
TECHNISCHE UNIVERSITÄT MÜNCHEN

Institut für Informatik

Lehrstuhl für Informatik XVIII

Algorithmic Mechanism Design via
Relaxation and Rounding

Salman Fadaei

Vollständiger Abdruck der von der Fakultät für Informatik der Tech-
nischen Universität München zur Erlangung des akademischen Grades
eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Alexander Pretschner

Prüfer der Dissertation: 1. Prof. Dr. Martin Bichler
2. Prof. Dr. Susanne Albers

Die Dissertation wurde am 19.05.2016 bei der Technischen
Universität München eingereicht und durch die Fakultät für
Informatik am 05.08.2016 angenommen.

Algorithmic Mechanism Design via
Relaxation and Rounding

Salman Fadaei

Salman Fadaei: Algorithmic Mechanism Design via Relaxation and
Rounding, c⃝ April 2016

To Reza, Mohammadreza and Mahin

To Mandana and Siavash

A B S T R A C T

The problem of maximizing social welfare for environments with dis-
tributed decision makers who are only concerned with selfish objec-
tives, is hard but of central importance. The problem appears in sev-
eral scenarios from combinatorial auctions to matching markets. The
hardness of the problem partly arises from the inherent tension be-
tween social goals and the individual objectives. From computational
complexity point of view, maximizing social welfare is NP-hard, and
this adds to the hardness. The field of algorithmic mechanism design
addresses these issues via welfare approximation, or welfare approx-
imation supplemented with payment schemes. This thesis analyzes
two problems in algorithmic mechanism design, and introduces ef-
ficient machineries that are applicable in algorithmic mechanism de-
sign.

First, we study a strategic variant of the generalized assignment
problem (GAP). In GAP, a set of items has to be optimally assigned
to a set of bins without exceeding the capacity of any singular bin.
In the strategic variant of the problem we study, values for assigning
items to bins are the private information of bidders, and the mecha-
nism should provide bidders with incentives to truthfully report their
values. The presented truthful algorithm improves upon the existing
optimization algorithms for GAP in terms of simplicity and runtime
while the approximation ratio closely matches the best approximation
ratio given for GAP without strategic considerations.

Second, we study a problem of truthful mechanism design for a
strategic variant of GAP in a payment-free environment. In this strate-
gic variant, bins are held by strategic agents, and each agent may hide
its compatibility with some items in order to obtain items of higher
values. The compatibility between an agent and an item encodes the
willingness of the agent to receive the item. The goal is to maxi-
mize social welfare while certifying no agent can benefit from hiding
its compatibility with items. The model has applications in auctions
with budgeted bidders. In contrast to the mechanism design with
quasi-linear valuations, in this setting, payments are unavailable and
the well-known Vickrey-Clarke-Groves (VCG) mechanism is inappli-
cable, thus we resort to the technique of welfare approximation.

Third, we study the meta-randomized rounding technique which
decomposes a fractional solution of a relaxed linear program into a
convex combination of integer solutions. This rounding technique is
broadly used in combinatorial optimization, and mechanism design
with or without money. However, the technique relies heavily on
the ellipsoid method, which is notorious for its poor practical per-

v

vi

formance. In this thesis, we present alternative decomposition tech-
niques that are more practical. The first presented technique is a
geometric-based approach that, given a fractional point, finds a con-
vex decomposition which can get arbitrarily close to the fractional
point. The second technique is based on the Dantzig-Wolfe decompo-
sition. It finds a fractional solution to the relaxed linear program, and
at the same an exact convex decomposition of the fractional solution.

A C K N O W L E D G E M E N T S

I owe so much to many who helped me towards completion of this
thesis. I am thankful to Martin my supervisor for his trust and sup-
port, and for the freedom he gave me in research. I thank Susanne
Albers for her encouraging words in our meetings. Dennis thank you
for working together with me. Per P., Zhen H., Andreas W., Florian
S., and Usiel R. thank you for constructive discussions. I thank my
parents for their incalculable support and patience during the whole
time of my education. Thanks to my wife Mandana for her support
and endurance. Last but not least, I thank my three-years-old son
Siavash for bringing new meaning to our lives.

vii

C O N T E N T S

1 introduction 1

1.1 Game Theory . 2

1.2 Mechanism Design for Combinatorial Auctions 3

1.3 VCG Auctions . 5

1.4 Truthful Approximation Mechanisms 6

1.5 Approximations to Obtain Truthfulness 7

1.6 Thesis Structure . 8

2 relax and round 9

2.1 Setting . 9

2.2 Relaxation . 10

2.3 Rounding . 10

2.4 Truthful-in-expectation Mechanism 11

2.5 Mechanism Design without Money 14

3 generalized assignment problem 17

3.1 Introduction . 17

3.1.1 Challenges in Algorithmic Mechanism Design . 19

3.1.2 Results and Techniques 20

3.1.3 Structure . 22

3.2 Preliminaries . 22

3.3 MIDR Allocation Rule for GAP 23

3.3.1 Greedy Rounding 24

3.3.2 The Approximation Ratio 27

3.3.3 Solving the Convex Optimization Problem . . . 28

3.3.4 Simplifying the Rounding Procedure 33

3.4 Computing Payments 33

3.5 Truthfulness . 34

3.6 Strategic Items . 36

3.7 Conclusion . 36

4 mechanism design without money 39

4.1 Introduction . 39

4.1.1 Model . 40

4.1.2 Discussion About the Assumptions 42

4.1.3 Results and Technique 44

4.2 Generalized Assignment Problem 45

4.2.1 Multiple Knapsack Problem 46

4.2.2 Truthful Mechanism for GAP-BS 48

4.2.3 Unequal Value Densities 54

5 fast meta-randomized rounding 57

5.1 Introduction . 57

5.2 Setting . 59

5.3 Decomposition with Epsilon Precision 60

ix

x Contents

5.4 Exact Decomposition . 65

5.4.1 Simpler Exact Decomposition 68

6 mechanism design via dantzig-wolfe decomposi-
tion 69

6.1 Introduction . 70

6.1.1 Results and Techniques 70

6.1.2 Structure . 72

6.2 Setting . 72

6.3 Summary of Dantzig-Wolfe Decomposition 73

6.4 Applying Dantzig-Wolfe Decomposition 75

6.5 Benders Decomposition 78

6.6 Application of the Method in Mechanism Design . . . 80

6.6.1 The Framework Proposed by Lavi and Swamy . 80

6.6.2 Existing Fractional Point 81

6.7 Numerical Example for Integer DW 82

7 conclusion 87

L I S T O F F I G U R E S

Figure 1 Circles represent items and squares represent
bins. The value

size of each item is on its left. Each
bin has a capacity of 1. Selected assignments
are in bold. 43

Figure 2 Circles represent items and squares represent
bins. The value/size of each item is on its left.
Value maximizing assignments are in bold. x≫
1. 47

Figure 3 Value/size of each item-bin pair is on the edges.
x is an arbitrary big value. Selected assign-
ments are in bold. 50

Figure 4 Two cases where the bin is and is not on the
preference list of the item. The amount of pro-
posed and accepted capacities are shown on
the edges. 52

Figure 5 Two cases where the bin shows or hides its
compatibility with an item. 54

Figure 6 Right triangle between the points x∗
α , σ(λi) and

zi+1 . 63

xi

L I S T O F TA B L E S

Table 1 Simplex tableau. RHS stands for right-hand side. 74

xiii

1
I N T R O D U C T I O N

A set of numbers a1, a2, . . . , an is given. The algorithm below finds the
maximum among these numbers.

max := a1;
for i← 2 to n do

if max < ai then
max := ai;

Now, consider a setting in which these numbers belong to self-
interested agents. Self-interested agents may misreport the numbers
because of their own interests. In this situation, the algorithm above
will be useful only if we certify that the true numbers are reported
by the agents. To this end, we need to model and understand the
interests of the agents.

The dominant approach to model an agent’s interests or preferences
is the utility theory. A utility function quantifies an agent’s degree of
preferences across a set of alternatives or outcomes. A utility func-
tion assigns a real number to an outcome which defines the level
of happiness of an agent with the outcome. Working with the idea
of utility functions, in lieu of preferences, is pervasive and without
loss of generality according to the von Neumann–Morgenstern the-
orem. Given a set of outcomes, the preference relationship of an
agent identifies an ordering over the outcomes or lotteries of out-
comes. A lottery is a probability distribution over the outcomes. The
von Neumann–Morgenstern theorem states that for any preference
relationship that satisfies a set of reasonable properties, there exists
a utility function that correctly represents the preference relationship
(Shoham and Leyton-Brown, 2008). The von Neumann–Morgenstern
theorem thus justifies the pervasive claim that a single-dimensional
function (a utility function) suffices to describe preferences over an
arbitrarily complicated set of alternatives. We benefit from this obser-
vation and work with utility functions.

Finding the maximum among a set of numbers is an algorithmic
problem. If we assume each number is the private information of
an agent, then we also want the agents to disclose their numbers
truthfully to the algorithm above. Otherwise, the algorithm will be
of no use. Hence, we face a problem of mechanism design rather than

1

2 introduction

just algorithm design. Mechanism design or implementation theory is
sometimes called “inverse game theory”. Thus, to better understand
mechanism design, we start with some game-theoretic fundamentals.

1.1 game theory

Game theory is the mathematical study of interaction among inde-
pendent self-interested agents or players of a game. Normal-form
games are the most fundamental representation of strategic settings.
In normal-form games, agents’ moves are simultaneous. We briefly
introduce normal-form games which will help us define useful con-
cepts such as equilibria.

Definition 1 (Normal-form Games). A (finite, n-person) normal-form
game is a tuple (I , A, u), where:

• I is a finite set of n players, indexed by i

• A = A1 × . . .× An , where Ai is a finite set of actions available to
player i. Each vector a = (a1, . . . , an) ∈ A is called an action profile.

• u = (u1, ..., un) where ui : A 7→ R is a real-valued utility (or payoff)
function for player i.

Agents choose strategies to play in a game. A strategy can be to
select an action and play it which is called a pure strategy. Agents can
also randomize over the set of available actions according to some
probability distribution. Such a strategy is called a mixed strategy.
The set of all strategies for agent i is denoted by Si. We use s =

(s1, s2, . . . , sn) and s−i to denote a strategy profile of the agents, and a
strategy profile of the agents other than i, respectively. Let S−i denote
the set of all s−i’s.

We analyze games using solution concepts. Solution concepts are
principles according to which we identify interesting subsets of the
outcomes of a game. Solution concepts can be seen as a way to predict
the outcome of a game assuming some behavior of rational agents
who try to maximize their own utilities. The most significant solution
concept in game theory is the Nash equilibrium. In the Nash equilib-
rium, we analyze the games from an individual agent’s point of view.
The strategy that an agent chooses in a Nash equilibrium is called the
best response.

Definition 2 (Best Response). Agent i’s best response to the strategy pro-
file s−i is a mixed strategy s∗i ∈ Si such that ui(s∗i , s−i) ≥ ui(si, s−i) for all
strategies si ∈ Si.

Subsequently, the Nash equilibrium is defined as follows.

Definition 3 (Nash Equilibrium). A strategy profile s = (s1, . . . , sn) is a
Nash equilibrium if, for all agents i, si is a best response to s−i.

1.2 mechanism design for combinatorial auctions 3

The other strategy that is of central significance is the dominant
strategy. To define this strategy, first we define weak domination.

Definition 4 (Weak Domination). Let si and s′i be two strategies of agent
i. Then si weakly dominates s′i if for all s−i, ui(si, s−i) ≥ ui(s′i, s−i), and for
at least one s−i ∈ S−i, it is the case that ui(si, s−i) > ui(s′i, s−i).

Consequently, a weakly dominant strategy is defined as follows.

Definition 5 (Weakly Dominant Strategy). A strategy is weakly domi-
nant for an agent if it weakly dominates any other strategy for that agent.

A strategy profile (s1, . . . , sn) in which every si is weakly dom-
inant for agent i is called equilibrium in weakly dominant strategies.
Other types of dominant strategies, strictly and very weakly domi-
nant strategies, can be defined accordingly. However, in this thesis,
we only work with weakly dominant strategies and, for simplicity, we
drop the modifier “weakly”. An equilibrium in dominant strategy is
a stronger concept than the Nash equilibrium. Every equilibrium
in dominant strategies is a Nash equilibrium but not always a Nash
equilibrium is an equilibrium in dominant strategies.

Back to our discussion about mechanism design, let us recall that
mechanism design is in fact inverse game theory. In mechanism de-
sign, we assume unknown individual preferences (utilities), and at-
tempt to design a game such that no matter what the unknown pref-
erences are, the equilibrium (e.g. equilibrium in dominant strategies)
of the game is guaranteed to have a certain set of properties. Mecha-
nism design is perhaps the most “computation-driven” part of game
theory since it concerns itself with the design of protocols for dis-
tributed decision makers. However, since the decision makers are
not necessarily cooperative, one can think of mechanism design as an
exercise in “incentive engineering”.

1.2 mechanism design for combinatorial auctions

While mechanism design is a broad area in game theory, we study
mechanism design for welfare maximization in combinatorial auc-
tions. The problem of maximizing social welfare in combinatorial auc-
tions (CAs) is of central importance in both theory and practice of
mechanism design. In CA, there are m items for sale and n bidders
competing for these items. Each bidder i has a private valuation vi(S)
for each package S of items. Alternatively, we say vi is the private
type of bidder i. The social welfare of an allocation S1, . . . , Sn of items
to the bidders is ∑n

i=1 vi(Si).
An outcome, in the setting of CA, is a pair of allocations as well

as the payments to the bidders: o = (S1, . . . , Sn, p1, . . . , pn). In CA,
bidders usually have quasi-linear utility functions. A Quasi-linear
utility function is of the form ui(Si) = vi(Si) − pi: the utility of a

4 introduction

bidder i for an allocation is the private valuation of the bidder less
the payment for the allocation. With this type of utility functions, the
mechanism can charge or reward the bidders by an arbitrary amount
of money in order to incentivize the bidders to truthfully report their
values.

A mechanism implements a social choice function in an equilibrium.
A social choice function is a mapping from types to outcomes. In
our setting, the social choice function is optimizing social welfare:
maxS1,...,Sn ∑n

i=1 vi(Si).
Bidders choose strategies to bid in an auction. A strategy is a func-

tion from private types (valuations) to actions (bids). Bidders are
rational, that is they bid to maximize their own utility. A strategy
is dominant, if the bidder bids regardless of the bids submitted by
other bidders. A strategy profile in which every bidder has a domi-
nant strategy is called an equilibrium in dominant strategies. We seek a
mechanism that maximizes social welfare in an equilibrium in domi-
nant strategies.

In order to address a mechanism design problem, the revelation
principle encourages us to focus on incentive-compatible direct mecha-
nisms. In a direct mechanism, the only action available to each agent
is to report its private information. A direct mechanism is incentive
compatible or truthful in dominant strategies if every agent i has a
dominant strategy to truthfully report its private type.

Definition 6 (Revelation Principle). If there exists any mechanism that
implements a social choice function in dominant strategies then there exists
a direct mechanism that implements the social choice function in dominant
strategies and is truthful.

In other words, the task of solving a mechanism design problem
can be addressed by finding a direct and truthful mechanism. Thus,
we limit ourselves to social-welfare maximizing mechanisms which
are direct and incentive compatible in dominant strategies (truthful).
In the present text, we use the terms ”truthfulness” and ”incentive
compatibility” interchangeably, and by either we mean ”incentive
compatibility in dominant strategies”. In order to use this useful
observation, we have to take into consideration two important points.
First, by using the revelation principle the computational burden of
finding strategies for the agents is pushed onto the mechanism. This
fact draws our attention to the computational complexity of the un-
derlying algorithm of the mechanism. Second, since agents have to
fully reveal their types, this can place a burden on the communica-
tion channel. In our mechanisms, we have considered these points,
and the proposed mechanisms do not suffer from any of these issues.
Given that we only work with direct-revelation mechanisms, from now
on, we use the word mechanism rather than direct mechanism.

To be more specific about mechanism design for the CA setting,
we say a mechanism is a protocol with three components. First, the

1.3 vcg auctions 5

mechanism extracts a report from each bidder that describes the bid-
der’s valuations. Second, the mechanism computes an allocation that
determines the package of items to be allocated to each bidder (allo-
cation rule). Third, the mechanism charges each bidder an amount of
money (payment rule).

If each bidder, in anticipation of the outcomes of the allocation
and payment rule, reports her valuation truthfully, it is said that the
auction mechanism is incentive-compatible in dominant strategies or
truthful.

Incentive compatibility in dominant strategies is stronger than the
Bayes-Nash incentive compatibility. In Bayes-Nash incentive compati-
ble mechanism, a bidder is truthful provided that other bidders bid
truthfully. Incentive compatibility in dominant strategies assures that
the strategy of each bidder, regardless of the bids submitted by other
bidders, is to bid truthfully.

Back to our example of finding the maximum among numbers, if
we assume the agents have quasi-linear utilities, we can model the
problem as a mechanism design problem for selling one item truth-
fully to the agent whose private value for the item is maximum. With
quasi-linear utility functions, Vickrey’s mechanism called second price
auction solves this mechanism design problem. In particular, it finds
the maximum value reported by the agents and charges the corre-
sponding agent an amount equal to the second highest number. It
is well known that in a second price auction, each agent truthfully
reports its private type (Vickrey, 1961).

Thus, the algorithm for finding the maximum works correctly pro-
vided that the agents have quasi-linear utilities and are told about the
possible payment by the owner of the maximum number. This phe-
nomena is quite amazing in that despite the private data and pure
selfish behavior, the maximum number can be correctly found. All
the field of mechanism design is just a generalization of this possibil-
ity.

1.3 vcg auctions

In combinatorial auctions, the goal of mechanism design is to max-
imize social welfare while providing the bidders with incentives to
truthfully report their private valuations. In economics, the cele-
brated Vickrey-Clarke-Groves (VCG) mechanism provides both ob-
jectives. In particular, VCG finds the welfare maximizing allocation
S∗1 , . . . , S∗n, and employs the following payment rule in order to guar-
antee incentive compatibility. Each bidder i pays her externality, the
amount by which his allocated bundle reduced the total reported
value of the bundles allocated to others: ∑n

l=1,l ̸=i vi(S′i)−∑n
l=1,l ̸=i vi(S∗i).

The first term is the maximum social welfare obtainable without bid-
der i; that is (S′1, . . . , S′n) maximizes social welfare in a market without

6 introduction

bidder i. The second term is the welfare of the market without bidder
i under the social welfare maximizing allocation S∗1 , . . . , S∗n.

The success of VCG strongly relies on optimizing the social wel-
fare. Computationally, this is not always possible because CA is a
NP-hard problem. Even a restricted type of CAs in which bidders
are single-minded is NP-hard since we can show a reduction from
the independent-set problem to the CA problem with single-minded
bidders (Blumrosen and Nisan, 2007). A single-minded bidder is in-
terested only in a single specific package of items and gets a specific
value if she gets the whole package (or any superset) and zero value
for any other package. An essential question arises here. Can we use
approximation algorithms – that are usually employed by computer
scientists to tackle hard problems – and then use VCG-like payments
to obtain truthfulness?

1.4 truthful approximation mechanisms

An algorithm is an α-approximation algorithm (or has approximation
ratio α) if the the objective value of the computed solution is at least
a factor α of the value of the optimal allocation (the allocation with
maximum objective function value). Unfortunately, approximating
the social welfare and then using the idea of VCG payments does not
preserve truthfulness (Nisan and Ronen, 2001). For instance, assume
in a single-item auction, we assign the item to the second highest bid
(as an approximation to the highest value) at the price of the third
highest bid. This auction has no equilibrium because for example
the bidder with the highest value would decrease her bid below the
second bid to obtain the item, and similarly, the second bidder would
decrease her bid and so on.

Resolving the tension between approximation algorithms and in-
centive compatibility is the topic of Algorithmic Mechanism Design
(Nisan and Ronen, 2001). In particular in algorithmic mechanism
design we ask ourselves if we can theoretically guarantee a ratio for
an incentive-compatible approximation algorithm with private input
data that (almost) equals the ratio of and approximation algorithm
presented for the same problem with public input data? This prob-
lem has been extensively studied in the last two decades for various
types of valuations (Blumrosen and Nisan, 2007).

Not surprisingly, randomized algorithms have been proven to be
more promising than deterministic algorithms in algorithmic mech-
anism design. For example, the two main frameworks presented by
Lavi and Swamy (LS framework) and Dughmi et al. (convex round-
ing) are randomized and yield truthfulness in expectation. Truth-
fulness in expectation certifies that bidders who are risk-neutral (ex-
pected utility maximizer) have no incentive to report false valuations.

1.5 approximations to obtain truthfulness 7

Generally speaking, the two frameworks rely on the idea of relax-
ation and rounding. The LS framework first optimizes a LP relaxation
of the problem, and then uses a specific rounding technique called
meta-randomized rounding originally proposed by Carr and Vempala
(2000). Meta-randomized rounding yields a convex decomposition
of a fractional point into polynomially-many integer points. The
rounding technique has been successfully applied to mechanism de-
sign with (Lavi and Swamy, 2011) and without money (Dughmi and
Ghosh, 2010). One drawback of the first presentations of the meta-
randomized rounding is that, the technique relies on the ellipsoid
method which is notoriously of low practical usability and is mostly
of theoretical importance (Carr and Vempala, 2000; Lavi and Swamy,
2011).

The convex rounding technique optimizes a convex function which
is the image of a rounding algorithm over a relaxed set of solutions.
Convex rounding optimizes over the outcome of a rounding algo-
rithm, and this way the rounding algorithm is integrated into the
optimization problem. We will discuss both techniques in the next
chapters.

1.5 approximations to obtain truthfulness

Not always quasi-linear utilities and transfer of money are available.
There are many situations in which no money is involved because
of the nature of the problem or because of the law. Truthful mech-
anism design without money under general preferences is a classic
topic in social choice theory. Without money, mechanism designers
face significant obstacles in truthful mechanism design. Think about
the combinatorial auctions setting defined above. The main idea of
truthfulness strongly relies on the payments. Payments enter the util-
ity of the bidders and are leveraged to incentivize the bidders to bid
truthfully. When payments are not available, the utility of the agents
depend only on their valuation for the allocated package of items. For
payment-free environments, it sounds unlikely for the mechanism
designers to be able to provide agents with incentives to truthfully
report their private types.

It is in fact the case; the Gibbard-Satterthwaite theorem proves
that the class of truthful mechanisms is limited to dictatorships (Gib-
bard, 1973; Satterthwaite, 1975). In particular, it states that any truth-
ful social choice function which selects an outcome among three or
more alternatives has to be trivially aligned with the preference of
a single agent. There have been a number of extensions analyzing
more specific domains without money, all resulting in impossibility
results (Pápai, 2001; Ehlers and Klaus, 2003; Hatfield, 2009). To cir-
cumvent the Gibbard-Satterthwaite impossibility, researchers have in-
troduced restricted domains with additional assumptions to admit

8 introduction

truthful mechanisms. For example, when agents valuations are re-
stricted to single-peaked preferences over a one-dimensional public
space, returning the median of the peaks determines a truthful social
choice (Moulin, 1980). Single-peaked preferences have a single most-
preferred point in an interval, and are decreasing as one moves away
from that peak.

Procaccia and Tennenholtz introduced the technique of welfare ap-
proximation as a means to drive truthful approximation mechanisms
without money (Procaccia and Tennenholtz, 2013). This type of ap-
proximation is not meant to handle computational intractability but
a method to achieve truthfulness. We show applications of this tech-
nique in mechanism design without money for some restricted do-
mains of preferences.

1.6 thesis structure

This thesis is divided into seven chapters. In the present chapter,
we introduced the problem of mechanism design for combinatorial
auctions, and mentioned some of the challenges and existing tech-
niques in the field. In Chapter 2, we describe a general technique
to obtain truthful approximation algorithms which is based on relax-
ation and rounding. Chapter 2 contains the common denominator of
the techniques used in the next chapters. In Chapter 3, we extend
the idea of convex rounding and propose a truthful-in-expectation
algorithm for a strategic variant of the generalized assignment prob-
lem. The approximation presented (almost) matches the best approx-
imation ratio given for the generalized assignment problem. This
chapter is based on the paper, Fadaei and Bichler (2014). In Chap-
ter 4, we use the technique of welfare approximation to provide a
truthful approximation mechanism for strategic variations of the gen-
eralized assignment problem in a payment-free environment. This
chapter is based on the work, Fadaei and Bichler (2016). Since the
meta-randomized rounding is so ubiquitous in algorithmic mecha-
nism design, we maintain the next two chapters for the computa-
tional aspects of the meta-randomized rounding. In Chapter 5, we
present a fast and geometric-based method for the implementation
of the meta-randomized rounding. This chapter is based on the pa-
per, Kraft, Fadaei, and Bichler (Kraft et al., 2014). Chapter 6, shows
how to use a variant of the simplex method which is well known to
be efficient in practice to implement the meta-randomized rounding.
This chapter is based on the work, Fadaei (2015). Finally, we conclude
with some related directions of research in Chapter 7.

2
R E L A X A N D R O U N D

Usually, when faced with NP-hard problems, computer scientists
turn to approximations or heuristics. An approximation algorithm
runs in polynomial time in the size of the encoding of input data,
and returns a provable approximation of the optimal solution. The
approximation ratio is proven with respect to the worst-case analysis
of the algorithm. An algorithm is an α-approximation algorithm (or
has approximation ratio α) if the the objective value of the computed
solution is at least a factor α of the value of the optimal solution.

Relaxation and Rounding (henceforth, relax and round) is a well-
known and ubiquitous technique for designing approximation algo-
rithms. The relax and round technique is also the most successful
machinery to design truthful approximation algorithms that run in
polynomial time. For quasi-linear utilities the idea of relax and round
is omnipresent. The idea has also been applied to mechanism design
without money.

Given the significance of the idea of relax and round in the litera-
ture, and that our truthful mechanisms utilize the idea, in this chapter,
we elaborate further on it. We explain the idea for quasi-linear val-
uations first, and towards the end of the chapter, we explain how to
apply the technique to mechanism design without money.

2.1 setting

In a market, a group of n bidders are vying for a set of items. A feasi-
ble solution is an allocation of items to bidders, satisfying (possibly)
some given constraints. Each bidder i has a private valuation func-
tion vi with value vi(Si) for a feasible solution (S1, S2, . . . , Sn) ∈ S ,
where S denotes the set of all feasible solutions. For simplicity, we
denote the value of bidder i for solution x = (S1, S2, . . . , Sn) by vi(x),
where vi(x) = vi(Si). Let Vi denote the set of all valuation functions
of bidder i, and V = V1×V2× . . .×Vn denote the set of all profiles of
valuations. Denote the profile of valuations of bidders other than i by
v−i. Define function f : S → R+ with f (x) = ∑i vi(x) for all x ∈ S .

