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Abstract—We propose two coding schemes for discrete mem-
oryless multicast networks with rate-limited feedback from
receivers and relays to the transmitter. The coding schemes
are based on block Markov coding, joint backward decoding
and hybrid relaying strategy. In each block, the receivers and
relays compress their outputs and send the compression indices
to the transmitter through the feedback links. In the next
block, after obtaining compression indices, the transmitter sends
them together with the source message. Each receiver uses
backward decoding to jointly decode the source message and all
compression indices. It is shown that our coding schemes strictly
improve on noisy network coding and generalize Gabbai and
Bross’s results for the single relay channel with partial feedback,
where they proposed schemes based on restricted decoding and
deterministic partitioning. Motivated by our feedback schemes,
we propose a new coding scheme for discrete memoryless
multicast networks without feedback.

I. INTRODUCTION

The relay channel, first introduced by van de Meulen
[1], describes a 3–node communication channel where the
transmitter sends a message to the receiver with the assistance
of relay. Cover and El Gamal [2] proposed two basic cod-
ing strategies: compress-forward and decode-forward, for the
discrete memoryless relay channel. Both strategies are based
on block Markov coding. In the compress-forward strategy,
the relay compresses its outputs and sends compression index
to the receiver. In the decode-forward strategy, the relay first
decodes the full or part of source message and then sends
the decoded message to the receiver. Both strategies have
been generalized to multiple-relay channels [3]. The compress-
forward was later extended to a more general network–discrete
memoryless networks [4], [5], [6], called noisy network coding
(NNC). Recently, a distributed decode-forward coding (DDF)
scheme was proposed for multicast [7] and broadcast relay
networks [8], which uses the partial decode-forward at the
relays and backward coding at the transmitter.

Perfect feedback from the receiver to the relay makes the
relay channel is physically degraded [2], and therefore decode-
forward achieves the capacity. For the case with feedback from
the receiver or relay to the transmitter, the capacity is unknown
in general. In [9] Gabbai and Bross studied this problem
and proposed inner bounds by using restricted decoding and
deterministic partitioning [10].

In this paper, we consider the general discrete memoryless
multicast network with rate-limited feedback. This network

consists of N ≥ 3 nodes where the transmitter sends a
message to different receivers with the assistance of multiple
relays and in the presence of rate-limited feedback from the
receivers and relays to the transmitter. We propose two coding
schemes based on block Markov coding, joint backward
decoding and hybrid relaying strategy. In our first scheme,
relays and receivers use compress-forward to create their
compression indices and then send them both into the forward
communication and feedback channels. The transmitter, after
obtaining the compression indices through feedback, sends
them together with the source message. Receivers jointly
decode the source message and all compression indices. Our
second scheme is similar, except that the relay not only uses
compress-forward as in the first scheme, but also use partial
decode-forward [2] to decode the source message.

Our strategy is reminiscent of the noisy network coding for
general networks [5], [6] in the sense the relays and receivers
compress their channel outputs and send these compression
indices over the feedback links. However, our schemes have
the transmitter forward the receivers and relays’ compression
messages, instead of creating a new compression message.
This is similar to the schemes in [11] for the broadcast channel,
where the transmitter forwards the receivers’ compression
messages. It is shown that our coding schemes generalize
Gabbai and Bross’s results [9] for the relay channel with relay-
transmitter feedback. For some channels, such as the Gaussian
relay channel and Z relay channels, our coding schemes
improve over the NNC scheme [5], the DDF coding scheme
[7], [8] and all known lower bounds on the achievable rate in
the absence of feedback. Motivated by our feedback schemes,
we propose a new coding scheme for discrete memoryless
multicast networks without feedback.

Notation: We use capital letters to denote random variables
and small letters for their realizations, e.g. X and x. For j ∈
Z+, let Xj

1 := (X1, . . . , Xj) and Xj
2 := (X2, . . . , Xj). Given

a finite set X , we denote by |X | its cardinality. Given a setA ⊆
[2 : N ], and let Ac := [2 : N ]\A. A tuple of random variables
is denoted as X(A) := [Xk : k ∈ A]. For n ∈ Z+, let 1[n]

denote the all-one tuple of length n, e.g., 1[3] = (1, 1, 1).

