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Abstract— We present an adaptive energy-based controller
for cooperative swinging of complex pendulum-like objects
by two agents. The complex pendulum-like object has two
oscillation degrees of freedom of which one is to be controlled
to a goal energy and the other one has to be damped. The
closed-loop fundamental dynamics of a simple pendulum are
extended to the two-agent pendulum. Based on the fundamental
dynamics, a simple adaptive mechanism identifies the natural
frequency of the system. An amplitude factor is adapted such
that an agent behaves as a leader or a follower. A leader knows
the goal energy and controls the system according to desired
reference dynamics. A follower either imitates the leader’s
energy flow or estimates the leader’s goal energy. Properties
as stability of both leader-follower structures are analyzed
analytically based on the fundamental dynamics assumption.
The applicability of the control approaches to a complex
pendulum-like object is shown in simulation.

I. INTRODUCTION

Cooperative dynamic manipulation enlarges the manipu-
lation capabilities of multi-agent teams. While cooperative
manipulation allows for manipulation of heavy and bulky ob-
jects that cannot be manipulated by one agent alone, dynamic
manipulation furthermore exploits the full object dynam-
ics [1]. Driven by this motivation, we discussed model-based
approaches for cooperative swinging of complex pendulum-
like objects in [2], [3]. The goal of the cooperative swinging
task is the excitation of the pendulum-like object such that
it stabilizes at a desired energy state. In order to be able
to handle unknown objects, adaptive control approaches
are needed. In this work, we present an adaptive energy
controller for cooperative swinging of complex pendulum-
like objects as displayed in Fig. 1.

Pendulum-like objects are also referred to as suspended or
slung loads. Within the area of suspended-load transport, e.g.
through cranes or quadrotors, the focus has mostly been on
damping of oscillations. However, dynamic swing motion
can extend workspace and manipulation capabilities. For
instance, in [4] a quadrotor injects energy into its suspended
load such that it can fly through a vertically limited opening.
In the literature, most oscillation exciting controllers origi-
nated from the inverted pendulum task, where a pendulum
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is first swung-up and subsequently stabilized in its unstable
equilibrium point, e.g. [5], [6]. Our previous as well as
the present work build upon the energy-based swing-up
controller by Yoshida [7].

Cooperative dynamic manipulation of pendulum-like ob-
jects has hardly been considered. Existing approaches for co-
operative suspended load manipulation either focus on oscil-
lation damping [8], [9] or use one centralized controller [10].
In [11] and [12] a robot helps a human with sustaining a rope
turning motion. However, the rope turning motion had to be
established by the human partner beforehand.

Besides reinforcement learning approaches, only little
work can be found on adaptive swing-up controllers. The
reinforcement learning community has used inverted pen-
dulum tasks as a benchmark to investigate how well their
approaches can control nonlinear systems [13], [14]. The
aggressive window passing maneuver of [4] is accomplished
through sampling based reinforcement learning initialized
by a model-based optimal control solution. In [15], rein-
forcement learning combined with the model based energy
control [7] was applied to the cooperative swinging task
discussed in our previous work from a model based perspec-
tive [2], [3]. Motivated by the drawback of a high number of
tuning parameters [16], [15], we recently presented a simple
pendulum adaptive swing-up controller [17]. This adaptive
controller is based on the closed loop fundamental dynamics
and requires only two tuning parameters: a time constant
for the estimation of the natural frequency and a control
gain that specifies desired reference dynamics. In this work
we extend the fundamental dynamics approach of [17] to
two-agent pendulums. We further take a step beyond the
leader controller presented in [15] and additionally design
two adaptive follower controllers.

The remainder of this paper is structured as follows.
Section II formally states the problem. In Sec. III, we
derive the fundamental dynamics for a simplified two agent
pendulum. Based on the fundamental dynamics, a leader
and two follower controllers are designed and analytically
analyzed in Sec. IV. In Sec. V, we extend the approach to
control a complex pendulum-like object. The applicability
of the fundamental dynamics based controller design to
the complex pendulum-like object is examined in Sec. VI.
Section VII concludes the paper.

II. PROBLEM FORMULATION
A. The t-pendulum

As an example for a complex pendulum-like object we use
the two-agent pendulum displayed in Fig. 1. We refer to this
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Fig. 1. The t-pendulum: a cylindrical object of mass mp, length lp and
inertia Ip suspended through massless ropes of length l from two handles
of mass mh,Ai at locations rAi with i = 1, 2. The minimum distance
between the two agents is B. The location rA1 is defined with respect to
the world fixed coordinate system {w}. The location rA2 is defined with
respect to the fixed point wp = [0 0 B]T in {w}.

pendulum as a t-pendulum because of its trapezoidal shape.
We classify the t-pendulum to be a complex pendulum-like
object, because it does not only have one oscillation degree of
freedom (DoF), but two predominant oscillation DoFs, which
are described by the deflection angles θ and ψ. The pendulum
is actuated by two agents A1 and A2 through handles located
at rA1 and rA2, respectively.

