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Abstract—The mitigation of nonlinear distortion caused by
power amplifiers (PA) in Orthogonal Frequency Division Multi-
plexing (OFDM) systems is an essential issue to enable energy
efficient operation. We propose a new algorithm for receiver-
based clipping estimation in OFDM systems that combines
the existing Iterative Hard Thresholding method with a novel
Bayesian framework to estimate clipping parameters at the
receiver. We avoid the use of pilots and formulate the recovery
problem solely on reliably detected sub-carriers. We also develop
a new criterion for selecting these reliable carriers that takes into
account the channel code. Through simulations, we show that
the proposed technique outperforms the existing methods both
in terms of BER and speed.

I. INTRODUCTION

With the recent leap from 3G to 4G, the power consump-
tion of mobile devices has increased considerably. The 4G
operates on Long Term Evolution (LTE), in which Orthogonal
Frequency Division Multiplexing (OFDM) is used for the
wireless communications. However, the use of multi-carrier
modulations such as OFDM leads to a higher Peak-to-Average
Power Ratio (PAPR) and thus higher power consumption in
an RF Power Amplifier (PA).

Several PAPR reduction algorithms have been proposed to
improve power efficiency [1]. Coding schemes [2] and Partial
Transmission Sequences [3] come at the cost of throughput
reduction. Companding transforms [4] and tone injection tech-
niques [5] increase the complexity of the transmitter.

In some applications, such as the uplink of mobile commu-
nications systems, it is desirable to shift as much computa-
tional effort as possible to the receiver side, while keeping the
transmitter simple. In these cases, an attractive PAPR reduction
technique consists of just clipping the signal at the transmitter
and then compensating for the clipping at the receiver.

A powerful distortion cancellation algorithm, called Scaled
Coded Power Amplifier Nonlinearity Cancellation (sCPANC),
was proposed in [6]. This method relies on iterative decoding,
and suffers its associated complexity. It also requires knowl-
edge of the input-output characteristic of the PA at the receiver.

The Support Agnostic Bayesian Matching Pursuit (SABMP)
algorithm, proposed in [7], exploits the sparse nature of the
clipping error while choosing a certain number of reliable sub-
carriers to avoid affecting the throughput of the system. Its
main drawback is its high computational complexity.

We propose a new sparse reconstruction approach based on
Weighted Iterative Hard Thresholding, which outperforms the

existing clipping recovery techniques SABMP and sCPANC
in both BER and execution speed terms, while still having no
effect on the throughput of the channel.

Our paper is organized as follows. Section II describes the
system model and formulates the recovery problem. In Sec-
tions III to V, the proposed Weighted Iterative Hard Thresh-
olding algorithm and the developed Bayesian framework for
parameter estimation are presented. Section VI compares the
computational complexity of this technique with SABMP and
sCPANC. In Section VII we provide some simulation results
to reveal the usefulness of the method, and Section VIII gives
conclusions and suggests some areas for future work.

II. SYSTEM MODEL

Consider an OFDM system with Q-QAM modulation and
N subcarriers. An IFFT is applied to each OFDM block X ∈
CN×1 to obtain the time-domain vector x = FHX ∈ CN×1,
where F is a N ×N DFT matrix [8].

The time-domain signal x has high PAPR due to the addi-
tion of different frequency sub-carriers. To avoid saturating the
power amplifier (PA), a soft clipping operation is applied to
x before sending it to the PA. The clipped signal xp ∈ CN×1
is given by:

xp[n] = g (x[n]) =

{
x[n], |x[n]| ≤ τ
τej arg x[n] |x[n]| > τ

(1)

where τ is the clipping threshold. We will model the clipping
as an additive distortion c applied to the time-domain signal
x. The output xp of the clipping process is then:

xp = x + c = FHX + c. (2)

After addition and removal of a sufficiently long cyclic
prefix (CP), the receiver applies an IFFT to the received signal:

Y = FHFHX + FHc + Fz, (3)

where z ∈ CN×1 is the AWGN noise with variance σ2
z . The

channel matrix H ∈ CN×N is circulant due to the use of a
CP. Therefore, the DFT matrices diagonalize it, such that Λ =
FHFH is a diagonal matrix, and furthermore FH = ΛF. This
allows rewriting the frequency-domain received signal as:

Y = ΛX + ΛFc + Fz. (4)



Equalization of the channel amounts to multiplying with the
inverse of the diagonal matrix Λ:

Y = Λ−1Y = X + Fc + Λ−1Fz. (5)

In order to determine the unknown vector c, the data term
X needs to be removed from (5). This could be done with
the help of pilots, but there is a more efficient way that avoids
bandwidth loss. A set R of M reliable carriers is chosen, in
which there is high certainty that the distortion term Fc +
Z was not high enough to move the symbol to a different
constellation region. This means that the demapped symbols
in the reliable carriers are the same as the transmitted symbols:

JX = JQ
[
Y
]
, (6)

where J ∈ {0, 1}M×N is a selection matrix that selects
the reliable carriers, and Q

[
Y
]

denotes the closest QAM
constellation points to each element of Y . The procedure for
selection of the reliable carriers is addressed in Section III.

The receiver subtracts the demapped symbols from the
reliable carriers:

Ỹ = JY − JQ
[
Y
]
= JX − JQ

[
Y
]
+ JFc + JΛ−1Fz

= JFc + JΛ−1Fz. (7)

Note also that, from (1), the clipping error c always has the
opposite phase to that of the clipped signal xp. The receiver
can therefore estimate the received signal (see (5)):

x̂p = FHY = x + c + FHΛ−1Fz, (8)

and estimate the phase of c as θ = π+arg {x̂p}. This allows
expressing c as:

c = Θc, (9)

where Θ = diag {exp (jθ)} ∈ CN×N , and c = |c| ∈ RN .
With this treatment, now only the real-valued, positive ampli-
tude c of c needs to be estimated. By plugging (9), into (7),
we obtain the final sparse recovery problem formulation:

Ỹ = Ac + Z̃, (10)

where A = JFΘ ∈ CM×N is the sensing matrix, and Ỹ =
J
(
Y −Q

[
Y
])
∈ CM×1 is the observation vector. The noise

Z̃ = JΛ−1Fz ∈ CN×1 has diagonal covariance matrix:

RZ̃Z̃ = σ2
zJΛ−1

(
Λ−1

)H
JH ∈ CM×M . (11)

The receiver needs to estimate c and then subtract Fc from
(5) to obtain the undistorted symbols X .

III. SELECTION OF RELIABLE CARRIERS

The choice of reliable carriers in (6) is done by computing
a reliability measure R[n] for each subcarrier n, and choosing
the M subcarriers with highest R[n].

If the channel code is not taken into account, the optimal
reliability measure has already been proposed in [7], and com-
putes the a posteriori probability of the symbol coming from

the closest constellation point, p
(
Q
[
Y[n]

]
= X [n] | Y[n]

)
:

RLR[n] =
e
−|Y[n]−Q[Y[n]]|2

σ2z

Q∑
q=1

e
−|Y[n]−Qq|2

σ2z

, (12)

where Qq denotes the q-th constellation point.
In this work, we propose a more accurate reliability measure

that takes the channel code into account. If an a posteriori
probability (APP) decoder is used [9], it can output the log-
likelihood ratios (LLRs) of the encoded bits:

LLRn,i , log
p (bn,i = 1)

p (bn,i = 0)
, (13)

where bn,i, n ∈ {1, . . . , N} , i ∈ {1, . . . , log2Q} denotes the
i-th bit of the n-th subcarrier, in the encoded domain. The
probability that this bit is correct can then be computed as:

p(b̂n,i = bn,i) =
e|LLRn,i|

1 + e|LLRn,i|
. (14)

The product of these probabilities for all bits in one subcarrier
gives the probability that the subcarrier symbol is correct,
which is our proposed reliability measure. In logarithmic units:

RCC[n] =

log2Q∑
i=1

log
e|LLRn,i|

1 + e|LLRn,i|
. (15)

This measure uses information about the channel code, and
can correctly select reliable carriers with a higher distortion
term than the ones chosen by (12). This larger distortion term
is better suited for the subsequent distortion estimation.

