
A Scalable Lane Detection Algorithm on COTSs with OpenCL

Kai Huang∗†, Biao Hu†, Jan Botsch†, Nikhil Madduri‡, and Alois Knoll†

∗School of Mobile Information Engineering, Sun Yat-Sen University

†Chair of Robotics and Embedded Systems, Technical University Munich, Germany

Email: ∗huangk36@mail.sysu.edu.cn ‡nikhil.madduri@gmail.com †{kai.huang,hub,jan.botsch,knoll}@in.tum.de

Abstract—Road lane detection are classical requirements
for advanced driving assistant systems. With new computer
technologies, lane detection algorithms can be exploited on COTS

platforms. This paper investigates the use of OpenCL and develop
a particle-filter based lane detection algorithm that can tune the
trade-off between detection accuracy and speed. Our algorithm is
tested on 14 video streams from different data-sets with different
scenarios on different COTS hardware. With an average deviation
fewer than 5 pixels, the average frame rates for the 14 videos can
reach about 400 fps on both GPU and FPGA. The peak frame
rates for certain videos on GPU can reach almost 1000 fps.

I. INTRODUCTION

Lane detection is one of the most basic functions

for Advanced Driver Assistance Systems(ADAS) and it

has grabbed significant attention in research since mid-

1980’s. New development on computer technologies, however,

has allowed new perspectives on designing a good lane

detection algorithm. On the one hand, the powerful but low-

cost commercial-off-the-shelf (COTS) semiconductor products

boost the usage of COTS for domain-specific applications.

In the automotive industry, it is very attractive to replace

traditional dedicated ECU/ASIC-implementations with COTS

in order to reduce the overall manufacture cost. On the other

hand, as the software in a car is expected to run up to 1 GB of

software [2], it is preferable to design a scalable algorithm to

leave rooms for multiple ADAS applications on single ECU [3].

The scalability here means an algorithm can consider the trade-

off between the accuracy and demanded computing power.

This paper presents a scalable lane detection and tracking

algorithm based on Particle Filter [4] and OpenCL. The

proposed method is vision-based and requires no knowledge

of any physical parameters like position and orientation of

the camera. Lane markings in a video stream can be either

detected or tracked by the algorithm. For the case of tracking,

Particle Filter is used. The choice of Particle Filter, rather than

the most popularly used Kalman Filter is that Particle Filter

is non-linear and particularly suitable for parallel processing,

as each particle can be processed independent of the others.

In addition, by changing the number of used particles, the

algorithm can make a trade-off between the tracking accuracy

and computing power.

The choice of OpenCL is because it is an industry standard

for parallel computing supporting heterogeneous hardware.

Hence source code written in OpenCL can be executed on

GPUs, FPGAs, and Multi-Core CPUs alike, without major

modifications. This helps in developing software that runs

on heterogeneous COTS hardware for future automobiles,

replacing the traditional dedicated ECUs. With the OpenCL

implementation, our algorithm is tested on both GPUs and

Input
Stream

Pre-Processing

Lane
Tracking

Lane
Detection

Position of
lane markings

Fig. 1: Algorithm overview

FPGAs. With an average deviation fewer than 5 pixels, the

average frame rates can reach about 400 fps on Nvidia GeForce

GTX 660 Ti and Altera Stratix V A7 for different kinds of

road scenarios. On the resource-restricted Altera Cyclone V

SoC FPGA, the average frame rates can still reach 25 fps.

Related Work: To capture the non-linear dynamics of lane

tracking, Particle Filter is typically used. In [6], lane tracking

is conducted by a statistical Hough Transform with Particle

Filter. Stratified resampling is used to resample the particles

based on their weights and the high weight particles after

resampling are chosen as the detected lines. This algorithm

was implemented in MATLAB on Intel Core 2 Duo (2.2 GHz)

machine and the throughput of the algorithm is as low as

1.0 Hz. There are also learning approaches, e.g., [5] uses

around 200 particles to track the lane markings with a separate

particle filter dedicated to each of the lane markings. The lane

tracking algorithm in their case was reported to be working

on 240x320 images at 25 Hz on a 4 GHz processor. While the

major advantage of a particle filter being its ability to capture

non-linearity and Kalman Filter can provide optimal solution

if a part of the solution is linear, [7] provides a very innovative

approach to combine both, where, the lane tracking problem is

split into two separate sub-problems. The states that are linear

are processed by Kalman filter while Particle Filter estimates

the non-linear states. This algorithm was tested on Intel Atom

CPU N270 (1.6 GHz) and the performance obtained is up to

30 Hz. In [1], an FPGA implementation is presented where the

frame rate can reach 40 fps for 752x320 images.