B. Problem statement for adaptive energy control for coop-
erative swinging

The overall goal is to control the θ-oscillation to reach the
constant energy level Ed

θ , while the ψ-oscillation is regarded
as undesired and needs to be damped, i.e. Ed

ψ = 0. The
goal energies of the θ- and the ψ-oscillation can equivalently
be expressed as desired maximum deflection angles θd

E and
ψd
E . In order for the controller to be model-independent,

we replace the mass and inertia dependent energies Eθ and
Eψ with the maximum deflection angles and formulate our
control goal as θE = θd

E and ψE = 0.
The agents influence the t-pendulum through accelera-

tion of their handles r̈Ai, i = 1, 2. For simplicity, we
limit the agents to move along the x-axis, i.e. rAi =
[rAi 0 0]

T . Hence, the state of the t-pendulum is given by
xt,c =

[
θ ψ θ̇ ψ̇ rA1 ṙA1 rA2 ṙA2

]T
. We further

assume that the only feedback the agents receive about the
state of the object and the partner’s intention are the forces
measured at the own interaction point, i.e. for agent A1
ym = FA1. We assume cooperation between the agents.
However, from the perspective of agent A1, the only input
is u = r̈A1, while the acceleration of the partner’s handle
z = r̈A2 is a disturbance, as it cannot be directly controlled.

The agents can act as a leader L or a follower F (e.g.
A1 = F and A2 = L). A leader knows the goal energy of
the θ-oscillation θd

E . We are looking for a control law

uL = r̈L = f(FL)

such that
∣∣θEm − θE

∣∣ ≤ εθ
with θ̇Em = Kd(θd

E − θEm),

and
∣∣0− ψE(t > Ts)

∣∣ ≤ εψ, for 0 < Ts <∞, (1)

where εθ defines bounds within which the energy of the
θ-oscillation is required to follow the first-order reference
dynamics θEm of inverse time constant Kd and εψ defines
bounds within which the energy of the ψ-oscillation is to be
kept the latest after the settling time Ts. We limit the goal
energy to θd

E < π/2, in order to be able to approximate the
suspension ropes as rigid.

A follower does not know the goal energy of the θ-
oscillation θd

E . Thus, the follower needs to infer the leader’s
intention from the measured interaction forces in order
to actively contribute to the task goal. We formulate the
follower control goal as

uF = r̈F = f(FF )

such that
∣∣γd
F − γF

∣∣ ≤ εF
with γF =

∫ Ts
0

θ̇E,F dτ∫ Ts
0

θ̇E,F+θ̇E,L dτ
,

and
∣∣0− ψE(t > Ts)

∣∣ ≤ εψ, for 0 < Ts <∞, (2)

where γF is the relative energy contribution of the follower,
which is computed based on the integrals over the energy
flows of the leader and the follower θ̇E,F/L. Thus, we
want the follower to have contributed the fraction γd

F within
bounds εF of the energy effort required to reach the goal
energy θd

E at the settling time Ts, while also damping the
undesired oscillation ψ. The desired relative energy contri-
bution of the follower has to obey γd

F ∈ [0, 1[, while the
exact value is a design parameter.

III. FUNDAMENTAL DYNAMICS APPLIED TO THE
TWO-AGENT PENDULUM

In this section, we apply the fundamental dynamics de-
rived in [17] to the abstract simple pendulum. The abstract
simple pendulum is a simple pendulum with two-sided actu-
ation and captures essentials of the desired system behavior.
Subsection III-A introduces the abstract simple pendulum
and Subsec. III-B the main idea of the the energy-based
controller. The two-agent fundamental dynamics are derived
in Subsec. III-C.

A. The abstract simple pendulum

The control goal formulated in the previous section ideally
results in an oscillation with ψ = 0 and θ ≈ ϑ, where
ϑ describes the deflection of the t-pendulum when being
projected onto the xy-plane of agent A1 (see grey shaded
area in Fig. 1). We approximate the desired oscillation seen

by agent A1 for the reduced state xc =
[
ϑ ϑ̇

]T
as

ẋc =

(
ϑ̇

−ω2
0,ϑ sinϑ

)
+

(
0

− 1
gω

2
0,ϑ cosϑ

)
r̈A1 + r̈A2

2
, (3)

with gravity g, the small angle approximation of the natural
frequency ω0,ϑ =

√
g
l∗ and projected length1 l∗ (see Fig. 1).

These dynamics represent a simple pendulum with two-sided
actuation, which we call the abstract simple pendulum [3].

1The projected length l∗ changes with rAi and consequently the natural
frequency changes as well. Since the natural frequency is estimated online,
our control approach can capture these effects.
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Fig. 2. Phase portrait for a lossless simple pendulum (left) and the resulting
phase angle ϕ over time (right) for two different energy levels ϑE . Solid
lines indicate normalization with Ω = ω, dashed lines Ω = ω0,ϑ.