9

10 relax and round

The following optimization problem expresses the social welfare
maximization problem.

Maximize f (x) (1)

subject to x ∈ S

The social welfare of a solution x ∈ S thus equals f (x). From now on,
we analyze Problem 1 as a mechanism design problem. Specifically,
we wish to maximize social welfare while making sure each bidder
i reports her valuation function vi truthfully. Given that vi’s are pri-
vate, we build program 1 from the reported valuations (bids). If the
optimization Problem 1 can be solved in polynomial time, then VCG
can be employed as a dominant-strategy incentive-compatible (truth-
ful) mechanism. However, in many cases including combinatorial
auctions, Problem 1 is NP-hard, and we can only hope for approxi-
mations of the optimal solution. In what follows, we describe how
to employ the idea of relax and round to achieve mechanisms that
satisfy the weaker notion of truthfulness in expectation.

2.2 relaxation

The idea of relax and round proceeds as follows. We find a relaxation
of Problem 1, solve it and then carefully round the outcome so as to
obtain particular properties. The relaxed problem is as follows.

Maximize L(x) (2)

subject to x ∈ P

Where P is a relaxed set of solutions that contains S , and may
contain infeasible solutions. Polytope P is the intersection of a set of
linear constraints in the positive orthant, and is a packing polytope: if
x ∈ P and y ≤ x then y ∈ P. Function L : P → R+ is concave or
linear in x, and for every x ∈ S , it is the case that L(x) ≥ α f (x) for
some α, 0 < α ≤ 1. As we see below, α will be the approximation
ratio of the algorithm. Function L is separable, i.e. L(x) = ∑i Li(x),
however Li(x) need not necessarily be concave. Let us call L relaxed
objective function. Recall, the mechanism designer has only access to
the reported valuations, thus all value computations are carried out
with respect to the reported valuations.

Given that function L is concave and all constraints of polytope P
are linear, Problem 2 is a convex optimization problem that can be
solved efficiently. Once we solved Problem 2, we proceed to the next
step, rounding.

2.3 rounding

A randomized rounding scheme r : P → S returns a randomized
solution X ∼ r(x) for any x ∈ P. The rounding scheme is oblivious,

2.4 truthful-in-expectation mechanism 11

i.e. it does not depend on the valuations. Solution X = (S1, . . . , Sn) is
always feasible, i.e. Pr[X /∈ S] = 0. With regard to the expected value
of the rounded solution (with respect to reported valuations), one of
the following cases may occur:

(a) E[f (X)] > L(x). In this case, apply an oblivious rounding
scheme r′ to X in order to obtain X′ = (S′1, . . . , S′n) such that
E[f (X′)] = L(x).

(b) E[f (X)] < L(x) but E[f (X)] ≥ βL(x) for some β, 0 < β ≤ 1.
Apply an oblivious rounding r′ to X in order to obtain X′ such
that E[f (X′)] = βL(x). In this case, the approximation ratio of
the algorithm will be αβ.

(c) E[f (X)] = L(x). No more action is needed, r′(X) = X.

We will refer to the three cases of the rounding, (a), (b), and (c) in
the following.

2.4 truthful-in-expectation mechanism

Here, we explain how to use the foregoing idea of relax and round to
define a truthful-in-expectation mechanism. A mechanism comprises
an allocation rule A and a payment rule p. A mechanism (A, p) is
truthful-in-expectation if for every player i with true valuation vi and
reported valuation v′i, we have

E[vi(A(v))− pi(v)] ≥ E[vi(A(v′i, v−i))− pi(v′i, v−i)]. (3)

The expectation in (3) is taken over the coin flips of the mechanism.
In order to achieve a truthful-in-expectation mechanism, we propose
the following allocation rule.

Algorithm 2: Allocation Rule.

1. Let x∗ = arg maxx∈P L(x)
2. Let X′ ∼ r′(r(x∗)) ; /* r′ is chosen according to the

occurring case: (a), (b), or (c). */

return X′

To define the payments, let x∗ = arg maxx∈P L(x), and (S1, . . . , Sn) ∼
r′(r(x∗)). The payment rule determines the payment by each bidder.
The expected VCG payment of any bidder k is equal to

pk = max
x∈P

L−k(x)−E[∑
i,i ̸=k

vi(Si)]. (4)

Where L−k(x) is the relaxed objective function for a market in
which bidder k is discarded, and the allocation rule is run for the
society of all other bidders. Equivalently, we can say L−k(x) is de-
fined assuming vk(x) = 0, ∀x ∈ P. Let x∗−k = arg maxx∈P L−k(x),
and (T1, . . . , Tn) ∼ r′(r(x∗−k)). If we let any bidder k pay an amount

12 relax and round

of ∑i,i ̸=k vi(Ti)− ∑i,i ̸=k vi(Si), then using linearity of expectation, the
expected value of this payment is equal to the expression in (4).

Theorem 1. The allocation rule above (Algorithm 2) supplemented with
the payment rule (4), constitute a truthful-in-expectation mechanism with a
provable approximation ratio of α (or αβ).

Proof. Let x∗ = arg maxx∈P L(x). Fix bidder k and v−k the valu-
ations of bidders other than k. Let (S1, . . . , Sn) ∼ r′(r(x∗)). Let
C = maxx∈P L−k(x). The expected utility of bidder k from reporting
true values vk is the following.

E[uk(v)] = E[vk(Sk)]− pk
= E[vk(Sk)]− (C−E[∑i,i ̸=k vi(Si)])

= L(x∗)− C.

Recall, L(x∗) = E[∑i vi(Si)] by the construction of the rounding.
The second term C is independent of the valuations of bidder k, thus
the bidder cannot influence it. In order to increase her expected utility,
the bidder has to increase the first term, but the first term is already
the maximum possible value. Hence, the bidder cannot improve her
expected utility. To be more specific, let bidder k report v′k rather
than vk. Let x′ = arg maxx∈P L′(x), where L′ is the relaxed objective
function obtained from the new reported valuations (v′k, v−k). Let
(S′1, . . . , S′n) ∼ r′(r(x′)). The expected utility of the bidder, in this
case, will be lower as shown below.

E[uk(v′k, v−k)] = E[vk(S′k)]− (C−E[∑i,i ̸=k vi(S′i)])
= E[vk(S′k)] + E[∑i,i ̸=k vi(S′i)]− C
= L(x′)− C
≤ L(x∗)− C
= E[uk(v)]

For the first equality, recall L′(x′) = E[v′k(S
′
k)] + E[∑i,i ̸=k vi(S′i)],

however, the utility of bidder k is calculated with respect to true valu-
ation vk. Thus, the bidder has no incentive to report a false valuation
function.

The approximation ratio admits a simple proof. Consider an op-
timal integral solution Y∗ = (S∗1 , . . . , S∗n). Since Y∗ ∈ P, we have
L(Y∗) ≤ L(x∗), where x∗ = arg maxx∈P L(x). By definition of L, we
have L(Y∗) ≥ α f (Y∗). Let X′ ∼ r′(r(x∗)). By the construction of the
rounding, we have E[f (X′)] = L(x∗) ≥ L(Y∗) ≥ α f (Y∗), the desired
conclusion. Similarly, we can show the approximation ratio of αβ for
case (b) of the rounding. This completes the proof.

Therefore, we explained how one can use the relax and round tech-
nique to define an allocation and a payment rule to obtain a truthful-
in-expectation mechanism.

2.4 truthful-in-expectation mechanism 13

The technique of relax and round that we explained here is an
abstraction of the existing truthful approximation algorithms that em-
ploy relaxation and rounding technique. Here, we abstract away from
many details of the technique. These details are varied for different
applications. For example, in our explanation, we gave no specifica-
tion about how to define function L, or the rounding algorithms r
and r′. It is instructive to note that, from the provided explanation,
we observe that the relax and round technique has an extra step (call-
ing r′) when used for designing truthful approximation mechanisms
compared to the usage of the technique for approximation algorithms.
This can also be seen as a reason for the fact that designing truthful
approximation algorithms is more stringent than designing (untruth-
ful) approximation algorithms. Several truthful mechanisms that are
grounded in mathematical optimization follow a variation of the fore-
going relax and round technique. We briefly explain this observation
in the following.

The framework proposed by Lavi and Swamy (LS framework) can
be described as follows. The LS framework, first relaxes the under-
lying integer program of the problem to a linear program (LP), and
solves the LP. Then the solution of the LP is scaled down by a specific
factor (the integrality gap of the underlying polytope), and the meta-
randomized rounding is applied to the scaled-down solution (Lavi
and Swamy, 2011). For more details about LS framework, we refer
the reader to chapters 5 and 6.

In the language of the relax and round technique that we described
above, the LP in the LS framework is closely related to Problem 2.
Function L is in fact the objective function of the LP, therefore L is a
linear function. Polytope P is the region of feasible solutions of the
LP scaled down by the integrality gap. Therefore, P does not contain
all solutions of S . However, P has a special property: for any v ∈ V,
there exists a point x ∈ P such that L(x) ≥ α ·maxy∈S ∑i vi(y), where
1/α is the integrality gap of the LP. Moreover, in the LS framework for
every x ∈ S , L(x) = f (x). The meta-randomized rounding used in
the LS framework results in case (c) of the rounding step. Therefore,
no second rounding r′ is required.

Convex rounding is the other general framework for designing
truthful approximation mechanisms (Dughmi et al., 2011b). In con-
vex rounding, the allocation rule optimizes directly on the outcome
of the rounding algorithm, rather than over the outcome of the relax-
ation algorithm. The convex rounding can be described by the relax
and round technique as follows. Function L is a concave function.
Polytope P is simply a relaxed set of feasible solutions. The rounding
scheme ends in case (c) of the rounding step.

Archer et al. propose a truthful-in-expectation mechanism for com-
binatorial auctions with single parameter agents using the idea of
relax and round (Archer et al., 2004). The authors employ a linear

14 relax and round

programming relaxation for the problem, and the rounding case (b)
occurs. Similarly, Dobzinski et al. propose a truthful-in-expectation
mechanism for combinatorial auctions with subadditive bidders. They
also use a linear programming relaxation and the rounding case (b)
occurs (Dobzinski et al., 2010).

In the solution presented for the generalized assignment problem
in this thesis, we use a concave objective function and a polytope
which contains all integral solutions as well as infeasible solutions,
and the rounding case (a) happens. In addition, we employ the
following new observation. From the explanation above, we know
that the rounding schemes r and r′ are oblivious. It is possible to
extend this idea to non-oblivious rounding schemes given that the
following condition holds. A rounding scheme r : P × V → S
preserves truthfulness if for any misreported valuation v′i, we have
E[f (r(x, v′i, v−i))] ≤ E[f (r(x, v))]. This condition assures that the ex-
pected value of the social welfare is maximized by truthful bidding.
See Chapter 3 for more details.

In the literature, the allocation rule defined in Algorithm 2 is termed
Maximal-In-Distributional-Range (MIDR) algorithm. A MIDR algo-
rithm optimizes over a distributional range of the solutions. To pre-
serve truthfulness, the distributional range of the solutions must be
fixed independently of the valuations of the bidders (Dobzinski and
Dughmi, 2009). The distributional range implied by the relax and
round technique described above is the image of the rounding scheme:

Distributional Range ≡
∪
x∈P

{r′(r(x))}. (5)

The (distributional) range in (5) is independent of bidders’ valuations.
Since we optimally maximize over this range, Algorithm 2 is in fact a
MIDR algorithm.

2.5 mechanism design without money

To use the relax and round technique for mechanism design without
money, we do as follows. First, we relax the underlying integer pro-
gram of the problem to a linear program. Let P denote the region of
the feasible solutions to the linear program. We find a fractional point
in P by using an algorithm that is fractionally truthful. A fractionally
truthful algorithm A takes v ∈ V and P as input, and computes a
point x ∈ P such that for any bidder i and untruthful valuation v′i, we
have vi(A(v)) ≥ vi(A(v′i, v−i)). To maintain a good approximation
of the total value, the value of the computed point x must be at least
as good as α times (0 < α ≤ 1) the optimal solution to the relaxed
problem.

Next, we round x using a randomized rounding scheme r with the
following properties. If X ∼ r(A(v, P)) we must have (i) (feasibility)

2.5 mechanism design without money 15

Pr[X ∈ S] = 1 and (ii) (truthfulness) ∀i, E[vi(X)] = βvi(x) for 0 <

β ≤ 1.
This technique results in a truthful-in-expectation (αβ)-approximation

algorithm. We refer the reader to Chapter 4 for more details.

3

G E N E R A L I Z E D A S S I G N M E N T P R O B L E M

We propose a truthful-in-expectation, (1− 1/e)-approximation mech-
anism for a strategic variant of the generalized assignment problem
(GAP). In GAP, a set of items has to be optimally assigned to a set of
bins without exceeding the capacity of any singular bin. In the strate-
gic variant of the problem we study, values for assigning items to bins
are the private information of bidders and the mechanism should
provide bidders with incentives to truthfully report their values. The
approximation ratio of the mechanism is a significant improvement
over the approximation ratio of the existing truthful mechanism for
GAP.

The proposed mechanism comprises a novel convex optimization
program as the allocation rule as well as an appropriate payment
rule. To implement the convex program in polynomial time, we
propose a fractional local search algorithm which approximates the
optimal solution within an arbitrarily small error leading to an ap-
proximately truthful-in-expectation mechanism. The presented algo-
rithm improves upon the existing optimization algorithms for GAP in
terms of simplicity and runtime while the approximation ratio closely
matches the best approximation ratio given for GAP when all inputs
are publicly known.

3.1 introduction

We analyze the generalized assignment problem (GAP) in an environ-
ment where valuations are private information of distributed decision
makers. In GAP, a set of m items has to be assigned to a set of n bins.
Each bin associates a different value and weight to each item and
has a limited capacity. An allocation may assign each bin a subset of
items not exceeding the capacity of the bin. For each of these subsets,
the valuation is additive in the values of items contained in the subset.
The goal is to find a feasible assignment of items to bins to maximize
social welfare, the sum of generated values by the assignment.

GAP has also been defined in the literature as a (closely related)
minimization problem. In the minimization GAP, the assignment of
items to bins incurs costs; the goal of this optimization problem is to
find a feasible assignment of minimum total cost. From an optimiza-

17

18 generalized assignment problem

tion point of view, these two variants of GAP are equivalent (Martello
and Toth, 1992).

GAP is a well-known problem in combinatorial optimization and
operations research. It can be considered as a generalization of the
problem of finding a maximum weight matching in a weighted bipar-
tite graph, the assignment problem (Kuhn, 1955; Ferland, 1998). GAP
has many real-world applications including applications in resource
scheduling problems such as machine scheduling, classroom schedul-
ing and employee scheduling (Zimokha and Rubinstein, 1988). GAP
is commonly applied in transportation and routing (Ruland, 1999;
Fisher and Jaikumar, 1981). There is a long list of reported applica-
tions of GAP in telecommunication, production planning and facil-
ity location applications (Bressoud et al., 2003; Dobson and Nambi-
madom, 2001; Ross and Soland, 1977; Klastorin, 1979). GAP can also
be applied in supply chain and logistics. Kalagnanam et al. (2001)
discuss the computational complexity of clearing markets in a dou-
ble auction and formulates the problem with GAP. For a survey of
applications of GAP, we refer the reader to Öncan (2007).

In many situations, weights and capacities are intrinsic attributes
of items and bins and are therefore readily known and verifiable. For
example, in process industries such as paper and steel, standard ge-
ometries such as width, length and weight are used, and buyers typ-
ically bid for rolls of paper or steel of a desired width (Kalagnanam
et al., 2001).

By contrast, the associated value of a specific assignment has to be
extracted through communication with buyers. In service areas, for
example, the cost of providing a service to a certain group (weight) at
an affordable cost (capacity) are known, although the business value
of a service is only known to the recipient of the service.

Examples like these motivate the study of a strategic variant of
GAP where valuations are assumed to be private information known
only to the bidders while weights and capacities are publicly known.
There are two obstacles in finding a solution to this strategic variant.
First, GAP is a NP-hard problem. Hence, computing its optimal so-
cial welfare is intractable even if the valuations are known. Second,
maximizing the social welfare necessitates knowing valuations, but
this is private information and can be truthfully extracted solely by
providing incentives using payment rules. Overcoming both of these
obstacles simultaneously is the subject of algorithmic mechanism design
(Nisan and Ronen, 2001).

In this work, we propose a solution by which the two obstacles,
maximizing the social welfare of GAP as well as extracting true val-
uations of bidders, are surmounted. The solution provides bidders
with incentives to report their valuations truthfully and runs in poly-
nomial time approximating the social welfare with a provable ratio of
at least 1− 1/e.

3.1 introduction 19

3.1.1 Challenges in Algorithmic Mechanism Design

In algorithmic mechanism design, a mechanism designer wishes to
solve an optimization problem, but the inputs to this problem are
the private information of self-interested players. The mechanism de-
signer must thus design a mechanism that solves the optimization
problem while encouraging the bidders to truthfully reveal their in-
formation. The game-theoretic concept of truthfulness guarantees
that a bidder is better off truthfully interacting with the mechanism
regardless of what the other bidders do.

The well-known Vickrey-Clarke-Groves (VCG) technique provides
truthfulness as well as social welfare maximization in every combi-
natorial auction. The VCG technique, however, is applicable only
when the optimal social welfare can be computed to optimality. Yet,
in many cases, including our problem, optimizing social welfare is
computationally intractable which makes the VCG technique inappli-
cable. Usually, when faced with computational intractability, com-
puter scientists turn to approximations or heuristics. The VCG tech-
nique, unfortunately, cannot be directly applied to approximate solu-
tions (Nisan and Ronen, 2007). In order to resolve the clash between
approximation and truthfulness, the maximal-in-distributional-range
(MIDR) allocation rules are introduced.

MIDR is the only known general approach for designing random-
ized truthful mechanisms. An MIDR algorithm fixes a set of distribu-
tions over feasible solutions (the distributional range) independently
of the valuations reported by the self-interested players, and outputs
a random sample from the distribution that maximizes expected (re-
ported) welfare (Dobzinski and Dughmi, 2009). The best option for
a mechanism designer is to devise a MIDR containing an approxi-
mation of the optimal social welfare that (very closely) matches the
best approximation guarantee known for the problem for which the
underlying data are publicly known. Finding this type of MIDR or de-
signing an approximation truthful mechanism is not always possible.
Several authors have shown that it is impossible to achieve the same
approximation factor in truthful mechanisms (Lavi et al., 2003; Pa-
padimitriou et al., 2008; Dobzinski and Vondrák, 2013; Dughmi and
Vondrák, 2015; Dobzinski and Vondrák, 2012).

Looking more closely at the approximation algorithms presented
for GAP, we observe that no algorithm can serve as a MIDR allocation
rule, although GAP without incentives has been studied extensively
in the literature. Chekuri and Khanna (2005) explicitly state that the
algorithm of Shmoys and Tardos (1993) can be adapted to provide
a 2-approximation. Later, Fleischer et al. (2006) improved the factor
to 1− 1/e. Using a reduction to submodular maximization subject
to a matroid constraint, Calinescu et al. (2011) achieved a ratio of
1− 1/e− o(1) without using the ellipsoid method which was pivotal

20 generalized assignment problem

in the work done by Fleischer et al. (2006). An algorithm due to
Feige and Vondrak (2006) yields an approximation factor of 1− 1/e +
ρ, ρ ≈ 10−180 which is the best given approximation ratio for GAP.
Chakrabarty and Goel (2010) provide the best-known hardness result
showing it is NP-hard to approximate GAP to any factor better than
10/11.

According to our observations, all foregoing approximation algo-
rithms comprise two algorithms: a relaxation algorithm and a round-
ing algorithm. In order to devise truthful mechanisms, Dughmi et al.
(2011b) propose an approach which optimizes directly on the out-
come of the rounding algorithm, rather than over the outcome of
the relaxation algorithm. Since the rounding procedure is embed-
ded into the objective function, this approach is not always computa-
tionally tractable. Assuming the optimization problem can be solved
efficiently and the rounding scheme is independent of bidders’ valua-
tions, this approach always leads to a MIDR algorithm and is referred
to as convex rounding.

Lavi and Swamy (2011) propose a framework for deriving MIDR
mechanisms from linear programming relaxations. They solve the
relaxed problem in the first step and then use a special rounding
method (convex decomposition) to obtain a randomized integral allo-
cation. Although Lavi and Swamy also use the common composition
of relaxation and rounding algorithms, their special rounding proce-
dure produces an expected allocation which is always identical to the
scaled down input of the rounding algorithm, component-wise. Of
interest, the rounding procedure used by Lavi and Swamy, guaran-
tees truthfulness-in-expectation. Designing truthful mechanisms us-
ing the framework of Lavi and Swamy for a given problem is straight-
forward, however, this type of mechanisms is slow in practice and
requires many black-box invocations of an existing approximation al-
gorithm for the problem. Very recently, Azar et al. (2015) present
a truthful-in-expectation 1/2-approximation algorithm for GAP with
private values using the framework proposed by Lavi and Swamy
and a new rounding technique.

3.1.2 Results and Techniques

It is possible to use the framework developed by Lavi and Swamy
(2011) to design a truthful-in-expectation 1/2-approximation mech-
anism for GAP; in order to guarantee an improved approximation
ratio as well as a higher performance, we follow the convex round-
ing technique. The main challenge in using convex rounding is to
design an appropriate rounding scheme which induces a convex op-
timization problem. Moreover, the rounding scheme should return
a feasible solution containing a good approximation of the fractional
value.

3.1 introduction 21

We design a rounding algorithm with the desired properties for
GAP. Using the rounding algorithm to obtain a MIDR, we directly
optimize over the outcome of the rounding procedure rather than
over the outcome of the relaxation algorithm. Using this technique,
we formulate GAP as a convex optimization problem where the objec-
tive function equals the expected value of a rounding procedure. In
contrast to Dughmi et al. (2011b), our rounding algorithm uses some
information from bidders’ valuations. Our design does not violate
the truthfulness since we use bidders’ values solely to search for the
optimum in a subset of the range containing the optimal solution, as
explained in Section 3.5. This design can be viewed as slightly extend-
ing the convex rounding technique and is of independent interest.

We supplement the allocation rule with a payment rule which al-
lows the guarantee of non-negativity of payments and individual ratio-
nality ex post rather than providing these important properties only
ex ante.

The approximation ratio of our mechanism very closely matches
the best approximation ratio presented for GAP with publicly known
valuations. In particular, the proposed convex program contains 1−
1/e ratio of optimum while the best presented approximation ratio of
non-truthful algorithms is 1− 1/e + ρ, ρ ≈ 10−180.

In order to solve the convex program, we present a fractional lo-
cal search algorithm which approximates the proposed convex opti-
mization problem within an arbitrarily small error, in the sense of an
FPTAS. This leads to an approximate MIDR.

Theorem 2. There is a (1− ϵ)-MIDR allocation rule that achieves a (1−
1/e− ϵ)-approximation to the social welfare of the generalized assignment
problem, for every ϵ = 1/poly(n).

Dughmi et al. (2011a) show how to transform an approximately
MIDR allocation rule to an approximately truthful-in-expectation mech-
anism (see Definition 9). With this black box transformation, we ob-
tain the following.

Theorem 3. There is a (1 − ϵ)-truthful-in-expectation mechanism that
achieves a (1− 1/e − ϵ)-approximation to the social welfare of the gener-
alized assignment problem, for every ϵ = 1/poly(m, n).

From an algorithmic point of view, the proposed algorithm has
advantages over the previously known optimization algorithms for
GAP in terms of runtime and simplicity. We do not employ the el-
lipsoid method which is identified as pivotal in the work of Fleischer
et al. (2006). Our algorithm improves on the one proposed by Cali-
nescu et al. (2011). In each iteration of the algorithm by Calinescu
et al. (2011), a random sampling is required to compute the residual
increase of assigning an item to a bin which subsequently increases
runtime. The residual increase is treated as an approximate evalu-
ation of gradient of the objective function at a point. This residual

22 generalized assignment problem

increase is in fact calculated by taking the average of (mn)5 inde-
pendent samples, where m and n are the number of items and bins,
respectively. We use a novel objective function which is specified
exactly, rather than by random sampling, whereby it is possible to ex-
plicitly calculate the gradient of the objective function which helps to
simplify the algorithm and improve the runtime. It should be noted
that in our design, we benefited from the ideas developed in Fleischer
et al. (2006), Calinescu et al. (2011), and Dughmi et al. (2011a).

3.1.3 Structure

In Section 3.2 we introduce necessary notation and definitions. In
Section 3.3 and Section 3.4 we present the MIDR allocation rule and
the payment rule, respectively for the setting where bins are held by
strategic bidders. Section 3.5 explains why the presented mechanism
is truthful. The required modification of the mechanism for the case
where items are held by bidders is explained in Section 3.6. Finally,
in Section 3.7 we conclude with a summary and a discussion about
future research questions.

3.2 preliminaries

In the generalized assignment problem, there are n bins, I, and m
items, J. Let vij denote the value of bin i for item j. Each bin i
has a different weight wij for each item j and has a limited capacity
Ci. Let Fi denote the collection of all feasible assignments to bin i
(∀S ∈ Fi : ∑j∈S wij ≤ Ci). Each item may be assigned to at most one
bin. In the final allocation, some items may remain unassigned.

We assume weights and capacities are publicly known, yet val-
ues of assigning items to bins are the private information of bidders.
More formally, we assume values {vij}i∈I,j∈J are private information
of bidders. In the following, we assume bins are held by bidders and
thus each bidder i has private valuations {vij}j∈J . We analyze the
case where items are held by bidders and each bidder j has private
valuations {vij}i∈I in Section 3.6.

An allocation (S1, . . . , Sn), where Si ⊆ J denotes the subset as-
signed to bin i, is feasible if ∀i ∈ I : Si ∈ Fi and {Si}i∈I are mu-
tually disjoint. The valuation of bin i is defined as gi : 2J → R≥0

such that gi(S) = ∑j∈S vij if S ∈ Fi, else gi(S) = 0. With an slight
abuse of notation, we sometimes use gi(S) instead of gi(Si), where
S = (S1, . . . , Si, . . . , Sn). The social welfare obtained from a feasible
allocation (S1, . . . , Sn) is ∑i∈I gi(Si). The goal is to find a feasible allo-
cation of maximum total social welfare.

In light of the revelation principle, we limit our attention to direct
revelation mechanisms. Every mechanism has two main components:
an allocation rule and a payment rule. The allocation ruleA is a function

3.3 midr allocation rule for gap 23

which maps a reported valuation v = (v1, . . . , vn) to an allocation
(S1, . . . , Sn), where ∀i : vi = (vij)j∈J . The payment rule is a function
from reported valuations to a required payment from each bidder.
Let pi denote the payment rule function for bidder i.

