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Abstract. When attempting to recover the surface color from an image,
modelling the illumination contribution per-pixel is essential. In this work
we present a novel approach for illumination compensation using multi-
spectral image data. This is done by means of a low-rank decomposition
of representative spectral bands with prior knowledge of the reflectance
spectra of the imaged surface. Experimental results on synthetic data,
as well as on images of real lesions acquired at the university clinic, show
that the proposed method significantly improves the contrast between
the lesion and the background.

1 Introduction

When acquiring images with a color camera, spatial distribution of the incoming
illumination and geometry of an object have a great impact on image formation.
In applications, such as lesion classification in dermatology, the actual color
(diffuse spectral reflectance or albedo) of the tissue is the main point of interest,
and not how its surface has interacted with the illumination. As intensity values
of the image pixels only store how the surface has interacted with the incom-
ing illumination, we are looking for a way to separate the albedo A from the
illumination L in an image I:

I=AGL (1)

where I, A are multi-channel images, L is a single-channel image (same size as
I and A), and © is the component-wise product of the pixel values.
Multispectral imaging is a powerful tool for tissue classification, due to its
improved spectral resolution compared to conventional RGB imaging, with the
latter only approximating the subjective color perception of the human eye. This
improved spectral resolution allows for better tissue discrimination, however this
is hampered by the presence of large illumination changed across the image.
As lesion classification methods [3] rely on many features that can be observed on
a lesion, such as color and fine structures, they are quite sensitive to illumination
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Fig. 1. Example of separating a multispectral image I into albedo A and illumination
L (false-colors) using our method. Irap and Argp are projections of their respective
multispectral images, I and A, onto RGB space. Here and in all following figures, a
heat color-map is used to visualize the illumination L (Color figure online).

changes. Our motivation is to exploit the additional information of multispectral
imaging, in order to compensate for such illumination changes, while preserving
both morphological and colorimetric (spectral) features of the lesions.

In applications that recover the albedo or just compensate for illumination
for detail enhancement [1,10], it is common practice to acquire multiple images
while keeping the viewpoint fixed and varying the illumination. The assumption
is made that the albedo remains the same while the illumination changes. In our
work we also acquire multiple images under a fixed viewpoint, however we do not
vary the illumination but the spectral range for each image channel. We assume
that it is the spatial distribution of the illumination that remains constant and
that the albedo varies.

We introduce a two step approach based on low-rank decomposition of the
multispectral image I in order to approximate a per-pixel illumination map L
which enables the recovery of the diffuse albedo A. We evaluate the method
on multispectral images of synthetic lesions on volunteers and of real lesions of
patients.

2 Related Work

When considering Eq. (1), the image I cannot be separated into A and L without
additional information.

Photometric stereo methods [10] acquire multiple images, while keeping the
viewpoint fixed. In each image, the scene is illuminated from a different cali-
brated direction. Here, both the the surface geometry and albedo are estimated
together. More recently [1], the requirement for calibrated illumination has been
relaxed, only assuming the light sources to be sufficiently distant. Although mul-
tispectral imaging can be adapted to such multi-light acquisitions [9] (which con-
siderably increases acquisition times), our focus is on illumination compensation
from a single multispectral image.

Similar data as in [1] (fixed viewport multi-light images) is used by image
enhancement methods [6,14] which, rather than removing the illumination alto-
gether, focus on minimizing its influence, while preserving fine features, that
would otherwise be lost without illumination cues. Fattal et al. [6] propose an
image decomposition method for multi-light image sequences that removes large
illumination artefacts (like shadows) while enhancing small surface details due
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Fig. 2. Example transmission spectra of band-pass filters (colored functions), and
example spectral sensitivity of image sensor (larger gray function) (Color figure online).

to shading. Such methods have a simpler model than photometric stereo of how
light interacts with the scene as they only focus on image enhancement.

These methods [1,6,10,14] all exploit variations in illumination in order to
recover the albedo. This is not unlike our method, we however make the reverse
assumption, that the albedo varies and that the illumination stays the same.

Influences of illumination can also be modeled in single images when enough
assumptions can be made about the scene. Shi et al. [11] propose an adaptive
linear function that estimates the background of historical documents, compen-
sating for uneven shading due to paper geometry and non-uniform illumination.
For robust face recognition, Chen et al. [2] propose an illumination normaliza-
tion approach based on a Discrete Cosine Transform in the logarithmic domain.
Although not exactly modeling illumination, the methods focuses on preserving
application relevant features while removing most image illumination.

