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Abstract

Driven by the demand on cost-effectiveness as well as environmental concerns, novel
system design and technological advances for improving the energy efficiency of wireless
communication systems have been given prominent importance and become one of the
central tasks for the next generation of wireless technologies. In this doctoral thesis, we
focus on the efficient utilization of energy in two different communication scenarios.
First, we consider the throughput maximization of a wireless transceiver on a finite time
interval with a given energy budget. Second, we assume the transceiver to be powered by
ambient energy harnessed by an energy harvester. This renders the energy available for
communications a time-varying function or a stochastic process, thus adding dynamics
and randomness to the control optimization of the system. With circuit and processing
power of the transceiver taken into account, the trade-off between spectral and energy
efficiency and the trade-off between energy consumption and latency are both embodied
by the formulated throughput maximization problems.

In the first scenario where the short-term throughput of an energy-constrained system
is to be maximized, we formulate the problem within the framework of optimal control
theory and derive the optimal solutions to a number of different cases. If a transmitter
with continuously adaptable transmit power is under control, the achievable rate and the
power consumption of the system can be given as functions of the transmit power. We
discover that the throughput-maximizing transmission strategy can be determined based
on the property of the achievable rate as a function of the power consumption, the fact
of which can be interpreted on the power-rate graph from a geometric viewpoint. For the
receive side, we take the resolution employed in A/D conversion as the control variable
and find the optimal receive strategies using similar methods as applied to the transmit
side. The joint optimization of a transmitter-receiver pair with individual energy budgets
is also investigated.

In the second scenario where energy harvesting transceivers are considered, we
distinguish mainly between two cases: first, the transceivers have non-causal energy
arrival information on the operation interval over which the throughput is to be
maximized; second, the random energy arrivals are modeled as a stationary Poisson
process, and the transceivers have only causal as well as statistical knowledge about the
arrival profile. We maximize in this case the average throughput on the long-term. While
the first case can be solved by convex optimization or a sequential construction procedure
of the optimal state trajectory on a time-energy graph, the second requires modeling of the
system as a Markov decision process to which the policy-iteration algorithm is applied.
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1. Introduction

1.1 Motivation

As witnesses and beneficiaries of the rapid developments of Information and
Communication Technologies (ICT), we enjoy nowadays a modern, connected lifestyle
that brings more convenience, safety, and entertainment than ever. The supporting
infrastructure and equipments all consume power. As the ICT industry advances fast and
tremendously, so increases its energy consumption. In various reports and surveys [1-3],
the energy consumption of the ICT is estimated to account for 1.5 to 4.5 percent of the
total worldwide energy consumption today. The annual growth rate in the past years
has been larger than the global energy growth rate, and the same trend is predicted for
the future. Taking into consideration the increasing demand on data rate and growing
number of devices in the network, both [1] and [3] give an estimate of more than 10
percent annual energy consumption growth rate of communication networks, suggesting
that the corresponding total energy consumption would be doubled in around 2020.

Reducing the energy consumption of ICT and improving the energy efficiency of
systems and networks as of today are driven both by environmental responsibility
and economical interest. The consumption of electricity as quoted above translates to
the emission of greenhouse gases as well as a cost that has to by paid by the service
providers and also the customers. As we face the demand and take the challenges of
the next generation of wireless technologies known as 5G, the importance of improving
the energy efficiency is addressed on multiple levels and for the three most promising
candidate technologies: ultra-densification, millimeter wave communication (mmWave),
and massive multiple-input multiple-output (MIMO) systems [4, 5]. The deployment of
nested small cells, aiming at improving the spectral efficiency per area, requires low
power base stations and efficient resource allocation algorithms to maintain a reasonable
cost level for the network. The increased bandwidth enabled by mmWave and the
utilization of a large antenna array by massive MIMO may both lead to significant
increment in the power consumption. Therefore, smart design methods and operation
strategies are necessary in order to achieve a good balance between the quality of service
and the cost in terms of power and energy consumption.

On the other hand, cheaper and renewable sources of energy can be sought for
and exploited for communication purposes. The process of harnessing energy from the
environment and converting them to electrical energy is known as energy harvesting.
Common sources for energy harvesting include the sun, temperature gradients, human
motions and mechanical vibrations, background radiations, etc. Wireless transceivers
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6 1. Introduction

can be powered by the harvested ambient energy, and these devices find important
applications in wireless sensor networks, wearables for healthcare, and even future
mobile terminals. Examples of devices and networks with energy harvesting can be
found in the survey paper [6] and the references therein. Because of the unstable and
intermittent nature of the harvested energy, the design and optimization of energy
harvesting transceivers are different from devices with a constant power supply. New
resource management principles and control strategies need to be applied to these devices
and the networks they constitute so as to make the most efficient use of the available

energy [7].

1.2 Overview and Contributions

With energy efficiency of wireless communication systems as the theme, we present
in this doctoral thesis our theoretical investigations on energy-constrained and energy
harvesting systems which aim at maximizing their short-term or long-term throughput.
The main contents and contributions of each chapter are introduced in this section.

Chapter 2: On Energy Efficient Wireless Communications

Starting an exploration in the area of energy efficient wireless communications, we
prepare and equip ourselves with some requisite knowledge and comprehension
presented in Chapter 2. In Section 2.1, we first give the common defining metric of energy
efficiency as the number of information bits that are successfully delivered per consumed
Joule of energy, and then discuss its optimization from an information-theoretic point of
view. Derivation of the minimum of E},/Nj, i.e. the minimal energy per bit normalized
with the noise power spectral density, is reviewed and triggers the question of how
some fundamental results would change if the cost of the communication system in
terms of power or energy is modeled in a more realistic way. An introduction to power
consumption of communication systems is given in Section 2.2, where we analyze the
general trend as well as the power consumption of a wireless transceiver on a component
level. The remaining sections of the chapter focus on three fundamental trade-offs in
communication systems which involve energy consumption or energy efficiency:

e Trade-off between spectral and energy efficiency: it is well-known that the two
metrics are often competing goals in communication systems. At the transmit side,
adapting the transmit power allows the system to operate at the desirable point on
the spectral-energy efficiency trade-off curve. With circuit power taken into account,
the curve can be non-monotonic and exhibits a non-trivial point at which the energy
efficiency is maximized. Similarly, the bit resolution employed by the A/D converter
at the front end of the receiver can be adapted to address this trade-off at the receive
side. To this end, a capacity lower bound of the quantized channel and the power
consumption of the ADC are introduced so that the energy efficiency of the receiver
can be quantified with respect to the ADC resolution. Moreover, we discuss the impact
of quantization on channel estimation using pilot symbols.

e Trade-off between energy efficiency and bandwidth: given a minimum data rate that
the communication should support, this trade-off can be identified with varying
transmit power or ADC resolution. Besides the pre-log scaling of channel capacity,
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the bandwidth also plays an important role in the power consumption of many circuit
components.

e Trade-off between energy consumption and latency: when the system is to deliver a
certain amount of data, the promptness in the completion of delivery can be traded off
for better energy efficiency of the system. We give an example of packet transmission
over a block-fading channel where retransmissions are accounted for in the delay of
the packets.

Chapter 3: Energy-constrained Throughput Maximization on a Finite Time Interval

For a wireless transceiver or a pair of transceivers communicating over a single link,
Chapter 3 addresses the question of how they can be optimally operated on a finite
time interval if they have a given, fixed energy budget. The optimization objective is
to maximize the total throughput which equals the integral of the instantaneous data
rate on the interval. Accordingly, the energy consumption is calculated as the integral
of the power dissipation of the system, which should not exceed the available budget.
The optimization variable in this case, instead of a scalar or a vector, is the relevant
physical parameter as a function of time. To this end, we formulate the problem within the
framework of the optimal control theory which allows for the application of theories and
methods therein, including the Pontryagin’s maximum principle and the value iteration
algorithm. Besides the algebraic derivations, we illustrate and interpret the optimal
solution of the problem from a geometric viewpoint on the time-energy graph. The three
trade-offs presented in Chapter 2 are embodied in the obtained optimal solutions, and the
critical role that the energy efficiency maximizing operation mode plays shall be revealed.
In addition, the properties of the maximal achievable throughput with respect to the
energy budget and the duration of the operation interval are also discussed.

