〈0|T (Nα(x)N̄β(y))|0〉 =

(
1 + /v

2

)αβ ∫ d4k

(2π)4
e−ik(x−y) i

v · k + iη
, (5.14)

whereas the other possible time-ordered combinations vanish as they contain only cre-
ation or annihilation operators. The corresponding Lagrangian for a free Majorana
fermion is like the HQET Lagrangian in the static limit:

L(0)
N = N̄ iv · ∂ N . (5.15)

An analysis of heavy Majorana fermions in an EFT framework analogous to the one
presented in this section can be also found in [183, 184].

5.2 EFT for non-relativistic Majorana neutrinos

Starting from this section we will assume an extension of the SM that has been imple-
mented in several leptogenesis scenarios [11, 33, 87, 185]. It consists of the addition to
the SM of some sterile neutrinos with masses much larger than the electroweak scale.2

The mechanism has been discussed in some detail in chapter 2. Assuming that we have
well separated neutrino masses, the production of a net lepton asymmetry starts when
the lightest of the sterile neutrinos, whose mass, M1 ≡M , is above the electroweak scale,
decouples from the plasma reaching an out-of-equilibrium condition. This happens when
the temperature drops to T ∼ M . During the universe expansion, the sterile neutrino
continues to decay in the regime T < M . For T < M the recombination process is al-
most absent (exponentially suppressed) and a net lepton asymmetry is generated. If the
temperature of the system, T , is such that standard thermal leptogenesis is efficiently
active, then T is also above the electroweak scale. Hence the hierarchy of scales for the
problem at hand reads

M � T �MW , (5.16)

and our aim is to device an EFT to reproduce the thermal width as given in eq. (4.108)
that in turn enters the definition of the right-handed neutrino production rate in eq. (4.106).

5.2.1 Green’s functions for M � T

In chapter 4 we made a clear connection between the imaginary part of self-energies at
finite temperature and the width of a right-handed neutrino. In [18] the thermal width
for a non-relativistic Majorana neutrino in a heat bath of SM particles was derived by us-
ing the ITF. It was extracted from the imaginary part of a Euclidean correlator, ΠE(K),
at finite temperature. Even though an operator product expansion (OPE) is mentioned

2 A similar model but with neutrinos not heavier than the electroweak scale is in [113, 186].
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1 1

a)

1 2

b)

Figure 5.1: The Π11 and Π12 self-energy diagrams in the RTF are shown.

and partially adopted in the calculation, the derivation is carried out within a fully rel-
ativistic thermal field theory. Therefore the temperature scale enters the computation
from the very beginning through Matsubara sums and exponentially suppressed terms
of the type e−M/T are kept in intermediate steps.

The hierarchy of scales in (5.16) allows for a simplification of the computational
scheme in the non-relativistic case. In particular, the relation M � T calls for an
effective field theory treatment: we can device a quantum field theory that does not
comprise ab initio exponentially suppressed terms like e−M/T , being T a small scale in the
problem. This is a general characteristic of the EFT approach: in any analytic expansion
performed within the low-energy theory exponentially suppressed terms vanish.

Let us try to make the point by looking at the diagrams relevant for the neutrino
thermal width at zeroth order in the SM couplings and shown in figure 5.1. We work
in the RTF of thermal field theory. The imaginary part of the retarded self-energy is
the relevant quantity for our scope. In turn, the retarded self energy may be written as
ΠR = Π11 + Π12, where Π11 is the self energy when the initial and final neutrinos are on
the physical branch of the Keldysh contour, and Π12 is the self energy when the initial
neutrino is on the physical branch whereas the final neutrino is on the complex branch
of the Keldysh contour [171, 172]. Adopting the cutting rules at finite temperature one
is able to extract the imaginary part of the diagrams, and the calculation would go
“thermal” as in [18]. However the separation of the energy scales, M � T , may have
some impact. Let us consider first the loop diagram a) in figure 5.1, Π11. The lepton
and Higgs boson propagator are the “11” components of the 2×2 scalar and fermion
propagators given in (4.27) and (4.36) respectively. In the case the incoming neutrino is
taken at rest, vµ = (1,0), they read in momentum space

i∆11(Mv − `) =
i

(Mv − `)2 + iη
+ 2πδ((Mv − `)2)nB(|M − `0|) , (5.17)

iS11(`) = /̀

[
i

`2 + iη
− 2πδ(`2)nF (|`0|)

]
. (5.18)

The natural momentum scale in the loop is of order of the heavy neutrino mass and
hence the lepton and Higgs boson momentum are of order M . Indeed we want to look
at the heavy neutrino decay, so that the energy of order M is shared between the two
massless decay products. Relying on the limit (M − `) ∼ ` ∼M � T , the thermal parts
in (5.17) and (5.18) become exponentially suppressed (for T → 0 they vanish) and only
the in-vacuum terms survive. This amounts at taking as vanishing the small scale in the
problem according to the EFT approach, namely T → 0.
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a) b)

Figure 5.2: Scattering between a heavy Majorana neutrino and a Higgs (gauge) boson
in diagram a) (diagram b)). Wiggled lines stand for the gauge boson. The Higgs and
gauge bosons carry a momentum q ∼ T and their are shown in red dashed and wiggled
lines respectively.

Now we consider the diagram b) in figure 5.1, Π12. In this case the “12” Higgs and
lepton propagator components enter the loop amplitude and they read

i∆12(M − `) = 2πδ((Mv − `)2)

×
[
θ(`0 −M)(1 + nB(|M − `0|)) + θ(M − `0)nB(|M − `0|)

]
,

(5.19)

iS12(`) = 2πδ(`2)/̀
[
θ(−`0)(1− nF (|`0|))− θ(`0)nF (|`0|)

]
. (5.20)

There is only one kinematically allowed combination for the product of the propagator
components (5.19) and (5.20), providing for the corresponding self energy

Π12 ≈ nB(M/2)nF (M/2) , (5.21)

which contains only an exponentially suppressed term and it does vanishes in the limit
M � T → 0. The main outcome is that the second diagram in figure 5.1 involving the
fields of type 2 is not necessary in the strict limit M � T . It is sufficient to take all the
fields as of type 1 and work effectively in a quantum field theory at zero temperature for
the calculation of the Green’s functions at energies much larger than T . These will be
eventually matched with the corresponding Green’s function of the low-energy theory
at a scale Λ such that M � Λ � T (see section 3.2). Put in other words, the heavy
neutrino field of type 2 decouples in the non-relativistic limit as it was pointed out in
the case of a heavy quark in [187].

Of course, the two-point Green’s function is not the only one we can consider. The
argument aforementioned holds for a generic n-point scattering amplitude if the addi-
tional external particles carry momenta of order T � M (in general any scale smaller
than the neutrino mass). In figure 5.2 we show an example where Higgs and gauge bosons
are external particles carrying momenta q ∼ T (the soft particles are in red dashed and
wiggled line respectively). They inject/carry away an energy scale that is either put to
zero in the four-point Green’s functions describing the diagrams in figure 5.2, or, more
in general, that induces an expansion in T/M . Such procedure eventually provides the
expanded Green’s functions in the fundamental theory that match those on the EFT
side (see section 3.2 in chapter 3).

In summary, the EFT approach for the calculation of the thermal width can be
outlined as follows:
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1) Write down a low-energy Lagrangian valid at energy scales much smaller than the
heavy-neutrino mass, M . In this theory the heavy neutrino is non-relativistic. Any
low-energy scale, included the temperature of the heat bath, is set to zero in the
matching which is performed in vacuum. The doubling of the degrees of freedom
does not affect the matching calculation and Feynman rules at T = 0 can be used.

2) In the EFT so obtained the temperature is a dynamical scale. Observables, such as
the heavy-neutrino thermal width, have to be evaluated in a thermal field theory
framework, either the ITF or the RTF. Therefore the finite temperature treatment
can be postponed at the level of the EFT which is, by construction, simpler than
the fundamental theory in its range of applicability.

5.2.2 EFT Lagrangian at order 1/M3

Within a top-down approach for deriving an EFT Lagrangian, one has to start with
a fundamental Lagrangian valid in a wider range of energies. We will consider in the
following the simple case of a SM extension involving only one heavy right-handed neu-
trino. The Lagrangian has been already written in the previous chapter in (4.72), we
recall it here [105]:

L = LSM +
1

2
ψ̄ i/∂ ψ − M

2
ψ̄ψ − Ff L̄f φ̃PRψ − F ∗f ψ̄PLφ̃†Lf , (5.22)

where ψ = νR + νcR is the Majorana field embedding the right-handed neutrino field νR,
φ̃ = iσ2 φ∗, with φ the Higgs doublet, and Lf are lepton doublets with flavour f . The
Majorana neutrino has mass M , Ff is a (complex) Yukawa coupling and PL = (1−γ5)/2,
PR = (1 + γ5)/2 are the left-handed and right-handed projectors respectively. Lepton
doublets, Lf , carry SU(2) indices, which are contracted with those of the Higgs doublet,
φ, and Lorentz indices, which are contracted with those carried by the Majorana fields.
Right-handed neutrinos are sterile, hence their interaction has not been gauged. Because
we are considering the Lagrangian (5.22) for a neutrino mass M and a temperature T
much larger than the electroweak scale, the SM Lagrangian, LSM, is symmetric under an
unbroken SU(2)×U(1) gauge symmetry and its particles are massless (see the Lagrangian
in eq. (A.1) in appendix A).

By construction, an EFT suitable to describe non-relativistic Majorana neutrinos
must be, under the condition (5.16), equivalent to our fundamental theory (5.22) order
by order in Λ/M . The scale Λ is the ultraviolet cut-off of the EFT and is such that
T � Λ � M . The relevant degrees of freedom at the temperature energy scale are
the non-relativistic Majorana field, N , introduced in section 5.1, which describes the
Majorana neutrino, and the SM particles accounted for in LSM. The EFT is written
as an expansion in local operators and powers of 1/M . The higher the dimension of
the operator, the more its contribution to physical observables is suppressed by powers
of T/M . In the following, we will consider only operators up to dimension seven, i.e.
contributing up to order 1/M3 to physical observables.

The EFT Lagrangian has the general structure

LEFT = LSM + LN + LN-SM , (5.23)
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where LN describes the propagation of the non-relativistic Majorana neutrino and LN-SM

its interaction with the SM particles. The Lagrangian’s parts LN and LN-SM are deter-
mined by matching at the scale Λ matrix elements in the EFT with matrix elements
computed in (5.22). A crucial observation is that, in the matching, T can be set to
zero because Λ� T ; hence LEFT can be computed in the vacuum. In the following two
paragraphs, we will write LN and LN-SM at the accuracy needed to compute the Majo-
rana neutrino thermal width at first order in the SM couplings and at order T 4/M3 (see
eq. 4.108). In a given reference frame the momentum of the Majorana neutrino is Mvµ

up to fluctuations of order T .

At order 1/M0 the Lagrangian LN would coincide with (5.15), if the Majorana neu-
trino would be stable at zero temperature. However, the Majorana neutrino may decay
into a Higgs and a lepton. Accounting for this modifies the Lagrangian (5.15) into

LN = N̄

(
iv · ∂ +

iΓT=0

2

)
N +O

(
1

M

)
, (5.24)

where ΓT=0 is the decay width at zero temperature in the heavy-mass limit at order
|F |2 and zeroth order in the SM couplings. It has been computed previously in the
literature [17, 18] and reads at leading order

ΓT=0 =
|F |2M

8π
, (5.25)

where |F |2 =
∑3

f=1 F
∗
f Ff . We have already written the heavy neutrino width at zero

temperature in chapter 2 in eq. (2.20), and here we suppress the generation index ac-
cordingly with the rest of the present chapter.

The Lagrangian LN-SM, organized in an expansion in 1/M , reads

LN-SM =
1

M
L(1)

N-SM +
1

M2
L(2)

N-SM +
1

M3
L(3)

N-SM +O
(

1

M4

)
, (5.26)

where L(n)
N-SM includes all operators of dimension 4 +n. They describe the effective inter-

actions between the Majorana neutrino and the Higgs field φ, the lepton doublets Lf of
all flavours f , the heavy-quark doublets QT = (t, b), where t stands for the top field and
b for the bottom field, the right-handed top field and the SU(2)×U(1) gauge bosons. We
consider only Yukawa couplings with the top quark and neglect Yukawa couplings with
other quarks and leptons, for the ratio of Yukawa couplings is proportional to the ratio
of the corresponding fermion masses when the gauge symmetry is spontaneously broken.
The number of operators contributing to LN-SM may be further significantly reduced by
assuming the Majorana neutrino at rest and by selecting only operators that could con-
tribute to the Majorana neutrino thermal width at first order in the SM couplings and
at order T 4/M3. At first order in the SM couplings, thermal corrections are encoded
into tadpole diagrams. Hence we need to consider only operators with imaginary coef-
ficients (tadpoles do not develop an imaginary part), made of two Majorana fields with
no derivatives acting on them (the Majorana neutrino is at rest), coupled to bosonic
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Figure 5.3: Diagrams showing the different types of vertices induced by the EFT La-
grangian LN-SM. These involve interactions between heavy Majorana neutrinos and Higgs
fields in a), fermions in b) and the gauge bosons in c).

operators with an even number of spatial and time derivatives (the boson propagator in
the tadpole is even for space and time reflections) and to fermionic operators with an
odd number of derivatives (the massless fermion propagator in the tadpole is odd for
space-time reflections). Finally, we may use field redefinitions to get rid of operators

containing terms like /∂(fermion field) or ∂2(boson field). The Lagrangian L(1)
N-SM reads

L(1)
N-SM = a N̄N φ†φ . (5.27)

The Lagrangian L(2)
N-SM does not contribute to our observable because it involves either

boson fields with one derivative or fermion fields with no derivatives. The Lagrangian

L(3)
N-SM reads

L(3)
N-SM = b N̄N

(
v ·Dφ†

) (
v ·Dφ

)
+cff

′

1

[(
N̄PL iv ·DLf

) (
L̄f ′PRN

)
+
(
N̄PR iv ·DLcf ′

) (
L̄cfPLN

)]
+cff

′

2

[(
N̄PL γµγν iv ·DLf

) (
L̄f ′ γ

νγµ PRN
)

+
(
N̄PR γµγν iv ·DLcf ′

) (
L̄cf γ

νγµ PLN
)]

+c3 N̄N (t̄PL v
µvνγµ iDνt) + c4 N̄N

(
Q̄PR v

µvνγµ iDνQ
)

+c5 N̄ γ5γµN (t̄PL v · γ iDµt) + c6 N̄ γ5γµN
(
Q̄PR v · γ iDµQ

)
+c7 N̄ γ5γµN (t̄PL γµ iv ·Dt) + c8 N̄ γ5γµN

(
Q̄PR γµ iv ·DQ

)
−d1 N̄N vµvνW

a
αµW

aαν − d2 N̄N vµvνFαµF
αν

+d3 N̄N W a
µνW

aµν + d4 N̄N FµνF
µν . (5.28)
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The fields W a
µν and Fµν are the field strength tensors of the SU(2) gauge fields, Aaµ,

and U(1) gauge fields, Bµ, respectively. For the operators multiplying cff
′

1 and cff
′

2 the
SU(2) indices of Lf and L̄f ′ are contracted with each other while their Lorentz indices
are contracted with gamma matrices and Majorana fields.

The Wilson coefficients a, b, cff
′

i , ci and di encode all contributions coming from the
high-energy modes of order M that have been integrated out when matching from the
fundamental theory (5.22) to the EFT (5.23). We are interested only in their imaginary
parts. At first order in the SM couplings they read

Im a = − 3

8π
|F |2λ , (5.29)

Im b = − 5

32π
(3g2 + g′ 2)|F |2 , (5.30)

Im cff
′

1 =
3

8π
|λt|2Re

(
Ff ′F

∗
f

)
− 3

16π
(3g2 + g′ 2)Re

(
Ff ′F

∗
f

)
, (5.31)

Im cff
′

2 =
1

384π
(3g2 + g′ 2)Re

(
Ff ′F

∗
f

)
, (5.32)

Im c3 =
1

24π
|λt|2|F |2 , Im c4 =

1

48π
|λt|2|F |2 , (5.33)

Im c5 =
1

48π
|λt|2|F |2 , Im c6 =

1

96π
|λt|2|F |2 , (5.34)

Im c7 =
1

48π
|λt|2|F |2 , Im c8 =

1

96π
|λt|2|F |2 , (5.35)

Im d1 = − 1

96π
g2|F |2 , Im d2 = − 1

96π
g′ 2|F |2 , (5.36)

Im d3 = − 1

384π
g2|F |2 , Im d4 = − 1

384π
g′ 2|F |2 , (5.37)

where g is the SU(2) coupling, g′ the U(1) coupling, λ the four-Higgs coupling and λt
the top Yukawa coupling. We refer to appendix A for details on the calculation.

The EFT Lagrangian derived in this section follows from symmetry arguments and
standard (one-loop) perturbation theory. Owing to the hierarchy (5.16), the temperature
could be set to zero when computing the Wilson coefficients. Thermal effects factorize.
This factorization may be considered as the main advantage in the use of the EFT. The
calculation of the Majorana neutrino thermal width will turn out to be very simple.
Indeed, already at this level, the structure and power counting of the EFT allow to
make some general statements about the origin and size of the different contributions.
The width will be the sum of contributions coming from the scattering with Higgs,
SM fermions (either leptons or left-handed heavy quarks or right-handed tops) and
gauge fields in the early universe plasma. We call these contributions Γφ, Γfermions and
Γgauge respectively. The leading operator responsible for the interaction of the Majorana
neutrino with the Higgs is the dimension five operator (5.27), hence the natural power
counting of the EFT implies

Γφ ∼
T 2

M
. (5.38)
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Figure 5.4: Diagrams in the full theory (left-hand side of the equality) contributing to
the Majorana neutrino-Higgs four-field operators in the EFT (right-hand side). The neu-
trino propagator with forward arrow corresponds to 〈0|T (ψψ̄)|0〉, whereas the neutrino
propagators with forward-backward arrows correspond to 〈0|T (ψψ)|0〉 or 〈0|T (ψ̄ψ̄)|0〉.

This is also the leading contribution to the thermal width of the Majorana neutrino.
The interaction of the Majorana neutrino with the SM fermions and the gauge bosons
is mediated in (5.28) by operators of dimension seven, hence

Γfermions ∼
T 4

M3
, Γgauge ∼

T 4

M3
. (5.39)

In section 5.3, we will compute Γφ, Γfermions and Γgauge at first order in the SM couplings.

5.2.3 Matching the dimension-five operator

The matching of the dimension-five operator is discussed in order to show in some detail
the calculation of a four-point Green’s function both in the fundamental theory and the
EFT. The effective theory must reproduce the fundamental one at energies below its
cut-off Λ. A way to enforce this is by matching low-energy matrix elements in the two
theories. The matching fixes the Wilson coefficients of the EFT, which encode, order
by order in the couplings, the contributions from the high-energy modes that have been
integrated out. Because in the matching we are integrating out only high-energy modes,
we can set to zero any low-energy scale appearing in loops. A consequence is that, in
the matching, loop diagrams in the EFT vanish in dimensional regularization because
scaleless. We adopt dimensional regularization in all loop calculations of the thesis.

We perform the matching in the reference frame vµ = (1,0 ), where we assume the
plasma to be at rest. Since we are interested in the imaginary parts of the Wilson
coefficients, we evaluate the imaginary parts of −iD, where D are generic Feynman
diagrams, by taking the Majorana neutrino momentum at M + iη. We may also choose
the incoming and outgoing SM particles to carry the same momentum qµ. Because qµ

is much smaller than M , diagrams in the fundamental theory are expanded in powers
of qµ. This expansion matches the operator expansion in the EFT.

There is only one diagram contributing to the matching of the dimension-five operator
and we show it in figure 5.4. In order to determine the corresponding Wilson coefficient,
a, we compute in the fundamental theory the matrix element

− i
∫
d4x eip·x

∫
d4y

∫
d4z eiq·(y−z) 〈Ω|T (ψµ(x)ψ̄ν(0)φm(y)φ†n(z))|Ω〉

∣∣∣∣
pµ=(M+iη,0 )

,

(5.40)

97



where µ and ν are Lorentz indices, m and n are SU(2) indices and |Ω〉 is the ground
state of the fundamental theory. The matrix element (5.40) describes a 2→ 2 scattering
between a heavy Majorana neutrino at rest and a Higgs boson carrying momentum qµ.

From figure 5.4 it is clear that a one-loop matching between the amplitudes in the
fundamental theory and in the EFT is needed in order to determine the Wilson co-
efficient. When computing matrix elements involving Majorana fermions, one has to
consider that the relativistic Majorana field may be contracted in more ways than if it
was a Dirac field, this reflecting the indistinguishability of the Majorana particle and
antiparticle. The different contractions give rise to the different propagators listed in
(5.2)-(5.4) and diagrams A) and B) in figure 5.4. We refer to appendix A for more de-
tails on this aspect. When contracting the Majorana fields in (5.40) according to (5.2),
one obtains at leading order[
P̂ (−iDA) P̂

]µν
= 6|F |2λ δmn

∫
d4`

(2π)4

(
P̂ PL/̀ P̂

)µν i

`2 + iη

(
i

(Mv − `)2 + iη

)2

,

(5.41)

where we have dropped all external propagators and D is the amputated diagram shown
in figure 5.4. The external heavy neutrino propagators reduce in the non-relativistic limit
and in the rest frame to a matrix proportional to P̂ = (1 + γ0)/2 (see (5.14)). We have
kept the matrix P̂ on the left- and right-hand side of (5.41), because it helps projecting
out the contributions relevant in the heavy-neutrino mass limit, e.g., P̂ PL P̂ = P̂ /2.
After projection, also the matrix P̂ may be eventually dropped from the left- and right-
hand side of the matching equation.

Since we are interested in Im (−iD) for the matching, it is enough to extract the
imaginary part of the loop amplitude. In order to calculate the loop integral in (5.41)
standard in-vacuum techniques are adopted. The direct application of the Feynman
parameters leads to

Ia =

∫
d4`

(2π)4

i/̀

`2 + iη

(
i

(Mv − `)2 + iη

)2

= −i /v

16πM
− /v

(4π)2M

[
1

ε
+ ln

(
4πµ2

M2

)
− γE + 1

]
(5.42)

where a real and imaginary part appear. Alternative methods may be used that are
more suitable for automated loop calculations. In particular tensor reduction to scalar
integrals is one of the most popular [188]. Hence for the matrix element in (5.41) we
obtain, dropping also the non-relativistic projector,

Im (−iDA) = −3|F |2λ
16πM

δmnδ
µν . (5.43)

Diagram B in figure 5.4 provides exactly the same result given in (5.43). Therefore from
the fundamental theory side one finds

Im (−iDA) + Im (−iDB) = −3|F |2λ
8πM

δmnδ
µν . (5.44)
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The symmetries of the EFT enforce that the matrix element (5.40) is reproduced by
the following expression, where we simply apply the Feynman rule for a vertex in the
EFT (the extra −i is due to our definition −iD)

Im(−iDC) = Im

(
−i ia
M

)
δmnδ

µν + · · · = δmnδ
µν

M
Im a+ · · · , (5.45)

where the dots stand for contributions coming from operators that are not listed in
(5.27). Finally comparing eqs. (5.44) with (5.45) fixes the imaginary part of a:

Im a = − 3

8π
|F |2λ . (5.46)

5.3 Thermal width in the EFT

A Majorana neutrino in a plasma of SM particles thermalized at some temperature T
decays with a width Γ = ΓT=0 +ΓT , where ΓT=0 is the in-vacuum width and ΓT encodes
the thermal corrections to the width induced by the interaction with the particles in the
medium. We call ΓT the Majorana neutrino thermal width. The decay of the Majorana
neutrino happens at a distance of order 1/M . The neutrino releases a large amount of
energy of the order of its mass into a Higgs and lepton pair. The interaction vertex is
described by the Lagrangian (5.22). At such small distances the neutrino is insensitive
to the plasma and the decay happens as in the vacuum. The width is ΓT=0, which at
leading order can be read off eq. (5.25).3 At distances of order 1/T , the vertices involving
Majorana neutrinos in the fundamental Lagrangian (5.22) cannot be resolved, instead
the Majorana neutrino effectively interacts with Higgs, fermion and gauge boson pairs
as shown in figure 5.3. These are the vertices in the EFT that can be read off eqs. (5.27)
and (5.28). The effective couplings of these vertices are the Wilson coefficients listed in
(5.29)-(5.37). They are all of first order in the SM couplings g2, g′ 2, λ and |λt|2. Hence,
at that order, only tadpole diagrams of the type shown in figure 5.5 can contribute to
the Majorana neutrino width. Tadpoles do not vanish (in dimensional regularization)
only if the momentum circulating in the loop is of the order of the plasma temperature,
instead they induce a thermal correction, ΓT , to the width. In the following, we will
calculate ΓT assuming that the thermal bath of SM particles is at rest with respect to
the Majorana neutrino. Moreover, we choose our reference frame such that vµ = (1,0 ).

We calculate finite temperature effects in the RTF. This amounts at modifying the
contour of the time integration in the partition function to allow for real time. A
consequence of this is that in the real-time formalism the degrees of freedom double
(see chapter 4). One usually refers to them as degrees of freedom of type 1 and 2.
The physical degrees of freedom, those describing initial and final states, are of type 1.
Propagators can mix fields of type 1 with fields of type 2, while vertices do not couple
fields of different types. It has been shown in [187] that because the 12 component of a

3 Next-to-leading order corrections in the SM couplings to ΓT=0 have been calculated in [17, 18].
Those corrections may be taken over as they are in the EFT to improve the expression of the zero-
temperature Majorana neutrino width in LN.
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Figure 5.5: Tadpole diagrams contributing to the thermal width of a heavy Majorana
neutrino at first order in the SM couplings. The heavy Majorana neutrino is represented
by a double line, the Higgs propagator by a dashed line, fermion propagators (leptons,
heavy quark doublets and top singlet) by a continuous line and gauge bosons by a wiggled
line.

heavy-field propagator vanishes in the heavy-mass limit, heavy fields of type 2 decouple
from the theory and can be neglected. This also applies to the Majorana neutrino field
N , which may be considered of type 1 only. In our case, we will calculate the tadpole
diagrams shown in figure 5.5. Because there the SM fields couple directly to the neutrino
field N , also the SM fields may be considered to be of type 1 only. This is a significant
simplification in the calculation that the non-relativistic EFT makes manifest from the
beginning.

Tadpole diagrams like those shown in figure 5.5 involve only 11 components of the
real-time propagators of the SM fields. The 11 component is the time-ordered propagator
of the physical field; for a bosonic (scalar) field propagating from 0 to x it reads

i∆11(x) =

∫
d4q

(2π)4
e−iq·x

[
i

q2 + iη
+ 2πnB(|q0|)δ(q2)

]
, (5.47)

where nB(|q0|) = 1/(e|q0|/T − 1) is the Bose–Einstein distribution in the rest frame, and
for a fermionic field propagating from 0 to x

iS11(x) =

∫
d4q

(2π)4
e−iq·x /q

[
i

q2 + iη
− 2πnF(|q0|)δ(q2)

]
, (5.48)

where nF(|q0|) = 1/(e|q0|/T + 1) is the Fermi–Dirac distribution in the rest frame. We
recall that SM particles are massless in the high-temperature regime (5.16).

Thermal corrections to the decay width can be computed from the Majorana neutrino
propagator in momentum space:∫

d4x eik·x 〈T (Nα(x)N †β(0))〉int
T , (5.49)
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where 〈· · · 〉int
T stands for the thermal average evaluated on the action

∫
d4xLEFT. In

the vµ = (1,0 ) frame, the Majorana neutrino propagator has the general form (cf. with
(5.14)) (

1 + γ0

2

)αβ iZ

k0 − E + iΓ/2
=(

1 + γ0

2

)αβ
Z

[
i

k0 + iη
−
(
iE +

Γ

2

)(
i

k0 + iη

)2

+ · · ·
]
. (5.50)

The wave function normalization Z, mass shift E and width Γ are determined by self-
energy diagrams. In our case, we consider only the tadpole diagrams shown in figure 5.5.
Because Z − 1 is given by the derivative of the self-energy with respect to the incoming
momentum and because tadpole diagrams do not depend on the incoming momentum,
we have that Z = 1. In the expansion (5.50), the width Γ is then twice the real part of
the residue of the double pole in k0 = 0.

We start by considering the contribution to the decay width from the Higgs tadpole
(diagram a in figure 5.5). A Higgs tadpole may contribute to (5.49) either through the
dimension five operator (5.27) or through the dimension seven operator in the first line
of (5.28) or through higher-order operators. Expanding (5.49) in LN-SM, we obtain

i
a

M

∫
d4x eik·x 〈

∫
d4z T (Nα(x)N †β(0)N †µ(z)Nµ(z)φ†(z)φ(z))〉free

T

+ i
b

M3

∫
d4x eik·x 〈

∫
d4z T (Nα(x)N †β(0)N †µ(z)Nµ(z)∂0φ

†(z)∂0φ(z))〉free
T

+ contributions of higher order in 1/M , (5.51)

where 〈· · · 〉free
T stands for the thermal average evaluated on the action

∫
d4x (LSM +LN).

The Wilson coefficients a and b can be read off eqs. (5.29) and (5.30) respectively.
Because the Majorana neutrinos do not thermalize, we have that

〈(Majorana fields)× (SM fields)〉free
T = 〈0|(Majorana fields)|0〉 × 〈(SM fields)〉T , (5.52)

where 〈0|(Majorana fields)|0〉 is a free Green’s function that can be computed by con-
tracting the Majorana neutrino fields according to (5.14), and 〈· · · 〉T is a thermal average
of SM fields weighted by the SM partition function. Comparing (5.51) with (5.50), we
obtain

Γφ = 2
Im a

M
〈φ†(0)φ(0)〉T + 2

Im b

M3
〈∂0φ

†(0)∂0φ(0)〉T

=
Im a

3

T 2

M
+

2π2

15
Im b

T 4

M3
. (5.53)

The last line follows from having computed the Higgs thermal condensates at leading
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order:

〈φ†(0)φ(0)〉T = 2

∫
d4q

(2π)4
2πnB(|q0|)δ(q2) =

T 2

6
, (5.54)

〈∂0φ
†(0)∂0φ(0)〉T = 2

∫
d4q

(2π)4
q2

0 2πnB(|q0|)δ(q2) =
π2

15
T 4 . (5.55)

We have used dimensional regularization to get rid of the vacuum contributions. We
observe that bosonic condensates involving an odd number of spatial or time derivatives
would give rise to vanishing momentum integrals.