The energy contained in the abstract simple pendulum for
zero handle velocities is

Eϑ := E|ṙAi=0 =
1

2
mp(l∗)2ϑ̇2 +mpgl

∗ (1− cosϑ) . (4)

The energy Eϑ can equivalently be expressed by the am-
plitude ϑE . The amplitude ϑE is equal to the maximum
deflection angle ϑ, which is reached at the turning points

Eϑ = mpgl
∗ (1− cosϑE) . (5)

Insertion of (4) into (5) and solving for the energy equivalent
ϑE yields

ϑE = arccos

(
cosϑ− l∗

2g
ϑ̇2

)
, (6)

with ϑE ∈ [0, π]. Due to the independence of the parameter
pendulum mass mp, we use ϑE instead of Eϑ to refer to the
system energy throughout the rest of the paper.

Simple pendulums are highly nonlinear systems. The sys-
tem nonlinearities become apparent in the energy dependent
natural frequency ωϑ(ϑE). No analytic solution exists for
the natural frequency, but it can be calculated numerically
by the arithmetic-geometric mean [18]. The nonlinear nature
of simple pendulums is also visible in its phase space. This is
illustrated for two different energy levels ϑE = {0.5π, 0.9π}
at the left hand side of Fig. 2. The highlighted phase angle
is calculated as

ϕϑ = atan2

(
− ϑ̇

Ω
, ϑ

)
, (7)

where the variable Ω is a normalization factor. The phase
angle describes the oscillation state of the pendulum, e.g.
ϕϑ = π

2 when the pendulum crosses the lower equilibrium
from ϑ > 0 to ϑ < 0. The right hand side of Fig. 2 shows the
phase angle over time. The closer the normalization factor
Ω is to the real natural frequency ωϑ, the more circle-like is
the phase portrait and the more linearly rises the phase angle
over time

ϕϑ(t) ≈ ωϑt+ ϕϑ(t = 0), (8)

with ϕϑ(t = 0) = 0 in Fig. 2. Consequently, the simple
pendulum system appears to be linear for small energies

and normalization with Ω = ωϑ. For small energies, the
small angle approximation ω0,ϑ can serve as a good estimate
for the actual natural frequency ωϑ. For high energies, the
nonlinearities become more apparent, especially when only
the small angle approximation is used for normalization Ω =
ω0,ϑ (see right side of Fig. 2).

B. Energy based swing-up control

The energy control is based on the swing-up control of [7].
The complete control law is given in Sec. V. The following
derivations are based on the approximate control law

r̈Ai ≈ aAi ω
2
ϑ sinϕϑ, (9)

which captures the main idea of the swing-up controller.
The multiplication with sinϕϑ excites the pendulum at its
natural frequency ωϑ according to (8). The amplitude factor
aAi specifies direction and amount of energy flow to the
pendulum. The derivation of the amplitude factor aAi is
explained in Sec. IV-B.

C. Fundamental dynamics for the abstract simple pendulum

The following is based on the fundamental dynamics
derivation given in [17]. Insertion of the approximate control
law (9) into the abstract simple pendulum dynamics (3) re-

sults in a highly nonlinear system with states xc =
[
ϑ ϑ̇

]T
,

which clearly depend on each other. A coordinate transfor-
mation to phase angle ϕϑ and system energy ϑE would
ideally decouple the states2, because the system energy ϑE
does not depend on the phase angle ϕϑ. However, solving (7)
for ϑ̇ and insertion of ϑ̇ into (6) yields

cosϑE = cosϑ− Ω2

2ω2
0,ϑ

tan2(ϕϑ) ϑ2, (10)

for which we cannot find an analytic expression ϑ(ϕϑ, ϑE).
For this reason, we use the phase space radius ϑr

ϑr :=

√√√√ϑ2 +

(
ϑ̇

Ω

)2

, (11)

which approximates the system energy ϑE (see Fig. 2) and
form the polar coordinates xp = [ϕϑ ϑr]

T .
The following steps are applied to derive the fundamental

dynamics. For details see [17]. First, we differentiate (7)
and (11) with respect to time. In a second step, we insert
the abstract simple pendulum dynamics and substitute all
cartesian states with polar states according to

ϑ = ϑr cosϕϑ

ϑ̇ = −ϑrΩ sinϕϑ. (12)

In a third step, we insert the approximate control law (9)
and the normalization factor Ω = ωϑ. Finally, we simplify
the system of equations through approximation with 3rd
order Taylor polynomials, negligence of higher harmonics

2Note that this decoupling is only valid for a slowly changing natural
frequency ωϑ ≈ const., such that the phase ϕϑ is independent of the
system energy ϑE .



and usage of the geometric mean as an approximation for
the natural frequency ωϑ ≈ ω0,ϑ

√
cos ϑr2 for ϑr ≈ ϑE .