We investigate a number of communication scenarios under different assumptions,
and derive the optimal transmit/receive strategy for each scenario:

e Transmitter: in the very basic setting, the continuously adaptable transmit power can
be taken as the control variable, and the communication channel is assumed constant
on the operation interval. The achievable data rate and the power consumption of the
transmitter can be both modeled as functions of the transmit power, which should
meet certain criteria such as being non-negative and non-decreasing, starting from
zero with zero transmit power, in order to be consistent with physics. By using
the optimal control theory, we find that the strict concavity of the achievable rate
function and the convexity of the power consumption function ensure that employing
constant transmit power leads to the maximal throughput. On the other hand, if the
transmitter operates either in sleep mode with no circuit power, or in active mode
where a positive circuit power is always associated, the optimal transmission strategy
can be non-constant. We indicate that formulating the achievable rate as a concave
function of the power consumption is the key to finding the throughput-maximizing
transmission strategy. The scenario with a time-varying channel is also studied, for
the respective cases that the channel condition is known non-causally or only causally
and statistically.
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e Receiver: at the receive side, we take the ADC resolution as the control variable, and
discuss the cases that it is real-valued or restricted to integer numbers. Mathematically
equivalent counterparts can be found from the transmit side.

e Transmitter-receiver pair: jointly optimal control of a pair of transmitter and receiver
can be performed, provided that global knowledge of the system parameters is
available, and the two transceivers are synchronized and cooperative. In analogy
to the previous discussions, we aim to construct a concave achievable rate function
in the power consumption; in contrast to them, the construction is now in the
three-dimensional space instead of on a two-dimensional plane. We explore two cases
as well, the first one with continuous control variables and second with discrete ones.

Chapter 4: Optimal Control of Energy Harvesting Transceivers

In this chapter we consider the optimal control of energy harvesting transceivers, i.e.
transceivers that are capable of harvesting energy from the environment, and depend
solely on these energy for communications. With uncontrolled surroundings, the energy
that can be potentially harvested and employed is unstable, intermittent, and random
in nature. Different resource management principles are therefore needed for these
transceivers as compared to conventional devices powered by batteries or fixed utilities.
Mathematically formulated, the harvested energy imposes an upper bound on the
cumulative energy consumption of the transceiver over time. Unlike the situation treated
in Chapter 3, this upper bound is time-varying, and practically unknown in advance.
Furthermore, we assume that the transceiver is equipped with an energy storage that
is limited in capacity. When the storage is full, the device can no longer take in energy
from the environment even if they are available. The possibility of such a situation gives
rise to a trade-off in the way energy is consumed: if the consumption rate is low, better
energy efficiency can be achieved (assuming no circuit power) which results in larger
throughput, yet the probability of having a full storage increases; in contrast, employing
a high consumption rate is less energy efficient but guarantees the storage room for the
incoming energy. Nevertheless, the optimal control of energy harvesting transceivers is
closely related to the control problem we investigate in Chapter 3, which is referred to
as the basic problem to address its static nature as well as its essential importance to the
problem here.

We introduce in Section 4.1 common energy harvesting techniques and related issues
in energy storage. In Section 4.2, we consider the throughput maximization problem on a
finite time interval for an energy harvesting transceiver, where non-causal energy arrival
information is available for the offline optimization and performance limit evaluation.
The optimal control strategy can be obtained via construction of the optimal state
trajectory on the time-energy graph based on the geometric property of the solution to
the basic problem. In case that the harvested energy arrives at discrete time instants,
convex optimization techniques can also be applied. We propose a heuristic algorithm
with low complexity to cope with the case of communicating over a block-fading channel
and having frequent energy arrivals. Section 4.3 considers the more practical scenario that
the transceiver possesses only causal and statistical knowledge about the energy arrivals.
We assume the energy arrival process as compound Poisson, discretize the energy space
and time, and model the system as a Markov decision process. To this end, we seek
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for a mapping between the system states in terms of the available energy level in the
storage, and the actions to be taken in terms of employment of a transmit power or
ADC resolution. The policy iteration algorithm is applied to attain the optimal policy
with respect to a predefined single-stage strategy. The joint control of a pair of energy
harvesting transmitter and receiver is investigated as well.

1.3 Notations and Acronyms

We summarize in this section the notations and acronyms used in the thesis.
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1.3.1 List of notations

det(A), |A|
diag(A)
diag{xl, .. .,XL}

—~~ —

Notation Description
A defined as equal to
j imaginary unit
erf(-) Gauss error function
R,C field of real numbers, field of complex numbers
min{x, y} the minimum of x and y
max{x, y} the maximum of x and y
xt equal to x when x is non-negative, otherwise is equal to 0
| x| the largest integer that is smaller or equal to x
|A| cardinality of set A
Pr{X = x} probability that random variable X is equal to the value x
E[ X] expectation of X
H(X) entropy of X
I(X;Y) mutual information between X and Y
X ~ N(u,c?) X is Gaussian distributed with mean u and variance o
X ~U(a,b) X is uniformly distributed on the interval [a, b ]

real and imaginary parts of X are i.i.d. Gaussian distributed
with mean p and variance 02 /2
function f is equal to function g at every point
partial derivative of function g with respect to x
differential of function g with respect to time
Hessian matrix of function g
every entry of vector a is larger or equal to the corresponding
entry of vector b
all zero / all-one vector of dimension L
identity matrix of dimension L x L
transpose of a vector or a matrix
complex conjugate of a vector or a matrix
Hermitian (conjugate transpose) of a vector or a matrix

trace of matrix A

determinant of matrix A
diagonal matrix with the same diagonal entries as matrix A

diagonal matrix with x1, ..., x; as the diagonal entries
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1.3.2 List of acronyms

Acronym Definition
ACK acknowledgement
ADC analog-to-digital converter, A/D converter
ARQ automatic repeat request
AWGN additive white Gaussian noise
BER bit error ratio
BP bilinear program
CMOS complementary metal-oxide-semiconductor
CoMP coordinated multi-point
CsI channel state information
DAC digital-to-analog converter, D/ A converter
DMC discrete memoryless channel
DP dynamic programming
DSP digital signal processor
ENOB effective number of bits
FFT fast Fourier transform
FOM tigure of merit
HARQ hybrid automatic repeat request
I/Q in-phase/quadrature
ICT Information and Communication Technologies
IFA intermediate frequency amplifier
IFFT inverse fast Fourier transform
iid. independent and identically distributed
LNA low noise amplifier
LO local oscillator
MAC medium access control layer
MDP Markov decision process
MIMO multiple-input multiple output
MMSE minimum mean squared error
mmWave millimeter wave communication
MQAM Me-ary quadrature amplitude modulation
MSE mean squared error
NACK negative acknowledgement
ODE

ordinary differential equation
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Acronym Definition
PA power amplifier
PAR peak-to-average ratio
PEP packet error probability
PHY physical layer
PI policy-iteration
PMP Pontryagin’s maximum principle
QAM quadrature amplitude modulation
RF radio frequency
RX receiver
SIMO single-input multiple-output
SISO single-input single-output
SNR signal-to-noise ratio
SOR signal-to-quantization-noise ratio
TTI transmission time interval
X transmitter
VI value-iteration
ZMCCG zero-mean circularly symmetric complex Gaussian




2. On Energy Efficient Wireless Communications

As the necessity and importance of improving the energy efficiency of wireless
communication systems have been realized and emphasized, enormous efforts are made
in the past years for better understanding of the problem and the current situation e.g.
by European research projects TREND [8] and EARTH [9]. Power consumption data of
various parts of the communication network, from base stations and mobile terminals
to the core network, have been collected and studied. Based on these investigations,
performance bottlenecks of the system are identified, and new design methods and
operation strategies have been proposed to enhance the energy efficiency. The improving
areas are noticed to be ubiquitous [10]: on the component level, development in the CMOS
technology enables the implementation and production of more efficient components
such as power amplifiers and A/D converters [11, 12]; for given components, design
parameters that govern the trade-off between power consumption and other system
performance metrics can be optimized [13, 14]. The emerging and promising large-scale
systems, due to the reason of cost, often have to live with hardware imperfections such
as I/Q imbalance and phase noise. The effects of the non-ideal hardware on the energy
efficiency of these systems are investigated e.g. in [15]. On the link level, physical layer
parameters can be jointly optimized with parameters of higher layers to achieve better
energy efficiency of the system. For instance, packet transmission is considered in [16,17],
where [16] proposes an energy efficient retransmission protocol based on the optimization
of the packet length, and [17] designs energy efficient resource allocation algorithms
which take power allocation, modulation and coding, as well as retransmission protocols
jointly into account. The authors of [18] address the rate-energy trade-off under delay and
queueing constraints, and [19] extends the investigation to frequency-selective channels
and proposes an efficiency-maximizing power control method. Development of energy
efficient algorithms and protocols can be done on the network level as well [20, 21].
Moreover, the trade-off between deployment, spectral, and energy efficiency [22] leads
to architectural considerations on the network, promoting the concepts of pico- and
femtocells, heterogeneous networks, coordinated multi-point (CoMP) transmission, etc.
A survey of these techniques can be found in [23].

