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Abstract— In general, dynamic systems have to meet certain
requirements in order to achieve a prescribed performance or
to ensure safety. These constraints on the states and/or outputs
of the system may even be changing over time. This generates
the necessity for a control scheme, which is able to enforce
time-varying constraints. In this work, we propose a control
approach, which uses the concepts of invariance control to
enforce constraints with time-varying parameters. A control
law is derived, which guarantees the satisfaction of constraints
with bounded time-varying parameters. Stability properties are
investigated and illustrated in a numerical example.

I. INTRODUCTION

In engineering applications, constraints are often imposed

on the system behavior to meet performance goals and/or to

ensure the safe operation. The frequency of electrical energy

transmission systems, for example, has to stay within a pre-

defined range, an autonomous car is expected to stay on

the road and drive without accidents and an industrial robot

should not injure any humans in its vicinity. Although the

applications differ, in each case, there is a necessity to impose

safety or performance bounds on the states and/or outputs of

the particular system. These bounds are usually enforced by

means of control and as the systems are in general located

in a dynamic environment, the control scheme has to be able

to process time-varying constraints.

Probably the most well-known control scheme in such

a setup is model predictive control (MPC) [1]. It is an

optimization-based approach, which enforces input, state

and output constraints. For high dimensional, nonlinear,

dynamic systems, however, the computationally expensive

optimization process may prevent the real-time application.

Input and state constraints on systems with disturbances may

be enforced by the reference governor approach [2], but

similarly to MPC, real-time requirements might be violated

due to the required numerical simulation. Another method

for verifying guaranteed constraint enforcement is provided

by barrier certificates [3], which build the base for the

development of constraint enforcing control schemes [4].

However, as the barrier functions are designed to approach

an infinite value on approaching a constraint, they do not

provide a defined behavior if constraint violation occurs, e.g.

due to an initial violation or a change in the set of constraints.

A promising control scheme to realize safety or performance

bounds on states and outputs is invariance control, which is

similar to the previously mentioned control based on barrier
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certificates. Instead of using a barrier function, however, the

system dynamics and the boundary information are combined

in a so-called invariance function, which determines the

necessity of corrective action and has a well-defined value

even for violated constraints. The special choice of the

invariance function allows the control design as an add-on to

a working, stabilizing control structure [5], while ensuring

that multiple state and output constraints are not violated [6].

However, so far, only static constraints are provably enforced

with the invariance control approach for general nonlinear,

control affine systems.

In this work, we introduce an invariance control approach,

which enforces time-varying constraints and is applicable to

control affine, nonlinear MIMO systems. With a design as an

add-on to an existing, stabilizing controller, it is useful for

a wide range of applications. It enables a desired behavior

whenever possible but at the same time enforces time-varying

boundaries. The stability of the proposed control scheme is

shown using Lyapunov theory. Furthermore, conditions are

derived under which the constrained system is controlled

positively invariant. A numerical example illustrates the

characteristics of the approach.

The remainder of this paper is organized as follows:

Section II introduces the invariance control design for sys-

tems with time-varying constraints. In Section III and IV,

stability and invariance properties are discussed, respectively.

Section V provides an illustrative numerical example.

Notation: Vectors and matrices are denoted by bold, small

and capital characters, respectively. The Euclidean vector

norm (2-norm) is given by ‖x‖2 =
√
x⊺x for x ∈ R

n, while

the element-wise inequality of x1,x2 ∈ R
n is abbreviated

by x1 4 x2. The k row vectors a
⊺

1 , . . . ,a
⊺

k ∈ R
1×n and

scalars b1, . . . , bk ∈ R are stacked to yield matrix A =
[a⊺

i ] ∈ R
k×n and vector b = [bi] ∈ R

k×1 with

A = [a⊺

i ] =







a
⊺

1
...

a
⊺

k






, b = [bi] =







b1
...

bk






,

respectively. Time derivatives are represented by dots ẋ = dx
dt

or, for higher orders, by x(i) = dix
dti

. The expression

Lfh(x) =
∂h

∂x
f

denotes the directional derivative of a function h : Rn → R

in direction f , i.e. the first order Lie-derivative. Li
fh(x), the

Lie-derivative of order i, is defined recursively. The set of k

times continuously differentiable functions h : Rn → R
m is

denoted by Ck.