II. METHOD AND IMPLEMENTATION

This section presents in details our algorithm. The algorithm

contains three parts, namely video pre-processing, lane

detection, and land tracking, as shown in Fig. 1. The video

stream showing a road and the area surrounding it will be

processed in two subsequent steps frame by frame. First,

information on the lane markings is amplified and extracted

from each frame in the pre-processing step. Then, depending

on whether previous estimates of the position exist or not, the

exact position of the lane markings is detected or tracked in

a lane detection or lane tracking steps, respectively.

A. Pre-processing

The pre-processing is the first step for both detecting or

tracking street lanes. A region of interest(ROI) is selected

from an incoming image. This region is pre-processed to

provide the required information on the lane markings. First

the image is transformed into grayscale. Then a Sobel filter

detects edges in the image and finally a thresholding step

removes minor disturbances and strengthens the appearance

of the lane markings.

The ROI contains all essential information for the subse-

quent steps and the rest of the image can be discarded. The

size of the ROI is a parameter that determines the efforts for

later-on lane detection/tracking. The smaller the ROI chosen,

the less computing power is needed. In this work, the size and

position of the ROI are kept adjustable, so that the algorithm

can be tested in a wide range of scenarios. Once the ROI is

selected, only the area within the region is processed in the

subsequent steps. The ROI is then transformed to a grayscale

format, where each pixel reflects the intensity of the pixel

in the original image. In principle, dark pixel will receive

lower intensity values and bright pixels will receive higher

values. The grayscale is performed for each pixel of the ROI

individually. In this manner, lane markings are substantially

brighter than the road they are printed on.

Afterward, a Sobel filter is applied to the grayscaled image

to produce a new image, where only transitions and edges

(such as the lane markings) of the original image are present.

Technically, each pixel in the new image describes the gradient

of the original image at that position. A strong gradient will

be represented by a high absolute value and a soft gradient

by a value close to zero. With the outcome from the Sobel

filter, there may be still noises from e.g., varying colors of the

street material and shadows. Therefore, a thresholding step is

introduced to set the intensity of those pixels, whose gradient

falls below a certain threshold, to zero, otherwise maximum.

This step will make the lane detection possible under difficult

conditions, e.g., when rain or fog lead to blurred images. In

those situations the edges of the lane markings might be less

visible and the thresholding will make them brighter.

The pre-processing displays a high potential for parallel

computations. Grayscaling and Thresholding can be applied to

each pixel independently. The use of the Sobel Filter requires

knowledge of eight neighbouring pixels. This provided, all

pixels in the ROI can be pre-processed in parallel. Therefore,

an OpenCL kernel was developed such that the pre-processing

can be performed on FPGAs or GPUs.

B. Lane Detection

After the pre-processing, the lane markings are indicated

by a band of pixels with high intensities in the ROI. It is the

task of the lane detection or lane tracking algorithm to extract

the exact positions of the lane markings. Lane detection is

performed whenever no estimates on the lane markings are

available, for example the very first frame that is processed.

After detecting the lane markings, detection is only performed

when the lane tracking algorithm fails to track the markings.

1) Lane Marking Representation: To represent the lane

markings, i.e., the band of pixels with high intensities in the

ROI, we assume all lane markings within the ROI are straight

lines. This is due to the fact that the ROI captures only a small

section of the street ahead and, on straight roads and even

in moderate bends, the straight-line-assumption always holds.

In sharp bends or other exceptionally routed roads where the

lane markings might exhibit a bend, the ROI can then be split

horizontally into two or more regions, yielding sub-regions

with straight lane markings.

With the straight-line assumption, a lane marking can be

defined by two points, one at the top and the other at the

bottom of the ROI. The position (or state) of a line can thus

be expressed as X =
(

xtop

xbottom

)

, as the height of the ROI is

known and the y-values of these two points are constant and

given by the respective line number in the ROI. The slope sX
of the line and any other point on the line with y-value i can

be determined by sX =
xbottom−xtop

ROI HEIGHT
, and xi = xtop + sX · i.