In this chapter and also in the whole dissertation, we focus on the energy efficiency
on component and link levels. Network level considerations are beyond the scope of this
thesis, but would be of interest for future research. We start in the first section with a
formal definition of the term energy efficiency, and then derive the minimum energy per
bit for the AWGN channel. The power consumption of a wireless transceiver is analyzed

13



14 2. On Energy Efficient Wireless Communications

in Section 2.2. After that, we introduce some fundamental trade-offs in communication
systems which involve energy and energy efficiency, namely, the trade-off between
spectral and energy efficiency, the trade-off between energy efficiency and bandwidth,
and the trade-off between energy consumption and delay. For each case, we first give a
generic derivation, and then elaborate with some specific examples that come from our
own contributions. The very basic communication scenario is chosen for discussion: the
transmitter and/or receiver have single antenna, the channel is frequency-flat, and there
is no interference in the system.

2.1 Energy Efficiency and its Optimization

The efficiency of a system, a process, an operation etc. can be evaluated by the ratio
between the profit and the associated cost that are generated. For a communication
system, the energy efficiency can be measured by the number of information bits that
are successfully conveyed per consumed Joule of energy over a certain period of time. Or,
on a short-term or instantaneous basis, the energy efficiency can be defined equivalently
by the ratio between the capacity or the achievable data rate C (in bit/sec) and the total
power consumption P (in Watt) of the system as
C

where ng denotes the energy efficiency in the unit of bit/Joule. As enhancing the gain
or the profit, in this case C, and reducing the cost, in this case P, are usually competing
goals in a communication system, the maximization of ng is a non-trivial and instructive
optimization problem. Mathematically, it can be given as

max  7ng(u), (2.2)

ucl
where the optimization variable u can be one or a set of system parameters that are
adaptable and affect both the achievable data rate and the power consumption, and U/
denotes the set of feasible values of 1. The maximization is based on the trade-off between
C and P controlled by u, and we refer to the optimum u as the energy efficient operation
mode. Some of the early works that consider this metric include [24,25], where the former
was driven by energy-constrained transmitter used in underwater communications, and
the latter treats the case with arbitrary alphabets of the channel input. Many of the recent
research contributions on advanced wireless systems and techniques, e.g. [26], also aim at
the maximization of ng to explore the best cost-effectiveness of the system.

The inverse of 1g, i.e. the energy that is required to convey one bit, is also a commonly
used energy efficiency metric which is often denoted with E;, and normalized with the
noise power spectral density Np in information-theoretic analysis. Equivalent to the
maximization of ng, the minimization of E,, with respect to u can be formulated. We
introduce next the well-known Shannon limit of the minimum energy per bit metric.

2.1.1 Shannon limit
The capacity of the AWGN channel with input power pix is given by Shannon [27] as

C = Blog, (1 4 P ) in bit/sec, (2.3)
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where B stands for the bandwidth of the channel in Hertz, and szi’; gives the receive
0

signal-to-noise ratio (SNR). Assuming P = pix i.e. the power consumption of the system
is equal to the transmit power, we write the normalized energy per bit metric as

Ey, p Prx
=2 — = : (2.4)
Ny CNp Pix

BNy log, (1 + BN0>

Based on the inequality In(1 + x) > ﬁ for x > 0, we find that (2.4) as a function of p
increases monotonically since

Eb o B Pix Pix
<ﬁ0)Ptx N NoC?2In2 (11’1 (1 * BN()) BNj + pix > 0. 2:5)

This is to say, the minimum of the function is achieved with pi approaching zero. The
relation between E}, /Ny and py is illustrated in Fig. 2.1(a). Applying the L'Hopital’s rule
yields

_ P . (BNp+ pix)In2
1 —0 — _Px -] =In2. 2.6
ptir—r}O Ny pix—0 No C]gtX ptir—r}O BNy n (2.6)
Consequently, we have
Ep
— =In2=0.6931 = —1.59 dB, (2.7)
No / min

meaning that the minimum energy to transmit one bit is 1.59 dB below the noise level
at the receiver. However, the infinitely small transmit power required to achieve this
minimum is not a desirable operation mode as it also leads to trivial capacity. To this end,
constraints can be added to the energy efficiency optimization problems to guarantee the
fulfillment of other performance requirements of the system.

3 T T T T 8

Ey,/Ny
Eyp/No

05 2 4 6 8 10 1 2 4 6 8 10
Ptx Pix
(@) P = pix (b) P = pix + 1 for pix > 0

Fig. 2.1: Minimum energy per bit normalized with the noise power spectral density as
dependent on the transmit power pi, BNy =1



16 2. On Energy Efficient Wireless Communications

2.1.2 Constrained optimizations

For most application scenarios, energy efficiency is not the sole performance index
that is important to the system. Spectral efficiency, for example, is another important
objective since spectrum has been and is still a scarce radio resource, which may not
be optimized simultaneously with the energy efficiency. The trade-offs between several
common performance metrics including the energy efficiency shall be introduced in the
subsequent sections. To take multiple objectives into account, one can employ weighting
factors for each objective and optimize the weighted sum of all relevant objectives.
Adjustment can be made in the weighting factors to place different values on each
objective. On the other hand, when there are hard limits or requirements on certain
objectives, constrained optimizations can be formulated such that fulfillment of these
limits or requirements is guaranteed while the unspecified objective is optimized. The
subject of Chapter 3 is an optimization of this kind: the throughput of the system on a
given time interval is to be maximized under a fixed energy budget. The optimal solution
can be different from the energy efficient operation mode, yet the two are closely related
as we shall find out.

2.2 Power Consumption of Communication Systems

It goes without saying that to improve the energy efficiency, one of the indispensable
first steps is to understand which part of the system consumes how much power
under which conditions. Studies in this area would then enable the establishment of
mathematical models of power consumption, which are the basis of theoretical analysis
and optimization of communication systems. The total power consumption of various
communication devices and facilities can differ by several orders of magnitude, as shown
in Fig. 2.2 where the numbers are based on [28-35]. For wireless sensor nodes alone, the
power consumption spans a wide range depending on the specific application scenarios
and the data rate requirements. Base stations in heterogeneous networks also exhibit
diverse power consumption profiles, not only in the absolute values but also in the power
shares of the functional modules [29], which is mainly due to their different coverage
areas. For macro base stations and data centers, there is additional power expenditure for
cooling the equipment which can be significant. The power consumption of all type of
devices also depends heavily on their operation modes, i.e. whether the system is actively
transmitting or receiving signal, or is in idle or sleep mode where some of the functional
modules are shut down resulting in much less power consumption. By adapting to the
traffic conditions and appropriately switching between the modes, energy savings can be
achieved and better energy efficiency can be realized.

femto pico micro macro

Mobile

phone Base station Server

Wireless sensor node

100pW 1mW 10mW 100mW 1W 10W 100W 1kW 10kW

A
\

Fig. 2.2: Power consumption of communication devices and facilities
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While low-power and energy efficient design has always been stressed in wireless
sensor nodes and networks, the trend of green communication calls for similar efforts to
be done for mobile terminals, base stations, and also data centers. This means all blocks
in Fig. 2.2 shall be shifted leftwards in the future. As mentioned before, we focus in this
dissertation on component and link level energy efficient designs, which requires power
consumption models on a component-wise basis. Due to the wide deployment of wireless
local area networks as well as the ever-shrinking size of cells in a cellular network,
wireless communications over short distances have become very common nowadays. As
one of the consequences, power consumption incurred by the circuits of the transceivers
becomes non-negligible and even dominant in the total power consumption of the system
[29,36], and therefore has to be taken into account by the power consumption model.