II. INVARIANCE CONTROL WITH TIME-VARYING

CONSTRAINTS

Invariance control for systems with static boundaries is

introduced in [5]–[7]. This section provides the design steps

for invariance control with time-varying constraints.

The implementation of an invariance controller as an

add-on to an existing controller enforces the adherence to

output and/or state constraints, while a desired control goal

is pursued whenever possible [5]. The schematic structure

of the controlled system is depicted in Fig. 1. The nominal
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Fig. 1: Structure of an invariance controlled system with

time-varying boundaries

controller generates a nominal control input uno from the

system outputs/states and corresponding desired values. The

invariance controller processes the nominal control input and

the constraint information, given by an output function, to

determine a corrective control input uc, which is as close

as possible to the nominal control input while ensuring

adherence to the constraints. So far, these output functions

may only depend on the states and/or outputs of the system

and constant parameters η. In this work, we allow output

functions, which depend on system states/outputs as well

as on time-varying parameters η(t). Invariance control is

applicable to nonlinear, control affine MIMO systems

ẋ = f(x) +G(x)u
yout = hout(x)

}

(1)

with the states x ∈ R
n, the input u ∈ Uno ⊂ R

m, and

sufficiently smooth functions f : Rn → R
n, gi : R

n → R
n

with G = [g1 . . . gm], cf. [6]. The natural system output

is given by hout : R
n → R

q . The following design steps

are also valid for time-invariant constraints and single input

and/or single output systems if not indicated differently.

A. Output Functions

The set of l constraints, with l being arbitrarily large [8],

defines a vector of time-varying, continuous output functions

y = h(x,η(t)) , (2)

with y ∈ R
l and the parameter vector η(t) ∈ R

nη . Each

element yi = hi(x,η(t)) describes one constraint i.

We consider bounded parameters, which are sufficiently

often continuously differentiable with respect to time.

Assumption 1: The time-varying parameter vector η(t) is

given by a bounded Cri function with bounded derivatives

η(j)(t) ∈ [η
(j)
min ,η(j)

max] ∀ 0 ≤ j ≤ ri . (3)

Each output function is equal to zero right on the con-

straint and negative in the time-varying admissible set

H(t) = {x ∈ R
n |hi(x,η(t)) ≤ 0 ∀ 1 ≤ i ≤ l} . (4)

Invariance control is applied to keep the system within the

admissible set, which is only possible if this set exists.

Assumption 2: The admissible set H(t) (4) is never empty

H(t) 6= ∅ ∀t ≥ 0 .

The output functions provide a measure for the distance of

the state to the constraints. In order to keep the state within

the admissible set, it is, however, not enough to monitor the

output function. The change of the output function over time,

the influence of the control input and the constraint dynamics

have to be considered as well. Therefore, the system is input-

output linearized with respect to the output functions (2).

B. Input-Output (I/O)-Linearization

As the output functions depend on the time-varying pa-

rameters η(t), I/O-linearization for time-varying systems [9]

is applied. The I/O-linearization of a time-varying system

with n states with respect to an output hi(x,η(t)) is repre-

sented by a time-varying invertible coordinate transformation

























ξint,i

ξi

























= Ti(x, t) =





























ϕ1(x, t)
...

ϕn−ri(x, t)

hi(x,η(t))
L̄1
fhi(x,η(t))

...

L̄ri−1
f hi(x,η(t))





























, (5)

where ξi ∈ R
ri are the states of the integrator chain

resulting from the linearization and ξint,i ∈ R
n−ri are the

states of the internal dynamics, generally assuming ri < n.

