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Abstract—Complex robotic tasks require the use of
knowledge that cannot be aquired with the sensor
repertoire of a mobile, autonomous robot alone. For
robots navigating in urban environments, geospatial
open data repositories such as OpenStreetMap provide
a source for auch knowledge. We propose the integra-
tion of a 3D metric environment representation with
the semantic knowledge from such a data base, and de-
scribe an application where road network information
from OpenStreetMap is used to improve road geometry
information determined from laser data. This approach
is evaluated on a challenging data set of the Munich
inner city.

Index Terms—spatial reasoning; hybrid maps; scene
understanding

I. INTRODUCTION

As tasks devolved to robots become ever more complex
and encompass more domains, also demands towards their
understanding of relationships and autonomy are growing.
Different sources of knowledge that can be tapped for a
higher-level understanding of concepts and tasks, which is
desirable for a more intuitive and user-friendly interaction
with a robot, have been explored. Human interaction part-
ners themselves have been used as a knowledge source for
example in the IURO project (Wollherr et al. [1], Figure 1).
Other approaches have considered the augmentation of
robot knowledge used ontological models in databases
that can be shared for learning and usage by different
robots [2, 3]. In this work, we consider OpenStreetMap, a
community-driven online mapping framework, as a source
for semantic information for robots moving autonomously
in an urban environment. We propose the extension of
a hybrid map, which includes a 3D occupancy grid as
well as information about objects in the environment, with
semantic and topological information from this data base.

There are multiple reasons why a tighter integration be-
tween robot mapping frameworks with data repositories
like OpenStreetMap is beneficial. For once, these reposi-
tories contain manually selected and curated information,
which ensures that it is specified on a level that is un-
derstandable to humans and thus usable in interaction,
for example for giving or receiving route instructions.

Dirk Wollherr
Institute for Automatic Control Engineering (LSR)
Technische Universitdt Miinchen

dw@tum.de

= =

Fig. 1: The robot IURO [4] in an urban environment.

Furthermore, even state-of the art scene understanding
algorithms primarily rely on assigning labels on a per-
pixel or per-region basis, and can have problems at deter-
mining distinctions between objects where this distinction
happens primarily on a semantic level, i.e. two adjoining
rooms with different functions in a space that is not
clearly separated, or a building where different parts serve
a different purpose. These will be hard to distinguish
based on sensor data alone, but the information might be
readily available as a bounding box in the OpenStreetMap
annotation. Furthermore, the benefit of robots using open
databases could be mutual. The sensor repertoire used in
robot mapping approaches will provide up-to-date metric
spatial information in the near future, which can be up-
loaded to Open Data repositories for sharing with humans
and other robots.

This paper describes applications and possibilities offered
by integrating 3D laser maps with rich semantic and
geospatial Open Data repositories. As one such application
scenario, it is described how road network information
from OpenStreetMap can be used to improve understand-
ing of street geometry based on 3D laser data. The ap-
proach is evaluated on a challenging data set covering an



area in downtown Munich, showing a considerable increase
in accuracy over the baseline.

II. RELATED WORK

Data retrieved from OpenStreetMap, in particular the
information about the topology and layout of the road
network, has been used for multiple robotics and related
applications. An important requirement for the use of
geospatial data is knowledge about the location of the
robot on a global map, i.e., a solution for the localization
problem. Hentschel and Wagner [5] describe a localization
method that uses building outlines from OpenStreetMap,
which are matched to corresponding features in 3D laser
scans. Additionally, the work covers route planning on
the OSM route network, and robot behavior control for
the robot car’s lights based on semantic attributes from
OSM. Brubaker et al. [6] use the OSM route network to
localize based on visual odometry data. The localization
problem is modeled as a dynamic network, where the state
is a position related to the current route segment, and the
visual slam trace is the input for filtering. Floros et al.
[7] perform localisation on the OSM route network with
visual slam and a GPS initial guess. The result of visual
odometry is used as input to a particle filter, where the
distribution is pruned based on comparison to the OSM
road network.