TX:

Baseband
aseban DAC Filter » PA |

processing Filter

Y
Y

LO

RX:

Baseband | ~ LNA |

processing [~ ADC IFA Filter Filter [« Filter

A

A
A

LO

Fig. 2.3: Block diagram of a wireless transceiver

The block diagram of a wireless transceiver is shown in Fig. 2.3. The transmitting
signal path includes a digital-to-analog converter (DAC) to convert the baseband signal,
a local oscillator (LO) used with a mixer to modulate the signal, and a power amplifier
(PA) to drive the transmit antenna. On the receiving path, the filtered receive signal
is amplified by the low noise amplifier (LNA), down converted by the LO and an
intermediate frequency amplifier (IFA), and then converted to digital format by the
analog-to-digital converter (ADC) to enable baseband processing. Multiple transmit and
receive filters are employed to confine the signal to the desired frequency bands.

For the transmitting mode, the power consumption of the system is conventionally
taken as the radiated power. Limited in efficiency, the power consumption of the power
amplifier is usually much larger than the actual radiated power. Other components in the
RF front end also consumes power [37], the total amount of which becomes considerably
large for a multi-antenna system. For the receiving mode, we address in particular the
power consumption of the A/D converter as it is believed to play a critical role in future
wireless technologies [38]. Power consumption of other components in the RF front end
shall be modeled as a constant. Baseband processing, including digital filtering, channel
encoding/decoding, channel estimation, FFT/IFFT for multicarrier systems etc, is carried
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out by a digital signal processor (DSP). The power consumption of the DSP consists of
a dynamic part and a static part [39]. While the two parts both depend on the supply
voltage, the dynamic part is proportional to the operating frequency whereas the static
partis proportional to the leakage current which is expected to increase as the geometry of
the chip shrinks [40]. How much does baseband processing contribute to the total power
consumption of the system depends on the complexity of the processing tasks e.g. the
equalization and decoding algorithms. In [29], the increasing power share of baseband
processing in base stations for smaller cells is indicated.

2.3 Trade-off between Spectral Efficiency and Energy Efficiency

Due to the scarcity of RF spectrum, the efficiency in spectral usage has been a major
design goal and performance metric of wireless communication systems. Defined as the
ratio between channel capacity or achievable data rate and the transmission bandwidth,
spectral efficiency of the AWGN channel with input power p, can be given as

C Pix . .
= — = . 2.
1B B log, (1 + BNO) in bit/sec/Hz (2.8)

Note that 1p still depends on the bandwidth through the noise power. Recall that the
energy efficiency is expressed as

ptx
c Blog, (1 + BNO)

e 2.
mE =35 P (2.9)

where P is a function of pi. Keeping B constant and varying pix, we obtain and illustrate
the relation between 1 and ng in Fig. 2.4 for the cases P = pi and P = py + 1. In the
former case, ng decreases monotonically in 1np, which is to say, the two metrics conflict
with each other and the improvement in one leads inevitably to the deterioration of
the other. In the latter case where the power consumption of the system consists of the
transmit power and an additional constant term which results from the circuit power, the
energy efficiency is no longer monotonic in the spectral efficiency but has a maximum
which can be determined according to

Cpo P — C Py = 0. (2.10)

With P = pix +1 and B = Ny = 1, the solution of (2.10) is pf, = e — 1 which leads to
ng = log,e = 1.4427 and ng = log,(e)/e = 0.5307, as can be seen in the figure. For
pix < e — 1, increasing pi improves ng and np simultaneously, whereas for pyx > e — 1,
increased transmit power results in better ng but lessened ng.

The analysis above is based on the adaptation of the transmit power in a generic
setting and addresses in a straightforward way the importance of taking circuit power
into account when energy efficiency is under consideration. The trade-off between
spectral and energy efficiency is commonly recognized in communication systems as
dictated by various parameters on different protocol layers [41,42]. We give two more
examples in the following.
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Fig. 2.4: Trade-off between spectral and energy efficiency for the AWGN channel, B = 1
Hz, Ny = 1 Watt/Hz

2.3.1 Adaptation of the ADC resolution

In digital communication systems, the received analog signal is sampled and quantized
into discrete-time, discrete-valued signals for the subsequent digital processing. This
procedure is known as the analog-to-digital conversion. The precision with which the
receiver is able to access the received signal has a direct impact on the channel capacity
as well as the power dissipation of the receiver. The important role that the A/D
converter plays has been realized and drawn a lot of research attention in recent years.
It has been reported [43] that the ADC consumes a significant amount of power when
operating at high sampling rate and high resolution, hence becoming a bottleneck in
system performance. This gives rise to investigations on employing low-precision, in
particular 1-bit A/D conversion at the receiver e.g. [44,45]. Noticing the trade-off between
quantization loss and the power dissipation controlled by the ADC resolution, we take
a different perspective and allow the ADC resolution to be adjustable. In the following,
we introduce first a capacity lower bound of the quantized channel as dependent on the
ADC resolution, and then the relation between the power consumption of the receiver
and the ADC resolution. These results are revealed by previous works [43,46,47], and we
abstract and review the parts that constitute our model.

2.3.1.1 Capacity lower bound of the quantized SISO channel

With a single receive antenna, the receiver is equipped with two A/D converters to
digitize the input analog signal, one for the real part and the other for the imaginary.
We let x € C be the transmitted symbol with normalized power, and consider only
large-scale fading of the wireless communication channel. The channel output y € C
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before quantization is given as
y=+ax+n, (2.11)

where &« € R* denotes the receive signal power, and n € C is the iid. zero-mean
circularly symmetric complex Gaussian (ZMCCG) noise with variance 0. We assume
that both A/D converters act as scalar quantizers and employ b bits to represent each
sample of their input signal. In a practical scenario b is an integer with an upper limit,
ie.b € {0,1,...,bmax} where bmayx is the maximal number of bits that the ADC could
use for a single sample. In the theoretical analysis we often assume real-valued b which,
in a continuous-time model, can always be realized via time-sharing of integer-valued
resolutions. The quantized output, still given in the form of a complex number, can be
written as

r=y+q (2.12)

where g stands for the quantization error. Intuitively, the higher the bit resolution, the less
the quantization error and hence the larger mutual information between channel input
and the quantized output. We depict the system diagram in Fig. 2.5.

n | e|
rL : 2 /L |
X vy ’ LT

Y

A /D conversion

Fig. 2.5: Communication over a quantized SISO channel

The quantization operation is in general nonlinear, and the resulting quantization
error is correlated with the input signal. The Bussgang theorem [46, 48] suggests a
decomposition of the output of the nonlinear quantizer into a desired signal part and
an uncorrelated distortion, which provides us with a convenient analytical approach to
formulating the quantization operation. To this end, we write the quantized output r as

r=Fy+e, (2.13)

where the noise e is uncorrelated with the receive signal y, and the linear operator F is
taken as the MMSE estimator of r from y:

F=E[ry]E[ly?] " (2.14)

Consequently, we have

rzF(\/&x—i—n)—i—e:\/EFx-i—Fn—i—eéh’x-i—n’ (2.15)
where the effective channel /', the effective noise n’ and its variance are given respectively
by

W = «F, (2.16)
n' =Fn+e, E[n|*] =0*|F*+E [le*]. (2.17)



2.3 Trade-off between Spectral Efficiency and Energy Efficiency 21

Note that the effective noise 7’ is not necessarily Gaussian. As a result, if we define a new
single-input single-output (SISO) channel with the input-output relation rg = h'x + ng
and assume that E [|ng|*] = E [|'|?], then the capacity of the new channel provides a
lower bound on that of the quantized channel, for Gaussian distributed noise minimizes
the mutual information [49]. Based on this observation and assuming that the channel
input x is Gaussian distributed, we have

I(x;r) > log, | 1+ LG log, [ 1+ 2l (2.18)
o= Te2 E [|n'|?] 2 o2 |F2+E[le]?] ) ’

Apparently, the key to computing this lower bound lies in the calculation of F and E [|e|?],
where both terms are expected to be dependent on the bit resolution b.

We let p denote the inverse of the signal-to-quantization-noise ratio (SQR), and call it
the distortion factor. For the quantization of y as given in (2.12), we have

_Ellgf]

E [lyP]

When the scalar quantizers are designed to minimize the mean distortion, the condition
E[rg*] =0 (2.20)

is fulfilled due to the orthogonality principle !. Based on this relation, the following results
can be established:

(2.19)

E[yq ] =E[(r—q)q*] = —E[l4l’] = —pE[|y/], (2.21)
E[ry"] =E[( y+q ] = (1 —0) E [lyl*], (2.22)
F=E[ry]E[ly?] ' =1-p, (2.23)
E[le]*] =E[lr—Fy|*] =E[lg+py|*] = p(1 - p)E [|y|*]. (2.24)

We see from (2.23) and (2.24), that the quantization operation is modeled as the scaling of
the receive signal y by one minus the distortion factor, and the addition of an uncorrelated
noise with the variance p(1 — p) E [|y|?]. Plugging these results into the lower bound on
mutual information (2.18), we obtain the capacity lower bound Cy, (in bit/sec) as

2+ 1+
C. = Blog, (;T:;) — Blog, (1 Hyy) , (2.25)

where y = a/ o2 denotes the receive SNR. With p = 0 i.e. there is no quantization error,
the function turns into the Shannon capacity formula for the AWGN channel with receive
SNR y. As a lower bound on the true channel capacity, (2.25) is shown to be tight in the
low SNR regime (see [46] and also Fig. 3.24).