Vogel et al. [13] present a radiometrically calibrated multispectral imaging
system to assess tissue vasculature. The authors model both the distribution of
the illumination across the image and the geometry of the subject. The former
is mostly corrected for by the radiometric calibration of the camera and the
calibrated illumination, leaving only the influence of the geometry. Assumptions
are made about the geometry of the object and a simple curvature model is fitted
to the data in order to compensate for the remaining shading. This method
has the most similar input data and hardware to our own, however, most of
the influences of illumination are corrected through a calibrated and controlled
acquisition environment. Unlike Vogel et al. [13] we make no assumptions about
either the distribution of light intensity or the geometry of the scene.

3 Methods

Our method exploits the increased spectral resolution of multispectral images in
order to distinguish between the most important spectra that influence image
formation: illumination, background and foreground. As this method was ini-
tially developed for dermatology, the background is the skin and the foreground
is the lesion we are investigating. The method can also be used on multi-
ple foreground and/or background spectra as long as certain criteria are met
(see Sect. 3.2).
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3.1 Multispectral Image Formation

For simplicity we will focus only on the spectral information and how that relates
to pixel intensity values without considering complete imaging optics.
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Fig. 3. Example multispectral image of a forearm marked with a red dye that has a
similar absorption spectrum as an erythemous lesion (Fig. 1). Above 700 nm the dye is
no longer distinguishable from the skin, just as its relative absorption spectrum would
indicate (relative to skin) (Color figure online).

The basic layout of a multispectral camera is analogous to that of most RGB
camera: lens, filters and gray-scale sensor. Where a RGB camera has a color filter
array (CFA) consisting of tiny red, green and blue filters mounted directly on
the sensor, a multispectral camera can have different designs in order to support
a considerably larger number of filters. Although we will only focus on filter-
wheel cameras', our method can be applied on images acquired with any type
multispectral camera.

Sensors used in multispectral cameras have a wide spectral sensitivity
(Fig.2), however they cannot distinguish the wavelength of the photons they
detect. The transmission spectra (Fig.2) of the camera filters act as windowing
functions, letting only a certain part of the spectrum through. This is how both
RGB and multispectral cameras are able to distinguish between different parts
of spectrum of the incoming light: they use the filters to select what wavelengths
reach the sensor. Therefore the intensity value Cj, for a pixel p of channel ¢ is:

Cip= / Sl,(A) - Sti(A) - Ss(A) dA (2)

L Filter-wheel multispectral cameras sequentially acquires multiple images of different
spectral bands, each time exposing the sensor through a different filter.
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with Si, the spectrum of the light entering the camera, St; the transmission
spectrum of the i*" channel, Ss the sensitivity spectrum of the sensor and wave-
length A. Considering that we store the spectra as discrete vectors, Eq. (2) can
also be written as:

Ci’p = (Slp © Stl) -Ss (3)

3.2 Modeling Illumination

Illumination compensation can be viewed as reversing image formation in order
to separate the multispectral diffuse reflectance A from the illumination L. Han-
dling a multispectral image I € R™*"** consisting of k channels (I = (C;)¥_,),
can be simplified by linearizing all channels. Therefore a channel C; € R™™ can
be described by:

Ci=A4A,0(L-fi) (4)

with the global illumination term f € R* and the local illumination term L €
R™ and a channel and pixel dependant albedo A; € R™™. The reshaped I can
be modeled as the component-wise multiplication of A with the outer product
between L and f:

I=Ao(L-f7) (5)

Modeling this problem like this makes several assumptions

The emission spectrum is the same for all light sources. The concept of the
channel-wise multiplicative factor f in Eq. (5) holds only for a globally constant
emission spectrum. This generally applies to indoor environments, with similar
light bulbs and no sunlight. If this were not the case, the illumination would
vary spatially across the image depending on the observed channel. It would
even be possible to measure this factor beforehand,however since our method is
estimating this factor (see Sect. 3.3) this is not necessary.

The bidirectional reflectance distribution function (BRDF) of both background
and foreground does not vary with the wavelength. This assumption is key in our

Fig.4. Selected channels of the multispectral image (detail view of lesion from
Fig.1): C; before (top row) and f;C; after (bottom row) global illumination correc-
tion/normalization.
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formulation of the local illumination term L, enabling us to consider it the same
for all channels and as such the low-rank component.