In this manner, one can access the intensity value of any pixels

for a given line X .

2) Detection: To detect multiple lane markings, the ROI

is vertically split into multiple regions, each for one lane

marking. To detect one lane marking, a number of randomly

placed candidate lines are populated within each region. The

actual detection is achieved by assigning a weight to the

candidate lines, which expresses how close the line is placed

to a real lane marking. The weight of a line is determined by

summing up the intensities of all pixels in the line within the

ROI. Further, the pixels in an adjustable neighborhood around

a line (left and right of the actual line) are added to this weight.

Keeping in mind that lane markings are represented by

pixels with high intensities, this method results in candidate

lines with higher weights, if they are close to a lane marking.

The candidate line with the highest weight is selected to

represent the lane marking. The number of candidate lines

that are sampled in a region is adjustable and, therefore, there

is a trade-off between the performance of the lane detection

and its quality. Using more candidate lines will result in a

better detection, but also consumes more time.

The candidate lines are created by sampling its xtop- and

xbottom-values following a normal distribution. The mean µ
of a normal distribution represents the value we expect to

appear (the expectation). In the case of lane detection the most

likely position of a lane marking is the center of a region.

This is the position of a lane marking, if a vehicle drives

on a straight road. The standard deviation σ decides how the

candidates are distributed around the expectation. In this work,

σ is set to half of the region width. From the definition of

the standard deviation of a normal distribution follows that

statistically about 68% of the sampled lines will be placed

completely within a region and the remaining 32% might

overlap to other regions. This empirical choice of parameters

proved to detect lane markings in all kinds of positions from

our later experiments.

3) Implementation: The presented method for detecting

lane markings has the desirable characteristic that the

candidate lines are independent from one another. The

sampling of the lines and the calculation of their weights

can be done in parallel. Hence, an OpenCL kernel is used

to compute the weight of each sample line. Notes that the

selection of the best lines from the candidate lines requires

knowledge of all lines and is therefore performed on the host.

The lane tracking algorithm, which will be described in

the following section, requires a set of possible candidates/-

particles for each lane marking. Therefore not only the best

candidate is stored, but for each lane marking a subset of

the candidate lines is kept. In the following this subset will

be referred to as the good lines. The line with the highest

weight amongst the good lines will be called the best line and

represents the actual lane marking.

C. Lane Tracking

Lane tracking differs from lane detection as it uses

information from a previous frame to detect the lane markings

in a subsequent frame. Hence it does not actually detect the

lines, but rather tracks them. The lane tracking algorithm has

two sources of information at its disposal, the pre-processed

ROI and the set of good lines and best lines from the previous

frame. A Particle Filter is employed to keep track of the

markings. Each lane marking is tracked separately, which

means that multiple instances of the same particle filter are

used in the algorithm.

1) Particle Filter setup: We match the classical Particle

Filter P (X|Y) = P (Y |X)P (X)
Pr(Y) as follows. The state variable

is defined as the position of a lane marking: X =
(xtop, xbottom). The prior distribution P (X) is derived from

the good lines from the previous frame. Similarly, observations

Y is the actual lane marking positions. Though direct

observations cannot be obtained, the best lines from the

previous frame can be interpreted as observations of the lane

markings in the current frame, assuming that the positions

of the markings do not change significantly between two

consecutive frames. Following the aforementioned matching,

below presents the three steps to implement a Particle Filter.

2) Prediction update: This step is introduced, because the

particles (good lines) are representing the lane markings in one

frame, but are used as prior distribution in the next frame. In

the new frame, the lane markings might have moved slightly

because of the movement of vehicle. The particles need to

move the same distance in order to be a valid prior distribution

in the new frame. As the distance the lane markings shift is

not known, the particles are shifted by a random value from a

normal distribution with mean µ = 0 and standard deviation

σ > 0. µ = 0 indicates that we expect no shift in an optimal

case and σ > 0 accounts for a deviation from the optimum.

In our work, σ is empirically set to 1/16 ROI WIDTH.