The result are the fundamental dynamics of the closed-loop
abstract simple pendulum of the form

ẋp =

(
ϕ̇ϑ
ϑ̇r

)
=

(
ωϑ
0

)
+

(
0
B

)
aA1 + aA2

2

with B =
1

2g
ω3
ϑ = const., (13)

which we use in the following section to design an adaptive
energy controller that estimates the natural frequency ωϑ
and designs decentralized control inputs aAi, i = 1, 2. The
fundamental dynamics are treated as if they are decoupled
and ωϑ = const.. In reality, however, the frequency depends
on the energy content ωϑ(ϑr). We implicitly take the energy
dependence into account because we online adapt to the
changing frequency of the system ωϑ [17].

IV. ADAPTIVE ENERGY CONTROL BASED ON
THE FUNDAMENTAL DYNAMICS

The fundamental dynamics show how the system energy
ϑE ≈ ϑr will change dependent on the choice of the
amplitude factor aA1/A2 in control law (9) and an estimate of
the natural frequency ω̂ϑ. In this section, we first present the
ω̂ϑ-adaptation (Subsec. IV-A). This is followed by the leader
and follower dependent computation of the amplitude factor
aAi in Subsec. IV-B. In Subsec. IV-C, we analyze properties
as stability of the proposed leader-follower structures. Let

us for now assume full state feedback xc =
[
ϑ ϑ̇

]T
from

which the polar state xp = [ϕϑ ϑr]
T can be computed

based on an estimate of the natural frequency ω̂ϑ.

A. Adaptation of natural frequency estimate ω̂ϑ
The same simple adaptation mechanism for the natural

frequency estimate is used as in [17]

ω̂ϑ =
s

1 + Tωs
ϕϑ, (14)

with Tω being a time constant that defines the speed of
the adaptation. A Lyapunov based stability analysis is given
in [17]. It shows under the fundamental dynamics assumption
that the adaptation converges to the exact natural frequency
as long as the conservative constraint Tω > 1

2ω̂ϑ
is fulfilled.

B. Computation of amplitude factor aAi

While the leader and the follower use the same ω̂ϑ-
adaptation for the computation of the phase ϕϑ as needed
for the control law (9), they differ in the way they determine
the amplitude factor aAi.

1) Leader L: The leader knows the desired energy ϑd
r =

θd
r ≈ θd

E (see (1)). Similar to [7], we apply the saturated
mapping from energy error θd

E − ϑr to amplitude factor aL

aL =

{
ā sgn(θd

E − ϑr) if kL|θd
E − ϑr| ≥ ā

kL(θd
E − ϑr) else, (15)

with control gain kL > 0, which defines the slope of the
mapping that is saturated at a maximum amplitude factor ±ā.

In this case, the leader injects energy into the pendulum aL >
0 → ϑ̇r,L > 0 as long as the system energy is below the
desired energy θd

E − ϑr > 0, but withdraws energy from the
pendulum aL < 0 → ϑ̇r,L < 0 in case the system energy
exceeds the desired energy θd

E−ϑr < 0, with ϑ̇r,L being the
energy flow produced by the leader (see (13)).

As defined in (1), the total system energy is supposed to
follow first-order reference dynamics during swing-up

θ̇Em = Kd

(
θd
E − θEm

)
. (16)

Let γd
L ∈ ]0, 1] define the relative contribution of the leader,

equivalently as defined for the follower in (2). The desired
relative contribution is achieved if ϑ̇L,r

!
= γd

Lϑ̇r at all
times. Solving this relationship for ϑ̇r and insertion of the
fundamental dynamics ϑ̇L,r = B

2 aL (see (13)) and the linear
part of the proportional controller of (15) yields

ϑ̇r =
1

γd
L

B

2
kL
(
θd
E − ϑr

)
. (17)

From (16) and (17) we deduce Kd
!
= 1

γd
L

B
2 kL, such that

ideally θEm=ϑr and the control gain results in

kL =
2γd
LKd

B̂
(18)

with estimate B̂(ω̂ϑ) according to the fundamental dynamics
in (13). Note that the controller saturates if tracking of the
first-order reference dynamics requires an amplitude aF that
exceeds the amplitude limits ±ā (see (15)).

2) Follower F: The follower has to contribute with a
relative contribution γd

F ∈ [0, 1[ to the overall task effort
without knowledge of the desired energy θd

E (see (2)). This
demanded relative contribution is achieved if ϑ̇F,r

!
= γd
F ϑ̇r at

all times. Based on this requirement we present two follower
approaches in the following.

The flow imitation approach achieves ϑ̇F,r = γd
F ϑ̇r by

a saturated mapping from estimated total energy flow to the
pendulum ˆ̇

ϑr to amplitude factor aF under consideration of
the fundamental dynamics in (13)

aF =

 ā sgn(
ˆ̇
ϑr) if | 2

B̂
γd
F

ˆ̇
ϑr| ≥ ā

2
B̂
γd
F

ˆ̇
ϑr else.