Given Gaussian distributed channel input x and uncorrelated Gaussian noise n,
the channel output y is also Gaussian distributed. For such a quantization source and

I'Note the important assumption here that the real and imaginary parts of the quantizer input are
uncorrelated, which allows us to generalize the results for individual A/D converters to the pair of A/D
converters that are associated with the single receive antenna.
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Table 2.1: Distortion factor p for different ADC resolutions b

b 1 2 3 4

P 0.3634 0.1175 0.03454 0.009497
b 5 6 7 8

P 0.002499 0.0006642 0.0001660 0.00004151

a distortion-minimizing non-uniform scalar quantizer, the distortion factor attains the
values given in Table 2.1 with respect to different bit resolutions [50]. The asymptotic

approximation p = ﬂ .22

is almost accurate for b > 5 [51], while for smaller b it tends

to be too pessimistic. For the analytical studies we shall use the simple approximation
P y ple app

p ~ 2720, which captures the tendency of variation as well as the asymptotic behavior.

The resulting capacity lower bound formula is given as

1+
CL = Blog, (Tz%) : (2.26)

2.3.1.2 Power consumption of the receiver

We employ a generic power consumption model for the wireless receiver which mainly
addresses the impact of the ADC and other processing units. Power dissipation of the
ADC depends heavily on its architecture and design. In the performance evaluation and
comparison of different A/D converters, a common figure of merit (FOM) is the energy
per conversion step metric which is given as [43,47]

Papc

where Pppc denotes the power dissipation of the ADC, fs is the sampling frequency,
and ENOB stands for the effective number of bits which is dependent on the
signal-to-noise-and-distortion ratio. This FOM is defined to address the energy efficiency
of A/D converters, and is suited for medium-to-high bit resolutions where thermal noise
is not the primary limiting factor. Assuming a pair of ideal ADCs which operate at
Nyquist frequency and with low-to-medium bit resolutions, we take FOM as a constant
and replace ENOB with b in (2.27) to obtain the following power consumption model:

Papc =2-FOM - (2B)- (2" —1) = a;(2° — 1), (2.28)

where the scaling of 2 is due to the two ADCs employing the same bit resolution, and the
replacement of 2” with 2° — 1 is to ensure zero power dissipation for zero bit resolution.
With constant signal bandwidth B, the parameter 4, is also a constant.

Other sources of power consumption of the receiver include: components in the
receive RF chain such as the low-noise amplifier, the mixer, and the receive filters,
baseband processing such as channel estimation and decoding, and other control
signaling and feedback. The overall contribution of these components and functional
tasks are modeled by a positive constant ay. Similar to the transmit side, we assume ay is
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only effective when the receiver is in active mode indicated by a positive bit resolution. In
the sleep mode, the receiver does not consume any power. To this end, we give the power
consumption function of the receiver as

20 —1 b>0
Pz{‘”( )+ao, b>0, (2.29)

0, b=0.

The ratio ag/a; reflects partially how important it is to count the ADC power. In practice,
which part of the receiver contributes the most to the total power consumption depends
on the choices of the components and the specific design e.g. how complex the decoding
process is. Note that the model (2.29) is rather generic where only the ADC power is
detailed. For other optimization scenarios or purposes of system analysis, measurements
from practical systems and more thorough modeling of the individual components could
be necessary.

Based on (2.26) and (2.29), the relation between ng = Cp/B and ng = Cp/P is
computed and illustrated in Fig. 2.6(a), where b is taken as a real number which increases
along the curves from left to right, and B is kept constant. The energy efficiency is
maximized at a certain bit resolution b* which depends on the values of ag, 41, and
v. In Fig. 2.6(b) we find b* to be increasing with y, meaning that higher resolution is
in favor when the channel condition is improved. Detailed derivation and analysis of
b* can be found in Section 3.4.1. Note from Fig. 2.6(a) that the energy efficiency drops
rapidly after the peak value since further increasing the bit resolution does not lead to
much improvement of the achievable rate but results in exponential growth of the power
consumption. The indication is therefore, that by sacrificing a small amount in spectral
efficiency, significant improvement can be achieved in energy efficiency. Similar to the
transmit power, the ADC resolution can be adapted based on the channel and the circuit
power conditions, so as to achieve the desirable operation point on the spectral-energy
efficiency curve.

2.3.2 Optimization of training-based systems

In wireless communications, having the channel state information (CSI) can greatly
improve the performance of communication systems: it enables coherent detection at
the receiver and adaptive transmission at the transmitter. An efficient method for the
receiver to learn the time-varying channel is through the employment of a training
sequence: part of each transmission interval is devoted to sending pilot symbols which
are known a priori by the receiver and hence enable estimation of the channel coefficients
[52]. Depending on its position in the interval, the training sequence can be called as
preamble, midamble, or postamble. We consider the preamble case in the sequel, i.e. the pilot
symbols are sent at the beginning of each transmission interval as shown in Fig. 2.7.
How much resources in terms of time and power should be allocated for training has
been investigated in a number of works. In [53], the authors consider the training and
channel estimation for a multiple-input multiple-output (MIMO) system, and maximize
a lower bound on the capacity with respect to the training parameters. In [54], an energy
efficiency perspective is taken and training schemes which minimize the energy cost per
transmitted information bit are proposed. The basic trade-off in these systems is that
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Fig. 2.6: (a) Trade-off between np and ng as governed by the ADC resolution,
markers represent points where integer resolutions are employed; (b) Energy efficiency
maximizing bit resolution as dependent on the receive SNR, B = 1 Hz, a; = 0.1 Watt

while the resources allocated to the training phase improves the quality of the channel
estimation, they are taken away from transmitting the actual information data. Our study
here is based on the same consideration but focuses on the effect of quantization of the
pilot and data symbols at the receiver, and addresses the trade-off between spectral and
energy efficiency governed by the bit resolution as well as the training length in a SISO

system. The work can be readily extended to SIMO and MIMO systems and include more
design variables [55].

training phase

data phase

X1

XL

XL+1

Xs

-—

Xt
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Xd >

Fig. 2.7: Block structure for a training-based system

The system diagram is still given by Fig. 2.5, and we assume that the channel
undergoes block fading with the block length of S symbols. The training phase makes
use of the first L symbols in each block for sending pilots, where 1 < L < S should
be satisfied to guarantee the feasibility of channel estimation and data transmission. We

let x; = [x1 --- x1]" € CL be the vector of pilot symbols and y, € CL be the vector of
received pilots which is given as

Yy =VYvhxi+n, (2.30)

where 7 is the average receive SNR, i ~ CN(0,1) denotes the channel coefficient, and
n; € CL is the collection of noise samples during the training phase. The average power
of the pilot symbols and the noise are both normalized to have the notations as concise as
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possible. The received pilots are sampled, quantized with the bit resolution b, and then
used for channel estimation. The quantization operation can be modeled as

re=(1—-p)y,+ey, (2.31)

where p is the distortion factor corresponding to b, and the noise vector e; is uncorrelated
with y, and has the covariance matrix

R = E[ee' | = p(1 — p) diag(Ry,). (2.32)

Assuming linear minimum mean squared error (LMMSE) estimator g € CL at the
receiver, we compute the channel estimate & based on the orthogonality principle as

h= gHrt = thRr_rlrt, (2.33)
Ry, =E[hril] = (1—p)/yxl, (2.34)
R, =E[rrl] =(1-p) [(1 — p)yxexg + py diag (xext!) + IL} : (2.35)

The variances of /1 and of the estimation error & = 1 — /1 are calculated respectively as

~ _ -1
B[] = Ru Ry, REL = (1— p)y (1 - p)y vt + 2) 'x,
1 yHz 1y )_1 (2.36)
(I—p)y ) '

E[]e*] = E[JW2] ~ E[AP] = (14 (1 —p)yaliz '), 2.37)