Baatz et al. [8] use 3D building geometries from sources
similar to OpenStreetMap and vanishing point detection
to rectify and align training and query images for place
recognition tasks. Li et al. [9] use 3D point clouds for global
registration of images. The 3D point clouds are gener-
ated with Structure of Motion techniques from geotagged
monocular images. Ruchti et al. [10] describe localization
of a robot on the OpenStreetMap global map based on
classification of 3D laser scan point clouds in road and
non-road regions in a SLAM framework.

III. OPENSTREETMAP DATA MODEL AND RELEVANT
Data

The data model of OpenStreetMap is a graph-like struc-
ture, where the basic building blocks are mnodes, ways
and relations. Nodes represent points on the map and are
characterized by their latitude and longitude, as well as
an optional elevation. Ways connect nodes to form open
or closed paths and represent spatial entities like the path
followed by railroad tracks, building outlines or the area
covered by a football field. Relations describe higher-level
characteristics of sets of nodes and ways, like all buildings
belonging to an university campus, or the complete set of
roads followed by a bus route. All instances of these three
building blocks are identified by globally unique identifiers.
Moreover, arbitrary tags can be applied to each instance
of these data types, although there is an established set of

tags and values that is largely adhered to, which can be
used to automatically extract semantic information.

Many features from OpenStreetMap can be easily trans-
ferred to a metric map used for robot applications pro-
vided that the transformation between the different global
coordinate systems are known. Different localization ap-
proaches to address this problem have been proposed
as summarized in Section II, and this transformation is
assumed as known for the purposes of the work presented
here. In this case, the mapping of spatial locations allows
the transfer of features between the two maps, for example
for route planning based on street addresses in an occu-
pancy grid derived from sensor data, or for identifying all
buildings belonging to a particular ensemble in a 3D map,
as exemplarily displayed in Figure 2.

IV. STREET WIDTH ESTIMATION

The approach for street geometry information presented
here is related to the work described by Ruchti et al. [10],
where cells of a 3D laser-based map are classified point-
by-point in order to enable localization of a robot in a
road network like OpenStreetMap. In the presented work,
additionally, the modelling imposes a strong geometric
consistency constraint — road cells have to be adjacent
and located in a strip around the street center. In keeping
with most other urban scene segmentation approaches,
the term ‘street’ is understood as the area of the road
that is driven on, the sidewalk as well as possible parking
space on the side of the road. Estimation of street width
using information about the location of the street center
from Open Data sources is also treated by Yuan and
Cheriyadat [11], where aerial images are used as sensor
data in combination with a road vector network, and by
Chen et al. [12], where street geometry is inferred on
the basis of high-resolution multispectral remote sensing
satellite imagery. Geiger et al. [13] present an approach for
urban scene understanding based on a generative model
for street geometry and topographic information that is
based on 3D data constructed from stereo vision recorded
by a vehicle traveling on the road.

For this work, this topological information is provided
largely from the road network from OpenStreetMap. The
goal is to augment this graph with additional metric
information in the form of street width, which is largely
not existing in the OpenStreetMap database.

This relies on the road network data being available
and sufficiently accurate. This is the case for the regions
considered in the evaluation of this paper, and has also
been found to suffice for the different purposes of the other
works that use road network data, and perform evaluation
on data from other parts of the world. However, street
width, even though the infrastructure (an xml tag defined
for the purpose of annotating it) exists, is not annotated
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(a) 3D data set overlayed with OpenStreetMap road network

i

(b) Buildings on the TUM campus, extracted from OpenStreetMap
building outlines

Fig. 2: Examples for combinations of 3D laser data with additional RGB information and information from
OpenStreetMap. The visualizations of OpenStreetMap data in this paper are created with software based on the

open_street_map ROS package .

often. In the data set used for evaluation in this paper,
only one street segment is annotated with a width tag in
the OpenStreetMap data base.