IV. SPARSE RECONSTRUCTION OF THE CLIPPING

A. Problem formulation

Once the reliable carriers are selected, the receiver needs to
obtain an estimate of c by solving the sparse reconstruction
problem in (10). Due to the large amount of subcarriers in
a typical OFDM scenario (256-2048), the `1 minimization
techniques such as Basis Pursuit Denoising [10] might be too
slow for real-time applications. Therefore, we focus on greedy
approaches to the compressed sensing problem:

ĉ = argmin

[∥∥∥Ỹ −Ac
∥∥∥2
2

]
s.t. ‖c‖0 < K, (16)

i.e. the aim is to minimize the Mean Squared Error (MSE) of
the transformed clip signal Ỹ , subject to a maximum allowed
number of nonzero taps K in c. The estimation of this K is
a key issue and is dealt with in Section V.

B. Weighted Iterative Hard Thresholding

The Support Agnostic Bayesian Matching Pursuit (SABMP)
technique proposed in [7] is very robust in a wide range of sce-
narios, but its complexity is extremely high (see Section VI).
Therefore, we propose an alternative much faster method.

Our proposed method, Weighted Iterative Hard Threshold-
ing (WIHT), has three inputs: the sensing matrix A, the
observation vector Ỹ , and a weighting vector w ∈ RN×1. This



Algorithm 1 Weighted Iterative Hard Thresholding (WIHT)

Input: Ỹ , A, w, K
Support set: Ŝ = supp

{
HK

(
diag {w}AHỸ

)}
BLUE Estimate ĉ = JHŜ (A

H
ŜR−1Z̃Z̃AŜ)

−1AH
ŜR−1Z̃Z̃Ỹ

Output: ĉ

xp

x̂p

z

z′ x̂′p

θ
x̂px̂p

θx̂pz

Figure 1. Approximation of |x̂p| by
∣∣x̂′p∣∣ = ∣∣∣|xp|+ |z| cos θx̂pz

∣∣∣.
weighting vector is an estimate of the a priori probability of
each tap of the solution vector to be active (nonzero), and in
Section V we propose an accurate estimator for it.

The proposed algorithm is based on Iterative Hard Thresh-
olding (IHT) [11], which consists of a Steepest Descent
approach in which a hard thresholding operator HK (·) is
applied after each step. This operator keeps the K maximum
samples of its argument and sets all other taps to 0.

The proposed WIHT method runs a single iteration of stan-
dard IHT but applying the weighting w before thresholding:

ĉ(1) = HK

(
diag {w}AHỸ

)
. (17)

Our experiments showed that, if the weighting w is accurate
enough, the support of ĉ(1) after only one iteration usually
coincides with that of c. Therefore, WIHT takes this support
set Ŝ = supp

{
ĉ(1)

}
and performs a Best Linear Unbiased

Estimate (BLUE) over it:

ĉ = JHŜ (A
H
ŜR−1Z̃Z̃AŜ)

−1AH
ŜR−1Z̃Z̃Ỹ , (18)

where JŜ ∈ {0, 1}
K×N selects the support set, and AŜ =

AJHŜ contains the columns of A corresponding to the support
set. The noise covariance matrix RZ̃Z̃ is given by (11).

V. CLIP PARAMETER ESTIMATION

The WIHT algorithm is very fast, but its performance de-
pends highly on the accuracy of the weighting function w, and
of the number of active taps K. We have developed an accurate
receiver-based Bayesian estimator for these parameters.