3) Important weight update: For each particle of the

prior distribution the importance weight is calculated. The

importance weight of a particle is determined by the

numerator: P (Y |Xi)P (Xi). It assesses the likelihood that

the predicted particle Xi produces the observation Y . In this

work this is determined by fitting the state of the predicted

particle to the Gaussian function wi
Xt

= 1√
2πσ2

e
− 1

2
(
Xt−µf

σf
)2

,

where µf = Y . The standard deviation σf represents the

measurement noise that accounts for a possible error in the

assumption that the position of a lane marking does not change

between two frames. The term Xi − µf = Xi− Y represents

the distance of two lines, the particle Xi and the observation

Y . This distance is calculated by summing up the point-wise

distance of line Xi and line Y .

4) Resampling and Picking up best lines: The prediction

and importance weight update produce a new set of good

lines, where each particle has a normalized importance weight.

Finally, a resampling step is performed in order to increase

the accuracy of the tracking and prevent a degeneration of the

set. The resampling step selects particles from the updated set

according to their normalized importance weight and shifts

them to a new set with the same number of particles. Since

particles are selected according to their importance weight,

good particles are more likely to be selected than less accurate

particles. A particle can also be chosen multiple times.

The resampling is used to keep the good lines that are

close to the best lines of previous frame. The closeness is

represented by the importance weight. However, picking up

the best lines of current frame does not rely on the importance

weight because the best lines may have some deviations. The

collected intensity of a resampled good line still represents

the lane marking. Hence, the resampled good lines with the

highest intensity weight are selected to be best lines. The

selected best lines of current frame will be used as a reference

to resample good lines of next frame.

5) Implementation: The prediction, importance weight

update, and intensity collection of one particle is not dependent

on other particles. Therefore these parts can be performed in

parallel and an OpenCL kernel was created that carries out the

updates on GPUs or FPGAs. The resampling and picking up

best lines, in contrast, are dependent on information from all

particles and are implemented on the host. Note the number

of particles used for the tracking does not have to be same

as the number of sampling candidates used for the detection.

The number of sampling candidates is the upper bound for the

number of particles. In principle, larger number leads to higher

accuracy. Nevertheless, both numbers can be used to tune the

trade-off between speed and accuracy of our algorithm.

D. Re-detection Criteria

The switch from lane tracking to detection depends on the

actual road scenarios. During lane tracking, a few criteria

are checked whether the detected lane marking positions are

reasonable and in line with the physical properties of lane

markings. If the criteria are not met, a detection step is

triggered to re-discover the positions of the lane markings

again. The used criteria are a) lane markings do not cross,

b) minimum distance between any detected lane markings (In

this work, 20% of the width of the ROI), and c) at least 30%

of a lane marking are in the ROI.

The last check is important for the lane tracking. The

algorithm tracks lane markings based on existing estimates and

0.00
5.00

10.00
15.00
20.00
25.00

#
 P

ix
e

ls

(a) Deviation of best lines with the referred best lines

 200
 400
 600
 800

 1000

F
ra

m
e

 R
a

te

(b) GeForce GPU

 0
 200
 400
 600
 800

F
ra

m
e
 R

a
te

(c) Stratix V FPGA

10.00

20.00

30.00

40.00

50.00

2
3

2
4

2
5

2
6

2
7

2
8

2
9

2*2
9 4*2

9 6*2
9 8*2

9

F
ra

m
e

 R
a

te

(d) Cyclone V FPGA

Fig. 2: Accuracy v.s. frame rate. The X axis is # particles Np.

For Np ≤ 29, Nc is always 29, otherwise Nc = 212.

it will do so even if the lane markings moves to the boundary

or even out of the ROI. No new lane markings are detected in

the lane tracking stage. In many scenarios, for example when a

car changes the lane on the highway, one lane marking moves

out of the ROI and another one moves in. The third check of

the re-detection criteria discovers these cases and triggers a

lane detection step to discover a new lane marking.