Definition 7 (Maximal in Distributional Range (MIDR)). Given re-
ported valuations v1, . . . , vn, and a previously-defined probability distribu-
tion over feasible sets R, a MIDR returns an outcome sampled randomly
from a distribution D∗ ∈ R that maximizes the expected welfare Ex∼D[∑i gi(x)]
over all distributions D ∈ R (Dobzinski and Dughmi, 2009).

Analogously, we define (1− ϵ)-MIDR as follows.

Definition 8 ((1− ϵ)-MIDR). Given reported valuations v1, . . . , vn, and
a previously-defined probability distribution over feasible sets R, a (1− ϵ)-
MIDR returns an outcome sampled randomly from a distribution D∗ ∈ R
that (1− ϵ)-approximately maximizes the expected welfare Ex∼D[∑i gi(x)]
over all distributions D ∈ R.

An approximately truthful-in-expectation mechanism is defined as
follows.

Definition 9 ((1− ϵ) truthful-in-expectation). A mechanism is (1− ϵ)-
approximately truthful-in-expectation for GAP if, for every bidder i, (true)
valuation function vi , (reported) valuation function v′i, and (reported) valu-
ation functions v−i of the other bidders,

E[gi(A(vi, v−i))− pi(vi, v−i)] ≥ (1− ϵ)E[gi(A(v′i, v−i))− pi(v′i, v−i)].
(6)

The expectation in (6) is taken over the coin flips of the mechanism.

The goal of our work is to find an allocation and payment rule
which constitute a truthful-in-expectation mechanism for GAP and
approximates the social welfare as much as possible.

3.3 midr allocation rule for gap

We optimize directly over the expected value of the allocation pro-
duced by a rounding algorithm. We let the relaxed feasible set be
R as follows: given a vector x ∈ {0, 1}I×2J

, let xi,S indicate whether
subset S is assigned to bin i.

R =

{
x ∈ [0, 1]I×2J |∀i : ∑

S∈Fi

xi,S ≤ 1; ∀i ∈ I, ∀S ∈ Fi : xi,S ≥ 0
}

.

In R one randomized feasible set is assigned to each bin i. The sets
assigned to different bins may overlap, however in the rounding step
each item is assigned only once.

24 generalized assignment problem

Our intent is to maximize the expected value of the rounded alloca-
tion over relaxed set R. This leads to a MIDR allocation, as explained
in Section 3.5. Let us call the rounding algorithm rgreedy. Algorithm
3 presents the desired MIDR algorithm.

Algorithm 3: MIDR allocation rule for the generalized assign-
ment problem.

Data: v = (vij)i∈I,j∈J .
Result: Feasible allocation (S1, . . . , Sn).
1. Let x∗ maximize E(S1,...,Sn)∼rgreedy(x)[∑i∈I gi(Si)] over x ∈ R.
2. Let (S1, . . . , Sn) ∼ rgreedy(x∗).

Following is a step-by-step procedure to implement Algorithm 3

and a presentation of the benefits of the outcome of the algorithm.
We start by explaining the rounding algorithm.

3.3.1 Greedy Rounding

We choose a rounding algorithm which preserves a good ratio of
the fractional solution and returns a feasible allocation in which each
item is assigned only once. We first define helper function ϕ(·) which
maps a point in R to a point in [0, 1]I×J . Let ϕ : R → [0, 1]I×J be such
that y = ϕ(x) iff ∀i ∈ I, ∀j ∈ J : yij = ∑S:j∈S xi,S.

The rounding procedure, defined as Algorithm 5, has two steps.
In the first step, given a point x ∈ R the rounding procedure finds
another point x′ ∈ R such that ∀i ∈ I, ∀j ∈ J : y′ij = 1− e−yij , where
y = ϕ(x) and y′ = ϕ(x′). In the second step, the rounding procedure
assigns subset S to bin i with probability x′i,S while resolving conflicts
as explained in Algorithm 5.

3.3 midr allocation rule for gap 25

We propose Algorithm 4 to perform the first step. Algorithm 4

takes a point x ∈ R and a desired vector y′ ∈ [0, 1]I×J , where y′ ≼
ϕ(x) and returns another point x′ ∈ R such that y′ = ϕ(x′).

Algorithm 4: An oblivious method for finding a dominated
point in R.

Data: x ∈ R, and y′ ∈ [0, 1]I×J such that y′ ≼ ϕ(x).
Result: x′ ∈ R such that y′ = ϕ(x′).
Initialize x′ := x; δ = ϕ(x′)− y′, where δ ∈ [0, 1]I×J .
foreach bin i do

foreach item j do
repeat

Choose x′i,S:j∈S > 0, arbitrarily;
if x′i,S < δij then

δij := δij − x′i,S;
if S \ {j} ̸= ∅ then x′i,S\{j} := x′i,S\{j} + x′i,S;
x′i,S := 0;

else
x′i,S := x′i,S − δij;
if S \ {j} ̸= ∅ then x′i,S\{j} := x′i,S\{j} + δij;
δij := 0;

until δij = 0;
return x′.

Algorithm 4 returns the desired outcome as confirmed by the fol-
lowing lemma.

Lemma 1. Suppose x ∈ R with polynomially-many xi,S > 0, and y′ ∈
[0, 1]I×J such that y′ ≼ ϕ(x). If we call Algorithm 4 on x and y′, it returns
x′ ∈ R such that ϕ(x′) = y′ with only polynomially-many x′i,S > 0.

Proof. If the algorithm terminates, we will have ∀i ∈ I, ∀j ∈ J: δij = 0,
and therefore y′ = ϕ(x′). Thus, we only need to show that the algo-
rithm terminates in polynomial time and x′ has polynomially-many
positive components. We show the termination of the algorithm for
one bin and one item and since the number of items and bins is poly-
nomial, we obtain the desired conclusion.

Fix bin i and item j. We consider one iteration in which x′i,S with
j ∈ S is chosen. Two cases can occur. First, x′i,S < δij. In this case, the
number of positive components in x′ does not increase, since xi,S be-
comes zero and at most another positive component is added: x′i,S\{j}.
This case can occur as many times as the number of xi,S:j∈S > 0, which
are polynomially-many by assumption.

Second, x′i,S ≥ δij. In this case, only one new positive component
may be added: x′i,S\{j}. However, this case can happen only once for
item j, as δij becomes zero in this step.

Thus, in total for bin i and item j, only one new positive component
might be included in x′ compared to x and the number of iterations
is polynomial. This completes the proof.

26 generalized assignment problem

Thus, for the first step of the rounding algorithm, we call Algorithm
4 on inputs x and y′ ∈ [0, 1]I×J where ∀i ∈ I, ∀j ∈ J: y′ij = 1− e−yij

and y = ϕ(x), to obtain the desired point in R. Notice, that y′ ≼ y,
as needed by Algorithm 4.

The following is a presentation of the greedy rounding algorithm,
rgreedy.

Algorithm 5: Greedy rounding algorithm, rgreedy.

Data: x ∈ R with polynomially-many xi,S > 0, v = (vij)i∈I,j∈J .
Result: Feasible allocation (S1, . . . , Sn).
1. Let y = ϕ(x). Let y′ ∈ [0, 1]I×J be such that y′ij = 1− e−yij .
Invoke Algorithm (4) with x and y′ as the inputs and let x′ be
the result.
2. Assign set S to i with probability x′i,S independently for
each bin i. If some item j is assigned to more than one bin,
assign it to the bin among those bins with the maximum value
vij. Let Si be the set assigned to bin i.
return (S1, . . . , Sn).

In order to analyze the performance of the rounding algorithm, we
define a new function.

F : [0, 1]I×J → R≥0

F(y) =
m

∑
j=1

n

∑
i=1

(
vσj(i),j − vσj(i+1),j

)(
1− exp(−

i

∑
k=1

yσj(k),j)
)
.

Where σj : I → I is a permutation on I such that vσj(i),j is decreasing
(non-increasing) when i runs from 1 to n, and vσj(n+1),j = 0.

Function F(·) is useful in explaining the quality of the rounding
algorithm as shown in the following.

Lemma 2. ∀x ∈ R : E
(S1,...,Sn)∼rgreedy(x)

[
∑
i∈I

gi(Si)
]
= F(ϕ(x)).

Proof. Assume x ∈ R. Let x′ be the outcome of Step 1 of Algorithm
5. Let y = ϕ(x) and y′ = ϕ(x′). We calculate the expected value
achieved from the assignment of item j in the integral allocation.

Fix item j. For simplicity, we assume that σj(i) = i. This means that
bins with smaller indices have higher valuations for j. We find the
expected value returned from item j; for other items, the argument
is similar. With probability y′1j the set assigned to bin 1 contains j
thus j is assigned to 1. Recall that y′1j = ∑S:j∈S x′1,S. Therefore, with
probability y′1j, the value of returned allocation is v1j. With probability
(1− y′1j)y

′
2j the set assigned to bin 1 does not contain the item but the

set assigned to bin 2 contains the item and therefore item j is assigned
to bin 2. This case leads to a returned value of (1− y′1j)y

′
2jv2j.

Continuing in a similar manner for other bins, the achievable ex-
pected value becomes y′1jv1j +(1− y′1j)y

′
2jv2j + . . .+∏n−1

k=1 (1− y′kj)y
′
njvnj,

which in turn equals ∑n
i=1(vij − vi+1,j)(1−∏i

k=1(1− y′kj)). The equal-
ity of the two terms can be observed by simply extending the latter.

3.3 midr allocation rule for gap 27

Taking into account that y′ij = 1− e−yij , by summing over all items we
obtain the desired conclusion, using linearity of expectation.

Therefore, we need to optimize F(ϕ(x)) over x ∈ R. Optimizing
F(ϕ(x)) over x ∈ R is essentially the same as optimizing F(y) over
y ∈ P , where

P =

{
y ∈ [0, 1]I×J | y = ϕ(x) & x ∈ R

}
.

As a result, what remains is to explain how to solve maxy∈P F(y), and
the quality of the solution.

3.3.2 The Approximation Ratio

We show the quality of our method by comparing maxy∈P F(y) to the
optimal solution to the configuration LP of GAP. The configuration
LP of GAP is as follows:

GAP-CLP:

max ∑
i∈I,S∈Fi

xi,Sgi(S)

∀j ∈ J : ∑
i∈I,S∈Fi :j∈S

xi,S ≤ 1,

∀i ∈ I : ∑
S∈Fi

xi,S ≤ 1,

∀i ∈ I, ∀S ∈ Fi : xi,S ≥ 0,

To be able to compare GAP-CLP to F(y), we first introduce a new
variable into the program and then rearrange the objective function.
Let y ∈ [0, 1]I×J be such that ∀i ∈ I, ∀j ∈ J : yij = ∑S∈Fi :j∈S xi,S. Using
this new variable we define polytope P ′ as in the following:

P ′ =
{

y ∈ [0, 1]I×J |

∀j ∈ J : ∑i∈I yij ≤ 1; (1)
∀i ∈ I, ∀j ∈ J : yij = ∑S∈Fi :j∈S xi,S;
∀i : ∑S∈Fi

xi,S ≤ 1;

∀i ∈ I, ∀S ∈ Fi : xi,S ≥ 0
}

.

We notice that P ′ ⊆ P since P ′ has an additional constraint (Con-
straint 1). We rearrange the objective function of GAP-CLP to be a
function of items (y) rather than subsets, (x).

∑
i∈I,S∈Fi

xi,Sgi(S) = ∑
i∈I,S∈Fi

xi,S ∑
j∈S

vij

= ∑
i∈I,j∈J

vij ∑
S∈Fi :j∈S

xi,S

= ∑
i∈I,j∈J

vijyij

28 generalized assignment problem

Consequently, solving GAP-CLP is equivalent to finding maxy∈P ′ ∑i∈I,j∈J vijyij.
We are now ready to compare maxy∈P F(y) with the optimal integral
solution to the GAP (denoted by OPT).

Lemma 3. maxy∈P F(y) ≥ (1− 1
e)OPT.

Proof. We observe that

max
y∈P

F(y) ≥ max
y∈P ′

F(y) ≥ (1− 1
e
)max

y∈P ′ ∑
i∈I,j∈J

vijyij ≥ (1− 1
e
)OPT.

The first inequality holds since P ′ ⊆ P . The last inequality holds
because max

y∈P ′ ∑
i∈I,j∈J

vijyij in fact provides a solution to GAP-CLP which

is obviously greater than OPT. For the second inequality, consider
item j and y ∈ P ′. For simplicity, we assume ∀i : σj(i) = i. We
have ∑n

i=1 yij ≤ 1, since y ∈ P ′. Considering the fact that 1− e−x ≥
(1− 1

e)x for x ∈ [0, 1], we obtain

(v1j − v2j)(1− e−y1j) ≥ (v1j − v2j)(1− 1
e)y1j

(v2j − v3j)(1− e−y1j−y2j) ≥ (v2j − v3j)(1− 1
e)(y1j + y2j)

. . .
(vn−1,j − vnj)(1− e−∑n−1

k=1 ykj) ≥ (vn−1,j − vnj)(1− 1
e)(∑

n−1
k=1 ykj)

(vnj)(1− e−∑n
k=1 ykj) ≥ (vnj)(1− 1

e)(∑
n
k=1 ykj)

Summing both sides, we obtain

n

∑
i=1

(
vi,j − vi+1,j

)(
1− exp(−

i

∑
k=1

yk,j)
)
≥

(
1− 1

e
)
∑
i∈I

vijyij.

Obtaining this inequality for all items then, and summing them up,
we obtain the desired conclusion.

Thus, what remains is to show how to maximize F(y) over y ∈ P ,
the topic of Section 3.3.3.

3.3.3 Solving the Convex Optimization Problem

We wish to solve maxy∈P F(y) which is essentially equivalent to the
following mathematical optimization problem:

GAP-CP:

Maximize
m

∑
j=1

n

∑
i=1

(
vσj(i),j − vσj(i+1),j

)(
1− exp(−

i

∑
k=1

yσj(k),j)
)

∀i ∈ I, ∀j ∈ J : ∑
S∈Fi :j∈S

xi,S = yij,

∀i ∈ I : ∑
S∈Fi

xi,S ≤ 1,

∀i ∈ I, ∀S ∈ Fi : xi,S ≥ 0.

3.3 midr allocation rule for gap 29

First, we show that GAP-CP is a convex optimization problem. All
constraints in the program are linear thus we only need to show that
the objective function, F(y), is concave/convex as shown by the fol-
lowing theorem.

Lemma 4. F(y) is a concave function.

Proof. F(y) is concave in y, because it is a non-negative weighted sum
of functions which are compositions of the concave function 1− e−x

with affine function x → ∑i
k=1 yσj(k),j (Boyd and Vandenberghe, 2009).

In order to solve the convex optimization problem, we present a
fractional local search algorithm. Our algorithm gets arbitrarily close
to the optimal solution. The difficulty in solving the convex opti-
mization problem mostly arises from the exponential number of vari-
ables in the convex program. As a result, we are able to implement a
(1− ϵ)-MIDR allocation rule, for any ϵ = 1/poly(n).

Our algorithm employs a polynomial number of iterations to get
as close as a predefined precision to the optimal solution. In every
iteration of the algorithm, we need to find y∗ ∈ P which maximizes
y · ∇F(y) 1 over all y ∈ P . According to Proposition 1, maximizing
y · v over all y ∈ P for every cost function v, is equivalent to finding
set S∗i ∈ Fi for every bin i which maximizes ∑j∈S∗i

vij.

Proposition 1. maxy∈P ∑i∈I,j∈J vijyij = ∑i∈I max{∑j∈S vij : S ∈ Fi}.

Proof.

max
y∈P ∑

i∈I,j∈J
vijyij = max

x∈R ∑
i∈I,j∈J

(
vij ∑

S∈Fi :j∈S
xi,S

)
= max

x∈R ∑
i∈I

∑
S∈Fi

(
xi,S ∑

j∈S
vij

)
= ∑

i∈I
max{∑

j∈S
vij : S ∈ Fi}.

The first equality holds since for every y ∈ P , there exists x ∈
R where y = ϕ(x). The last equality holds since if x ∈ R then
∑S∈Fi

xi,S ≤ 1.

Finding max{∑j∈S vij : S ∈ Fi} is essentially solving a knapsack
subproblem for bin i. To do so, we invoke the FPTAS for the knapsack
problem. We say for any vi = (vij)j∈J and 0 < ϵ < 1, KnapsackFp-
tas(vi, ϵ) returns subset Si ∈ Fi where ∑j∈Si

vij > (1− ϵ)max{∑j∈S vij :
S ∈ Fi}.

We store the computed vector in each iteration in a set Z . We keep
the size of Z to be of at most 1

δ for δ = 1
n ; δ will be defined later.

1 We remind the reader that ∇F, the gradient of F, is a vector whose coordinates are
the first partial derivatives ∂F

∂yij
. We denote by ∂F

∂yij

∣∣
y the gradient coordinate (i, j)

evaluated at point y.

30 generalized assignment problem

As long as |Z| < 1
δ we simply add the current vector to Z . When

|Z| = 1
δ , in each iteration we add the current vector and remove one

vector from Z which has the least value with respect to the current
gradient. The solution returned by the algorithm, x, has the property
that y = ϕ(x) is a convex combination of the vectors in Z : y =

δ ·∑z∈Z z. We continue updating Z until the increase in F(y) is below
a predefined threshold.

Now, we present the main algorithm. Let M denote max{vij : i ∈
I; j ∈ J}.

Algorithm 6: Fractional local search algorithm

Data: v = (vij)i∈I,j∈J , 0 < ϵ ≤ 1/n.
Result: x ∈ R such that

F(ϕ(x)) ≥ (1− o(1))max{F(y)|y ∈ P}.
0. Initialize x := 0⃗; y := 0⃗; Z = ∅; δ = ϵ

6mn2 ;
1. u := ∇F(y); z := 0⃗; ; /* x ∈ [0, 1]I×2J

and y, u, z ∈ [0, 1]I×J */

2. foreach bin i do
Let S :=KnapsackFptas(ui, ϵ); for all j ∈ S update zij := 1;

3. if (z− y) · ∇F(y) > ϵM then
if (|Z| < 1

δ) then
Update y := y + δz; Z := Z ∪ {z};

else
Update y := y + δ(z− zmin), where zmin = arg min

z′∈Z
z′ · u;

Z := (Z \ {zmin}) ∪ {z};
Go back to Step 1;

4. foreach z ∈ Z do
foreach bin i do

Update xi,S := xi,S + δ, where S = {j|zij = 1};
return x.

Lemma 5. Algorithm 6 produces a solution x such that x ∈ R.

Proof. We observe that the set Z contains at most 1
δ elements; as long

as |Z| < 1
δ , one element z is included into the set and when |Z| = 1

δ ,
one element is added and one element is removed from the set.

Towards the end of Algorithm 6 (Step 4), for each z ∈ Z and each
bin i, one positive component (xi,S) is increased up to δ which in turn
means for each bin i we have ∑S∈Fi

xi,S ≤ 1
δ · δ = 1. That means

x ∈ R, the desired conclusion.

Lemma 6. Algorithm 6 returns x ∈ R such that F(ϕ(x)) ≥
(1− o(1))max{F(y)|y ∈ P}.

Proof. Assume x is the outcome of Algorithm 6. According to Lemma
5, x ∈ R. Let y = ϕ(x). Let z be the calculated vector in the last
iteration in Step 2, i.e. (z− y) · ∇F(y) ≤ ϵM.

Let y∗ = arg maxy∈P F(y). According to Proposition 1, z · ∇F(y) ≥
(1 − ϵ)maxw∈P w · ∇F(y). Hence, z · ∇F(y) ≥ (1 − ϵ)y∗ · ∇F(y).
Thus, we get

3.3 midr allocation rule for gap 31

F(y∗)− F(y) ≤ (y∗ − y) · ∇F(y)
≤ 1

1−ϵ (z · ∇F(y)− y · ∇F(y)) + ϵ
1−ϵ y · ∇F(y)

≤ ϵ
1−ϵ M + ϵF(y∗)

The first inequality is because of the concavity of F. The second in-
equality is by rearranging and using inequality z · ∇F(y) ≥ (1− ϵ)y∗ ·
∇F(y). The third inequality holds since (z− y) · ∇F(y) ≤ ϵM, and
y · ∇F(y) < (1− ϵ)F(y∗). If y · ∇F(y) ≥ (1− ϵ)F(y∗) then, by con-
cavity of F, F(y) ≥ y · ∇F(y) ≥ (1− ϵ)F(y∗), and therefore Lemma 6

holds.
Now, using ϵ = 1

n , we obtain F(y∗) − F(y) ≤ 1
n−1 M + 1

n F(y∗) ≤
2

n−1 F(y∗). Hence, when Algorithm 6 terminates F(y) ≥ (1− o(1))F(y∗),
the desired conclusion.

The change in y in each iteration is either δz or δ(z − zmin) for
|Z| < 1

δ and |Z| = 1
δ , respectively. The change in gradient, however,

has a certain upper bound when y changes by a certain amount, as
Lemma 7 shows.

Lemma 7. For any y and y′ with ||y− y′||∞ ≤ δ and any i and j,

e−nδ · ∂F
∂yij

∣∣∣∣
y
≤ ∂F

∂yij

∣∣∣∣
y′
≤ enδ · ∂F

∂yij

∣∣∣∣
y
.

Proof. Consider the gradient of F. For simplicity, we assume that
σj(i) = i.

∂F
∂yij

=
n

∑
l=i

(vl j − vl+1,j) exp(−
l

∑
k=1

ykj). (7)

Considering ∑l
k=1 y′kj ≤ ∑n

k=1 ykj +nδ and from (7) we obtain ∂F
∂yij

∣∣∣∣
y′
≥

e−nδ · ∂F
∂yij

∣∣∣∣
y
.

Similarly, from ∑l
k=1 y′kj ≥ ∑n

k=1 ykj−nδ and (7), we arrive at ∂F
∂yij

∣∣∣∣
y′
≤

enδ · ∂F
∂yij

∣∣∣∣
y
. This completes the proof.

The following lemma is useful in showing the progress of the algo-
rithm.

Lemma 8. For any y and y′ with ||y− y′||∞ ≤ δ,

(y′ − y) · ∇F(y′) ≥ (y′ − y) · ∇F(y)− 3δn2mM.

Proof. Let y′ − y = z+ − z− where for all i and j, 0 ≤ z+ij ≤ δ and
0 ≤ z−ij ≤ δ. From Lemma 7, z+ · ∇F(y′) ≥ e−nδz+ · ∇F(y) and

32 generalized assignment problem

z− · ∇F(y′) ≤ enδz− · ∇F(y). From these inequalities and using in-
equalities e−x ≥ 1− x and ex ≤ 1 + 2x for 0 ≤ x ≤ 1 and δ < 1/n, we
get

(y′ − y) · ∇F(y′) = (z+ − z−) · ∇F(y′)
≥ (e−nδz+ − enδz−) · ∇F(y)
≥ ((1− nδ)z+ − (1 + 2nδ)z−) · ∇F(y)
= (z+ − z−) · ∇F(y)− nδ(z+ + 2z−) · ∇F(y)
≥ (y′ − y) · ∇F(y)− 3δn2mM.

The last inequality holds because for every z ∈ [0, 1]I×J , z · ∇F(y) ≤
nmM. This is true since for any y, we have ∂F

∂yij
≤ M and in the best

possible case for z, every bin packs the m items and produces a value
of mM. This completes the proof.

Lemma 9. In each iteration, the value of F(y) increases by at least ϵ2

12mn2 M.

Proof. As long as the algorithm continues we have (z− y) · ∇F(y) >
ϵM. First, we consider the case where |Z| < 1

δ . We have

F(y + δz) ≥ F(y) + δz · ∇F(y + δz)
≥ F(y) + δe−nδz · ∇F(y)
≥ F(y) + δe−nδϵM

The first inequality is because of the concavity of F. The second
inequality holds because of Lemma 7. The third inequality is because
(z− y) · ∇F(y) > ϵM implies that z · ∇F(y) > ϵM, as we always have
∇F(y) ≥ 0⃗.

Now, using δ = ϵ
6mn2 , we obtain

F(y + δz) ≥ F(y) +
ϵ2

12mn2 M.

Second, we consider the case where |Z| = 1
δ . We have

F(y + δ(z− zmin)) ≥ F(y) + δ(z− zmin) · ∇F(y + δ(z− zmin))

≥ F(y) + δ(z− zmin) · ∇F(y)− 3δ2n2mM
≥ F(y) + δϵM− 3δ2mn2M

The first inequality is because of the concavity of F. The second
inequality holds because of Lemma 8. The third inequality is because
(z− zmin) · ∇F(y) ≥ (z− y) · ∇F(y), as shown in the following.

By definition of zmin, zmin · ∇F(y) ≤ z′ · ∇F(y) for all z′ ∈ Z .
Thus, |Z| · zmin · ∇F(y) ≤ ∑z′∈Z z′ · ∇F(y), which in turn means
zmin · ∇F(y) ≤ y · ∇F(y). Observe that y = δ ·∑z′∈Z z′.

Now, using δ = ϵ
6mn2 , we obtain

F(y + δ(z− zmin)) ≥ F(y) +
ϵ2

12mn2 M.

This completes the proof.

3.4 computing payments 33

Lemma 10. After at most 12m2n2/ϵ2 iterations, Algorithm 6 terminates.

Proof. Since M denotes max{vij : i ∈ I; j ∈ J}, mM is an upper bound
for maxy∈P F(y). Recall that

max
y∈P

F(y) = max
x∈R

E
(S1,...,Sn)∼rgreedy(x)

[
∑
i∈I

gi(Si)
]
≤ mM.

Based on Lemma 9, in each iteration the growth in value is at least
ϵ2

12mn2 M, Algorithm 6 thus in at most 12m2n2/ϵ2 iterations, reaches
the value of mM, which is an upper bound on the best solution. This
concludes the proof.

We thus achieve a (1− ϵ)-MIDR allocation rule that runs in poly-
nomial time. This concludes the proof of Theorem 2.

3.3.4 Simplifying the Rounding Procedure

As we note, it is possible to simplify the rounding procedure (Algo-
rithm 5), further. The simplified rounding is as follows.

Given x ∈ R, let y = ϕ(x). We assign set S to each bin i indepen-
dently with probability xi,S. Next, for each item j we do as follows. If
item j is assigned to bin i, we let the bin hold the item with probability
1−e−yij

yij
. This means, we withdraw the item from the bin with the com-

plementary probability 1− 1−e−yij

yij
to make sure that the probability of

assigning item j to bin i is not yij but 1− e−yij which is necessary to
maintain the MIDR property. According to the MIDR principle, the
expected value of the randomized integral assignment should equal
the calculated fractional value. Finally, if some item j is assigned to
more than one bin, we assign it to the bin among those bins with the
maximum value vij.

In order to use the allocation rule algorithm (Algorithm 3) as an
optimization algorithm, one can employ a more simple rounding al-
gorithm. The simpler rounding requires only Step 2 of Algorithm 5.
For an optimization purpose, there is no need to also execute Step 1

of Algorithm 5. Thus, after finding a fractional solution x by invoking
Algorithm 6, we assign set S to each bin i with probability xi,S and
resolve conflicts according to the technique explained in Algorithm 5.
This improves the runtime for the optimization purpose.

