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Abstract 7 

Due to limited in-situ data global soil moisture products should also be validated with respect to 8 

independent global data sets. Our study investigates possibilities and benefits of relating soil moisture 9 

products from remote sensing and hydrological modeling to information on total water storage change 10 

from satellite gravimetry. We use soil moisture data from the active satellite sensor ASCAT and the 11 

hydrological model WGHM as well as satellite gravity field observations from the GRACE mission. 12 

First we apply a data harmonization procedure to equalize the distinct data representations and formats 13 

of those data sets. Then we perform a correlation analysis. The results show correlations close to one 14 

between GRACE and soil moisture data specifically for humid and temperate regions. A comparison of 15 

correlation coefficients from different data pairs highlights that in arid environments total water storage 16 

from GRACE corresponds better to surface soil moisture captured by ASCAT than to total soil moisture 17 

from WGHM. In humid and temperate regimes the observation is reversed. Furthermore regions could 18 

be identified where the input data of the WGHM might be of low quality, producing higher correlations 19 

between ASCAT and GRACE than between ASCAT and WGHM. We therefore conclude that GRACE 20 

data can deliver valuable information for the quality assessment of soil moisture products and provide a 21 

link to their contribution to continental water storage. 22 
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1. Introduction 25 

High-quality global or small-scale soil moisture products are of great interest to various sectors, dealing 26 

for example with agricultural development, disaster management (drought and flood forecast), or water 27 

supply (Bolten et al. 2010). Comprehensive and continuous measurements of soil moisture on site in 28 

direct contact with the medium are currently not available on global scale (Wang & Qu, 2009). Only 29 

some continental areas start to be well covered by The International Soil Moisture Network 30 

(www.ipf.tuwien.ac.at/insitu/). Therefore recent small-scale soil moisture maps are either derived 31 

indirectly from satellites or from the outputs of hydrological models. Examples of satellite sensors and 32 

models which are used for the generation of soil moisture maps are given in Table 1. 33 

Table 1: Examples of satellite sensors and models, delivering data for global soil moisture maps. 

Satellite Sensors  Models 

Sensor 
Satellite 

Platform 
Type 

Operation 

Time 

 
Name Type 

Operation 

Time 

ASCAT 

(Advanced 

SCATterometer) 

METOP 

Active 

Scatterometer 

(C-Band) 

2006 - present  

WGHM 

(WaterGAP Global 

Hydrology Model) 

Hydrological 

water balance 

model 

1901 - present 

AMSR-E 

(Advanced 

Microwave Scanning 

Radiometer for EOS) 

AQUA 

Passive 

Radiometer 

(X-Band and 

C-Band) 

2002 - 2011  

GLDAS 

(Global Land Data 

Assimilation 

System) 

Land Surface 

Model 
1979 - present 

MIRAS 

(Microwave Imaging 

Radiometer using 

Aperture Synthesis) 

SMOS 

Passive 

Radiometer  

(L-Band) 

2010 - present  

ERA-Interim 

(ECMWF global 

atmospheric 

reanalysis) 

Atmospheric 

Reanalysis 
1989 - present 

 34 

For creating or improving global data sets on soil moisture four main research targets can be identified: 35 

1. Understanding the nature of soil moisture and associated processes  36 

2. Understanding the nature of satellite data that are used to indicate soil moisture  37 

3. Developing methods for the generation of soil moisture products based on this understanding  38 

4. Developing methods for the validation of the generated soil moisture products and with it doing 39 

a quality assessment on Research Targets 1 to 3. 40 
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This study focuses on Research Target 4.   41 

 42 

Most commonly the validation of global soil moisture products is performed by choosing one or more 43 

local study sites where satellite or modeled data are compared against in-situ measurements. The 44 

lessons learnt from these local sites are then projected to larger regions. Major in-situ validation sites 45 

for AMSR-E are located in the United States. As part of the Soil Moisture Experiments (SMEX) they 46 

are situated for example in the Walnut Creek Watershed, Iowa (Cosh, 2004) and the little Washita river 47 

watershed, Oklahoma (Cosh et al. 2006). For ASCAT various studies have been done within Europe. An 48 

example is the extensive work of Brocca et al. (2011), comparing ASCAT and AMSR-E data with 49 

measurements of 17 in-situ stations in Italy, Spain, France, and Luxembourg. Another extensive study 50 

of Albergel et al. (2012) evaluates data from 200 stations, located in  Africa, Australia, Europe, and the 51 

United States for ASCAT and SMOS. Specifically for the verification of SMOS data the field campaign 52 

“Surface Monitoring Of the Soil Reservoir EXperiment” (SMOSREX) has been established in Mauzac 53 

near Toulouse, France (De Rosnay et al., 2006). An example of respective validation studies on models 54 

is the work of Kato et al. (2007) comparing soil water content of the three GLDAS land surface models 55 