II. SYSTEM MODEL

Consider an N -node discrete memoryless (DM) multicast
networks with feedback from receivers and relays to the
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transmitter, see Figure 1. Let R and D denote the set of relays
and receivers, respectively, where R ⊂ [2 : N ] and D =
[2 : N ]\R. This setup is characterized by 2N finite alphabets
X1, . . . ,XN ,Y1, . . . ,YN , a channel law PY1···YN |X1,...,XN

and
nonnegative feedback rates RFb,k, for k ∈ [2 : N ]. Specifically,
at discrete-time i, node j ∈ [1 : N ] sends input xj,i ∈ Xj
and then observes output yj,i ∈ Yj . After observing Yk,i, for
k ∈ [2 : N ], node k sends a feedback signal Fk,i ∈ Fk,i to the
transmitter, where Fk,i denotes the finite alphabet of Fk,i. The
feedback link between the transmitter and node k is assumed
to be instantaneous, noiseless and rate-limited to RFb,k bits on
average. In other words, if the transmission takes place over
a total blocklength n, then

|Fk,1| × · · · × |Fk,n| ≤ 2nRFb,k , k ∈ [2 : N ]. (1)
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Fig. 1. N -node discrete memoryless multicast network with partial feedback

In the transmission, the transmitter communicates a message
M ∈ [1 : 2nR] to the set of receivers D with the assistance of
the relays R. A (2nR, n) code for this channel has
• a message set [1 : 2nR],
• a source encoder that maps (M,Y i−1

1 , F i−12 , . . . , F i−1N )
to the channel input X1,i(M,Y i−1

1 , F i−12 , . . . , F i−1N ), for
each time i ∈ [1 : n],

• a set of relay and receiver encoders that maps Y i−1
k to a

sequence Xk,i(Y
i−1
k ), for k ∈ [2 : N ] and i ∈ [1 : n],

• a set of feedback-encoder that is to produce feedback
symbols Fk,i(Y

i
k,1), for k ∈ [2 : N ] and i ∈ [1 : n],

• a set of decoders that estimates M̂ (d) based on Y n
d , for

d ∈ D.
Suppose M is uniformly distributed over the message set. A
rate R is called achievable if for every blocklength n, there
exists a (2nR, n) code such that the average probability of
error P

(n)
e = Pr[M̂ (d) 6= M, for some d ∈ D] tends to 0 as

the n tends to infinity. The capacity is the supremum of the
set of achievable rates R such that limn→∞ P

(n)
e = 0.

III. MAIN RESULTS

This section presents our main results. The proofs are given
in Sections IV and V.

Theorem 1. For DM multicast networks with feedback from
the receivers and relays to the transmitter, the rate R is
achievable if

R ≤ I(X1, X(T ); Ŷ (T c), Yd|X(T c))
−I(Ŷ (T );Y (T )|XN

1 , Yd, Ŷ (T c)) (2)

for all d ∈ D, T ⊂ [2 : N ] with T c ∩ D 6= ∅ and for some
pmf [

N∏
k=2

PXk

]
PX1|XN

2
PY N

1 |XN
1

[
N∏
k=2

PŶk|XkYk

]
(3)

such that

RFb,k ≥ I(Ŷk;Yk|Xk), for k ∈ [2 : N ]. (4)

Proof: See Section IV-A.

Remark 1. Comparing the lower bound in Theorem 1 with
the NNC lower bound [5, Theorem 1], our rates includes the
NNC lower bound if feedback rates are sufficient large such
that (4) holds for all pmfs (3), since in (3) we allow the joint
distribution

∏N
k=2PXk

PX1|XN
2

instead of
∏N
k=1PXk

.

Theorem 2. For DM multicast networks with feedback from
the receivers and relays to the transmitter, the rate R is
achievable if

R ≤ I(X1; Ŷ
N
2 , Yd|UN

2 , XN
2 ) + min

r∈R
I(Ur;Yr|Xr)

R ≤ I(X1, X(T ), U(T ); Ŷ (T c), Yd|X(T c), U(T c))
−I(Ŷ (T );Y (T )|UN

2 , XN
1 , Ŷ (T c), Yd) (5)

for all d ∈ D, T ⊂ [2 : N ] with T c ∩ D 6= ∅, and for some
pmf [

N∏
k=2

PXkUk

]
PX1|XN

2 U
N
2
PY N

1 |XN
1

×

[∏
r∈R

PŶr|UrXrYr

][∏
d∈D

PŶd|XdYd

]
(6)

such that

RFb,r ≥ (Ŷr;Yr|Xr, Ur), for r ∈ R (7a)