A. Statistical properties of the received signal

The proposed method uses the estimated clipped signal x̂p

from (8) as an input. We neglect the correlations of the noise
vector FHΛ−1Fz and consider each received sample x̂p[n]
separately. This is a suboptimal approach, but still greatly
outperforms the heuristic used so far. For the remainder of this
section, we drop the index [n] for convenience, and denote
the current sample of FHΛ−1Fz by z. Note that, although
correlated, these samples are still circularly symmetric. The

magnitude of each tap x̂p of the estimated clipped signal is
then (note that xp includes the clipping (2)):

|x̂p| = |xp + z| =
√
|xp|2 + 2 |xp| |z| cos

(
θx̂pz

)
+ |z|2.

(19)
We now approximate the magnitude of x̂p by that of its
projection x′p in the direction of xp, as depicted in Figure 1:

|x̂p| ≈
∣∣x′p∣∣ = ∣∣|xp|+ |z| cos θx̂pz∣∣ . (20)

This is equivalent to replacing |z|2 with |z|2 cos2 θx̂pz in (19),
and holds as long as |xp| � |z|. We note that, if this does
not hold, it means that |xp| is small and thus the probability
of clipping is low. Our proposed weighting function (36) will
still give a value close to 0 in this case, and therefore the
approximation error is not relevant for our purpose.

The unclipped signal x is the sum of a large number N of
i.i.d. symbols, and therefore can be assumed Gaussian with
variance σ2

x. Its magnitude is therefore Rayleigh:

p|x|(u) =
2u

σ2
x

e
− u2
σ2x , u ≥ 0, (21)

where u , |x|. The probability density function (PDF) of the
magnitude of the clipped signal up , |xp| is easy to obtain: it
is the same as that of |x| in the unclipped region (u < τ ), and
concentrates all the probability mass for |x| > τ (computed
as
∫∞
τ
p|x|(u) du) into a Dirac delta at up = τ :

p|xp|(up) =


2up
σ2
x
e
−
u2p

σ2x , 0 ≤ up < τ,

e
− τ2
σ2x δ (up − τ) up ≥ τ.

(22)

Now, we obtain the PDF of x′p = |xp| + |z| cos θx̂pz . Due
to the circular symmetry of z, the PDF of z′ = |z| cos θx̂pz is
the same as that of the real part of the noise:

pz′(z
′) =

1

σz
√
π
e
− z′2
σ2z . (23)

The PDF of x′p is the convolution of the PDFs of xp and z′:

px′p(x
′
p) =

∫ τ

0

pxp(xp)pz′(x
′
p − xp) dxp (24)

Then, the PDF of ûp ,
∣∣x′p∣∣ ≈ |x̂p| is obtained by summing

the positive and negative parts of px′p(x
′
p):

p|x̂p|(ûp) ≈ px′p(ûp) + px′p(−ûp). (25)

The result of applying (24) and (25) to (22) is a long closed
expression that can be written as:

p|x̂p|(ûp) ≈ fc(ûp) + fc(ûp), (26)

where fc(ûp) , p (“clip”) p
(
ûp
∣∣ “clip”) is given by:

fc(ûp) =
1

σz
√
π
e
− (ûp−τ)2

σ2z
− τ2
σ2x

(
1− e−

4ûpτ

σ2z

)
, (27)



and fc (ûp) , p
(
“clip”

)
p
(
ûp
∣∣ “clip”) is computed as:

fc (ûp) =
1

σ2
x+σ

2
z

{
σz√
π

[
2e
−
û2p

σ2z −

−e−
(ûp−τ)2

σ2z
− τ2
σ2x

(
1− e−

4ûpτ

σ2z

)]
+

2ûpσx√
σ2
x+σ

2
z

e
−

û2p

σ2x+σ2z

[
Φ

(√
2

σz

(
τ

√
σ2
x+σ

2
z

σx
− ûp σx√

σ2
x+σ

2
z

))
+ 2Φ

( √
2ûpσx

σz
√
σ2
x+σ

2
z

)
−

−Φ
(√

2
σz

(
τ

√
σ2
x+σ

2
z

σx
+ ûp

σx√
σ2
x+σ

2
z

))
− 1

]}
,

(28)
where Φ (v) ,

∫ v
−∞

1√
2π
e−

θ2

2 dθ denotes the cumulative
Gaussian distribution function.