In a similar way we can compute the contribution to the decay width from the fermion
tadpoles (diagram b in figure 5.5):

Γfermions = −
(

Im cff
′

1

2M3
+

2Im cff
′

2

M3

)
〈L̄f ′(0)γ0iD0Lf (0)〉T

+2
Im c3

M3
〈t̄(0)PLγ

0iD0t(0)〉T + 2
Im c4

M3
〈Q̄(0)PRγ

0iD0Q(0)〉T

=
(
−Im cff1 − 4Im cff2 + 3Im c3 + 6Im c4

) 7π2

60

T 4

M3
, (5.56)

where the Wilson coefficients cffi and ci can be read off eqs. (5.31)-(5.33). The last line
of (5.56) follows from having computed the lepton thermal condensate at leading order,

〈L̄f ′(0)γ0iD0Lf (0)〉T = −2δff ′

∫
d4q

(2π)4
q0 Tr

{
γ0
/q
}

(−2π)nF(|q0|)δ(q2) = δff ′
7π2

30
T 4 ,

(5.57)
and similarly the quark condensates, 〈t̄(0)PLγ

0iD0t(0)〉T = 7π2T 4/40 and 〈Q̄(0)PRγ
0

×iD0Q(0)〉T = 7π2T 4/20. We note that fermionic condensates involving an even number
of derivatives would give rise to vanishing momentum integrals.

Tadpole diagrams generated by operators multiplying the Wilson coefficients c5, c6,
c7 and c8 in (5.28) provide a contribution to the width that depends on the spin coupling
of the Majorana neutrino with the medium.4 If the medium is isotropic, this coupling
is zero.

Finally, the contribution to the decay width from the gauge boson tadpoles (diagram
c in figure 5.5) gives

Γgauge = 2
Im d1

M3
〈W a

0i(0)W a
0i(0)〉T + 2

Im d2

M3
〈F0i(0)F0i(0)〉T

= (3Im d1 + Im d2)
2π2

15

T 4

M3
, (5.58)

where the Wilson coefficients di can be read off eq. (5.36). The last line of (5.58)
follows from having computed the gauge boson thermal electric condensates at leading
order [187]: 〈W a

0i(0)W a
0i(0)〉T = π2T 4/5 and 〈F0i(0)F0i(0)〉T = π2T 4/15. The operators

4 The operator N† γ5γiN can be also written as −2N† SiN , where ~S is the spin operator.
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N̄N W a
µνW

aµν and N̄N FµνF
µν in the last line of (5.28) do not contribute to the thermal

width because at leading order 〈W a
µν(0)W aµν(0)〉T = 〈Fµν(0)Fµν(0)〉T = 0.

If the Majorana neutrino is not at rest, then we need to add to (5.28) operators
that depend on the neutrino momentum. The leading operator is the dimension seven
operator (embedding SM degrees of freedom)

LN-k = − 1

2M3
a N̄

[
∂2 − (v · ∂)2

]
N φ†φ . (5.59)

The Wilson coefficient of this operator is fixed by the relativistic dispersion relation

N̄N
(√

(M + δm)2 + k 2 −M
)

= N̄N

(
δm+

k 2

2M
− δm k 2

2M2
+ . . .

)
, (5.60)

with δm = −aφ†φ/M , or by methods similar to those developed in [189]. Therefore
there is a thermal width induced by the operator (5.59) that is going to be momentum
dependent. It reads

Γφ,mom. dep. = 2
Im a

M

(
− k 2

2M2

)
〈φ†(0)φ(0)〉T = − Im a

6

k 2T 2

M3
. (5.61)

The above expressions for the thermal decay widths induced by Higgs, fermions
and gauge bosons are consistent with the estimates (5.38) and (5.39) obtained by sole
power-counting arguments. Summing up Γφ, Γφ,mom. dep., Γfermions and Γgauge and using the
explicit expressions of the Wilson coefficients, we get at first order in the SM couplings
and at order T 4/M3 the Majorana neutrino thermal width:

ΓT =
|F |2M

8π

[
−λ
(
T

M

)2

+
λ

2

k 2 T 2

M4
− π2

80

(
T

M

)4

(3g2 + g′ 2)− 7π2

60

(
T

M

)4

|λt|2
]
.

(5.62)
If the neutrino is at rest, we can set k = 0. Equation (5.62) agrees with the analogous
expression derived in [17] up to order T 2/M . It also agrees with the result of [18], given
in eq. (4.108), up to order T 4/M3. In [18] also corrections of order k 2T 4/M5 have
been computed. We note that we could express our results (5.53), (5.61), (5.56) and
(5.58) also in terms of Higgs, lepton, quark and gauge field condensates. This appears
to be a straightforward consequence of the EFT, which requires, at the order considered
here, that thermal corrections are encoded into tadpole diagrams. In relation to ΓT ,
condensates have been also discussed in [18].

5.4 The T/M expansion

In this chapter we have computed the thermal corrections to the neutrino thermal width
as an expansion in the SM couplings and in T/M . This quantity enters the production
rate expression that has been computed in a similar fashion in [17–19]. Up to the order
to which it is known, the expansion in T/M is well behaved, i.e., for reasonably small
values of T/M it converges.
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Despite the above fact, it has been remarked in [16] that, when comparing the pro-
duction rate for heavy Majorana neutrinos in the T/M expansion with the exact result,
which is known at leading order in the SM couplings, the two results overlap only at
very small values of T/M , i.e., values around 1/10 or smaller. In the same work, it
has been also noticed that for values of T/M larger than 1/10 not only the discrepancy
between the exact and the approximate result appears larger than the last known term
in the expansion, but also of opposite sign. The situation is well illustrated by the black
curve in figure 5.6. It shows the difference between the exact neutrino production rate
at order λ (top-Yukawa and gauge couplings are set to zero) taken from [16] and the
neutrino production rate at leading order in T/M divided by the neutrino production
rate at next-to-leading order in T/M . At next-to-leading order in T/M the production
rate depends only on the SM coupling λ.

Figure 5.6: The black line shows the difference between the exact neutrino production
rate up to order λ (top-Yukawa and gauge couplings set to zero) and the neutrino
production rate at leading order in T/M divided by the neutrino production rate at
next-to-leading order in T/M . The red line is as above but with the leading-order
neutrino production rate multiplied by (1 + nB(M/2) − nF (M/2)). The neutrino is
taken at rest. The one-loop running four-Higgs coupling, λ, is taken λ(107 GeV) ≈ 0.02
(λ(125 GeV) ≈ 0.126) [190].

Here we want to inspect the origin of this behaviour and devise a strategy to improve
the expansion in T/M in such a way that it overlaps with the exact result for reasonably
small, not only very small, values of T/M . We will say that the expansion overlaps with
the exact result if the discrepancy between the exact and the approximate result is not
larger than the last known term in the expansion.

The problem is rather general. In the form we have it here, it happens when dealing
with a double expansion where one of the expansion parameters is much smaller than
the other one. In our case λ is much smaller than T/M for a relatively wide range
of temperatures. Under this circumstance, exponentially suppressed terms of the type
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e−M/T may become numerically as large as next-to-leading order terms of the type
λ (T/M)2. In fact e−M/T is larger than or very close to λ (T/M)2 for T/M >∼ 1/8. One
should recall that exponentially suppressed terms vanish in any analytic expansion.

The solution of the problem consists in keeping exponentially suppressed terms in the
not-so-small parameter at leading order in the small-parameter expansion. In our case,
this amounts at keeping terms of the type e−M/T in the computation of the neutrino
observables at zeroth-order in the SM couplings. Let us illustrate how this works in the
case of the neutrino production rate. The relevant diagrams are the self-energies shown
in figure 5.1, which, in the following, we will call Π. The neutrino production rate is
proportional to the retarded self energy, ΠR. We already mentioned in section 5.2 that
the retarded self energy may be written as ΠR = Π11 + Π12. The “12” component of
a heavy-particle propagator vanishes exponentially in the heavy-mass limit [187]. For
this reason we did not need to consider Π12 in section 5.2. But we need to consider it
here if we want to keep exponentially suppressed terms. Cutting Π11 and keeping the
thermal distributions of the lepton and Higgs boson gives for a neutrino at rest Π11 =
[T = 0 result]× (1+nB(M/2))(1−nF (M/2)), where nB and nF are the Bose and Fermi
distributions respectively. Cutting Π12 gives Π12 = [T = 0 result]× nB(M/2)nF (M/2).
Summing the two contributions gives ΠR = [T = 0 result]× (1 +nB(M/2)−nF (M/2)).
Hence, we can improve the neutrino production rate at leading order in the SM coupling
by multiplying the T = 0 result by

1 + nB(M/2)− nF (M/2) ≈ 1 + 2 e−M/T + ... , (5.63)

which amounts at keeping (at least) terms of the type e−M/T .
In figure 5.6 the red curve shows the difference between the exact neutrino production

rate at order λ (top-Yukawa and gauge couplings set to zero) and the neutrino production
rate at leading order in T/M multiplied by (1 + nB(M/2) − nF (M/2)) divided by the
neutrino production rate at next-to-leading order in T/M . The grey band shows the
region where the discrepancy between the exact production rate and the next-to-leading
order one is not larger than the next-to-leading order one. We see that now the curve
is in the grey band for T/M <∼ 1/2. Moreover, higher-order corrections in T/M do not
change the sign of the next-to-leading order correction. The result is consistent with
our understanding of the problem and in fact provides a simple way to solve it. This
computational scheme could be also implemented in the case of the CP asymmetry (see
chapters 6 and 7).

Finally, we comment about the neutrino three momentum k, rather of its absolute
value |k|. Strictly speaking the non-relativistic expansion is an expansion in T/M and
|k|/M and is as good as these two parameters are small. If |k| is chosen to be equal to T
or smaller, as we did in figure 5.6, then T/M is the relevant expansion parameter. But
if |k| = 2T , |k| = 3T , ... then this is |k|/M . In particular, one has to expect (naively)
the exact result to overlap with the result of the perturbative series at temperature 2,
3, ... times smaller than one would have for |k| ≤ T .
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Chapter 6

CP asymmetries at finite
temperature: the nearly
degenerate case

In this chapter the formalism developed for the right-handed neutrino production rate
is applied to the evaluation of CP asymmetries in heavy Majorana neutrino decays.
Indeed the EFT approach has provided a simpler derivation of the neutrino thermal
width and we shall exploit such tools in order to inspect processes at higher order.
We consider an extension of the SM that includes two generations of heavy Majorana
neutrinos with nearly degenerate masses, M and M + ∆, and we compute the leading
thermal corrections to the direct and indirect CP asymmetries in heavy neutrino decays
into leptons and antileptons. In section 6.1 we review the basic set-up of the EFT for
non-relativistic Majorana neutrinos, this time applied to two nearly mass degenerate
states. In section 6.2 we re-derive the zero temperature direct CP asymmetry from
the vertex diagram and relate it to the EFT. In section 6.3 we explain how to match
the relevant dimension-five operators of the EFT at two loops. The leading thermal
corrections to the direct CP asymmetry are computed in section 6.4 and the leading
thermal corrections to the indirect CP asymmetry in section 6.5. The result is organized
in a T/M expansion and as series in the SM couplings.

6.1 Non-relativistic Majorana neutrinos with nearly de-
generate masses

We want to study the dynamical generation of the CP asymmetries in heavy-neutrino
decays occurring in the early universe. The CP asymmetry is defined as fallows

εI =

∑
f Γ(νR,I → `f +X)− Γ(νR,I → ¯̀

f +X)∑
f Γ(νR,I → `f +X) + Γ(νR,I → ¯̀

f +X)
. (6.1)

The sum runs over the SM lepton flavours, νR,I stands for the I-th heavy right-handed
neutrino species, `f is a SM lepton with flavour f and X stands for any other SM particle
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not carrying a lepton number. In this chapter we do not address flavour effects on the
CP asymmetry which are treated in chapter 8. The definition in eq. (6.1) replaces that
given in eq. (2.19) when considering more general combinations of the decay products
and more than one neutrino species contributing to the CP asymmetry.

Interactions with the medium modify the neutrino dynamics (thermal production
rate, mass, ...) and affect the thermodynamic evolution of the lepton asymmetry. Since
we are interested in the temperature regime

M � T �MW , (6.2)

the EFT constructed in the previous chapter for a non-relativistic Majorana neutrino
can be used as a starting point. One can read its general structure up to dimension-seven
operators in eqs. (5.23), (5.27) and (5.28). In the temperature window (6.2) and in an
expanding universe the heavy neutrino is likely out of equilibrium, which is one of the
Sakharov conditions necessary for generating a lepton asymmetry [65].

However there is a slight modification one has to take into account about the degrees
of freedom in the EFT, in order to address a successful generation of the CP asymmetry:
at least two different heavy Majorana neutrino species interacting with different Yukawa
couplings are needed. This fact is closely related to the generation of a non-vanishing
phase in the Yukawa couplings combination entering the processes responsible for the
CP asymmetry. We have encountered a similar situation for the toy model described in
section 1.2. We comment on this point later in the next sections once we have worked
out explicitly the expressions for the CP asymmetry.

In the following, we will consider only two heavy neutrinos and assume that they have
masses above the electroweak scale. In the case right-handed neutrinos are represented
by Majorana fermion fields, the Lagrangian read off (2.9), where the neutrino generation
index is then I = 1, 2. The corresponding mass eigenstates areM1 andM2 and in order to
consider two heavy neutrinos with nearly degenerate masses we ask M1 ≡M and M2 =
M + ∆, where ∆ is the mass splitting such that ∆ � M . The system with two nearly
degenerate neutrinos is still characterized by one large scale, M . Therefore we integrate
out momentum and energy modes of order M from the fundamental Lagrangian (2.9)
and replace it by a suitable EFT aimed at describing the non-relativistic dynamics
of the Majorana neutrinos. The EFT is organized as an expansion in operators of
increasing dimension suppressed by powers of 1/M . The Wilson coefficients of the
operators encode the high-energy modes of the fundamental theory and can be evaluated
by setting T = 0. Then we compute thermal corrections to the Majorana neutrino
leptonic (antileptonic) widths as thermal averages weighted by the partition function
of the EFT. This procedure is the same adopted in chapter 5 for the neutrino thermal
width at order F 2. However, we shall see that we have to work out the decay widths at
order F 4 in the Yukawa couplings to calculate the CP asymmetry (see also section 2.2).

The EFT Lagrangian up to operators of dimension five is

LEFT = LSM + N̄I (iv · ∂ − δMI)NI +
iΓT=0
IJ

2
N̄INJ +

aIJ
MI

N̄INJφ
†φ+ . . . , (6.3)
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where NI is the field describing the low-energy modes of the I-th non-relativistic Majo-
rana neutrino, δM1 = 0, δM2 = ∆, ΓT=0

IJ is the decay matrix at T = 0 and aIJ are the
Wilson coefficients of the dimension-five operators N̄INJφ

†φ describing the interaction
of the Majorana neutrinos with the Higgs doublet of the SM. These are the only opera-
tors of dimension five that give thermal corrections to the neutrino widths and masses.
The dots in (6.3) stand for higher-order operators that contribute with subleading cor-
rections. Being the CP asymmetry a dimensionless quantity, we are able to size the
thermal correction induced by the dimension-five operators to be of order (T/M)2. This
is due to the temperature dependence developed by the Higgs condensate at leading
order, 〈φ†(0)φ(0)〉T ∝ T 2 (see eq. (5.54)), hence two inverse powers of the neutrino mass
have to appear. Higher order operators in (6.3) induce parametrically T/M suppressed
corrections. The natural dynamical scale of the EFT Lagrangian is the temperature, T .
Since T is taken larger than the electroweak scale, LSM is still the SM Lagrangian with
unbroken SU(2)L×U(1)Y gauge symmetry.

The Lagrangian (6.3) has been obtained by integrating out the mass M = M1 from
the Lagrangian (2.9); δM2 = ∆ � M is the residual mass of the neutrino of type 2.
In (6.3) masses are understood as on-shell masses, as it is typical of non-relativistic
EFTs, which implies that off-diagonal elements of the mass matrix vanish. Moreover, in
the diagonal terms we will neglect terms that would contribute to the CP asymmetry at
order F 6 or smaller [191, 192]. Off-diagonal elements do not vanish for the absorptive
parts iΓT=0

IJ /2. The specification T = 0 recalls that they are computed at T = 0. Finally,
the Lagrangian (6.3) has been written in a reference frame where the Majorana neutrinos
have momentum Mvµ (v2 = 1) up to a residual momentum that is much smaller than
M . In the following, we will assume that the thermal bath of SM particles is comoving
with the Majorana neutrinos. For the matching calculation, a convenient choice of the
reference frame is the rest frame vµ = (1,0).

The expression for the non-relativistic Majorana propagator in the EFT (6.3), both
for the neutrino of type 1 and type 2, can be obtained by projecting (5.2)-(5.4) on the
small components of the Majorana fields. Putting pµ = Mvµ + kµ, where k2 �M2, we
obtain in the large M limit

〈0|T (Nα
1 (x)N̄β

1 (y))|0〉 =

(
1 + /v

2

)αβ ∫ d4k

(2π)4
e−ik·(x−y) i

v · k + iε
, (6.4)

〈0|T (Nα
2 (x)N̄β

2 (y))|0〉 =

(
1 + /v

2

)αβ ∫ d4k

(2π)4
e−ik·(x−y) i

v · k −∆ + iε
, (6.5)

where M1 = M and ∆ = M2 − M1. The other possible time-ordered combinations
vanish. We notice the presence of a residual mass, ∆, in the neutrino type 2 propagator
in (6.5). We stress that the expressions “neutrino of type 1” and “neutrino of type 2”
are referred to the heavy neutrino species. They do not have to be confused with the
field of type 1 and type 2 on the Keldysh contour in the RTF of thermal field theory
(see chapter 4).
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νR,I

ℓf

φ

νR,I νR,I

φ

ℓf

νR,J
νR,J

ℓf

φ

Figure 6.1: From left to right: tree-level, and one-loop self-energy and vertex diagrams.
Double solid lines stand for heavy right-handed neutrino propagators, solid lines for
lepton propagators and dashed lines for Higgs boson propagators. The neutrino propa-
gator with forward arrow corresponds to 〈0|T (ψψ̄)|0〉, whereas the neutrino propagators
with forward-backward arrows correspond to 〈0|T (ψψ)|0〉 or 〈0|T (ψ̄ψ̄)|0〉. Decay into
antileptons are not shown.

6.1.1 Set up of the CP asymmetries in the EFT

In chapter 2 we distinguished between indirect and direct CP asymmetry, the distinc-
tion being based on the leading-order processes shown in figure 6.1. In this chapter, we
extend that distinction beyond leading order by calling contributions to the indirect CP
asymmetry, ∆ΓI,indirect, those that allow for the phenomenon of resonant enhancement.
The resonant leptogenesis was discussed briefly in chapter 2 and is characterized by a
large enhancement of the asymmetry when ∆ is of the order of the largest between the
neutrino width difference and the mixing vertices. In the framework of a strict per-
turbative expansion in the Yukawa couplings, such a behaviour is induced by Feynman
diagrams (like the second of figure 6.1) becoming singular in the limit ∆→ 0, which sig-
nals a break down of the expansion in that limit. The singularity is eventually removed
by resumming certain classes of diagrams, like those responsible for the width and/or
the mixing of the different neutrinos. Viceversa, we call contributions to the direct CP
asymmetry, ∆ΓI,direct, those that do not exhibit this phenomenon. Order by order in
an expansion in the Yukawa couplings, Feynman diagrams that contribute to the direct
CP asymmetry are not singular in the limit ∆ → 0. The CP asymmetry is related to
the sum of these two kind of contributions (see definition (6.1)):∑

f

Γ(νR,I → `f +X)− Γ(νR,I → ¯̀
f +X) = ∆ΓI,direct + ∆ΓI,indirect . (6.6)

The term ∆ΓI,direct includes all contributions to the CP asymmetry that originate
from single operators in the EFT and all contributions that come from mixing of opera-
tors in the EFT that do not show the phenomenon of resonant enhancement. Concerning
the first class of contributions, at the accuracy of the Lagrangian (6.3) there are only
dimension-three and dimension-five operators that may have imaginary Wilson coeffi-
cients. Concerning the second class of contributions, we will denote them ∆Γmixing

I,direct. At
the order we are working, the only relevant contribution of this kind affects the heavier
Majorana neutrino of type 2 and will be computed in section 6.4.2. Hence, ∆ΓI,direct
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reads

∆ΓI,direct =
(

Γ`,T=0
II − Γ

¯̀,T=0
II

)
+
(

Γ`,TII,direct − Γ
¯̀,T
II,direct

)
+ ∆Γmixing

I,direct , (6.7)

with

Γ`,TII,direct =
2

M
Im a`II 〈φ†(0)φ(0)〉T , Γ

¯̀,T
II,direct =

2

M
Im a

¯̀
II 〈φ†(0)φ(0)〉T , (6.8)

where the subscripts ` and ¯̀ isolate the leptonic and antileptonic contributions. The

first term in the right-hand side of (6.7), Γ`,T=0
II −Γ

¯̀,T=0
II , is the zero temperature contri-

bution to the direct CP asymmetry, which we will compute in section 6.2. The second

term, Γ`,TII,direct − Γ
¯̀,T
II,direct, isolates the dominant thermal correction to the direct CP

asymmetry, therefore a`II and a
¯̀
II have to be computed to derive its explicit expression.

In equation (6.8) the thermal dependence is encoded in the Higgs thermal condensate
〈φ†(0)φ(0)〉T , which at leading order is written in (5.54). The relative size of the thermal
correction to the direct CP asymmetry is therefore T 2/M2. High-energy contributions
induced by loops with momenta of the order of the neutrino mass are encoded in the
Wilson coefficients a`II and a

¯̀
II . Since the condensate is real, to compute the widths we

need the imaginary parts of a`II and a
¯̀
II . Their expressions, at order F 2 in the Yukawa

couplings, can be easily inferred from eq. (5.43) taking into account that such expression
refers to the leptonic contribution. A detailed derivation disentangling the lepton and
antilepton contributions is given in appendix B and the result reads

Im a`II = Im a
¯̀
II = − 3

16π
|FI |2λ. (6.9)

The coupling λ is the four-Higgs coupling. We have defined |FI |2 ≡
∑

f FfIF
∗
fI and, for

further use, FJF
∗
I ≡

∑
f FfJF

∗
fI .

A necessary condition to produce a CP asymmetry, i.e., to get a non-vanishing dif-
ference from a final state with a lepton and one with an antilepton, is for Im a`II and

Im a
¯̀
II to be sensitive to the phases of the Yukawa couplings FfI . At order F 2, Im a`II

and Im a
¯̀
II are not. Hence, to produce a non-vanishing direct CP asymmetry, one needs

to compute at least corrections of order F 4. In fact, corrections proportional to (F1F
∗
2 )2

are sensitive to the phases of the Yukawa couplings. From the optical theorem the
imaginary part of a two-loop diagram proportional to (F1F

∗
2 )2 may be understood as

the interference between a tree-level and a one-loop amplitude developing an imaginary
part. We are going to clarify this aspect in the following section where we derive the
direct CP asymmetry at T = 0 at zeroth order in the SM couplings.

6.2 Matching ΓT=0
II : direct asymmetry at zero temperature

The width difference (6.7), and hence the direct CP asymmetry, depends on the Wilson

coefficients ΓT=0
II and aII of (6.3). In this section we compute the leptonic, Γ`,T=0

II , and

antileptonic, Γ
¯̀,T=0
II , components of ΓT=0

II . In so doing we re-derive the expression for
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the direct CP asymmetry at zero temperature [11]. Considerations made here will be
used in the next section to select the parts of the Wilson coefficients Im a`II and Im a

¯̀
II

relevant for the thermal corrections to the direct CP asymmetry.

+

+

νR,I
ℓf

φ

νR,I

φ

ℓf

νR,I
ℓ̄f

φ†

νR,I

φ†

ℓ̄f

νR,J

νR,J

Figure 6.2: Tree-level and one-loop diagrams contributing to the direct CP asymmetry.
The subscript I stands either for 1 or 2. The first and second raw show decays into
leptons and antileptons respectively.

We start considering the decay of a heavy right-handed neutrino of type 1, νR,1,
into leptons. Up to one loop the amplitude has the following form (see the two upper
diagrams in figure 6.2 that display only direct contributions):

M(νR,1 → `f +X) = A

[
Ff1 +

∑
J

(F ∗f ′1Ff ′J)FfJ B

]
, (6.10)

where A and B are functions that parametrize the amplitude at tree-level and one-loop
respectively. We obtain the total decay width into leptons by squaring the amplitude
and summing over the lepton flavours. Up to O(F 4) it reads

∑
f

Γ(νR,1 → `f +X) = |A|2
[
|F1|2 +

∑
J

(
(F ∗1FJ)2B + (F1F

∗
J )2B∗

)]

= |A|2
{
|F1|2 +

∑
J

(
2 Re(B)Re

[
(F ∗1FJ)2

]
− 2 Im(B)Im

[
(F ∗1FJ)2

])}
.

(6.11)

We may write similar relations for the decay into antileptons:

M(νR,1 → ¯̀
f +X) = A

[
F ∗f1 +

∑
J

(Ff ′1F
∗
f ′J)F ∗fJ C

]
, (6.12)
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1) 2) 3)

Figure 6.3: One-loop and two-loops self-energy diagrams in the fundamental theory
(2.9) contributing to the decay of a heavy Majorana neutrino into leptons. Vertical blue
dashed lines are the cuts selecting a final state made of a Higgs boson and a lepton.
Circled vertices and propagators are defined in appendix B.

and ∑
f

Γ(νR,1 → ¯̀
f +X) = |A|2

[
|F1|2 +

∑
J

(
(F ∗1FJ)2C∗ + (F1F

∗
J )2C

)]

= |A|2
{
|F1|2 +

∑
J

(
2 Re(C)Re

[
(F ∗1FJ)2

]
+ 2 Im(C)Im

[
(F ∗1FJ)2

])}
,

(6.13)

where C is the analogous of B in (6.10). The CP asymmetry (6.1), due to the decay of
νR,1, is then

ε1 =
∑
J

(Re(B)− Re(C)) Re
[
(F ∗1FJ)2

]
− (Im(B) + Im(C)) Im

[
(F ∗1FJ)2

]
|F1|2

. (6.14)

The functions A, B and C can be computed by cutting one and two-loop diagrams
contributing to the propagator of a neutrino of type 1:

− i
∫
d4x eip·x 〈Ω|T

(
ψµ1 (x)ψ̄ν1 (0)

)
|Ω〉
∣∣∣∣
pα=(M+iη,0 )

, (6.15)

where |Ω〉 is the ground state of the fundamental theory and where we have chosen the
rest frame vα = (1,0), so that the incoming momentum is pα = (M,0 ). Diagrams with
cuts through lepton propagators contribute to A and B (see figure 6.2), while diagrams
with cuts through antilepton propagators contribute to A and C. An analogous equation
to (6.14) holds for ε2.

We consider the in-vacuum diagrams in figure 6.3 for incoming and outgoing neutri-
nos of type 1. The cuts select the contribution to the width into leptons (for details on
cutting rules see appendix B). We call D`1, D`2 and D`3 respectively the diagrams shown in
figure 6.3 with amputated external legs. The quantity Im

[
−i(D`1 +D`2 +D`3)

]
provides

δµν
∑

f Γ(νR,1 → `f + X)/2 at T = 0 in the fundamental theory (2.9), which matches
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δµν Γ`,T=0
11 /2 in the EFT (6.3). The quantities Γ`,T=0

II and Γ
¯̀,T=0
II are the leptonic and

antileptonic components of ΓT=0
II respectively. At leading order ΓT=0

II = Γ`,T=0
II + Γ

¯̀,T=0
II .

An explicit calculation up to order ∆/M gives

δµν
Γ`,T=0

11

2
= Im

[
−i(D`1 +D`2 +D`3)

]
=

δµν
M

16π

{
|F1|2

2
−
∑2

J=1 Re
[
(F ∗1FJ)2

]
(4π)2

[(
1− π2

6

)
+

(
1− π2

12
− 4 ln 2

)
∆

M

]

−
∑2

J=1 Im
[
(F ∗1FJ)2

]
16π

[
(−1 + 2 ln 2) + (−3 + 4 ln 2)

∆

M

]}
. (6.16)

The sum over J comes from the generation of the intermediate Majorana neutrino ex-
changed in the two-loop diagrams in figure 6.3, clearly

∑
J Im(F ∗1FJ)2 = Im(F ∗1F2)2. We

have not considered cuts through the intermediate neutrino, which would correspond to
neutrino transitions involving the emission of a lepton and an antilepton, because they
do not contribute to the CP asymmetry.

The analogous calculation for
∑

f Γ(νR,1 → ¯̀
f + X) at T = 0 in the fundamental

theory, which matches Γ
¯̀,T=0
11 in the EFT, requires the calculation of the one-loop dia-

gram with a virtual antilepton and the two-loop diagrams shown in figure 6.3 but with
cuts through antilepton propagators. Up to order ∆/M , we obtain

δµν
Γ

¯̀,T=0
11

2
= Im

[
−i(D ¯̀

1 +D ¯̀
2 +D ¯̀

3)
]

=

δµν
M

16π

{
|F1|2

2
−
∑2

J=1 Re
[
(F ∗1FJ)2

]
(4π)2

[(
1− π2

6

)
+

(
1− π2

12
− 4 ln 2

)
∆

M

]

+

∑2
J=1 Im

[
(F ∗1FJ)2

]
16π

[
(−1 + 2 ln 2) + (−3 + 4 ln 2)

∆

M

]}
. (6.17)

The right-hand side of (6.17) differs from the right-hand side of (6.16) only for the sign
of the term proportional to Im

[
(F ∗1FJ)2

]
. It is precisely this term that originates the

CP asymmetry.

From (6.16) and (6.17) it follows:

Γ`,T=0
11 − Γ

¯̀,T=0
11 = − M

64π2

[
(−1 + 2 ln 2) + (−3 + 4 ln 2)

∆

M

]
Im
[
(F ∗1F2)2

]
,

(6.18)

ΓT=0
11 = Γ`,T=0

11 + Γ
¯̀,T=0
11 =

M

8π
|F1|2, (6.19)

where in the last line we have neglected terms of order F 4. The direct CP asymmetry at
T = 0 for the leptonic decay of a neutrino of type 1 follows from the definition (6.1). In
the EFT, equation (6.1) translates into the ratio of the above two quantities and reads
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(including corrections of order ∆/M)

εT=0
1,direct =

Γ`,T=0
11 − Γ

¯̀,T=0
11

ΓT=0
11

=

[
(1− 2 ln 2) + (3− 4 ln 2)

∆

M

]
Im
[
(F ∗1F2)2

]
8π|F1|2

. (6.20)

Similarly we may obtain the direct CP asymmetry for the leptonic decay of a neutrino
of type 2 just by changing F1 ↔ F2 and ∆→ −∆ in the above formula:

εT=0
2,direct = −

[
(1− 2 ln 2)− (3− 4 ln 2)

∆

M

]
Im
[
(F ∗1F2)2

]
8π|F2|2

, (6.21)

where we have used Im
[
(F ∗2F1)2

]
= −Im

[
(F ∗1F2)2

]
. The result agrees with the original

result [22] and following confirmations, like the more recent [34], after accounting for the
different definition of the Yukawa couplings1.