3.4 computing payments

Supplementing the MIDR allocation rule of Section 3.3 with VCG
payments yields a truthful-in-expectation mechanism. We compute
payments in order to also enforce non-negativity of payments and
individual rationality, ex post.

34 generalized assignment problem

To compute the VCG fractional payment pfrac
i for bidder i, we need

to compute two components: first, the Clarke pivot, hi(v−i), which is
the best achievable social welfare by bidders other than i, and second,
the value gained by bidders other than bidder i in the current frac-
tional solution. We can calculate hi(v−i) by rewriting GAP-CP for the
market without bidder i, i.e. vij = 0 for all j. To compute the value
gained by other bidders in the fractional allocation, F−i(y∗), we set
∀j ∈ J : vij = 0 in F(y∗), assuming that y∗ is the outcome of Algo-
rithm 6. Function F(y) is explicitly known to us and we can set in it
vij to 0. Finally, pfrac

i = hi(v−i)− F−i(y∗).

Example 1. Consider a setting in which two bidders (1 and 2) have valua-
tions for two items as follows: v11 = 8, v12 = 5 and v21 = 4, v22 = 10. In
this case,

F(y) = (8− 4)(1− e−y11) + 4(1− e−y11−y21) + (10− 5)(1− e−y22)

+ 5(1− e−y12−y22).

Now, assume y∗1 = (0.6, 0.3) and y∗2 = (0.4, 0.7). Then,

F−1(y∗) = (0− 4)(1− e−0.6)+ 4(1− e−1)+ (10− 0)(1− e−0.7)+ 0(1− e−1).

The value gained by bidder i in the fractional allocation is therefore
wfrac

i = F(y∗) − F−i(y∗). Assuming that Si is the subset assigned to
bidder i by the rounding procedure, we can compute the randomized
payment for bidder i, pi, satisfying individual rationality and non-
negativity of payments as follows.

pi =


gi(Si)

wfrac
i

pfrac
i if wfrac

i > 0,

0 if wfrac
i = 0.

3.5 truthfulness

It has been proven that if the allocation algorithm of a mechanism is
maximal-in-range and the payment rule calculates the payments by
applying the same payment idea as in VCG, then the mechanism is
truthful (Nisan and Ronen, 2007). Mechanisms using the idea of VCG
to calculate payments are termed VCG-based mechanisms.

Obviously, our mechanism is a VCG-based mechanism as we calcu-
late the payments following the idea of VCG. In order to show truth-
fulness, it suffices to show that the allocation algorithm is maximal-
in-range. Since our mechanism is randomized, we need to show that
the allocation rule is maximal in distributional range. To do so, we de-
scribe the distributional range of allocations over which the allocation
rule optimizes social welfare to optimality. By MIDR definition, the
range of allocations has to be chosen before any valuation has been
seen.

3.5 truthfulness 35

Let Π denote the set of all permutations on all bins. The rounding
algorithm (Algorithm 5) actually works with a specific permutation
on bins for each item. In particular, the rounding algorithm uses σj
for each item j which reorders the bins in decreasing order of their
values for item j. We recall that σj is formally defined in Subsection
3.3.1.

We can look at the rounding algorithm as a function which takes
the permutation πj for each item j as input. Let us call this parame-
terized rounding algorithm r and define it as Algorithm 7.

Algorithm 7: Rounding algorithm, r.
Data: x ∈ R, πj ∈ Π for each item j.
Result: Feasible allocation (S1, . . . , Sn).
1. Let y = ϕ(x). Let y′ ∈ [0, 1]I×J be such that y′ij = 1− e−yij .
Invoke Algorithm (4) with x and y′ as the inputs and let x′ be
the result.
2. Independently for each bin i, assign set S to i with
probability x′i,S. If some item j is assigned to more than one
bin, then assign item j to the bin among those bins that precedes
others in πj.
return (S1, . . . , Sn).

Algorithm 5 thus can be rewritten as rgreedy(x) = r(x, σ1, σ2, . . . , σm).
For each point x ∈ R, r(x, π1, . . . , πm) rounds point x to an integer

point by taking into account permutation πj ∈ Π for each item j.
We let the domain of function r comprise all x ∈ R as well as all
πj ∈ Π, ∀j ∈ J. The range of function r then is the range over which
our allocation algorithm optimizes the social welfare. Formally, we
define the range as follows.

Range ≡
∪

x∈R,π∈ΠJ

{r(x, π)}.

The range is clearly independent of private values as it only takes
into account points x and the permutations. Maximizing over this
range defines a maximal in distributional range algorithm. In order
to maximize over the range we don’t need to search the full range.
Rather, it suffices to look for the maximum only in the part of the
range containing the maximum.

We utilize this fact in our MIDR. In particular, in Algorithm 3 we
maximize r(x, σ1, . . . , σm) over x ∈ R. There is no need to take into ac-
count other permutations since the value of r(x, σ1, . . . , σm) is always
as high as that of r(x, π1, . . . , πm) where at least for one j πj ̸= σj.
To rephrase, maximizing r(x, σ1, . . . , σm) over x ∈ R is equivalent to
maximizing r(x, π1, . . . , πm) over x ∈ R for all πj ∈ Π, j ∈ J. This is
true because for each item j when there is a tie (Step 2 of Algorithm
7) assigning the item to the bin with the highest value for the item,
obviously produces a higher value. To the best our knowledge, this is

36 generalized assignment problem

the first time that such an observation has been used for maximizing
over a range.

3.6 strategic items

Here, we mention the required modifications for the case where items
are held by bidders rather than the bins. Such bidders are called unit-
demand bidders. To better expose the changes we index bidders by
j in the following. The allocation rule A takes reported valuations
v = (v1, . . . , vm), vj = (vij)i∈I for all j ∈ J and returns (i1, i2, . . . , im)

where ij is the bin to which item j is assigned. Let pj denote the
payment rule function for bidder j. We use vj(i1, . . . , ij, . . . , im) instead
of vij for the sake of simplicity in the definition below.

Definition 10 (truthful-in-expectation). A mechanism is truthful-in-expectation
for GAP (when items are held by bidders) if, for every bidder j, (true) valua-
tion function vj , (reported) valuation function v′j, and (reported) valuation
functions v−j of the other bidders,

E[vj(A(vj, v−j))− pj(vj, v−j)] ≥ E[vj(A(v′j, v−j))− pj(v′j, v−j)]. (8)

The expectation in (8) is taken over the coin flips of the mechanism.

For this type of bidders, we maximize over the range defined in
Section 3.5 to obtain a MIDR. That is, we use Algorithm 3 as the
allocation rule. We need however a different payment rule for this
type of bidders.

In order to calculate VCG fractional payment pfrac
j , we need to calcu-

late Clarke pivot hj(v−j) and the value gained by bidders other than j
in the current fractional solution, F−j(y∗).We calculate hj(v−j) by run-
ning Algorithm 6 after evaluating vij to 0 for all i ∈ I. Also, we have
F−j(y∗) = ∑m

l=1,l ̸=j ∑n
i=1

(
vσl(i),l− vσl(i+1),l

)(
1− exp(−∑i

k=1 y∗σl(k),l
)
)
. By

letting wfrac
j = F(y∗)− F−j(y∗) and assuming that item j is assigned

to bin i in the rounded solution, the payment of bidder j is calculated
as follows.

pj =


vij

wfrac
j

pfrac
j if wfrac

j > 0,

0 if wfrac
j = 0.

3.7 conclusion

We studied the problem of mechanism design for a strategic vari-
ant of GAP where valuations are assumed to be private information
known only to the bidders while weights and capacities are publicly
known. Given that GAP is NP-hard, and that VCG is not trivially
truthful with suboptimal solutions, we resorted to approximation
mechanisms.

3.7 conclusion 37

We proposed a solution by which the two obstacles, maximizing
the social welfare of GAP as well as extracting true valuations of bid-
ders, are surmounted. The solution provides bidders with incentives
to report their valuations truthfully and runs in polynomial time ap-
proximating the social welfare with a provable ratio of at least 1− 1/e.

In comparison to the approximation algorithms presented for GAP
without incentive issues, our proposed algorithm has advantages in
terms of runtime and simplicity while presenting the same approx-
imation ratio. Our work also shows that the convex rounding tech-
nique is a powerful machinery for designing truthful approximation
mechanisms and might find other applications in the field.

A problem which remains to be solved is the analysis of the strate-
gic version of GAP in which weights and capacities are also private.
We conjecture there is no constant ratio truthful mechanism for this
problem.

Another problem to be solved is to find a truthful mechanism for
GAP with private values which stipulates that no item in the final
allocation may remain unassigned.

4

M E C H A N I S M D E S I G N W I T H O U T M O N E Y

In this chapter, we study a problem of truthful mechanism design for
a strategic variant of the generalized assignment problem (GAP) in a
both payment-free and prior-free environment. In GAP, a set of items
has to be optimally assigned to a set of bins without exceeding the
capacity of any singular bin. In the strategic variant of the problem
we study, bins are held by strategic agents, and each agent may hide
its compatibility with some items in order to obtain items of higher
values. The compatibility between an agent and an item encodes the
willingness of the agent to receive the item. Our goal is to maximize
total value (sum of agents’ values, or social welfare) while certifying
no agent can benefit from hiding its compatibility with items. The
model has applications in auctions with budgeted bidders. For two
variants of the problem, namely multiple knapsack problem in which
each item has the same size and value over bins, and density-invariant
GAP in which each item has the same value density over the bins, we
propose truthful 4-approximation algorithms. For the general prob-
lem, we propose an O(ln (U/L))-approximation mechanism where
U and L are the upper and lower bounds for value densities of the
compatible item-bin pairs. 1

4.1 introduction

Truthful mechanism design without money under general preferences
is a classic topic in social choice theory. Truthfulness ensures that no
agent can be better off by manipulating its true preferences. When
searching for truthful mechanisms without money, one has to look at
restricted domains of preferences. The reason for this, is the Gibbard-
Satterthwaite theorem which states that any truthful social choice
function which selects an outcome among three or more alternatives
has to be trivially aligned with the preference of a single agent (namely,
the dictator) (Gibbard, 1973; Satterthwaite, 1975). Thus, exploring do-
mains for which there exist truthful mechanisms is of central impor-
tance in the field of social choice theory.

1 In this chapter, for the sake of simplicity, an α-approximation means a solution
whose value is at least 1/α times the optimal total value.

39

40 mechanism design without money

For example, when valuations of agents are restricted to single-
peaked preferences over a one-dimensional public space, returning
the median of the peaks determines a truthful social choice (Moulin,
1980). Another example is the two-sided matching, in which a set of
men has a strict preference ordering over a set of women, and vice
versa. A matching is an assignment of men to women where each
side is assigned to only one element of the other side. The deferred
acceptance algorithm finds a stable matching which is truthful for the
proposing side, but not necessarily truthful for the other side (Roth
and Sotomayor, 1992).

One way to circumvent the impossibility result is relaxing the social
choice function. Procaccia and Tennenholtz introduced the technique
of welfare approximation as a means to derive truthful approxima-
tion mechanisms without money (Procaccia and Tennenholtz, 2013).
This type of approximation is not meant to handle computational in-
tractability, but a method to achieve truthfulness by relaxing the goal
of optimizing social welfare (approximating social welfare), and thus
circumventing the Gibbard-Satterthwaite impossibility theorem. The
approach is to maximize welfare without considering incentives, and
refer to this as optimal value. Then it is said that a truthful mecha-
nism returns (at most) an α-approximation of the optimal if its value
is always greater than or equal to 1/α times the optimal value (α ≥ 1).
Several works, subsequent to the work of Procaccia and Tennenholtz,
employ this technique (Dughmi and Ghosh, 2010; Chen et al., 2013;
Koutsoupias, 2014). We apply this technique to a restricted strategic
setting defined below.

4.1.1 Model

Consider a strategic variant of the generalized assignment problem
termed GAP-BS in a both prior-free and payment-free environment. In
GAP-BS, there are m items J and n bins (knapsacks) I. Each bin i has
a capacity Ci and associates a value vij and a size wij to any item j. A
feasible assignment may allocate a subset of items S to bin i such that
∑j∈S wij ≤ Ci. A feasible assignment may assign each item at most
once.

In GAP-BS, we assume tuple T = ({vij}ij, {wij}ij, {Ci}i) is public,
but each bin is held by a strategic agent. The private information that
each agent/bin holds is the set of its compatible items. The compat-
ibility between an agent and an item encodes the willingness of the
agent to receive the item. In particular, consider a bipartite graph G
where one side corresponds to items and the other side corresponds
to the bins. The edges of G, E ⊆ I × J represent the compatible item-
bin pairs. The private type of a bin i is therefore the set of edges in the
graph incident on i, Ei. A bin i receives value vi(S) = ∑j∈S:(i,j)∈E vij
from package S if ∑j∈S wij < Ci and 0, otherwise. The total value

4.1 introduction 41

of a feasible assignment (S1, S2, . . . , Sn) equals the sum of values re-
ceived by the bins from the assignment: ∑i∈I vi(Si). We seek a total
value-maximizing algorithm that provides each bin i with incentives
to truthfully report its compatible items Ei rather than any E′i ⊂ Ei.2

In other words, given a truthful mechanism, bins have no incentive
to hide their compatibility with some items.

Let A denote a randomized algorithm which takes instance (T, E)
and computes X ∈ {0, 1}E, an assignment of items to bins. Notice,
the assignment itself is a deterministic assignment (each bin receives
a deterministic set of items), but algorithm A is internally random-
ized, i.e., A returns a solution which is randomly chosen according
to a probability distribution over feasible assignments. Thus, the com-
puted assignment may change by runningA, twice on the same input.
Randomized algorithm A is said to be truthful-in-expectation (truth-
ful, henceforth unless mentioned explicitly) if for X ∼ A(T, E), we
have

i. (feasibility) ∀j ∈ J, Pr[∑i∈I Xij ≤ 1] = 1 and ∀i ∈ I, Pr[∑j∈J wijXij ≤
Ci] = 1

ii. (truthfulness) for any i and E′i ⊂ Ei, we have E[∑j∈J:(i,j)∈E vijXij] ≥
E[∑j∈J:(i,j)∈E vijX′ij], where X′ ∼ A(T, E′i ∪ E−i).

E−i always denotes E \ Ei. Note that, the expected value of the bin in
both cases is calculated with respect to true item-bin compatibilities,
E. To sum, our objective is to propose a randomized algorithm A for
GAP-BS which is truthful, and always returns a feasible assignment
whose value approximates the optimal total value as high as possible.

Many real-world decision problems can be modeled by variants
of knapsack problems, therefore we believe that our model can be
applied broadly. As an example, we refer to the maximum budgeted
allocations (MBA) problem (Chakrabarty and Goel, 2010). In MBA, a
set of indivisible items has to be assigned to a set of bidders. Each
bidder i reports her willingness to pay bij for item j by bidding for the
item, while she has a budget constraint Bi. Each bidder i on receiving
a package S of items, pays ∑j∈S bij. Each bidder i has the rigid con-
straint Bi on her payment. The goal in MBA is to find a distribution
of items among the bidders which maximizes the total revenue (the
sum of the payments by the bidders while respecting their budget
constraints). MBA arises in auctions with budgeted bidders and has
several applications (Chakrabarty and Goel, 2010).

In MBA, bidders want to get as much as they can without spend-
ing more than their budget. For instance, advertisers wish to maxi-
mize the impressions, clicks, or sales generated by their advertising,

2 In fact, our results certify that each bin i reports exactly Ei and has no incentives to
report any other set of edges E′i . However, for the sake of simplicity in the exposition
of the results, we focus on untruthful reports that are made by hiding some edges,
E′i ⊂ Ei.

42 mechanism design without money

subject to budget constraints. Similarly, bidders who have no direct
utility for leftover money (e.g. because the money comes from a cor-
porate budget) will buy as much as possible. This types of bidders
are called value maximizers, and have recently drawn the attention of
researchers in mechanism design (Wilkens et al., 2016; Cavallo and
Krishnamurthy, 2015).

Consider a strategic variant of MBA in which each bidder, in or-
der to obtain a more valuable package of items, strategizes in the
following way. Each bidder may strategically hide her interests in
buying some items by not bidding for those items. In this setting, the
auctioneer wishes to certify that each bidder truthfully reveals her
willingness to buy items. In other words, a truthful mechanism in
this setting will encourage participation of the bidders in the auction.

We model this setting by GAP-BS, in which each bidder is repre-
sented by a bin, budgets Bi by capacities Ci, the bids bij by the values
of bins for the items vij, and the payment by a bidder i for item j by
the weight of the item on the bin, wij. Thus, in this setting of GAP-BS,
we have vij = wij for all i and j. For this problem, since the value
density of each item is the same over all bins, we provide a truthful
4-approximation algorithm.

4.1.2 Discussion About the Assumptions

Aside from the applications of the model discussed above, we empha-
size that our assumptions (which imply a highly structured domain)
are necessary to escape the impossibility results such as the Gibbard-
Satterthwaite theorem and its variations (Barbera and Peleg, 1990).
For example, we resort to welfare approximations because as stated
by Theorem 4, no deterministic (or randomized) algorithm whose
value is optimal, exists for GAP-BS. The lower bounds in Theorem 4

were also derived for a different setting with strategic items (Dughmi
and Ghosh, 2010), however, here we reproduce and adapt the theorem
for our setting.

Theorem 4. No truthful deterministic algorithm with an approximation
ratio better than 2 exists for GAP-BS. Moreover, no truthful-in-expectation
randomized algorithm with an approximation ratio better than 1.09 exists
for GAP-BS.

Proof. Consider a small market with two bins and two items shown
in Figure 1 (a). In this market, bins have capacity 1, and are both
compatible with the two items. Item B is more valuable to both bins
(x > 1), but each item has size 1. This market can be viewed as an
instance for both the multiple-knapsack problem (Subsection 4.2.1),
and the density-invariant GAP (Subsection 4.2.2).

Regarding deterministic mechanisms, an arbitrary truthful mech-
anism has to assign item B to one bin. Without loss of generality,

4.1 introduction 43

assume B is assigned to bin 2, i.e., the tie is broken deterministically
(alphabetically) in favor of bin 2. Now, consider reports in (b) of Fig-
ure 1. The mechanism, in case (b), cannot assign B to bin 1 as it
violates truthfulness. Thus, the mechanism assigns B to 2, and this
results in an approximation ratio of x+1

x which tends to 2 when x gets
very close to 1.

An arbitrary truthful-in-expectation mechanism, in case (a), assigns
B to one bin with a probability less than or equal 1/2. Without loss
of generality, let bin 1 be that bin. The utility of bin 1, in this case,
will be at most x+1

2 for x > 1. Assume, in case (b), item B is assigned
to bin 1 with probability q, resulting a q · x expected value for bin 1.
Truthfulness stipulates no increase in the utility of bin 1 in case (b),
i.e., x+1

2 ≥ q · x, thus q ≤ x+1
2x . In case (b), the total expected value

will be q(1 + x)− (1− q)x = x + q, thus the approximation ratio will
be x+1

x+q . In order to obtain a smaller approximation ratio, we plug in

q = x+1
2x . The ratio gets a value of 1 + 1

4
√

2+5
≈ 1.094 for x = 1 +

√
2,

the desired conclusion.

A1
1

Bx
1

1

2

C1 = 1

C2 = 1

(a) True edges.

A1
1

Bx
1

1

2

C1 = 1

C2 = 1

(b) Manipulated edges.

Figure 1: Circles represent items and squares represent bins. The value
size

of each item is on its left. Each bin has a capacity of 1.
Selected assignments are in bold.

Now, we consider a setting in which bins/agents have private val-
ues for items. This setting is more general than GAP-BS in that, in this
setting, the agents can manipulate their valuations for items. This is
in contrast to GAP-BS in which the agents can only hide their valua-
tions for some items by hiding their compatibility with those items.
For this general setting, no deterministic (or randomized) truthful al-
gorithm, with an interesting approximation ratio, exists. To see this,

44 mechanism design without money

consider a simple market with one item, and a set of agents. This mar-
ket is equivalent to the single-item auction, but without money. We
observe that no mechanism without money can find the (true) highest
valuation for the item, as the agents can report arbitrarily high values
for the item. That is, no truthful algorithm can do any better than the
algorithm which allocates the item to the bin which is uniformly cho-
sen at random. Such an algorithm provides a trivial approximation
ratio of 1/n, n being the number of agents.

In a parallel setting, Dughmi and Ghosh (2010) and Chen et al.
(2013) studied the generalized assignment problem in an environ-
ment in which transfer of money is not allowed. While the setting
proposed by these authors is close to ours, the main difference be-
tween the two settings is that in their setting, items are held by strate-
gic agents, but in our model bins are held by the agents. Consequently,
the solutions proposed by these authors are not directly applicable to
GAP-BS, however in our solutions to GAP-BS we benefit from the tech-
niques developed therein.

4.1.3 Results and Technique

In addition to GAP-BS, we also analyze two variants, namely the mul-
tiple knapsack problem in which each item has the same size and
value over bins, and density-invariant GAP in which each item has
the same value density (value per size) over the bins.

We observe that the relaxation and rounding technique is applica-
ble to these problems. The relaxation and rounding technique is a
welfare approximation technique (Procaccia and Tennenholtz, 2013)
based on linear programming relaxations. To apply the technique,
we start with a linear programming relaxation of the problem. Then,
we need an algorithm which returns a fractional solution to the re-
laxation with an acceptable approximation ratio. The algorithm has
to be fractionally truthful, i.e., no agent can increase its fractional
value by untruthful reports. Finally, a rounding scheme which pre-
serves truthfulness is applied to the fractional solution to obtain an
integer solution. It should be noted that the relaxation and rounding
technique has been previously applied to mechanism design without
money in a different setting (Dughmi and Ghosh, 2010).

We apply the technique successfully to our problems by proposing
fractionally truthful algorithms with acceptable approximation ratios.
For the rounding scheme, we use a rounding method called random-
ized meta-rounding, originally proposed by Carr and Vempala (2000),
and later applied by Lavi and Swamy (2011) to mechanism design
(with quasi-linear valuations). Using the relaxation and rounding
technique, for two variants of GAP-BS, the multiple knapsack problem,
and density-invariant GAP, we propose truthful 4-approximation al-
gorithms. For GAP-BS, we show an O(ln (U/L))-approximation mech-

4.2 generalized assignment problem 45

anism where U and L are the upper and lower bounds for value
densities of the compatible item-bin pairs.

4.2 generalized assignment problem

We start with a linear programming relaxation of GAP-BS.

Maximize ∑n
i=1 ∑m

j=1 vijxij (LP[E])

subject to ∑n
i=1 xij ≤ 1 ∀j ∈ J

∑m
j=1 wijxij ≤ Ci ∀i ∈ I

xij ≥ 0 ∀i, j

xij = 0 ∀(i, j) /∈ E.

Our technique is as follows. We design a fractionally truthful ap-
proximation algorithm which returns a feasible solution to LP[E].
A fractionally truthful algorithm allocates fractional assignments to
bins, and no bin can improve its fractional value by an untruthful
report. In particular, a fractionally truthful algorithm AF takes (T, E)
and returns x ∈ [0, 1]E, a feasible solution to LP[E] with the follow-
ing property. For each bin i, if the bin reports E′i ⊂ Ei, we will
have ∑j:(i,j)∈E vijxij ≥ ∑j:(i,j)∈E vijx′ij, where x′ = AF(T, E′i ∪ E−i) and
E−i = E \ Ei. Next, we round the fractional solution using a special
rounding technique which makes sure that each bin obtains a fixed
fraction of its fractional value in expectation. The randomized meta-
rounding is capable of maintaining this fixed fraction.

To use the randomized meta-rounding, we have to scale down the
fractional solution by factor 2, which is essentially the integrality gap
of the LP[E] (Shmoys and Tardos, 1993). Assuming x∗ = AF(T, E),
the randomized meta-rounding represents x∗/2 as a convex combi-
nation of polynomially-many feasible integer solutions. Looking at
the provided convex combination as a probability distribution over
integer solutions, we sample a randomized solution X which is al-
ways feasible, and its expected value is 1/2 of the fractional value of
x∗. This is confirmed by Theorem 5.

Theorem 5. If there exists a fractionally truthful α-approximation algo-
rithm for GAP-BS, then there exists a truthful (2α)-approximation solution
for GAP-BS.

Proof. Let AF denote a fractionally truthful algorithm for GAP-BS that
takes an instance (T, E) and returns a feasible solution to LP[E]. Let
x∗ be the outcome of AF on instance (T, E). Let {Xl}l∈L denote the
set of feasible integer solutions to LP[E], where L indexes all feasible
integer solutions. The integrality gap of LP[E] equals 2 (Shmoys and
Tardos, 1993), thus we scale down the fractional solution by factor
2. The meta-randomized rounding applied to x∗/2 computes a prob-

46 mechanism design without money

ability distribution over feasible integer solutions whose support is
polynomial (Carr and Vempala, 2000; Lavi and Swamy, 2011):

x∗
2 = ∑l∈L λlXl , ∑l∈L λl = 1, and ∀l ∈ L, λl ≥ 0.

We treat the convex decomposition above as a probability distri-
bution according to which solution Xl has probability λl of being
selected. Let X be a solution sampled from the above distribution.
Obviously X is feasible by the construction of the distribution. We
also have E[Xij] =

1
2 x∗ij for all i and j from the construction of the dis-

tribution. By the linearity of expectation, the expected value of a bin
is E[∑j:(i,j)∈E vijXij] =

1
2 ∑j:(i,j)∈E vijx∗ij. Therefore, the expected value

of the solution is exactly half of the value of the fractional solution.
For truthfulness, fix bin i and E−i = E \ Ei. Suppose the bin reports

E′i ⊂ Ei rather than Ei. Let x′ = AF(T, E′i ∪ E−i), and X′ be the
solution returned by the meta-randomized rounding from x′/2. We
have

E[∑j:(i,j)∈E vijXij] = 1
2 ∑j:(i,j)∈E vijx∗ij

≥ 1
2 ∑j:(i,j)∈E vijx′ij

= E[∑j:(i,j)∈E vijX′ij]

The inequality is because AF is fractionally truthful. Therefore, the
bin cannot improve its expected value by hiding some of its edges.
This completes the proof.

4.2.1 Multiple Knapsack Problem

We consider a variant of GAP-BS in which neither the size nor the
value of each item depends on the bins. Formally, for each item j
we have vij = vj and wij = wj for all bins i. First, we observe an
algorithm that returns a (fractional) optimal solution to LP[E] is not
fractionally truthful. This can be seen in the example shown in Figure
2. In (a) of this figure, the edges are reported truthfully, and the value-
maximizing allocation, assigns A to bin 1 and the other item to the
other bin. In (b) of this figure, bin 1 hides its compatibility with
item A and as a consequence it is better off (in expectation) when the
mechanism maximizes the total value. In (b) of this figure, the tie can
be broken randomly or deterministically (alphabetically) in favor of
bin 1. In any case, bin 1 is better off by manipulation.