= xFZ_lxt<

where Z = py diag (xexf!) + I} and the matrix inversion lemma [56] is applied to obtain
(2.36). Noting that Z is a diagonal matrix, we have

-1 1 L Hop 1. |x; |
Z " = diag {W}i_l , X LT x = Z — s - (2.38)
1

In order to minimize the variance of the estimation error, we need to maximize xtHZ Ly,
given fixed p and y. The arithmetic mean of a set of positive numbers a;,i = 1,...,nis
known to be no smaller than their harmonic mean, the relation of which can be given as

n 1 &
< = ' 2.
S <Y 239

where the equality sign holds if and only if all 4; are identical [57]. This result helps us
obtain a lower bound on E[ |¢|?] as

Az 1y = i B i i(l SR S )
t = =T A R
L L L
< _<1 _ ) _ ) 2.40
~ oy L+ py||x[? 1+py (2.40)
_ 1—p)yL\ 1 1+ py

E 82 > <1+( ) — , 241
[el"] = 1+ py 1+py+(1—p)yL 41)
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where the equality sign in (2.41) is achieved when |x1| = ---|x|, i.e. having all pilot
symbols of the same norm minimizes the MSE of channel estimation. The corresponding
variance of the channel estimate is given as

F127 (1-p)yL
E[|h]*] = vy Cpms e (2.42)

The received data symbols before and after quantization, both stacked into column
vectors of dimension S — L, can be written respectively as

yq = VY (h+8)xq+ng, (2.43)
ra=vY(1—p)hxg+y(1—p)exqg+ (1—p)ng+eg, (2.44)

where x4 and ny are the transmitted data symbols and the corresponding additive noise
samples with E[xqxl] = E[ngn}l] = Is_[. In the quantized receive data vector r4, we
consider /¥ (1 — p) i x4 as the signal part, and the remaining summation n’ = /7 (1 —
p) €xq + (1 — p) nq + eq as additive Gaussian noise. To this end, the effective instantaneous
SNR is computed as

E [’ﬁ(l _P)ﬁxd,i|2’ﬁ]

I— - (2.45)
E[Iv7(1=p)exail?| +E [ (1= p)nail® | +E [ leai | ]
_ y(1—p) |h?
y(1—p)E[[e]2] + (1~ p) + p(y [A2 + yE[[e]2] + 1)
__ v -—p)hP (2.46)

yE[|e2] +1+vyp|h|?

By using the results of (2.41), (2.42) and replacing J with an auxiliary random variable w
according to

h=\/E[|h2]-w, w~CN(0,1), (2.47)
we further write the effective instantaneous SNR as

_ Ly*(1—p)*|w|?
= AT e + L= o)y + (1 =)o (2.48)

With B denoting the transmission bandwidth, the ergodic channel capacity in bit/sec
achieved during the data transmission phase is lower bounded by

CLa=E[Blog, (1+T)]. (2.49)

A further analysis of Cy 4 can be found in Appendix Al. The reason that (2.49) is a
capacity lower bound is as follows:
- the channel estimation error € is treated as random noise, while it stays constant
during each block and changes independently only from block to block;
- the aggregate noise term n' is taken as Gaussian which is not necessarily true,
especially since the additive noise e introduced by quantization is not necessarily
Gaussian;
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Fig. 2.8: Trade-off between spectral and energy efficiency for the training based system,
B=1Hz, y =1, a9 =2 Watt,a; = 0.1 Watt, S = 1000

Consequently, what we have considered is the worst case scenario which leads to a lower
bound on the channel capacity. Note that in the above derivations, the transmit power
and the ADC resolution employed for the training and data phases are assumed the same,
which is practically more robust but may not be the optimum design.

We regard the energy consumption of the receiver as the cost of the system, and adapt
b and L with fixed average receive SNR. This may address the situation where energy
efficiency is not a major concern of the transmitter, or where the transmitter has a strict
transmit power constraint. To this end, the spectral and energy efficiency of the system
are computed as

py— (S=DE[ogy (14+1)] - B(S—L)E[log, (1+7)]
B S o E S(ar(2b —1) +ap)

(2.50)

Their relation is illustrated in Fig. 2.8 for the SNR y = 1. Each pair of ADC resolution and
training length corresponds to a point on the ng-ng graph, and we show in the figure the
boundary of these points in which different resolutions and training lengths are involved.
Similar to Fig. 2.6(a), ng shows a rapid decrease after its peak value is reached. In Fig. 2.9
we show the ADC resolution and the training length that jointly maximize the energy
efficiency with respect to the average SNR. In comparison with Fig. 2.6(b), the optimal
ADC resolution is not monotonic in y, but rises up in the very low SNR regime implying
the necessity of maintaining the quality of channel estimation in this region. From (2.50), it
is clear that for a given b, the training length that maximizes 7 is the one that maximizes
1 as the power consumption is independent of L. In fact, the optimal training length is
only slightly larger than the unquantized case for most SNR values [55]. In the very low
SNR regime, L* — S/2 can be shown which is the same result as obtained by [53] where
the imperfection caused by the A/D conversion is not taken into account.
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2.4 Trade-off between Energy Efficiency and Bandwidth

In the above analysis, the bandwidth B is kept as a constant. From (2.4) we notice that, if
B is variable and pix is kept constant instead, the energy per bit metric is a monotonically
decreasing function of B with its minimum achieved when B — +o00. On the other
hand, if the system has a minimum data rate requirement, the bandwidth that is needed
to fulfill it can be determined for any given transmit power, and the corresponding
energy efficiency can be computed. For the AWGN channel, trade-off curves between
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energy efficiency and the bandwidth are obtained for the power function P = pi and
illustrated in Fig. 2.10. With decreasing pi, the energy efficiency is enhanced but the
required bandwidth increases as well, leading to a monotonic relation between ng and
B. As pix — 0, we have B — +o00 and ng converge to its maximal of 1/(Npln2)
irrespective of the data rate requirement. This trade-off can be formulated equivalently
as the trade-off between transmit power and bandwidth [58,59]. The implication is that
the energy efficiency can be improved, or power can be saved, at the expense of using
a larger bandwidth which may be infeasible due to regulations or introduce interference
into the system.
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Fig. 2.12: Trade-off between energy efficiency and bandwidth of a receiver, a9 = 1 Watt,
a1 = 0.05 Watt/Hz, y = 1/B, R(d) = 1 bit/sec

However, the power consumption of the system can be also dependent on the
bandwidth. An example at hand would be the power consumption model of the A/D
converter as given in (2.28). To this end, by purely adapting B we can obtain a trade-off
curve between the spectral and energy efficiency in the same way as we adapt the
transmit power or the ADC resolution. On the other hand, for systems with data
rate constraints, we can adapt other parameters of the system and find the required
bandwidth likewise the resulting energy efficiency, as described above. To elaborate on
this, we define 4; = 4FOM and consider the rate and power models of the receiver which
have been introduced before:

CL = Blog, (%) , P=5B(2"—1)+ay forb>0, (2.51)

and illustrate Cy, ng as functions of b, B in Fig. 2.11. The capacity lower bound C
increases monotonically and is concave in both parameters b and B, yet it is not jointly
concave in them as a calculation of the determinant of the Hessian matrix reveals. The
surface of energy efficiency ng exhibits rather irregular shape but has a global maximum.
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Fig. 2.13: Energy efficiency maximizing bandwidth and ADC resolution as dependent on
the data rate requirement, ap = 1 Watt, 4, = 0.05 Watt/Hz, y = 1/B

Assuming a minimum required data rate R('¥ and continuously adaptable ADC
resolution b, we compute B and P according to (2.51) for each given b that is large enough
to realize R("'¥. An exemplary trade-off curve resulting from the procedure is shown
in Fig. 2.12. There exists now an optimal bandwidth B* which maximizes the energy
efficiency. For bit resolutions that lead to B < B*, bandwidth can be traded off for a
rapid increase in energy efficiency. As the bit resolution is further reduced, the required
bandwidth increases but the corresponding energy efficiency deteriorates at the same
time. The bandwidth and ADC resolution that jointly maximize the energy efficiency are
shown in Fig. 2.13 for a range of data rate requirements. As R("%) increases, the growth
of B* is much faster than b* due to the linear contribution of bandwidth but exponential
contribution of the bit resolution to the power consumption of the system.