The foreground spectrum is not completely distinguishable from the back-
ground spectrum; this is to say that in certain channels the reflectance of the
foreground (lesion) is identical to that of the background (skin), see Fig.3. We
select the channels where this is the case as they only contain the background and
illumination. This requires either prior knowledge about the reflectance spectra
of both foreground and background or manual selection of the channels. When
estimating the local illumination term L, the low-rank decomposition is only
performed on these channels.

3.3 Low-Rank Decomposition

We consider I as a set of k channels C; € R™", i € {1,...,k} that show the
same scene under different acquisition conditions (here, different spectral bands)
and compute the correction factors.

We differentiate between two illumination effects. Global and local. First,
the global illumination f € R* is a channel wise multiplicative factor correcting
global properties like filter permeability or the lamp spectrum. Therefore the
set of k channels (C;) of the same image I are linearly dependent, excluding
noise and non-multiplicative foreground denoted as S. Consequently, the matrix
C € R™"**_ containing the linearized images as columns, has to have rank one.
However, assuming noisy images or foreground structures, which do not have
the same spectral response, we are searching for a rank-1 matrix L with

C=S+L, (6)

where S accommodates the non-multiplicative residuals. Based on Eq. (6), the
global, multiplicative illumination correction factors f can be recovered by the
unique decomposition of

L=1f", (7)

with [ € R™", f € R* and | f||; = 1.

In the second step, we calculate the local illumination correction. It is based
on the same principle, but additionally exploits properties of multispectral acqui-
sition. We take the channels C;, corresponding to acquisitions in the range over
700nm, and stack them column-wise in C. Hence, the vectorized local illumina-
tion [ = L(:) can be estimated by

C=S+L=S+Iif" (8)

For both matrix decompositions in Egs. (6) and (8), we use an algorithm
similar to the one of Cui et al. [4]. Revising formula (6), we want to decompose
C in a rank-1 matrix L and a matrix S. The matrix S models the foreground or
noise, and thus should be sparse. This leads to following objective

min [|S]lp st. C=S+L and rank(L)=1 (9)
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Similar to [4], we relax || - |lo to || - ||2,0 norm, which is a row-wise 2-norm
followed by column wise O0-norm. Both are optimized with an greedy algorithm,
which alternately optimizes for the rank-1 condition and the sparsity condition.
Obtaining a rank-1 approximation is achieved by Singular Value Decomposition
(SVD). For the sparsity approximation, we enforce ||S||2,0 < «, by setting S;; =0
except for the « largest rows in the || - ||2 norm, therefore « is an upper bound
on the number of non-zero rows. The threshold « is roughly set to the number
of foreground pixels.

Finally, the albedo A; is reconstructed using Eq. (4) by replacing L with a
reshaped [ from Eq. (8) and plugging in the estimate f; from Eq. (7),

Ai=fi-CioL=f-C;ol Vie{l, .. .k} (10)

where @ denotes the component-wise division.

o0 0 0 «

Fig. 5. Red dye on paper under varying illumination conditions: (a,b,c) uniform light
from the right, (d,e,f) spot light. The paper was: flat (a,d), bent (b,e) and crumpled
(c,f). Top row depicts the original images and the bottom row the corrected images
(Color figure online).

4 Experiments

We have acquired multispectral images in order to evaluate our method under
multiple scenarios. We start with simple scenarios, where both the scene and
the illumination are controlled and move on to images of real lesions of actual
patients under varying lighting conditions.

Synthetic Lesions on Paper: Our most simple test scenario involves images
of red dye on white paper (Fig.5). Here we vary both the illumination and
the geometry of the paper. The first three images (Fig. ba—c) are acquired under
uniform illumination (same light intensity across the image) from the right, while
varying the geometry of the paper: flat (a), bent (b) and crumpled (c). The other
three images are acquired under a non-uniform illumination (light is more bright
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Fig. 6. The grayscale version of the images from Fig.5 are accentuated with false
colors (divergent color-map: blue/white/red) to visualize the drop in image variance
after correction (bottom two rows). The histograms also reflect this, clearly showing
the two regions (red dye and background) (Color figure online).

in some regions of the image than others), while under the same deformations as
the first three: flat (d), bent (e) and crumpled (f). The second row of Fig. 5 shows
the same images after applying our method. A considerable improvement in the
contrast between foreground and background can be observed, with shading
caused by illumination almost completely removed.

Figure 6 shows false color images representing grayscale versions of the same
images from Fig.5: top two rows before and bottom rows after applying our
method. Additionally the histogram of each image is also shown in Fig. 6, visu-
alizing how the two areas (red foreground and white background) are much
better defined.