We propose Algorithm 8. We choose bin i in an arbitrary order and
(fractionally) assign compatible items to it according to the decreasing
order of value densities of items vj/wj until the capacity of the bin is
exhausted or all compatible items are exhausted. Then we proceed to
the next bin with remaining (fractional) items.

Algorithm 8 is fractionally truthful. It is well known that assigning
items according to decreasing order of value densities, when frac-
tional assignments are allowed, produces the highest fractional value

4.2 generalized assignment problem 47

A1+ε
1

x
1

1 C1 = 1

C2 = 1

(a) True edges.

A1+ε
1

x
1

1 C1 = 1

C2 = 1

(b) Manipulated edges.

Figure 2: Circles represent items and squares represent bins. The
value/size of each item is on its left. Value maximizing
assignments are in bold. x ≫ 1.

Algorithm 8: Multiple Knapsack Problem.
1. Sort items according to the decreasing order of value
densities vj/wj, breaking ties arbitrarily.
2. foreach bin i chosen in an arbitrary order do

For each unassigned (fractional) item j where (i, j) ∈ E in
the order defined above, fractionally assign as much of the
item to bin i until the item is exhausted or the bin is full.

return the resulting assignment x.

for the bin. Since bins wish to maximize their values and the algo-
rithm is aligned with this goal, thus the bins have no incentive to lie,
and the algorithm is fractionally truthful.

With regard to the total value, we show that Algorithm 8 returns
a 2-approximate fractional solution. We compare the outcome of the
algorithm with the optimal solution to the LP formulation of the prob-
lem shown below.

Maximize ∑n
i=1 ∑m

j=1 vjxij (MKP-LP[E])

subject to ∑n
i=1 xij ≤ 1, ∀j ∈ J

∑m
j=1 wjxij ≤ Ci, ∀i ∈ I

xij ≥ 0, ∀i, j

xij = 0, ∀(i, j) /∈ E.

Lemma 11. Algorithm 8 returns a 2-approximation solution to MKP-LP[E].

Proof. We will construct a feasible dual solution with a value at most
twice the value obtained by the algorithm, then by calling the weak

48 mechanism design without money

duality theorem, the claim will follow. Assume x is the outcome of
Algorithm 8. Using x we can construct a feasible solution to the dual
of MKP-LP[E] given below.

Minimize ∑m
j=1 pj + ∑n

i=1 uiCi (MKP-LPD[E])

subject to pj + uiwj ≥ vj, ∀(i, j) ∈ E

ui ≥ 0, ∀i

pj ≥ 0, ∀j.

Initially, let p = 0⃗ and u = 0⃗. If item j gets exhausted, set pj =

vj. Furthermore, for all full bins i, set ui = vj/sj, j being the last
item (fractionally) assigned to i. We can observe that this satisfies
the constraint corresponding to each edge (i, j). In particular, if bin
i is full, then for each j incident on i, either j gets exhausted with
this assignment or does not. If j is exhausted we have pj = vj and
therefore the constraint holds. If j is not exhausted, we have vj/wj ≤
ui since items are assigned in decreasing order of value density and
thus the constraint holds. If bin i is not full, every item j which
is assigned to it is exhausted by this assignment. That is we have
pj = vj and the constraint thus holds. For every item j which is not
assigned to the bin but (i, j) ∈ E, we have pj = vj since the item is
exhausted due to another assignment. In sum, we have constructed a
feasible dual solution using x.

Now, we bound the value of the dual solution with respect to
the primal solution. First, we observe that ∑i,j vjxij ≥ ∑j pj ∑i xij,
since pj = vj if j is fully exhausted and pj = 0, otherwise. Second,
∑i,j vjxij = ∑i ∑j

vj
wj
(wjxij) ≥ ∑i ui ∑j(wijxij), since if xij > 0 then

vj/wj ≥ ui. Therefore, we obtain

2 ∑i,j vjxij ≥ ∑j pj ∑i xij + ∑i ui ∑j(wjxij)

= ∑j pj + ∑i uiCi

Notice, only for items j which get exhausted (∑i xij = 1) we have
pj > 0 and only for full bins (∑j wjxij = Ci) we have ui > 0. The final
term is the value of the dual, the desired conclusion.

Finally, we call Theorem 5 and obtain the following.

Theorem 6. There exists a truthful 4-approximation mechanism for the
multiple knapsack problem in our model.

4.2.2 Truthful Mechanism for GAP-BS

Now, we attempt to design a truthful algorithm for GAP-BS, but first
solve the problem with an additional assumption. We assume that
the value density of each item is the same over all bins. More formally,
there exists a value dj for each item j such that for all bins i, we have
vij
wij

= dj. This assumption will be relaxed in Subsection 4.2.3. We

4.2 generalized assignment problem 49

design a truthful 4-approximation mechanism for GAP-BS under this
extra assumption.

The proposed algorithm can be viewed as a variant of the deferred
acceptance algorithm designed for matching marketplaces. Each item
j has a preference list Lj according to decreasing order of vij where
(i, j) ∈ E, breaking ties arbitrarily. The preference list of a bin is
defined according to the decreasing order of value densities. Once a
(fractional) item and a bin are matched, the assignment will never be
broken.

Algorithm 9: GAP with Equal Density

Data: Preference lists of the items, {Lj}j.
Result: A feasible solution x to LP[E].
1. Sort items according to their decreasing order of value
densities dj, breaking ties arbitrarily.
2. foreach item j chosen according to the order above do

Fractionally assign as much of the item to the bins chosen
according to the order specified by Lj, until the item is
exhausted or all the bins in Lj are full.

return the resulting assignment x.

To show the approximation factor of the solution, we can construct
a feasible dual solution whose value is at most twice the value ob-
tained by Algorithm 9, then by calling the weak duality theorem, the
following lemma holds.

Lemma 12. Algorithm 9 returns a 2-approximation solution to LP[E] when
each item has the same value density over bins.

Proof. An argument similar to that of Lemma 11 in addition to some
required modifications will show the claim. Assume x is the outcome
of Algorithm 9. Using x we can construct a feasible solution to the
dual of LP[E] (LPD[E] given below) which is not greater than twice
the value of x. Then we call the weak LP-duality theorem and con-
clude that x is a 2 approximate solution to LP[E].

LPD[E]:

Minimize ∑m
j=1 pj + ∑n

i=1 uiCi

subject to pj + uiwij ≥ vij, ∀(i, j) ∈ E

ui ≥ 0, ∀i

pj ≥ 0, ∀j.

Initially, let p = 0⃗ and u = 0⃗. If item j gets exhausted when as-
signed to bin i, set pj = vij. Furthermore, for all full bins i, set ui = dj,
j being the last item (fractionally) assigned to i. We can observe that

50 mechanism design without money

this satisfies the constraint corresponding to each edge (i, j). In par-
ticular, if bin i is full, then for each j incident on i, j either gets ex-
hausted with this assignment or does not. If j is exhausted, we have
pj = vij and therefore the constraint holds. If j is not exhausted, we
have vij/wij = dj ≤ ui since items are assigned in decreasing order of
value density and thus the constraint holds. If bin i is not full, every
item j which is assigned to it is exhausted by this assignment. That
is we have pj = vij and the constraint thus holds. For every item j
which is not assigned to the bin but (i, j) ∈ E, we have pj ≥ vij since
the item is exhausted due to an assignment (i′, j) ∈ E with vi′ j ≥ vij.
Therefore, we have constructed a feasible dual solution using x.

Now, we bound the value of the dual solution with respect to the
primal solution. First, we observe that ∑i,j vijxij ≥ ∑j pj ∑i xij, since
pj lower bounds the value of any edge on which any part of item
j is assigned (xij > 0) because the item goes to bins according to
the order specified by Lj. Second, ∑i,j vijxij = ∑i ∑j

vij
wij

(wijxij) ≥
∑i ui ∑j(wijxij), since if xij > 0 then vij

wij
= dj ≥ ui. Therefore, we

obtain

2 ∑i,j vijxij ≥ ∑j pj ∑i xij + ∑i ui ∑j(wijxij)

= ∑j pj + ∑i uiCi

Notice, only for item j which gets exhausted (∑i xij = 1), we have
pj > 0 and only for full bins (∑j wjxij = Ci) we have ui > 0. The final
term is the value of the dual, the desired conclusion.

Regarding the truthfulness of the algorithm, it would have been
easier to prove the truthfulness if we - similar to the algorithm for the
multiple knapsack problem - allowed the bins to propose to items;
however, one can design instances showing that such an algorithm
will result in an arbitrarily low total value. For example, see Fig. 3.
In this example when bin 1, whose capacity is strongly bigger than ϵ,
0 < ϵ < 1, starts choosing its desired items, it obtains all items and
the resulting allocation will be of very low value.

1

2ϵ
ϵ

2ϵ
ϵ

2ϵ
ϵ

2x
x

2x
x

2x
x

Figure 3: Value/size of each item-bin pair is on the edges. x is an
arbitrary big value. Selected assignments are in bold.

4.2 generalized assignment problem 51

In order to show that Algorithm 9 is fractionally truthful, we look at
Algorithm 9 as a variant of the deferred acceptance algorithm where
items propose capacities to bins. Each bin then may accept or reject
the whole or part of the proposed capacity by an item depending on
its current empty capacity. Let Cij denote the capacity proposed by
item j to bin i.

The truthfulness proof proceeds as follows. We first show that in
an instance with 2 items and 2 bins (2× 2), truthfulness holds. This
instance contains the core of the truthfulness proof for the general
case. Truthfulness for simpler cases is trivial. A straightforward gen-
eralization of the argument for 2× 2 shows truthfulness for settings
with m items and 2 bins (2×m) for any m > 2. For the general case
of (n×m) we provide an inductive argument.

Lemma 13. Algorithm 9 is fractionally truthful for 2× 2 settings.

Proof. Let 1, 2 denote the bins and p and q denote the items. Let us
assume p precedes q in proposing to the bins, i.e. dp ≥ dq. Fix this
order of proposing items as well as the reports by bin 2. We argue
bin 1 is never better off by hiding some of its edges E1.

Assume (1, q) ∈ E1. Then bin 1 may receive a proposal from q but
obviously the bin receives no proposal from the item if the bin reports
(1, q) /∈ E1. Thus, hiding compatibility with q might only make a loss
for the bin.

Now we analyze the behavior of the algorithm for a similar change
in report for item p. We need to show that when (1, p) ∈ E1 (case I)
the obtained value is at least as good as when (1, p) /∈ E1 (case II) for
the bin. Then we conclude that when truely (1, p) ∈ E1, the bin has
no incentive to report (1, p) /∈ E1.

In case I, if no fraction of p is assigned to bin 1 (the bin rejects p),
then everything remains the same as in case II. If only a fraction of
p accepted by the bin, then the bin has to be full: thus the utility of
the bin is maximum and can’t be better off in case II. What remains
to show is that the bin is not worse off when it accepts p fully in case
I.

This situation is depicted in Figure 4. In the figure, (a) and (b)
correspond to case I and case II, respectively. Considering the infor-
mation provided in Fig. 4, we need to show that C′1q ≤ C1q + C1p.
This will mean, in case II, the bin actually receives less capacity from
items with less (or equal) value densities than in case I, which in turn
means a lower value for bin 1. Notice, to arrive at this inequality we
used the assumption that the order of proposing items is fixed in the
two setups. To show the inequality, we first observe two facts about
Algorithm 9.

Observation 1. If a set of items together propose a capacity of C0 ≤ C to
a bin with capacity C, the bin will accept the whole proposed capacity. If
we first let a capacity C1 propose to the bin and afterwards let the foregoing

52 mechanism design without money

p

q

1

2

C1p

0

C1q

C2q

(a) Case I. p is exhausted when it is assigned to 1.

p

q

1

2

C2p

C′1q

C′2q

(b) Case II. 1 is not in the preference list of p. At least a fraction of q
is assigned to 1 (C′1q > 0).

Figure 4: Two cases where the bin is and is not on the preference list
of the item. The amount of proposed and accepted capaci-
ties are shown on the edges.

items propose the capacity C0, the bin will reject a capacity of at most C1

from the items that propose after the first capacity.

Proof. Assume C1 and C0 in order propose to the bin. If the bin gets
full by accepting C1 we must have C1 ≥ C, then the bin will reject
exactly a capacity of C0 of the next items. Now because C0 ≤ C ≤ C1,
the claim holds. If not (the bin still has an empty capacity of CE

after accepting C1), the bin accepts C1 fully and rejects an amount
equal to max{0, C0 − CE} from the next proposing capacities. We
have C1 + CE = C ≥ C0, therefore C0 − CE ≤ C1. Thus, in this case
the rejected capacity will be upper bounded by C1. This completes
the proof.

Observation 2. Let 1 and 2 be two subsequent bins in Lj. If bin 1 rejects
the proposed capacity C1j by item j then, this is an upper bound to C2j, the
capacity that will be proposed by item j to 2, i.e. C1j ≥ C2j.

Proof. First, we must have w1j ≥ w2j since v1j
w1j

=
v2j
w2j

by the assump-
tion of equal density over bins and v1j ≥ v2j as 1 precedes 2 in Lj.
Rejecting C1j means that this fraction of the item remains: C1j/w1j.
Then what will be proposed to 2 is C2j = w2j · (C1j/w1j) ≤ C1j.

Back to the argument about cases I and II, we notice that in case II
there is an increase of amount C2p in the proposed capacity to 2 com-
pared to case I. The capacity rejected by bin 2 is thus upper bounded
by C2p according to Observation 1. Therefore, we have C2q − C′2q ≤

4.2 generalized assignment problem 53

C2p. Moreover, according to Observation 2, the rejected capacity up-
per bounds the proposed capacity to the next bin. Hence, we have
C′1q − C1q ≤ C2q − C′2q. Therefore, we obtain C′1q ≤ C1q + C2p ≤
C1q + C1p. The last inequality holds again because of Observation 2

(see it as bin 1 rejecting C1p, an upper bound to C2p). This completes
the proof of Lemma 13.

A simple generalization of the argument for 2× 2 markets shows
truthfulness for the 2×m markets with m > 2. A useful observation
here is that we only need to show that bin 1 will always report E1

rather than E1 \ {ej} for every ej ∈ E1 . If we show this, we have in
fact shown that reporting E1 is better than reporting E1 \ {ej}. This
also shows that reporting E1 \ {ej} is better than hiding one edge from
E1 \ {ej}, i.e. reporting E1 \ {ej, ej′} and so on. For the general case
we provide an inductive argument. We assume that in a (n− 1)×m
setting bins are truthful and prove that in a n×m setting truthfulness
holds as well.

Lemma 14. If Algorithm 9 is truthful for markets with m items and n− 1
bins, it will be truthful for n×m markets.

Proof. Consider bin i and fix the reports of other bins denoted by -
i. We assume (i,p) ∈ Ei (case I) and show that the bin will never
be better off by reporting (i,p) /∈ Ei (case II). We compare the utility
of the bin in the two cases under a fixed order of proposing items.
The two cases are depicted in Figure 5. Since the items before p are
assigned similarly in both cases, we only consider the items which
are processed after p denoted by -p.

We show that C′i,−p ≤ Cip + Ci,−p, where Ci,−p = ∑q∈−p Ci,q and
C′i,−p = ∑q∈−p C′i,q. This means that bin i in case II actually receives
less capacity from items with less (or equal) value densities than case
I, which in turn implies lower value for the bin.

Consider case II. We look closer at the bin(s) to which item p will
be assigned. We assume p is (fractionally) assigned to at least one bin
otherwise we have Ci,−p = C′i,−p and thus the claim holds. Let bin 1
be the first bin to which p will be assigned.

We assume bin 1 gets full at some point otherwise this bin accepts
the extra capacity (C1p, the capacity proposed by item p to bin 1)
without rejecting any capacity and therefore we have Ci,−p = C′i,−p
and thus the claim holds. When bin 1 gets full, some of the currently
proposing items to bin 1 will stop proposing to it and go to the next
bin in their preference list. Let us call these capacities C1. C1 is
upper bounded by C1p according to Observation 1 which in turn is
upper bounded by Cip based on Observation 2: C1 ≤ C1p ≤ Cip. If
C1 directly proposes to bin i, the bin won’t be better off in case II
because C1 ≤ Cip. The situation is worse for bin i, if C1 goes to the
other bins. One can view this situation as bin i rejecting capacity C1 in
a (n− 1)×m setting where bin 1 (which is now full) and its absorbed

54 mechanism design without money

p

-p

i

-i

Cip

Ci,−p

C−i,−p

(a) Case I. p is exhausted when it is assigned to i. i may get a
fraction or nothing from other items -p.

p

-p

i

-i

C−i,p

C′i,−p

C′−i,−p

(b) Case II. i hides its compatibility with p. At least a fraction of -p is
assigned to i. p is (fully) accepted by -i.

Figure 5: Two cases where the bin shows or hides its compatibility
with an item.

capacities are eliminated. According to our induction assumption,
this strategy will not make bin i better off in a (n − 1) × m setting.
This completes the proof.

Taking into account, Lemma 13 and Lemma 14, we obtain the fol-
lowing.

Lemma 15. Algorithm 9 is fractionally truthful.

Finally, by calling Theorem 5, we obtain the following.

Theorem 7. There exists a truthful 4-approximation mechanism for GAP-BS

when each item has the same value density over all bins.

4.2.3 Unequal Value Densities

We presented a truthful 4-approximate mechanism for GAP-BS when
each item has a unique value density over all bins. Now we explain
how to relax this assumption at the expense of a logarithmic loss in
the total value. Consider those edges in E, e = (k, l) and e′ = (k′, l′)
whose value densities are respectively upper and lower bounds over
all value densities:

L =
vk′ l′

wk′ l′
≤

vij

wij
≤ vkl

wkl
= U, ∀(i, j) ∈ E.

Let us assume U and L are publicly known. This assumption will be
removed later. Knowing this information we choose a density value d
uniformly at random from the set D = {U, U

2 , U
4 , . . . , U

2O(ln (U/L)) }. Then

4.2 generalized assignment problem 55

we define a new valuation v̂ as follows. For every edge (i, j) in E with
vij
wij

< d we set v̂ij = 0, or equivalently the edge is discarded from

the graph. For every vij
wij
≥ d, define v̂ij such that v̂ij

wij
= d. Notice

that always v̂ij ≤ vij. Now we have an instance of GAP-BS with equal
densities for which there exists a truthful 4-approximate mechanism
according to Theorem 7. To ensure truthfulness, in the end, if item
j is assigned to bin i by the subroutine for equal value densities, we
withdraw the item with probability 1− v̂ij

vij
. In other words, we let the

bin hold the item with probability v̂ij
vij

. If item j is assigned to bin i,
the generated value for the bin will be vij, but if we let the bin hold

the item with probability v̂ij
vij

, then the expected value will be v̂ij. This
way, we make sure that each item has the same value density over all
bins as it is required by the subroutine to guarantee truthfulness.

Set D contains O(ln (U/L)) densities, and each density has the
probability of p = 1

O(ln (U/L)) to be chosen. At least half of each val-
uation vij with probability p is counted in the expected total value;
therefore, we obtain an O(ln (U/L)) approximation factor.

To remove the assumption that U and L are public, we certify that
the bins k and k′ wouldn’t hide the corresponding edges. To this end,
we run one of the following three algorithms with probability 1/3. i)
Let bin k (the owner of edge e) choose all its desired items and assign
nothing to the other bins. ii) Let bin k′ (the owner of e′) choose all
its desired items and assign nothing to the other bins. iii) Exclude
bin k and k′ and run the algorithm above for all other bins using U
and L obtained from the two excluded bins. One can observe that the
two bins k and k′ cannot do any better by hiding their edges. Also, it
is easy to observe that the approximation factor is still O(ln (U/L)).
Thus, we obtain the following.

Theorem 8. There exists a truthful O(ln (U/L)) approximate mechanism
for GAP-BS.

We leave open the question of whether there exists a truthful mech-
anism with a constant factor of approximation for GAP-BS.

5

FA S T M E TA - R A N D O M I Z E D R O U N D I N G

Approximating the optimal social welfare while preserving truthful-
ness is a well studied problem in algorithmic mechanism design. As-
suming that the social welfare of a given mechanism design problem
can be optimized by an integer program whose integrality gap is at
most α, Lavi and Swamy (2011) propose a general approach to design-
ing a randomized α-approximation mechanism which is truthful in
expectation. Their method is based on decomposing an optimal solu-
tion for the relaxed linear program into a convex combination of inte-
ger solutions. Unfortunately, the decomposition technique developed
by Lavi and Swamy relies heavily on the ellipsoid method, which is
notorious for its poor practical performance. To overcome this prob-
lem, we present an alternative decomposition technique which yields
an α(1 + ϵ) approximation and only requires a quadratic number of
calls to an integrality gap verifier.

5.1 introduction

Optimizing the social welfare in the presence of self-interested play-
ers poses two main challenges to algorithmic mechanism design. On
the one hand, the social welfare consists of the player’s valuations for
possible outcomes of the mechanism. However, since these valuations
are private information, they can be misrepresented for personal ad-
vantage. To avoid strategic manipulation, which may harm the social
welfare, it is important to encourage truthful participation. In mech-
anism design, this is achieved through additional payments which
offer each player a monetary incentive to reveal his true valuation.
Assuming that the mechanism returns an optimal outcome with re-
spect to the reported valuations, the well known Vickrey, Clarke and
Groves (VCG) principle (Vickrey, 1961; Clarke, 1971; Groves, 1973)
provides a general method to design payments such that each player
maximizes his utility if he reports his valuation truthfully. On the
other hand, even if the player’s valuations are known, optimizing the
social welfare is NP-hard for many combinatorial mechanism design
problems. Since an exact optimization is intractable under these cir-
cumstances, the use of approximation algorithms becomes necessary.

57

58 fast meta-randomized rounding

Unfortunately, VCG payments are generally not compatible with ap-
proximation algorithms.

To preserve truthfulness, so called maximal-in-range (MIR) approx-
imation algorithms must be used (Nisan and Ronen, 2007). This
means there must exist a fixed subset of outcomes, such that the ap-
proximation algorithm performs optimally with respect to this sub-
set. Given that the players are risk-neutral, the concept of MIR algo-
rithms can be generalized to distributions over outcomes. Together
with VCG payments, these maximal-in-distributional-range (MIDR)
algorithms allow for the design of randomized approximation mech-
anisms such that each player maximizes his expected utility if he re-
veals his true valuation (Dobzinski and Dughmi, 2009). This property,
which is slightly weaker than truthfulness in its deterministic sense,
is also referred to as truthfulness in expectation.

A well-known method to convert general approximation algorithms
which verify an integrality gap of α into MIDR algorithms is the lin-
ear programing approach of Lavi and Swamy (2011). Conceptually,
their method is based on the observation that scaling down a pack-
ing polytope by its integrality gap yields a new polytope which is
completely contained in the convex hull of the integer points of the
original polytope. Considering that the social welfare of many com-
binatorial mechanism design problems can be expressed naturally as
an integer program, this scaled polytope corresponds to a set of distri-
butions over the outcomes of the mechanism. Thus, by decomposing
a scaled solution of the relaxed linear program into a convex combina-
tion of integer solutions, Lavi and Swamy obtain an α-approximation
mechanism which is MIDR.

Algorithmically, the work of Lavi and Swamy builds on a decom-
position technique by Carr and Vempala (2000), which uses a linear
program to decompose the scaled relaxed solution. However, since
this linear program might have an exponential number of variables,
one for every outcome of the mechanism, it can not be solved di-
rectly. Instead, Carr and Vempala use the ellipsoid method in com-
bination with an integrality gap verifier to identify a more practical,
but still sufficient, subset of outcomes for the decomposition. This
method is termed meta-randomized rounding. Although this approach
only requires a polynomial number of calls to the integrality gap ver-
ifier in theory, the ellipsoid method is notoriously inefficient in prac-
tice (Bland et al., 1981).

In this work, we propose an alternative decomposition technique
which does not rely on the ellipsoid method and is general enough to
substitute Carr and Vempala’s decomposition technique. The main
component of our decomposition technique is an algorithm which
is based on a simple geometric idea and computes a convex com-
bination within an arbitrarily small distance ϵ to the scaled relaxed
solution. However, since an exact decomposition is necessary to guar-

5.2 setting 59

antee truthfulness, we slightly increase the scaling factor of the re-
laxed solution and apply a post-processing step to match the convex
combination with the relaxed solution. Assuming that ϵ is positive
and fixed, our technique yields an α(1 + ϵ) approximation of the op-
timal social welfare but uses only a quadratic number of calls to the
integrality gap verifier, with respect to the number of positive compo-
nents in the relaxed solution vector.

It turns out that our method has interesting connections to an old
algorithm of Von Neumann reproduced by Dantzig (1992) 1. At first
sight, similarities in the sampling and geometric techniques used in
both algorithms can be observed. However, Von Neumann’s algo-
rithm may sample fractional points whereas our setting requires inte-
gral points. Due to these more involved constraints, a direct usage of
Von Neumann’s technique in our setting is impossible.

5.2 setting

Integer programming is a powerful tool in combinatorial optimiza-
tion. Using binary variables to indicate whether certain goods are
allocated to a player, the outcomes of various NP-hard mechanism de-
sign problems, such as combinatorial auctions or generalized assign-
ment problems (Lavi and Swamy, 2011; Dughmi and Ghosh, 2010),
can be modeled as integer points of an n-dimensional packing poly-
tope X ⊆ [0, 1]n.

Definition 11. (Packing Polytope) Polytope X satisfies the packing prop-
erty if all points y which are dominated by some point x from X are also
contained in X

∀x, y ∈ Rn
≥0 : x ∈ X and x ≥ y⇒ y ∈ X.

Together with a vector µ ∈ Rn
≥0 which denotes the accumulated

valuations of the players, it is possible to express the social welfare
as an integer program of the form maxx∈Z(X) ∑n

k=1 µkxk, where Z(X)

denotes the set of integer points in X. Using the simplex method, or
other standard linear programming techniques, an optimal solution
x∗ ∈ X of the relaxed linear program maxx∈X ∑n

k=1 µkxk can be com-
puted efficiently for most mechanism design problems. Note that for
combinatorial auctions, where the dimension of X grows exponen-
tially with the number of available goods, special attention is nec-
essary to preserve computational feasibility. One possible approach
is the use of demand queries which yields an optimal solution in
polynomial time and with a polynomial number of positive compo-
nents (Blumrosen and Nisan, 2005).