(19)

We obtain the total energy flow estimate through filtered
differentiation ˆ̇

ϑr = Ghpϑr, where Ghp(Tf ) is a first-order
high-pass filter3 with time constant Tf .

The goal estimation approach assumes that the leader’s
energy flow is determined by the linear reference dynam-
ics (16) with gain K̂d and a desired relative energy con-
tribution γ̂d

L = 1 − γd
F . Together with an estimate of the

leader’s energy flow ˆ̇
ϑr,L = Ghp(Tf )ϑr−Glp(Tf )

ˆ̇
ϑr,F with

ˆ̇
ϑr,F = B̂

2 aF this allows for the estimation of the goal energy

θ̂d
E = Glp(Tf )ϑr +

1

K̂d(1− γd
F )

ˆ̇
ϑr,L. (20)

3The first-order high-pass filter differentiates ϑr up to a frequency of
ωc = 1

Tf
, while higher frequency parts of ϑr are not altered.



Note that we apply the first-order low-pass filter Glp(Tf )
to obtain the same phase and amplitude shift with respect to
the necessary high-pass filtering of the energy equivalent ϑr.
Based on the estimated goal energy θ̂d

E , the same mapping
of energy error to amplitude factor aF is applied as for the
leader (15), but with control gain

kF = kγ
2γd
FK̂d

B̂
, (21)

where the factor kγ enforces the desired follower contribu-
tion γd

F as described in the following section.

C. Analysis of leader-follower structures

We analyze properties as stability, stationary transfer be-
havior and resultant follower contribution γd

F based on the
fundamental dynamics and under the assumption that the
saturations of the mappings (15) and (19) are not active4

(for details see [19]). In order to take estimation errors
into account, we differentiate between the actual system
constant B and the leader and follower estimates B̂L and
B̂F .

The reference input transfer function ϑr(s) = Gfi(s)θd
E(s)

of a leader interacting with a flow imitation follower is

Gfi =
γd
LKd

B
B̂L
s+ γd

LKd
B
B̂L

1
Tf

s2 + ( 1
Tf
− γd
F

B
B̂F

1
Tf

+ γd
LKd

B
B̂L

)s+ γd
LKd

B
B̂L

1
Tf
(22)

which shows that the stationary transfer behavior is equal
to one, i.e. ϑr(t → ∞) = θd

E for a step of height θd
E in

the reference variable θd
E(t) = σ(t)θd

E . Note that this holds
independent of estimation errors (B̂F/L 6= B when ω̂ϑ 6= ωϑ
in (13)).

The closed loop system is asymptotically stable for ( 1
Tf
−

γd
F

B
B̂F

1
Tf

+ γd
LKd

B
B̂L

) > 0. The stability constraints imply
that the follower’s ω̂ϑ-adaptation should be initialized high
enough (B̂F > B) and that estimation errors together with
a high desired follower contribution γd

F and small time
constant Tf can potentially lead to instability.

The final value theorem applied to the follower transfer
function ϑr,F (s) = Gfi

F (s)θd
E(s) yields ϑr,F (t → ∞) =

γd
F

B
B̂F

θd
E . Consequently, the follower achieves its desired

relative contribution for a correct ω̂ϑ estimate (B = B̂F ).
The reference input transfer function ϑr(s) =

Gge(s)θd
E(s) of a leader interacting with a goal estimation

follower is

Gge =
γd
LKd

B
B̂L
s+ γd

LKd
B
B̂L

1
Tf

(1 + kγ
γd
F

1−γd
F

)

s2 + ( 1
Tf

+
kγ
Tf

γd
F

1−γd
F

(1− B
B̂F

) + kγγ
d
FK̂d

B
B̂F

+

+ γd
LKd

B
B̂L

)s+ γd
LKd

B
B̂L

1
Tf

(1 + kγ
γd
F

1−γd
F

)

(23)
and consequently exhibits a stationary transfer behavior of
one ϑr(t→∞) = θd

E similar to the flow imitation approach.

4According to simulations, saturations did not affect the stationary
transfer behavior with respect to ϑr and θ̂dE , but did alter the follower
contribution γF . The stability borders were the same. However, the saturated
system did not become unstable but only marginally stable.