It is useful to compare equations (6.16) and (6.17) with (6.11) and (6.13) respectively.
It follows that

|A|2 =
M

16π
, (6.22)

Re(B) = Re(C), (6.23)

Im(B) = Im(C) =
1

16π

[
(−1 + 2 ln 2) + (−3 + 4 ln 2)

∆

M

]
. (6.24)

Replacing the above expressions in (6.14) one gets back (6.20). The condition Re(B) =
Re(C) requires both Im(B) and Im

[
(F ∗1FJ)2

]
to be different from zero to produce a non-

vanishing CP asymmetry. The first request is at the origin of the following statement:
the relevant two-loop diagrams for the CP asymmetry are those that can be cut with
two cuts into three tree-level diagrams. This guarantees that after a first cut through
the lepton (or antilepton) propagator the remaining one-loop diagram (what is called B
above) develops a complex phase. The second request is fulfilled if there are at least two
Majorana neutrino generations with different complex Yukawa couplings. In fact only
J = 2 contributes to the asymmetry in (6.16) and (6.17). This is why one needs at least
two different neutrino species.

Regarding the latter condition we can add a comment. In the exact degenerate
case the CP phases can be rotated away leading to purely real Yukawa couplings, and,
therefore, to a vanishing CP asymmetry [24]. We can understand it as follows. The
heavy neutrino mass matrix, MI , has been chosen to be diagonal (see section 2.1). If
we furthermore set M1 = M2 a unitary transformation on the sterile neutrino fields,
ψI → (Uψ)I , leaves unchanged the free sterile neutrino Lagrangian whereas in the
interaction part we have to redefine accordingly the Yukawa couplings as FfI → (FU)fI .
We then notice that the combination (F ∗F )IJ , entering the CP asymmetry in (6.20),
is an hermitian matrix and the unitary transformation on the Yukawa coupling leads
to (F ∗F )IJ → (U † F ∗F U)IJ . Therefore the hermitian matrix F ∗F is diagonalized by
the unitary transformation in a matrix with real eigenvalues and no physical phases can
appear.

1 Our couplings are the complex conjugate of the couplings in [22] and [34].
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a) b)

Figure 6.4: Diagrams at order λF 4 contributing to the matching coefficients of the
dimension-five operator. They preserve the topology of the diagrams at order F 4 once
the Higgs-four coupling is removed.

6.3 Matching aII

In order to evaluate the leading thermal correction to the direct CP asymmetry, i.e.,

Γ`,TII,direct − Γ
¯̀,T
II,direct, we need to compute the Wilson coefficients aII of the dimension-

five operators in (6.3). We have seen that at order F 2 in the Yukawa couplings the
coefficients aII do not contribute to the asymmetry, hence, in this section, we will give
them at order F 4. They also depend linearly on some SM couplings, in particular the
four-Higgs and gauge couplings. The coefficients aII are determined by matching four-
point Green’s functions with two external Majorana neutrinos and two external Higgs
bosons computed in the fundamental theory with the corresponding vertices in the EFT.
In particular, we may consider a Higgs boson with momentum qα ∼ T � M scattering
off a Majorana neutrino at rest in the reference frame vα = (1,0). In the matching, we
integrate out loop momenta of order M , hence the momentum of the Higgs boson can
eventually be set to zero and the matching done in the vacuum. Thermal corrections do
not affect the matching but the CP asymmetry through the Higgs thermal condensate.
Because the Higgs thermal condensate is real, we just need to compute the imaginary
parts of aII . This can be done by using standard cutting rules at T = 0.

Diagrams with cuts through lepton propagators contribute to the leptonic component
of aII , a

`
II , while diagrams with cuts through antilepton propagators contribute to the

antileptonic component of aII , a
¯̀
II . Not the entire cut diagram contributes to the asym-

metry. The part of the cut diagram that contributes to the asymmetry can be isolated
using the same arguments developed in section 6.2 and is proportional to Im

[
(F ∗1F2)2

]
.

6.3.1 Diagrams with Higgs-four interaction

The complete set of diagrams for the matching of Im a`II and Im a
¯̀
II at order F 4 and at

first order in the SM couplings, together with details of the calculation, can be found
in appendix B. Here we discuss the systematics for diagrams involving the four-Higgs
coupling, λ. We need to match four-point Green’s functions with two external Higgs
bosons and two heavy Majorana fields,

− i
∫
d4x eip·x

∫
d4y

∫
d4z eiq·(y−z) 〈Ω|T (ψµ(x)ψ̄ν(0)φm(y)φ†n(z))|Ω〉

∣∣∣∣
pα=(M+iη,0 )

,

(6.25)
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a) b)

Figure 6.5: Diagrams at order λF 4 contributing to the matching coefficients of the
dimension-five operator. They do not preserve the topology of the diagrams at order
F 4.

so that the external legs appearing in the diagrams for the matching are fixed. Then
the diagrams have to admit cuts through lepton (antilepton) lines such that a one-loop
subdiagram is still left. A first set of diagrams is obtained from the two-loop self-energies
in figure 6.3 by adding a four-Higgs interaction, as shown in figure 6.4. Once the four-
Higgs vertex is removed, the diagrams of figure 6.4 preserve the topology of the T = 0
two-loop diagrams of figure 6.3. A second second set is found by opening up one of
the Higgs line in the diagrams of figure 6.3 and adding a four-Higgs interaction to the
internal Higgs line. Then one is left with four Higgs external lines and two of them
have to be linked together to provide a two-loop diagram. The result of such procedure
brings, for example, to the diagrams shown in figure 6.5.

Let us focus on diagram a) of figure 6.4. We outline the strategy for the matching
where we consider a Majorana an incoming and outgoing neutrino with mass M , namely
the lightest of the two. The heavy neutrino is taken in its rest frame according to (6.25)
and we organize the computation in the following steps:

1) write down the corresponding matrix element obtained from the fundamental La-
grangian (2.9). The amplitude so obtained is at two-loop and it reads

[
P̂ (−iDa) P̂

]µν
= −6λ(F ∗1F2)2 δmn

∫
d4`

(2π)4

∫
d4Q

(2π)4

(
P̂ PL/̀(M/v + /Q) P̂

)µν
i

`2 + iη

i

(Mv +Q)2 + iη

i

(Mv − `)2 + iη

iM

(`+Q)2 −M2
2 + iη

(
i

Q2 + iη

)2

,

(6.26)

where M2 = M + ∆. We keep the non-relativistic projector, P̂ , as for the compu-
tation in section 5.2. Eventually they are also dropped from the amputated matrix
element.

2) Cut the diagram through the lepton and Higgs line, whose momentum is `µ and
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(Mv − `)µ respectively, as follows

{
i/̀

`2+iη
→ 2π /̀ θ(`0)δ(`2)
i

(Mv−`)2+iη
→ 2π θ(M − `0)δ((Mv − `)2) .

(6.27)
This way one selects a process with a lepton in the final state (eventually leading
to a contribution to Im a`11). A one-loop diagram is still left after the cut. For
details on the cutting rules at T = 0 see appendix B.

3) The loop diagram has to be evaluated and we only need its real part that provides
eventually the term relevant for the CP asymmetry, i.e. the one proportional to
the combination Im

[
(F ∗1F2)2

]
. The loop diagram reads

J(M,∆) =

∫
d4Q

(2π)4

i4 (M/v + /Q)

[(Mv +Q)2 + iη]
[
(Q+ `)2 −M2

2 + iη
]

[Q2 + iη]2
(6.28)

where the kinematics after the cut on the lepton and the Higgs boson gives `2 = 0
and Mv ·` = M2/2. The integral can be computed with standard T = 0 techniques
and the result is

J(M,∆) = − /v

16πM3

(
ln 2− ∆

M

)
+ · · · , (6.29)

where the dots stand for higher order terms in the ∆/M as well as i times the
imaginary part of the integral irrelevant for the CP asymmetry. The latter com-
bines with the Yukawa coupling combination Re

[
(F ∗1F2)2

]
similarly to what we

have written in (6.16). In (6.29) we do not display terms proportional to /̀ because
they vanish. This is due to the presence of an additional /̀ in the amplitude (6.26),
giving then /̀/̀ = `2. Then together with a δ(`2) imposed by the cut on the lepton
line, see (6.27), such terms are zero.

4) The amputated Green’s function reads

Im
(
−iD`a

)
= +

3λIm[(F ∗1F2)2]

2(16π)2

[
ln 2− (1− ln 2)

∆

M

]
δµνδmn + · · · (6.30)

where the dots stand for terms irrelevant for the CP asymmetry, higher order
terms in the ∆/M expansion and the superscript on D signals that we cut on a
lepton line. The same result is obtained from diagram b) in figure 6.4. This can
be understood in the following way. First, the diagram is proportional to (F1F

∗
2 )2

instead of (F ∗1F2)2 and hence there is an overall minus in the imaginary part of the
Yukawa couplings combination. Second the two diagrams differ for an odd number
of circled vertices and an even number of complex propagators when applying the
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cutting rules. This gives another relative sign that cancels the former one due
to the Yukawa couplings. The complete set of diagrams involving the Higgs-four
coupling is discussed in appendix B. The result in (6.30) has to be matched with
the matrix element (6.25) on the EFT side, namely Im a`11δ

µνδmn.

In order to obtain the corresponding contribution to a
¯̀
11 one has to consider the cuts

on antileptons in diagram a) and b) in figure 6.4 and follow the outlined procedure.
(Actually the results for antileptons are simply obtained with the substitution F1 → F ∗1
and F2 → F ∗2 ).

We add here a last remark. In the previous example we considered the lightest
neutrino as the incoming one. Of course the diagrams in figure 6.4 and 6.5 stand also
for an incoming neutrino of type 2, slightly heavier in mass. The result for the matrix
element in (6.30) can be used to infer the corresponding expression for the neutrino of
type 2 after the substitutions F1 ↔ F2, M → M2 and ∆ → −∆ are made. In general,
that the above substitutions work follows from the fact that the real transition from
a heavier neutrino of type 2 to a lighter neutrino of type 1, which is a decay channel
absent in the case of neutrinos of type 1, is a process accounted for by the EFT (see
section 6.4.2), and, therefore, it does not contribute to the matching. Figure 6.6 shows
the cut through the intermediate neutrino of type 1 in a generic two-loop amplitude
(grey blob) with an incoming neutrino of type 2 and an external Higgs. When cutting
the heavy neutrino of type 1 together with a lepton (antilepton) only a residual small
energy, ∆, is available in the remaining loop amplitude. Energy and momenta turn out
to be of order ∆ and hence not typical of the matching (we integrate out energies modes
of order M � ∆). For example, the diagrams in figure 6.5 admit such cuts through the
intermediate neutrino and lepton line that leave a one-loop sub-diagram. However these
contributions are not included in the matching because of the argument just given.

νR,2 νR,2νR,1

Figure 6.6: A schematic representation of a two-loop amplitude (grey blob) with two
external heavy neutrinos of type 2 and two soft Higgs bosons. The cut, represented with
a blue dash line, put the intermediate neutrino of type 1 on-shell, leaving energy and
momenta of order ∆�M running in the remaining loop amplitude.

6.3.2 Diagrams with gauge bosons

At order F 4, other SM couplings besides the Higgs-four coupling may enter the matching
of the leading dimension-five operators in (6.3). This does not happen in the case of
the neutrino production rate calculated at order F 2 (see chapter 5). In particular gauge
interactions can be accounted for systematically in the EFT approach and we show how
they enter the dimension-five operators in (6.3). In this section we discuss some of
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a) b) c)

d) e) f)

Figure 6.7: If the incoming and outgoing Majorana neutrinos are conventionally chosen
to be of type 1, then the displayed diagrams contribute to a`11 at order F 4 and at first

order in the gauge couplings. The diagrams contribute also to a
¯̀
11 if cut through the

antilepton. Only diagrams proportional to (F ∗1F2)2 are displayed.

the diagrams involving gauge bosons and how to organize the corresponding matching
calculation. Further details are given in appendix B.

Diagrams with gauge interactions contribute to the matching coefficient of the dimension-
five operators, provided that one considers a four-point Green’s function with two heavy
neutrinos and two Higgs bosons as external legs as given in (6.25). In order to build the
relevant diagrams we start again by looking at those shown in figure 6.3. Opening up
a Higgs line and adding one gauge boson, one finds a first set of diagrams shown in fig-
ure 6.7. The calculation strategy will follow the one outlined in section 6.3.1 for diagrams
involving the Higgs self interaction. By cutting lepton lines one obtains a contribution
to a`II whereas cutting on antilepton lines to a

¯̀
II . However there is a main difference that

is worth highlighting. By cutting the diagrams in figure 6.7 we distinguish two different
type of processes:

1) processes without a gauge boson in the final state, e.g. see diagram 1) in figure 6.8;

2) processes with a gauge boson in the final state, e.g. see diagram 2) in figure 6.8.

These being two distinct physical processes, we can compute them in different gauges.
We found convenient to adopt the Landau gauge in the first type of processes and
the Coulomb gauge in the second one. The advantage of such a choice is twofold and
discussed in detail in appendix B. Here we just mention that all the diagrams with
a gauge boson attached to an external Higgs line can be discarded for the matching
of the dimension-five operators in 6.3, indeed contributing to operators with a higher
dimension. Moreover one avoids spurious singularities by using the Coulomb gauge for
those diagrams where the gauge boson is cut.

In section 6.1.1 we provided an alternative definition for direct and indirect asym-
metry. Going beyond leading order we find an interesting result: diagrams that can
possibly show a resonant enhancement at T = 0, namely at order (F1F

∗
2 )2, may loose
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1) 2)

Figure 6.8: Diagrams a and d of figure 6.7 with a cut on the lepton line. In the diagram
on the left, the lepton is cut together with a Higgs boson (the gauge boson enters as a
virtual particle in the remaining loop), whereas in the diagram on the right the gauge
boson is cut together with the lepton.

b)a)

Figure 6.9: Diagram a, two-loop heavy neutrino self energy relevant for the indirect CP
asymmetry at T = 0. Diagram B is obtained from opening up one Higgs leg and adding
one gauge boson.

this property when going at order g2(F1F
∗
2 )2 or g′2(F1F

∗
2 )2, namely when adding a gauge

boson. Respectively g and g′ are the SU(2)L and U(1)Y gauge couplings. The argument
can be understood as follows. In chapter 2 the indirect contribution to the asymmetry
was introduced as the one originated from the interference between the tree-level and one
loop self-energy diagram for the heavy neutrino decay (diagrams shown in figure 6.1).
The corresponding two-loop self-energy diagram in the fundamental theory is shown in
figure 6.9, diagram a). The indirect asymmetry arising from diagrams with such topol-
ogy are studied in section 6.5 in the EFT. Following the outlined strategy for seeking
diagrams suitable for the matching of the four-pint Green’s function (6.25), we open up
one Higgs line and add a gauge boson to obtain two-loop diagrams potentially contribut-
ing to the matching of the dimension-five operators. We show an example in figure 6.9,
diagram b), which cannot become resonant when the gauge boson carries away an energy
of order M and, according to the definition adopted in section 6.1.1, it contributes to
the direct CP asymmetry. Clearly it does contribute to the Wilson coefficients Im a`II
and Im a

¯̀
II .

By considering the complete set of diagrams relevant for the matching calculation
we obtain up to order ∆/M (only terms contributing to the asymmetry are displayed):

Im a`11 = −Im a
¯̀
11 =

Im
[
(F ∗1F2)2

]
(16π)2

{
6λ

[
1 + ln 2− (2− ln 2)

∆

M

]
−3g2 + g′2

8

[
4− ln 2 + (1− 5 ln 2)

∆

M

]}
, (6.31)
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Im a`22 = −Im a
¯̀
22 = − Im

[
(F ∗1F2)2

]
(16π)2

{
6λ

[
1 + ln 2 + (2− ln 2)

∆

M

]
−3g2 + g′2

8

[
4− ln 2− (1− 5 ln 2)

∆

M

]}
, (6.32)

where λ is the four-Higgs coupling, and g and g′ are the SU(2)L and U(1)Y gauge
couplings respectively. Note the sign difference between Im a`II and Im a

¯̀
II . We remark

that at this order the result does not depend on the top-Yukawa coupling, λt. Further
elaboration on the subject are found in appendix B.

6.4 Thermal corrections to the direct asymmetry

We may now proceed to calculate the thermal corrections to the widths and CP asym-
metries of the two Majorana neutrinos, assuming that the thermal bath of SM particles
is at rest with respect to the Majorana neutrinos and the reference frame. It is con-
venient to split both the neutrino width, ΓII = ΓT=0

II + ΓTII , and the CP asymmetry,
εI = εT=0

I + εTI , into a zero temperature and a thermal part. We find convenient to
divide the discussion on the thermal correction for the two different neutrino species.

φ

N1 N1

φ

N2 N2

a11 a22

Figure 6.10: Tadpole diagrams responsible for the leading thermal corrections to the
neutrino widths and CP asymmetries in the EFT. We show in red particles belonging
to the thermal bath whose momentum is of order T .

6.4.1 Neutrino of type 1

We consider first neutrinos of type 1, which are assumed to be lighter than those of
type 2. The zero-temperature width at leading order has been written in (6.19). The
leading thermal correction to the width has been calculated in [17–19] and can be easily
re-derived from (6.8), (5.54) and (6.9). The expression of the width up to order F 2λ×
(T/M)2 reads

Γ11 = ΓT=0
11 + ΓT11 =

M

8π
|F1|2

[
1− λ

(
T

M

)2
]
. (6.33)

The in-vacuum part of the direct CP asymmetry, εT=0
1,direct, can be read off (6.20). In

order to obtain εT1,direct, one has to evaluate Γ`,T11,direct − Γ
¯̀,T
11,direct. Thermal corrections
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are encoded into the Higgs thermal condensate represented by the first tadpole diagram
shown in figure 6.10. From (6.8), (5.54) and (6.31) it follows

Γ`,T11,direct − Γ
¯̀,T
11,direct =

Im
[
(F ∗1F2)2

]
64π2

{
λ

[
1 + ln 2− (2− ln 2)

∆

M

]
−3g2 + g′2

48

[
4− ln 2 + (1− 5 ln 2)

∆

M

]}
T 2

M
.(6.34)

From (6.7), (6.18), (6.33) and (6.34), and considering that ∆Γmixing
1,direct = 0, we obtain then

the thermal part of the CP asymmetry generated from the decay of Majorana neutrinos
of type 1 at leading order in the SM couplings, at order T 2/M2 and at order ∆/M :

εT1,direct =
Im
[
(F ∗1F2)2

]
8π|F1|2

(
T

M

)2

×
{
λ

[
2− ln 2 + (1− 3 ln 2)

∆

M

]
− 3g2 + g′2

48

[
4− ln 2 + (1− 5 ln 2)

∆

M

]}
.

(6.35)

6.4.2 Neutrino of type 2

The in-vacuum contribution to the CP asymmetry of Majorana neutrinos of type 2
can be read off (6.21). Thermal contributions of the type (6.8), can be computed as
for neutrinos of type 1, the relevant diagram being the second diagram of figure 6.10.
They may be read off (6.34) and (6.35) after the replacements F1 ↔ F2, M → M2 and
∆→ −∆.

N2 N2N1N2 N2N1

Figure 6.11: Diagrams contributing in the EFT to the CP asymmetry of the Majorana
neutrino of type 2 (see text). The orange dot stands for the vertex −iRe (F ∗1F2)/M ; the
circled dot has opposite sign. The dot with a cut selects the leptonic (or antileptonic)
decay components: −3(F1F

∗
2 )λ/(8πM) (or −3(F2F

∗
1 )λ/(8πM)) for incoming neutrino

of type 1. Propagators on the right of the cut are complex conjugate. Red dashed lines
indicate thermal Higgs bosons, while black dashed lines indicate Higgs bosons carrying
a momentum and energy of order ∆.

If the neutrino of type 2 is heavier than the neutrino of type 1, there may be an
additional source of CP asymmetry coming from diagrams where, after the cut through
the lepton (or antilepton), the remaining one-loop subdiagram develops an imaginary
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+ =

iRe aIJ/M

Figure 6.12: On the left-hand side the diagrams in the fundamental theory that match
the real part of aIJ at order F 2 (right-hand side). Red dashed lines indicate external
Higgs bosons with a soft momentum much smaller than the mass of the Majorana
neutrinos.

part because of the kinematically allowed transition νR,2 → νR,1+ Higgs boson. Such
a transition involves a momentum transfer of order ∆. Since ∆ � M , terms coming
from momentum regions of order ∆ have been excluded from the matching and do not
contribute to aIJ . However, they do contribute in the EFT.

The leading order diagrams in the EFT are shown in figure 6.11.2 They may be
understood as the mixing of two dimension five operators in the EFT, hence they con-
tribute to the direct CP asymmetry (6.7) through the term ∆Γmixing

2,direct. Since we are
interested in corrections at leading order in the Higgs-four coupling, one has to consider
only one of the two dimension-five operators with an effective coupling comprising λ.
They read off (6.3) and the corresponding matching coefficients can be inferred from
(6.9) by generalizing to different neutrino species as follows

Im aIJ = − 3

16π
(FJF

∗
I + FIF

∗
J )λ. (6.36)

These vertices are shown in orange in figure 6.11 and we are interested in the imaginary
needed to obtain a width. At our accuracy, for the uncut vertex, we just need to
consider the real parts of the dimension five operators mixing neutrinos of type 1 with
neutrinos of type 2. The corresponding vertex, shown with an orange dot in figure 6.11,
is iRe a12/M . The real part of aIJ can be computed at order F 2 by matching the two
tree-level diagrams shown in the left-hand side of figure 6.12 with the corresponding
vertex in the EFT. The result reads

Re aIJ = −FIF
∗
J + F ∗I FJ

2
. (6.37)

The contribution from the cut is −2× 1/M × (3F ∗I FJλ/(16π)) for the leptonic cut and
−2× 1/M × (3F ∗JFIλ/(16π)) for the antileptonic one, where I is the outgoing neutrino
and J the ingoing one (the factor −2 comes from the cutting rules, see appendix B).

The momentum flowing in the diagrams of figure 6.11 can be of order T or of order ∆.
If the momentum flowing in both loops is of order T this contributes to the asymmetry

Γ`,T22,direct−Γ
¯̀,T
22,direct at order T 3/M2; if the momentum flowing in both loops is of order ∆

this contributes to the asymmetry at order ∆3/M2. Both contributions are beyond our
accuracy. If instead one Higgs boson carries a momentum and energy of order T and the

2 The corresponding diagrams in the full theory are diagrams 1)-6) in figure B.5.
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other a momentum and energy of order ∆, then this momentum region contributes to
the asymmetry at order T 2∆/M2, which is inside our accuracy. The color code used for
the Higgs bosons in figure 6.11 identifies this specific momentum region. Its contribution
to the direct asymmetry of Majorana neutrinos of type 2 is

∆Γmixing
2,direct =

Im
[
(F ∗1F2)2

]
16π2

λ
T 2∆

M2
. (6.38)

Summing this to the CP asymmetry of the Majorana neutrino of type 2 obtained from
the tadpole diagram of figure 6.10, and discussed at the beginning of this section, we
obtain that the thermal correction to the direct CP asymmetry of the Majorana neutrino
of type 2 at leading order in the SM couplings, at order T 2/M2 and at order ∆/M is

εT2,direct = − Im
[
(F ∗1F2)2

]
8π|F2|2

(
T

M

)2

×
{
λ

[
2− ln 2− (9− 5 ln 2)

∆

M

]
− 3g2 + g′2

48

[
4− ln 2− (9− 7 ln 2)

∆

M

]}
.

(6.39)

We observe that in the exact degenerate limit (∆ → 0), the single direct CP asym-
metries ε1,direct and ε2,direct do not vanish. However, the sum of (6.18) with (6.34), and
with the corresponding expressions for the type 2 neutrino does vanish. This sum is the
CP-violating parameter defined in [193].

6.5 Indirect asymmetry

The indirect CP asymmetry is made of all contributions that may exhibit the phe-
nomenon of resonant enhancement (see section 6.1). It can be understood as originating
from the mixing between the different neutrino species that makes the mass eigenstates
different from the CP eigenstates [23]. This mixing can be described by the EFT. In
the following we will compute the indirect CP asymmetry at leading order and its first
thermal correction. Besides the hierarchies M � T � MW and M � ∆ we will not
assume any special relation between ∆ and the neutrino decay widths. In particular
we will allow for the resonant case ∆ ∼ Γ11,Γ22 and resum the widths in the neutrino
propagators. Nevertheless we will treat the mixing perturbatively, which amounts at
requiring ∆2 + (Γ22−Γ11)2/4�M2 [Re(F ∗1F2)]2/(16π)2 (this condition can be inferred
from the right-hand side of the following equation (6.41); see also [25]).3

Mixing between the different neutrino generations in the effective Lagrangian (6.3)
is induced by the off-diagonal elements of ΓT=0

IJ ,

ΓT=0
IJ =

M

16π
(F ∗I FJ + F ∗JFI) , (6.40)

3 Relaxing this condition does not pose conceptual problems. A non-perturbative mixing will affect,
however, both the direct and indirect CP asymmetries and make their analytical expressions less compact.
For the indirect asymmetry, this has been considered without resummation of the widths in [23].
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N1 N1N2N1 N1N2

Figure 6.13: Diagrams showing in the EFT a neutrino of type 1 decaying into a lep-
ton after mixing with a neutrino of type 2. The cross stands for the mixing vertex
−ΓT=0

IJ /2. The cross with a cut selects the leptonic (or antileptonic) decay components:
M(F ∗I FJ)/(16π) (or M(F ∗JFI)/(16π)). Propagators on the right of the cut are complex
conjugate. Because the mixing vertex is real, circled and uncircled vertices coincide [194].

which can be obtained from the absorptive part of diagram 1) in figure 6.3 and the
corresponding one with an antilepton in the loop [23, 24] (for I = J = 1 (6.40) gives
back (6.19)), and by the off-diagonal elements of aIJ . The imaginary part of aIJ read
off (6.36), whereas the real part of aIJ has been computed at order F 2 in the previous
section and can be read off (6.37).

At zero temperature and at order F 4 the width of a neutrino of type 1 that decays
into a lepton after mixing with a neutrino of type 2 is given in the EFT by the sum of
the cuts on the diagrams shown in figure 6.13 (in the fundamental theory the diagrams
look like diagram a) in figure 6.9). The diagrams are amputated of the external legs and
evaluated at the pole of the propagator of the (incoming and outgoing) neutrino of type
1. If the width is of the order of ∆, then it should be resummed so that the (complex)
pole of the neutrino of type 1 is at −iΓT=0

11 /2 and the pole of the intermediate neutrino
of type 2 is at ∆ − iΓT=0

22 /2. The crossed vertex in figure 6.13 stands for the mixing
vertex −ΓT=0

IJ /2, where I identifies the outgoing and J the incoming neutrino. The cut
through the vertex selects the decay into a lepton or an antilepton. In the first case,
the value of the cut is M(F ∗I FJ)/(16π), in the second case it is M(F ∗JFI)/(16π). For
leptonic cuts the diagrams in figure 6.13 give

Γ`,T=0
11,indirect =

M

16π
F ∗1F2

i

−∆ + i(ΓT=0
22 − ΓT=0

11 )/2

(
− M

16π

)
F ∗1F2 + F ∗2F1

2
+ c.c., (6.41)

where c.c. stands for complex conjugate. For antileptonic cuts the diagrams in figure 6.13

give Γ
¯̀,T=0
11,indirect, which is the same as (6.41) but with the change F ∗1F2 ↔ F ∗2F1 in the

mixing vertices. The indirect CP asymmetry at T = 0 for a Majorana neutrino of type
1 is then

εT=0
1,indirect =

Γ`,T=0
11,indirect − Γ

¯̀,T=0
11,indirect

ΓT=0
11

= − Im
[
(F ∗1F2)2

]
16π|F1|2

M ∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4
. (6.42)

Similarly one obtains the indirect CP asymmetry at T = 0 for a Majorana neutrino of
type 2

εT=0
2,indirect =

Γ`,T=0
22,indirect − Γ

¯̀,T=0
22,indirect

ΓT=0
22

= − Im
[
(F ∗1F2)2

]
16π|F2|2

M ∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4
. (6.43)
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We recall that ΓT=0
II = M |FI |2/(8π).

The above result for the indirect asymmetry at T = 0 agrees with [24] (see also [25]
and discussion therein). It agrees with [192] by remarking that the additional term
proportional to log(M2

2 /M
2
1 ) there is a contribution of relative order F 6 to the CP

asymmetry and therefore beyond our accuracy. Whenever we can neglect the width
ΓT=0

11 , equations (6.42) and (6.43) agree with [27, 132, 193, 195, 196]. Finally, we notice
that in the framework of the Kadanoff–Baym evolution equations (see for instance [25,
122, 197]) the quantity related to the CP asymmetry is a modification of the above one
that accounts for coherent transitions between the Majorana neutrino mass eigenstates.

The computation done above shows that, although at T = 0 there should be in
general no advantage in using the EFT, there is some in computing the indirect CP
asymmetry. In fact, the EFT naturally separates the physics of the Majorana neutrino
decay, which goes into the widths and the mixing vertices, from the quantum-mechanical
physics of the neutrino oscillations. This separation is well depicted in the Feynman
diagrams of figure 6.13. It also makes more apparent the potentially resonant behaviour
of the contribution.

Thermal corrections to (6.41) affect masses, widths and mixing vertices. From (6.8)
(generalized to off-diagonal elements), (5.54) and (6.36) it follows that the leading ther-
mal correction to the width matrix is of relative size λT 2/M2:

ΓTIJ = − λT 2

16πM
(FIF

∗
J + F ∗I FJ). (6.44)

The thermal correction to the mass matrix follows from (6.37) and (5.54), and is of
relative size T 2/M2:

MT
IJ =

T 2

12M
(FIF

∗
J + F ∗I FJ). (6.45)

The mass thermal correction (6.45) differs from the one used in [132] and taken from [143].
The reason for the difference is that the thermal correction computed in [143] refers to
a massless neutrino while the one written above refers to a neutrino in the heavy mass
limit. In the massless case the neutrino gets a thermal mass both from fermions and
bosons in the medium, whereas in the heavy-mass case, as can be immediately read off
the effective Lagrangian (6.3), fermion contributions are suppressed in T/M and only
Higgs bosons contribute.

If we restrict to the leading corrections, we may neglect the thermal correction to
the decay matrix, which is suppressed by λ, and keep only the thermal correction to
the mass matrix. This modifies the mixing vertex in figure 6.13 from −ΓT=0

IJ /2 to
−ΓT=0

IJ /2 − iMT
IJ and the mass ∆ in the intermediate propagator to ∆ + MT

22 −MT
11.