RFb,d ≥ I(Ŷd;Yd|Xd), for d ∈ D. (7b)

Proof: See Section IV-B

Remark 2. By setting U2 = · · · = UN = const., the
achievable rate in Theorem 2 specializes to the rate in The-
orem 1. (Setting U2 = · · · = UN = const. means that all
relay nodes only perform compress-forward without partially
decode-forwarding the source message.)

Based on coding schemes for Theorems 1 and 2, we propose
another coding scheme for DM multicast networks without
feedback. The new achievable rate is shown below.

Theorem 3. For DM multicast networks without feedback, the
rate R is achievable if (8) holds for all d ∈ D, T ⊂ [2 : N ]
with T c ∩ D 6= ∅, and for some pmf[

N∏
k=2

PVk
PXk|Vk

PUk|Vk

]
PX1|V N

2 UN
2

× PY N
1 |XN

1

[∏
r∈R

PŶr|UrVrXrYr

][∏
d∈D

PŶd|VdXdYd

]
(9)
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R ≤ I(X1; Ŷ
N
2 , Yd|UN

2 , V N
2 , XN

2 ) + min
r∈R

I(Ur;Yr|Vr, Xr) (8a)

R ≤ I(X1, X(T ), U(T ), V (T ); Ŷ (T c), Yd|U(T c), V (T c), X(T c))− I(Ŷ (T );Y (T )|UN
2 , V N

2 , XN
1 , Ŷ (T c), Yd) (8b)

such that∑
r∈T ∩R

I(Ŷr;Yr|Ur, Vr, Xr) +
∑

d∈T ∩D
I(Ŷd;Yd|Vd, Xd)

≤ I(X(T );Y1|UN
2 , V N

2 , X(T c), X1). (10)

Example 1. (The relay channel with relay-transmitter feed-
back) Consider the relay channel with perfect feedback from
the relay to the transmitter, see Figure 2.

M                  PY2Y3|X1X2

X2Y2

Y3

Relay

RxTx
X1

M̂

F2

Fig. 2. Relay channel with relay-transmitter feedback

Let Ŷ3 = ∅, then Theorem 1 specializes to

R ≤ I(X1; Ŷ2, Y3|X2)

R ≤ I(X1,X2;Y3)−I(Ŷ2;Y2|X1,X2,Y3)} (11)

for some pmf PX1X2PŶ2|X2Y2
. Let U3 = Ŷ3 = ∅, then Theorem

2 specializes to

R ≤ I(X1; Ŷ2, Y3|U2, X2) + I(U2;Y2|X2)

R ≤ I(X1, X2;Y3)− I(Ŷ2;Y2|U2, X1, X2, Y3) (12)

for some pmf PX1X2U2
PŶ2|X2U2Y2

.
In [9] Gabbai and Bross studied this channel and proposed

coding schemes based on restricted decoding and deterministic
partitioning. The rates (11) and (12) recover Gabbai and
Bross’s rates of Theorems 2 and 3 in [9], respectively.

By using NNC [5], the rate R satisfying

R ≤I(X1; Ŷ2, Y3|X2)

R ≤I(X1, X2;Y3)−I(Ŷ2;Y2|X1, X2,Y3)} (13)

is achievable for any pmf PX1
PX2

PŶ2|X2Y2
, which coincides

with the compress-forward lower bound [2, Theorem 6].
By using DDF [7], [8], the rate R satisfying

R ≤ I(X1, X2;Y3) (14a)
R ≤ I(U2;Y2|X2) + I(X1;Y3|X2, U2) (14b)

is achievable for any pmf PX1X2U2
, which coincides with the

partial decode-forward lower bound [2, Theorem 7].
The lower bound (12) includes (13) and (14). In [9] Gabbai

and Bross showed that for the Gaussian and Z relay channels,
the lower bound (12) improves on the known lower bounds on

the achievable rate in the absence of feedback, including the
compress-forward lower bound in (13), and the partial decode-
forward lower bound in (14). In view of this fact, we have the
following corollary:

Corollary 1. For the DM single-relay channel with relay-
transmitter feedback, our coding schemes recover Gabbai and
Bross’s results, and can strictly improve on NNC [5], DDF
[7] and all known lower bounds on the achievable rate in the
absence of feedback.