The follower contribution based on the final value theorem
ϑr,F (t→∞) = γFθd

E is

γF =
1 + kγ

γd
F

1−γd
F
− kγγd

F
B
B̂F

( 1
1−γd

F
− Tf K̂d)

1 + kγ
γd
F

1−γd
F

. (24)

We compute the gain kγ such that the desired follower
contribution is enforced as long as the ω̂ϑ estimate is correct
ϑr,F (t→∞, B = B̂F )

!
= γd
Fθ

d
E which yields

kγ =
1

1− Tf K̂d

. (25)

If we limit the gain kγ to reasonable values kγ > 0,
the goal estimation approach is asymptotically stable for
( 1
Tf

+
kγ
Tf

γd
F

1−γd
F

(1 − B
B̂F

) + kγγ
d
FK̂d

B
B̂F

+ γd
LKd

B
B̂L

) > 0

(see (23)). Consequently, similar guidelines apply as for
the flow imitation approach: the absolute stability margin
increases with a high initialization of B̂F and a low desired
follower contribution γd

F . The time constant Tf should
obey 0 < Tf <

1
K̂d

.
A further question that arises for the goal estimation

approach is whether the follower identifies the goal energy
correctly. The transfer function from goal energy θd

E to
estimated goal energy θ̂d

E is Gge

θ̂dE
= Gge

ϑr→θ̂dE
Gge with

Gge

ϑr→θ̂dE
=

1
K̂d(1−γd

F )
s+ kγ

γd
F

1−γd
F

+ 1

Tfs+ kγ
γd
F

1−γd
F

+ 1
. (26)

Hence, the follower’s estimated goal energy θ̂d
E converges

for a step in the reference variable θd
E(t) = σ(t)θd

E to the
right value as t→∞, because lims→0G

ge

ϑr→θ̂dE
Gge = 1.

V. ADAPTIVE ENERGY CONTROL FOR THE
T-PENDULUM

In this section we apply the fundamental dynamics based
adaptive energy control of Sec. IV to a complex pendulum
as the t-pendulum. Figure 3 shows the block diagram for
the follower control structure for the t-pendulum simulation.
The leader control structure is similar to the one of the goal
estimation follower (yellow background), but with external
reference variable θd

E instead of the internal estimation of θ̂d
E .

In the following, details are given on the projection onto
the abstract simple pendulum and the complete control law
formulation from the perspective of the follower agent F .
The same applies for the leader agent L.

A. Projection onto the abstract simple pendulum

As defined in the problem statement in (1) and (2), the
agents are limited to force feedback FF . From the measured
interaction forces FF a first approximation of the projected
deflection angle ϑ in Fig. 1 is computed by

ϑF = arctan

(−Fp,F,x
Fp,F,y

)
, (27)
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Fig. 3. Block diagram of the follower control structure for the t-pendulum
simulations. The goal estimation branch (yellow background) and the flow
imitation branch (purple background) represent the two follower alternatives
for the computation of the amplitude factor aF .

where F p,F =
[
Fp,F,x Fp,F,y Fp,F,z

]T
is the resultant

force that acts onto the pendulum and is obtained through dy-
namic compensation of the handle induced forces by F p,F =

FF −mh,F [r̈F − g 0]
T .

We obtain the complete cartesian state with equal phase
shift through filtering

ϑ̇ = Ghp(Tϑ)ϑF , ϑ = Glp(Tϑ)ϑF , (28)

where Ghp and Glp are first-order high- and low-pass filters
with time constant Tϑ.

1) Complete control law: In order to obey a restricted
workspace and to filter out remaining high frequency oscil-
lations on the phase angle ϕϑ (see Fig. 2) as well as noise,
Yoshida [7] suggests to construct a reference trajectory

rd
F = − aF

|G(jω̂ϑ)| sin(ϕϑ − ∠G(jω̂ϑ)), (29)

which is filtered by the second-order filter

G(s) =
r̈

rd
=

s2
(
ω̂ϑ
c0

)2

s2 + 2ζ ω̂ϑc0 s+
(
ω̂ϑ
c0

)2 , (30)

where c0 and ζ are design parameters. The commanded
acceleration results in

r̈F ' aF ωϑ2 |G(jωϑ)|
|G(jω̂ϑ)| sin(ϕϑ − ∠G(jω̂ϑ) + ∠G(jωϑ))

≈ aF ωϑ2 sin(ϕϑ). (31)

Consequently, the reference trajectory is designed such that
it compensates for the amplitude shift |G(jωϑ)| and phase
shift ∠G(jωϑ) produced by the filter at the natural frequency
ωϑ of the pendulum for ω̂ϑ ≈ ωϑ. Note that according
to (29), (15) and (19) the maximum amplitude factor ā serves
as a workspace restriction for the agents.

VI. SIMULATION EXPERIMENT

The controller was evaluated in simulation based on the
fundamental dynamics and with a multi body simulation
of the t-pendulum. In this section we first report on the
fundamental dynamics simulation results, which show how
the different follower controllers perform in an idealized
scenario. This is followed by the t-pendulum simulations, in
which we analyze how the controllers behave in interaction
with a realistic complex pendulum-like object.

A. Main results of fundamental dynamics simulations

The fundamental dynamics simulations confirmed the the-
oretically obtained properties of Sec. IV-C. Further important
results are given below.