The former modification comes from the vertex induced by dimension-five operators in
(6.3), iRe aIJ × (1/MI) × (T 2/6), where the real part of the matching coefficients read
off (6.37) and the the Higgs thermal condensate has been used. If we neglect corrections
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of relative order λ, cuts are not affected by thermal effects, so that

Γ`,T11,indirect =

[
M

16π
F ∗1F2

i

−∆− (|F2|2 − |F1|2)T 2/(6M) + i(ΓT=0
22 − ΓT=0

11 )/2

×
(
− M

16π
− i T

2

6M

)
F ∗1F2 + F ∗2F1

2
+ c.c.

]
− Γ`,T=0

11,indirect ,

(6.46)

which is valid at leading order in T/M . Similarly Γ
¯̀,T
11,indirect is given by (6.46) but with

the change F ∗1F2 ↔ F ∗2F1 in the mixing vertices. The leading thermal correction to the
indirect CP asymmetry for a Majorana neutrino of type 1 is then

εT1,indirect = −
εT=0
1,indirect

3

(
|F2|2 − |F1|2

) M∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4

T 2

M2
, (6.47)

and analogously the thermal correction to the indirect CP asymmetry for a neutrino of
type 2 is

εT2,indirect = −
εT=0
2,indirect

3

(
|F2|2 − |F1|2

) M∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4

T 2

M2
. (6.48)

Note that the indirect asymmetry vanishes for each neutrino type in the exact degenerate
limit ∆→ 0 [24, 193].
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Chapter 7

CP asymmetries at finite
temperature: the hierarchical
case

In this chapter we come back to the simplest realization of thermal leptogenesis. This
scenario was introduced already in chapter 2 and we referred to as vanilla leptogenesis.
A hierarchical spectrum for the heavy-neutrino masses is assumed together with an un-
flavoured regime. Despite the energy scale corresponding to the lightest heavy neutrinos
is not directly accessible at present day colliders, M1 >∼ 109 GeV, vanilla leptogenesis still
offers a valid framework to address many aspects of the matter-antimatter generation
in the early universe. We are going to study thermal corrections to the CP asymmetry
in the lightest heavy neutrino decays as a series in the SM couplings and an expansion
in M1/Mi and T/M1. Indeed we have a different hierarchy of scales, as explained in
section 7.1, with respect to the nearly degenerate case discussed in chapter 6. First of
all there is a separation between the heavy neutrino masses, M1 �Mi with i = 2, 3. In
section 7.2 we integrate out energy modes of order Mi and we are left with an EFT where
only the lightest heavy neutrino is dynamical together with the SM particles. Then, in
section 7.3, we device a second EFT by integrating out the scale M1. In this second EFT
non-relativistic excitations of the lightest heavy neutrino field take part in the dynamics
and the typical scale is the temperature of the heat bath. Thermal corrections to the
CP asymmetry are calculated in section 7.4 where some effects induced by the heavy
neutrino motion are also considered.

7.1 A tower of EFTs

In this chapter we are going to work within vanilla leptogenesis. In this scenario one
assumes one heavy Majorana neutrino, with mass M1, much lighter than the other heavy
states and the one-flavour regime. Under this assumption the final CP asymmetry is
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produced by the lightest heavy neutrino decays, and it reads

ε1 =

∑
f Γ(νR,1 → `f +X)− Γ(νR,1 → ¯̀

f +X)∑
f Γ(νR,1 → `f +X) + Γ(νR,1 → ¯̀

f +X)
, (7.1)

where the sum runs over the lepton flavours. In (7.1) νR,1 stands for the lightest heavy
Majorana neutrino, `f is a SM lepton with flavour f and X represents any other SM
particle not carrying a lepton number. Flavour effects are studied in chapter 8. In the
unflavoured regime the leptogenesis scale can be inferred combining neutrino oscillations
and mixing data with the observed baryon asymmetry. An important example is the
Davidson–Ibarra bound that provides a lower bound on the lightest heavy neutrino mass
[130, 198], M1 & 109 GeV. This bound sets the energy scale of leptogenesis, at least in
its simplest realization, together with the typical temperatures needed for a thermal
production of the heavy neutrinos in the early stages of the universe evolution. The
Davidson–Ibarra bound also rises a possible issue for vanilla leptogenesis: if one tries to
embed vanilla leptogenesis in a supersymmetric framework, it is hard to reconcile the
stringent lower bound on the reheating temperature imposed by the gravitino decays
with the corresponding upper bound required by leptogenesis [199].

There is a crucial moment for the generation of the lepton asymmetry and it occurs
when the temperature of the thermal plasma, T , equals the mass of the lightest heavy
neutrino, T ∼ M1. This is the time at which out-of-equilibrium dynamics may take
place and the heavy neutrino evolves towards a non-relativistic regime. One can then
distinguish between the following two situations: T > M1 and T < M1. The CP
asymmetry originated in the former regime can be efficiently erased if the so-called
strong washout regime is considered. This seems to be the favoured scenario according
to the present values of solar and atmospheric neutrino oscillation data. Therefore the
final asymmetry is independent of the initial abundance of the lightest heavy neutrino
and is effectively generated when the temperature dropped below M1 [94, 119]. The
heavy neutrino can be considered non-relativistic at this stage.

Let us point out the relations among the energy scales relevant for the problem at
hand: first, a hierarchy between the lightest right-handed neutrino mass, M1, and those
of the heavier states Mi, i = 2, 3 1. Second, a hierarchy between the temperature of the
thermal plasma, T , and the mass of the lightest heavy neutrino. The former is due to
a hierarchically ordered mass spectrum, whereas the latter is related with the universe
expansion and the resulting establishment of a non-relativistic dynamics for the lightest
heavy neutrino. In summary we have

Mi �M1 � T �MW , (7.2)

and therefore an EFT approach can be considered. The last inequality ensures that
temperatures are above the electroweak scale and then the SM sector is described by
an unbroken SU(2)L×U(1)Y gauge group. We aim at modelling the decays and the

1We consider three species for the heavy neutrinos, though in general the model may account for
a generic number of species. However at least two heavy neutrino species are necessary to have non-
vanishing CP asymmetries.
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Mi

M1

T

FT = SM + (ψ1, ψi)

EFT1 = SM + ψ1

EFT2 = SM + N1

Figure 7.1: The hierarchy of scales is shown together with the quantum field theories and
the degrees of freedom relevant at a given scale. FT stands for the fundamental theory
in (2.9), where all the three heavy Majorana neutrinos are dynamical. Then integrating
out the scale Mi and M1 we obtain two subsequent EFTs, EFT1 and EFT2 respectively.
In the former the lightest heavy neutrino is still relativistic (ψ1), whereas in the latter
there are only its non-relativistic excitations (N1).

generation of the CP asymmetry at finite temperature and we are going to exploit two
different EFTs. A first one will serve to integrate out the energy modes of the order
of the heavier neutrino masses, namely Mi � M1. This is constructed by introducing
effective vertices between SM leptons and the Higgs boson [200]. We call this effective
field theory EFT1 throughout the chapter.

In a second step we integrate out the high-energy excitations corresponding to en-
ergies and momenta of order M1. Then, only non-relativistic modes for the lightest
heavy Majorana neutrino are left together with the SM particles with energies of order
T �M1. The hierarchy of energy scales, the quantum field theories and the degrees of
freedom relevant at a given scale of interest are shown in figure 7.1. We compute thermal
corrections to the CP asymmetry within this second EFT, labelled as EFT2, at leading
order in the SM couplings and at order (T/M1)2. We exploit the techniques developed
in [19, 36] and discussed in chapter 5 and 6. In particular in the previous chapter, the
corrections to the CP asymmetry induced by the leading dimension five operator have
been obtained. It was also shown that the top-quark Yukawa coupling, λt, does not enter
the CP asymmetry at order (T/M1)2. However, within the EFT approach, a systematic
improvement of the calculation of the CP asymmetry is achievable in terms of effective
operators that describe the interactions between the heavy neutrino and the SM parti-
cles. Here we consider some dimension-seven operators accounting for the interaction
between the heavy Majorana neutrino and the top-quark singlet, heavy-quark doublet
and lepton doublet that induce a correction of order |λt|2(T/M1)4 to the CP asymmetry.

Similarly to what done in the case of two heavy neutrinos nearly degenerate in mass,
in order to obtain the thermal corrections to the CP asymmetry, we need the expression
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of the Wilson coefficients of the EFT2. Since T � M1 the matching can be done by
setting the temperature to zero. This amounts at evaluating two-loop cut diagrams in
vacuum for both the dimension-five and dimension-seven operators. Once the Wilson
coefficients are known, a tadpole computation in the EFT2 is all what is needed to com-
pute the thermal corrections to the decay widths into leptons and antileptons entering
in turn the expression of the CP asymmetry in (7.1). Reducing the complexity of the
required three-loop calculation in a fully relativistic theory comes as the main advantage
of the EFT approach.

Despite thermal effects are expected not to affect strongly the neutrino dynamics in
the regime T �M1 [29], the knowledge of the thermal corrections to the CP asymmetry
may be useful to proceed towards a complete theory of leptogenesis and provide more
precisely the parameters entering the rate equations for the heavy-neutrino and lepton-
asymmetry number densities. Indeed in the Boltzmann equations, the heavy neutrino
production rate and the CP asymmetry enter as key ingredients. Thermal corrections
to the right-handed neutrinos production rate has been derived in the non-relativistic
case in [17, 18]. In order to connect those results with leptogenesis, a treatment within
Boltzmann-like equations in the non-relativistic regime has been carried out in [144],
where the thermally corrected production rate has been embedded in the rate equations
describing the out-of-equilibrium dynamics of leptogenesis. Studies in this direction may
be further improved by inserting the expression for the CP asymmetry we propose here.

7.2 CP asymmetry at zero temperature and EFT1

The CP asymmetry can be calculated considering the interference between tree-level
and one-loop diagrams that we show in figure 6.1. The loop diagrams are often called
self-energy and vertex diagram and their contribution to the CP asymmetry depends on
the heavy-neutrino mass spectrum. It is well known that in the case of a hierarchical
neutrino mass spectrum and in the unflavoured regime, the two contributions are of
the same order and in particular the one originated by the self-energy diagram is twice
as big as the vertex one [21, 22]. The calculation of the CP asymmetry can be traced
back to the extraction of the imaginary parts of the heavy neutrino self-energy at one
and two-loop (up to order F 4). We have presented in detail how this works for the
vertex topology in the nearly degenerate case in section 6.2. We may exploit the same
formalism to obtain the CP asymmetry due to the vertex diagram, ε1,direct, and the one
due to the self-energy diagram, ε1,indirect in the hierarchical case. The CP asymmetry in
(7.1) may be rewritten as follows

ε1 = −
∑
I

2 Im(Bdirect)Im
[
(F ∗1FI)

2
]

|F1|2
−
∑
I

2 Im(Bindirect)Im
[
(F ∗1FI)

2
]

|F1|2
, (7.3)

where the functionsBdirect andBindirect can be calculated by cutting the two-loop diagrams
shown in figure 7.2 and 7.3 and contributing to the propagator of the lightest heavy
neutrino

− i
∫
d4x eip·x 〈Ω|T

(
ψµ1 (x)ψ̄ν1 (0)

)
|Ω〉
∣∣∣∣
pα=(M1+iη,0 )

, (7.4)
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νR,1 νR,1νR,1 νR,1

νR,i νR,i

Figure 7.2: Self-energy diagrams for the lightest heavy Majorana neutrino, labelled with
νR,1, corresponding to the mass eigenstate M1. The diagrams are generated from the
interference between the tree level and the one-loop vertex diagram in figure 6.1.

νR,1 νR,1νR,1 νR,1νR,i νR,i

Figure 7.3: Self-energy diagrams for the lightest heavy Majorana neutrino, labelled with
νR,1, corresponding to the mass eigenstate M1. The diagrams are generated from the
interference between the tree level and the one-loop self-energy diagram in figure 6.1.

where |Ω〉 stands for the ground state of the fundamental theory. In particular, the
function Bdirect and Bindirect can be extracted cutting on leptons lines in figure 7.2 and
7.3 respectively, and evaluating the remaining loop. In (7.3) and throughout the chapter,
we use the notation (FJF

∗
I ) ≡∑f FfJF

∗
fI and |FI |2 ≡

∑
f FfIF

∗
fI . We already simplified

the expression of the CP asymmetry in (7.3) by imposing that the loop functions of the
antileptons coincide with those of the leptons (B and C in chapter 7).

In the following we give the result for an arrangement of the heavy neutrino masses
away from the nearly degenerate case, where a resummation of the intermediate neutrino
widths and/or mixing vertex would be needed, and then we show the limit M1 �Mi in
the same equation. The result for the CP induced by the vertex diagrams in figure 7.2
reads (we already wrote the following results in eqs. (2.21) and (2.22))

ε1,direct =
Mi

M1

[
1−

(
1 +

M2
i

M2
1

)
ln

(
1 +

M2
1

M2
i

)] Im
[
(F ∗1Fi)

2
]

8π|F1|2

=
M1�Mi

− 1

16π

M1

Mi

Im
[
(F ∗1Fi)

2
]

|F1|2
+O

(
M1

Mi

)3

, (7.5)

where the ratioM1/Mi is the expansion parameter of the EFT1. We keep only the leading
order term in the M1/Mi expansion and a sum over repeated indices is understood if not
differently specified. On the other hand the CP asymmetry generated by the self-energy
diagrams in figure 7.3 is

ε1,indirect =
M1Mi

M2
1 −M2

i

Im
[
(F ∗1Fi)

2
]

8π|F1|2

=
M1�Mi

− 1

8π

M1

Mi

Im
[
(F ∗1Fi)

2
]

|F1|2
+O

(
M1

Mi

)3

. (7.6)
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+νR,i −→ ηf,f ′
νR,i

ℓ̄f ′

ℓf

ℓf

ℓ̄f ′

Figure 7.4: The figure shows the tree-level matching between the fundamental theory
and the EFT1. The two diagrams on the left hand side are the t-channel and s-channel
that appear as sub-diagrams in the vertex and self-energy two-loop topology in figures
7.2 and 7.3. On the right-hand side the four-particle diagram stands for the effective
interaction in the EFT1.

Due to the assumption M1 � Mi, one selects automatically the situation where the
heavy neutrino mass difference, |M1 − Mi|, is much bigger than the heavy neutrino
widths or the mixing terms. This prevents a resonant behaviour of the CP asymmetry
for the mass pattern considered here. The second line in eqs. (7.5) and (7.6) shows the
hierarchical limit of the more general corresponding expressions and the agreement with
the known results [22, 34]. We notice that ε1,indirect = 2ε1,direct in the limit M1 �Mi.

Our first task is to consider an EFT that is obtained by integrating out degrees of
freedom with energy and momenta of order Mi � M1, that we call EFT1. Our aim
is to use the EFT1 as a starting point for the construction of the EFT2. Within the
former EFT one may reproduce the expanded results in eqs. (7.5) and (7.6) order by
order in the M1/Mi expansion. This has been already considered in [200], where it was
recognized that the full Lagrangian in (2.9) can be simplified to have only the lightest
neutrino as a dynamical degree of freedom. Being the temperature much smaller than
the heavy neutrino mass in the non-relativistic regime, the temperature can be set to
zero in the matching between the full theory in (2.9) and the EFT1. In the following we
briefly show how the procedure works.

We start by isolating the Higgs-lepton scatterings that enter the diagrams relevant for
the CP asymmetry in figure 7.2 and 7.3. In order to have a non-vanishing CP asymmetry,
a heavy Majorana neutrino with mass Mi has to run as internal propagator (complex
phases in the Yukawa couplings combination, see eq. (7.3)). Therefore the mass of the
exchanged heavy neutrino is much bigger than the typical energies carried by the Higgs
boson and the lepton, when they come from the decay of a νR,1 with M1 �Mi. The high
energy modes of order Mi can be then integrated out from the theory and we are left
with a four-particle effective vertex interaction, as shown in figure 7.4. This is analogous
to the situations studied in chapter 3. As regards of the diagrammatic matching shown
in figure 7.4 two comments are in order. First, we do not show the corresponding
diagrams with an outgoing (ingoing) lepton (antilepton). We do take them into account
in the matching calculation and eventually in the EFT1 Lagrangian. Second, we do not
consider the diagrams in which the exchanged heavy neutrino propagator comes from
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νR,1νR,1νR,1νR,1

Figure 7.5: Two-loop self-energy diagrams for the lightest neutrino νR,1 in the EFT1.
The internal propagator corresponding to the heavier neutrino states is shrunk into a
point, accounting for the effective vertices described in figure 7.4. A single topology now
describes the two-loop self energy and vertex diagram.

〈0|T (ψψ̄)|0〉. This paring induces two-loop diagrams with a purely real Yukawa couplings
combination, eventually leading to a vanishing CP asymmetry in the unflavoured regime.
We study those diagrams in chapter 8, anticipating here that their contribution to the
CP asymmetry is suppressed by a relative power M1/Mi with respect to the expressions
given in (7.5) and (7.6). Further details on the tree level matching are given in appendix
C. The difference between the vertex and self-energy diagrams amounts at a different
kinematic channel, more specifically a t-channel for the vertex diagram and s-channel for
the self-energy one. After the two processes are matched onto the four-particle vertex as
shown in figure 7.4, the direct and indirect contribution to the CP asymmetry become
indistinguishable. Therefore the sum of the second lines in equations (7.5) and (7.6) can
be reproduced when calculating the CP asymmetry within the EFT1.

The effective interaction between Higgs bosons and lepton doublets is comprised in
the Lagrangian of the EFT1 that reads at order 1/Mi

LEFT1 = LSM +
1

2
ψ̄1 i/∂ ψ1 −

M1

2
ψ̄1ψ1 − Ff1 L̄f φ̃PRψ1 − F ∗f1 ψ̄1PLφ̃

†Lf

+

(
ηiff ′

Mi
L̄f φ̃ CPR φ̃

T L̄Tf ′ + h.c.

)
+ · · · (7.7)

where C the charge conjugation matrix, T stands for the transpose of the lepton doublet
field and ηiff ′ is the Wilson coefficient of dimension-five operator (also called Weinberg
operator). The dots stand for higher order terms in the expansion 1/Mi and for the
four-particle operators involving Yukawa coupling combinations, such as Ff,iF

∗
f ′,i, that

do not contribute eventually to the unflavoured CP asymmetry. The matching coefficient
reads

ηif,f ′ =
1

2

(
Ff,iFf ′,i

)
, (7.8)

where the index i is not summed on the right-hand side of (7.8) in this case. The
matching condition comprises the contribution from the s-channel and t-channel Higgs-
lepton scatterings that are subdiagrams of the self-energy and vertex topology of the
two-loop self energy diagrams generating the CP asymmetry. The main outcome is that
now the CP asymmetry can be represented by a sole topology, shown in figure 7.5, at
variance of those previously considered in figure 7.2 and 7.3. These diagrams obtained
from the Lagrangian (7.7) will be used in matching the dimension-three and higher order
operators of the EFT2.
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7.3 Matching the decays of the lightest neutrino and EFT2

In this section we set up the calculation of the matching coefficients of the effective
field theory valid at energies much lower than the lightest neutrino mass, M1, that is
the next relevant scale according to the hierarchy in (7.2). We call such effective field
theory EFT2. By integrating out energy modes of order M1, we end up with a quantum
field theory where the degrees of freedom are non-relativistic heavy neutrinos and SM
particles with typical energies T �M1.

To specify the Wilson coefficients of EFT2 is necessary to match EFT1 and EFT2.
Once again the temperature can be set to zero and in-vacuum matrix elements are
considered because the matching occurs at a scale Λ such that M1 � Λ � T . The
Lagrangian so obtained exhibits an expansion in the lightest heavy neutrino mass, and
the expression for the EFT2 reads, following the notation of chapter 5

LEFT2 = LSM + N̄

(
iv · ∂ + i

ΓT=0

2

)
N +

L(1)
N-SM

M1
+
L(3)

N-SM

M3
1

+ · · · . (7.9)

In (7.9) N is the field describing the low-energy modes of the lightest heavy neutrino,

L(1)
N-SM and L(3)

N-SM comprise dimension-five and dimension-seven operators respectively and
the dots stand for higher order operators further suppressed in the scale M1. We do not

consider L(2)
N-SM because it contains operators not contributing to the thermal tadpoles

(see section 5.2). Hence no thermal widths and in turn no thermal contributions to CP
asymmetry in heavy Majorana neutrino decays can be originated by those operators.

7.3.1 Matching dimension-three operators

The width at zero temperature, ΓT=0, can be obtained at order F 2 and F 4 by applying
cutting rules to the one and two-loop self-energy diagrams shown in figure 7.6. Cuts
on leptons and antileptons are performed in the diagrams in the upper and lower raw
respectively so that the leptonic and antileptonic decay widths are separated. The
procedure is exactly the same as the one used in chapter 6.

We call D`1, D`2 and D`3 respectively the diagrams shown in figure 7.6, upper raw, with
amputated external legs. The quantity Im

[
−i(D`1 +D`2 +D`3)

]
matches the neutrino

width into leptons δµνΓ`,T=0/2. The explicit calculation gives

δµν
Γ`,T=0

2
= Im

[
−i(D`1 +D`2 +D`3)

]
= δµν

M1

16π

{
|F1|2

2
− 3

M1

Mi

Im
[
(F ∗1Fi)

2
]

32π
+ · · ·

}
, (7.10)

where the dots stand for the terms proportional to Re
[
(F ∗1Fi)

2
]
, irrelevant for the CP

asymmetry, and higher order terms in the M1/Mi expansion. In order to extract the
decay width into antileptons we have to consider the cuts on antileptons as shown in
the lower raw of figure 7.6. Notice that the one loop diagram is different from that in
the upper raw, whereas the two-loop self energy diagrams are the same but with the cut
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1) 2) 3)

4) 5) 6)

Figure 7.6: One loop and two-loop self energy diagrams in the EFT1. In the first raw
the cut on leptons are shown with vertical blue dashed lines. In the lower raw the one
loop diagram involves antileptons, whereas the two-loop self energy diagrams are the
same but with cuts through antileptons lines.

through the virtual antilepton. We call D ¯̀
4, D ¯̀

5 and D ¯̀
6 respectively the diagrams shown

in figure 7.6, lower raw, with amputated external legs. The result reads

δµν
Γ

¯̀,T=0

2
= Im

[
−i(D ¯̀

4 +D ¯̀
5 +D ¯̀

6)
]

= δµν
M1

16π

{
|F1|2

2
+ 3

M1

Mi

Im
[
(F ∗1Fi)

2
]

32π
+ · · ·

}
, (7.11)

where there is only a change of sign in the coefficient of the Yukawa couplings combi-
nation Im

[
(F ∗1Fi)

2
]

between (7.10) and (7.11). The CP asymmetry, as defined in (7.1),
reads

εT=0
1 =

Γ`,T=0 − Γ
¯̀,T=0

Γ`,T=0 + Γ¯̀,T=0
= − 3

16π

M1

Mi

Im
[
(F ∗1Fi)

2
]

|F1|2
, (7.12)

using the result for the leptonic and antileptonic width. The last result coincides with
the sum of the direct and indirect contribution obtained in the hierarchical limit of the
expressions in (7.5) and (7.6) (see second line of each equation).

7.3.2 Matching higher dimension operators

We discuss now the operators of higher dimension that appear in (7.9). The Lagrangian

L(1)
N-SM contains just one dimension-five operator that reads

L(1)
N-SM = a N̄N φ†φ , (7.13)

where a is the corresponding matching coefficient. Diagrams contributing to the match-
ing and to the CP asymmetry are of order F 4, and depend on SM couplings. In par-
ticular, each of those diagram gives a leptonic contribution to a, that we label a`, when
cutting through a lepton line. The same diagram with cuts on antileptons gives the
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λ |λt|2 3g2 + g′2

T = 109 GeV ≈ 0.004 ≈ 0.316 ≈ 1.158
T = 107 GeV ≈ 0.020 ≈ 0.393 ≈ 1.213
T = 103 GeV ≈ 0.096 ≈ 0.732 ≈ 1.553

Table 7.1: The SM couplings λ, |λt|2 and 3g2 + g′2 at different temperatures (energies)
are shown [190, 201], respectively T = 109 GeV, T = 107 GeV and T = 103 GeV.

antileptonic contribution, a
¯̀
. The diagrams and corresponding cuts are given in ap-

pendix C. The derivation is close to that carried out in the case of two heavy neutrinos
with nearly degenerate neutrino masses in chapter 6, and the diagrams necessary for the
matching involve the Higgs-four coupling and the gauge couplings of the SU(2)L×U(1)Y
gauge group.

In this chapter we investigate also the effect of some dimension-seven operators in

L(3)
N-SM. In particular we single out thermal corrections involving the top-quark Yukawa

coupling, λt. Despite these corrections are parametrically suppressed by (T/M1)2 with
respect to those induced by the operator in (7.13), large differences in the value of the
SM couplings and constants appearing in the fermion thermal condensates may alter
the numerical relevance of the different corrections. A similar situation is realized for
the neutrino thermal width [18, 19]. In table 7.1 we show the values of SM couplings at
high temperatures [190, 201] for T = 109 GeV, T = 107 GeV and T = 103 GeV, and it
is clear that corrections of order |λt|2(T/M1)4 may be of the same order or larger than
those of order λ(T/M1)2. Of course there is the same issue with corrections of order
(3g2 + g′2)(T/M1)4. However we should consider a rather large number of additional
diagrams to address the complete derivation of the latter corrections. That is why we
stick to thermal corrections involving the top-Yukawa coupling because it suffices to
consider a quite limited number of diagrams (see appendix C and section 7.5).

To this aim, the Majorana neutrino-top-quark singlet and heavy-quark doublet effec-
tive operators have to be considered together with the Majorana neutrino-lepton doublet
operator. As regards the former ones we consider only those that give a non-vanishing
contribution in an isotropic medium2. They read

L(3)
N-t = c3 N̄N (t̄PL v

µvνγµ iDνt) , (7.14)

L(3)
N-Q = c4 N̄N

(
Q̄PR v

µvνγµ iDνQ
)
, (7.15)

where t is the top-quark singlet field and Q is the heavy-quark SU(2) doublet. For the
heavy neutrino-lepton doublet low-energy interaction we have

L(3)
N-L = cff

′

1,c

(
N̄PR iv ·DLcf ′

) (
L̄cfPLN

)
+ cff

′

1

(
N̄PL iv ·DLf

) (
L̄f ′PRN

)
. (7.16)

From (7.9), and (7.13)-(7.16) the thermal corrections to the difference between the
leptonic and antileptonic decays of the lightest heavy Majorana neutrino can be written

2We do not display the operators that develop an interaction between the heavy neutrino spin with
the medium. They give vanishing thermal tadpoles in an isotropic medium. They are listed in eq. (5.28)
in chapter 5.
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as∑
f

Γ(νR,1 → `f +X)−Γ(νR,1 → ¯̀
f +X) =

(
Γ`,T=0 − Γ

¯̀,T=0
)

+
(

Γ`,T − Γ
¯̀,T
)
, (7.17)

with
Γ`,T = Γ`,Tφ + Γ`,Tfermions , (7.18)

and

Γ`,Tφ = 2
Im a`

M1
〈φ†(0)φ(0)〉T , (7.19)

Γ`,Tfermions = 2
Im c`3
M3

1

〈t̄(0)PLγ
0iD0t(0)〉T + 2

Im c`4
M3

1

〈Q̄(0)PRγ
0iD0Q(0)〉T

−
Im cff

′,`
1,c

4M3
1

〈L̄f ′(0)γ0iD0Lf (0)〉T , (7.20)

for the leptonic contribution. Similar expressions hold for Γ
¯̀,T , one has only to replace

the matching coefficients in (7.19) and (7.20) with their antileptonic counterparts. We
observe that ΓT=0 = Γ`,T=0 +Γ

¯̀,T=0 = |F1|2M1/(8π), which enters (7.9), is the neutrino
decay width in vacuum, and it can be calculated from the heavy neutrino self-energy
diagrams at order F 2. Moreover the in-vacuum combination in (7.17) can be obtained
from (7.10) and (7.11), and it reads

Γ`,T=0 − Γ
¯̀,T=0 = − 6

(16π)2

M2
1

Mi
Im
[
(F ∗1Fi)

2
]
. (7.21)

So we need to calculate the thermal part as indicated in (7.17), namely the imaginary
parts of the matching coefficients appearing in (7.19) and (7.20) and the corresponding
antileptonic counterparts.

We illustrated and discussed the methodology for the matching calculation in chap-
ter 6, hence we recall the main points in short. Two loop diagrams in the fundamental
theory (in the present case it is the EFT1) are matched onto a four-particle effective
vertices between heavy neutrinos and SM particles in the EFT2. In the case of the
dimension-five operator, one has to consider diagrams with two Higgs bosons and two
heavy Majorana neutrinos as external legs and the corresponding four-point Green’s
function. The external Higgs are given typical momentum qµ ∼ T , which can be set
to zero in the matching. The complete set of diagrams is shown and discussed in ap-
pendix C. Then leptons and antileptons can be put on shell by properly cutting each
diagram, so to select the contribution to a` and a

¯̀
respectively. The result is

Im a` = −Im a
¯̀

=
3

(16π)2

M1

Mi

[
8λ−

(
3g2 + g′2

)
4

]
Im
[
(F ∗1Fi)

2
]
, (7.22)

where the corresponding result for antileptons can be obtained substituting F1 ↔ Fi,
λ is the Higgs four-coupling and g and g′ are the SU(2)L and U(1)Y gauge couplings
respectively.

139



We find that the top-quark Yukawa coupling does not enter the matching coefficient
of the dimension-five operator, in analogy with the nearly degenerate case (see eqs. (6.31)
and (6.32)). In order to have such a coupling in the expression of the CP asymmetry,
we add the study of some dimension-seven operators. We pick those that induce a
dependence on the top-quark Yukawa coupling, λt. These are the top quark and heavy
quark doublet-heavy neutrino operators in (7.14) and (7.15), and also the lepton doublet-
heavy neutrino operator in (7.16). In the former case two top quarks (two heavy-
quark doublets) are considered as external particles together with two heavy Majorana
neutrinos appearing in the four-point Green’s function relevant for the matching. Lepton
doublets are taken as external particles together with heavy Majorana neutrinos in the
latter case. The external momentum of the SM particles cannot be put to zero, since
we look for contributions containing the low-energy momentum q that matches with the
powers of momentum in the effective operators (7.14)-(7.16). Details on the relevant
diagrams and the corresponding cuts are given in the appendix C and section 7.5. The
result reads

Im c`3,f = −Im c
¯̀
3 = − 5|λt|2

2(16π)2

M1

Mi
Im
[
(F ∗1Fi)

2
]
, (7.23)

Im c`4,f = −Im c
¯̀
4 = − 5|λt|2

4(16π)2

M1

Mi
Im
[
(F ∗1Fi)

2
]
, (7.24)

Im cff
′,`

1,c = − 9|λt|2
(16π)2

M1

Mi
Im
[
(F ∗1Fi)(F

∗
f1Ff ′i)− (F1F

∗
i )(Ff ′1F

∗
fi)
]
, (7.25)

Im cff
′,¯̀

1 = − 9|λt|2
(16π)2

M1

Mi
Im
[
(F1F

∗
i )(Ff1F

∗
f ′i)− (F ∗1Fi)(F

∗
f ′1Ffi)

]
, (7.26)

where λt is the top Yukawa coupling.