IV. ACHIEVABLE RATES FOR DM MULTICAST NETWORKS
WITH FEEDBACK

A. Scheme 1A

In this subsection we present a block Markov coding scheme
where a sequence of B i.i.d message mb, b ∈ [1 : B] is sent
over B+1 block. In each block b ∈ [1 : B+1], Relay r ∈ R
uses compress-forward to compress its observed outputs Y n

k,b,
and then send the compression index into the feedback link.
After obtaining all compression indices through feedback, the
transmitter sends them together with the source message in the
next block. Define lb−1 := (l2,b−1, . . . , lN,b−1) and l̂b−1 :=
(l̂2,b−1, . . . , l̂N,b−1), for b ∈ [1 : B + 1]. Let l0 = 1[N−1] and
mB+1 = 1.

1) Codebooks: Fix the pmf in (3). For each block b ∈
[1 : B + 1] and k ∈ [2 : N ], randomly and independently
generate 2nR̂k sequences xnk,b(lk,b−1) ∼

∏n
i=1 PXk

(xk,b,i),
lk,b−1 ∈ [1 : 2nR̂k ]. For each lk,b−1, randomly and in-
dependently generate 2nR̂k sequences ŷnk,b(lk,b|lk,b−1) ∼∏n
i=1 PŶk|Xk

(ŷk,b,i|xk,b,i). For each lb−1, randomly and
independently generate 2nR sequences xn1,b(mb|lb−1) ∼∏n
i=1 PX1|XN

2
(x1,b,i|x2,b,i, . . . , xN,b,i), mb ∈ [1 : 2nR].

2) Source encoding: In each block b ∈ [1 : B+1], assume
that the transmitter already knows lb−1 through feedback links.
It sends xn1,b(mb|lb−1).

3) Relay and receiver encoding: Relays and receivers both
use compress-forward . In each block b ∈ [1 : B], node k ∈
[2 : N ] compresses ynk,b by finding a unique index lk,b such
that (

xnk,b(lk,b−1), ŷ
n
k,b(lk,b|lk,b−1), ynk,b

)
∈ T nε (PXkYkŶk

).

Then, it sends lk,b through the feedback link at rate R̂k ≤
RFb,k and in block b+ 1 sends xnk,b+1(lk,b).

4) Decoding: Receivers perform joint backward decoding.
For each block b ∈ [B + 1, . . . , 1], Receiver d ∈ D looks for
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(m̂b, l̂b−1) such that1(
xn1,b(m̂b |̂lb−1), xn2,b(l̂2,b−1), . . . , xnN,b(l̂N,b−1), ynd,b,
ŷn2,b(l̂2,b|l̂2,b−1), . . . , ŷnN,b(l̂N,b|l̂N,b−1)

)
∈ T nε (PXN

1 Ŷ
N
2 Yd

).

5) Analysis: See [12] for details.

B. Scheme 1B

Note that in Scheme 1A above, the relays and receivers only
perform compress-forward . In this subsection, we present a
scheme where relays perform mixed compress-forward and
partial decode-forward.

1) Codebooks: Fix the pmf in (6). Transmission takes place
in B+1 blocks each consisting of n transmissions. For block
b ∈ [1 : B], split the message mb into (m′b,m

′′
b ), where m′b

and m′′b are independently and uniformly distributed over the
set [1 : 2nR

′
] and [1 : 2nR

′′

], respectively, where R′, R′′ ≥ 0
and so that R = R′ +R′′. Let m′′B+1 = m′B+1 = 1.
• For each r ∈ R and block b ∈ [1 : B + 1], ran-

domly and independently generate 2n(R
′+R̂r ) sequences

xnr,b(m
′
b−1, lr,b−1) ∼

∏n
i=1 PXr

(xr,b,i), with m′b−1 ∈ [1 :