NOAH, MOSAIC and CLM with globally distributed in-situ data from thirty field measurement 56 

stations from the Global Energy and Water Cycle Experiment (GEWEX).   57 

 58 

Due to the sparse distribution of operating field measurement stations, the comparison of satellite or 59 

modeled data with in-situ data is limited to regional scales. Therefore comprehensive global validation 60 

studies are mainly done by the mutual comparison of different global soil moisture products, using 61 

various mathematical approaches such as statistical analysis (Dirmeyer et al. 2004), triple collocation 62 

method (Dorigo et al., 2010; Scipal et al. 2008; Leroux et al. 2011) or correlation analysis  (Jeu et al., 63 
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2008; Reichle et al. 2004). Subject to those validation studies are mostly different remote sensing 64 

products from active and passive satellite sensors and various models providing hydrological 65 

information, as listed in Table 1.  66 

Based on global validation studies of soil moisture products the following statements were for example 67 

made: 68 

- High foliage density contaminates the microwave signal of soil moisture specifically for 69 

radiometers (Dirmeyer et al., 2004; Scipal et al., 2008; Dorigo et al., 2010; Jeu et al., 2008) 70 

- Over dense forest no retrieval is possible, applying for both active and passive microwave data 71 

(Jeu et al., 2008) 72 

- In desert areas microwave scatterometers are prone to volume scattering effects of dry sand and 73 

systematic surface roughness effects (Scipal et al., 2008; Dorigo et al., 2010; Jeu et al., 2008) 74 

- Radio Frequency Interference artificially lowers soil moisture values (Jeu et al., 2008) 75 

- Regions of snow and ice are susceptible to signal contamination for passive microwave sensors 76 

(Dirmeyer et al., 2004) 77 

- Poor or absent snow-melt modeling degrades the quality of soil moisture products from models 78 

(Dirmeyer et al., 2004) 79 

Furthermore information on data quality is used to produce merged global soil moisture products from 80 

different sensors (Liu et al., 2012; Liu et al., 2011) and to assimilate satellite soil moisture data into 81 

models (Reichle et al., 2013; Draper et al., 2012; Dharssi et al., 2011).   82 

 83 

Reflecting on these results one can conclude that inter-comparisons of independent data sets on global 84 

scale have been helpful to identify and locate problems arising from the mapping of soil moisture from 85 

space or by modeling. In addition to direct comparisons with in-situ data they provide valuable 86 
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information for global quality control. 87 

 88 

Considering the fundamental importance of quality control for global soil moisture products and 89 

recognizing previous findings of inter-comparison studies, this paper investigates the possibilities and 90 

benefits of relating data from satellite gravimetry to global soil moisture products. Specifically satellite 91 

data from the GRACE (Gravity Recovery And Climate Experiment) mission are used. Those data have 92 

already been subject to several studies focusing on the quality control or calibration of model outputs in 93 

terms of total continental water storage (Güntner, 2008; Werth et al., 2009; Werth & Güntner, 2010; 94 

Mueller et al. 2011; Houborg et al., 2012). However, a specific analysis with respect to soil moisture 95 

data has not been performed yet. In our research we compare GRACE data against surface soil moisture 96 

products from ASCAT and total soil moisture and total water storage data from WHGM. For the 97 

comparison we perform a correlation analysis.  98 

 99 

The comparison of GRACE data with global soil moisture products has some advantages. Firstly 100 

GRACE data are available on global scale from 2002 until present with a temporal resolution of one 101 

month. Secondly the derived information on changes in total water storage are based on the 102 

measurement of mass changes and are therefore totally independent of any other remote sensing 103 

technique or hydrological modeling method. Also the topographic complexity or land cover do not play 104 

any role for data quality (as it does for example for scatterometers).  105 

 106 

Other characteristics of GRACE are rather challenging when it comes to the comparison with global 107 

soil moisture products. For example several assumptions have to be made in order to link changes in 108 

total water storage to changes in soil moisture, which are in fact two different kinds of parameters. Also 109 
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GRACE data, which are usually provided in spherical harmonic coefficients, have to be corrected for 110 

signals related to the satellite’s orbit characteristics and short-term mass changes using specific 111 

algorithms and filters (see Section 2.2). Consequently the soil moisture data have to be treated in the 112 

same way to achieve a harmonized representation of all data sets for the comparison. Relating soil 113 

moisture products to products from GRACE is therefore not straight forward.  114 

 115 

Focusing on the integration of GRACE data into the validation of soil moisture products via correlation 116 

analysis this study addresses three main research questions: 117 

1. Is the correlation of GRACE and soil moisture data feasible with respect to the harmonization 118 

steps: 119 

a. Conversion of soil moisture data into spherical harmonics 120 

b. Filtering  121 

2. Can we observe in certain regions of the world correlations between the different data sets and 122 

with it identify where GRACE data may be useful for the understanding of soil moisture 123 

products? 124 

3. What is the benefit of correlating GRACE data with soil moisture data sets?  125 

 126 

For seeking the answers to those research questions the chapters of this study are structured in the 127 

following way. In Chapter 2 on “Methodology” we first focus on the assumptions we make in order to 128 

link changes in total water storage to changes in soil moisture (2.1). Afterwards we point out our 129 

approach for harmonizing soil moisture products and data from satellite gravimetry and describe the 130 

subsequent correlation analysis (2.2). In Chapter 3 on “Materials” we introduce the data sets of 131 

GRACE, ASCAT and WGHM. In the fourth chapter we present the results of the correlation analysis 132 
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with respect to the first two research questions. We demonstrate how correlation results are impacted if 133 

the input soil moisture products are converted into spherical harmonics and filtered using a standard 134 

Gauss-filter (Research Question 1). Furthermore we show world maps, highlighting the correlation 135 

coefficients for different data combinations for the time period September 2006 to August 2011 136 