7.4 CP asymmetry at finite temperature

In this section we show the result for the thermal corrections to the CP asymmetry. As
already explained we compute these corrections in the EFT2, and they are encoded in
tadpole diagrams as shown in figure 7.7. In the following we assume that the thermal
bath is at rest with respect to the lightest heavy Majorana neutrino and we choose
the neutrino reference frame such that vµ = (1,0). We find convenient to split both
the neutrino width and the CP asymmetry into a vacuum and thermal part, namely
Γ = ΓT=0 + ΓT and ε1 = εT=0

1 + εT1 . This parametrization will be useful to single out the
thermal part in the CP asymmetry. Let us start with the heavy neutrino width. Since
we aim at considering also thermal corrections involving the top-Yukawa coupling, we
need to include the corresponding terms that go like |F1|2|λt|2(T/M1)4 in the neutrino
width. Those terms are easily isolated following the EFT derivation in chapter 5, and
the total neutrino width reads

Γ = ΓT=0 + ΓT =
|F1|2M

8π

[
1− λ

(
T

M1

)2

− |λt|2
7π2

60

(
T

M1

)4
]
. (7.27)
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t,Q, L

N

a c

Figure 7.7: Tadpole diagrams inducing thermal corrections to the heavy neutrino widths
and CP asymmetry. We show particles belonging to the thermal plasma in red, Higgs
bosons on the left and top quark (heavy quark doublet) on the right. With the vertex
label c we mean the different matching coefficients of the top quark, heavy quark doublet
and lepton doublet-heavy neutrino operators.

The in-vacuum part for the CP asymmetry, εT=0
1 , at leading order in M1/Mi can be

found in eq. (7.12). The other quantity needed for the derivation of εT1 is the second term
on the right hand side in eq. (7.17). Using the following expressions for the condensates
at leading order

〈φ†(0)φ(0)〉T =
T 2

6
, 〈t̄(0)PLγ

0iD0t(0)〉T =
7π2T 4

40
, (7.28)

〈Q̄(0)PRγ
0iD0Q(0)〉T =

7π2T 4

20
, 〈L̄f ′(0)γ0iD0Lf (0)〉T =

7π2T 4

30
δf,f ′ , (7.29)

and using the matching coefficients in (7.22)-(7.26) we obtain

Γ`,T − Γ
¯̀,T =

1

64π2

M2
1

Mi
Im
[
(F ∗1Fi)

2
] [(

4λ− 3g2 + g′2

8

)
T 2

M2
1

− |λt|2
7π2

20

(
T

M1

)4
]
.

(7.30)
Finally from eqs. (7.21), (7.27) and (7.30) we obtain, at order M1/Mi, fully at order
(T/M1)2 and at order |λt|2(T/M1)4, the following result:

εT1 = − 3

16π

Im
[
(F ∗1Fi)

2
]

|F1|2
M1

Mi

[(
−5

3
λ+

3g2 + g′2

12

)(
T

M1

)2

+
7π2

20
|λt|2

(
T

M1

)4
]
.

(7.31)
The expression (7.31) comprises all thermal corrections at relative order (T/M1)2, whereas
as regards the thermal corrections at order (T/M1)4 only that proportional to the top-
Yukawa coupling is included. Corrections going like (3g2+g′2)(T/M1)4 are not calculated
here.

7.4.1 Thermal corrections and neutrino motion

Let us conclude this section with the addition of the leading term induced by the heavy-
neutrino motion to the CP asymmetry. So far we have always considered the neutrino
to be at rest. This is clear from the effective Lagrangian in (7.9). If the neutrino is
not at rest, then one has to add operators that depend on the neutrino momentum. By
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a) b)

c) d)

Figure 7.8: Heavy neutrino self-energies at order |λt|2(F ∗1Fi)
2 (at three loop), diagram

a) and b). Heavy neutrino-top quark scattering at two loop, diagram c) and d), entering
the matching of the dimension-seven operator in (7.14). Solid lines with no arrows stand
for top quarks (heavy-quark doublet), in order not to confuse with leptons.

noticing that such operators still have to describe the low-energy interaction between
SM particle and the heavy neutrino in order to to generate thermal corrections, we find
the leading one to be [19]

LN-k = − a

2M3
1

N̄
[
∂2 − (v · ∂)2

]
Nφ†φ , (7.32)

as written already in eq. (5.59). The Wilson coefficient, a, in (7.32) comes out to be ex-
actly the same of the dimension-five operator in eq. (7.13). This can be inferred from the
relativistic dispersion relations or by using methods discussed in [189]. When the Wilson
coefficient is calculated at order F 2

1 in the Yukawa coupling, one obtains a momentum
dependent thermal correction to the total neutrino width, that reads off eq. (5.61). In
this chapter, we evaluate the same matching coefficient at order (F ∗1Fi)

2 and therefore
the operator in (7.32) can induce different widths into leptons and antileptons as follows

Γ`,Tφ,mom. dep.
− Γ

¯̀,T
φ,mom. dep.

= − 1

64π2

M2
1

Mi
Im
[
(F ∗1Fi)

2
] [(

2λ− 3g2 + g′2

16

)
k2 T 2

M4
1

]
. (7.33)

Therefore we obtain from eqs. (7.21), (5.61) and (7.33) a thermal contribution to the
CP asymmetry that depends on the heavy neutrino momentum, that reads

εT1,mom. dep. = − 3

16π

Im
[
(F ∗1Fi)

2
]

|F1|2
M1

Mi

[(
5

6
λ− 3g2 + g′2

24

)
k2 T 2

M4
1

]
. (7.34)

7.5 A closer look at processes at order |λt|2(F ∗1Fi)2

We discuss in some detail the diagrams involving the top-Yukawa coupling, λt. In
particular we aim at showing the systematics to obtain them and the connection with a
known problem in the literature. Let us start with the two-loop self-energy diagrams in
figure 7.5. Those diagrams are at order (F ∗1Fi)

2 in the Yukawa couplings and originate
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Figure 7.9: Tree level and loop diagrams for the heavy Majorana neutrino decay processes
νR,1 → `f + t+ Q̄ and νR → `f +φ. The interference of each couple of diagrams in each
raw gives the diagram a) in figure 7.8.

a CP asymmetry in heavy Majorana neutrino decays at T = 0, see eq. (7.12). After the
cuts through a lepton and a Higgs line shown in figure 7.6, the diagrams are divided into
a tree-level and a one-loop diagram that describe the decay process νR,1 → `f + φ. To
find out which diagrams we have to consider for the matching of the dimension-seven
operators involving the top-Yukawa coupling, we switch on the interactions allowed by
the Feynman rules in the SM and we obtain the diagrams a) and b) in figure 7.8. Let us
focus on diagram a). This diagram can be constructed also starting from the interference
between the tree level and one-loop diagrams responsible for the decay process νR,1 →
`f + t + Q̄, shown in the first raw in figure 7.9. It can also be obtained by making
interfere the diagrams responsible for the heavy-neutrino decay process νR → `f + φ,
second and third raw in figure 7.9, where there is a self-energy correction of order |λt|2
for the Higgs boson. Therefore the topology of diagram a) in figure 7.8 comprises both
the processes: νR,1 → `f + t+ Q̄ and νR → `f +φ, according to different cuts: either two
particles are put on shell, a lepton and a Higgs boson, or three particles are put on shell,
a lepton and the top-quark pair. In summary, if the diagrams a) and b) in figure 7.8
are understood at T = 0, they would give the zero temperature radiative corrections
to the CP asymmetries in heavy Majorana neutrino decays, which are not calculated
at the best of our knowledge. Conversely if the same diagrams are understood at finite
temperature, one would obtain also the thermal contributions to to the CP asymmetries
in heavy Majorana neutrino decays. This is an example of the calculation at three-loop
in thermal field theory one has to tackle.

Let us turn to the EFT prospective. We always considered four-particle effective
vertices like those in figure 5.3 as the first step for the derivation of the neutrino thermal
width induced by SM particle in the heat bath. A matching of four-point Green’s
functions describing the scatterings between a heavy Majorana neutrino at rest and
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Figure 7.10: Tree-level and loop-diagrams for the heavy Majorana neutrino-top scatter-
ing processes νR,1 + t̄→ `f + Q̄ in the t-channel. The interference of these two diagrams
gives the two-loop diagram c) of figure 7.8 that we have to consider for the matching of
the operator in (7.14). The charge conjugate process is not shown.

soft particles of the thermal bath are involved. Opening-up the three-loop topologies
in figure 7.8 one can obtain diagrams with either lepton doublets or top-quark singlets
(heavy-quark doublets) as external legs. This provides the systematics in the EFT
approach and the corresponding diagrams are listed in appendix C. We show those with
singlet top quarks (heavy-quark doublets) as external particles in figure 7.8, diagrams
c) and d). If we consider the top-quark singlet as external legs, we notice that those
diagrams can be also understood as the interference between the tree level and one-
loop scattering process, shown in figure 7.10, in the EFT1. The process is a t-channel
scattering, νR,1 + t̄→ Q̄+ `f , and it can produce a CP asymmetry as well, not in heavy
neutrino decays but rather in heavy neutrino scattering with top quarks [185, 202].
The analogue of the ∆ΓT=0 = Γ`,T=0 − Γ

¯̀,T=0 would be ∆σT=0 = σ`,T=0 − σ
¯̀,T=0 ,

where σ`,T=0 (σ
¯̀,T=0) is the cross section for producing a lepton (antilepton) in the final

state of the scattering process. It was also pointed out that the CP asymmetry arising
from such scattering process are affected by IR divergences, due to the exchange of a
massless Higgs boson [27, 127, 203, 204]. Then different solutions have been proposed
and the most popular is to consider a finite mass for the Higgs boson that comes from
thermal corrections and it does regularize the divergence. However a resummation of
degrees of freedom from the temperature scale, those inducing a Higgs thermal mass, is
rigorously justified in the regime T �M1 (in a similar fashion of the hard thermal loop
resummation [205]).

We do encounter divergences, when calculating each single leptonic cut on diagram
c) of figure 7.8 in the EFT1 (7.7). These are soft divergences, for the soft momenta qµ

going to zero, and appear because the Higgs boson is taken as massless. However two
important comments are in order: first of all, the divergence in each single cut does not
affect the term in the momentum expansion relevant for the matching of the dimension-
seven operator in (7.14). Second of all, the sum of the three cuts with a lepton in the final
state is finite, namely there is no IR singularity in the inclusive process that comprises
a lepton as a final state particle.

Even though we are concerned about the matching coefficients for the width (see
eqs. (7.23) and (7.24)), we elaborate a bit on the exclusive processes that contain the IR
divergence due to the massless Higgs boson and the solution adopted in the literature.
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a) b)

Figure 7.11: Self-energy diagrams for the Higgs and lepton doublets in the fundamen-
tal theory (2.9). The heavier neutrino mass states, Mi, run in the loop. Diagram a)
is responsible for a finite correction to the Higgs mass after standard renormalization
procedure.

Indeed we make our proposal in order to obtain a finite Higgs mass at the level of the
EFT1, valid at M1 � T , that would regularize the divergence in each single cut, as well
as a thermal Higgs mass would do in the regime T � M1. This observation would be
relevant when studying the CP asymmetry in the scattering processes. Our observation
is that a finite Higgs mass may be originated by integrating out high energy modes
of order of the heavier neutrino masses, Mi. Let us explain our point. The matching
between the EFT1 and the EFT2 occurs at a scale much lower than Mi, due to the
hierarchy in (7.2). In general effects of higher energy modes are encoded into operators
suppressed in powers of Mi, see the dimension-five operators in the EFT1 Lagrangian
(7.7). However we can consider an additional effect due to energy modes of order Mi.
All the SM particles are massless because of the unbroken symmetry SU(2)L×U(1)Y
and hence the whole set of self-energy diagrams that would provide a mass shift to the
Higgs boson vanishes in dimensional regularization, but one. It is shown in figure 7.11,
diagram a). The massive heavy Majorana neutrinos species, νR,i, enter the one-loop
self-energy diagram and provides a mass correction that reads

δm2
φ ≡ m2

φ =
2M2

i |Fi|2
(4π)2

, (7.35)

where a sum over the index i is understood. We used a MS scheme and for details
we refer to appendix C. Therefore in the EFT1 Lagrangian, that naturally describes
the dynamics at energies much smaller than Mi, but still much larger than T , we can
consider the Higgs boson to have a finite mass as in (7.35). There is no analogue finite
shift for the lepton (antilepton) mass, δm` (δm¯̀), because it is proportional to the bare
fermion mass which is zero in an unbroken chiral phase (quantum corrections do not
spoil such symmetry, a scalar-particle is not protected by the same symmetry).

In this case the matching coefficients of the EFT2 would have to be re-derived because
of a different Higgs propagator entering all the diagrams. Let us consider for example the
zero temperature heavy-neutrino width in eq. (2.20). In our language this can already
be understood as a matching coefficient of the dimension-three operator of the EFT2 in
(7.9). Including a finite Higgs mass its expression becomes

ΓT=0 =
M1|F1|2

8π

(
1−

m2
φ

M2
1

)2

. (7.36)
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Accordingly the difference of the leptonic and antileptonic width entering (7.1) will
comprise terms at order higher than F 4 in the Yukawa couplings, and we can generalize
the CP asymmetry at zero temperature in eq. (7.12), in the case of a finite Higgs mass,
as follows

εT=0
1 =

Γ`,T=0 − Γ
¯̀,T=0

Γ`,T=0 + Γ¯̀,T=0
= − 3

16π

M1

Mi

(
1−

m2
φ

M2
1

)2
Im
[
(F ∗1Fi)

2
]

|F1|2
. (7.37)

The factor (1−m2
φ/M

2
1 ) signals indeed the presence of one massive particle in the decay

products and a shrinking of the corresponding available phase space. Performing the
limit mφ → 0 in eqs. (7.36) and (7.37) one recovers (5.25) and (7.12) respectively. We
notice that we can infer a condition on the hierarchy Mi �M1 exploiting the kinematic
condition for the decay of the Majorana νR,1 → `f+φ (and the charge conjugate process)

M1 > mφ ⇒
M1

Mi
>

√
2

4π
|Fi| ≈ 0.1|Fi| . (7.38)

In summary, we suggest that a finite Higgs mass arising from the one-loop T = 0
diagram in figure 7.11 may work as well to regularize the divergences that appear in each
single cut (but not in the sum) when calculating the contribution to the CP asymmetry
in diagram c) of figure 7.9. We show the result only in appendix C, since we do not
provide either the complete derivation of eqs. (7.22)-(7.26) or eqs. (5.27) and (5.28) for
the case mφ 6= 0. However this is in the reach of the EFT approach discussed here and
subject of ongoing investigations.
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Chapter 8

Flavoured CP asymmetries

In the previous two chapters we have computed the CP asymmetry, both direct and
indirect, in the so-called unflavoured approximation, i.e., we have computed the CP
asymmetry, defined in eq. (6.1), as a sum over lepton flavours. This is the relevant CP
asymmetry when the flavour composition of the quantum states of the leptons (antilep-
tons) in the thermal plasma has no influence on the final lepton asymmetry. However
this scenario is justified only at high temperatures, typically T > 1012 GeV, and a
quantitative analysis of leptogenesis for a wider temperature window requires flavour
to be included. In section 8.1 the mechanism to resolve different lepton flavours in the
early universe is introduced, together with the definition of a flavoured CP asymmetry.
In section 8.2 we show the results for the CP asymmetries for two nearly degenerate
heavy-neutrino masses whereas the case of a hierarchical mass spectrum is discussed in
section 8.3, this time including the flavour of the final lepton (antilepton).

8.1 General discussion on flavour in leptogenesis

We often highlighted that leptogenesis occurs in a hot and dense plasma and, therefore,
the medium effects have to be properly taken into account. The effect of a heat bath of
SM particles has been included both in the heavy-neutrino production rate and the CP
asymmetries in heavy-neutrino decays. In an EFT approach, such effects are organized
as a series in the SM couplings and powers of T/M . There is another aspect of the
interactions in the thermal bath that may play a role during leptogenesis that we have
neglected so far. SM lepton doublets come with different flavours, f = e, µ, τ , and
we always assumed this feature not to have any influence on the leptogenesis dynamics.
Indeed the derivation of the CP asymmetries in chapter 6 and 7 was carried out summing
over different lepton flavours, providing the so-called one-flavour or unflavoured regime.

The unflavoured regime is found to be an appropriate choice at high temperatures,
namely T > 1012 GeV, whereas different lepton flavours are resolved at lower tem-
peratures [117, 118]. In [206, 207] it was shown how to estimate the temperature at
which lepton flavours are resolved considering the interactions induced by charged lep-
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ton Yukawa couplings in the most general seesaw type-I Lagrangian [33, 117]

L = LSM +
1

2
ψ̄Ii/∂ψI −

MI

2
ψ̄IψI − FfI L̄f φ̃PRψI − F ∗fI ψ̄IPLφ̃†Lf

−h∗f ēfφ†PLLf − hf L̄fφPRef , (8.1)

where ef is the SU(2) lepton singlet with flavour f and hf are the charged lepton
Yukawa couplings. The Lagrangian (8.1) is written in a basis in which the right-handed
neutrino mass matrix and the charged lepton Yukawa coupling matrix are diagonal with
three real eigenvalues each (seesaw flavour basis [208]). For the latter case those are
the charged lepton Yukawa couplings he, hµ and hτ (at energies below the breaking
of the electroweak symmetric phase they provide the masses of the charged leptons,
e. g. me ≈ hev). According to this choice of the basis, the Yukawa matrix FfI is a
complex matrix with 18 parameters from which three phases can be removed by field
redefinitions of Lf , leaving 9 moduli and 6 phases as physical parameters. Hence there
are in total 21 real parameters in the lepton sector.

Different flavours may be distinguished during leptogenesis if the hf -mediated inter-
actions are fast compared to those of leptogenesis and to the universe expansion rate.
The authors in [206, 207] showed that the interaction rate for the charged Yukawa cou-
plings can be estimated as

Γf ' 5× 10−3h2
f T , (8.2)

and by requiring the rate Γf to be larger than the universe expansion rate H (see
eq. (1.17)), one can extract the temperatures for which different flavours are resolved. It
is found that at T ≈ 1012 GeV, the interaction rate involving the τ -doublet is faster than
the universe expansion rate. Hence the τ -flavour is resolved by the thermal bath, while
the e- and µ-flavours remain still unresolved. At temperatures of about 109 GeV also the
interaction rates involving the µ-doublet enter in equilibrium, so that three flavours are
resolved and measured by the heat bath. The importance of flavour effects in leptogenesis
has been investigated in the literature in many different directions e. g. [209–211].

In the case different flavour states are resolved during leptogenesis, the CP asym-
metries have to be recast in a way that makes transparent how the matter-antimatter
asymmetry is stored into different flavour components. In order to embed flavour effects
in our approach, we start with the definition of the CP asymmetry, εfI , generated by
the I-th heavy neutrino decaying into leptons and antileptons of flavour f , it reads:

εfI =
Γ(νR,I → `f +X)− Γ(νR,I → ¯̀

f +X)∑
f Γ(νR,I → `f +X) + Γ(νR,I → ¯̀

f +X)
. (8.3)

The difference with respect to eq. (6.1) is that we do not sum over the flavour index f
in the numerator. The quantity in eq. (8.3) would then be the right one to be inserted
in the Boltzmann equations in the flavoured regime [118, 203].

In order to show how the different CP flavour components are relevant for leptogen-
esis, let us assume a hierarchical spectrum of heavy neutrino masses, M1 �Mi, so that
the time scale of leptogenesis is set to T ∼ M1 (see section 2.2). For T ∼ M1 > 1012

GeV the lepton flavours are indistinguishable and the one-flavour approximation is valid.
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The relevant CP asymmetry in this case is ε1 = εe1 + εµ1 + ετ1 and this is equivalent to
(6.1). For 109 GeV < T ∼M1 < 1012 GeV the τ -Yukawa interactions are in equilibrium
and the time evolution of the lepton charge Lτ , proportional to ετ1, is different from the
evolution of the (e+µ) lepton charge, Le+µ, in turn proportional to εe1 + εµ1. Therefore
two different flavoured CP asymmetries have to be considered if one aims at studying
quantitatively leptogenesis for temperatures below 1012 GeV.

8.2 Flavoured CP asymmetries for nearly degenerate neu-
trino masses

In this section the derivation of the CP asymmetries for two heavy neutrinos nearly
degenerate in mass is provided. Following the same order adopted for the unflavoured
case, we will, first, compute the flavoured direct and indirect CP asymmetries at T = 0,
and then the CP asymmetries at finite temperature.

8.2.1 CP asymmetries at T=0

It is straightforward to extend the derivation of section 6.2 for the direct CP asymmetry
at T = 0 in the unflavoured case to the CP asymmetry in the flavoured case. In the
latter case one has simply to omit the sum over the flavour index f in (6.11) and (6.13),
obtaining for the CP asymmetry in the neutrino of type 1 decays

εf1 =∑
J

(Re(B)−Re(C))Re[(F ∗1 FJ )(F ∗f1FfJ )]−(Im(B)+Im(C))Im[(F ∗1 FJ )(F ∗f1FfJ )]
|F1|2 .

(8.4)

The calculation of the diagrams in figure 6.3 leads to the same results for the functions
A, B and C: the loop calculation is unaffected by the different treatment of the flavour.
Note that additional two-loop diagrams, similar to 2) and 3) of figure 6.3 but involving
only lepton (or antilepton) internal lines, are not allowed by the Feynman rules of (2.9).
Therefore the direct CP asymmetry at T = 0 for the neutrino of type 1 decay into
leptons of flavour f reads up to order ∆/M

εT=0
f1,direct =

[
(1− 2 ln 2) + (3− 4 ln 2)

∆

M

] Im
[
(F ∗1F2)(F ∗f1Ff2)

]
8π|F1|2

. (8.5)

The result for εT=0
f2,direct can be obtained from the above formula by changing F1 ↔ F2

and ∆ → −∆. The results agree in the nearly degenerate limit with the flavoured CP
asymmetry obtained in [34].

We can compute the flavoured indirect CP asymmetry at T = 0 either in the funda-
mental or in the effective theory. In the fundamental theory, besides the diagrams that
appear in the unflavoured case, one has to consider also the interference between the
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νR,I

φ

ℓf

νR,J

Figure 8.1: One-loop self-energy diagram responsible for an additional contribution to
the indirect CP asymmetry in the flavoured case. Note that only heavy-neutrino prop-
agators with forward arrow appear, namely 〈0|T (ψψ̄)|0〉.

a) b)

Figure 8.2: Two-loop self-energy diagrams in the fundamental theory contributing to
the indirect CP asymmetry at T = 0 in the flavoured case only. Diagram a) admits two
cuts through lepton lines, whereas diagram b) admits two cuts through antilepton lines.

tree-level diagram of figure 6.1 with the additional one-loop diagram shown in figure 8.1.
This contribution is equivalent to cutting through lepton or antilepton lines respectively
the two-loop diagrams a) and b) shown in figure 8.2. The additional diagrams give a

contribution to the CP asymmetry that is proportional to Im
[
(F1F

∗
2 )(F ∗f1Ff2)

]
. Clearly

this contribution vanishes if summed over all flavours f . For this reason it has not been
considered in the unflavoured case in chapter 6.

As argued in section 6.5, it is particularly convenient to compute the indirect CP
asymmetry in the EFT. In fact, the relevant diagrams are the same computed in the
unflavoured case, i. e. , those shown in figure 6.13. They already comprise the two
additional diagrams of figure 8.2, the only difference being that now the cut through the
mixing vertex selects the decay into a specific leptonic (or antileptonic) flavour family.
More specifically the cut stands for M(F ∗fIFfJ)/(16π) (or M(F ∗fJFfI)/(16π)), where I
is the type of the outgoing and J the type of the incoming neutrino. Hence the result
for the leptonic width of a neutrino of type 1 decaying into a lepton of flavour f can be
read off (6.41) by refraining of summing over the flavours in the leptonic cuts

Γ`,T=0
f11,indirect =

M

16π
F ∗f1Ff2

i

−∆ + i(ΓT=0
22 − ΓT=0

11 )/2

(
− M

16π

)
F ∗1F2 + F ∗2F1

2
+c.c. . (8.6)

For antileptonic cuts the diagrams in figure 6.13 give the antileptonic width, Γ
¯̀,T=0
f11,indirect,

which is the same as (8.6) but with the change F ∗f1Ff2 ↔ F ∗f2Ff1 in the mixing vertices.
The flavoured indirect CP asymmetry at T = 0 for a Majorana neutrino of type 1 then
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is1

εT=0
f1,indirect = −

Im
[
(F ∗1F2)(F ∗f1Ff2)

]
16π|F1|2

M ∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4

−
Im
[
(F1F

∗
2 )(F ∗f1Ff2)

]
16π|F1|2

M ∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4
. (8.7)

The first line, if summed over all flavours, gives back (6.42). The second line is specific
of the flavoured CP asymmetry and would vanish if summed over all flavours, indeed,∑

f Im
[
(F1F

∗
2 )(F ∗f1Ff2)

]
= Im

[
|(F1F

∗
2 )|2

]
= 0. A similar calculation leads to the ex-

pression for the flavoured indirect CP asymmetry at T = 0 for a Majorana neutrino of
type 2, which follows from (8.7) after the changes F1 ↔ F2 and ∆→ −∆:

εT=0
f2,indirect = −

Im
[
(F ∗1F2)(F ∗f1Ff2)

]
16π|F2|2

M ∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4

−
Im
[
(F1F

∗
2 )(F ∗f1Ff2)

]
16π|F2|2

M ∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4
. (8.8)

The expressions for εT=0
f1,indirect and εT=0

f2,indirect agree with those that can be found in [34]
when taking the nearly degenerate limit and resumming the widths of both types of
neutrino in the heavy-neutrino propagators.

8.2.2 CP asymmetries at finite temperature

We conclude by computing the flavoured CP asymmetries at finite temperature. Con-
cerning the direct asymmetry, we may identify two type of contributions. First, there
are contributions coming from the same diagrams considered for the unflavoured case.
These diagrams contribute also to the flavoured CP asymmetry if the final lepton (or
antilepton) flavour is resolved. This amounts at replacing

Im
[
(F ∗1F2)2

]
→ Im

[
(F ∗1F2)(F ∗f1Ff2)

]
, (8.9)

in the expressions of the Feynman diagrams given in sections B.2 and B.3 of appendix B.
A second type of contributions comes from diagrams involving only lepton (or an-

tilepton) lines. They would potentially give rise to a CP asymmetry that is proportional

to Im
[
(F1F

∗
2 )(F ∗f1Ff2)

]
and that would vanish in the unflavoured case. We have exam-

ined these diagrams in appendix B, section B.4, and found that they do not contribute.
Hence, the complete contribution to the matching coefficients Im a`II and Im a

¯̀
II from

cuts selecting a lepton or an antilepton of flavour f comes only from the diagrams dis-
cussed in the previous paragraph and can be read off equations (6.31) and (6.32) by
simply performing the replacement (8.9).

1 A more compact expression follows from Im
[
(F ∗1 F2)(F ∗f1Ff2)

]
+ Im

[
(F1F

∗
2 )(F ∗f1Ff2)

]
=

2 Re [(F ∗1 F2)] Im
[
(F ∗f1Ff2)

]
.
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As discussed in section 6.4.2, the Majorana neutrino of type 2, if heavier than the
Majorana neutrino of type 1, has an additional source of CP asymmetry whose ultimate
origin is the kinematically allowed transition νR,2 → νR,1+ Higgs boson. This asymmetry
is described in the EFT by the diagrams shown in figure 6.11. The only difference
with the unflavoured case is that we now require for the cut to select a lepton (or
antilepton) with a specific flavour f . Hence the cut stands for −3(FfJF

∗
fI)λ/(8πM) (or

−3(FfIF
∗
fJ)λ/(8πM) in the antileptonic case), where I is the type of outgoing and J

the type of incoming neutrino. Going through the same derivation as in section 6.4.2,
we find

∆Γmixing
f2,direct =

Im
[
(F ∗1F2)(F ∗f1Ff2)

]
+ Im

[
(F1F

∗
2 )(F ∗f1Ff2)

]
16π2

λ
T 2∆

M2
. (8.10)

The quantity ∆Γmixing
f2,direct is the equivalent of ∆Γmixing

2,direct in the flavoured case. It reduces

to ∆Γmixing
2,direct, given in (6.38), when summed over the flavours f .

Rewriting the thermal contributions to the direct CP asymmetry given in (6.35) and
(6.39) for the flavoured case through (8.9) and adding to the CP asymmetry of the Ma-

jorana neutrino of type 2 the contribution in (8.10) proportional to Im
[
(F1F

∗
2 )(F ∗f1Ff2)

]
gives at order T 2/M2 and at order ∆/M

εTf1,direct =
Im
[
(F ∗1F2)(F ∗f1Ff2)

]
8π|F1|2

(
T

M

)2

×
{
λ

[
2− ln 2 + (1− 3 ln 2)

∆

M

]
− 3g2 + g′2

48

[
4− ln 2 + (1− 5 ln 2)

∆

M

]}
,

(8.11)

and

εTf2,direct = −
Im
[
(F ∗1F2)(F ∗f1Ff2)

]
8π|F2|2

(
T

M

)2

×
{
λ

[
2− ln 2− (9− 5 ln 2)

∆

M

]
− 3g2 + g′2

48

[
4− ln 2− (9− 7 ln 2)

∆

M

]}

+
Im
[
(F1F

∗
2 )(F ∗f1Ff2)

]
2π|F2|2

(
T

M

)2

λ
∆

M
. (8.12)

Finally, the thermal corrections to the indirect CP asymmetry are easily computed
in the EFT. The analysis carried out in section 6.5 is valid also in the flavoured regime.
The thermal corrections to the indirect CP asymmetry have the same form as (6.47)
and (6.48), namely for the two neutrino species

εTf1,indirect = −
εT=0
f1,indirect

3

(
|F2|2 − |F1|2

) M∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4

T 2

M2
, (8.13)
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and

εTf2,indirect = −
εT=0
f2,indirect

3

(
|F2|2 − |F1|2

) M∆

∆2 + (ΓT=0
22 − ΓT=0

11 )2/4

T 2

M2
. (8.14)

Note that the first factor in the right-hand side of each asymmetry is the flavoured
indirect CP asymmetry at T = 0 computed in (8.7) and (8.8).

8.3 Flavoured CP asymmetry for M1 �Mi

In this section we address the generalization of the CP asymmetries in eqs. (7.12) and
(7.31) to the flavoured regime. We divide the discussion in two parts: first we study the
impact of flavour on the EFT1 introducing dimension-six operators to the Lagrangian
(7.7), second we re-derive the expression for the CP asymmetry at finite temperature in
the EFT2.