The transformations ϕj(x, t) determine the states of the

internal dynamics. As stated in [9], the internal states have

no influence on the output, which means they fulfill






∂

∂x







ϕ1(x, t)
...

ϕn−ri(x, t)












G(x) =

∂ϕ(x, t)

∂x
G(x) = 0 . (6)

We consider the time-invariant system (1) with the time-

varying output function (2). Therefore, the input transforma-

tion of the I/O-linearization is given by [10]

zi = y
(ri)
i = a

⊺

i (x,η(t))u+ bi(x,η(t), . . . ,η
(ri)(t)) (7)

with the relative degree ri, the pseudo input zi,

a
⊺

i (x,η(t)) =
[

Lg
1
Lri−1
f yi . . .Lgm

Lri−1
f yi

]

, (8)

a
⊺

i (x,η(t)) 6= 0
T , (9)

[

Lg
1
Lr−1
f yi . . . Lgm

Lr−1
f yi

]

= 0
T ∀ r < ri , (10)

bi(x,η(t), . . . ,η
(ri)(t)) = L̄ri

f yi , (11)

and the time-dependent Lie operator defined as

L̄ri
f yi =

(

∂

∂t
+ Lf

)ri

yi . (12)



Note that, due to the combination of the time-invariant state

dynamics with the time-varying output functions, the time-

dependent Lie operator is only required for determining the

vector bi(x,η(t), . . . ,η
(ri)(t)). The I/O-linearization is only

valid, if the relative degree ri is well-defined, which is

assured if the following assumptions hold [10].

Assumption 3: Each element of the output function (2) is

a Cri function with respect to time .

Assumption 4: The vector a
⊺

i (x,η(t)) has at least one

non-zero element, i.e. a
⊺

i (x,η(t)) 6= 0 ∀t ≥ 0.

Both assumptions are not very restrictive since they are as-

sured by a sensible choice of constraints. As the system is, in

general, subject to multiple constraints, the I/O-linearization

also requires a well-defined vector relative degree [11].

Definition 1: I/O-linearization of (1) w.r.t. the output (2)

yields a well-defined vector relative degree (r1, ..., rl) on a

subset X of the state space if for all x ∈ X ⊆ R
n

1) each constraint 1 ≤ i ≤ l fulfills (8)–(10) and

2) the decoupling matrix has full row rank.

det(A(x)) = det













a
⊺

1(x,η(t))
...

a
⊺

l (x,η(t))












= l

Naturally, for l ≥ m the second condition will never be

fulfilled. How this issue is resolved by the way corrective

control is determined will be discussed briefly in the corre-

sponding section.

C. Invariance Functions

Combining the output functions with the dynamics of

the system (1) leads to the concept of invariance func-

tions Φi(x, t, γi). They determine, whether corrective control

action is necessary. The derivation is based on the results

of the I/O-linearization (7). For each constraint i, the I/O-

linearization yields an integrator chain with the output yi,

the input zi and ri states [5]. The states are determined by

the mapping ξi(x,η(t), ...,η
(ri−1)(t)) = [yi . . . y

(ri−1)
i ]⊺.

For a constant input zi = γi, the output is determined by

integrating ri times with respect to time

yi(t) = pi
(

t, ξi,0, γi
)

=
tri

ri!
γi +

ri−1
∑

k=0

tk

k!
y
(k)
i,0 , (13)

where ξi,0 = [yi,0 . . . y
(ri−1)
i,0 ]⊺ denote the values at t = t0.

Calculating the maximum of (13) for all future times

max
τ>t0

pi
(

τ, ξi,0, γi
)

yields a measure for the minimal distance of the state to the

constraint if an input zi = γi < 0 is applied at t = t0. The

state stays within the admissible set (4) if the maximum is

negative. These considerations yield the invariance function

for time-varying constraints

Φi(x,t,γi)=max
τ>t

pi

(

τ,ξi(x,η(t),...,η
(ri−1)(t)),γi

)

(14)

with (13) and the parameter γi < 0.