2nR
′
] and lr,b−1 ∈ [1 : 2nR̂r ]. For each (m′b−1, lr,b−1),

randomly and independently generate 2nR
′

sequences
unr,b(m

′
b|m′b−1, lr,b−1) ∼

∏n
i=1 PUr|Xr

(ur,b,i|xr,b,i). For
each (m′b,m

′
b−1, lr,b−1), randomly and independently

generate 2nR̂r sequences ŷnr,b(lr,b|m′b,m′b−1, lr,b−1) ∼∏n
i=1 PŶr|UrXr

(ŷr,b,i|ur,b,i, xr,b,i).
• For each d ∈ D and block b ∈ [1 : B + 1],

randomly and independently generate 2nR̂d sequences
xnd,b(ld,b−1) ∼

∏n
i=1 PXd

(xd,b,i), ld,b−1 ∈ [1 : 2nR̂d ]. For
each ld,b−1, randomly and independently generate 2nR

′

sequences und,b(m
′
b|ld,b−1) ∼

∏n
i=1 PUd|Xd

(ud,b,i|xd,b,i).
Similarly, for each ld,b−1, randomly and indepen-
dently generate 2nR̂d sequences ŷnd,b(ld,b|ld,b−1) ∼∏n
i=1 PŶd|Xd

(ŷd,b,i|xd,b,i).
For each (m′b,m

′
b−1, lb−1), randomly and independently

generate 2nR
′′

sequences xn1,b(m
′′
b |m′b,m′b−1, lb−1) ∼∏n

i=1 PX1|UN
2 X

N
2
(x1,b,i|x2,b,i, u2,b,i, . . . , xN,b,i, uN,b,i).

2) Source encoding: In each block b ∈ [1 : B+1], assume
that the transmitter already knows lb−1 through the feedback
links. It sends xn1,b(m

′′
b |m′b,m′b−1, lb−1).

3) Relay encoding: Relay nodes use hybrid compress-
forward and decode-forward. For each block b ∈ [1 : B + 1],
assume that Relay r ∈ R already knows m̂′b−1 from block
b− 1. It looks for a unique index m̂′b s.t(
xnr,b(m̂

′
b−1, lr,b−1),u

n
r,b(m̂

′
b|m̂′b−1, lr,b−1),ynr,b

)
∈ T nε (PXrYrUr

).

then it compresses ynr,b by finding a unique index lr,b such that(
unr,b(m̂

′
b|m̂′b−1, lr,b−1), xnr,b(m̂′b−1, lr,b−1),

ŷnr,b(lr,b|m̂′b,m̂′b−1, lr,b−1),ynr,b
)
∈ T nε (PUrXrYrŶr

).

1Receiver d ∈ D knows ld,b−1 since it generated this index. Since each
Receiver d makes its own estimate of mb and lb−1, the precise notation is
(m̂

(d)
b , l̂(d)b−1). For simplicity, we omit the superscript (d).

Then, it sends lr,b through the feedback link at rate R̂r ≤ RFb,r
and in block b+ 1 sends xnr,b+1(m̂

′
b, lr,b).

4) Receiver encoding: Receiver d ∈ D compresses ynd,b by
finding a unique index ld,b such that(

xnd,b(ld,b−1), ŷd,b(ld,b|ld,b−1), ynd,b
)
∈ T nε (PXdYdŶd

).

Then, it sends ld,b through the feedback link at rate R̂d ≤
RFb,d and in block b+ 1 sends xnd,b+1(ld,b).

5) Decoding: Receiver d ∈ D performs backward de-
coding. For each block b ∈ [B + 1, . . . , 1], it looks for
(m̂′′b , m̂

′
b−1, l̂b−1) such that(

xn1,b(m̂
′′
b |m̂′b, m̂′b, l̂b−1), xnb (R), xnb (D),unb (R),unb (D),

ŷnb (R), ŷnb (D), ynd,b
)
∈ T nε (PXN

1 U
N
2 Ŷ

N
2 Yd

)

where xnb (R) := [xnr,b(m̂
′
b−1, l̂r,b−1) : r ∈ R], xnb (D) :=

[xnd,b(l̂d,b−1) : d ∈ D], unb (R) := [unr,b(m̂
′
b|m̂′b−1, l̂r,b−1) :

r ∈ R], unb (D) := [und,b(m̂
′
b|l̂d,b−1) : d ∈ D] and

ŷnb (R) := [ŷnr,b(l̂r,b|m̂′b, m̂′b−1, l̂r,b−1) : r ∈ R], ŷnb (D) :=

[ŷnd,b(l̂d,b|l̂d,b−1) : d ∈ D].
6) Analysis: See [12] for details.