1) Follow-up behavior: Both follower approaches
achieved perfect follow up behavior ϑr → θEm for Tf → 0.

2) Stability bounds: The flow imitation approach had an
higher absolute stability margin with respect to estimation
errors B̂F < B than the goal estimation approach.

3) Effort sharing: For zero estimation errors, the goal
estimation follower achieved any desired relative follower
contribution γd

F ∈]0, 1[ without overshoot. In contrast, for
increasing γd

F the flow imitation approach led to an increas-
ing overshoot of the energy ϑr with respect to the goal
energy θd

E for γd
F > 1 − γd

L and a slower transfer behavior
for γd

F = 1− γd
L.

B. T-pendulum simulation setup

We performed the simulations using MATLAB/Simulink.
The t-pendulum was modeled through rigid bodies that
are connected via spherical joints using the 1st generation
SimMechanics toolbox (see [3] for implementation details
and the t-pendulum parameters). The control parameters
were Tω = 2 s, Tf = 1 s, Tϑ = 0.1 s, Kd = K̂d = 0.4 1/s,
ā = 0.5 m, c0 = 0.9 and ζ = 1.2.

C. Measures for the t-pendulum simulations

1) Analysis of controller performance: The controller
performance was based on the settling time Ts, the steady
state error e and the overshoot o. We defined the settling
time Ts to be the time after which the energy of the θ-
oscillation stays within a 2 % band around the steady state
energy θ̄E . The steady state error captured the difference
between desired and steady state energy e = θd

E − θ̄E and
the overshoot was equal to the maximum difference between
actual and steady state energy o = maxt(θE(t)− θ̄E).

2) Analysis of effort sharing: The computation of the
relative follower contribution as defined in (2) requires
computation of the energy flows θ̇E,L/F for which we would
need to rely on the abstract simple pendulum approximation.
Instead, we computed the relative follower contribution as

γ̂F =

∫ Ts

0
ĖF dτ∫ Ts

0
ĖF + ĖL dτ

, (32)

based on the complete energy flows ĖL/F = ṙTL/FF p,L/F .



D. Results and discussion for the t-pendulum simulations

Our control approach cannot start from the lower stable
equilibrium θ = θ̇ = ψ = ψ̇ = 0, because it requires
a rising phase angle ϕϑ. In reality, this problem can be
circumvented by a short jerky motion by the leader. For
the simulations we initialized the t-pendulum with small
initial angles θ(t = 0) = −2.6 deg and ψ(t = 0) =
−3.0 deg. The ω̂ϑ-adaptation was initialized for the leader
and the follower with ω̂ϑ(t = 0) = 6 rad/s. Note that these
initial conditions were challenging for our control approach,
because the undesired oscillation was initially more dominant
than the desired oscillation and the ω̂ϑ-adaptation started in
between the frequencies of the two oscillations ωθ ≈ 4 rad/s
and ωψ ≈ 8 rad/s. However, the initialization with ω̂ϑ(t =
0) = 6 rad/s > ωθ does reflect the guideline B̂F > B
that originated from the stability analysis in Sec. IV-C.
Another difficulty was posed by commanding desired relative
contributions γd

F = 0.6 > γd
L = 0.4. The goal energy was

set to θd
E = 45 deg.

The results for the flow imitation approach are given in
the upper part of Fig. 4(1a-c) and for the goal estimation
approach in the middle part of Fig. 4(2a-c). The bottom
part of Fig. 4(3a-c) shows additional results for the goal
estimation approach based on second-order filters instead
of the first-order filters for the goal energy estimation (see
Sec. IV-B).

1) Follow-up behavior: For all presented results, the
energy θE increased with a clear delay with respect to the
reference dynamics θEm. Almost perfect reference dynamics
tracking was achieved for two leaders or the flow imitation
as well as the original goal estimation approach, if ω̂ϑ was
set to ωθ, the t-pendulum was initialized with ψ(t = 0) = 0,
the time constant5 T fi

f = 0.1 s was used and the exact angles
θ and θ̇ were made available. Note that the agents’ amplitude
factors never saturated, as rmax = 0.05 m.

2) Performance: The flow imitation approach settled af-
ter an overshoot of ofi = 2.8 deg close to the goal en-
ergy θd

E at time T fi
s = 19 s and under a steady state error

of efi = −2.0 deg. The ψ-oscillation had a maximum energy
of ψfi

E,max = 4.4 deg and settled at around ψfi
E,s = 2.9 deg.

The goal estimation approach without additional filter
did not settle within 2 % of its steady state value θ̄E . The
average steady state error was ege = 0.3 deg and the highest
overshoot oge = 4.2 deg occurred at t = 11 s. The reason for
this unsatisfactory performance was the sensitivity of the goal
estimation with respect to the ψ-oscillation. The ψ-oscillation
caused the goal energy estimate θ̂d

E to oscillate, which in
turn excited the ψ-oscillations. At t = 25 s the undesired ψ
oscillation contained an energy of ψE = 19 deg.