−→ η̃f,f ′
νR,i

ℓf

ℓf ′

Figure 8.3: The figure shows the tree-level matching between the fundamental theory
and the EFT1. This process contributes only in the flavoured regime. The diagram
on the left hand side is the sub-diagram appearing in the self-energy two-loop topology
in figure 8.2. On the right-hand side the four-particle diagram stands for the effective
interaction in the EFT1 with one incoming and one outgoing lepton.

8.3.1 EFT1 and dimension-six operators

At leading order in M1/Mi and at zero temperature, the CP asymmetry in the flavoured
case can be easily inferred by substituting the Yukawa couplings combination Im[(F ∗1Fi)

2]
with Im[(F ∗1Fi)(F

∗
f1Ffi)] in (7.12). This is in complete analogy with the discussion

carried out in the nearly degenerate case in section 8.2. Without summing over the final
lepton (antilepton) as a product of the heavy neutrino decays, we become sensitive to the
flavour f in the CP asymmetry. The calculation is the same as that done in section 7.3
but the flavour sum. We study now to the additional diagram for heavy neutrino decays
at one-loop shown in figure 8.1 and responsible for the two-loop self energies in figure 8.2.
They induce the Yukawa couplings combination Im[(F1F

∗
i )(F ∗f1Ffi)], that vanishes in the

unflavoured case. This is the reason why we did not considered the corresponding Higgs-
lepton scatterings in matching the fundamental theory in (2.9) with the EFT1 in (7.7).
Here we extend the matching by including those contributions. The tree-level matching
is shown in figure 8.3, where one may understand the diagram on the left-hand side of the
matching equation to be s-channel Higgs-lepton scattering (subdiagram of the two-loop
diagrams in figure 8.2). They involve lepton-number conserving scatterings, `φ → `φ
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νR,1νR,1νR,1νR,1

a) b)

Figure 8.4: Two-loop self-energy diagrams for the lightest neutrino νR,1 in the EFT1.
The internal propagator corresponding to the heavier neutrino states is shrunk into a
point, accounting for the effective vertices described in figure 8.3.

and its complex conjugate process ¯̀φ† → ¯̀φ†. For details on the matching we refer to
appendix C. The main difference with the scatterings shown in figure 7.4 lies on the
combination of the chiral projectors that select the internal heavy neutrino momentum
instead of its mass

PR
i(/p+Mi)

p2 −M2
i + iη

PL → PR
i/p

p2 −M2
i + iη

. (8.15)

Then, by expanding the heavy neutrino propagator in p�Mi, where p is the sum of the
incoming lepton and Higgs momenta, we obtain dimension-six operators to be added to
the EFT1 Lagrangian. At order 1/M2

i it reads

LEFT1 = LSM +
1

2
ψ̄1 i/∂ ψ1 −

M1

2
ψ̄1ψ1 − Ff1 L̄f φ̃PRψ1 − F ∗f1 ψ̄1PLφ̃

†Lf

+

(
ηiff ′

Mi
L̄f φ̃ CPR φ̃

T L̄Tf ′ + h.c.

)
+
η̃iff ′

M2
i

L̄f φ̃PR i/∂(φ̃†Lf ′) + · · · ,

(8.16)

where

η̃if,f ′ = Ff,iF
∗
f ′,i , (8.17)

and the dots stand for higher order operators further suppressed in the large scale Mi.
The additional vertex, induced by the dimension-six operators in (8.16), leads to the
two-loop self-energy diagrams shown in figure 8.4. They are equivalent to the diagrams
in figure 8.2 when the heavy neutrino states with masses Mi � M1 are integrated out
from the theory. Following the derivation carried out in section 7.3 one obtains for the
in-vacuum CP asymmetry in the flavoured regime

εT=0
f1 = − 3

16π

M1

Mi

Im
[
(F ∗1Fi)(F

∗
f1Ffi)

]
|F1|2

− 1

8π

(
M1

Mi

)2 Im
[
(F1F

∗
i )(F ∗f1Ffi)

]
|F1|2

, (8.18)

that agrees with [34] when expanding in powers of M1/Mi. The effect of the two-loop
self energy diagrams in 8.4 is suppressed by one additional power of M1/Mi with respect
to those given in figure 7.4. This totally reflects the counting in the EFT1: the vertices
relevant only in the flavoured case are induced by dimension-six operators and then
suppressed by one power more in the large scale Mi.
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8.3.2 EFT2 and flavoured CP asymmetries

As regards the CP asymmetry at finite temperature we shall keep only the vertices in-
duced by the dimension-five operators in (8.16), neglecting the effects at order (M1/Mi)

2

and proportional to Im[(F1F
∗
i )(F ∗f1Ffi)]. Then the derivation of the CP asymmetry at

finite temperature is straightforward in the hierarchical case. We only have to select a
lepton flavour f when cutting through lepton and antilepton lines in the derivation of
the matching coefficients in appendix C. In particular we can perform the substitution

Im[(F ∗1Fi)
2]→ Im[(F ∗1Fi)(F

∗
f1Ffi)] (8.19)

in eqs. (7.22)-(7.26), and hence we obtain for the difference between the leptonic and
antileptonic thermal widths the following expression

Γ`,T − Γ
¯̀,T

=
1

64π2

M2
1

Mi
Im
[
(F ∗1Fi) (F ∗f1Ffi)

] [(
4λ− 3g2 + g′2

8

)
T 2

M2
1

− |λt|2
7π2

20

(
T

M1

)4
]
.

(8.20)

Then the T = 0 difference between the leptonic and antileptonic thermal widths in the
flavoured case reads,

εT=0
1 =

Γ`,T=0 − Γ
¯̀,T=0

Γ`,T=0 + Γ¯̀,T=0
= − 3

16π

M1

Mi

Im
[
(F ∗1Fi)(F

∗
f1Ffi)

]
|F1|2

. (8.21)

and combining (8.20), (8.21) and the total width in (7.27), we obtain for the flavoured
CP asymmetry

εT1 = − 3

16π

Im
[
(F ∗1Fi)(F

∗
f1Ffi)

]
|F1|2

M1

Mi

[(
−5

3
λ+

3g2 + g′2

12

)(
T

M1

)2

+
7π2

20
|λt|2

(
T

M1

)4
]
.

(8.22)
Finally one can derive the flavoured version of eq. (7.34) by following the above men-
tioned procedure. The result for the momentum dependent CP asymmetry reads

εT1,mom. dep. = − 3

16π

Im
[
(F ∗1Fi)(F

∗
f1Ffi)

]
|F1|2

M1

Mi

[(
5

6
λ− 3g2 + g′2

24

)
k2 T 2

M4
1

]
. (8.23)
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Conclusions and Outlook

In this thesis we have discussed the construction of an EFT for non-relativistic Majorana
fermions and we have shown how to use it to calculate observables in a thermal medium.
The EFT presented here is similar to HQET but keeps track of the Majorana nature of
the fermion by describing both the particle and the antiparticle with the same field.

Although the approach is quite general, we apply it to a particle physics model that
comprises some species of right-handed neutrinos coupled to the SM Higgs boson and
lepton doublets via Yukawa interactions (see the Lagrangian (2.9)). Such model provides
the fundamental ingredients to achieve a successful baryogenesis via leptogenesis in the
early universe. Here heavy neutrinos with a large Majorana masses are at the origin of
the matter-antimatter asymmetry. Interactions between heavy neutrinos and SM parti-
cles occur in a thermal medium. We assume that the right-handed neutrino mass and the
temperature of the plasma satisfy the condition M � T , where the temperature is still
larger than the electroweak scale. In this regime the heavy neutrinos are non-relativistic
objects and it is conceivable that the lepton asymmetry is effectively generated when
the temperature drops below the heavy neutrino mass. We addressed the calculation of
observables related to leptogenesis: the right-handed neutrino production rate and the
CP asymmetries generated in heavy Majorana neutrino decays in a heat bath.

As regards the former observable, our result given in (5.62) agrees with earlier find-
ings [17, 18]; the derivation however appears simpler. At our accuracy, i.e. first order
in the SM couplings and order T 4/M3, the two-loop thermal field theory computation
necessary to describe the process in the full theory splits into two one-loop computations
in the EFT. The first one-loop computation is required to match the full theory with the
EFT. This can be done setting the temperature to zero, so it amounts at the calculation
of typical in-vacuum matrix elements. The second one-loop computation is required to
calculate the thermal corrections in the EFT. At the accuracy of this work, only tadpole
diagrams are involved. These may be easily computed with the real-time formalism or
with other methods. The use of the real-time formalism is particularly convenient with
heavy particles: since they do not thermalize, heavy particles and particles coupled to
them are not affected by the doubling of degrees of freedom typical of the formalism. The
situation is again analogous to the one faced when studying heavy quarks in a thermal
bath [187].

The total width of the Majorana neutrino, Γ = ΓT=0 + ΓT , is organized as a double
expansion in the SM couplings and in T/M . At the present accuracy, the double expan-
sion reflects the hierarchy of energy scales M � T and corresponds in the EFT to the
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two steps of the computation: matching and thermal loops. The SM couplings entering
in the Wilson coefficients of the EFT are computed at the heavy neutrino mass scale,
M , and one can evolve them down to the scale T to make the theory homogeneous.
Whether terms in one expansion are more relevant than terms in the other depends on
the considered temperature regime. A temperature close to the Majorana neutrino mass
makes terms in the T/M expansion more relevant, although a temperature too close to
it may spoil the convergence and signal a breakdown of the non-relativistic treatment.

Besides simplifying existing results the EFT approach provides a useful framework
to address even more involved observables. In particular, we have taken a step forward
a systematic improvement of the CP asymmetry at NLO in heavy neutrino decays into
leptons and antileptons. This is one of the key ingredients entering the rate equations
for leptogenesis. To the best of our knowledge thermal corrections to the CP asymmetry
at first order in the SM couplings are unknown. We believe that having any information
about them, even just for the case T � M , should be seen as an advancement, in the
same way as it has been for the thermal corrections to the production rate computed
in [17, 18].

The EFT allows to address different configurations of the heavy-neutrino mass pat-
terns. We have computed the leading thermal corrections to the direct and indirect CP
asymmetries in an extension of the SM that includes two generations of heavy Majorana
neutrinos with nearly degenerate masses M and M+∆. In order to describe a condition
that occurred in the early universe, we have assumed the SM particles to form a plasma
whose temperature T is larger than the electroweak scale but smaller than M . The main
original results are eqs. (6.35) and (6.39) for the thermal corrections to the direct CP
asymmetry, and eqs. (6.47) and (6.48) for the thermal corrections to the indirect CP
asymmetry. Thermal corrections to the CP asymmetry arise at order F 4 in the Yukawa
couplings. As regards the direct CP asymmetry corrections are further suppressed by
one SM coupling. Hence the calculation of the thermal effects to the direct CP asym-
metry is a three-loop calculation in the fundamental theory (2.9). We have performed
the calculation in the EFT framework introduced in [19], which is valid for T � M .
The three-loop thermal calculation of the original theory splits into the calculation of
the imaginary parts of two-loop diagrams that match the Wilson coefficients of the EFT
(6.3), a calculation that can be performed in vacuum, and the calculation of a thermal
one-loop diagram in the EFT (see figure 6.10). Therefore, in its range of applicability,
the EFT framework provides a significantly simpler method of calculation.

The same formalism may prove to be a useful tool to calculate the CP asymmetry
also in other arrangements of the heavy-neutrino masses, such as a hierarchically or-
dered neutrino mass spectrum, where the direct and the indirect CP asymmetries are
of comparable size (see chapter 7). In this case one heavy neutrino is much lighter than
the other neutrino species. The strategy to obtain thermal corrections for the CP asym-
metry follows closely the one carried out for the nearly degenerate case. The hierarchy
of scales, Mi � M1 � T � MW , actually allows for constructing an EFT where the
heavier neutrino states are integrated out from the theory (EFT1). This is the starting
point to build the subsequent EFT where only non-relativistic excitations of the lightest
heavy neutrino are dynamical (EFT2). We obtained the thermal corrections at leading
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order in the expansion 1/Mi and fully at order (T/M1)2.

At relative order (T/M)2 only the Higgs self-coupling, λ, and the SU(2)L×U(1)Y
gauge couplings, g and g′, enter the expression of the CP asymmetry. Higher-order
operators in the 1/M expansion have not been considered in the nearly degenerate
case. However, higher-order operators, most importantly the dimension-seven operators
described in chapter 5, may contribute to the CP asymmetry as well. The power counting
of the EFT shows that they can induce thermal corrections that scale like gSM(T/M)4,
where gSM is understood as either λ, (3g2 + g′2) or the top Yukawa coupling |λt|2. Even
though these corrections are further suppressed in the expansion in T/M , the particular
values of the SM couplings at high energies can make gSM(T/M)4 corrections numerically
comparable with or larger than those calculated at order (T/M)2. As a reference, at
a scale of 104 TeV the Higgs self coupling is about λ ≈ 0.02, the top-Yukawa coupling
is about |λt|2 ≈ 0.4 and (3g2 + g′2) ≈ 1.2, whereas at a scale of 1 TeV λ ≈ 0.1,
|λt|2 ≈ 0.7 and (3g2 + g′2) ≈ 1.6 [190, 201]. To shape better this issue the effect of, at
least, some higher-order operators should be calculated. Indeed we studied the thermal
corrections comprising the top-Yukawa coupling in the hierarchical case. The complete
set of corrections at order (T/M)4 is in the reach of the proposed EFT approach and
possibly subject of future investigations.

A quantitative study of leptogenesis requires flavour to be included in the formalism.
Indeed the unflavoured approximation is valid only at very high temperatures, typically
T > 1012 GeV. Indeed in the flavoured regime the CP asymmetry stored in a single
flavour component is found to be relevant one for solving the Boltzmann equations for
leptogenesis. The impact of flavour on our approach was discussed, both for the T = 0
and finite temperature CP asymmetries, and for the two different heavy neutrino mass
patterns. The results are collected in chapter 8.

The expansion T/M is adopted in the derivation of the results presented in this thesis.
We discussed in detail such topic in the case of the right-handed neutrino production rate.
The issue on the convergence of such expansion for not too small values of T/M could be
also for the CP asymmetry. However, to the best of our knowledge, the expression valid
for T ∼ M at leading order in the SM couplings does not exist for the CP asymmetry
at variance with the neutrino production rate. The proposal presented in section 5.4,
for the neutrino production rate, may be applied for the CP asymmetry as well: include
exponentially suppressed terms, e−M/T , in the zeroth order term in the SM couplings.
Such result actually exists in the literature and it has been derived in the framework of
the Kadanoff-Baym equations [30, 123, 124].

Another question is how the corrections in T/M compare with the yet unknown
radiative corrections to the CP asymmetry at zero temperature. First, we note that for
the indirect CP asymmetry, which is the dominant part of the asymmetry in particular
for the resonant case or close to it, the computed (T/M)2 corrections are not suppressed
by the SM couplings. Hence they are likely to be larger than or of the same size as
radiative corrections for a wide range of temperatures. Second, we observe that thermal
corrections to the direct CP asymmetry, which are suppressed in the SM couplings, are
indeed of relative size λ(T/M)2 and (3g2+g′2)(T/M)2 (cf. with (6.35) and (6.39)). These
should be compared with radiative corrections of possible relative size λ/π2, |λt|2/π2 or
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(3g2 + g′2)/π2 (cf. with the radiative corrections to the production rate in [17]). The
factor 1/π2 is typical of radiative corrections, but absent in thermal corrections. The
two are of comparable size for T/M ∼ 1/π, which is inside the range of convergence
of the expansion in T/M . Clearly radiative corrections are a missing ingredient for a
complete quantitative evaluation of the CP asymmetry. Following the above discussion,
their evaluation seems most needed when the CP asymmetry is dominated by direct
contributions and at lower temperatures.

The EFTs (6.3) and (7.9) are also the natural starting point to establish the rate
equations for the time evolution of the particle densities in the regime where the Ma-
jorana neutrinos are non-relativistic. The way to proceed would be similar to that
developed recently using CTP formalism [26, 30–32]: one can derive the evolution equa-
tions for the heavy-neutrino and lepton-number expectation values at finite temperature
from Green’s functions. Over exploiting the EFT approach, one can start from the be-
ginning with the suitable degrees of freedom which are dynamical at the temperature
scale, whereas effects of larger scales are already encoded in the Wilson coefficients of
the EFT. A first study of the non-relativistic approximation for the rate equations can
be found in [144], where our result for the CP asymmetry in the hierarchical case may
be included in a rather straightforward way in the numerical calculations.

Finally the effective field theory presented here is suitable to be used for a vari-
ety of different models involving non-relativistic Majorana fermions, such as possible
applications to dark matter production at finite temperature in the early universe.
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Appendix A

Matching coefficients for the
thermal width

In this appendix, we compute the Wilson coefficients (5.29)-(5.37). They are obtained
by matching matrix elements calculated in the fundamental theory (5.22) with matrix
elements calculated in the EFT (5.23). The fundamental theory contains the SM with
unbroken gauge symmetries, whose Lagrangian reads

LSM = L̄fPR i /DLf + Q̄PR i /DQ+ t̄PL i /D t− 1

4
W a
µνW

aµν − 1

4
FµνF

µν

+ (Dµφ)† (Dµφ)− λ
(
φ†φ
)2
− λt Q̄ φ̃ PRt− λ∗t t̄PL φ̃†Q+ . . . . (A.1)

The dots stand for terms that are irrelevant for our calculation, e.g. those involving light
quarks or right-handed leptons. The covariant derivative is given by

Dµ = ∂µ − igAaµτa − ig′Y Bµ , (A.2)

where τa are the SU(2) generators and Y is the hypercharge (Y = 1/2 for the Higgs,
Y = −1/2 for left-handed leptons). The fields Lf are the SU(2) lepton doublets with
flavor f , QT = (t, b) is the heavy-quark SU(2) doublet, t is the SU(2)-singlet top quark
field for which there is no coupling with the SU(2) gauge boson in eq. (A.2), φ the Higgs
doublet, Aaµ are the SU(2) gauge fields, Bµ the U(1) gauge fields and W aµν , Fµν the
corresponding field strength tensors. The couplings g, g′, λ and λt are the SU(2) and
U(1) gauge couplings, the four-Higgs coupling and the top Yukawa coupling respectively.

Many one-loop diagrams are needed for the matching. We adopt in all the cal-
culations dimensional regularization. Therefore loop diagrams in the EFT vanish in
dimensional regularization because scaleless. The Wilson coefficients that we need to
compute are those appearing in (5.27) and (5.28). We compute them by matching four-
field matrix elements involving two Majorana fields and either two Higgs, two lepton,
two quark or two gauge fields. We will discuss the matching of these matrix elements
one by one in the rest of the appendix. Before, we add few general considerations.

We perform the matching in the reference frame vµ = (1,0 ), where we assume the
plasma to be at rest. The leading momentum dependent operator (5.59) is fixed by
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symmetry and does not need to be calculated. Since we are interested in the imaginary
parts of the Wilson coefficients, we evaluate the imaginary parts of −iD, where D are
generic Feynman diagrams, by taking the Majorana neutrino mass at M+iη. We choose
the incoming and outgoing SM particles to carry the same momentum qµ. Because qµ

is much smaller than M , diagrams in the fundamental theory are expanded in powers
of qµ that eventually matches the operator expansion in the EFT.

The fundamental theory (5.22) is SU(2)×U(1) gauge invariant, so are all operators
in the EFT. Hence, the Wilson coefficients are gauge independent. As a practical choice,
however, we will present results for single diagrams in Landau gauge. This is a convenient
gauge in the presence of momentum dependent vertices like those between the Higgs and
the gauge bosons. We have explicitly checked gauge invariance by computing the Wilson
coefficients also in Feynman gauge.

A)

C)

B)

ψ ψ̄ ψ ψ̄ ψ ψ ψ̄ ψ̄

N N † N N †

Figure A.1: The diagrams represent matrix elements with two Majorana neutrino fields
and two SM fields in the fundamental theory (diagrams A and B) and in the EFT
(diagram C). The bubbles in A and B denote generic loops. The diagrams A and B
in the relativistic theory allow for two possible contractions of the neutrino fields, while
the diagram C in the non-relativistic EFT allows just for one.

When computing matrix elements involving Majorana fermions, one has to keep in
mind that the relativistic Majorana field ψ may be contracted in two possible ways, (5.2)
and (5.3), as a consequence of the indistinguishability of the particle from the antipar-
ticle. A similar observation holds for the field ψ̄. For our calculation, involving matrix
elements with two external Majorana neutrinos, this implies that in the fundamental
theory we have to consider for each diagram two possible configurations: each one corre-
sponding to the two possible way to contract the Majorana fields ψ and ψ̄. See diagrams
A and B in figure A.1. In the non-relativistic EFT, we have only one possible way to
contract the Majorana field N , which is (5.14). See diagram C in figure A.1. One has to
properly account for this when matching the relativistic matrix elements with the ones
in the EFT. In our calculation, with the exception of diagrams with external leptons,
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the two possible configurations give the same result as a consequence of

Cγµ1 T ...γµ2n+1 TC = γµ1 ...γµ2n+1 , (A.3)

and because of the insensitivity of the result to the direction of the momentum carried
by the Majorana neutrino.

A.1 Higgs

In order to determine the Wilson coefficients a and b, we compute in the fundamental
theory the matrix element

− i
∫
d4x eip·x

∫
d4y

∫
d4z eiq·(y−z) 〈Ω|T (ψµ(x)ψ̄ν(0)φm(y)φ†n(z))|Ω〉

∣∣∣∣
pµ=(M+iη,0 )

,

(A.4)
where µ and ν are Lorentz indices, m and n are SU(2) indices and |Ω〉 is the ground
state of the fundamental theory. The matrix element (A.4) describes a 2→ 2 scattering
between a heavy Majorana neutrino at rest and a Higgs boson carrying momentum qµ.
In figure A.2, we show on the left-hand side of the equality all diagrams that in the
fundamental theory contribute to the effective vertices shown on its right-hand side.

+ + +

= +

1)

5)

2) 3) 4)

a b

+

Figure A.2: Diagrams in the full theory (left-hand side of the equality) contributing
to the Majorana neutrino-Higgs four-field operators in the EFT (right-hand side). The
solid double lines stand for heavy Majorana neutrinos, the solid single lines for leptons,
the dashed lines for Higgs particles and the wiggled lines for gauge bosons.

In order to compute the imaginary parts of the Wilson coefficients a and b, we need
to consider only the imaginary parts of the diagrams shown in figure A.2. In Landau
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gauge, the diagrams in the fundamental theory read1

Im (−iD1) = − 3

8π

λ|F |2
M

δmnδ
µν + . . . , (A.5)

Im (−iD2) = − 1

96π

(3g2 + g′ 2)|F |2
M3

δmnδ
µν(q0)2 + . . . , (A.6)

Im (−iD3) + Im (−iD4) = − 7

48π

(3g2 + g′ 2)|F |2
M3

δmnδ
µν(q0)2 + . . . , (A.7)

Im (−iD5) = 0 , (A.8)

where the subscripts refer to the diagrams as listed in figure A.2.2 The dots stand for
terms that are either proportional to qµ/M2, or to q0qi/M

3 (i = 1, 2, 3) or to q2/M3; we
have not displayed terms that are of order 1/M4 or smaller. Such terms do not contribute
to the matching of the operators in (5.27) and (5.28). Summing up all contributions we
get

− 3

8π

λ|F |2
M

δmnδ
µν − 5

32π

(3g2 + g′ 2)|F |2
M3

δmnδ
µν(q0)2 + . . . . (A.9)

The symmetries of the EFT enforce that the matrix element (A.4) is reproduced by
the following expression

a

M
δmnδ

µν +
b

M3
δmnδ

µν(q0)2 + . . . , (A.10)

where the dots stand for contributions coming from operators that are not listed in (5.27)
and (5.28).

Matching the imaginary part of (A.10) with (A.9) fixes the imaginary parts of a and
b:

Im a = − 3

8π
|F |2λ , Im b = − 5

32π
(3g2 + g′ 2)|F |2 . (A.11)

Note that only the first diagram of figure A.2 contributes to the effective operator (5.27),
which provides the leading contribution to the Majorana neutrino thermal width. The
remaining diagrams contribute to the subleading operator b N †N (D0φ

†) (D0φ)/M3.

A.2 Leptons

In the fundamental theory, the matrix element

− i
∫
d4x eip·x

∫
d4y

∫
d4z eiq·(y−z) 〈Ω|T (ψµ(x)L̄βf,m(z)Lαf ′,n(y)ψ̄ν(0))|Ω〉

∣∣∣∣
pµ=(M+iη,0 )

,

(A.12)
where f and f ′ are flavor indices, α, β, µ and ν Lorentz indices, and m and n SU(2)
indices, describes a 2 → 2 scattering between a heavy Majorana neutrino at rest and a

1 To keep the notation simple, we drop, from now and in the rest of the appendix, propagators on
external legs, and we label the so-obtained amputated Green’s functions with the same indices used for
the unamputated ones.

2 The vanishing of diagram 5 is specific of the Landau gauge.
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+ + + +

=

cff
′

1 cff
′

2

+

1)

5)

2) 3) 4)

Figure A.3: Diagrams in the full theory (left-hand side of the equality) contributing to
the Majorana neutrino-lepton four-fermion operators in the EFT (right-hand side). The
lines stand for the same particle propagators as in figure A.2.

lepton carrying momentum qµ. The diagrams contributing to the matrix element in the
fundamental theory are shown on the left-hand side of the equality of figure A.3. Their
imaginary part in Landau gauge gives

Im (−iD1) = −δmnFf ′F ∗f
(

3(3g2 + g′ 2)

32πM3

)[
(PL)µβ(PR)αν

+(C PR)µα(PLC)βν
]
q0 + . . . , (A.13)

Im (−iD2) = δmnFf ′F
∗
f

(
3|λt|2
8πM3

)[
(PL)µβ(PR)αν

+(C PR)µα(PLC)βν
]
q0 + . . . , (A.14)

Im (−iD3) = −δmnFf ′F ∗f
(

(3g2 + g′ 2)

32πM3

)[
(PL)µβ(PR)αν + (C PR)µα(PLC)βν

]
q0

+δmnFf ′F
∗
f

(
(3g2 + g′ 2)

384πM3

)[
(PL γλγσ)µβ(γσγλ PR)αν

+(C PR γλγσ)µα(γσγλ PLC)βν
]
q0 + . . . ,

(A.15)

Im (−iD4) + Im (−iD5) = −δmnFf ′F ∗f
(

(3g2 + g′ 2)

16πM3

)[
(PL)µβ(PR)αν

+(C PR)µα(PLC)βν
]
q0 + . . . , (A.16)

where the subscripts refer to the diagrams as listed in figure A.3 and the dots stand
either for higher-order terms in the 1/M expansion or for terms of order 1/M2 but that
do not depend on the momentum qµ. Summing up all contributions and comparing with
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the corresponding expression in the EFT, which is

cff
′

1

M3
δmn

[
(PL)µβ(PR)αν + (C PR)µα(PLC)βν

]
q0

+
cff

′

2

M3
δmn

[
(PL γλγσ)µβ(γσγλ PR)αν + (C PR γλγσ)µα(γσγλ PLC)βν

]
q0 + . . . ,

(A.17)

we obtain

Im cff
′

1 =
3

8π
|λt|2Re(Ff ′F

∗
f )− 3

16π
(3g2 + g′ 2)Re(Ff ′F

∗
f ) , (A.18)

Im cff
′

2 =
1

384π
(3g2 + g′ 2)Re(Ff ′F

∗
f ) . (A.19)

The dots in (A.17) stand for contributions coming from operators that are not listed
in (5.28).

t t

=

t t

=

Q Q Q Q

c3

c4

+

+

c5

c6 c8

c7

t t t t

Q Q Q Q

+

+

Figure A.4: In the top panel, the diagram in the full theory (left-hand side) con-
tributing to the Majorana neutrino-top-quark singlet four-fermion operators in the EFT
(right-hand side). In the bottom panel, the diagram in the full theory (left-hand side)
contributing to the Majorana neutrino-heavy-quark doublet four-fermion operators in
the EFT (right-hand side). The solid single lines marked t stand for top singlets, the
solid single lines marked Q for heavy-quark doublets, unmarked solid lines connecting
top lines and heavy-quark doublets stand for heavy-quark doublets and top singlets
respectively. All other lines stand for the same particle propagators as in figure A.2.
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A.3 Quarks

We consider only couplings with top quarks, for λt ∼ 1 while all other Yukawa couplings
are negligible. In the fundamental theory, we compute the two matrix elements

−i
∫
d4x eip·x

∫
d4y

∫
d4z eiq·(y−z) 〈Ω|T (ψµ(x)ψ̄ν(0) tα(y)t̄β(z))|Ω〉

∣∣∣∣
pµ=(M+iη,0 )

,

(A.20)

−i
∫
d4x eip·x

∫
d4y

∫
d4z eiq·(y−z) 〈Ω|T (ψµ(x)ψ̄ν(0)Qαm(y)Q̄βn(z))|Ω〉

∣∣∣∣
pµ=(M+iη,0 )

,

(A.21)

describing respectively a 2 → 2 scattering between a heavy Majorana neutrino at rest
and a right-handed top quark carrying momentum qµ, and a 2→ 2 scattering between a
heavy Majorana neutrino at rest and a left-handed heavy quark carrying momentum qµ.
The indices α, β, µ and ν are Lorentz indices, whereas m and n are the SU(2) indices
of the heavy-quark doublet. The diagrams contributing to the matrix elements in the
fundamental theory are shown in figure A.4. We call Dt the diagram with external top
lines and DQ the diagram with external heavy-quark lines. The imaginary parts of −iDt
and −iDQ read

Im (−iDt) =
|F |2|λt|2
24πM3

δµν
(
PLγ

0
)αβ

q0

+
|F |2|λt|2
48πM3

[(
γ5γi

)µν (
PLγ

0
)αβ

qi +
(
γ5γi

)µν
(PLγi)

αβ q0

]
+ . . . , (A.22)

Im (−iDQ) =
|F |2|λt|2
48πM3

δmnδ
µν
(
PRγ

0
)αβ

q0

+
|F |2|λt|2
96πM3

δmn

[(
γ5γi

)µν (
PRγ

0
)αβ

qi +
(
γ5γi

)µν
(PRγi)

αβ q0

]
+ . . . ,

(A.23)

where the dots stand for higher-order terms in the 1/M expansion or terms that are of
order 1/M2 but do not depend on the momentum qµ.