V. ACHIEVABLE RATES FOR DM MULTICAST NETWORK

In Section IV we proposed two block Markov coding
schemes for DM multicast networks in the presence of instan-
taneous, rate-limited and noiseless feedback. Recall the NNC
scheme [5], [6] for DM multicast networks without feedback,
where each node (including the transmitter) compresses its
observation and sends the new compression index in the next
block. Comparing our coding scheme with NNC, we observe
that both schemes involve block Markov coding, compressing
channel outputs and sending compression messages. However,
our schemes allow hybrid relaying strategy at relay nodes, and
in each block, instead of creating new compression index, the
transmitter forwards all compression indices sent by receivers
and relays from the previous block. In our scheme, different
nodes operate differently according to the features of the
network, which leads to a larger achievable rate than NNC,
as shown by the example in Section III.

Motivated by Scheme 1A and 1B, we propose another
scheme for N -node DM multicast networks without feedback,
see Figure 3. The main idea is as follows: in each block b,
node k ∈ [2 : N ] creates a compression index lk,b−1 and
sends (lk,b−1, lk,b−2). The transmitter first decodes compres-
sion indices lb−1 based on Y n

1,b, which is in essence a coding
problem on a multiple access channel PY1|X2,...,XN

with side
information X1. Then in block b + 1, the transmitter sends
compression messages lb−1 and the source message mb+1. In
this section we present a scheme extending Scheme 1B to
DM multicast networks. Similar extensions can be applied to
Scheme 1A.

1) Codebooks: Fix the pmf in (9). Transmission takes place
in B+2 blocks each consisting of n transmissions. For block
b ∈ [1 : B], split the message mb into (m′b,m

′′
b ), where m′b

and m′′b are independently and uniformly distributed over the
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Fig. 3. Discrete memoryless multicast network without feedback

sets ∈ [1 : 2nR
′
] and [1 : 2nR

′′

], respectively, where R′, R′′ ≥
0 and so that R = R′ + R′′. Let l−1 = l0 = 1[N−1] and
m′′B+1 = m′B+1 = m′′B+2 = m′B+2 = 1.
• For each r ∈ R and block b ∈ [1 : B + 2], randomly

and independently generate 2n(R
′+R̂r) sequences

vnr,b(m
′
b−1, lr,b−2) ∼

∏n
i=1 PVr

(vr,b,i), with m′b−1 ∈ [1 :

2nR
′
] and lr,b−2 ∈ [1 : 2nR̂r ]. For each (m′b−1, lr,b−2),

randomly and independently generate 2nR̂r sequences
xnr,b(lr,b−1|m′b−1, lr,b−2) ∼

∏n
i=1 PXr|Vr

(xr,b,i|vr,b,i),
with lr,b−1 ∈ [1 : 2nR̂r ]. For each pair (m′b−1, lr,b−2),
randomly and independently generate 2nR

′
sequences

unr,b(m
′
b|m′b−1, lr,b−2) ∼

∏n
i=1 PUr|Vr

(ur,b,i|vr,b,i).
For each (m′b,m

′
b−1, lr,b−2, lr,b−1), ran-

domly and independently generate 2nR̂r

sequences ŷnr,b(lr,b|m′b,m′b−1, lr,b−2, lr,b−1) ∼∏n
i=1 PŶr|UrXrVr

(ŷr,b,i|ur,b,i, xr,b,i, vr,b,i).
• For each d ∈ D and block b ∈ [1 : B +

2], randomly and independently generate 2nR̂d se-
quences vnd,b(ld,b−2) ∼

∏n
i=1 PVd

(vd,b,i), with ld,b−2 ∈
[1 : 2nR̂d ]. For each ld,b−2, randomly and indepen-
dently generate 2nR̂d sequences xnd,b(ld,b−1|ld,b−2) ∼∏n
i=1 PXd|Vd

(xd,b,i|vd,b,i), ld,b−1 ∈ [1 : 2nR̂d ]. For
each ld,b−2, randomly and independently generate 2nR

′

sequences und,b(m
′
b|ld,b−2) ∼

∏n
i=1 PUd|Vd

(ud,b,i|vd,b,i).
For each (ld,b−2, ld,b−1), randomly and independently
generate 2nR̂d sequences ŷnd,b(ld,b|ld,b−2, ld,b−1) ∼∏n
i=1 PŶd|XdVd

(ŷd,b,i|xd,b,i, vd,b,i).
For each (m′b,m

′
b−1, lb−2), randomly and independently

generate 2nR
′′

sequences xn1,b(m
′′
b |m′b,m′b−1, lb−2) ∼∏n

i=1 PX1|UN
2 V

N
2
(x1,b,i|v2,b,i, u2,b,i, . . . , vN,b,i, uN,b,i).