The invariance function determines the maximum value of

the output function if a counteracting input zi = γi < 0 is

applied to the integrator chain at time t. A non-negative value

indicates a possible constraint violation in the future and the

necessity of corrective control action to avoid a violation of

the corresponding constraint. It also defines the invariant set

G(t, γi) = {x ∈ R
n |Φi(x, t, γi) ≤ 0 ∀ 1 ≤ i ≤ l} . (15)

The corrective control input uc of the invariance controller

has to be determined such that it renders the nonlinear

system (1) controlled positive invariant with respect to the

set (15). Then, the system states remain within the invariant

set and as a result also within the admissible set (4) for all

future times, once the set is entered [5].

For notational convenience, we will omit the explicit time-

dependencies η(t) . . . η(ri)(t) in the following.

D. Corrective Control

Constraints with a negative invariance function are not in

danger of being violated, i.e. for these constraints, nominal

control suffices. The remaining constraints with a non-

negative Φi(x,t,γi) are called active [6] and require correc-

tive control. They are collected in the set of active constraints

K =
{

i ∈ {1, 2, . . . , l} |Φi(x,η, ...,η
(ri−1)

, γi) ≥ 0
}

. (16)

Positive invariance with respect to (15) is achieved, if ei-

ther the system motion is directed away from the constraints

y
(r)
i < 0 ∀ 1 ≤ r ≤ ri − 1 (17)

or an appropriate input is provided, which fulfills

y
(ri)
i ≤ γi < 0 , (18)

i.e. γi < 0 is an upper bound on the derivative y
(ri)
i .

Choosing the pseudo input (7) such that zi ≤ γi < 0 holds

for active constraints, fulfills (18) and results in positive

invariance of the integrator chain [5]. This yields an element-

wise condition on the control input u

AK(x,η)u+ bK(x,η, . . . ,η
(ri)) 4 γ . (19)

with the vector bK(x,η, . . . ,η
(ri)) = [bi(x,η, . . . ,η

(ri))],
the matrix AK(x,η) = [a⊺

i (x,η)], the vector γ = [γi]
and i ∈ K. In order to derive a corrective control input which

adheres to the constraints and is as close as possible to the

nominal control input in the sense of the Euclidean distance,

the constrained minimization problem

uc = min
u

‖uc − uno‖22
s.t. AK(x,η)u+ bK(x,η, . . . ,η

(ri)) 4 γ
(20)

is solved. Note that it is rather straightforward to include

input constraints by adding them as additional conditions to

the minimization problem.

As (20) presents a convex optimization with convex con-

straints, the solution uc ∈ R
m is uniquely defined by a

limited set of j ≤ m constraints with linearly indepen-

dent a
⊺

i (x,η) for which the equality holds [12]. These

constraints constitute the set KI and fulfill

a
⊺

i (x,η)uc + bi(x,η, . . .)= γi ∀i ∈ KI

a
⊺

i (x,η)aj(x,η)= 0 ∀i 6= j ∈ KI .

}

(21)



The output consisting of the constraints i ∈ KI has a well-

defined vector relative degree as it fulfills both conditions

in Def. 1. This means that even if an arbitrary number of

constraints is defined, Ass. 4 suffices to ensure that the I/O-

linearization in the solution remains feasible. If the set KI

is known, e.g. because K only contains linearly independent

constraints, an explicit analytical solution of (20) is given by

uc = A+
KI

(zc − zno) + uno (22)

with zno = AKI
(x,η)uno + bKI

(x,η, . . . ,η(ri)), the

Moore-Penrose pseudo inverse A+
KI

= A
⊺

KI
(AKI

A
⊺

KI
)−1

and the corrective pseudo input

zc,i =

{

γi if (zno,i > γi) ∧ (Φi ≥ 0)

zno,i if (zno,i ≤ γi) ∨ (Φi < 0) .
(23)

It remains to show that the control with time-varying bound-

aries does not destabilize the system and the system is

actually rendered positively invariant.