The maximum ratio between the original program and its relax-
ation is called the integrality gap of X. Assuming this gap is at most

1 We thank the anonymous referee of WINE 2014 who pointed us to this paper.

60 fast meta-randomized rounding

α ∈ R≥1, Lavi and Swamy (2011) observe that the scaled fractional
solution x∗

α can be decomposed into a convex combination of inte-
ger solutions. More formally, there exists a convex combination λ

from the set Λ = {λ ∈ R
Z(X)
≥0

| ∑x∈Z(X) λx = 1} such that the point
σ(λ), which is defined as σ(λ) = ∑x∈Z(X) λxx, is equal to x∗

α . Regard-
ing λ as a probability distribution over the feasible integer solutions,
the MIDR principle allows for the construction of a randomized α-
approximation mechanism which is truthful in expectation.

From an algorithmic point of view, the main challenge in decom-
posing x∗

α is the computation of suitable integer points. Since the size
of Z(X) is typically exponential in n, it is intractable to consider the
entire polytope. Instead, Carr and Vempala (2000) propose the use of
an approximation algorithm A : Rn

≥0 → Z(X) which verifies an inte-
grality gap of α to sample a more practical, but still sufficient, subset
of integer points.

Definition 12. (Integrality Gap Verifier) Approximation algorithm A
verifies an integrality gap of α if the integer solution which is computed by
A is at least α times the optimal relaxed solution for all non-negative vectors
µ

∀µ ∈ Rn
≥0 : α

n

∑
k=1

µkA(µ)k ≥ max
x∈X

n

∑
k=1

µkxk.

As it turns out, Carr and Vempala’s approach only requires a poly-
nomial number of calls to to A with respect to n. In particular, this
implies that the number of integer points in λ, which is defined as
ψ(λ) = |{x ∈ Z(X) | λx > 0}|, is polynomial as well. Observe
that for sparse x∗, which are common in the case of combinatorial
auctions, it is only necessary to consider the subspace of positive
components in x∗. This is possible since no point in Z(X) which has
a positive component k can contribute to λ if x∗k is 0. In either case,
the fact that Carr and Vempala strongly rely on the ellipsoid method
indicates that their results are more of theoretical importance than of
practical use.

5.3 decomposition with epsilon precision

The first part of our decomposition technique is to construct a convex
combination λ such that the point σ(λ) is within an arbitrarily small
distance ϵ ∈ R>0 to the scaled relaxed solution x∗

α . Similar to the
approach proposed by Carr and Vempala, our technique requires an
approximation algorithm A′ : Rn → Z(X) to sample integer points
from X. It is important to note that A′ must verify an integrality
gap of α for arbitrary vectors µ ∈ Rn whereas A, only accepts non-
negative vectors. However, since X satisfies the packing property, it is

5.3 decomposition with epsilon precision 61

easy to extend the domain of A while preserving an approximation
ratio of α.

Lemma 16. Approximation algorithm A can be extended to a new approx-
imation algorithm A′ which verifies an integrality gap of α for arbitrary
vectors µ.

Proof. The basic idea of A′ is to replace all negative components of µ

by 0 and run the original integrality gap verifier A on the resulting
non-negative vector, which is defined as ξ(µ)k = max({µk, 0}). Ex-
ploiting the fact that X is a packing polytope, the output of A is then
set to 0 for all negative components of µ. More formally, A′ is defined
as

A′(µ)k =

{
A(ξ(µ))k if µk ≥ 0

0 if µk < 0.

Since A′(µ)k is equal to 0 if µk is negative and otherwise corre-
sponds to A(ξ(µ))k, it holds that

n

∑
k=1

µkA′(µ)k =
n

∑
k=1

ξ(µ)kA′(µ)k =
n

∑
k=1

ξ(µ)kA(ξ(µ))k.

Furthermore, since X only contains non-negative points, maxx∈X ∑n
k=1 ξ(µ)kxk

must be greater or equal to maxx∈X ∑n
k=1 µkxk. Together with the fact

that A verifies an integrality gap of α for ξ(µ) this proves that A′
verifies the same integrality gap for µ

α
n

∑
k=1

µkA′(µ)k = α
n

∑
k=1

ξ(µ)kA(ξ(µ))k ≥ max
x∈X

n

∑
k=1

ξ(µ)kxk ≥ max
x∈X

n

∑
k=1

µkxk.

Once A′ is specified, Algorithm 10 is used to decompose x∗
α . Start-

ing at the origin, which can be expressed trivially as a convex com-
bination from Λ due to the packing property of X, the algorithm
gradually improves σ(λi) until it is sufficiently close to x∗

α . For each
iteration of the algorithm, µi denotes the vector which points from
σ(λi) to x∗

α . If the length of µi is less or equal to ϵ, then σ(λi) must be
within an ϵ-distance to x∗

α and the algorithm terminates. Otherwise,
A′ samples a new integer point xi+1 based on the direction of µi. It
is important to observe that all points on the line segment between
σ(λi) and xi+1 can be expressed as a convex combination of the form
δλi + (1− δ)τ(xi+1), where δ is a value between 0 and 1 and τ(xi+1)

denotes a convex combination such that the coefficient τ(xi+1)xi+1 is
equal to 1 while all other coefficients are 0. Thus, by choosing λi+1

as the convex combination which minimizes the distance between the
line segment and x∗

α , an improvement over the current convex combi-
nation is possible. As theorem 1 shows, at most ⌈nϵ−2⌉ − 1 iterations
are necessary to obtain the desired ϵ-precision.

62 fast meta-randomized rounding

Algorithm 10: Decomposition with Epsilon Precision
Data: an optimal relaxed solution x∗, an approximation

algorithm A′, a precision ϵ

Result: a convex combination λ which is within an ϵ-distance
to x∗

α

x0 ← 0, λ0 ← τ(x0), µ0 ← x∗
α − σ(λ0), i← 0

while ∥µi∥2 > ϵ do
xi+1 ← A′(µi)

δ← arg minδ∈[0,1] ∥
x∗
α − (δσ(λi) + (1− δ)xi+1)∥2

λi+1 ← δλi + (1− δ)τ(xi+1); µi+1 ← x∗
α − σ(λi+1); i← i + 1

return λi

Theorem 9. Algorithm 10 returns a convex combination within an ϵ-distance
to the scaled relaxed solution x∗

α after at most ⌈nϵ−2⌉ − 1 iterations.

Proof. Clearly, Algorithm 10 terminates if and only if the distance
between σ(λi) and x∗

α becomes less or equal to ϵ. Thus, suppose the
length of vector µi is still greater than ϵ. Consequently, approximation
algorithmA′ is deployed to sample a new integer point xi+1. Keeping
in mind that A′ verifies an integrality gap of α, the value of xi+1 must
be greater than or equal to the value of x∗

α with respect to vector µi

n

∑
k=1

µi
kxi+1

k =
n

∑
k=1

µi
kA′(µi)k ≥ max

x∈X

n

∑
k=1

µi
k

xk

α
≥

n

∑
k=1

µi
k

x∗

α
.

Conversely, since the squared distance between σ(λi) and x∗
α is greater

than ϵ2, and therefore also greater than 0, it holds that the value of
σ(µi) is less than the value of x∗

α with respect to vector µi

0 <
n

∑
k=1

(x∗k
α
− σ(λi)k

)2

⇐⇒ 0 <
n

∑
k=1

((x∗k
α

)2
− 2

x∗k
α

σ(λi)k + σ(λi)2
k

)
⇐⇒

n

∑
k=1

(x∗k
α

σ(λi)k − σ(λi)2
k

)
<

n

∑
k=1

((x∗k
α

)2
−

x∗k
α

σ(λi)k

)
⇐⇒

n

∑
k=1

µi
kσ(λi)k <

n

∑
k=1

µi
k

x∗k
α

.

As a result, the hyperplane {x ∈ Rn | ∑n
k=1 µi

kxk = ∑n
k=1 µi

k
x∗k
α } sep-

arates σ(λi) from xi+1, which in turn implies that the line segment
conv({σ(λi), xi+1}) intersects the hyperplane at a unique point zi+1.

Since the hyperplane is orthogonal to µi, the points x∗
α , σ(λi) and

zi+1 form a right triangle, as Figure 6 illustrates. Furthermore, the
altitude of this triangle minimizes the distance from the line segment
conv({σ(λi), xi+1}) to x∗

α and therefore corresponds to the length of
new vector µi+1. According to the basic relations between the sides
in a right triangle, the length of µi+1 can be expressed as

5.3 decomposition with epsilon precision 63

x∗
α

σ(λi)

σ(λi+1)

zi+1

xi+1

µi+1

µi

hyperplane

Figure 6: Right triangle between the points x∗
α , σ(λi) and zi+1

∥∥µi+1∥∥
2 =

√√√√ ∥∥µi
∥∥2

2

∥∥ x∗
α − zi+1

∥∥2
2∥∥µi

∥∥2
2 +

∥∥ x∗
α − zi+1

∥∥2
2

.

Unfortunately, the exact position of zi+1, depends on the implemen-
tation A′. To obtain an upper bound on the length µi+1 which does
not rely on zi+1, it is helpful to observe that the altitude of the tri-
angle grows as the distance between zi+1 and x∗

α increases. However,
since both points are contained in the standard hypercube [0, 1]n, the
square of this distance is at most n

∥∥ x∗

α
− zi+1∥∥2

2 =
n

∑
k=1

(x∗k
α
− zi+1

k

)2
≤

n

∑
k=1

1 = n,

which means that the maximum length of µi+1 is given by

∥∥ x∗

α
− zi+1∥∥2

2 ≤ n

⇐⇒
∥∥ x∗

α − zi+1
∥∥2

2∥∥µi
∥∥2

2 +
∥∥ x∗

α − zi+1
∥∥2

2

≤ n∥∥µi
∥∥2

2 + n

⇐⇒
∥∥µi

∥∥2
2

∥∥ x∗
α − zi+1

∥∥2
2∥∥µi

∥∥2
2 +

∥∥ x∗
α − zi+1

∥∥2
2

≤
∥∥µi

∥∥2
2n∥∥µi

∥∥2
2 + n

⇐⇒

√√√√ ∥∥µi
∥∥2

2

∥∥ x∗
α − zi+1

∥∥2
2∥∥µi

∥∥2
2 +

∥∥ x∗
α − zi+1

∥∥2
2

≤

√√√√ ∥∥µi
∥∥2

2n∥∥µi
∥∥2

2 + n
.

It is important to note that this upper bound on the length of µi+1,
only depends on the previous vector µi and the dimension n. Solving
the recurrence inequality yields yet another upper bound which is
based on the initial vector µ0 and the number of iterations i

64 fast meta-randomized rounding

∥∥µi∥∥2
2 ≤

∥∥µi−1
∥∥2

2n∥∥µi−1
∥∥2

2 + n

⇐⇒
∥∥µi

∥∥2
2

n
≤

∥∥µi−1
∥∥2

2∥∥µi−1
∥∥2

2 + n

⇐⇒ n∥∥µi
∥∥2

2

≥ n∥∥µi−1
∥∥2

2

+ 1 ...

=⇒ n∥∥µi
∥∥2

2

≥ n∥∥µ0
∥∥2

2

+ i

⇐⇒
∥∥µi

∥∥2
2

n
≤

∥∥µ0
∥∥2

2∥∥µ0
∥∥2

2i + n

⇐⇒
∥∥µi∥∥

2 ≤

√√√√ ∥∥µ0
∥∥2

2n∥∥µ0
∥∥2

2i + n
.

Considering that the squared length of vector µ0, which corresponds
to the distance between x∗

α and the origin, is at most n

∥∥µ0∥∥2
2 =

n

∑
k=1

(x∗k
α

)2
≤

n

∑
k=1

1 = n,

it follows that

∥∥µi∥∥
2 ≤

√√√√ ∥∥µ0
∥∥2

2n∥∥µ0
∥∥2

2i + n
≤

√
n2

ni + n
=

√
n

i + 1
.

Finally, this proves that the distance between σ(λi) and x∗
α must be

less or equal to ϵ after not more than ⌈nϵ−2⌉ − 1 iterations, at which
point the algorithm terminates

∥∥µ⌈nϵ−2⌉−1∥∥
2 ≤

√
n

1 + (⌈nϵ−2⌉ − 1)
≤ ϵ.

This completes the proof.

At this point, it should be mentioned that the upper bound on the
number of iterations given in Theorem 1 can be further refined with
a simple modification of A′. Due to the packing property of X it is
possible to set all components of A′(µi) which correspond to a com-
ponent of value 0 in x∗ to 0 as well. Given that µ0 is equal to x∗

α

and all other µi+1 are defined recursively as the difference between
x∗
α and a convex combination of x∗

α − µi and A′(µi), every vector µi+1

must share the 0 components of x∗. As a result, the new A′ preserves
the approximation ratio and Algorithm 10 still works as expected.

5.4 exact decomposition 65

Furthermore, only integer points from the subspace of positive com-
ponents in x∗ are considered, which means that the convergence of
Algorithm 10 depends on the number of positive components in x∗

rather than n.

5.4 exact decomposition

Although the convex combination λ which is returned by Algorithm
10 is within an ϵ-distance to x∗

α , an exact decomposition of the relaxed
solution is necessary to guarantee truthfulness. Assuming that an
additional scaling factor of

√
nϵ is admissible, the second part of our

decomposition technique shows how to convert λ into a new convex
combination λ′′ such that σ(λ′′) is equal to x∗

α(1+
√

nϵ)
. Note that this

additional scaling factor depends on ϵ, which means that it can still
be made arbitrarily small. In particular, running Algorithm 10 with
a precision of ϵ√

n , instead of ϵ, reduces the factor to ϵ and yields

a decomposition which is equal to x∗
α(1+ϵ)

. However, since this new
precision is not independent of n anymore, the maximum number of
iterations is increased to ⌈n(ϵ√

n)
−2⌉ − 1, which is quadratic in n. It

is helpful to observe that the techniques which are introduced in this
section can be adapted easily to the subspace of positive components
in x∗. Hence, all complexity results carry over directly from n to the
number of positive components in x∗.

To adjust σ(λ) component-wisely, it is helpful to consider the inte-
ger points ek ∈ {0, 1}n. For every dimension k, the kth component
of ek is defined to be 1 while all other components are 0. Since X
has a finite integrality gap and also satisfies the packing property, all
points ek must be contained in X.

Lemma 17. The polytope X contains all points ek.

Proof. For the sake of contradiction, assume there exists a dimension
k for which ek is not contained in X. Since X satisfies the packing
property, this implies that there exists no point in X whose kth com-
ponent is 1, in particular no integer point. As a result, the optimal
solution for the integer program with respect to the vector ek must be
0

max
x∈Z(X)

n

∑
l

ek
l xl = max

x∈Z(X)
xk = 0.

Keeping in mind that X has an integrality gap of at most α, it immedi-
ately follows that the optimal solution for the relaxed linear program
with respect to ek must also be 0

max
x∈X

n

∑
l

ek
l xl = max

x∈X
xk = 0.

66 fast meta-randomized rounding

However, this implies that the kth component of every point in X is
0, which contradicts the fact that X is n-dimensional.

Applying Theorem 10, our decomposition technique uses the points
ek to construct an intermediate convex combination λ′ such that σ(λ′)

dominates x∗
α(1+

√
nϵ)

.

Theorem 10. Convex combination λ can be converted into a new convex
combination λ′ which dominates x∗

α(1+
√

nϵ)
.

Proof. According to Lemma 17, the points ek are contained in Z(X).
Thus, they can be added to λ to construct a positive combination
λ + ∑n

k=1 |
x∗k
α − σ(λ)k|τ(ek) which dominates x∗

α

σ
(

λ +
n

∑
k=1

∣∣∣ x∗k
α
− σ(λ)k

∣∣∣τ(ek)
)

= σ(λ) +
(n

∑
k=1

∣∣∣ x∗k
α
− σ(λ)k

∣∣∣ek
)

≥ σ(λ) +
(n

∑
k=1

(x∗k
α
− σ(λ)k

)
ek
)

= σ(λ) +
x∗

α
− σ(λ)

=
x∗

α
.

Since the sum over the additional coefficients ∑n
k=1 |

x∗k
α − σ(λ)k| is

equivalent to the L1 distance between σ(λ) and x∗
α , it is bounded by

the Hölder inequality

n

∑
k=1

∣∣∣ x∗k
α
− σ(λ)k

∣∣∣ = ∥∥∥ x∗

α
− σ(λ)

∥∥∥
1
≤

∥∥∥1
∥∥∥

2

∥∥∥ x∗

α
− σ(λ)

∥∥∥
2
≤
√

nϵ.

As a result, scaling down the positive combination by a factor of 1 +√
nϵ yields a new positive combination which dominates x∗

α(1+
√

nϵ)

and whose coefficients sum up to a value less or equal to 1. To ensure
that this sum becomes exactly 1, the coefficients must be increased
by an additional value of

√
nϵ − ∑n

k=1 |
x∗k
α − σ(λ)k|. An easy way to

achieve this is by adding the origin, which is trivially contained in
Z(X) due to the packing property of X, to the positive combination.
Thus, the desired convex combination λ′ corresponds to

λ + ∑n
k=1

∣∣ x∗k
α − σ(λ)k

∣∣τ(ek) +
(√

nϵ−∑n
k=1

∣∣ x∗k
α − σ(λ)k

∣∣)τ(0)
1 +
√

nϵ
.

In the final step, our decomposition technique exploits the packing
property of X to convert λ′ into an exact decomposition of x∗

α(1+
√

nϵ)
.

5.4 exact decomposition 67

A simple but general approach to this problem is provided by Algo-
rithm 11. Given a point x ∈ X which is dominated by σ(λ′), the basic
idea of the algorithm is to iteratively weaken the integer points which
comprise λ′ until the desired convex combination λ′′ is reached. As
Theorem 11 shows, this computation requires at most |ψ(λ)|n + n2+n

2
iterations.

Algorithm 11: From a Dominating to an Exact Decomposition

Data: a convex combination λ′, a point x which is dominated
by σ(λ′)

Result: a convex combination λ′′ which is an exact
decomposition of x

λ0 ← λ′, i← 0
foreach 1 ≤ k ≤ n do

while σ(λi)k > xk do
y← pick some y from Z(X) such that λi

y >

0 and yk = 1
if λi

y ≥ σ(λi)k − xk then
λi+1 ←
λi − (σ(λi)k − xk)τ(y) + (σ(λi)k − xk)τ(y− ek)

else
λi+1 ← λi − λi

yτ(y) + λi
yτ(y− ek)

i← i + 1
return λi

Theorem 11. Assuming that σ(λ′) dominates the point x, Algorithm 11
converts λ′ into a new convex combination λ′′ such that σ(λ′′) is equal to x.
Furthermore, the required number of iterations is at most |ψ(λ′)|n + n2+n

2 .

Proof. In order to match σ(λ′) with x, Algorithm 11 considers each
dimension k separately. Clearly, while σ(λi)k is still greater than xk,
there must exist at least one point y in λi which has a value of 1 in
component k. If λi

y is greater or equal to the difference between σ(λi)k
and xk, it is reduced by the value of this difference. To compensate
for this operation, the coefficient of the point y− ek, which is trivially
contained in X due to its packing property, is increased by the same
value. Thus, the value of σ(λi+1)k is equal to xk

σ(λi+1)k = σ(λi)k − (σ(λi)k − xk)τ(y)k + (σ(λi)k − xk)τ(y− ek)k

= σ(λi)k − (σ(λi)k − xk)

= xk,

which means that the algorithm succeeded at computing a matching
convex combination for x at component k. It should be noted that the
other components of λi+1 are unaffected by this update.

68 fast meta-randomized rounding

Conversely, if λi
y is less than the remaining difference between

σ(λi)k and xk, the point y can be replaced completely by y − ek. In
this case the value of σ(λi+1)k remains greater than xk

σ(λi+1)k = σ(λi)k − λi
yτ(y)k + λi

yτ(y− ek)k = σ(λi)k − λi
y > xk

Furthermore, the number of points in λi+1 which have a value of 1 at
component k is reduced by one with respect to λi. Considering that
the number of points in λi is finite, this implies that the algorithm
must eventually compute a convex combination λ′′ which matches x
at component k.

To determine an upper bound on the number of iterations, it is
helpful to observe that the size of the convex combination can only
increase by 1 for every iteration of the for loop, namely if λi

y is greater
than the difference between σ(λi)k and xk. As a result, the number of
points which comprise a convex combination during the kth iteration
of the for loop is at most ψ(λ′) + k. Since this number also gives
an upper bound on the number of iterations performed by the while
loop, the total number of iterations is at most

n

∑
k=1

(|ψ(λ′)|+ k) = n|ψ(λ′)|+
n

∑
k=1

k = n|ψ(λ′)|+ n2 + n
2

.

5.4.1 Simpler Exact Decomposition

Our final goal of representing the fractional point as a convex de-
composition of integer points is to sample a random integer solution
according to the respective probability in the convex decomposition.
Exploiting this fact, we can replace Algorithm 11 with a simple idea.
Given the dominating point λ′, we treat the convex decomposition
of λ′ as a probability distribution, and sample an integer point from
it. Let x ∈ Z(X) be the resulting integer solution. Then, indepen-
dently, for each component xk = 1, we update xk to 0 with probability

pk =
x∗k

α(1+ϵ)

σ(λ′)k
. Note that for every k, σ(λ′)k ≥

x∗k
α(1+ϵ)

, thus probability pk

is correctly defined. Let x′ denote the new solution. From the packing
property of X, the new solution x′ belongs to Z(X) and is thus a feasi-

ble solution. For each k, we have Pr[x′k = 1] = σ(λ′)k ·
x∗k

α(1+ϵ)

σ(λ′)k
=

x∗k
α(1+ϵ)

.
In other words, x′ is an integer solution sampled from the probability
distribution that corresponds to the convex decomposition of x∗

α(1+ϵ)
,

the desired outcome.

6
M E C H A N I S M D E S I G N V I A D A N T Z I G - W O L F E
D E C O M P O S I T I O N

In random allocation rules, typically first an optimal fractional point
is calculated via solving a linear program. The calculated point rep-
resents a fractional assignment of objects or more generally packages
of objects to agents. In order to implement an expected assignment,
the mechanism designer must decompose the point into integer so-
lutions, each satisfying underlying constraints. The resulting convex
combination can then be viewed as a probability distribution over
feasible assignments out of which a random assignment can be sam-
pled. This approach has been successfully employed in combinatorial
optimization as well as mechanism design with or without money.

In this chapter, we show that both finding the optimal fractional
point as well as its decomposition into integer solutions can be done
at once. We propose an appropriate linear program which provides
the desired solution. We show that the linear program can be solved
via Dantzig-Wolfe decomposition. Dantzig-Wolfe decomposition is a
direct implementation of the revised simplex method which is well
known to be highly efficient in practice. We also show how to use the
Benders decomposition as an alternative method to solve the prob-
lem. The proposed method can also find a decomposition into inte-
ger solutions when the fractional point is readily present perhaps as
an outcome of other algorithms rather than linear programming. The
resulting convex decomposition in this case is tight in terms of the
number of integer points according to the Carathéodory’s theorem.

The result presented in this chapter has advantages over the result
in Chapter 5. First, the size of the convex decomposition (number
of integer solutions) is strictly smaller than the size of the convex
decomposition produced by the method in Chapter 5. Second, the
decomposition is exact and does not suffer from an ϵ > 0 compromise
in the solution. However, we provide no theoretical upper bound
on the number of iterations, and the proposed method relies on the
performance of Dantzig-Wolfe decomposition in practice.

69

70 mechanism design via dantzig-wolfe decomposition

6.1 introduction

The technique of finding a fractional solution and decomposing it into
polynomially-many integer points has been successfully employed in
many problems. For a usage of the technique in combinatorial opti-
mization, for instance, see Carr and Vempala (2000). In mechanism
design with bidders who have quasi-linear valuations, the framework
presented by Lavi and Swamy for designing truthful and approxi-
mate mechanisms strongly relies on this technique (Lavi and Swamy,
2011, 2005). Perhaps the best connection between linear program-
ming and algorithmic mechanism design has been established by this
framework. Finally, for applications in mechanism design without
money see e.g. Chapter 4, Budish et al. (2013) and Nguyen et al.
(2015).

Typically in such applications, first a fractional optimal point is cal-
culated, and in a second step, the point is represented as a convex
combination of integer points usually using the ellipsoid method. A
subroutine or an approximation algorithm which returns an integer
point with respect to a cost vector is employed to construct the sep-
aration oracle for the ellipsoid method. A separation oracle, in the
ellipsoid method, states if a given point is feasible, or in case it is not
feasible, the oracle returns a violated constraint. A natural question is
to ask if the two steps, optimization as well as convex decomposition,
can be done at once without using the ellipsoid method?

6.1.1 Results and Techniques

We propose an appropriate linear program for finding an optimal
fractional point and its decomposition into integer points. We show
how to use the Dantzig-Wolfe decomposition which is based on the
revised simplex to solve the linear program. More specifically, we
show that finding a convex combination of integer points whose value
is maximum is indeed equivalent to solving a linear program using
the Dantzig-Wolfe decomposition. The proposed method will im-
prove the connection between linear programming and algorithmic
mechanism design.

Dantzig-Wolfe (DW) decomposition comprises a master problem
and a subproblem. DW decomposition proceeds by solving the two
problems in each iteration until the subproblem is not able to find any
point which can contribute to the objective value of the master prob-
lem (Bazaraa et al., 2011). Since we are interested in integer points,
we run a subroutine or an approximation algorithm which returns
integer solutions as the subproblem. DW decomposition has been
previously used for optimizing over a discrete set using branch and
cut to obtain integer solutions (Desrosiers and Lübbecke, 2005). How-
ever, here we assume the existence of a subroutine which returns an

6.1 introduction 71

approximate integer solution of good quality and prove that the al-
gorithm ends in optimality. To the best of our knowledge, this usage
of DW decomposition in mechanism design has not been introduced
before.

Dantzig-Wolfe decomposition is a variant of the revised simplex
algorithm. A computational evaluation of the Dantzig-Wolfe decom-
position has been done in Tebboth (2001). The study shows DW de-
composition has a high performance, especially when a reasonable
block structure can be found.

The resulting convex combination is tight in terms of the number
of integer solutions in the convex decomposition according to the
Carathéodory’s theorem provided that the number of constraints is
less than the dimension of the polytope.

Theorem 12 (Carathéodory). Given a polytope in Rn, any point in the
polytope is a convex combination of at most n + 1 vertices of the polytope.

By standard polyhedra theory, the number of non-zero variables
in an extreme point is upper bounded by the number of constraints
in the underlying linear program (see e.g. Chvátal (1983)). The pro-
posed algorithm produces a convex combination of at most m + 1
integer points, where m is the number of constraints, and thus the
solution is tight in this sense. It is very common that the number of
constraints is less than the number of variables. For example, in the
relaxations of combinatorial auctions, this is usually the case because
the bidders may obtain any package of items (for which one deci-
sion variable is needed) and there are exponentially many packages
of items. Thus, given that m < n, the number of integer solutions
will be at most n + 1 which is tight according to the Carathéodory’s
theorem.