A. Modelling Street Geometry Information

The approach for estimating street width from 3D laser
data followed here is largely a two-step process. Basis for
the estimation is the road network from OpenStreetMap,
which provides approximate road center lines subdivided
into segments of varying length, within which the road is
assumed to be straight. In order to reconcile this informa-
tion with a metric 3D representation such as our laser map,
two parameters need to be estimated for each road segment
s;: The vertical offset d; of the actual road center from the
vector connecting the waypoints WP, ; and W P; . defining
the road segment in the road network, and the width of the
road around this actual center line. The directions of the
road segments from OpenStreetMap are assumed to be in
keeping with the actual topology of the environment. This
model for the layout is displayed in Figure 4.

B. Inferring Street Geometry from 3D Laser Data and
Road Network Information

In a first step, local geometric and appearance features
are classified to a label set of road/non-road by a baseline
classifier. For this task, a candidate environment of a
predefined width around each segment center line from the
road network is retrieved from the 3D map. This section
of the map is then discretized in the ground plane, and for

Lauthored by Jack O’Quinn,
ros-geographic-info/open__street__map.

https://github.com/

each resulting patch a set of local features is computed.
The patch width and the maximum distance of a road
side from the road network center line are chosen as 0.5m
and 15m, respectively.

The feature set contains fairly standard geometric and
appearance-based features, namely the mean, median,
standard deviation and absolute range of the z-coordinates
of all points projected to each patch, as well as the same
statistics for the intensity values recorded for each point
and the polar angle of a normal vector computed for
a small neighborhood around each point. Using these
features, a baseline classifier is trained to separate between
road and non-road patches. We use a Support Vector
Machine with a linear kernel and parameters estimated
in a 5-fold cross validation scheme.

The classification results then provide candidate infor-
mation for the second step, which introduces a strong
global geometric constraint on the inferred route geometry,
i.e. that is has straight parallel side lines. In addition,
a prior distribution over road width is used. These con-
straints are formulated in a probabilistic fashion as a
Bayesian network, where the probability of a pair of offset
and width values, given the classifier estimates for each
patch Yy = {y,}, can be written as

P(w,d|Y) o [] p(zw.a(p) ly(p))p(w),
peP

(1)

where the subscript s has been dropped. In this expression,
Zw,a(p) refers to a class assignment where road/nonroad
labels have been assigned according to the road geometry
determined by w and d for each patch p, and y(p) is the
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(a)  Ground (b) Classifica-
truth tion result
annotation

(¢) Section of 3D map with overlayed ground truth
annotation

Fig. 3: Example annotated road segment. For a) and b),
light patches are road pathches, darker patches are non-
road and for very dark patches, not features are available.
For ¢), road and sidewalk points are overlaid in red, green
and blue.

classifier output for the same patch. The distribution for
the classification error p(z.,,q4(p) |y(p)), is derived from the
confusion matrix of the baseline classifier, such that each
patch where the class assignment has to change between
the classification result and the geometrically constrained
solution incurs a penalty into the total probability of that
constrained solution. The prior distribution of road widths
is modeled as a Gaussian, the parameters of which are
estimated from the same training data as the ones of
the SVM classifier. For the offset between inferred street
center and the road center from the road network, a non-
informative prior is used.

Given this model, road offset and width are determined
as the parameters which maximise the probability density
function as

w*,d* = argmax P(w, d|Yy)
w,d

(2)

The complexity of this second inference step is quadratic
in the number of bins allowed for discretization of the

Road
Segment s;

Fig. 4: Hlustration of road position and width model

space around the route segment, and can be computed
exhaustively for the parameters chosen for the evaluation,
although a dynamic programming approach could also be
followed if fast performance is required.

V. EXPERIMENTAL EVALUATION

A. Munich Urban 3D Data Set

The data set that was used for experiments is in part
overlapping with the one described by Wollherr et al. [1].
It comnsists of 80 high-resolution laser range finder scans
in 3D, acquired with an Z+F 5010C laser range finder,
of an area in downtown Munich around the university
campus. Additionally, laser intensity and RGB channels
are recorded. In this data set, object instances are man-
ually segmented and annotated for object classes such as
building, street, sidewalk or car, as well as for qualitative
spatial relations, such as left of or behind, between objects.
The data set provides a challenging environment for scene
understanding tasks, since it incorporates a considerable
range of different environments, such as residential streets
with parked and artefacts of moving cars, tunnels, and
cobbled or gravelled streets closed for motor vehicles.
Additionally, the laser scans are taken from positions on
the sidewalk, such that in many cases the ground plane is
not observable because of occlusions or dynamic objects
blocking visibility at the time of registering the laser scan.