III. STABILITY

Whenever the set of active constraints (16) is empty,

nominal control is applied to the system (1). Therefore, the

invariance controlled system may only be stable in the sense

of Lyapunov, if the nominally controlled system without the

invariance controller is stable in the sense of Lyapunov [6].

Assumption 5: The system (1) under nominal control uno

is stable in the sense of Lyapunov.

Since the nominal control law is independent from the

choice of constraints on the system as illustrated in Fig. 1,

the system under nominal control is obviously also stabilized

in the sense of Lyapunov for time-varying boundaries.

The insertion of the invariance controller may destabilize

the system, as the internal dynamics resulting from I/O-

linearization might be unstable. Therefore, it is necessary

to show that the time-varying parameters do not add an

additional source of instability. In order to show stability of

the internal dynamics with time-varying constraints, we first

determine an expression for the coordinate transformation

representing the I/O-linearization (5), and especially for the

states of the internal dynamics.

Theorem 1: Consider the system (1) and the output func-

tion (2). Let Assumptions 3 and 4 hold. Let the transforma-

tion representing the I/O-linearization be given by (5). Then

there exists a time-invariant mapping Ψi(x) for the states of

the internal dynamics such that (5) with ϕ(x, t) = Ψi(x)
represents the transformation given by the I/O-linearization.

Proof: We start by analyzing the I/O-linearization with

respect to time-invariant constraints, i.e. we assume that the

parameters η(t) are time-invariant η(t) = η. Then, there

exists a time-invariant representation [13]
















ξint,i

ξi

















= Ti(x) =



















Ψi(x)

hi(x)
L1
fhi(x)

...

Lri−1
f hi(x)



















, (24)

of the I/O-linearization of system (1) with respect to the

output function h(x,η) with constant parameters (d
kη

dtk
= 0

for k ∈ N). As the internal states ξint,i have no influence

on the system outputs due to the construction of the I/O-

linearization [13], their transformation fulfills the condition

∂Ψi(x)

∂x
G(x) = 0 . (25)

We now consider the I/O-linearization with time-varying

constraints. The linearization is represented by the transfor-

mation (5), which contains the mapping ϕ(x, t) for the states

of the internal dynamics. Comparing (25) with (6) shows that

ϕ(x, t) = Ψi(x) (26)

fulfills (6) and is a suitable choice for the mapping of the

internal states. As Ψi(x) is part of an invertible transforma-

tion (24), it provides an unambiguous mapping of the states

and hence (5) with ϕ(x, t) = Ψi(x) is also an invertible

coordinate transformation.

With this result, we are able to show that the stability prop-

erties of the internal dynamics for time-invariant constraints

are preserved even for time-varying constraints.

Theorem 2: Consider the system (1) and the output func-

tion (2). Let Assumptions 3–5 hold. Let the internal dy-

namics resulting from I/O-linearization with time-invariant

parameters η be stable in the sense of Lyapunov. Then, the

internal dynamics, resulting from the I/O-linearization (7)

with respect to each time-varying output function i in (2),

are stable in the sense of Lyapunov.

Proof: As for time-invariant output functions, the

internal dynamics are assumed to be stable in the sense of

Lyapunov, there exists a positive definite Lyapunov func-

tion Vξ,i(ξint,i), which fulfills

Vξ,i(ξint,i) > 0 ξint,i 6= 0 (27)

Vξ,i(ξint,i) = 0 ξint,i = 0 (28)

V̇ξ,i(ξint,i, ξi) ≤ 0 ξint,i 6= 0 , ξi ∈ R
ri (29)

V̇ξ,i(ξint,i, ξi) = 0 ξint,i = 0 , ξi ∈ R
ri . (30)

Choosing Vξ,t,i(ξint,i) = Vξ,i(ξint,i) as Lyapunov function

for the time-varying internal dynamics, its time derivative is

given by

V̇ξ,t,i(ξint,i, ξi, t) =
dVξ,i(ξint,i)

dt

=
∂Vξ,i(ξint,i)

∂ξint,i

dξint,i

dt
.