Sometimes, a fractional point - not necessarily an optimal - is calcu-
lated via other methods rather than linear programming. For exam-
ple, a greedy algorithm may be used to find the fractional point since
truthfulness can be guaranteed via the greedy algorithm but not with
directly solving the linear program. See for example Chapter 4, and
Dughmi and Ghosh (2010). Our method can find a decomposition
into integer solutions for such readily present points.

Aside from the solution presented in Chapter 5, Elbassioni et al.
(2015) present an alternative method for finding a convex decomposi-
tion of a given fractional point. Their method relies on the multiplica-
tive weights update method which is a general technique for solving
packing and covering problems (Arora et al., 2012; Khandekar, 2004).
While the algorithm presented in Elbassioni et al. (2015) has a theoret-
ical upper bound on the number of iterations, the algorithm is infe-
rior to the presented method here in two aspects. First, their convex
decomposition might have a size (the number of integer solutions)
of s(⌈ϵ−2 ln s⌉ + 1), s being the number of non-zero components of
the fractional point, and ϵ > 0. Our solution will have a size of at

72 mechanism design via dantzig-wolfe decomposition

most s + 1. Second, their convex decomposition can be as precise as
1

1+4ϵ times the fractional solution at the expense of increasing runtime,
while our convex decomposition is exact.

We also show how to apply the Benders decomposition to the prob-
lem. Benders decomposition is known to be the dual of the Dantzig-
Wolfe decomposition technique (Bazaraa et al., 2011). We observe that
sometimes working with the Benders decomposition has advantages
over the DW decomposition.

6.1.2 Structure

In Section 6.2, we formally introduce the setting of the problem. In
Section 6.3, we provide a short summary of DW decomposition tech-
nique. In Section 6.4, we establish our main result and show how
the DW principle can be applied to our setting. Section 6.5 is de-
voted to the Benders decomposition applied to our setting. Section
6.6 discusses two applications of the adapted DW principle. Finally,
in Section 6.7, we provide a numerical example for the adapted DW
technique.

6.2 setting

Consider a finite set of integer points in Zn
+. Let Q denote the convex

hull of all these points. That is Q defines a polytope with integral ex-
treme points. Let P =

{
x ∈ Rn | Ax ≤ b & x ≥ 0

}
denote a polytope,

where A is an m by n matrix, and b an m-dimensional column vec-
tor. A subroutine A for any cost function c ∈ Rn returns an integer
point X ∈ Q such that cX ≥ cx∗, where x∗ = arg max

{
cx | x ∈ P

}
.

Equivalently, we say subroutine A will return for any cost vector c an
integer point X ∈ Q such that cX ≥ cx for any x in P. Let I denote
the index set for integer points in Q. The set of integer points in Q is
therefore

{
Xj
}

j∈I .
Usually, subroutine A only accepts non-negative cost vectors. Ex-

amples are approximation algorithms for NP-hard optimization prob-
lems. For instance, the approximation algorithm provided for the
knapsack problem works with non-negative profits of items. How-
ever, in our setting, we expect A to work with any arbitrary cost
vector. In such cases, an assumption that Q is a packing polytope is
required: if x ∈ Q and y ≤ x then y ∈ Q. See Lemma 16 in Chapter 5

for more information.
In this chapter, we address the following problem. Given a cost

vector c ≥ 0, find values
{

λ∗j ≥ 0
}

j∈I such that i) ∑j∈I λ∗j = 1, and ii)
|{λ∗j | j ∈ I , λ∗j > 0}| is polynomial in m and n, and iii) ∑j∈I λ∗j Xj =

x∗, where x∗ = arg max
{

cx | x ∈ P
}

.

6.3 summary of dantzig-wolfe decomposition 73

Using the ellipsoid method, it can be shown that every point in P
can be written as a convex combination of the extreme points in Q
(Carr and Vempala, 2000; Lavi and Swamy, 2011). In this work, aside
from answering the question above, we give an alternative proof for
this fact.

6.3 summary of dantzig-wolfe decomposition

Dantzig-Wolfe decomposition belongs to column generation techniques.
We shall here briefly go over the Dantzig-Wolfe Decomposition. For
a detailed explanation of the method we refer the reader to Bazaraa
et al. (2011). Consider the following linear program.

Minimize cx

subject to Ax = b

x ∈ X

Where X is a bounded polyhedral of special structure, A is a m× n
matrix, c is a n-dimensional vector and b is a m-dimensional vector.

Since X is a bounded polyhedra, then any point x ∈ X can be repre-
sented as a convex combination of a finite number of extreme points
of X. Let us denote these points by x1, x2, . . . , xl , and substitute x
with its convex combination of extreme points, then the aforemen-
tioned LP can be transformed into the following program in which
the variables are λ1, λ2, . . . , λl .

Minimize
l

∑
j=1

(cxj)λj (9)

subject to
l

∑
j=1

(Axj)λj = b (10)

l

∑
j=1

λj = 1, (11)

λj ≥ 0 j = 1, 2, . . . , l (12)

The linear program (9)− (12) is called the master problem and the
program which finds an appropriate x ∈ X in each iteration is called
the subproblem. Since the number of extreme points of set X is ex-
ponentially many, we follow the idea of column generation to find ap-
propriate extreme point in each iteration. The information is passed
back and forth between the master problem and the subproblem as
follows. In each iteration a different cost coefficient is passed down
by the master problem to the subproblem and the subproblem finds
an extreme point xk, and sends it to the master problem.

Dantzig-Wolfe decomposition is an implementation of the revised
simplex method. Let vector w and α denote the dual variables corre-
sponding to equations (10) and (11), respectively. We first need an

74 mechanism design via dantzig-wolfe decomposition

BASIS RHS

(w, α) ĉBb̄

B−1 b̄

Table 1: Simplex tableau. RHS stands for right-hand side.
initial solution to generate the simplex tableau. Suppose we have a
basic feasible solution λ = (λB, λN) to system (10)− (12), where λB

and λN denote the basic and non-basic variables, respectively. The
initial (m + 1)× (m + 1) basis inverse B−1 hence will be known. The
cost for each basic variable λj is in fact ĉj = cxj. Therefore, we get
(w, α) = ĉBB−1, where ĉB is the cost vector of the basic variables.

Denoting b̄ = B−1
(

b
1

)
, we see the revised simplex tableau in Table

1.
The revised simplex proceeds by improving the current solution

via finding an entering and a leaving variable. In other words, the set
of basic and nonbasic variables exchange one element. When such
an exchange is not possible then the current solution is optimal. The
entering variable is in fact a variable λk associated with extreme point

xk for which zk − ĉk > 0, where zk = (w, α)

(
Axk

1

)
and ĉk = cxk.

We observe that zk − ĉk = (wA − c)xk + α denotes the value of
point xk with respect to current costs wA− c and dual variable α. In
order to find such a point, we solve the following subproblem which
gives us the required index or tells that the current solution is optimal
when the maximum value is zero.

Maximize (wA− c)x + α

subject to x ∈ X

Notice that the objective function contains a constant and therefore
it can be replaced by (wA − c)x. Assuming that xk is the optimal
solution to the program above, the revised simplex method goes on
as follows. If zk− ĉk = 0 then the algorithm stops and the last solution
to the master problem is an optimal of the overall problem.

If zk − ĉk > 0 the master problem proceeds as follows. Let yk =

B−1
(

Axk
1

)
, the entering column then will be

(
zk − ĉk

yk

)
. In order to

find the leaving column, let index r be determined as follows:

b̄r

yrk
= Minimum

1≤i≤m+1

{
b̄i

yik
: yik > 0

}
.

We pivot at yrk which will update the dual variables, the basis inverse,
and the right-hand side. More specifically, pivoting on yrk can be
stated as follows.

6.4 applying dantzig-wolfe decomposition 75

1. Divide row r by yrk.

2. For i = 1, . . . m and i ̸= r, update the ith row by adding to it
−yik times the new rth row.

3. Update row zero by adding to it zk − ĉk times the new rth row.

After pivoting, the column λk is deleted and the algorithm repeats.
An important observation about the DW principle is as follows.

The DW principle expects the Subproblem to return any point x ∈ X
where (wA− c)x + α > 0 and it does not impose any other specific
requirement on the selected point. We shall use this observation in
our adaptation of the method.

Another observation is that, in each iteration, the master program
finds the best solution using known extreme points. This is done in
an organized manner as described above.

6.4 applying dantzig-wolfe decomposition

A wide range of combinatorial optimization problems can be formu-
lated using the integer program max

{
cx | x ∈ P and integer

}
. Recall,

P =
{

x ∈ Rn | Ax ≤ b & x ≥ 0
}

. For example, in combinatorial
auctions, c denotes the accumulated valuations of the players. The in-
teger program therefore expresses the welfare maximization objective
subject to feasibility constraints encoded as P.

Usually, using simplex method or other standard linear program-
ming techniques, first a relaxed linear program of the integer pro-
gram above is solved:

Maximize cx (13)

subject to Ax ≤ b (14)

x ≥ 0 (15)

Notice, constraints (14) and (15) together are equivalent to x ∈ P.
Next, the solution is rounded to an integer solution at the expense of
a value loss or slightly violating the constraints. Given subroutine A,
we wish to find a solution to the linear program above as well as a
convex decomposition of it into integer points. We wish to achieve
both goals at once. Recall, subroutine A returns for any cost vector c
an integer point X ∈ Q such that cX ≥ cx for any x in P.

Generally speaking, Dantzig-Wolfe principle uses the fact that if we
relax some constraints and obtain a simpler polyhedra then the solu-
tion to the original problem can be written as a convex combination of
extreme points of the simpler polyhedra. The simplicity refers to the
fact that the extreme points of the new polyhedra can be found more
easily than those of the original problem. While Dantzig-Wolfe princi-
ple is useful when the underlying constraints are decomposable into

76 mechanism design via dantzig-wolfe decomposition

simpler regions, we use it in a slightly different manner by looking at
Q as the polyhedra over which we can efficiently optimize. Recall, Q
denotes the convex hull of a finite set of integer points. To apply the
idea of Dantzig-Wolfe decomposition to the problem (13)− (15), we
add a new constraint to the program.

x ∈ Q (16)

We will show that an optimal solution to problem (13) − (16) is
also an optimal solution to (13) − (15), and thus adding the new
constraint is harmless. We represent x ∈ Q as a convex combination
of extreme points of Q. Recall, I denote the index set for integer
points in Q, and

{
Xj
}

j∈I is the set of integer points in Q. Substitute
x with its convex combination of extreme points of Q, then program
(13)− (16) can be transformed into the following program where the
variables are

{
λj
}

j∈I .

Maximize ∑
j∈I

(cXj)λj (17)

subject to ∑
j∈I

(AXj)λj + s = b (18)

∑
j∈I

λj = 1 (19)

λj ≥ 0 ∀j ∈ I (20)

s ≥ 0. (21)

The linear program (17) − (21) is the master problem. Notice, we
have added slack variables s ∈ Rm

+ to convert the inequalities into
equality as needed by the DW principle (see Section 6.3). The DW
subproblem is defined below.

max
j∈I

(c + wA)Xj (22)

While our problem is a maximization problem, the procedure in
Section 6.3 is presented for a minimization problem, thus we substi-
tute the −c with c in the objective function of the subproblem. That
means, we change the objective function of the master problem from
max ∑j∈I (cXj)λj to min ∑j∈I (−cXj)λj, and apply the theory provided
in Section 6.3.

We assume 0 ∈ Q thus the initial basic solution is simply defined
by letting λ0, the variable corresponding to point X = 0, equal 1
(λ0 = 1), and letting s = b. Assuming that program (22) can be
efficiently solved for any cost vector, then we are exactly following
the DW principle, and therefore, we can successfully solve the overall
problem as DW principle does this. However, program (22) is an
integer program and solving it may not be computationally tractable.

6.4 applying dantzig-wolfe decomposition 77

To address this issue, we propose using subroutine A to approxi-
mate program (22). Let (w̄, ᾱ) be the last dual variables calculated
by the master program. In each iteration, we call subroutine A with
current cost vector c + w̄A to find a point Xk ∈ Q to pass to the mas-
ter problem. This substitution seemingly comes at the expense of
stopping at a local optimum, as explained in the following.

As long as the algorithm continues by using the points returned
by subroutine A, we are exactly running DW principle. Recall the
important observation that in DW principle, the subproblem need not
be completely optimized and any point Xk with (c + w̄A)Xk + ᾱ > 0
suffices to proceed. However, there might be an iteration in which
there exists a point X′ ∈ Q for which we have (c + w̄A)X′ + ᾱ >

0, but for the integer point Xk returned by subroutine A, we have
(c + w̄A)Xk + ᾱ ≤ 0. Therefore, DW stops at a suboptimal point.
Nevertheless, below, we argue that this cannot happen. That means
as long as DW has not reached the optimum to problem (13)− (15),
subroutine A, given the current cost vector (c + w̄A), returns a point
Xk with (c + w̄A)Xk + ᾱ > 0.

Let x∗ denote the optimal solution to program (13) − (15). It is
instructive to see what the master step would do if the subproblem
passes the point x∗, rather than an integer point, to the master prob-
lem. While we do not know such an optimal point, but we know that
such a point exists and this suffices for our reasoning. We argue that
the master step will set λx∗ = 1 and λj = 0 for all other λj’s which
are currently in the base. In other words, the master program returns
the best possible convex combination which is in fact λx∗ = 1. This is
discussed in the following observation.

Observation 3. Let x∗ denote the optimal solution to program (13)− (15).
If supposedly the subproblem in any iteration passes x∗ to the master prob-
lem, then the master step will set λx∗ = 1 and λj = 0 for all other λj’s
which are currently in the base.

Proof. First, we observe that if the first subproblem (right after the
initialization) passes x∗ to the master problem, then the master step
will set λx∗ = 1 and λ0 = 0. Clearly, in the solution s needs to be eval-
uated accordingly. Second, by looking more closely at what simplex
does in each iteration, we observe that in any further iteration, if the
subproblem passes x∗ to the master problem, the master step will set
λx∗ = 1 and λj = 0 for all other λj’s.

The simplex method, in each iteration, performs a set of row oper-
ations on the constraints when it pivots (see pivoting steps in Section
6.3). The constraints, in any iteration, are thus the initial constraints
after a series of row operations. This will certify that the aforemen-
tioned solution (λx∗ = 1) will be feasible in any further iteration. If
the subproblem passes x∗ to the master problem, our entering vari-
able will be λx∗ . The simplex algorithm then increases the entering

78 mechanism design via dantzig-wolfe decomposition

variable λx∗ as much as one basic variable gets zero. However, as dis-
cussed, the solution λx∗ = 1 is feasible, and it is possible to increase
λx∗ up to 1 and set all other λj’s to zero. The algorithm will behave
as such to produce the highest increase in the objective value, the
desired conclusion.

Theorem 13. If the subproblem (22) calls subroutineA to return an integer
point in each iteration, the DW principle never stops until it gets to an
optimal solution to problem (13)− (15).

Proof. Let x∗ denote the optimal solution to program (13)− (15). As-
sume the algorithm stops at a suboptimal point: ∑j∈I (cXj)λj < cx∗.
Let (w̄, ᾱ) be the last dual variables calculated by the master pro-
gram. Let Xk be the point returned by subroutine A, given cost vector
(c + w̄A), in the last iteration. We must have (c + w̄A)Xk + ᾱ ≤ 0
because DW has stopped.

If supposedly the subproblem in the last iteration passes x∗ to the
master problem, according to Observation 3, the master step will in-
crease λx∗ up to 1 and set all other λj’s to zero. Since we assumed
the algorithm has stopped at a suboptimal point, by setting λx∗ = 1
the objective value will increase. If entering λx∗ improves the objec-
tive value, we must have (c + w̄A)x∗ + ᾱ > 0 from the theory of DW
principle provided in Section 6.3: if (c+ w̄A)x∗+ ᾱ ≤ 0 then entering
variable λx∗ cannot improve the objective value.

By the property of the subroutine, we have (c + w̄A)Xk ≥ (c +

w̄A)x∗. Thus, in the last iteration, we must have (c + w̄A)Xk + ᾱ > 0.
This contradicts our assumption that (c + w̄A)Xk + ᾱ ≤ 0. Conse-
quently, as long as we have not reached the optimum, the subroutine
returns a point Xk with (c + w̄A)Xk + ᾱ > 0. This completes the
proof.

We draw the conclusion that substituting program (22) with sub-
routine A is harmless. Therefore, we have shown that finding a con-
vex decomposition of maximum value is indeed equivalent to solving
a linear program via DW principle. Let us call the method integer DW.

6.5 benders decomposition

It is known that the Dantzig-Wolfe Decomposition has an equivalent
decomposition technique namely Benders decomposition (Bazaraa et al.,
2011). Benders decomposition is a row generation technique in contrast
with the Dantzig-Wolfe column generation procedure. Sometimes,
working with Benders decomposition has advantages over Dantzig-
Wolfe decomposition. We explain how to apply the Benders algo-
rithm to our problem. Later, we discuss the advantages of the method.

Recall, polytope Q is a bounded polyhedra. Hence, there exist ma-
trix D ∈ Rm′×n and d ∈ Rm′ such that Q =

{
x ∈ Rn | Dx ≤ d & x ≥

6.5 benders decomposition 79

0
}

. We add constraint x ∈ Q to program (13)− (15) and work with
the new program. We will see that adding this constraint has no
influence on the region of feasible solutions to program (13)− (15).
Following the procedure described in Bazaraa et al. (2011), we can
write the Benders decomposition for this new program. The Benders
master problem will be as follows.

Maximize z (23)

subject to z ≤ wb− (c + wA)Xj ∀j ∈ I (24)

w ≤ 0 (25)

z unrestricted. (26)

The variables of the master problem are z and w. Variable vector w
is the vector of dual variables associated to the constraints (14). The
Benders master problem has exponentially many constraints, thus it
is inconvenient to solve directly. Hence, we maintain only a few of the
constraints (24). Assuming 0 ∈ Q, we start with only one constraint:
z ≤ wb− (c + wA)0 = wb. Notice, we can use any Xj ∈ Q to start
with. We solve the master problem and let (z̄, w̄) be the solution.
The value of z̄ is an upper bound on the optimal value to the master
problem. If (z̄, w̄) satisfies constraints (24) for all j ∈ I , then (z̄, w̄)

is optimal for the master problem. We can check constraints (24) by
examining if z̄ ≤ w̄b−maxj∈I (c + w̄A)Xj.

Thus, the Benders subproblem will be as the following.

max
j∈I

(c + w̄A)Xj (27)

Note that the Benders subproblem is also the subproblem solved by
the Dantzig-Wolfe decomposition. Furthermore, the Benders master
problem is the dual to the Dantzig-Wolfe master problem (17)− (21).
The Benders subproblem is solved by calling subroutine A with cost
vector c + w̄A. If the subproblem returns Xk that violates the con-
straints (24): z̄ > w̄b − (c + w̄A)Xk, we can generate the new con-
straint z ≤ wb − (c + wA)Xk, and add it to the current master pro-
gram, and reoptimize. We repeat this process until the solution re-
turned by subroutine A does not violate the constraints. We claim
that at this iteration, the value of z̄ is the optimal value to the master
problem.

The Benders decomposition provides a more concise proof that the
decomposition techniques in companion with the subroutine A work
correctly.

Theorem 14. If the subproblem (27) calls subroutineA to return an integer
point in each iteration, the Benders algorithm never stops until it reaches an
optimal solution to problem (13)− (15).

Proof. Let x∗ denote an optimal solution to problem (13)− (15). Let
z∗ denote an optimal value of the Benders master problem. We have

80 mechanism design via dantzig-wolfe decomposition

z∗ = (−c)x∗ by the construction of the Benders master problem,
and the duality theorem. Let z̄ be the final solution to the master
problem and Xk the solution returned by subroutine A when the
Benders algorithm stops. Since the algorithm stops, we must have
z̄ ≤ w̄b− (c + w̄A)Xk. We always have z∗ ≤ z̄ because z̄ is an upper
bound on the optimal solution to the master problem. Assume z̄ is
not optimal: z̄ > z∗. Remember, by the definition of subroutine A,
we have (c + w̄A)Xk ≥ (c + w̄A)x∗. Therefore,

Ax∗ ≤ b since x∗ is a solution to
problem (13)− (15)

⇒ w̄Ax∗ ≥ w̄b since w̄ ≤ 0
⇒ −cx∗ ≥ w̄b− cx∗ − w̄Ax∗

⇒ −cx∗ ≥ w̄b− (c + w̄A)Xk since (c + w̄A)Xk ≥ (c + w̄A)x∗

⇒ z̄ > w̄b− (c + w̄A)Xk since z̄ > z∗ = −cx∗

But, this contradicts z̄ ≤ w̄b− (c+ w̄A)Xk. The contradiction arises
from the assumption that z̄ is not optimal. Thus, when the algorithm
stops, we have the optimal solution, the desired conclusion.

After solving the Benders master problem, we can use the provided
integer solutions and solve the restricted primal to obtain a convex
decomposition.

Another advantage of the Benders decomposition arises from the
fact that in each iteration, we optimize an LP in the master step. Solv-
ing an LP is sometimes more convenient than the implementation of
the pivoting steps done in each iteration in the master step of the DW
principle.

It is instructive to note that Theorem 14 implies that if the integer
solution returned by subroutine A does not violate constraints (24),
then the current master solution is optimal. Exploiting this fact, we
can use the ellipsoid method to solve problem (23)− (26) to certify
a polynomial runtime which might be of theoretical interest. To use
the ellipsoid method, we need to implement a separation oracle. Recall
that a separation oracle, given a solution, either confirms that it is
a feasible solution, or returns the constraint violated by the solution.
Using subroutine A as the separation oracle, as long as we find a
violated constraint, we cut the current ellipsoid and continue. When
the subroutine A cannot return a violating constraint, according to
Theorem 14, the algorithm has reached the optimum.

6.6 application of the method in mechanism design

6.6.1 The Framework Proposed by Lavi and Swamy

Let X =
{

x ∈ Rn | Ax ≤ b & x ≥ 0
}

denote the underlying polytope
of a linear program, and x∗ denote an optimal solution to the program

6.6 application of the method in mechanism design 81

with respect to some cost vector. The maximum ratio between the
value of an integer program and its relaxation, with respect to all
cost vectors, is called the integrality gap of the relaxation. Assuming
that, the integrality gap of X is β ≥ 1, and that a β integrality-gap-
verifier is given, Lavi and Swamy propose a method to decompose
the scaled-down fractional solution x∗

β into a convex combination of
integer solutions (Lavi and Swamy, 2011). A β integrality-gap-verifier
is an algorithm that, given any cost vector, returns an integer solution
whose value is at least 1/β times the optimal relaxed solution.

This decomposition technique was originally observed by Carr and
Vempala (2000), and later adapted by Lavi and Swamy to mechanism
design problems provided that the underlying polytope of the relax-
ation of the problem has the packing property. The approach requires
only a polynomial number of calls to the integrality-gap-verifier with
respect to the number of positive components in x∗. Yet, the approach
strongly relies on the ellipsoid method, and hence it is more of theo-
retical importance than of practical use. We refer the reader to Chap-
ter 5 for more details about the framework developed by Lavi and
Swamy (LS framework).

In order to view the LS framework in our setting, the integrality-
gap-verifier is used as subroutine A and X/β =

{
x | βx ∈ X

}
is

treated as P in our setting introduced in Section 6.2. This way, the
integer DW finds the maximum value in X/β as well as its decom-
position into integer points, both in one step. This improves upon
other implementations of the LS framework which require two steps
to find the convex decomposition (Lavi and Swamy, 2011; Kraft et al.,
2014; Elbassioni et al., 2015).

It is instructive to note that solving program (17) − (21), essen-
tially defines a Maximal-In-Distributional-Range (MIDR) allocation
rule. An MIDR algorithm fixes a set of distributions over feasible
solutions (the distributional range) independently of the valuations
reported by the self-interested players, and outputs a random sam-
ple from the distribution that maximizes expected (reported) welfare
(Dobzinski and Dughmi, 2009). Here, we optimize over a range which
is independent of bidder’s private information. The range is in fact
the feasible region of the program: all probability distributions over
integer solutions which satisfy constraints (18)− (21). The range is
obviously independent of bidders’ valuations.

6.6.2 Existing Fractional Point

Sometimes a fractional point x∗ ∈ Q is present, and we wish to find
a convex decomposition of x∗ into extreme points of Q. This can
happen when we use other methods to find a fractional point rather
than linear programming. Here, we assume that Q satisfy the packing
property.

82 mechanism design via dantzig-wolfe decomposition

For this case, we can use the integer DW as follows. Define P ={
x ∈ Rn | x ≤ x∗ & x ≥ 0

}
and let c = x∗. Now, apply the integer

DW. All arguments follow accordingly, assuming that a subroutine
A with the following property is available. Subroutine A will return
for any cost vector c an integer point X ∈ Q such that cX ≥ cx∗.
Because the number of constraints in P is at most n, the resulting
convex decomposition in this case is tight in terms of the number of
integer points, according to the Carathéodory’s theorem.

6.7 numerical example for integer dw

In this section, we focus on applying the integer DW to an instance
of multi-unit auctions. In multi-unit auctions, there is a set of m
identical items and a set of players. Each player i has a valuation
for any number of items denoted by vi(j) for getting j items where
1 ≤ j ≤ m. The goal is to maximize social welfare by distributing
items among bidders.

The LP relaxation for this class of problems is as follows. Let xij
denote if j units is assigned to bidder i.

Maximize ∑
i,j

vi(j)xij (MU-P)

subject to ∑
j

xij ≤ 1 for each player i (28)

∑
i,j

j · xij ≤ m (29)

0 ≤ xij ≤ 1 for each i, j (30)

Lavi and Swamy present a greedy algorithm which returns for any
valuation v an integer solution that is at least as good as half of the op-
timal fractional solution to MU-P with respect to v (Lavi and Swamy,
2011). Thus, we have a 2 integrality-gap-verifier algorithm for MU-P.
This greedy algorithm will serve as the subroutine in the integer DW,
and is called A.

We give a short example to demonstrate the proposed convex de-
composition method. Suppose a simple multi-unit auction with 3 play-
ers and 4 identical items. The following valuation vectors vi(j) are
given for each player i and quantity j:

j 1 2 3 4
v1(j) = (6 6 6 6)
v2(j) = (1 4 4 6)
v3(j) = (0 1 1 1)

We can reproduce program (17)− (21) for this instance as follows.
Let I denote the index set of integer points which satisfy inequalities

6.7 numerical example for integer dw 83

(28)− (30).

Let c =
[
6 6 6 6 1 4 4 6 0 1 1 1

]
, b =


0.5

0.5

0.5

2

, and A =


1 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1

1 2 3 4 1 2 3 4 1 2 3 4

. Notice the integrality gap

has been reflected in defining b.