2.5 Trade-off between Energy Consumption and Latency

The delay in obtaining the desired information, often called the latency, is another
important performance metric in communications which is closely related to user
experience. For future wireless services where more interactive applications and tactile
Internet are prevalent, keeping the latency at an extremely low level can be the most
critical design goal. However, reducing the latency in many cases requires more energy
consumption of the system, as we introduce in the sequel.

In our derivation of the Shannon limit, we learn that the minimum energy per bit
is achieved with pi approaching zero given fixed bandwidth and P = py. If a target
data volumn I is set, using this operation mode leads to the minimum total energy
consumption but infinitely long transmission time. We let E (in Joule) be the energy
consumption of the transmitter for sending I bits, and let 7 (in sec) be the time it takes to
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complete the transmission. Assuming constant transmit power over time, we have

I

Blog, (1 + BPEO) .

E=7-Plpw), T= (2.52)

If the power consumption function P is convex in pix, employing constant transmit power
is indeed optimal in terms of the overall energy efficiency. We will elaborate on this point
in Chapter 3 using the optimal control theory. The relation between E and T is illustrated
in Fig. 2.14 for I = 100 bits and normalized B and Nj. In the case of P = py, E decreases
monotonically in 7 indicating the trade-off between energy consumption and latency for
all prx > 0. In the other case where a constant circuit power term is included, E first
decreases and then increases in 7. The valley is reached at p;, = e — 1. Further decreasing
Pix results in longer transmission time and also larger energy consumption, which is to
say, the system should not be operated with pix < py, if possible.
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Fig. 2.14: Trade-off between energy consumption and delay for the AWGN channel, B = 1
Hz, No = 1 Watt/Hz, I = 100 bits

When employing the Shannon capacity formula to discuss the system performance,
it should be noted that a very long code may be required to actually come close to the
channel capacity, which results in a large latency because of decoding. We study in the
following, the trade-off between energy consumption and delay with a more realistic
model which involves practical modulation and coding schemes [60]. With this model,
the latency considered is defined from the perspective of the Medium Access Control
(MAC) layer instead of the Physical (PHY) layer.

We consider packet transmission over a block-fading channel. On each transmission
time interval (TTI), which is the basic signaling unit with a fixed duration smaller
than the coherence time of the channel, information bits are coded and encapsulated
into packets, and then modulated and sent to the receiver. The receiver attempts



2.5 Trade-off between Energy Consumption and Latency 33

to recover the information via demodulation and decoding, and sends a feedback
message to the transmitter. If decoding is successful, the receiver sends a positive
acknowledgement (ACK), otherwise it demands packet retransmission by sending
a negative acknowledgement (NACK). Upon receiving the retransmission request,
the transmitter can either send the same packet again, or send more redundant
information e.g. parity bits to help the receiver with decoding. The first scheme is
called Automatic Repeat reQuest (ARQ), and the second Hybrid ARQ (HARQ) or more
precisely, incremental redundancy HARQ. With these error-control methods, reliable data
transmission can be realized over an error-prone channel.

We let T1 denote the duration of one TTI, and Tr denote the round trip delay which is the
time it takes for the transmitter to receive the feedback from the receiver and get ready for
the next transmission. The channel condition is assumed to have changed independently
over the transmission trials, i.e. T is larger than the channel coherence time. Let 7r[m] be
the packet error probability (PEP) of the mth transmission, m = 1,2, .... The probability
that it takes exactly m trials to transmit a packet error-free, denoted with f[m], can be
calculated as

fl1] =1—-m[1], flm] = (1 — n[m]) ' nli], m=2,3,.... (2.53)

The latency T of a packet is defined as the expected time that is taken until the packet is
successfully decoded at the receiver. It can be computed as

+o0

=Y ((m—1)Tr+Tq)f[m]. (2.54)

m=1

Similarly, letting E[m] be the energy consumption for the mth transmission, we have the
expected total energy cost E to convey the packet successfully given as

+oo m
E= };1 Flm] ( }_:1 E[i]), (2.55)

where E[m] = TiP(p[m]) with pi[m]| denoting the transmit power of the mth
transmission and P the power consumption function.

With quadrature amplitude modulated signal and a frequency-flat channel, we apply
the noisy channel coding theorem [61] to obtain the relation between the PEP and the receive
SNR, the modulation order, and the coding rate. Let the modulation alphabet and the
coding rate be M = {ay,...,ap} and R, respectively. The cutoff rate of the channel with
receive SNR y can be expressed as

o M=1 M ,
Ro(y, M) =log, M —log, |1+ v Y. ) e~ tla—aly| (2.56)
i=1 j=it+1

The noisy channel coding theorem states that there always exists a block code with block
length | and binary code rate R. log, M < Ry(y, M) in bit per channel use, such that with
maximum likelihood decoding the error probability 77 of a code word satisfies

77 < 2—Z(RO()/,M)—RC log, M) (257)
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Let Ns be the number of data symbols and I be the number of information bits loaded in
one TTI, respectively. With coding rate R. and modulation order M, we have the relation
Nglog, M = I/R. = L where L denotes the length of the packet. If the packet contains N
code words, the PEP can be upper bounded by

N
n=1—(y—mN§1—(1—T%WWWW&®&M). (2.58)

We assume that a packet is transmitted with the same power and modulation order for
all transmission trials. For the ARQ protocol, the original packet is retransmitted hence
the PEP depends only on the channel condition of the corresponding TTI. For the HARQ

protocol, new parity bits are sent upon the reception of an NACK, leading to decreasing
effective coding rates given as

Rem) =  Re. (2.59)

As a result, the PEP depends also on the number of transmissions that have been taken.
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Fig. 2.15: Trade-off between energy consumption and delay for packet transmission over
a block fading channel, Tt = 2 ms, Tr = 10 ms, M = 4, R. = 0.5, N = 1, Ny = 1000,
a/0?=1,P=pn+1

We perform Monte-Carlo simulations to evaluate the energy consumption and the
latency to convey a packet over a block fading channel with average gain «. The results
shown in Fig. 2.15 are produced with the system parameters listed below the figure,
and are averaged over 10* independent repetitions. The transmit power is varied as we
construct the trade-off curves, and to put in an intuitive way, using a higher transmit
power helps reduce the PEP and the number of transmissions, whereas using a low
transmit power results in less energy consumption for each transmission. From the curves
we see that the number of transmissions at the point that the total energy consumption
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is minimized is between 2 and 3. The HARQ protocol, by employing previously received
information in decoding, requires much less energy for the delivery of one packet.

The system design can be improved and optimized by allowing the transmit power
and the modulation and coding scheme to be adaptable based on the instantaneous
channel information. For the communication with a feedback channel, it is convenient for
the transmitter to learn about the channel condition. Although it might be inaccurate and
delayed to some extent, this information can be useful to increase the success rate of each
transmission. Since our purpose is to give an exemplary model to illustrate the trade-off
between energy consumption and the latency, a simple, straightforward transmission
scheme has been used instead of an optimized one.



3. Energy-constrained Throughput Maximization on a
Finite Time Interval

In this chapter, we consider the throughput maximization problem on a given finite
time interval, where the wireless transceiver is provided with a fixed energy budget
and an unlimited amount of data that can be transferred. The optimization addresses
the question: how should the wireless transceiver operate on the given time interval, so that
the available energy is utilized to convey the maximal amount of data? It reflects a scenario
in which the transceiver does not have any power supply on a certain time period, but
wishes to deliver the most possible information using the readily available energy. A
number of circumstances arise when the problem is made more specific: is a transmitter,
or a receiver, or a pair of them that is of concern; which are the parameters we can control
and how are they related to the performance of the system; how are the parameters that
can not be controlled and what do we know about them. In any of the cases, it is crucial
to determine the relation between the achievable data rate and the power consumption of
the system based on the dependencies of the two quantities on the control variables. This
relation helps us identify the so-called energy efficient operation modes of the system, the
appropriate time-sharing of which constitutes the optimal solution to the posed problem.
We achieve these results by virtue of the optimal control theory.

Instead of instantaneous performance metrics, we optimize the throughput of the
system which is defined as the total amount of data transferred on the given time
interval. Mathematically, it is computed as the integral of the instantaneous data rate
and is therefore a functional of the control variables as functions of time. On the other
hand, the state of the transceiver in terms of energy consumption is governed by the
instantaneous power consumption as dependent on the control variables, which can be
written as a set of differential equations. The given energy budget corresponds then
to a constraint on the system state. Our problem, recognized as the maximization of a
functional for a system described by a set of differential equations and constrained in its
state, is consequently treated within the framework of the optimal control theory. After
giving a general problem formulation, we introduce the Pontryagin’s maximum principle
and discuss its application to each specific scenario to obtain the optimal communication
strategy. Notice that in some of the cases, less powerful tools than the maximum principle
suffice for the derivation of the optimal solution. We employ nevertheless the maximum
principle not only for the consistency, but also for the insight of possible generalization of
the obtained results.