With the transformation ξint,i = Ψi(x) from Proposition 1,

the time derivative transforms into

V̇ξ,t,i(ξint,i, ξi, t) =
∂Vξ,i(ξint,i)

∂ξint,i

dΨi(x)

dt

=
∂Vξ,i(ξint,i)

∂ξint,i

∂Ψi(x)

∂x

dx

dt

=
∂Vξ,i(ξint,i)

∂ξint,i

∂Ψi(x)

∂x
(f(x) +G(x)u) .



Using (25) yields

V̇ξ,t,i(ξint,i, ξi, t) =
∂Vξ,i(ξint,i)

∂ξint,i

∂Ψi(x)

∂x
f(x) .

The Lyapunov function Vξ,i(ξint,i) and the transforma-

tion Ψi(x) for the internal dynamics are equal to the

time-invariant case, cf. Proposition 1. Therefore, the time

derivative is equal to the time-invariant case (29)

V̇ξ,t,i(ξint,i, ξi, t) = V̇ξ,i(ξint,i, ξi) ≤ 0 (31)

showing stability in the sense of Lyapunov.

With stable internal dynamics and a stabilizing nominal

controller, in the following, the invariance properties of the

invariance controlled system are examined.

IV. INVARIANCE

Positive invariance of the controlled system is achieved,

if the invariance controller assures that (18) is fulfilled. This

requires the determination of suitable control parameters γi,

which ensure that the corrective control input uc renders the

controlled system invariant.

Theorem 3: Consider the system (1) and the output (2).

Let Assumptions 1–4 hold. Let the matrix AKI
(x) consist

of the active constraints in KI fulfilling (21). Then, if there

exists a

γt = inf
t≥0

(

ri
∑

k=0

ri!

(ri − k)!k!
Lk
f

(

∂

∂t

)ri−k

hKI
(x,η)

)

, (32)

with γt > −∞, uc as determined by (22), renders the system

positively controlled invariant with respect to the invariant

set (15) for any choice of zc 4 γ fulfilling

γ 4 γt and γ ≺ 0 (33)

Proof: The corrective control input is given by

uc=A+
KI

(zc − bKI
(x,η, . . . ,η(ri))) + (I −A+

KI
AKI

)uno

with AKI
= AKI

(x,η). The matrix I − A+
KI

AKI
repre-

sents a projection of the nominal control input uno into the

null-space of the active constraints and each column of A+
KI

is in increasing direction of one active constraint with no

influence on the other active constraints [14]. For active

constraints, the pseudo control input is set to zc 4 γ (23).

Therefore, a sufficient condition for invariance with time-

varying constraints is given by

γ − bKI
(x,η, . . . ,η(ri)) 4 0 . (34)

Using (7) and (12), the condition (34) transforms into

γ 4 L̄ri
f hKI

(x,η)

γ 4

(

∂

∂t
+ Lf

)ri

hKI
(x,η) .

Applying the binomial theorem yields

γ 4

ri
∑

k=0

ri!

(ri − k)!k!
Lk
f

(

∂

∂t

)ri−k

hKI
(x,η) .

Keep in mind that the partial derivative with respect to time

of the output function is given by

∂hKI
(x,η)

∂t
=

∂hKI
(x,η)

∂η

dη

dt
.

If there exists a constant lower bound

γt = inf
t

(

ri
∑

k=0

ri!

(ri − k)!k!
Lk
f

(

∂

∂t

)ri−k

hKI
(x,η)

)

, (35)

the choice of γ 4 γt fulfills

zc 4 γ 4 γt 4 bKI
(x,η, . . . ,η(ri))

and therefore renders the system positively controlled in-

variant, cf. (34). Additionally, corrective control may only

ensure invariance, if it decreases the value of the invariance

function. The invariance function decreases if the states of

the integrator chain decrease, which is only possible for a

non-positive input of the integrator chain zc 4 γ. Therefore

zc 4 γ ≺ 0

has to be fulfilled element-wise in addition to (34).