The bottom part of Fig. 4(3a-c) shows that additional
low-pass filtering of the goal energy estimate increased
the performance. The energy θE settled after a negligible
overshoot of oge,o2 = 0.2 deg at T ge,o2

s = 13 s with a steady
state error ege,o2 = −2.7 deg. The ψ-oscillation contained

5for the original goal estimation approach increasing oscillations were
observed for T ge

f = 0.1 s.
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Fig. 4. Flow imitation (1a-c), goal estimation (2a-c), goal estimation with
second order filtering (3a-c): a) Angles θ and ψ, goal energy θdE , reference
dynamics θEm, energy equivalents θE and from leader perspective ϑr , b)
energy contained in the θ-oscillation Eθ , energies injected by the agents EL
and EF and their sum EL+F , c) natural frequency ωθ and its leader and
follower estimates ω̂ϑ,L and ω̂ϑ,F .

a maximum energy of ψge,o2
E,max = 4.1 deg and settled at

only ψge,o2
E,s = 0.8 deg.

3) Effort sharing: The slightly increasing difference be-
tween the energies EL+F and Eθ in Fig.4(1b) and (3b) is due
to minimal damping. In contrast, the increasing difference
in Fig.4(2b) stems from the excitation of the ψ-oscillation.
The flow imitation approach almost perfectly achieved the
desired relative follower contribution γfi

F = 0.63 ≈ γd
F . The

original goal estimation achieved γge
F = 0.57 ≈ γd

F if we
set the settling time to T ge

s = 15 s. In contrast, the goal
estimation with second-order filters only reached γge,o2

F =
0.48. This is due to the choice of kγ based on the first-order
filters. Computation of the transfer functions in Sec. IV-C for



the second-order filters with time constant Tf and damping
Df yields

k2o
γ =

1

1− 2TfDf K̂d

. (33)

Consequently, for our choice of reference dynamics with
K̂d = Kd = 0.4 and a time constant of Tf = 1, we already
obtain a high gain k2o

γ = 5 and are close to the stability
borders with a damping of Df = 1. Lower damping values
led to increased oscillations of θE and θ̂d

E , even for the
fundamental dynamics simulations. Therefore, we refrained
from enforcing the relative follower contribution and used kγ
from (25) for an improved transient behavior and a greater
absolute stability margin. In contrast, the flow imitation
approach was able to achieve γF = 0.85 for γd

F = 0.9.
4) Fundamental dynamics approximation: Figures 4(1a)

and (3a) show that for low ψ-oscillation, the state space
radius ϑr closely tracked the energy θE . Furthermore, the
ω̂ϑ-adaptation approached the actual natural frequency ωθ for
all simulations. The close tracking as well as the successful
ω̂ϑ-adaptation support the applicability of the fundamental
dynamics approximation to a complex pendulum-like object
as the t-pendulum. With increased undesired ψ-oscillation
the projection of the t-pendulum behaved less as the abstract
simple pendulum. This became visible in the increased
oscillations of ϑr and ω̂ϑ (see Fig. 4(2a) and (2c)).

In summary, the control goals as stated in (1) and (2)
were differently well achieved for the two leader-follower
structures. Both leader-follower structures led to a signifi-
cantly delayed swing-up with respect to the desired reference
dynamics and consequently a high εθ. Whereas the goal
estimation with additional filtering achieved faster settling
and lower bounds on εψ , the flow imitation approach al-
lowed for higher desired relative energy contribution for the
follower γd

F with tighter bounds εF .

VII. CONCLUSIONS
This paper proposes an adaptive energy controller for

cooperative swinging of complex pendulum-like objects by
two agents. The fact that the desired oscillation of the
complex pendulum-like object under consideration can be
approximated by a simple pendulum oscillation, allows us
to apply the fundamental dynamics of a simple pendulum
to the two-agent system. The linear fundamental dynamics
enable the design of two adaptive leader-follower control
structures. An analysis of the adaptive control structures
yields analytical results for properties as stability, stationary
transfer behavior and resultant relative energy contribution
of the agents under the fundamental dynamics assumption.
Simulation experiments with a complex pendulum-like object
show the applicability of the adaptive control structures
to a highly nonlinear two-agent pendulum. The undesired
oscillation does affect the validity of the fundamental dy-
namics approximation. However, the simulations show that
the undesired oscillation is kept within small bounds for both
adaptive leader-follower control structures.

In future work, we plan to analyze the influence of the
undesired oscillation more thoroughly, in order to answer

questions as under which circumstances the undesired oscil-
lation instead of the desired oscillation is excited. Further-
more, we want to test the proposed control approaches in a
realistic setup, with noisy force data and variable behavior
of the other agent. Also, we are interested in extending our
approach towards swinging of more realistic flexible objects
that enforce a stronger coupling between the agents.
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