(Research Question 2). The correlation results and the benefits of relating GRACE data to soil moisture 137 

products (Research Question 3) are discussed in the fifth Chapter. Finally we draw conclusions in the 138 

last chapter.    139 
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2. Methods 140 

2.1 Assumptions 141 

Putting the signal from GRACE in relation to soil moisture is not directly possible. This is mainly based 142 

on the fact that GRACE is not only sensitive to signals of soil moisture but to all sources of mass 143 

changes on the Earth’s surface and its interior. Changes of atmospheric and oceanic masses as well as 144 

signals from solid Earth tides are removed from the signal already during pre-processing using 145 

background-models (Flechtner, 2007). This implies that over non-polar continental regions GRACE 146 

provides information predominantly on mass changes within the continental hydrology, that entail the 147 

largest remaining effect on temporal variations of the gravity field on seasonal time scales. On first 148 

sight we compare two different parameters in our analysis: soil moisture and terrestrial masses. Figure 1 149 

illustrates that soil moisture is (together with surface water, ground water, canopy storage and snow and 150 

ice) part of the total continental water storage (TWS). The mass of TWS sums up together with changes 151 

of non-hydrological masses (e.g. within the solid Earth’s body due to mantle convection and post-152 

glacial rebound) to the total terrestrial mass variation that is sensed by GRACE. Soil moisture is one 153 

component out of the terrestrial mass. If it changes, the terrestrial mass changes as well.  154 

 155 

Figure 1: Balance illustrating main mass components on earth, adding up to the terrestrial masses as sensed by 

GRACE. PGR refers to post-glacial rebound. 

 

In order to put variations in soil moisture in direct relation to changes in terrestrial masses we make 156 

several assumptions: 157 

1. We assume that solid earth does not change in the time span of our study and that consequently 158 

a change in the gravity field is only related to changes in terrestrial water masses. Therefore we 159 
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refer to change in total water storage when mentioning GRACE data.  160 

2. For assumption 1 we only make one exception: as post-glacial rebound (PGR) is also visible 161 

over shorter time periods (Geruo et al., 2012; Purcell et al., 2011), we neglect correlation values 162 

of regions affected by post glacial rebound in our study (Alaska, Canada, Greenland, 163 

Scandinavia, Antarctica).   164 

3. We only focus on areas, where snow and ice can be neglected. In this way we can exclude these 165 

contributions to total water storage. 166 

4. We do not focus on regions with high foliage density due to the low precision of ASCAT data in 167 

these regions. Therefore we neglect the small contribution of canopy storage to continental 168 

water storage.  169 

5. Considering the prior assumptions we are only left with three components that make up the 170 

change in continental water storage, namely surface water, ground water and the target 171 

parameter soil moisture. We assume that correlations between change in soil moisture and 172 

change in total water storage are high if: 173 

a. the change in soil moisture is much larger than the change of ground water and surface 174 

water combined.  175 

b. soil moisture changes proportionally with ground water and surface water. 176 

Assumption 4a) we consider possible, as surface water is rather a point-like (lake) or line-like 177 

(river) phenomenon, while soil moisture changes over large areas. Furthermore groundwater 178 

does not show strong short-term variation (recharge ≤ 5mm/year), unless excessively impacted 179 

by humans for example through irrigation (Taylor et al., 2012). Assumption 4b) is based on the 180 

idea that soil moisture serves as transition zone between surface and ground water and therefore 181 

may show similar variations. 182 
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Accounting for assumptions 1 to 4 we assume that under certain circumstances changes in soil moisture 183 

can be put in relation to changes in total water storage as sensed by GRACE.  184 

 185 

2.2 Data Set Harmonization and Correlation Analysis 186 

In our study we relate fundamentally different data sets from satellite gravimetry, remote sensing, and 187 

hydrological models via correlation analysis. From satellite gravimetry we obtain the change in total 188 

water storage. From remote sensing data and hydrological modeling we receive information on soil 189 

moisture. The data sets do not only differ in the observed parameter as discussed in the previous 190 

chapter, but also show different characteristics in terms of spatial and temporal resolution, units, 191 

representation and processing. In order to best possibly avoid an impact of the different data structures 192 

on the correlations between the data sets, we harmonize all data sets before correlating them. The 193 

different steps that are taken for data harmonization are shown in Figure 2.  194 

 195 

Figure 2:  Flowchart describing the data harmonization process for equalizing soil moisture products and 196 
satellite gravimetry data on total water storage (TWS).  197 

 198 
The monthly change in continental water mass from GRACE is commonly derived from spherical 199 

harmonic coefficients of the Earth’s gravity field (Wahr et al., 1998). Soil moisture products are usually 200 

provided in different grid formats of for example 25 km x 25 km or 0.5° x 0.5°. To equalize the 201 

representation of all data sets the gridded soil moisture data from remote sensing and hydrological 202 

modeling are first brought to a 1° x 1° grid by computing the simple average of all data points falling 203 



  11 

 

within a 1° grid cell. Then the grid points are converted into spherical harmonics up to the same degree 204 

and order as the data from GRACE (here we apply data sets of degree and order 70). Research Question 205 