Synthetic Lesions on Skin: Images were taken of the forearms of multiple
volunteers, with ages ranging from 22 to 34 years (Fig. 7). Red dye was painted
on the skin and the images were acquired under uniform illumination, which
was provided by multiple halogen lamps behind diffuser curtains (to improve
uniformity).

Since the dye was applied uniformly, we can also use this set to validate the
performance of our illumination compensation. As can be observed in Fig. 8, the
spectra of pixels (both dye and skin) vary considerably less after local illumina-
tion compensation. It can also be observed that the shape of the spectra, which
dictates their color, has not changed. This shows that our method preserves the
spectral signature of the tissue.
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Fig. 7. Each row depicts a synthetic lesion of a different volunteer, with: (a) original
image, (b) both local and global illumination compensated, (c) only local illumination
compensated without global compensation and (d) illumination map L (false colors).

Psoriasis Lesions: Images were acquired at the university clinic during regular
consultation hours of patients with confirmed diagnosis of psoriasis vulgaris, with
ages between 19 and 74 years. All patients were undergoing treatment with pos-
itively responding lesions that were reducing in size. Illlumination was provided
by a regular halogen examination lamp that had to be repositioned depending
on the location of the lesion on the patients body (Fig.9 column-wise: lower leg,
elbow, upper arm and left wrist).

5 Discussion

In Sect.3.2 we have stated three assumptions essential to our method, with
the latter two dictating how we estimate the illumination map L. We will now
discuss two special cases, where we observed that these assumptions do not hold
completely.
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lesion 1 lesion 2 lesion 3 skin 1 skin 2 skin 3
Fig. 8. Compensating for illumination reduces the standard deviation of pixels inten-
sities from similar tissue types. Here we selected lesion and skin pixels from the first
three images in Fig. 7. The top row shows the mean spectrum and standard deviation

of lesion pixles (left three), and bottom row of skin pixels (right three). The second row
shows the same metric for the same pixel sets but, after local illumination correction.

@ ® © @

Fig.9. Each row depicts a different psoriasis lesion(s) (lower leg, elbow, upper arm
and left wrist), with: (a) original image, (b) both local and global illumination com-
pensated, (c) only local illumination compensated without global compensation and
(d) illumination map L (false colors).
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(a) (b)

Fig. 10. Normalized albedo of several lesions (psoriasis and red dye) with the top
row using unprocessed illumination maps, and the bottom processing the illumination
map with a bilateral filter before albedo recovery. Due to their similar size, specular
highlights on fine geometric details are introduced and can be observed in the bottom
row. Bilateral filtering of L has no impact on the global normalization. These are
magnified regions of images shown in Figs. 7 and 9 (Color figure online).

Although we assume the BRDF of both skin and lesions to be constant across
the visible spectrum, which it mostly is, we could observe in Fig. 7 that subjects
of rows 1 and 3 had clearly visible blood vessels under the skin. Above 750 nm,
skin becomes increasingly translucent, potentially revealing underlying blood
vessels which are then included in the illumination map L. This introduced bias
brightens the areas where the blood vessels are visible, however the spectrum
of the tissue is still preserved. We assume two factors to be responsible for this:
the relative young age of the subjects in this test, and that all measurements
were taken of the inside forearm, where blood vessels are especially prominent.
We could not observe this for patients with psoriasis lesions.

We could also observe that the reflectance spectrum of hair does not conform
to our assumption (see Sect.3.2) regarding the distinguishability of the fore-
ground and background spectra. Hair has a spectrum clearly distinguishable
from both lesions and skin, and is often included in L. This distinction can be
observed in both Figs. 3 and 4, where the hair is clearly black across all images,
thus different from both lesion and skin.

Removing the hair from the illumination map would imply to restoring it to
the corrected image, and thus the albedo A. Although we could employ a spe-
cialized method to remove the hair from L (such as described in [8]), we believe
a more generalized approach would be better suited, as it could also encompass
fine geometric details.

The task then becomes the removal of local features from L, while preserving
the larger scale illumination. We believe this to be similar to the principle of local
adaptation, used for tonemapping high dynamic range images [5,7]. As discussed
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in Sect.2, Fattal et al.[6] use a multiscale decomposition based on bilateral
filtering to preserve local features.

We employ a simplified implementation [12] with only one level of bilateral
filtering, with parameters tuned to preserve larger features in the illumination
map, such as skin folds, while removing fine ones, such as hair. Hairs are clearly
removed from L and restored to A (see Fig. 10), and although some halo artefacts
can be observed, these are considerably less pronounced than if a Gaussian filter
were used.