B. Proposed estimator

From (22) and (23) we can derive closed form expressions
for the second and fourth order moments of |x̂p|:

µ2 = E
{
|xp|2

}
+ E

{
|z′|2

}
, (29)

µ4 = E
{
|xp|4

}
+ 4E

{
|xp|2

}
E
{
|z′|2

}
+ E

{
|z′|4

}
, (30)

yielding:{
µ2 = σ2

x (1− e−α) + σ2
z ,

µ4 = 2σ4
x [1− (1 + α) e−α] + 2σ2

z

(
2µ2 − σ2

z

)
,

(31)

where α , τ2/σ2
x. This is a nonlinear system of two equations

with two unknowns α and σx. By computing:

β ,
µ4 + 2σ2

z

(
σ2
z − 2µ2

)
2 (µ2 − σ2

z)
=

1− (1 + α) e−α

1− e−α
, (32)

we can solve for the two α variables inside e−α terms in the
right-hand side of (32), while treating the other α as a constant:

α = ln

 2β

2β − 1− α+

√
(1 + α)

2 − 4αβ

. (33)

This fixed-point equation is solved iteratively for α
to obtain the estimated input signal variance σ2

x =(
µ2 − σ2

z

)
/ (1− e−α) and clipping threshold τ = σx

√
α, as

shown in Algorithm 2.
From (22), the probability of clipping is given by ρ = e−α.

Therefore, the number of active taps K can be estimated as:

K = Ne−α, (34)

and then increased by a certain amount to account for the fact
that overestimating K is much less harmful to the result of
WIHT than underestimating it.

Finally, the most important parameter, the weighting func-
tion, can be obtained by applying Bayes rule:

w[n] = p(“clip”
∣∣ |x̂p[n]|) = p (“clip”) p

(
|x̂p[n]|

∣∣ “clip”)
p(|x̂p[n]|)

(35)

w[n] =
fc(|x̂p[n]|)

fc(|x̂p[n]|) + fc(|x̂p[n]|)
, (36)

with fc(·) and fc(·) given by (27) and (28). We note that, even
though this is a lengthy expression, its impact on execution
speed is small because it does not involve matrix operations.

Algorithm 2 Clip parameter estimation
Input: |x̂p|, σz
µ2 = 1

N

∑N−1
n=0 |x̂p[n]|

2; µ4 = 1
N

∑N−1
n=0 |x̂p[n]|

4

β =
(
µ4 + 2σ2

z

(
σ2
z − 2µ2

))
/
(
2
(
µ2 − σ2

z

))
Initialize: α̂(0) =

max{|x̂p|}2

E [|x̂p|2]−σ2
z

, k = 0

while k < kmax and |α
(k+1)−α(k)|
α(k+1) > tol do

α̂(k+1) = ln

(
2β

2β−1−α̂(k)+
√
(1+α̂(k))

2−4α̂(k)β

)
k := k + 1

end while
σ̂x =

µ2−σ2
z

1−e−α̂(k) ; τ̂ = σ̂x
√
α̂(k); ρ̂ = e−α̂

(k)

; w from (36)
Output: σ̂x, τ̂ , ρ̂, w

VI. COMPUTATIONAL COMPLEXITY

We assume the use of a Viterbi decoder and a convolutional
code with constraint length C.

The computational complexity of the proposed Weighted
IHT algorithm comes mainly from the calculation of the
pseudo-inverse in (18) and the need to apply channel decoding
once in order to compute the code-based reliability measure.
This yields a complexity of O

(
MK2 +N2C

)
.

The SABMP algorithm needs to compute this pseudo-
inverse several times, but the implementation in Section IV
of [7] reduces its complexity to O (MK) by exploiting the
previous results. Even then, the calculation needs to be done
N times for each possible support size up to K, making the
overall complexity of this algorithm O

(
NMK2

)
.