The matrix element (A.20) is matched in the EFT by

c3

M3
δµν

(
PLγ

0
)αβ

q0+
c5

M3

(
γ5γi

)µν (
PLγ

0
)αβ

qi+
c7

M3

(
γ5γi

)µν
(PLγi)

αβ q0+. . . , (A.24)

and the matrix element (A.21) by

c4

M3
δmnδ

µν
(
PRγ

0
)αβ

q0 +
c6

M3
δmn

(
γ5γi

)µν (
PRγ

0
)αβ

qi

+
c8

M3
δmn

(
γ5γi

)µν
(PRγi)

αβ q0 + . . . , (A.25)

where the dots in (A.24) and (A.25) stand for contributions coming from operators not
listed in (5.28). Comparing (A.22) and (A.23) with the imaginary parts of (A.24) and
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(A.25) respectively, we obtain

Im c3 =
1

24π
|λt|2|F |2 , Im c4 =

1

48π
|λt|2|F |2 , (A.26)

Im c5 =
1

48π
|λt|2|F |2 , Im c6 =

1

96π
|λt|2|F |2 , (A.27)

Im c7 =
1

48π
|λt|2|F |2 , Im c8 =

1

96π
|λt|2|F |2 . (A.28)

+ + +

= +

1) 2) 3)

4)

d1 (d2) d3 (d4)

Figure A.5: Diagrams in the full theory (left-hand side of the equality) contributing to
the Majorana neutrino-gauge boson four-field operators in the EFT (right-hand side).
Diagrams with crossed gauge bosons have not been explicitly displayed. External gauge
fields are either SU(2) or U(1) gauge fields. In one case they contribute to the opera-
tors d1N

†N W a
i0W

a
i0/M

3 and d3N
†N W a

µνW
aµν/M3, in the other case to the operators

d2N
†N Fi0Fi0/M

3 and d4N
†N ×FµνFµν/M3 in the EFT. The lines stand for the same

particle propagators as in figure A.2.

A.4 Gauge bosons

The couplings di of the Majorana neutrino with the gauge bosons are conveniently
computed by considering in the fundamental theory the following two matrix elements

− i
∫
d4x eip·x

∫
d4y

∫
d4z eiq·(y−z) 〈Ω|T (ψµ(x)ψ̄ν(0)Aai (y)Abj(z))|Ω〉

∣∣∣∣
pµ=(M+iη,0 )

,

(A.29)
and

− i
∫
d4x eip·x

∫
d4y

∫
d4z eiq·(y−z) 〈Ω|T (ψµ(x)ψ̄ν(0)Bi(y)Bj(z))|Ω〉

∣∣∣∣
pµ=(M+iη,0 )

,

(A.30)
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where a and b are indices labeling fields in the adjoint representation of SU(2), and i and
j are spatial Lorentz indices. The matrix elements (A.29) and (A.30) describe 2 → 2
scatterings between heavy Majorana neutrinos at rest and gauge bosons carrying mo-
mentum qµ. Each diagram in the full theory, labeled according to figure A.5, contributes
with an imaginary part that reads for the (A.29) matrix element

Im (−iD1) = −g
2|F |2

16πM
δµνδabδij + . . . , (A.31)

Im (−iD2) =
g2|F |2
16πM

δµνδab
(
δij + δij

(q0)2

3M2
+

qiqj
6M2

)
+ . . . , (A.32)

Im (−iD3) = − g2|F |2
24πM3

δµνδab
(
δij(q0)2 − qiqj

2

)
+ . . . , (A.33)

Im (−iD4) = − g2|F |2
48πM3

δµνδab qiqj + . . . . (A.34)

For the matrix element (A.30) the result is the same after the replacement g2δab → g′2.
The dots stand for 1/M3 terms that are proportional to q2 or q0qi or for terms of order
1/M4 or smaller.

The matrix element (A.29) is matched in the EFT by

2d1

M3
δµνδabδij (q0)2 − 4d3

M3
δµνδab qiqj + . . . , (A.35)

and the matrix element (A.30) by

2d2

M3
δµνδij (q0)2 − 4d4

M3
δµν qiqj + . . . , (A.36)

where the dots stand for contributions coming from operators not listed in (5.28). Sum-
ming up all contributions (A.31)-(A.34) for each of the two matrix elements and com-
paring with the imaginary parts of (A.35) and (A.36), we finally find

Im d1 = −g
2|F |2
96π

, Im d2 = −g
′ 2|F |2
96π

, (A.37)

Im d3 = −g
2|F |2
384π

, Im d4 = −g
′ 2|F |2
384π

. (A.38)

The same Wilson coefficients satisfy the matching conditions for matrix elements with
temporal gauge bosons.
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Appendix B

Matching coefficients for the CP
asymmetry: nearly degenerate
case

In this appendix we discuss in detail the diagrams relevant for the derivation of the
matching coeffcients in eqs. (6.31) and (6.32). The Wilson coefficients are split into a
leptonic and antileptonic contribution, in turn related to the cuts performed in the two-
loop amplitudes considered in the matching. Therefore the cutting rules are discussed in
section B.1 being a fundamental tool for the derivation of the matching coefficients. Then
in section B.2 the diagrams involving the Higgs four-coupling are presented whereas in
section B.3 we discuss those comprising gauge interactions. Finally diagrams and corre-
sponding matching calculations relevant for the flavoured case are shown in section B.4.
Many of the loop diagrams computed here analytically were also crosschecked with tools
for automated loop calculations [212].

B.1 Cutting rules

A way of computing the imaginary part of −iD, where D is a Feynman diagram, is by
means of cutting rules. Here we describe briefly the cutting rules at zero temperature
and the notation that we will use; we also illustrate them with an example. We refer
to [171, 213, 214] for some classical presentations and to [194] for a more recent one
suited to include complex masses and couplings.

At the core of the method is the cutting equation, which relates Im(−iD) with cut
diagrams of D. It reads

Im(−iD) = −Re(D) =
1

2

∑
cuts

D . (B.1)

A cut diagram consists in separating the Feynman diagram into two disconnected di-
agrams by putting on shell some of its internal propagators. The cut is typically rep-
resented by a line “cutting” through these propagators: in our case it is a blue thick
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= −i
p2−m2−iη

= 2π θ(p0) δ(p2 −m2)

= i
p2−m2+iη

Figure B.1: The relevant cutting rules for a scalar propagator at zero temperature in
the convention of [171]. The momentum direction is represented by the arrow. The blue
thick dashed line stands for the cut. Vertices on the right of the cut are circled. Circled
vertices have opposite sign than non-circled vertices.

dashed line. Vertices on the right of the cut are circled. Circled vertices have oppo-
site sign than uncircled vertices. We can have three types of propagators. Propagators
between two circled vertices, propagators between uncircled vertices and propagators
between one circled and one uncircled vertex. This last situation occurs when the cut
goes through the propagator. The expressions for these three propagators are shown in
the case of a scalar particle in figure B.1; the extension to fermions and gauge bosons
is straightforward. Note that when the cut goes through the propagator the particle is
put on shell. The sum in (B.1) extends over all possible cuts of the diagram D.

As an example, we show how to obtain the imaginary part of the Wilson coefficient
of the operator (5.27) in the case of just one neutrino generation. We call this single
Wilson coefficient a. It was first derived in [19] without using cutting rules. Cutting
rules have the advantage that they allow to disentangle the contribution coming from the
decay into a lepton, which we call Im a`, from the contribution coming from the decay
into an antilepton, which we call Im a

¯̀
. The coefficient Im a is at leading order the sum

of these two contributions: Im a = Im a` + Im a
¯̀
. It can be obtained by matching the

following matrix element of the fundamental theory

− i
∫
d4x eip·x

∫
d4y

∫
d4z eiq·(y−z) 〈Ω|T (ψµ(x)ψ̄ν(0)φm(y)φ†n(z))|Ω〉

∣∣∣∣
pα=(M+iη,0 )

,

(B.2)
with the corresponding matrix element of the EFT. The field ψ identifies the only Ma-
jorana neutrino field available in this case, µ and ν are Lorentz indices and m and n
SU(2)L indices.

When computing matrix elements involving Majorana fermions, one has to consider
that the relativistic Majorana field may be contracted in more ways than if it was a Dirac
field, this reflecting the indistinguishability of the Majorana particle and anti-particle.
The different contractions give rise to the different propagators listed in (5.2)-(5.4).
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1) 2)

+

=

=

3)

aℓ

aℓ̄
+

4)

Figure B.2: Diagrams in the full theory contributing to the Majorana neutrino-Higgs
boson dimension-five operator. On the left-hand side are the diagrams in the full theory,
whereas on the right-hand side are the diagrams in the EFT. As in figure 6.12 and in the
rest of the paper, red dashed lines indicate external Higgs bosons with a soft momentum
much smaller than the mass of the Majorana neutrino. The cuts on the diagrams in the
fundamental theory are explicitly shown.

When contracting the Majorana fields in (B.2) according to (5.2), one obtains at leading
order

[
P̂ (−iD) P̂

]µν
= 6|F |2λ δmn

∫
d4`

(2π)4

(
P̂ PL/̀ P̂

)µν i

`2 + iη

(
i

(Mv − `)2 + iη

)2

, (B.3)

where we have dropped all external propagators and D is the amputated (uncut) diagram
shown in the upper raw and left-hand side of figure B.2. The external heavy-neutrino
propagators reduce in the non-relativistic limit and in the rest frame to a matrix pro-
portional to P̂ = (1 + γ0)/2 (see (5.14)). We have kept the matrix P̂ on the left- and
right-hand side of (B.3), because it helps projecting out the contributions relevant in
the heavy-neutrino mass limit, e.g., P̂ PL P̂ = P̂ /2. After projection, also the matrix P̂
may be eventually dropped from the left- and right-hand side of the matching equation.
The internal loop momentum is `µ, Mvµ = (M,0) is the neutrino momentum in the rest
frame and |F |2 =

∑
f F
∗
f Ff .

The diagram D admits two cuts labelled 1) and 2) and shown in the upper raw and
left-hand side of figure B.2. Both cuts select a final state made of a lepton and, therefore,
contribute to a`. Using (B.1) and the cutting rules we obtain for the two cuts:

[
P̂ Im(−iD`1,fig.B.2)P̂

]µν
= 3|F |2λ (−1)2 δmn

∫
d4`

(2π)4

(
P̂ PL/̀ P̂

)µν
2πθ(`0)δ(`2)

×2πθ(M − `0)δ((Mv − `)2)
−i

(Mv − `)2 − iη , (B.4)
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[
P̂ Im(−iD`2,fig.B.2)P̂

]µν
= 3|F |2λ (−1) δmn

∫
d4`

(2π)4

(
P̂ PL/̀ P̂

)µν
2πθ(`0)δ(`2)

×2πθ(M − `0)δ((Mv − `)2)
i

(Mv − `)2 + iη
. (B.5)

Both Im(−iD`1,fig.B.2) and Im(−iD`2,fig.B.2) have a pinch singularity whose origin is the soft
limit of the Higgs momentum pair. A way to regularize the singularity is to give a small
finite momentum to the Higgs pair and set it to zero after cancellation of the singularity.
The singularity cancels in the sum of the two cuts, which reads

Im(−iD`1,fig.B.2) + Im(−iD`2,fig.B.2) = − 3

16πM
|F |2λ δµνδmn, (B.6)

where we have used for the amputated Green function the same indices used for the
unamputated one, a convention that we will keep in the following.

When contracting the Majorana fields in (B.2) according to (5.3) and (5.4) one
obtains at leading order a contribution encoded in the diagram shown in the lower raw
and left-hand side of figure B.2. The expression for this diagram is the same as the one
in (B.3) up to an irrelevant change PL → PR (the expression is also unsensitive to the
change Ff ↔ F ∗f ). The diagram admits two cuts labeled 3) and 4) and shown in the
lower raw and left-hand side of figure B.2. Both cuts select a final state made of an
antilepton and, therefore, contribute to a

¯̀
. The contributions from these two cuts are

the same as the ones in (B.4) and (B.5) and give eventually the same result for the sum

Im(−iD ¯̀
3,fig.B.2) + Im(−iD ¯̀

4,fig.B.2) = − 3

16πM
|F |2λ δµνδmn. (B.7)

Comparing (B.6) and (B.7) with the corresponding expressions in the EFT, which
are (Im a`/M) δµνδmn and (Im a

¯̀
/M) δµνδmn respectively, one obtains

Im a` = Im a
¯̀

= − 3

16π
|F |2λ, (B.8)

Im a = Im a` + Im a
¯̀

= − 3

8π
|F |2λ. (B.9)

Equation (B.9) agrees with the result found in eq. (5.46), the latter calculated without
the cutting rules.

B.2 Matching diagrams with four-Higgs interaction

We compute in the fundamental theory the matrix element

− i
∫
d4x eip·x

∫
d4y

∫
d4z eiq·(y−z) 〈Ω|T (ψµ1 (x)ψ̄ν1 (0)φm(y)φ†n(z))|Ω〉

∣∣∣∣
pα=(M+iη,0 )

.

(B.10)
The matrix element is similar to (B.2), but now in a theory with two types of heavy
Majorana neutrinos. External neutrinos are of type 1, whereas neutrinos of type 2
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appear only as intermediate states. The result can be extended straightforwardly to the
case of external neutrinos of type 2, leading to (6.32). The matrix element describes a
2→ 2 scattering between a heavy Majorana neutrino of type 1 at rest and a Higgs boson
carrying momentum qµ. Since the momentum qµ is much smaller than the neutrino mass
and we are not matching derivative operators, qµ can be set to zero in the matching.
Here, we compute the diagrams contributing to (B.10) that enter the matching of a`11

(and a
¯̀
11) up to first order in λ and are relevant for the direct CP asymmetry; in the

next section, we will compute the diagrams of order g2 and g′2. It may be useful to cast
the diagrams into three different typologies as we will do in the following. All diagrams
are understood as amputated of their external legs when writing the corresponding
amplitudes.

a) b)

Figure B.3: Diagrams contributing to a`II at order F 4. One diagram is the complex
conjugate of the other.

A first class of diagrams is obtained by opening-up a Higgs line in the two-loop
diagrams of figure 6.3. These diagrams are of order F 4. The subset contributing to a`II
is shown in figure B.3. Diagrams a) and b) are one the complex conjugate of the other;
their sum is real. By cutting the loops so to bring one lepton on shell and summing both
diagrams the result is proportional to the Yukawa coupling combination Re

[
(F ∗1FJ)2

]
only. The reason is that, after the cuts, the diagrams do not contain loops anymore and
cannot develop any additional complex phase. If we consider the subset of diagrams
contributing to a

¯̀
II , which are diagrams where the antilepton can be put on shell, we

obtain through a similar argument that the sum of diagrams is proportional again to the
Yukawa coupling combination Re

[
(F ∗1FJ)2

]
. It follows that the matching coefficients

obtained for leptons and antileptons and the corresponding leptonic and antileptonic
widths cancel in the difference. One-loop diagrams of order F 4 with two external Higgs
bosons do not contribute to the direct CP asymmetry.

A second class of diagrams is obtained by attaching a four-Higgs vertex to an existing
Higgs line in the two-loop diagrams of figure 6.3. These diagrams are of order F 4λ and
are shown with the relevant cuts in figure B.4. In each raw we show a diagram and
its complex conjugate and we draw explicitly the cuts that put a lepton on shell. This
amounts at selecting in all the diagrams in figure B.4 the decay of a heavy Majorana
neutrino into a lepton. The decay width into an antilepton can be computed by cutting
antilepton lines. In general, the sum of each couple of diagrams in figure B.4 is a linear
combination of the real and the imaginary parts of (F ∗1FJ)2. The appearance of a term
proportional to Im

[
(F ∗1F2)2

]
in addition to Re

[
(F ∗1FJ)2

]
reflects the fact that after

the cut we are left with a loop that also develops an imaginary part. For each couple
of diagrams, contributions coming from the lepton and the antilepton cuts give the
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1) 2)

3)

5) 6)

4)

Figure B.4: Diagrams contributing to a`II and a
¯̀
II at order F 4λ. The cuts through

leptons are explicitly shown and implemented according to the rules of figure B.1.

same terms proportional to Re
[
(F ∗1FJ)2

]
but terms proportional to Im

[
(F ∗1F2)2

]
with

opposite signs, since Re
[
(F ∗1FJ)2

]
= Re

[
(F1F

∗
J )2
]

while Im
[
(F ∗1F2)2

]
= −Im

[
(F1F

∗
2 )2
]
.

So that, when calculating the CP asymmetry, terms proportional to Re
[
(F ∗1FJ)2

]
cancel,

and only those proportional to Im
[
(F ∗1F2)2

]
remain. Hence for each diagram we only

need to calculate the terms proportional to Im
[
(F ∗1F2)2

]
, consistently with the discussion

in section 6.2. Up to relative order ∆/M they are:

Im (−iD`1,fig.B.4) + Im (−iD`2,fig.B.4) =

3 Im
[
(F ∗1F2)2

]
(16π)2M

λ

[
ln 2− (1− ln 2)

∆

M

]
δµνδmn + . . . ,

(B.11)

Im (−iD`3,fig.B.4) + Im (−iD`4,fig.B.4) + Im (−iD`5,fig.B.4) + Im (−iD`6,fig.B.4) =

3 Im
[
(F ∗1F2)2

]
(16π)2M

λ

[
ln 2− (1− ln 2)

∆

M

]
δµνδmn + . . . .

(B.12)

The dots stand for terms proportional to the Yukawa coupling combination Re
[
(F ∗1FJ)2

]
and higher-order terms in the expansion in ∆/M . The superscript ` reminds that we
have cut through leptons only; as we argued above, the contribution of antileptons has
opposite sign. We give the result in (B.12) as the sum of four diagrams to cancel a pinch
singularity that arises in the soft momentum limit of the Higgs boson. This is analogous
to the calculation carried out in section B.1.
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1) 2)

6)

4)

5)

7)

3)

8)

Figure B.5: Diagrams contributing to a`II and a
¯̀
II at order F 4λ. The cuts through

leptons are explicitly shown.

Once the four-Higgs vertices are removed, the diagrams of figure B.4 preserve the
topology of the T = 0 two-loop diagrams of figure 6.3. There is, finally, a third class
of diagrams where this topology is not preserved. A way to construct them is from the
diagrams of figure B.3 (and the corresponding ones with an antilepton in the loop) by
adding a four-Higgs vertex to the internal Higgs line; we show the diagrams with the
relevant cuts in figure B.5. The results for the cuts through leptons read

Im (−iD`1,fig.B.5) + Im (−iD`2,fig.B.5) =

3 Im
[
(F ∗1F2)2

]
(16π)2M

λ

(
1− ∆

M

)
δµνδmn + . . . , (B.13)
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Im (−iD`3,fig.B.5) + Im (−iD`4,fig.B.5) =

3 Im
[
(F ∗1F2)2

]
(16π)2M

λ

(
1− ∆

M

)
δµνδmn + . . . , (B.14)

Im (−iD`5,fig.B.5) + Im (−iD`6,fig.B.5) = 0 . (B.15)

Some remarks, which will be of use also in the following to simplify the calculation,
are in order. First, in the Feynman diagrams, integrals over momentum regions where
the intermediate neutrino is on shell do no contribute to the matching. Such momen-
tum regions are either kinematically forbidden, if the intermediate neutrino is heavier
than the initial one, or they are reproduced in the EFT, if the intermediate neutrino
is lighter than the initial one (see diagrams in figure 6.11 and the related discussion in
section 6.4.2). In the last case, the momentum is necessarily of order ∆. Modes with
energy or momentum of order ∆ � M are still dynamical in the effective theory and
should not be integrated out with the mass scale (if they are, then they would need to
be subtracted by computing suitable loops in the effective theory). Second, also mo-
mentum regions where three massless particles happen to be on-shell and enter the same
vertex do not contribute to the matching, because the available phase space vanishes
in dimensional regularization. These general remarks apply in the present case to the
diagrams 5) and 6) of figure B.5. After the cuts through the lepton propagators shown
in the diagrams have been implemented, the remaining one-loop diagrams may develop
an imaginary part only if two of the particles in the loop can be put on shell. If the neu-
trino is put on shell, then the one-loop integral is either over a kinematically forbidden
momentum region or over a momentum region which is much smaller than M , according
to the first remark above. If the light particles are put on shell, then, for we can neglect
the momentum of the external Higgs boson, we have a situation equivalent to a vertex
with three on-shell massless particles and the second remark above applies. The result
is that diagrams 5) and 6) of figure B.5 do not contribute to the CP asymmetry at the
scale M , which is the result (B.15).

B.3 Matching diagrams with gauge interactions

At order F 4 and at first order in the SM couplings, besides the Feynman diagrams with
four-Higgs vertices computed in the previous section, also diagrams with a gauge boson
can contribute. We will compute them here.

By cutting this kind of diagrams we distinguish two different type of processes:
processes with a gauge boson in the final state or processes without a gauge boson in the
final state. These being two distinct physical processes, we can compute them in different
gauges. It is advantageous to adopt the Coulomb gauge in the first type of processes and
the Landau gauge in the second one. The advantages are twofold. First, with this choice
of gauge we can neglect, for the purpose of matching the dimension-five operators in the
EFT in (6.3), all diagrams with a gauge boson attached to an external Higgs boson leg.
The reason is that the coupling of the gauge boson with the Higgs boson is proportional
to the momentum of the latter (see (A.1) and (A.2)). If it depends on the external
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a) b) c)

d) e) f)

Figure B.6: If the incoming and outgoing Majorana neutrinos are conventionally chosen
to be of type 1, then the displayed diagrams contribute to a`11 at order F 4 and at first

order in the gauge couplings. The diagrams contribute also to a
¯̀
11 if cut through the

antilepton. Only diagrams proportional to (F ∗1F2)2 are displayed.

momentum, then the diagram will contribute to the matching of a higher-dimensional
operator in the EFT, for the dimension-five operators do not contain derivatives. If it
depends on the internal momentum then its contraction with the gauge boson propagator
vanishes both in Landau gauge, if the gauge boson is uncut, and in Coulomb gauge, if
the gauge boson is cut. In the latter case, only transverse gauge bosons can be cut.
Second, the physical Coulomb gauge does not generate spurious singularities when the
gauge boson is cut.

c)a) b)

Figure B.7: Diagrams as in figure B.6. In diagram c), the particles in the small loop
coupled to a Higgs boson are a top quark and a heavy-quark doublet.

With the above choice of gauges, it is convenient to divide the remaining diagrams
contributing to the matching of the dimension-five operators into the four sets shown
in figures B.6, B.7, B.9 and B.10 for the leptonic contribution. After closer inspection,
diagram c) in figure B.6 turns out not to contribute to the CP asymmetry. The diagram
may be cut through the lepton propagator in two ways leaving in each case an uncut
one-loop subdiagram. The only cuts for these subdiagrams that are relevant for the
matching (see discussion at the end of section B.2) give rise to two identical but opposite
contributions (they differ only in the number of circled vertices), which cancel. We have
checked the cancellation also by explicit calculation.

We consider now the three diagrams in figure B.7. It turns out that these diagrams
cannot introduce an additional complex phase, i.e., they do not develop an imaginary
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1) 2) 3)

Figure B.8: Cuts on diagram a) of figure B.7. The first cut does not contain any loop.
The other two cut diagrams do contain a remaining loop that however does not develop
an imaginary part.

part of the loop amplitude, the quantity that we called Im(B) in section 6.2. In order
to prove this statement, let us pick up diagram a) in figure B.7 and consider all possible
cuts that put a lepton on shell. These are shown in figure B.8. The first cut does not
contain any loop, hence it does not generate any additional complex phase besides the
Yukawa couplings. In the second and third cut, in order to generate a complex phase, the
remaining loop diagrams would need to develop an imaginary part. However, this is not
the case since the (on-shell) incoming and outgoing particles in the loop and the particles
in the loop itself are massless, a situation already discussed at the end of section B.2.
Therefore, also in this case, the diagram and its complex conjugate contribute with a
term proportional to Re

[
(F ∗1F2)2

]
, which cancels eventually against the antileptonic

width in the CP asymmetry. The same argument applies to both diagrams b) and c) in
figure B.7 (as well as to diagrams with loops inserted in the external Higgs legs that we
have not displayed). As an important consequence, there are not thermal corrections to
the CP asymmetry of order T 2/M2 that are proportional to the top-Yukawa coupling,
λt.

Figure B.9: Diagram as in figure B.6.

The diagram in figure B.9 does not contribute as well to the CP asymmetry. Indeed,
once it has been cut in a way that the lepton and Higgs boson are on shell, what is left
is a subdiagram with a vanishing imaginary part in Landau gauge. This has been shown
by direct computation in [19]1 or see A.8.

We compute now the part of a`11 relevant for the CP asymmetry coming from the
diagrams of figure B.6 that have not been already excluded on the basis of the previous
arguments. We organize the calculation as follows: first, we compute the cuts that go
through the lepton but not the gauge boson, i.e., the gauge boson contributes only as a
virtual particle in the loop, then we compute the cuts that go through both the lepton
and the gauge boson. In figure B.11, we show the cuts in the first case, whereas in
figure B.12 and B.13 we show them in the second one. On each raw we draw a diagram

1 See figure 4, diagram 5), and eq. (A.8) there.
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c)

a)

d)

b)

Figure B.10: Four diagrams that would be resonant without the gauge boson. Only
diagrams proportional to (F ∗1F2)2 are displayed.

and its complex conjugate. As argued before, cuts that do not leave a loop uncut do
not generate any additional complex phase and therefore do not contribute to the CP
asymmetry. These cuts are not displayed.

We start with computing the cuts shown in figure B.11. In Landau gauge, the result
is

Im (−iD`1,fig.B.11) + Im (−iD`2,fig.B.11) = 0 , (B.16)

Im (−iD`3,fig.B.11) + Im (−iD`4,fig.B.11) =

− Im
[
(F ∗1F2)2

]
(16π)2M

3g2 + g′2

8

[
ln 2− (1− ln 2)

∆

M

]
δµνδmn + . . . ,

(B.17)

where the superscript ` refers to having cut a lepton line. The dots stand for higher-order
terms in the ∆/M expansion and for terms that do not contribute to the CP asymmetry.

We compute now cuts through gauge bosons. As argued at the beginning of this
section, we can use for this kind of cuts a different gauge, namely the Coulomb gauge.
The result for the cuts shown in figure B.12 reads

Im (−iD`1,fig.B.12) + Im (−iD`2,fig.B.12) =

− Im
[
(F ∗1F2)2

]
(16π)2M

3g2 + g′2

8

(
−1 +

∆

M

)
δµνδmn + . . . , (B.18)

Im (−iD`3,fig.B.12) + Im (−iD`4,fig.B.12) =

− Im
[
(F ∗1F2)2

]
(16π)2M

3g2 + g′2

4

[
(1− ln 2) + (2− 3 ln 2)

∆

M

]
δµνδmn + . . . .

(B.19)

Two more diagrams that contribute to the part of a`11 that matters for the CP
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1)

3) 4)

2)

Figure B.11: On each raw we show the diagrams a) and b) of figure B.6 together with
their complex conjugates. Higgs bosons and leptons are cut.

asymmetry with the relevant cuts are shown in figure B.13. They give

Im (−iD`1,fig.B.13) + Im (−iD`2,fig.B.13) = − Im
[
(F ∗1F2)2

]
(16π)2M

3g2 + g′2

8

(
1− ∆

M

)
δµνδmn + . . . .

(B.20)

Finally, we consider the diagrams shown in figure B.10. Removing the gauge boson,
these diagrams could become resonant and contribute to the indirect CP asymmetry
discussed in section 6.5. Indeed their contribution is accounted for by the diagrams in
the EFT shown in figure 6.13. With the gauge bosons included these diagrams cannot
become resonant when the gauge boson carries away an energy of order M and, according
to the definition adopted in this paper, they contribute to the direct CP asymmetry.
Clearly they do contribute to the Wilson coefficients Im a`II and Im a

¯̀
II .

As before, we start considering cuts through leptons and Higgs bosons. Only di-
agrams a) and b) of figure B.10 may be cut in this way and contribute to the CP
asymmetry. The diagrams and the relevant cuts are shown in figure B.14. The result in
Landau gauge reads

Im (−iD`1,fig.B.14) + Im (−iD`2,fig.B.14) = 0 , (B.21)

Im (−iD`3,fig.B.14) + Im (−iD`4,fig.B.14) =

− Im
[
(F ∗1F2)2

]
(16π)2M

3g2 + g′2

4

(
1− ∆

M

)
δµνδmn + . . . . (B.22)

On the other hand, only diagrams c) and d) of figure B.10 may be cut through a
lepton and a gauge boson. The diagrams and the relevant cuts are shown in figure B.15.
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1)

3) 4)

2)

Figure B.12: On each raw we show the diagrams d) and e) of figure B.6 together with
their complex conjugates. Gauge bosons and leptons are cut.

1) 2)

Figure B.13: Diagram f) of figure B.6 together with its complex conjugate. Gauge
bosons and leptons are cut.

The result in Coulomb gauge reads

Im (−iD`1,fig.B.15) + Im (−iD`2,fig.B.15) =

− Im
[
(F ∗1F2)2

]
(16π)2M

3g2 + g′2

4

(
−1 +

∆

M

)
δµνδmn + . . . , (B.23)

Im (−iD`3,fig.B.15) + Im (−iD`4,fig.B.15) =

− Im
[
(F ∗1F2)2

]
(16π)2M

3g2 + g′2

4

(
1− ∆

M

)
δµνδmn + . . . . (B.24)

Summing up all diagrams (B.11)-(B.24), and comparing with the expression of the
matrix element (B.10) in the EFT, which is (Im a`11/M)δµνδmn for the leptonic contri-

bution and (Im a
¯̀
11/M)δµνδmn for the antileptonic one, we obtain (6.31). The expression

for the Wilson coefficient involving the Majorana neutrino of type 2 can be inferred from
the above results after the substitutions F1 ↔ F2, M → M2 and ∆ → −∆ in (B.11)-
(B.24) or just in (6.31). The result, in terms of the lightest neutrino mass, M , has been
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3)

1)

4)

2)

Figure B.14: On each raw we show the diagrams a) and b) of figure B.10 together with
their complex conjugates. Higgs bosons and leptons are cut.

3)

1)

4)

2)

Figure B.15: On each raw we show the diagrams c) and d) of figure B.10 together with
their complex conjugates. Gauge bosons and leptons are cut.

written in (6.32). That the above substitutions work follows from the fact that the real
transition from a heavier neutrino of type 2 to a lighter neutrino of type 1, which is a
decay channel absent in the case of neutrinos of type 1, is a process accounted for by the
EFT (see section 6.4.2), and, therefore, it does not contribute to the matching. In fact,
the energy emitted in such a transition is of order ∆; this is, in the nearly degenerate
case considered in this work, much smaller than M .

B.4 Matching in the flavoured case

There are diagrams contributing to the matching coefficients Im a`II and Im a
¯̀
II that are

relevant only for the flavoured CP asymmetry. These are diagrams involving only lepton
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(or antilepton) propagators. They could contribute to the CP asymmetry with terms

proportional to Im
[
(F1F

∗
2 )(F ∗f1Ff2)

]
. Clearly such terms vanish in the unflavoured case.