1a) addresses, how this first change of representation influences the correlation between the two soil 206 

moisture data sets. 207 

 208 

Since we restrict our analysis of GRACE data to changes of continental water storage we reduce the 209 

spherical harmonic coefficients from GRACE by their long-term mean over the overlapping time period 210 

of all compared products. Likewise the spherical harmonic coefficients of the soil moisture products 211 

(obtained from the conversion of the grids by spherical harmonic analysis) were reduced by their mean 212 

values. Consequently we end up with information on changes in TWS (GRACE) and changes in soil 213 

moisture (ASCAT and WGHM). Proceeding with values relative to the mean and not absolute values 214 

implies that we will relate information on hydrologic anomalies from different data sets.  215 

 216 

As third processing step the data are filtered. GRACE Level-2 data (spherical harmonic coefficients) 217 

contains specific errors resulting from measurement principle and orbit characteristics of the twin-218 

satellite mission (Wahr et al., 1998). So-called correlated errors are due to the mission’s inability to 219 

resolve spherical harmonic coefficients at all degrees and orders. Furthermore mass fluctuations on sub-220 

monthly timescales that are not captured by the applied background models of atmosphere and oceans 221 

cause high frequency aliasing. These errors would show up as meridional stripes in maps of gravity 222 

field variations if not treated accordingly. Here we follow the widely used procedure by applying (a) a 223 

least-squares polynomial filter for the reduction of the correlated errors in the coefficients (”destriping”) 224 

(Swenson & Wahr, 2006) and (b) an isotropic Gaussian smoothing filter (Wahr et al., 1998) with 300km 225 

half-wavelength for the reduction of noisy short wavelength components. The latter is applied in the 226 

course of the conversion of spherical harmonic coefficients into monthly fields of Equivalent Water 227 
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Heights (EWHs). 228 

 229 

The least-squares filter is only applied to GRACE data. It has been demonstrated by Swenson and Wahr 230 

(2006) that this filter only marginally influences data sets, which are not affected by correlated errors 231 

(like our converted fields of ASCAT and WGHM). In contrast it is well-known that the Gaussian 232 

smoothing filter does not only remove the unwanted noise but also (depending on the filter wavelength) 233 

a significant part of the desired signal. Therefore it is necessary to filter all data sets with this filter in 234 

order to obtain comparable data. Without applying this common filter the soil moisture products would 235 

show much finer patterns than the GRACE data. In Research Question 1b) we focus on the impact of 236 

Gaussian filtering on the correlations between two soil moisture data sets.  237 

 238 

As forth step we convert the spherical harmonic coefficients of all data sets back into geographical grids 239 

of 1°. We do not scale the data, as Liu et al. (2011) have shown that correlation values are not impacted 240 

by scaling. As a last step we mask areas influenced by snow, ice or PGR. The snow mask is derived 241 

from the hydrological model, excluding areas where the absolute value of all variation in snowfall over 242 

the observed time span is bigger than 20mm EHW and therefore might influence our filtered GRACE 243 

fields (Wahr et al., 2006). Respectively we also mask areas where (according to Geruo et al., 2012) 244 

PGR-rates exceed +/-5mm EWH per year (Gaussian-filter with 200km radius, maximum degree and 245 

order 60). The resulting harmonized maps are then used as input for the correlation analysis. We 246 

correlate the values of two data sets for each 1° grid cell over time. The correlation is simply assessed 247 

by computing the Pearson product-moment correlation coefficient (Rodgers & Nicewander, 1988), 248 

whereby the correlation coefficient between the two variables is equal to the covariance of both 249 

variables divided by their standard deviations. By computing the correlation coefficients we intend to 250 
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identify regions where GRACE data corresponds well with soil moisture data (Research Question 2). 251 

Finally we interpret the results and conclude if there are benefits of including GRACE data into studies 252 

on soil moisture products (Research Question 3). 253 
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3. Data Sets      254 

Within our study we compare gravimetric data from GRACE, remote sensing data on surface soil 255 

moisture (< 5cm) from the active sensor ASCAT and total soil moisture (simulated for the entire soil 256 

column) and TWS from the hydrological model WGHM. Table 2 gives an overview on the individual 257 

characteristics of each data set. The last column emphasizes the data specifications that we 258 

implemented for all data sets in the course of the data harmonization as described in Chapter 2.2. We 259 

focus on the time period September 2007 to October 2011 to allow the computation of mean values 260 

over complete annual cycles.  261 

Table 2: Specifications of the original data sets and the targeted harmonized specifications for all data sets for 

the correlation analysis. 

 Satellite Gravimetry Remote Sensing Hydrological Model Harmonized 

Specifications 

Source GRACE ASCAT WGHM  

Product 

Level 2, RL04, German 

Research Centre for 

Geosciences (GFZ)  

Level 2 Soil Moisture 

at 25 km Swath Grid 

EUMETSAT, Vienna 

University of 

Technology (TU Wien) 

2.1f, German Research 

Centre for Geosciences 

(GFZ) 

 

Reference (Flechtner et al., 2010) (Bartalis et al., 2007) (Döll et al., 2003) this paper 

Parameter 
change in total water 

storage 
surface soil moisture 

total soil moisture, 

change in total water 

storage 

only changes can be 

compared, further 

assumptions are needed 

Availability 2002 - present 2007 - present 1901 - present Sep. 2007 - Aug. 2011 

Temporal 

 Resolution 
monthly daily monthly monthly 

Spatial 

Resolution 
~ 1° 25 km 0.5° 1° 

Coverage global global global global 

Unit 

millimeter Equivalent 

Water Height (mm 

EWH) 