III. EXPERIMENTS

Accuracy: First of all, we evaluate the impact of numbers of

candidate lines(denoted as Nc) and particles (denoted as Np)

on the overall accuracy. Since our algorithm is a stochastic

approach, the lane markings detected from a Nc = 214 and

Np = 212 setting are used as baselines. We evaluate different

Np and Nc combinations. Each combination is tested with 14
independent videos, including the Caltech Lanes Dataset and

some self-recorded videos. The numbers of pixels deviated

from the baselines are reported. The results are shown in

Fig. 2a. From the figure, the first observation is that the

accuracy increases when Np increases. With Np = 256, the

maximum deviation is already below 5 pixels. Considering the

neighborhood Nn is set to 10 pixels, i.e., a lane marking is

represented by 20 pixels, we can conclude that our algorithm

can achieve high accuracy. The second observation is that

when Np ≥ 512 the deviation is saturated to 3 pixels. Larger

Np is needed when the ROI is set larger.

Performance: For all aforementioned Np and Nc combi-

nations, the 14 videos are tested on three COTS devices and

Fig. 2b–2d report the corresponding frame rates. It can be seen

that, the GPU can obtain an average 400 fps when Np ≤ 512
and the peak frame rates for certain videos can reach almost

 0
 100
 200
 300
 400
 500
 600

G
eForce

Stratix

C
yclone

G
eForce

Stratix

C
yclone

G
eForce

Stratix

C
yclone

G
eForce

Stratix

C
yclone

F
ra

m
e

 R
a

te

592

431

34

326

198

17

135112
11

86 60
8

432*1024144*1024216*51272*512

Fig. 3: Frame rate w.r.t. ROI.

1000 fps. For the Stratix V FPGA, the frame rates are lower

than the GPU but still considerably fast, over 300 fps for Np ≤
256. One the other hand, our algorithm can still reach real time

on the resource-restricted Cyclone V SoC FPGA. Considering

the power consumption for the Stratix V and Cyclone V are

just 24W and 4W, respectively, we can conclude that our

algorithm is super energy efficient.

In addition, we also investigate the influence of ROI size

on the frame rate. Four different ROI sizes are tested and the

results are shown in Fig. 3. In these cases, Np = 256 and

Nc = 512 are adopted. From the figure, It can be seen that

the ROI size has big influence on the frame rate. Nevertheless,

our algorithm can still reach 60 fps on Stratix V FPGA for

considerably large ROI.

IV. CONCLUSION

This paper presents a vision-based lane detection algorithm.

It requires no knowledge of any physical parameters like

position and orientation of the camera and is hence very

flexible. The algorithm is tested with 14 videos on three

different kinds of COTS and demonstrate super fast speed,

high accuracy, and super energy-efficient. The algorithm is

so efficient such that traditional techniques like correcting

the perspective with inverse perspective mapping, are simply

unnecessary. Based on this work, we suggest that ADAS can

be benefited from COTS and OpenCL can be used for ADAS

application developments.

REFERENCES

[1] X. An, E. Shang, J. Song, J. Li, and H. He. Real-time lane departure
warning system based on a single FPGA. EURASIP Journal on Image

and Video Processing, 2013(1), 2013.
[2] M. Broy, I. Kruger, A. Pretschner, and C. Salzmann. Engineering

automotive software. Proceedings of the IEEE, 95(2):356–373, Feb. 2007.
[3] M. Buechel, J. Frtunikj, K. Becker, S. Sommer, C. Buckl, M. Armbruster,

A. Marek, A. Zirkler, C. Klein, and A. Knoll. An automated electric
vehicle prototype showing new trends in automotive architectures. In
International Conference on Intelligent Transportation Systems(ITSC),
September 2015.

[4] J. V. Candy. Bayesian Signal Processing: Classical, Modern and Particle

Filtering Methods. Wiley-Interscience, 2009.
[5] R. Gopalan, T. Hong, M. Shneier, and R. Chellappa. A Learning

Approach Towards Detection and Tracking of LaneMarkings. In IEEE

Transactions on Intelligent Transportation Systems, volume 13, pages
1088–1098, 2012.

[6] G. Liu, F. Worgotter, and I. Markelic. Combining statistical hough
transform and particle filter for robust lane detection and tracking. In
IEEE Intelligent Vehicles Symposium, pages 993–997, 2010.

[7] M. Nieto, A. Corts, O. Otaegui, J. Arrspide, and L. Salgado. Real-time
lane tracking using rao-blackwellized particle filter. Journal of Real-Time

Image Processing, pages 1–13, 2012.