Initialization Step
Let the starting basis consist of s and λ0 where X0 = 0⃗ is the starting

integer point. Therefore, the first simplex tableau is as the following.
BASIS INVERSE RHS

z 0 0 0 0 0 0
s1 1 0 0 0 0 .5
s2 0 1 0 0 0 .5
s3 0 0 1 0 0 .5
s4 0 0 0 1 0 2
λ0 0 0 0 0 1 1

Iteration 1
SUBPROBLEM. From the simplex tableau, we have w =

[
0 0 0 0

]
and α = 0. As a result, wA + c = c. The subproblem therefore is
maxj∈I cXj. Subroutine A returns X such that X11 = X22 = 1 and all
other entries of X are zero. The objective of the point with respect to
current cost is z− ĉ = 10 > 0. Let us call this point X1.

MASTER PROBLEM.

AX1 =


1

1

0

3

. Then y1 = B−1

[
AX1

1

]
=



1

1

0

3

1


.

Now, we insert the column into the foregoing tableau and pivot.
Variable s1 leaves the basis and λ1 enters the basis.

BASIS INVERSE RHS λ1

z 0 0 0 0 0 0 10
s1 1 0 0 0 0 .5 1
s2 0 1 0 0 0 .5 1
s3 0 0 1 0 0 .5 0
s4 0 0 0 1 0 2 3
λ0 0 0 0 0 1 1 1

After pivoting we obtain the following tableau.

84 mechanism design via dantzig-wolfe decomposition

BASIS INVERSE RHS

z −10 0 0 0 0 −5
λ1 1 0 0 0 0 .5
s2 −1 1 0 0 0 0
s3 0 0 1 0 0 .5
s4 −3 0 0 1 0 .5
λ0 −1 0 0 0 1 .5

The best-known feasible solution of the overall problem is given by
λ0X0 + λ1X1 = 0.5X0 + 0.5X1. The current objective value is 5.

Iteration 2
SUBPROBLEM. From the simplex tableau, we have w =

[
−10 0 0 0

]
and α = 0. As a result, wA+ c =

[
−4 −4 −4 −4 1 4 4 6 0 1 1 1

]
.

The subproblem therefore is maxj∈I (wA + c)Xj. Subroutine A re-
turns X such that X24 = 1 and all other entries of X are zero. The
objective of the point with respect to current cost is z− ĉ = 6 > 0. Let
us call this point X2.

MASTER PROBLEM.

AX2 =


0

1

0

4

. Then y2 = B−1

[
AX2

1

]
=



0

1

0

4

1


.

Now, we insert the column into the foregoing tableau and pivot.
Variable s2 leaves the basis and λ2 enters the basis.

BASIS INVERSE RHS λ2

z −10 0 0 0 0 −5 6
λ1 1 0 0 0 0 .5 0
s2 −1 1 0 0 0 0 1
s3 0 0 1 0 0 .5 0
s4 −3 0 0 1 0 .5 4
λ0 −1 0 0 0 1 .5 1

After pivoting we obtain the following tableau.

BASIS INVERSE RHS

z −4 −6 0 0 0 −5
λ1 1 0 0 0 0 .5
λ2 −1 1 0 0 0 0
s3 0 0 1 0 0 .5
s4 1 −4 0 1 0 .5
λ0 0 −1 0 0 1 .5

The best-known feasible solution of the overall problem is given by
λ0X0 + λ1X1 = 0.5X0 + 0.5X1. The current objective value is 5.

6.7 numerical example for integer dw 85

Iteration 3
SUBPROBLEM. From the simplex tableau, we have w =

[
−4 −6 0 0

]
and α = 0. As a result, wA+ c =

[
2 2 2 2 −5 −2 −2 0 0 1 1 1

]
.

The subproblem therefore is maxj∈I (wA + c)Xj. Subroutine A re-
turns X such that X11 = 1, X32 = 1 and all other entries of X are zero.
The objective of the point with respect to current cost is z− ĉ = 3 > 0.
Let us call this point X3.

MASTER PROBLEM.

AX3 =


1

0

1

3

. Then y2 = B−1

[
AX3

1

]
=



1

−1

1

4

1


.

Now, we insert the column into the foregoing tableau and pivot.
Variable s4 leaves the basis and λ3 enters the basis.

BASIS INVERSE RHS λ3

z −4 −6 0 0 0 −5 3
λ1 1 0 0 0 0 .5 1
λ2 −1 1 0 0 0 0 −1
s3 0 0 1 0 0 .5 1
s4 1 −4 0 1 0 .5 4
λ0 0 −1 0 0 1 .5 1

After pivoting we obtain the following tableau.

BASIS INVERSE RHS

z −4.75 −3 0 −.75 0 −5.375
λ1 .75 1 0 −.25 0 .375
λ2 −.75 0 0 .25 0 .125
s3 −.25 1 1 −.25 0 .375
λ3 .25 −1 0 .25 0 .125
λ0 −.25 0 0 −.25 1 .375

The best-known feasible solution of the overall problem is given by
λ0X0 + λ1X1 + λ2X2 + λ3X3 = 0.375X0 + 0.375X1 + 0.125X2 + 0.125X3.
The current objective value is 5.375.

Iteration 4
SUBPROBLEM. From the simplex tableau, we have w =

[
−4.75 −3 0 −.75

]
and α = 0. As a result,
wA+ c =

[
.5 −.25 −1 −1.75 −2.75 −.5 −1.25 0 −.75 −.5 −1.25 −2

]
.

The subproblem therefore is maxj∈I (wA + c)Xj. Subroutine A re-
turns X such that X11 = 1 and all other entries of X are zero. The
objective of the point with respect to current cost is z− ĉ = 0.5 > 0.
Let us call this point X4.

86 mechanism design via dantzig-wolfe decomposition

MASTER PROBLEM.

AX4 =


1

0

0

1

. Then y2 = B−1

[
AX4

1

]
=



.5

−.5

−.5

.5

.5


.

Now, we insert the column into the foregoing tableau and pivot.
Variable λ3 leaves the basis and λ4 enters the basis.

BASIS INVERSE RHS λ4

z −4.75 −3 0 −.75 0 −5.375 .5
λ1 .75 1 0 −.25 0 .375 .5
λ2 −.75 0 0 .25 0 .125 −.5
s3 −.25 1 1 −.25 0 .375 −.5
λ3 .25 −1 0 .25 0 .125 .5
λ0 −.25 0 0 −.25 1 .375 .5

After pivoting we obtain the following tableau.

BASIS INVERSE RHS

z −5 −2 0 −1 0 −5.5
λ1 .5 −2 0 −.5 0 .25
λ2 −.5 −1 0 .5 0 .25
s3 0 0 1 0 0 .5
λ4 .5 −2 0 .5 0 .25
λ0 −.5 1 0 −.5 1 .25

The best-known feasible solution of the overall problem is given by
λ0X0 + λ1X1 + λ2X2 + λ4X4 = 0.25X0 + 0.25X1 + 0.25X2 + 0.25X4. The
current objective value is 5.5.

Iteration 5
SUBPROBLEM. From the simplex tableau, we have w =

[
−5 −2 0 −1

]
and α = 0. As a result,
wA+ c =

[
−6 −7 −8 −9 −3 −4 −5 −6 −1 −2 −3 −4

]
.

The subproblem therefore is maxj∈I (wA + c)Xj. Subroutine A re-
turns X = 0⃗. The objective of the point with respect to current cost is
z− ĉ = 0. Therefore, the algorithm terminates. Our final solution is
as follows.

x∗ =

x11

x22

x24

 = 0.25

1

1

0

+ 0.25

0

0

1

+ 0.25

1

0

0

+ 0.25

0

0

0

 =

 0.5

0.25

0.25

 .

A simple examination shows that x∗ is in fact one half (scaled down
by the integrality gap) of the optimal solution to MU-P for our in-
stance.

7

C O N C L U S I O N

Imagine a particular context such as auctions where pieces of data
that we need for an optimization problem are owned by strategic
agents. In this context, neither sophisticated nor simple optimization
algorithms are useful if the agents misreport the pieces of data. There-
fore, we have to solve the optimization problem while certifying that
the algorithm provides the agents with incentives to truthfully report
data. In economics, the Vickrey-Clarke-Groves (VCG) mechanism
provides both objectives at once. For NP-hard problems, however, the
VCG mechanism is not directly applicable, thus we have to design
dominant strategy incentive-compatible (DSIC) approximation algo-
rithms with polynomial runtime. The field of algorithmic mechanism
design attempts to provide the compromise between polynomial-time
algorithms and incentives.

In Chapter 3, we proposed a truthful approximation algorithm for
a strategic variant of the generalized assignment problem in which
valuations are private. The generalized assignment problem is a no-
table problem in combinatorial optimization and operations research.
Our truthful algorithm has advantages over existing approximation
algorithms for GAP in terms of runtime and simplicity while the pre-
sented approximation ratio closely matches the best approximation
ratio previously presented for the problem with public valuations.

Application of algorithms in practice stipulates fast, simple and
incentive-compatible implementations. Performance and simplicity
motivate the redesign of existing algorithms towards more practical
implementations. For example, there have been attempts to substitute
the usage of the ellipsoid method with practically faster algorithms.
See chapters 5 and 6, and Elbassioni et al. (2015). Furthermore, in-
centive compatibility in practice deserves to be placed under scrutiny.
Since many algorithms are not readily incentive-compatible, it will be
useful to design a notion of “higher incentive compatibility” to char-
acterize algorithms which are more robust than others against data
manipulations.

A general technique to convert approximation algorithms to incen-
tive compatible approximation algorithms is via linear programming
relaxation of the optimization problem. This idea has been substanti-
ated in the framework proposed by Lavi and Swamy (LS framework)

87

88 conclusion

(Lavi and Swamy, 2011). The approximations given by the LS frame-
work crucially depend on a geometric property of the underlying
polytope of the relaxation, the integrality gap. The integrality gap is
calculated with respect to the worst-case geometry that a polytope
may take. However, in practice (also as the experiments show) the in-
tegrality gaps of the polytopes are far less than the worse-case gaps.
An analogy is the simplex method with an exponential worst-case
runtime but with a polynomial runtime in practice. An interesting re-
search direction is to perform a smoothed analysis (Spielman and Teng,
2009) of the integrality gap rather than just a worst-case analysis.

In theoretical computer science, the class of problems that admit
incentive-compatible and constant-ratio approximation algorithms is
denoted by APXIC. Currently, we know APX ̸= APXIC, because
the submodular welfare maximization problem admits a (1 − 1/e)-
approximation but no constant-ratio and incentive-compatible algo-
rithm (Dughmi and Vondrák, 2015; Dobzinski and Vondrák, 2013).
For many problems in APX, we do not know if they also belong to
APXIC. Hence, I believe there are still several open problems in the
field of algorithmic mechanism design, and a continuation of research
should take place. As an example, consider the problem of combi-
natorial auctions with budgeted valuations, in which bidders have
an overall budget capping their willingness to pay. For this prob-
lem, a 3/4-approximation algorithm is already known, however, no
incentive-compatible algorithm with a constant-ratio approximation
is as of yet known for the problem.

Bayesian incentive compatibility (BIC) according to which truthful
bidding is a Bayes-Nash equilibrium, is less stringent than DSIC be-
cause we already know how to reduce from BIC mechanism design
to algorithm design (Hartline et al., 2015). This possibility primar-
ily stems from the option of reimplementing the distribution of each
bidder’s valuation in a way that is best for the bidder while keeping
changes transparent to the others. An interesting research direction
would be to analyze settings where some pieces of data are private
while the other pieces of data are drawn from a priori known dis-
tribution. These settings inherit properties from both complete and
incomplete information games.

A separate research topic is the subject of real-time bidding. In dis-
play advertising the most significant concept in recent years is real-
time bidding (RTB), or programmatic buying, where advertisers have
the ability of making decisions for every impression. Special charac-
teristics of RTB such as being real-time (the responses should take
less than 100 milliseconds) and the involvement of multiple layers of
players (like demand-side platforms, supply-side platforms, and ad
exchanges), provide the possibility of research and development for
a wide range of researchers from online algorithm and mechanism
designers to web developers (Muthukrishnan, 2009).

conclusion 89

In algorithmic mechanism design without money (payment-free en-
vironments), the Gibbard-Satterthwaite (G-S) theorem rules out the
existence of any truthful, non-dictatorial and unanimous social choice
function whose range comprises three or more alternatives (Satterth-
waite, 1975; Gibbard, 1973). A dictatorial social choice function is
not intended as it does not really aggregate the preferences of agents,
but simply the responsibility of choosing the outcome is left solely
to a single individual. Recently, the technique of welfare approxima-
tion has been shown to be useful in finding non-dictatorial welfare
maximizing algorithms for restricted domains where it is possible to
avoid the G-S impossibility theorem. See Procaccia and Tennenholtz
(2013) and references therein. We applied this technique to a strate-
gic variants of the generalized assignment problem in Chapter 4. A
ground-clearing result characterizing the classes of problems which
admit non-dictatorial algorithms is tempting; a characterization of
a technique – similar to Maximal-In-Distributional-Range allocation
rules in mechanism design with quasi-linear utilities – will be of in-
terest.

B I B L I O G R A P H Y

Archer, A., Papadimitriou, C., Talwar, K., Tardos, É., 2004. An approx-
imate truthful mechanism for combinatorial auctions with single
parameter agents. Internet Mathematics 1 (2), 129–150.

Arora, S., Hazan, E., Kale, S., 2012. The multiplicative weights update
method: a meta-algorithm and applications. Theory of Computing
8 (1), 121–164.

Azar, Y., Hoefer, M., Maor, I., Reiffenhäuser, R., Vöcking, B., 2015.
Truthful mechanism design via correlated tree rounding. In: Pro-
ceedings of the Sixteenth ACM Conference on Economics and Com-
putation. ACM, pp. 415–432.

Barbera, S., Peleg, B., 1990. Strategy-proof voting schemes with con-
tinuous preferences. Social choice and welfare 7 (1), 31–38.

Bazaraa, M. S., Jarvis, J. J., Sherali, H. D., 2011. Linear programming
and network flows. John Wiley & Sons.

Bland, R. G., Goldfarb, D., Todd, M. J., 1981. The ellipsoid method: a
survey. Operations research 29 (6), 1039–1091.

Blumrosen, L., Nisan, N., 2005. On the computational power of it-
erative auctions. In: Proceedings of the 6th ACM conference on
Electronic commerce. ACM, pp. 29–43.

Blumrosen, L., Nisan, N., 2007. Combinatorial auctions (a survey). In:
Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V. (Eds.), Algo-
rithmic game theory, chapter 11, 267–300.

Boyd, S., Vandenberghe, L., 2009. Convex optimization. Cambridge
university press.

Bressoud, T. C., Rastogi, R., Smith, M. A., 2003. Optimal configura-
tion for BGP route selection. In: INFOCOM 2003. Twenty-Second
Annual Joint Conference of the IEEE Computer and Communica-
tions. IEEE Societies. Vol. 2. IEEE, pp. 916–926.

Budish, E., Che, Y.-K., Kojima, F., Milgrom, P., 2013. Designing ran-
dom allocation mechanisms: Theory and applications. The Ameri-
can Economic Review 103 (2), 585–623.

Calinescu, G., Chekuri, C., Pál, M., Vondrák, J., 2011. Maximizing
a monotone submodular function subject to a matroid constraint.
SIAM Journal on Computing 40 (6), 1740–1766.

91

92 Bibliography

Carr, R., Vempala, S., 2000. Randomized metarounding. In: Proceed-
ings of the thirty-second annual ACM symposium on Theory of
computing. ACM, pp. 58–62.

Cavallo, R., Krishnamurthy, P. a., 2015. On the truthfulness of GSP.
Eleventh Workshop on Sponsored Search Auctions.

Chakrabarty, D., Goel, G., 2010. On the approximability of budgeted
allocations and improved lower bounds for submodular welfare
maximization and GAP. SIAM Journal on Computing 39 (6), 2189–
2211.

Chekuri, C., Khanna, S., 2005. A polynomial time approximation
scheme for the multiple knapsack problem. SIAM Journal on Com-
puting 35 (3), 713–728.

Chen, N., Gravin, N., Lu, P., 2013. Truthful generalized assignments
via stable matching. Mathematics of Operations Research 39 (3),
722–736.

Chvátal, V., 1983. Linear programming. WH Freeman and Company,
New York.

Clarke, E., 1971. Multipart pricing of public goods. Public Choice XI,
17–33.

Dantzig, G. B., 1992. An epsilon precise feasible solution to a linear
program with a convexity constraint in 1 over epsilon squared iter-
ations independent of problem size.

Desrosiers, J., Lübbecke, M. E., 2005. A primer in column generation.
Springer.

Dobson, G., Nambimadom, R. S., 2001. The batch loading and
scheduling problem. Operations research 49 (1), 52–65.

Dobzinski, S., Dughmi, S., 2009. On the power of randomization in
algorithmic mechanism design. In: Foundations of Computer Sci-
ence, 2009. FOCS’09. 50th Annual IEEE Symposium on. IEEE, pp.
505–514.

Dobzinski, S., Fu, H., Kleinberg, R., 2010. Truthfulness via proxies.
CoRR abs/1011.3232.

Dobzinski, S., Vondrák, J., 2012. The computational complexity of
truthfulness in combinatorial auctions. In: Proceedings of the 13th
ACM Conference on Electronic Commerce. ACM, pp. 405–422.

Dobzinski, S., Vondrák, J., 2013. Communication complexity of com-
binatorial auctions with submodular valuations. In: Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms. SIAM, pp. 1205–1215.

Bibliography 93

Dughmi, S., Ghosh, A., 2010. Truthful assignment without money. In:
Proceedings of the 11th ACM conference on Electronic commerce.
ACM, pp. 325–334.

Dughmi, S., Roughgarden, T., Vondrák, J., Yan, Q., 2011a. An ap-
proximately truthful-in-expectation mechanism for combinatorial
auctions using value queries. arXiv preprint arXiv:1109.1053.

Dughmi, S., Roughgarden, T., Yan, Q., 2011b. From convex optimiza-
tion to randomized mechanisms: toward optimal combinatorial
auctions. In: Proceedings of the 43rd annual ACM symposium on
Theory of computing. ACM, pp. 149–158.

Dughmi, S., Vondrák, J., 2015. Limitations of randomized mecha-
nisms for combinatorial auctions. Games and Economic Behavior
92, 370–400.

Ehlers, L., Klaus, B., 2003. Coalitional strategy-proof and resource-
monotonic solutions for multiple assignment problems. Social
Choice and Welfare 21 (2), 265–280.

Elbassioni, K., Mehlhorn, K., Ramezani, F., 2015. Towards more prac-
tical linear programming-based techniques for algorithmic mecha-
nism design. In: Algorithmic Game Theory. Springer, pp. 98–109.

Fadaei, S., 2015. Mechanism design via Dantzig-Wolfe decomposition.
arXiv preprint arXiv:1508.04250.

Fadaei, S., Bichler, M., 2014. A truthful-in-expectation mechanism for
the generalized assignment problem. In: Web and Internet Eco-
nomics. Springer, pp. 247–248.

Fadaei, S., Bichler, M., 2016. Generalized assignment problem: Truth-
ful mechanism design without money. TUM working paper.

Feige, U., Vondrak, J., 2006. Approximation algorithms for allocation
problems: Improving the factor of 1-1/e. In: Foundations of Com-
puter Science, 2006. FOCS’06. 47th Annual IEEE Symposium on.
IEEE, pp. 667–676.

Ferland, J. A., 1998. Generalized assignment-type problems a pow-
erful modeling scheme. In: Practice and Theory of Automated
Timetabling II. Springer, pp. 53–77.

Fisher, M. L., Jaikumar, R., 1981. A generalized assignment heuristic
for vehicle routing. Networks 11 (2), 109–124.

Fleischer, L., Goemans, M. X., Mirrokni, V. S., Sviridenko, M., 2006.
Tight approximation algorithms for maximum general assignment
problems. In: Proceedings of the seventeenth annual ACM-SIAM
symposium on Discrete algorithm. ACM, pp. 611–620.

94 Bibliography

Gibbard, A., 1973. Manipulation of voting schemes: a general result.
Econometrica 41, 587–601.

Groves, T., 1973. Incentives in teams. Econometrica 41, 617–631.

Hartline, J. D., Kleinberg, R., Malekian, A., 2015. Bayesian incen-
tive compatibility via matchings. Games and Economic Behavior
92, 401–429.

Hatfield, J., 2009. Strategy-proof, efficient, and nonbossy quota alloca-
tions. Social Choice and Welfare 33 (3), 505–515.

Kalagnanam, J. R., Davenport, A. J., Lee, H. S., 2001. Computational
aspects of clearing continuous call double auctions with assign-
ment constraints and indivisible demand. Electronic Commerce Re-
search 1 (3), 221–238.

Khandekar, R., 2004. Lagrangian relaxation based algorithms for con-
vex programming problems. Ph.D. thesis, Indian Institute of Tech-
nology Delhi.

Klastorin, T., 1979. Note–On the maximal covering location prob-
lem and the generalized assignment problem. Management Science
25 (1), 107–112.

Koutsoupias, E., 2014. Scheduling without payments. Theory of Com-
puting Systems 54 (3), 375–387.

Kraft, D., Fadaei, S., Bichler, M., 2014. Fast convex decomposition for
truthful social welfare approximation. In: Web and Internet Eco-
nomics. Springer, pp. 120–132.

Kuhn, H. W., 1955. The hungarian method for the assignment prob-
lem. Naval Research Logistics Quarterly 2 (1-2), 83–97.

Lavi, R., Mu’alem, A., Nisan, N., 2003. Towards a characterization
of truthful combinatorial auctions. In: Foundations of Computer
Science, 2003. Proceedings. 44th Annual IEEE Symposium on. pp.
574 – 583.

Lavi, R., Swamy, C., 2005. Truthful and near-optimal mechanism de-
sign via linear programming. In: Foundations of Computer Science,
2005. FOCS 2005. 46th Annual IEEE Symposium on. IEEE, pp. 595–
604.

Lavi, R., Swamy, C., 2011. Truthful and near-optimal mechanism de-
sign via linear programming. Journal of the ACM (JACM) 58 (6),
25.

Martello, S., Toth, P., 1992. Generalized assignment problems. In: Al-
gorithms and Computation. Springer, pp. 351–369.

Bibliography 95

Moulin, H., 1980. On strategy-proofness and single peakedness. Pub-
lic Choice 35 (4), 437–455.

Muthukrishnan, S., 2009. Ad exchanges: Research issues. In: Internet
and network economics. Springer, pp. 1–12.

Nguyen, T., Peivandi, A., Vohra, R., 2015. Assignment problems with
complementarities. Tech. rep., Mimeo., February.

Nisan, N., Ronen, A., 2001. Algorithmic mechanism design. Games
and Economic Behavior 35, 166–196.

Nisan, N., Ronen, A., 2007. Computationally feasible VCG mecha-
nisms. J. Artif. Intell. Res.(JAIR) 29, 19–47.

Öncan, T., 2007. A survey of the generalized assignment problem
and its applications. INFOR: Information Systems and Operational
Research 45 (3), 123–141.

Papadimitriou, C., Schapira, M., Singer, Y., 2008. On the hardness
of being truthful. In: Foundations of Computer Science, 2008.
FOCS’08. IEEE 49th Annual IEEE Symposium on. IEEE, pp. 250–
259.

Pápai, S., 2001. Strategyproof and nonbossy multiple assignments.
Journal of Public Economic Theory 3 (3), 257–271.

Procaccia, A. D., Tennenholtz, M., 2013. Approximate mechanism de-
sign without money. ACM Transactions on Economics and Compu-
tation 1 (4), 18.

Ross, G. T., Soland, R. M., 1977. Modeling facility location problems
as generalized assignment problems. Management Science 24 (3),
345–357.

Roth, A. E., Sotomayor, M. A. O., 1992. Two-sided matching: A study
in game-theoretic modeling and analysis. No. 18. Cambridge Uni-
versity Press.

Ruland, K. S., 1999. A model for aeromedical routing and scheduling.
International Transactions in Operational Research 6 (1), 57–73.

Satterthwaite, M. A., 1975. Strategy-proofness and arrow’s conditions:
Existence and correspondence theorems for voting procedures and
social welfare functions. Journal of economic theory 10 (2), 187–217.

Shmoys, D. B., Tardos, É., 1993. An approximation algorithm for
the generalized assignment problem. Mathematical Programming
62 (1-3), 461–474.

Shoham, Y., Leyton-Brown, K., 2008. Multiagent systems: Algorith-
mic, game-theoretic, and logical foundations. Cambridge Univer-
sity Press.

96 Bibliography

Spielman, D. A., Teng, S.-H., 2009. Smoothed analysis: an attempt to
explain the behavior of algorithms in practice. Communications of
the ACM 52 (10), 76–84.

Tebboth, J. R., 2001. A computational study of Dantzig-Wolfe decom-
position. Ph.D. thesis, University of Buckingham.

Vickrey, W., 1961. Counterspeculation, auctions, and competitive
sealed tenders. The Journal of finance 16 (1), 8–37.

Wilkens, C. A., Cavallo, R., Niazadeh, R., 2016. Mechanism design for
value maximizers. Cornell Working paper.

Zimokha, V., Rubinstein, M., 1988. R & D planning and the general-
ized assignment problem. Automation and Remote Control 49 (49),
484–492.

	Dedication
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Introduction
	Game Theory
	Mechanism Design for Combinatorial Auctions
	VCG Auctions
	Truthful Approximation Mechanisms
	Approximations to Obtain Truthfulness
	Thesis Structure

	Relax and Round
	Setting
	Relaxation
	Rounding
	Truthful-in-expectation Mechanism
	Mechanism Design without Money

	Generalized Assignment Problem
	Introduction
	Challenges in Algorithmic Mechanism Design
	Results and Techniques
	Structure

	Preliminaries
	MIDR Allocation Rule for GAP
	Greedy Rounding
	The Approximation Ratio
	Solving the Convex Optimization Problem
	Simplifying the Rounding Procedure

	Computing Payments
	Truthfulness
	Strategic Items
	Conclusion

	Mechanism Design without Money
	Introduction
	Model
	Discussion About the Assumptions
	Results and Technique

	Generalized Assignment Problem
	Multiple Knapsack Problem
	Truthful Mechanism for GAP-BS
	Unequal Value Densities

	Fast Meta-randomized Rounding
	Introduction
	Setting
	Decomposition with Epsilon Precision
	Exact Decomposition
	Simpler Exact Decomposition

	Mechanism Design via Dantzig-Wolfe Decomposition
	Introduction
	Results and Techniques
	Structure

	Setting
	Summary of Dantzig-Wolfe Decomposition
	Applying Dantzig-Wolfe Decomposition
	Benders Decomposition
	Application of the Method in Mechanism Design
	The Framework Proposed by Lavi and Swamy
	Existing Fractional Point

	Numerical Example for Integer DW

	Conclusion