% 

(0% dry, 100% wet) 

millimeter Equivalent 

Water Height (mm 

EWH) 

scaling to millimeter 

Equivalent Water 

Height (mm EWH) 

Representation 
spherical harmonics 

(SH)  

ascending and 

descending tracks 
0.5° world map 

spherical harmonics 

(SH) 

Post-Processing 
least-squares-filtering,  

Gauss-filtering 
- - 

least-squares-filtering 

only for GRACE,  

Gauss-filtering for ALL 

 262 
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ASCAT data provided by EUMETSAT contain additional information on quality control (Bartalis et al., 263 

2008). Table 3 points out the criteria which we apply to exclude soil moisture data based on this 264 

information. The soil moisture error is derived from error propagation of the backscatter noise, and we 265 

exclude data if this error exceeds 10%. For the non-scatterometer based output variables containing 266 

information on topographic complexity, snow cover fraction, frozen land surface fraction, and 267 

inundation and wetland fraction a common threshold of 50% is applied. Furthermore all data are 268 

excluded where processing flags are set. Those flags account for limitations of the instrument (such as 269 

noise levels and sensitivity) and the amount of land in the scene. Correction flags indicate data that 270 

allow for the calculation of soil moisture but might be of reduced quality based on the choice of 271 

references for minimum and maximum saturation level of soil and backscattering. We do not take into 272 

account those flags as they limit data availability significantly; in contrast we aim at a better 273 

understanding of the quality of those data through the comparison with GRACE observations. 274 

Table 3: Quality control information for ASCAT data as provided by EUMETSAT and respective exclusion 275 
criteria applied for this study. 276 

Flags ASCAT Exclusion Criteria 

Soil moisture error  > 10% 

Topographic complexity  > 50% 

Snow cover fraction > 50% 

Frozen land surface fraction  > 50% 

Inundation and wetland fraction  > 50% 

Processing Flags  on 

Correction Flags  off 

 277 

The WaterGAP Global Hydrology Model (WGHM) is a state of the art water balance model, developed 278 

for the assessment of water resources and water balances in river basins. It simulates change in total 279 

continental water storage, accounting for the hydrological compartments groundwater, soil moisture, 280 

snow, canopy storage, and surface water in rivers, lakes, reservoirs, and wetlands. With it more 281 
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compartments are included than for example in the Land Dynamics (LaD) World model (accounting for 282 

snow, soil and groundwater) or the Global Land Data Assimilation System (GLDAS) (accounting for 283 

canopy, snow and soil moisture). Solutions are provided in daily time steps at a spatial resolution of 0.5 284 

degree. The model is calibrated for river discharge by over 1200 gauging stations worldwide. For the 285 

selected time period of this study the climate forcing data (temperature, cloudiness and number of rainy 286 

days per month) are provided by the operational forecasts of the European Centre for Medium-Range 287 

Weather Forecasts (ECMWF) (Werth & Güntner, 2010). Furthermore precipitation input from the 288 

Global Precipitation Climatology Centre (GPCC) is used. Soil moisture is modeled for one layer with 289 

spatially varying thickness, depending on the rooting depth of vegetation. The land cover dependent 290 

rooting depth is multiplied with the total available water capacity in the first uppermost meter of soil to 291 

compute the maximum available soil water capacity (Döll et al., 2003). Global TWS variations from 292 

WGHM have been compared in various studies to those from GRACE (Forootan et al., 2012; Crossley 293 

et al., 2012; Papa et al., 2008; Schmidt et al., 2006 and 2008).  294 
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4. Results 295 

4.1 Data Harmonization 296 

Regarding data harmonization we first pose the question how the conversion of gridded data into 297 

spherical harmonics (step I in Figure 2) changes the correlation values between two different data sets 298 

(Research Question 1a). Figure 3a shows the correlation coefficients for the mean- reduced ASCAT and 299 

WGHM data, when being brought to a 1° grid (we omit step I and III in Figure 2). Figure 3b displays 300 

the correlation of the same data sets with the sole difference that this time the data have been converted 301 

into spherical harmonics up to degree and order 70 and then brought back onto a 1° grid (we only skip 302 

step III in Figure 2). The impact of this equalization step is pointed out in Figure 3c, where the values 303 

of Figure 3b have been subtracted from the values of Figure 3a. Two major observations can be made 304 

from the plots: firstly data points are gained over the Sahara desert when applying spherical harmonics. 305 

Secondly correlations increase from Figure 3a to Figure 3b in a uniform manner, as Figure 3c shows an 306 

almost consistent difference between 0 and -0.2 in the correlation coefficients. A large difference of -1 307 

is only observed around the Sahara desert.    308 

 309 

The gain in data points over the Sahara is caused by the spherical harmonic conversion of the WGHM 310 

data. Prior to the conversion for extended regions over the Sahara the standard deviation of soil 311 

moisture change provided by the model is equal to zero. Therefore no correlation value can be 312 

calculated (denominator becomes zero). Due to the conversion in spherical harmonics the standard 313 

deviation becomes unequal zero (and with it also the denominator of the correlation coefficient), 314 

leading to additional correlation coefficients on the map. In arid environments, e.g. in the Arabian and 315 