Although L approximates the distribution of illumination across the image,
we can observe that treating hair as illumination has the benefit of reducing its
visibility in A and further improving image quality.

6 Conclusion

We presented a novel illumination normalization method for use on multispec-
tral images in dermatology to better distinguish between lesions and their back-
ground. The spatial distribution of illumination in an image can be recovered
by exploiting differences between the spectra of the materials (tissues) being
imaged and that of the incoming light. We achieve this by means of a low-
rank decomposition that estimates the local variations in illumination as well as
global variations across the spectrum. Experimental results on both synthetic
and clinical data show significant improvements in image quality.

Acknowledgements. This work was partially funded by the TUM Graduate School
of Information Science in Health.

References

1. Basri, R., Jacobs, D., Kemelmacher, I.: Photometric stereo with general, unknown
lighting. Int. J. Comput. Vis. 72(3), 239-257 (2007)

2. Chen, W., Er, M.J., Wu, S.: Illumination compensation and normalization for
robust face recognition using discrete cosine transform in logarithm domain. IEEE
Trans. Syst. Man Cybern. Part B Cybern. 36(2), 458-466 (2006)

3. Cheng, Y.I., Swamisai, R., Umbaugh, S.E., Moss, R.H., Stoecker, W.V., Teegala, S.,
Srinivasan, S.K.: Skin lesion classification using relative color features. Skin Res.
Technol. 14(1), 53-64 (2008)

4. Cui, X., Huang, J., Zhang, S., Metaxas, D.N.: Background subtraction using low
rank and group sparsity constraints. In: Fitzgibbon, A., Lazebnik, S., Perona, P.,
Sato, Y., Schmid, C. (eds.) ECCV 2012, Part I. LNCS, vol. 7572, pp. 612-625.
Springer, Heidelberg (2012)

5. Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range
images. ACM Trans Graph. (TOG). 21, 257-266 (2002)

6. Fattal, R., Agrawala, M., Rusinkiewicz, S.: Multiscale shape and detail enhance-
ment from multi-light image collections. ACM Trans. Graph. 26(3), 51 (2007)

7. Li, Y., Sharan, L., Adelson, E.H.: Compressing and companding high dynamic
range images with subband architectures. ACM Trans. Graph. (TOG). 24,
836-844 (2005)



10.

11.

12.

13.

14.

Illumination Compensation and Normalization Using Low-Rank 625

Nguyen, N.H., Lee, T.K., Atkins, M.S.: Segmentation of light and dark hair in
dermoscopic images: a hybrid approach using a universal kernel. In: SPTE Medical
Imaging. p. 76234N, International Society for Optics and Photonics (2010)

Park, J.I., Lee, M.H., Grossberg, M.D., Nayar, S.K.: Multispectral imaging using
multiplexed illumination. In: IEEE 11th International Conference on Computer
Vision, ICCV 2007, pp. 1-8 (2007)

Samaras, D., Metaxas, D., Fua, P., Leclerc, Y.G.: Variable albedo surface recon-
struction from stereo and shape from shading. In: Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition. vol. 1, pp. 480-487. IEEE (2000)
Shi, Z., Govindaraju, V.: Historical document image enhancement using back-
ground light intensity normalization. In: Proceedings of the 17th International
Conference on Pattern Recognition, ICPR 2004, vol. 1, pp. 473-476. IEEE (2004)
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Sixth
International Conference on Computer Vision, 1998, pp. 839-846. IEEE (1998)
Vogel, A., Chernomordik, V.V., Demos, S.G., Pursley, R., Little, R.F., Tao, Y.,
Gandjbakhche, A.H., Yarchoan, R., Riley, J.D., Hassan, M., et al.: Using noninva-
sive multispectral imaging to quantitatively assess tissue vasculature. J. Biomed.
Opt. 12(5), 051604-051604 (2007)

Zheng, J., Li, Z., Rahardja, S., Yao, S., Yao, W.: Collaborative image processing
algorithm for detail refinement and enhancement via multi-light images. In: IEEE
International Conference on Acoustics Speech and Signal Processing (ICASSP),
pp. 1382-1385. IEEE (2010)



	Illumination Compensation and Normalization Using Low-Rank Decomposition of Multispectral Images in Dermatology
	1 Introduction
	2 Related Work
	3 Methods
	3.1 Multispectral Image Formation
	3.2 Modeling Illumination
	3.3 Low-Rank Decomposition

	4 Experiments
	5 Discussion
	6 Conclusion
	References