Precision Recall Fj-Score width RMSE
Baseline (SVM) 0.82 0.82 0.82 14.33
SVM+Geometry 0.91 0.87 0.87 5.23

TABLE I: Database recall metrics and root mean square
error of the estimated road widths for the baseline classifier
and for the solution including geometric constraints

B. Registration of Point Cloud Data with OpenStreetMap

Since the data set is recorded sequentially with no ground
truth information about the absolute robot position at
the time of recording a scan, nor about the relative
movement of the sensor between scans, a registration step
is necessary to obtain a complete 3D representation of the
area covered by the union of the different laser scans. To
this end of estimating the transformations between the
sensor positions for each recorded 3D scan, registration
with multiple iterations of the 3D Iterative Closest Point
algorithm as introduced by Besl and McKay [14], with
the maximum allowed correspondence distance decreasing
with each iteration was carried out beginning from a rough
initial guess. Also for the lack of ground truth position
data of the laser data, manual alignment of the 3D data
with an export of OpenStreetMap data for the region
covered by the laser data was carried out.

Since handling the complete data for the combination of
all laser scans is intractable, the data was filtered and
downsampled using the RMAP algorithm introduced by
Khan et al. [15]. This procedure produces a denoised
occupancy grid at a variable resolution, where the grid
size was chosen to 0.1 m for the experiments in this paper.

For the evaluation of the street geometry estimation, a
set of 34 route segments with a total length of about
1km annotated in OpenStreetMap was chosen, and the
regions surrounding them were manually segmented and
annotated as road and non-road regions for the training of
the classifiers and for evaluation of the results. An example
route segment is illustrated in Figure 3.

C. Ezperiments

The method for road geometry estimation described above
was evaluated on this augmented Munch 3D Urban Data
Set. A summary of the results in terms of per-patch
retrieval of the correct labels, expressed as precision, recall
and F} score, as well as the root mean square error of the
estimated road widths, is given in Table I.

It can be seen that introducing the geometric constraint
improves retrieval metrics of labels for individual regions,
as well as it also decreases the error in the street width
estimation.

An analysis of the failure modes on particular segments
where street geometry estimates were unsatisfactory re-

vealed that many of them were located in tunnels, which
were underrepresented in the training set as to learn
proper classification for these environments, where the
3D layout of the environment is rather different from
a generic urban road scene. Additionally, the data set
also contains streets of different categories (i.e., residential
urban roads as well as gravel roads closed for general traffic
and without sidewalks), which again are quite different in
nature from a generic scene. In order to further improve
the geometry estimation results, more qualitative infor-
mation from OpenStreetMap could be used, for example
by building and employing different models for roads of
different categories, or road segments that are annotated
as tunnels.

VI. CONCLUSION

In this paper, we have argued the benefits of including
information from open geospatial repositories in hybrid
maps. The application of road classification and road
width estimation, a parameter which is often missing in
OpenStreetMap and could be added automatically from
3D maps, has shown that including a geometric constraint
based on OpenStreetMap data provides a considerable
improvement over a baseline solution based on classifi-
cation alone. Experiments have been carried out on a
challenging data set, where laser scans have been recorded
from the sidewalk, so that the full width of the road is often
occluded, and which contains a widely varying array of
road types including tunnels. With the increase in mobile
robot platforms navigating in urban scenarios that are
equipped with a 3D laser scanners, it is to be expected
that different avenues for use of additional information
will be explored.

There are several directions in which the work presented
here can be extended. Especially in the vein of improving
urban scene interpretation by using mapping data from
OpenStreetMap would be the use of information about ad-
ditional properties of roads such as traversability and the
existence of bike paths and sidewalks. Furthermore, it can
be expected that knowledge about the type of street from
the annotation as residential, primary, secondary etc. will
be useful if separate models are built and conditioned on
the different types of environment.
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