Let v′nb (R) := [vnr,b(m̂
′
b−1, l̂r,b−2), r ∈ R], v′nb (D) :=

[vnd,b(l̂d,b−2), d ∈ D], x′nb (R) := [xnr,b(l̂r,b−1|m̂′b−1, l̂r,b−2) :

r ∈ R], x′nb (D) := [xnd,b(l̂d,b−1|l̂d,b−2) : d ∈ D], u′nb (R) :=

[unr,b(m̂
′
b|m̂′b−1, l̂r,b−2 : r ∈ R], u′nb (D) := [und,b(m̂

′
b|l̂d,b−2) :

d ∈ D] and ŷ′nb (R) := [ŷnr,b(l̂r,b|m̂′b, m̂′b−1, l̂r,b−2, l̂r,b−1) : r ∈
R], ŷ′nb (D) := [ŷnd,b(l̂d,b|l̂d,b−2, l̂d,b−1) : d ∈ D].

2) Source encoding At each block b ∈ [1 : B + 1], after
observing Y n

1,b, it looks for l̂b−1 such that(
xn1,b(m

′′
b |m′b,m′b−1, l̂b−2), v′nb (R), v′nb (D), x′nb (R), x′nb (D),

u′nb (R),u′nb (D),ŷ′nb (R),ŷ′nb (D),yn1,b
)
∈T nε (PV N

2 XN
1 U

N
2 Ŷ

N
2 Y1

)

with m̂′′b = m′′b , m̂′b = m′b and m̂′b−1 = m′b−1 since the

transmitter knows source messages it sent.
After finding compression indices l̂b−1, in block b + 1 the

transmitter sends xn1,b+1(m
′′
b+1|m′b+1,m

′
b, l̂b−1).

3) Relay encoding: Relay nodes perform mixed compress-
forward and partial decode-forward. In each block b ∈ [1 :
B + 1], Relay r ∈ R looks for a unique index m̂′b such that(

vnr,b(m̂
′
b−1, lr,b−2), x

n
r,b(lr,b−1|m̂′b−1, lr,b−2),

unr,b(m̂
′
b|m̂′b−1, lr,b−2), ynr,b

)
∈ T nε (PXrYrUrVr

).

then it compresses ynr,b by finding a unique index lr,b such that(
vnr,b, u

n
r,b, x

n
r,b, y

n
r,b,

ŷnr,b(lr,b|m̂′b, m̂′b−1, lr,b−2, lr,b−1)
)
∈ T nε (PVrUrXrYrŶr

).

In block b+ 1 it sends xnr,b+1(lr,b|m̂′b, lr,b−1).
4) Receiver encoding: Receiver d ∈ D compresses ynd,b by

finding a unique index ld,b such that(
vnd,b(ld,b−2), x

n
d,b(ld,b−1|ld,b−2),

ŷd,b(ld,b|ld,b−2, ld,b−1), ynd,b
)
∈ T nε (PVdXdYdŶd

).

Then, in block b+ 1 it sends xnd,b+1(ld,b|ld,b−1).
5) Decoding: Receiver d ∈ D performs backward de-

coding. For each block b ∈ [B + 2, . . . , 1], it looks for
(m̂′′b , m̂

′
b−1, l̂b−2) such that(

xn1,b(m̂
′′
b |m̂′b, m̂′b−1, l̂b−2), v′nb (R), v′nb (D), xnb (R), x′nb (D),

u′nb (R),u′nb (D),ŷ′nb (R),ŷ′nb (D),ynd,b
)
∈T nε (PV N

2 XN
1 U

N
2 Ŷ

N
2 Yd

).

6) Analysis: See [12] for details.
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