Taklimakan desert, variations in soil moisture are very close to zero. Those extreme low values are also 316 

artificially increased by the transformation into spherical harmonics. With it standard deviations very 317 
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close to zero become biased and generate (as shown in Figure 3c) large correlation differences of -1 318 

(between Figure 3a and 3b) in hyper-arid environments with low soil moisture variation (< 5% of the 319 

data range). 320 

 321 

Since ASCAT does not provide absolute soil moisture but percentage values (0% = lowest and 100% = 322 

highest inverted dielectric constant obtained over an extended observation period), the variation in soil 323 

moisture in hyper-arid regions is relatively high compared to WGHM. Consequently we do not identify 324 

any significant impact of the spherical harmonic conversion on the standard deviations of the ASCAT 325 

data. However, for change in TWS from WGHM the same bias for approximately the first 5% of the 326 

data range is observed. Based on these findings we avoid artifacts from spherical harmonic conversion 327 

in the following processing steps by excluding for all maps pixels where the standard deviation is 328 

smaller than 5% of the data range. The respective map of the correlation coefficients between ASCAD 329 

and WGHM after the conversion in spherical harmonics (still omitting step III in Figure 2) and the 330 

masking is shown in Figure 3d.  331 

 332 
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Figure 3:  Correlation coefficients for change in soil moisture from WGHM and ASCAT, showing a) results for 333 
the original data when being brought to a 1° grid, b) results for the data from a) after spherical harmonic 334 
conversion of maximal degree and order 70 and c)  the difference between the map from a) and the map from b). 335 
In d) we see the map of b) where regions with high negative differences (mainly in the Sahara) as shown in c) 336 
and artificial variations from b) are masked out.  337 

 338 
Next, the impact of Gauss-filtering on the correlation coefficients of ASCAT and WGHM data is 339 

studied (step III in Figure 2, Research Question 1b). Figure 4a shows the correlation coefficients of soil 340 

moisture data from ASCAT and WGHM after spherical harmonic conversion and Gauss-filtering (all 341 

steps in Figure 2 are implemented). Figure 4b shows the difference between the filtered (Figure 4a) and 342 

unfiltered correlation coefficients. For filtered data the correlation coefficients are almost consistently 343 

higher. 344 

 345 

Figure 4:  Correlation coefficients for change in soil moisture from WGHM and ASCAT, showing a) results from 346 
Figure 3d) after Gauss-filtering with 300km radius and b) the difference between the map from Figure 3d) and 347 
the map from Figure 4a).  348 

 349 
Figure 5 shows impacts of the conversion in spherical harmonics and Gauss-filtering for time series of 350 

soil moisture variation (mean is subtracted) from ASCAT (Figure 5a, c, and, e) and WGHM (Figure 5b, 351 

d, and, f) at three selected locations. The data gaps in January 2011 and June 2011 appear as for these 352 

months GRACE data is not available. For the first location in India at 16°Latitude and 77°Longitude 353 

the correlation between ASCAT (Figure 5a) and WGHM (Figure 5b) increases from 0.7 to 0.9 due to 354 

data harmonization. In the case of the second location (Figure 5c and d) in Africa at 24.5°Latitude and 355 
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30.5°Longitude the original data from WGHM gives constantly values of zero (calculation of 356 

correlation is not possible). Those values are then artificially increased by the harmonization process 357 

leading to a correlation coefficient of 0.3. The time series for the third location in Africa at 27°Latitude 358 

and 0.5°Longitude (Figure 5e and f) shows a very small standard deviation for the original WGHM data 359 

with only one event during winter 2008/2009. The correlation coefficient with the original ASCAT data 360 

is -0.5 due to the well-known volume scattering effects of ASCAT in hyper-arid environments (see 361 

Chapter 1). It is then increased to 0.4 in the course of the conversion into spherical harmonics and 362 

Gauss-filtering. The faulty correlation results from the last two locations are not taken into account in 363 

the following correlation analysis due to the prior mentioned masking.  364 

 365 
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Figure 5: Time series showing impacts of data harmonization (conversion in spherical harmonics of degree and 367 
order 70, and Gaussian-filtering with 300km radius) on data in India at 16°Latitude and 77°Longitude for soil 368 
moisture variation from a) ASCAT and b) WGHM, on data in Africa at 24.5°Latitude and 30.5°Longitude for soil 369 
moisture variation from c) ASCAT and d) WGHM, and on data in Africa at 27°Latitude and 0.5°Longitude for 370 
soil moisture variation from e) ASCAT and f) WGHM. 371 

 

4.2 Correlation Analysis 372 

In the following we focus on the actual correlation values that can be observed for two harmonized data 373 

sets (all steps in Figure 2 are implemented). First we focus on pairs of the same parameter. The 374 

correlation coefficients between change in total water storage as sensed by GRACE and modeled by 375 

WGHM are shown in Figure 6a. Over extended regions the correlation coefficient exceeds 0.6. In dry 376 

climate regimes rather low correlations (for example in Patagonia) or most often no values are available 377 

(Sahara desert, Arabia). This is due to the fact that the data were masked out based on the low standard 378 

deviation of WGHM data. In Figure 6b correlation coefficients for change in soil moisture derived from 379 

ASCAT and WGHM are displayed. Even higher correlation values than for the two data sets on total 380 

water storage are visible, indicating that both data sets are in good agreement.   381 