Here we examine these diagrams and find that they do not contribute.

a)

e) f)

d)c)

b)

Figure B.16: Diagrams contributing to the matching coefficients (6.31) and (6.32) in-
volving the four-Higgs coupling. Diagrams a)-d) may be inferred from the diagrams of
figure B.5 by changing an antilepton line in a lepton line. The topologies of diagrams
e) and f) are relevant only for the flavoured case. We display only diagrams that admit
leptonic cuts.

We may divide these diagrams into two classes: diagrams that involve the four-
Higgs coupling, shown in figure B.16, and diagrams involving gauge couplings, shown in
figures B.18 and B.19. Let us consider diagram a) of figure B.16. If we cut the lepton
in the loop on the right, then the cut gives rise to the Feynman subdiagram shown in
figure B.17. This is proportional to (`µ is the momentum of the lepton)

δ(`2)/̀ PR
/̀+MJ

`2 −M2
J + iη

PL = PL δ(`
2)`2

1

`2 −M2
J + iη

= 0, (B.25)

and therefore vanishes.2 If we cut the lepton in the loop on the left, then we need
the imaginary part of the remaining (uncut) loop on the right. The imaginary part

2 The corresponding Feynman subdiagram of 1) in figure B.5 involves a neutrino propagator of the
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Figure B.17: The blue dashed line on the right is the cut, the red central dashed line is
an external Higgs boson whose momentum can be set to zero and the black dashed line
on the left may identify a Higgs boson in a loop or an external one.

of the loop on the right may be computed by considering all its possible cuts. Those
include cuts through the lepton, which vanish according to the above argument, cuts
through the Higgs-boson propagator, which vanish because they involve three massless
on-shell particles entering the same vertex, and cuts through the Majorana-neutrino
propagator, which are either kinematically forbidden or involve momenta of order ∆
that are accounted for by the EFT (for more details see the discussion at the end of
section B.2).

c)

a)

d)

b)

Figure B.18: Diagrams contributing to the matching coefficients (6.31) and (6.32) in-
volving gauge couplings. The diagrams may be inferred from the diagrams of figure B.10
by changing an antilepton line in a lepton line. We display only diagrams that admit
leptonic cuts.

The same arguments may be applied to all remaining diagrams shown in figures B.16,
B.18 and B.19. In particular, for many of them the argument based on the identity (B.25)
is crucial. The identity (B.25) is relevant only for the flavoured case.

type (5.3) and an antilepton on the left. Hence it is proportional to

δ(`2)/̀ PR
/̀+MJ

`2 −M2
J + iη

PR = PL δ(`
2)/̀MJ

1

`2 −M2
J + iη

6= 0.
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a)

e)

c) d)

f)

b)

Figure B.19: Diagrams contributing to the matching coefficients (6.31) and (6.32) in-
volving gauge couplings. The topologies of these diagrams are relevant only for the
flavoured case. We display only diagrams that admit leptonic cuts.
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Appendix C

Matching coefficients for the CP
asymmetry: hierarchical case

In this appendix we present the diagrams necessary to obtain the matching coefficients
of the EFT2 in (7.22)-(7.26). The Wilson coefficients are obtained by matching four-
point Green’s functions calculated in the EFT1 with four-point Green’s functions in the
EFT2. Since we are going to consider the effects induced by the particle of the thermal
bath, we need to specify the SM Lagrangian that reads off (A.1). We can set the
temperature to zero so that all loop diagrams in the EFT2 are scaleless in dimensional
regularization. This comes from the fact that we integrate out high energy modes,
of order M1 � T , and any other low energy scale can be put to zero. Dimensional
regularization is used for all the loop diagrams that we discuss in the following. The
operators that we need to consider are the dimension-five heavy neutrino-Higgs operator
and the dimension-seven heavy neutrino-top (heavy-quark doublet), heavy neutrino-
lepton doublet operators. Therefore we consider matrix elements with external heavy
neutrinos and Higgs bosons in section C.2, whereas top quarks (heavy-quark doublets)
and lepton doublets are external legs together with heavy neutrinos in section C.3.

C.1 EFT1: matching dimension-five and dimension-six op-
erators

In this appendix we give some details on the derivation of the CP asymmetry presented
in section 7.2 in the limit M1 �Mi, and the tree-level matching to define the parameters
of the EFT1. To keep the notation simple, we drop propagators on external legs, and we
label the so-obtained amputated Green’s functions with the same indices used for the
unamputated ones.

Let us start with the calculation of the matching coefficient ηf,f ′ of the effective
dimension-five operator in (7.7). In order to carry out the tree level matching we consider
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the following matrix element in the full theory in (2.9) and in the EFT1 in (7.7):

−i
∫
d4x eip1·x

∫
d4yeik1·y

∫
d4z eik2·z 〈Ω|T (Lµh,m(x)Lνh′,n(0)φr(y)φs(z))|Ω〉 ,

(C.1)

where h, h′ are flavour indices. The result when evaluating the the matrix element in
(C.1) in the fundamental theory reads

−i
∫
d4x eip1·x

∫
d4yeik1·y

∫
d4z eik2·z 〈Ω|T (Lµh,m(x)Lνh′,n(0)φr(y)φs(z))|Ω〉 =

Fh,iFh′,i
Mi

(PRC)µν(σ2
mrσ

2
ns + σ2

msσ
2
nr) , (C.2)

whereas the result in the EFT1 is

−i
∫
d4x eip1·x

∫
d4yeik1·y

∫
d4z eik2·z 〈Ω|T (Lµh,m(x)Lνh′,n(0)φr(y)φs(z))|Ω〉 =

+
2ηif,f ′

Mi
δf,hδf ′,h′(PRC)µν(σ2

mrσ
2
ns + σ2

msσ
2
nr) . (C.3)

Then comparing (C.2) and (C.3), we find the matching coefficient to be ηif,f ′ in (7.8).
The Wilson coefficients of the dimension-six operators in (8.16) can be obtained the
same way. For that describing the `φ→ `φ scattering we find

−i
∫
d4x eip1·x

∫
d4yeik1·y

∫
d4z e−ik2·z 〈Ω|T (Lµh,m(x)L̄νh′,n(0)φr(y)φ†s(z))|Ω〉 =

Fh,iFh′,i
M2
i

PµνR (/p1
+ /k1)σ2

mrσ
2
sn , (C.4)

and from the EFT1 side one finds correspondingly

−i
∫
d4x eip1·x

∫
d4yeik1·y

∫
d4z e−ik2·z 〈Ω|T (Lµh,m(x)L̄νh′,n(0)φr(y)φ†s(z))|Ω〉 =

η̃if,f ′δf,hδf ′,h′

Mi
PµνR (/p1

+ /k1)σ2
mrσ

2
sn . (C.5)

The energy-momentum conservation in the s-channel allows for interchanging the sum
p1 + k1 with p2 + k2 and comparing (C.4) with (C.5) one finds η̃if,f ′ in (8.17).

C.2 Matching the dimension-five operator in EFT2

In order to determine the Wilson coefficient of the dimension-five operator we consider
the following matrix element in the heavy Majorana neutrino rest frame

− i
∫
d4x eip·x

∫
d4y

∫
d4z eiq·(y−z) 〈Ω|T (ψµ1 (x)ψ̄ν1 (0)φm(y)φ†n(z))|Ω〉

∣∣∣∣
pα=(M1+iη,0 )

,

(C.6)
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where µ and ν are Lorentz indices, m and n are SU(2) indices. The matrix element (C.6)
can be understood as a 2→ 2 scattering between a heavy Majorana neutrino at rest and
a Higgs boson carrying momentum qµ much smaller than M1. We divide the analysis of
the diagrams as follows. First we discuss diagrams involving the Higgs self-coupling, λ,
and then we address the case of diagrams with gauge bosons.

In figure C.1 and C.2 we show the diagrams contributing to the Wilson coefficient of
the dimension-five operator that involve the Higgs self-coupling. In each raw we show a
diagram and its complex conjugate and we draw explicitly the cut that put a lepton on
shell (dashed blue line). The first set of diagrams in figure C.1 is obtained by adding a
four-Higgs vertex to the diagrams in figure 7.5. On the other hand, one can also open
up one of the Higgs propagator in the two-loop diagrams in figure 7.5. In this way one
reduces to one loop diagrams. However, we can add a four-Higgs vertex to the remaining
internal Higgs line and a two-loop diagram can be again obtained by connecting one of
the pre-existing external legs with one of those induced by the four-Higgs vertex. These
diagrams are shown in figure C.2. Now we list the result of the diagrams and we start

1) 2)

3)

5) 6)

4)

Figure C.1: First set of diagrams involving the Higgs self-coupling λ and the corre-
sponding cuts that put leptons on shell. The dashed blue line stands for the cut and the
circled vertices are explicitly shown.
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1) 2)

5) 6)

Figure C.2: Second set of diagrams involving the Higgs self-coupling λ and the corre-
sponding cuts that put leptons on shell.

with those in figure C.1. We show the case with cuts on the lepton and we obtain

Im (−iD`1,fig.C.1) + Im (−iD`2,fig.C.1) =
λ

Mi

9

(16π)2
Im
[
(F ∗1Fi)

2
]
δµνδmn + . . . ,

(C.7)

Im (−iD`3,fig.C.1) + Im (−iD`4,fig.C.1) + Im (−iD`5,fig.C.1) + Im (−iD`6,fig.C.1) =

λ

Mi

9

(16π)2
Im
[
(F ∗1Fi)

2
]
δµνδmn + . . . (C.8)

where the subscripts refer to the diagrams as listed in figure C.1 and the superscript
` stands for a lepton put on shell in the cuts. The dots in eqs. (C.7) and (C.8) stand
for terms that are of higher order in the neutrino mass expansion and for terms propor-
tional to the real part of the Yukawa (F1F

∗
i )2, irrelevant for the calculation of the CP

asymmetry. The result for the antileptons differs for an overall minus sign, according to
the substitution F1 ↔ Fi. We move to the diagrams shown in figure C.2, and we obtain

Im (−iD`1,fig.C.2) + Im (−iD`2,fig.C.2) =
λ

Mi

6

(16π)2
Im
[
(F ∗1Fi)

2
]
δµνδmn + . . .

(C.9)

Im (−iD`3,fig.C.2) + Im (−iD`4,fig.C.2) = 0 . (C.10)

We can understand the result in (C.10) as follows. After the cut on the lepton line the
remaining loop amplitude gives a vanishing imaginary part. Indeed, as we notice in [36],
the momentum of the external Higgs boson can be put to zero and hence we have three
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massless particle entering the same vertex. In this case the corresponding phase space
in dimensional regularization vanishes (we find the same situation in section B.2).

We move now to the diagrams that involve gauge bosons in the matching calculation.
They contribute to the Wilson coefficient of the dimension-five operator, and induce a
dependence on the couplings of the unbroken SU(2)L×U(1)Y gauge group, g and g′

respectively. Differently to what happens at order |F1|2 for the thermal width, where
the gauge interactions appear in the matching of dimension-seven operators [19], here, at
order (F ∗1Fi)

2, they contribute already in the matching of the dimension-five operator in
(7.13). We have discussed rather extensively how to address the calculation of diagrams
involving the gauge bosons in appendix B, therefore we remind the main points in short.

The topologies of the diagrams that potentially contribute to the matching coefficient
are shown in figures C.3 and C.4.

a) b) c)

d) e) f)

g)

Figure C.3: We display the diagrams at order (F ∗1Fi)
2 and at leading order in the gauge

couplings relevant for the matching calculation. According to the cut performed, either
on lepton or antilepton lines, the diagrams contribute to a` or a

¯̀
.

b) c)a)

Figure C.4: We show three diagrams proportional to (F ∗1Fi)
2 that do not contribute to

the CP asymmetry. The fermion loop in the diagram c) is a top quark loop.

One needs to fix a gauge for the actual calculation. We observe that we can dis-
tinguish two different situations by cutting a lepton line and leaving one loop in the
diagrams in figure C.3: first, a Higgs boson and a lepton put on shell, second, a gauge
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boson and a lepton simultaneously on shell. Therefore we obtain processes with one
or any gauge boson in the final state. Being different physical processes, one can treat
them within different gauges.

We adopt the Landau gauge for the diagrams in which the Higgs boson is cut together
with a lepton (the gauge boson uncut). On the other hand, the Coulomb gauge is used
when a gauge boson is cut. According to such choice, we can neglect all the diagrams with
a gauge boson attached to an external Higgs boson leg. Indeed, the vertex interaction
between a gauge and a Higgs boson is proportional to the momentum of the latter
both in Landau and Coulomb gauge (see (A.1) and (A.2)). If it depends on the external
momentum, the diagrams develop a derivative that cannot be matched in the dimension-
five operator (it will go in the matching of higher order operators containing derivatives).
On the other hand, if it depends on the internal momentum then its contraction with the
propagator vanishes both in Coulomb gauge, if the gauge boson is cut, and in Landau
gauge if the gauge boson is uncut. Moreover the Coulomb gauge avoids singularities
when a gauge boson is cut.

The diagram c) in figure C.3 is similar to that studied in the case of nearly degenerate
neutrino masses. The diagram may be cut in two different ways in order to put on shell
a lepton together with a Higgs boson. It turns out that the only difference between the
cuts lies in the number of circled vertices that brings to two opposite sign contributions
eventually cancelling each other. The diagram g) contains a subdiagram that vanishes
in Landau gauge after the cut on the Higgs and lepton is performed (see figure A.2 and
eq. A.8).

We now discuss the three diagrams in figure C.4. These diagrams do not develop an
imaginary part for the reaming loop amplitude after the cut on the lepton line. This has
been discussed in the case of the corresponding diagrams for nearly degenerate neutrino
masses. The different heavy neutrino mass arrangement do not change the argument.
In order to remind our point, let us consider the diagram a) in figure C.4, and let us
cut it in all possible ways that put a lepton on shell. A first cut separates the diagram
into tree-level subdiagrams. Since there is no loop uncut, we cannot have any additional
phase. A second and a third cut are such to leave a one loop diagram after cutting
through the lepton line. However no additional phase is generated by these diagrams.
The incoming and outgoing particles are on shell and massless, and the particles in the
loop are massless as well. The imaginary part of these diagrams corresponds to processes
in which three massless particle enter the same vertex, and the available phase space
vanishes in dimensional regularization. Therefore the diagrams in figure C.4 can develop
only terms proportional to Re[(F ∗1Fi)

2] that eventually cancel in the CP asymmetry.

We now discuss the diagrams that are not excluded by the above arguments. They
are shown in figure C.5 and C.6, where the lepton line is cut together with a Higgs
boson or a gauge boson respectively. In each raw a diagram and its complex conjugate
are shown. We start with the diagrams in figure C.5 and we recall that the Landau
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1)

3) 4)

2)

Figure C.5: In each raw we draw a diagram and its complex conjugate where a lepton
line is cut together with a Higgs boson. This set of diagrams are computed in Landau
gauge.

gauge is adopted for these diagrams. The result reads

Im (−iD`1,fig.C.5) + Im (−iD`2,fig.C.5) = 0 , (C.11)

Im (−iD`3,fig.C.5) + Im (−iD`4,fig.C.5) = −3
(
3g2 + g′2

)
8(16π)2Mi

Im
[
(F ∗1Fi)

2
]
δµνδmn + . . . ,

(C.12)

where the superscript ` stands for cutting a lepton in the diagram and the subscript
refers to the diagram labels as in listed in figure C.5. The dots stand for higher order
terms in the heavy neutrino mass expansion and for the Yukawa coupling combination
Re
[
(F ∗1Fi)

2
]

not relevant for the CP asymmetry.

Let us show the result for the diagrams shown in figure C.6. We use the Coulomb
gauge to evaluate these diagrams where a gauge boson appears in the final state. The
result reads as follows

Im (−iD`1,fig.C.6) + Im (−iD`2,fig.C.6) =
3
(
3g2 + g′2

)
8(16π)2Mi

Im
[
(F ∗1Fi)

2
]
δµνδmn + · · · ,

(C.13)

Im (−iD`3,fig.C.6) + Im (−iD`4,fig.C.6) = −3
(
3g2 + g′2

)
8(16π)2Mi

Im
[
(F ∗1Fi)

2
]
δµνδmn + . . . ,

(C.14)
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3) 4)

1) 2)

5) 6)

Figure C.6: In each raw we draw a diagram and its complex conjugate where a lepton
line is cut together with a gauge boson. This set of diagrams are computed in Coulomb
gauge.
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Im (−iD`5,fig.C.6) + Im (−iD`6,fig.C.6) = −3
(
3g2 + g′2

)
8(16π)2Mi

Im
[
(F ∗1Fi)

2
]
δµνδmn + . . . ,

(C.15)

where the superscript ` stands for cutting a lepton in the diagram and the subscript
refers to the diagram labels as in listed in figure C.6. The matching coefficient of the
dimension five-operator can be now fixed. The matrix element in the EFT2 reads for
the lepton case

Im a`

M1
δµνδmn . (C.16)

An analogous expression holds for the antilepton counterpart. Therefore summing up
the results (C.7)-(C.15) and comparing with the expression in (C.16), we obtain for
the imaginary part of Wilson coefficient contributing to the decay of νR,1 into leptons
(antileptons) the result in (7.22).

C.3 Matching dimension-seven operators in EFT2

Now we want to address the matching of the dimension-seven operators that induce
a thermal correction of order |λt|(T/M1)4 to the CP asymmetry in heavy Majorana
neutrino decays. To this aim one has to consider the dimension-seven operators describ-
ing the effective interaction between the non-relativistic heavy neutrinos and top-quark
SU(2) singlet, the SU(2) heavy-quark doublet and the lepton doublet. As mentioned
in chapter 7, these operators induce only part of the full set of corrections at order
(T/M1)4 because other dimension-seven operators appear in the effective Lagrangian at
order 1/M3

1 .

A quite limited number of diagrams allows to completely specify the matching co-
efficient of the heavy neutrino-top quark (heavy-quark doublet) operator and we show
them in figure C.7. The external fermion legs have to be understood as a top quark
singlet or a heavy-quark doublet, as explicitly indicated. As usual we show the diagrams
proportional to the Yukawa coupling combination (F ∗1Fi)

2. We consider the following

a)

t(Q)

b)

t(Q)

Figure C.7: The two diagrams contributing to the heavy neutrino-top quark (heavy
quark doublet) operator are shown. Diagrams proportional to the Yukawa coupling
combination (F ∗1Fi)

2 are displayed here. Top (heavy-quark doublet) external legs are in
solid red lines. We drop the arrow for internal top quark (heavy-quark doublet) in order
to avoid confusion with lepton lines (arrows kept).
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matrix elements in the fundamental theory

−i
∫
d4x eip·x

∫
d4y

∫
d4z eiq·(y−z) 〈Ω|T (ψµ(x)ψ̄ν(0) tσ(y)t̄λ(z))|Ω〉

∣∣∣∣
pα=(M1+iη,0 )

,

(C.17)

−i
∫
d4x eip·x

∫
d4y

∫
d4z eiq·(y−z) 〈Ω|T (ψµ(x)ψ̄ν(0)Qσm(y)Q̄λn(z))|Ω〉

∣∣∣∣
pα=(M1+iη,0 )

,

(C.18)

describing respectively a 2 → 2 scattering between a heavy Majorana neutrino at rest
and a right-handed top quark carrying momentum qµ, and a 2 → 2 scattering between
a heavy Majorana neutrino at rest and a left-handed heavy quark doublet carrying
momentum qµ. The indices µ, ν, σ and λ, are Lorentz indices, and m and n are the
SU(2) indices of the heavy-quark doublet.

In order to distinguish the process with a top or a heavy-quark doublet as external
fields and their contribution to the matching coefficients, we label the corresponding
diagrams as −iDt and −iDQ respectively. We start with the diagram a) in figure C.7.
In this case we can perform only one cut thorough the lepton line as shown in figure
C.8. The result reads

Im (−iD`t,1,fig.C.8) + Im (−iD`t,2,fig.C.8)

= − |λt|
2

MiM2
1

Im
[
(F ∗1Fi)

2
]

(16π)2
δµνδmn

(
PLγ

0
)σλ

q0 + · · · ,

(C.19)

Im (−iD`Q,1,fig.C.8) + Im (−iD`Q,2,fig.C.8)

= − |λt|
2

MiM2
1

Im
[
(F ∗1Fi)

2
]

2(16π)2
δµνδmn

(
PRγ

0
)σλ

q0 + · · · .

(C.20)

In (C.19) and (C.20) the dots stand for the real part of the Yukawa couplings combina-
tion (F ∗1Fi)

2 not relevant for the CP asymmetry, for higher order terms in the neutrino
mass expansion and for terms that contain the coupling between the heavy Majorana
neutrino spin and the medium.

We then consider diagram b) in figure C.7. In this case the lepton line can be cut in
three different ways as displayed in figure C.9. This cuts were also discussed in section 7.5
and it was highlighted that the whole amplitude is finite, whereas each single cut shows
an IR divergence due to a massless Higgs boson. However, such divergence does not enter
the term in the momentum expansion that we need for matching the dimension-seven
operators in eqs. (7.14) and (7.15) and eventually responsible for a thermal correction to
the neutrino decay widths. Also when calculating the top-quark (heavy-quark doublet)
thermal condensates in the EFT2 such terms would vanish (even number of momentum
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1)

t(Q)

2)

t(Q)

Figure C.8: We show the diagram a) of figure C.7 and its complex conjugate where a
lepton line is cut together with a Higgs boson. Top (heavy-quark doublet) external legs
are in solid red lines.

powers in the fermion tadpole). If we were interested in the CP asymmetries in heavy
neutrino-top scatterings then we would be sensitive to such IR divergence. The cuts in
the first raw of figure C.9 gives a contribution proportional to q0/M1, whereas the cuts
on the second and third raw do not. The result reads

6∑
n=1

Im (−iD`t,n,fig.C.9) = −3

2

|λt|2
MiM2

1

Im
[
(F ∗1Fi)

2
]

(16π)2
δµνδmn

(
PLγ

0
)σλ

q0 + · · · ,

(C.21)

6∑
n=1

Im (−iD`Q,n,fig.C.9) = −3

4

|λt|2
MiM2

1

Im
[
(F ∗1Fi)

2
]

(16π)2
δµνδmn

(
PRγ

0
)σλ

q0 + · · · ,

(C.22)

where the dots stand for terms irrelevant for the CP asymmetry and powers of q0/M1 not
contributing to the matching of the dimension-seven operators (7.14) and (7.15). The
sum of the cuts is IR finite. The matrix element is matched in the EFT2 by assuming
an isotropic medium

Im c`3
M3

1

δµν
(
PLγ

0
)σλ

q0 , (C.23)

for the top-quark field, and

Im c`4
M3

1

δµνδmn
(
PRγ

0
)σλ

q0 . (C.24)

for the heavy-quark doublet. Therefore we compare the sum of (C.19) and (C.21) with
(C.23), and the sum of (C.20) and (C.22) with (C.24) respectively. In so-doing we obtain
the result in (7.23) and (7.24). Also in this case, the result for the antileptonic decays
may be obtained by the substitution F1 ↔ Fi.

We now discuss the two diagrams that involve the lepton doublet Lf as an external
particle together with the heavy Majorana neutrinos. In this respect we consider the
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Figure C.9: We show the diagram b) of figure C.7 and its complex conjugate where a
lepton line is cut together with a Higgs boson or a top-quark line. Top (heavy-quark
doublet) external legs are in solid red lines.

following matrix element where the heavy neutrino is at rest

− i
∫
d4x eip·x

∫
d4y

∫
d4z eiq·(y−z) 〈Ω|T (ψµ(x)L̄λf,m(z)Lσf ′,n(y)ψ̄ν(0))|Ω〉

∣∣∣∣
pα=(M1+iη,0 )

,

(C.25)
where f and f ′ are flavour indices, µ, ν, σ and λ are Lorentz indices, and m and n SU(2)
indices. The matrix element in (C.25) describes a 2 → 2 scattering between a heavy
Majorana neutrino at rest and a lepton doublet carrying momentum qµ. We consider
only the diagrams involving the top-quark Yukawa coupling. In principle many other
diagrams with gauge boson may contribute to the matrix element as well. Differently
from the diagrams discussed so far, we have to treat separately the diagrams that admit
a cut on a lepton line from those that allow for a cut on antilepton line. In the end,

we see that leptonic cuts contributes to
(
N̄PR iv ·DLcf ′

)(
L̄cfPLN

)
, whereas the cuts

on antileptons contribute to
(
N̄PL iv ·DLf

) (
L̄f ′PRN

)
. We start from the diagrams in

202



1) 2)

Figure C.10: In each raw we draw a diagram and its complex conjugate where a lepton
line is cut together with a Higgs boson. Lepton doublets as external legs are in solid red
lines.

figure C.10, where we can select a lepton in the final state and the result reads

Im (−iD`1,fig.C.10) + Im (−iD`2,fig.C.10)

= − 9|λt|2
(16π)2

Im
[
(F ∗1Fi)(F

∗
f1Ff ′i)− (F1F

∗
i )(Ff ′1F

∗
fi)
] q0

M2
1Mi

(C PR)µσ(PLC)λν δmn ,

(C.26)

In this case the combination of the Yukawa coupling does not allow to combine them
yet in the structure Im[(F ∗1Fi)

2], that is recovered when the tadpole in the EFT2 is
considered. On the EFT2 side, the result in is matched with the following expression

Im(c`,ff
′

1,c )

M3
1

q0 (C PR)µσ(PLC)λν δmn , (C.27)

and one obtains the result given in (7.25). The result for cut on antileptons, namely

the contribution to Im(c
¯̀,ff ′

1 ) has a very similar structure and it involves the second
operator on the right-hand side in (7.16) without the charge conjugation matrix. From
the diagrams in figure C.11 we find the following result

Im (−iD`1,fig.C.11) + Im (−iD`2,fig.C.11)

= − 9|λt|2
(16π)2

Im
[
(F1F

∗
i )(Ff1F

∗
f ′i)− (F ∗1Fi)(F

∗
f ′1Ffi)

] q0

M2
1Mi

(PL)µλ(PR)σν δmn ,

(C.28)

and in the EFT2 the matrix element in (C.25) reads

Im(c
¯̀,ff ′

1 )

M3
1

q0 (PL)µλ(PR)σν δmn , (C.29)

and we obtain the matching coefficient in (7.26). We notice that the first operator on the
right-hand side in (7.16) receives contribution only from the diagrams that admit a cut
on a lepton line. Conversely the second term on the right-hand side in (7.16) contains
the contributions coming from those diagrams in which an antilepton is cut.
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1) 2)

Figure C.11: In each raw we draw a diagram and its complex conjugate where an
antilepton line is cut together with a Higgs boson. Lepton doublets as external legs are
in solid red lines.

C.3.1 Matching with a finite Higgs boson mass, mφ

In this section we show briefly the one-loop calculation that provides a finite mass shift
for the Higgs boson written in (7.35). The Higgs propagator can acquire quantum
corrections due to the diagram shown in figure 7.11, more precisely diagram a). The
matrix element to compute reads

− i
∫
d4x eiQ·(x−y)〈Ω|T (φm(x)φ†n(y))|Ω〉

∣∣∣∣
Q2=0

, (C.30)

where we choose to match on-shell particles. Evaluating the matrix element with the
Lagrangian in (2.9), we obtain for the self energy to resum into the Higgs propagator
the following expression (we call M the self-energy correction in the pole of the scalar
propagator)

M2 = 2
M2
i |Fi|2

(4π)2

[
1

ε
− γE + ln(4π) + ln

(
µ2

M2
i

)
+ 1

]
, (C.31)

where we notice an UV divergence and a scale dependence for the calculation carried out
in dimensional regularization. Choosing the scale µ = Mi and using a modified minimal
subtraction scheme, MS we obtain

M2
MS

= 2
M2
i |Fi|2

(4π)2
≡ m2

φ , (C.32)

and hence the Higgs boson propagator in momentum space becomes

i

Q2 + iη
→ i

Q2 −m2
φ + iη

, (C.33)

so that the Higgs boson mass is shifted of a finite amount away from zero.
Now we perform again the calculation carried out in section C.3 for the cuts shown

in figure C.9, this time including a finite Higgs mass. The effects are twofold. First
the loop diagram left after the cuts on the lepton line has to be evaluated in the case
mφ 6= 0. The loop integral reads

Imφ(M,mφ) =

∫
d4`

(2π)4

i(M1/v − /̀)
(M1v − `)2 + iη

i

`2 −m2
φ + iη

=
M1/v

32π

(
1−

m2
φ

M2
1

)2

, (C.34)
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and this integral is also the one relevant for the neutrino width written in eq. (7.36).
Now we want to show how the presence of a finite Higgs mass handles the IR diver-

gence that shows up in the exclusive process νR,1 + t̄ → Q̄ + `f . We then consider the
cut diagrams 1) and 2) in figure C.9. The result corresponding to mφ = 0 reads

Im (−iD`t,1,fig.C.9) + Im (−iD`t,2,fig.C.9) =

− 3|λt|2
4MiM1

Im
[
(F ∗1Fi)(F

∗
f1Ffi)

]
(16π)2

[
−2

(
q0

M1

)−2

+ 3

(
q0

M1

)−1

+
q0

M
+O

( q0

M

)2
]

×δµνδmn
(
PLγ

0
)σλ

+ · · · , (C.35)

where the dots stand for terms irrelevant to the CP asymmetry. The IR divergences
show up in terms of inverse powers of the soft momentum, here q0.

Then we come to the very same calculation but including the finite Higgs mass. The
effect is twofold. First the loop diagram left after the cut on the lepton and top-quark
line has to be evaluated in the case mφ 6= 0. The loop integral reads

I(M,mφ) =

∫
d4`

(2π)4

i(M1/v − /̀)
(M1v − `)2 + iη

i

`2 −m2
φ + iη

=
M1/v

32π

(
1−

m2
φ

M2
1

)2

, (C.36)

and this result is also the one relevant for the neutrino width written in eq. (7.36). The
finite Higgs mass also makes disappear the inverse powers in the soft momentum scale
and the corresponding result for eq. (C.35) reads in this case

Im (−iD`t,1,fig.C.9) + Im (−iD`t,2,fig.C.9) =

− 3|λt|2
4MiM1

Im
[
(F ∗1Fi)(F

∗
f1Ffi)

]
(16π)2

(
1−

m2
φ

M2
1

)2 [(
1 +

m2
φ

M2
1

− M2
1

m2
φ

− 2
M4

1

m4
φ

)

+

(
1 +

m2
φ

M2
1

+
M2

1

m2
φ

+ 5
M4

1

m4
φ

+ 4
M6

1

m6
φ

)
q0

M1
+O

(
q0

M1

)2
]
δµνδmn

(
PLγ

0
)σλ

+ · · · .

(C.37)

Hence we notice that the finite Higgs mass regulates the singular behaviour for q0 → 0 in
eq. (C.35). The result in (C.37) can be used as starting point to study the CP asymmetry
in scattering processes between heavy neutrinos and top quarks.
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