V. NUMERICAL EXAMPLE

The numerical example uses the angular dynamics of a

rigid inverted pendulum on a cart to illustrated the capabili-

ties of the derived approach.

A. Setup

The angular dynamics of the pendulum are given by

ẋ = f(x) + g(x)u

f(x) =

[

x2

g
l
sin(x1)− m cos(x1) sin(x1)(lx

2

2
+g cos(x1))

l(m sin2(x1)+M)

]

g(x) =
cos(x1)

l(m sin2(x1) +M)
,

with the masses of the pendulum m and the cart M , the

length l, the gravity constant g and the angle x1 to the upright

position. Nominal control is determined by the state feedback

uno = −kPx1 − kDx2 ,

which keeps the pendulum in the upright position. The time-

varying constraint is given by

h(x, t) = x2 −
(

3

2
x2,b −

1

2
x2,bfb(t)

)

,

with a constant minimum bound value x2,b and the function

fb(t)) =

{

cos
(

2πt
T

)

for 0 ≤ t ≤ T

1 else

with the constant time interval T . Derivation with respect to

time yields the relative degree r = 1, which is well-defined

for x1 6= ±π
2 + k, k ∈ Z, as well as the I/O-linearization

with a⊺ = g(x) and b = f2(x) − ḣ(x, t). The invariance

function is given by Φ(x, t, γ) = h(x, t) according to (14).

and corrective control is determined using (22)-(23).

The implementation in Matlab/Simulink uses the parame-

ters in Table I. The solution is determined by an Euler solver

with a step size of 1 · 10−5 s. The results are compared to

the unconstrained system under nominal control.



TABLE I: Model parameters

System parameters x(0) [−5 π

180
rad , 0 rad/s]⊺

g 9.81 m/s2

l 0.2 m

m 0.1 kg

M 1 kg

Constraint x2,b 1 π

180
rad/s

T 2.5 s

Nominal control kP 10 N

kD 1 N s

Invariance control γ -0.1 1/s

0 2 4 6
Time t [s]

−5

−4

−3

−2

−1
0

θ
[◦
]

(a) Angular position

0 2 4 6
Time t [s]

0

2

4

θ̇
[◦

/s
]

(b) Angular velocity with the time-varying constraint

0 2 4 6
Time t [s]

−1

0

1

2

3

Φ
(x

,
γ
)
[◦

/s
]

(c) Invariance function

Fig. 2: Results for the controlled pendulum without

constraint and with constraint enforced by invariance

control.

B. Results

The results of the simulation are depicted in Fig. 2.

Initially, the pendulum deviates from the upright position

as depicted in Fig. 2a. As the velocity is initially below

the constraint, cf. Fig. 2b, the invariance function in Fig. 2c

has a negative value and nominal control is applied, which

results in the same behavior with and without constraints.

Once the constraint is reached, invariance control enforces

the time-varying constraint which is observed in Fig. 2b

and 2c as the velocity is never higher then the constraint

and the invariance function has a non-positive value. The

pendulum under nominal control, in contrast, violates the

constraint by over 3◦/s, which may be observed in the

invariance function. Naturally, the unconstrained pendulum

reaches the desired upright position faster as depicted in

Fig. 2a. However, the invariance controlled pendulum also

reaches the desired position eventually, which is an indication

for the preservation of the nominal stability property and

stable internal dynamics.

VI. CONCLUSION

In this work, a novel approach for invariance control

with time-varying constraints is introduced. A control frame-

work is presented, allowing for constraints with time-varying

parameters and preserving the stability of the nominally

controlled system. Additionally, the limits on the system,

which are imposed by the constraints, are met, rendering

the system positively controlled invariant with respect to

the time-varying boundaries, if the parameter variation is

bounded with continuous and bounded derivatives. A nu-

merical example illustrates the stability and the invariance

properties.
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