Note that, even if the complexity of WIHT has an ex-
ponential term 2C , the constraint length of the code is a
fixed term. For a typical value of C = 7 and N = 512,
even with a small sparsity rate of 5%, we have K = 25,
and both SABMP and WIHT need more reliable carriers M
than active taps K. Even a minimalistic choice of M = 25
makes MK2 = 31250 � 128 = 2C . Therefore, in practical
scenarios, the execution time of SABMP is at least two orders
of magnitude longer than that of the proposed WIHT.

Finally, the sCPANC technique performs an IFFT of order
N , channel decoding, channel encoding and an FFT of order
N in each one of the I iterations. The complexity of these
operations amounts to O

(
IN logN + IN2C

)
.

VII. SIMULATION RESULTS

In this section, we use simulations to compare our proposed
WIHT technique with the existing methods SABMP [7] and
sCPANC [6]. Two reference bounds are also given for compar-
ison: the unrecovered case (no clip removal) and the oracle-LS
case. The latter corresponds to the receiver perfectly knowing
the support set, and applying a least-squares solution over it.

All experiments simulate an OFDM system with N = 512
subcarriers and 16-QAM modulation. The number of reliable
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Figure 2. Comparison of estimators of the priors w[n] = p(“clip”
∣∣ |x̂p[n]|).

carriers was empirically chosen to be M = 350. Gaussian
channels with unit variance and length 4 were generated, and
the Eb/N0 parameter is defined as:

Eb
N0

= 10 log

E
[
‖Hxp‖22

]
σ2
z

1

Rcc log2Q

, (37)

where Rcc is the convolutional code rate.

A. Experiment I: Accuracy of the estimation of priors

First, a system with clipping threshold τ = 1.4σx was sim-
ulated. The proposed Bayesian estimate of the prior function
w[n] = p(“clip”

∣∣ |x̂p[n]|) was compared to the exponential
weighting from [7] and to the experimental probability func-
tion (obtained by counting how many of the received symbols
had actually been clipped in each amplitude bin). Figure 2
shows the results. The proposed Bayesian estimator agrees
almost perfectly with the experimental probability, while the
exponential heuristic only provides a very coarse estimate.

B. Experiment II: Comparison of clipping recovery techniques

For the second experiment, the clipping threshold was again
τ = 1.4σx. The three considered techniques were compared in
terms of bit error rate (BER) over Eb/N0 on a coded system
with CC rate 3/4 and constraint length C = 7. The sCPANC
algorithm was run for I = 3 iterations, to keep its execution
time in the same order of magnitude as WIHT. For the SABMP
technique, the exponential weighting and the LR reliability
measure were used, as in [7], while the WIHT technique
was run with the proposed code-based reliability measure and
Bayesian weighting function.

The results are given in Figure 3. The runtime subgraph
shows that SABMP is even slower than the iterative chan-
nel decoding performed by sCPANC. WIHT is the fastest
technique. Furthermore, thanks to the code-based reliability
measure and the Bayesian estimation framework proposed in
this work, WIHT also outperforms both sCPANC and SABMP
in BER terms. This makes our proposed WIHT technique the
best option for clipping estimation in OFDM signals.
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Figure 3. Coded BER performance of recovery techniques (16-QAM, N =
512 carriers, M = 350 reliable carriers, threshold τ = 1.4σx, CC rate 3/4).

VIII. CONCLUSION

A Weighted Iterative Hard Thresholding algorithm for mit-
igating the nonlinear effects of power amplifiers is proposed.
Our method achieves better performance and faster execution
speed than the existing techniques SABMP and sCPANC.
Additionally, unlike sCPANC, our technique does not require
knowledge of the PA model at the receiver, which is not readily
available in the uplink of a mobile communications system.

The extension of the model to a multi-user scenario with
per-subcarrier bit and power allocation, as well as to generic
Filter Bank Multicarrier modulations, are left for future work.
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