 382 

Secondly we focus on pairs of two different parameters. Figure 6c shows the correlation values between 383 

change in soil moisture from WGHM and change in total water storage from GRACE. This time the 384 

correlation coefficients are lower than in Figure 6a and Figure 6b, especially in dry climate regimes. In 385 

humid climate zones, e.g. the Amazonian region and East Asia, correlation is close to 1. In Figure 6d 386 

the correlation coefficients for change in soil moisture from ASCAT and change in total water storage 387 

from GRACE are displayed. Again high correlation values close to 1 are visible in humid climate 388 

regimes, specifically in East Asia. Also in temperate regions, including parts of Europe and Western 389 

US, correlation values of about 0.5 are reached. Negative values are again found in dry climate zones 390 

with the exception of the Australian desert. 391 
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 392 

Figure 6:  Correlation coefficients for a) total water storage changes from GRACE and WGHM, b) soil moisture 393 
changes from ASCAT and WGHM, c) soil moisture changes from WGHM and total water storage changes from 394 
GRACE, d) soil moisture changes from ASCAT and total water storage changes from GRACE.  395 
 396 
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5. Discussion 397 

The results from Chapter 4.1 emphasize two major effects that are connected with the data 398 

harmonization process described in Figure 2 (Research Question 1): first, the conversion into spherical 399 

harmonics and the Gauss-filtering smooth the signal, and detail is lost on spatial scale. Also the 400 

temporal resolution is decreased by downscaling from daily to monthly values. The comparison of soil 401 

moisture products with GRACE data can therefore only be integrated in studies focusing on phenomena 402 

of a coarse spatial and temporal resolution. Studies on the scale of small catchments, as usually 403 

performed for the validation of soil moisture products, are not feasible with GRACE. Smoothing or 404 

filtering impact the correlation coefficients mainly in a uniform way. By losing detail and reducing 405 

noise correlation increases. This indicates that the analyzed products differ almost uniformly on spatial 406 

scale in the high frequencies. This could be due to the diverse acquisition and interpolation techniques 407 

that are used to generate the grid points of the different data sets.  408 

 409 

But spherical harmonics do not in all cases smooth the signal. For very small variations in the signal (as 410 

in the Sahara desert) a reverse effect can be seen: the signal itself is not smoothened but its variation 411 

increases artificially. Such artifacts impact the correlation with other data sets or generate new 412 

correlation coefficients in regions where the standard deviation of the original data was equal to zero. 413 

We therefore suggest masking out areas that show artificial variations after the spherical harmonic 414 

conversion and exclude them from correlation studies. 415 

 416 

Results from Chapter 4.2 provide information on absolute correlation values for different data set 417 

combinations (Research Question 2). Highest correlation values occurred when either soil moisture data 418 

from WGHM and ASCAT or total water storage data from WGHM and GRACE were correlated. This 419 
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result is expectable since in both cases the data sets contain information on the same parameter. It can 420 

also be concluded that WGHM agrees very well with data from remote sensing and gravimetry.  421 

 422 

When two different parameters are correlated, the coefficients are generally lower. Higher correlation 423 

values can be found in humid climate regimes than in arid ones. Three possible explanations may be 424 

given for this phenomenon: firstly the data on TWS from GRACE can be viewed as highly uncertain in 425 

arid regimes as the accuracy of GRACE is restricted to several tens of mm EWH (Wahr et al., 2006). 426 

Secondly modeled data on soil moisture might have lower quality, since there are fewer in-situ data 427 

from river gauges available to calibrate the WGHM. Also it has been shown that ASCAT data correlate 428 

negatively with other soil moisture products in deserts (Liu et al., 2011). Thirdly it is possible that the 429 

assumptions above (Chapter 2.1) do not hold in areas of low correlation. This would imply that either 430 

soil moisture is not the dominant component in the water balance, or total water storage and soil 431 

moisture do not change proportionally.  432 

 433 

Based on the results of the correlation analysis the benefits of correlating changes in total water storage 434 

from GRACE with changes in soil moisture from ASCAT and WGHM shall be discussed (Research 435 

Question 3). Therefore absolute correlation values of different product pairs are put in relation. Figure 7 436 

shows in which regions ASCAT correlates better, worse or similar with total water storage from 437 

GRACE than with soil moisture data from WGHM. Only in very few regions GRACE correlates better 438 

with ASCAT, e.g. in the South-East of the US or in Japan. GRACE data is therefore not able to deliver 439 

comparable information than WGHM. However, GRACE may help to identify areas where WGHM 440 

needs to be improved. For example the dark areas in South America may correspond to river 441 

catchments, where the model is not reliable.  442 
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 443 

Figure 7:  Map indicating in which regions of the world ASCAT correlates better, worse or similar with total 444 
water storage from GRACE than with soil moisture data from WGHM  445 
 446 

Figure 8 shows in which regions of the world total water storage from GRACE correlates better, worse 447 

or similar with soil moisture data from ASCAT than with soil moisture data from WGHM. Clear 448 

patterns are visible: to a large extent those can be related to the soil moisture regimes map, provided by 449 

the United States Department of Agriculture (Source: Soil climate map, USDA-NRCS, Soil Science 450 

Division, World Soil Resources, Washington D.C., Production Date: April, 1997). Comparing both 451 

maps, we find that in most cases: 452 

1. ASCAT correlates better than WGHM with GRACE in 453 

- ustic regimes (Semi-arid climate): Great Plains, USA; North-East Brazil; Africa’s 454 

savanna, scrub and woodland; India  455 

- aridic regimes (Arid climate): world deserts 456 

2. ASCAT correlates worse than WGHM with GRACE in 457 

- udic regimes (Humid or subhumid climate): Eastern USA; Brazil; China 458 

- xeric regimes (Mediterranean climate): Western USA; Mediterranean countries; 459 

Western Australia 460 

3. ASCAT correlates similar than WGHM with GRACE in  461 
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- the transitions zones between different regimes 462 

In summary there is a higher agreement between ASCAT and GRACE in arid and semi-arid 463 

environments, and a higher agreement between WGHM and GRACE in humid and Mediterranean 464 

environments.  465 

 466 

This observation is in concordance with the characteristics of each soil moisture data set. ASCAT 467 

delivers information on soil moisture for the soil surface, as the signal only penetrates a few centimeters 468 

into the ground. On a daily basis it is able to capture short term variations. This functionality is 469 

favorable for arid environments. Soil moisture changes quickly and mainly at the surface, as 470 

precipitation evaporates rapidly due to high solar radiation. In addition, surface soil moisture is more 471 

likely to present the moisture in the whole soil column as the soil layer is shallow and its water holding 472 

capacity is low. Also soil moisture has a proportionally large impact on the whole water balance as there 473 

are fewer surface water bodies and there are only low variations in (fossil) ground water, unless 474 

excessively used by humans. It is therefore expectable that surface soil moisture from ASCAT shows 475 

similar variations in arid climate regimes as TWS from GRACE. In contrast, the hydrological model 476 

shows lower correspondence since it is more difficult to model fast changes in those highly sensible 477 

environments, where often less data from river gauges are available for the calibration of the model.   478 

 479 

In humid climate regimes it is expected that deeper soil layers have a larger correspondence to TWS, 480 

since the water holding capacity is high and the soil profile reaches several meters into the ground. 481 

Consequently, changes in surface soil moisture are less representative for changes in total soil moisture, 482 

and along with this also for changes in TWS. This behavior is also reflected in the result of the 483 

correlation analysis, where surface soil moisture from ASCAT showed lower correlations with GRACE 484 



  28 

 

than total soil moisture from WGHM.   485 

 486 

Figure 8:  Map indicating in which regions of the world total water storage from GRACE correlates better, worse or 487 
similar with soil moisture data from ASCAT than with soil moisture data from WGHM. 488 

 489 
6. Summary and Conclusions 490 

In this paper we investigated possibilities and benefits of relating data from satellite gravimetry to 491 

global soil moisture products. Specifically we performed a correlation analysis between gravimetric 492 

data from the satellite mission GRACE and two soil moisture products from the active satellite sensor 493 

ASCAT and the hydrological model WGHM. In order to equalize the otherwise distinct representations 494 

and formats of each data set, they were harmonized previous to the correlation analysis. It is assumed 495 

that changes in total water storage can be linked to changes in soil moisture, if either soil moisture is the 496 

dominating compartment of continental hydrology or if soil moisture changes proportionally with total 497 

water storage. Therefore areas of intensive snowfall, ice coverage and post-glacial rebound effects were 498 

excluded from our study. 499 

 500 

We raised three main research questions. First it was analyzed how the data harmonization process 501 

influences the correlation results between different data sets. It has been demonstrated that it does not 502 
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impact the correlation coefficients with three exceptions: (a) Gauss-filtering and spherical harmonic 503 

conversion smooth the data spatially. Thereby the correlation coefficients increase uniformly, so that 504 

they cannot be directly compared with the absolute correlation values of other studies. (b) Smoothing 505 

decreases the level of detail, making the data not suitable for studies on small catchments. (c) The 506 

correlation results were not reliable in regions where the soil moisture data showed variations equal or 507 

very close to zero. Therefore we had to exclude hyper-arid environments like the Sahara desert from 508 

our study. 509 

 510 

Secondly, we focused on the results of the correlation analysis and posed the question whether regions 511 

can be identified where GRACE data shows similar variations as soil moisture data. It was found that in 512 

most regions with high precipitation the correlation coefficients are close to one, while in arid regions 513 

they can be lower than 0.5 or even negative. This indicates that GRACE data is specifically linked to 514 

soil moisture data in humid and temperate climate zones.  515 

 516 

Finally the benefit of correlating GRACE data with soil moisture data sets has been investigated. 517 

Therefore the correlation results of different data pairs were put in relation. As expected, in general soil 518 

moisture products correlated better with each other than with GRACE. However, also some regions 519 

were found where the soil moisture product of ASCAT correlates better with total water storage from 520 

GRACE than with soil moisture from WGHM. In these areas the hydrological model might be of low 521 

quality. Furthermore the results showed in most cases that in arid environments daily surface soil 522 

moisture from ASCAT maps better the overall situation on total water storage than the hydrological 523 

model. In contrast, the hydrological model performs better in humid and temperate regions, where the 524 

soil moisture in the whole soil column is more representative for changes in total water storage. 525 
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Therefore our results indicate that GRACE data can indeed help to validate soil moisture products and 526 

increase the understanding on surface and total soil moisture as well as their link to total water storage.   527 
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