36
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Besides the theoretical and practical interest of its own, the optimal solution to the
posed problem lays the basis for the optimal control of energy harvesting transceivers.
As we shall discuss in the next chapter, the throughput maximization problem of an
energy harvesting transceiver can be decomposed into subproblems with fixed energy
budgets. While applying the optimal solution to each subproblem does not necessarily
yield the global optimum, using a non-optimal solution for any subproblem is bound
to be suboptimal. Therefore, being the cornerstone for a more general setting, the fixed
energy budget problem we aim to solve to optimality here is also referred to as the
basic problem. Moreover, since a geometric approach is taken for finding the optimal
state trajectory of energy harvesting transceivers, from which the optimal control can
be determined, we present and interpret the optimal solutions to the basic problems in
various scenarios from a geometric perspective as well.

3.1 Problem Formulation

We formulate the energy-constrained throughput maximization problem in a general
form in this section, where we first introduce the elements of the problem using
terminology and common notations of the optimal control theory, and then give the
mathematical formulation as well as a geometric interpretation of the optimization.

The wireless transceiver shall be regarded as a control system. We let the time interval
of interest be [0, T | where T € (0, +00) is a given constant. The adaptation of the control
variable, in case there is only one of them, can be described by a control u : [0, T] — U
which is a function of time with the domain [0, T| and the range &/ C R. Regulations
on u are necessary to guarantee its physical feasibility. In the optimal control theory, u is
usually assumed piecewise continuous, meaning that the function is continuous except
at a finite number of points where finite discontinuities occur!. This is a reasonable
condition for the system we are studying, since the control parameters of the transceivers
can be assumed to vary continuously in time where a sudden jump in their values is also
possible, yet to allow for an infinite number of jumps in the control does not make sense.
The set of values that the control variable can take, given as U/, is called the control set and
it can be discrete or connected, finite or infinite. In the following, we present the problem
formulation and the maximum principle for the one-dimensional case, as this is what we
mostly consider and also gives us a concise notation. The extension to multiple control
variables, i.e. having a vector-valued control u, is straightforward.

We define the state of the system at time ¢ as the cumulative energy consumption from
the starting point 0 until ¢, and denote it with W(t). Let P(u(t)) be the instantaneous
power consumption of the transceiver, which is a non-negative function of the control
variable and usually does not depend on time in an explicit manner. Instead of using the
integral representation, we employ the ordinary differential equation (ODE)

W =P(u), W(0)=0 3.1)

to describe the behavior of the system, which is common practice in formulating optimal
control problems. Note that we have followed the convention of suppressing the time

A finite discontinuity means that both one-sided limits at the point exist and are finite. An infinite
discontinuity, correspondingly, occurs when one of the one-sided limits of the function is infinite.
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arguments of W and u. On a time-energy graph, W is represented by a non-decreasing
curve starting from the origin, and the slope at any point of the curve is given by the
corresponding power consumption of the transceiver. From a more dynamic viewpoint,
W can be seen as the trajectory of a particle moving from the origin towards an intersection
point with the line t = T, where the movement of the particle is governed by the control
of the system via the power consumption function P. If the function P is invertible, we
have one-to-one correspondence between the control u and the trajectory W.

The performance of the system is measured by the short-term throughput, or simply
throughput, which is a functional of the control u defined as

I(u) 2 /OTR (t,u) dt. (3.2)

The function R, also called the Lagrangian in this context, stands for the instantaneous
achievable rate of the undergoing communication. It depends on the control and
possibly explicitly on time, when the channel is time-variant for instance. Following the
information-theoretic framework, we usually have the rate function R being concave in
the control variable given fixed time argument.

Our goal is to find, among all admissible controls, the one that leads to the maximal
throughput on the time interval of interest. For a control to be admissible, it needs to fulfill
all the constraints of the problem, including those directly on u: u € U, Vt € [0,T], and
also those on the state trajectory W e.g. a specified final state, a pointwise upper or lower
bound, etc. We consider here that the transceiver has a given energy budget A, which
is smaller or equal to the storage capacity of the transceiver, and is available already at
t = 0. During the time interval of interest, the transceiver has no power supply or other
energy input. This is to say, we have a constant pointwise upper bound of value Ay on the
state trajectory W, or equivalently, an inequality constraint on the final state of the system,
W(T) < Ay, to guarantee that the energy expenditure is no more than the energy that is
available. To this end, we formulate the energy-constrained throughput maximization as
an optimal control problem as

T
max / R (t,u)dt
u:[0,T]—>U 0
s.t. W = P(u), W(0) =0, (3.3)
W(T) < A,.

This problem is referred to as the basic problem in the context of finding the optimal control
of energy harvesting transceivers. The optimal solution and the corresponding optimal
state trajectory, denoted with u* and W™ respectively, can be obtained by applying the
Pontryagin’s maximum principle (PMP), given certain regulations and assumptions about
the rate function R and the power consumption function P, which we shall discuss in
detail in the subsequent sections.

The optimal control problem (3.3) is visualized with the time-energy graphs shown
in Fig. 3.1. The fixed energy budget Ay confines a rectangular admissible region for the
state trajectories with the parallel horizontal lines E = A and E = 0, where the latter
lower bound is naturally fulfilled as W starts at the origin and is non-decreasing in time.
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The final state of the transceiver, or the intersection point of W with t = T, should not
be above the point (T, Ap). Finding the optimal control can then be understood from a
geometric point of view as finding the admissible trajectory, which starts at the origin,
increases monotonically, and lies within the admissible region, that leads to the maximal
throughput. Moreover, if the functions R and P are both monotonically increasing in the
control variable, which is practically almost always the case, the inequality constraint
on the final state can be replaced by the equality constraint W(T) = Ay. This condition
requires the available energy to be exhausted at the termination point, since otherwise one
can always increase the value of the control and thus improve the achievable throughput.
Taking the new restriction into account, the endpoint of any admissible trajectory is fixed
at (T, Ap) on the time-energy graph.

E, E,
Ao AO
Wi W3
W,
0 T ¢ 0 T ¢

Fig. 3.1: Visualization of the energy-constrained throughput maximization problem and
exemplary admissible trajectories

In Fig. 3.1 we illustrate three admissible trajectories, all of which start at the origin,
end at (T, Ap), and are non-decreasing in time. The part of the trajectory that is a straight
line segment corresponds to the control variable being constant on that time interval.
The trajectory W, then represents a completely constant control. In particular, horizontal
straight line segments suggest zero power consumption of the transceiver, which can be
found in trajectories W, and W3. For both cases we see that the transceiver is operated
actively with a constant control variable for some time period, and turned off for the
remaining of the time interval during which no energy is consumed. Moreover, the two
trajectories differ only in the location of the horizontal part, but not in its duration.
They will be recognized as equivalent trajectories later, which form an important class
of trajectories for some system setups.

3.2 The Maximum Principle

The Pontryagin’s maximum principle, proposed by L. Pontryagin et al. in the 50s [62] and
also known as the Pontryagin’s minimum principle, is a first-order necessary condition for
optimality of optimal control problems. We state the principle here with the notations
used in (3.3), except that T represents the endpoint of operation which is not necessarily
fixed and known in advance.

The maximum principle gives a set of conditions that the optimal control u* and the
optimal state trajectory W* should satisfy, under the assumptions that u is piecewise
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continuous, and the functions R and P are both continuous in the control variable. The
Hamiltonian of the problem is introduced as

H(t,W,u,A) = —R(t,u) + A- P(u), (34)

where the auxiliary variable A is called the adjoint variable or the costate. At optimality, it
satisfies the costate equation

. %

A = —Hw(t, W, u*, A*). (3.5)

Note that a function with one of its variables as the subscript stands for the partial
derivative of the function with respect to this variable. The PMP indicates that the
Hamiltonian evaluated with W* and A* is minimized by the optimal control ©#*, among
all admissible controls, at every time instant:

H(t, W, u*, A*) < H(t, W*,u,A*), Vte[0,T]. (3.6)

When the Hamiltonian does not depend explicitly on time and the terminal point T is
free, then the condition
HW*,u*,A*) =0, Vte[0,T] (3.7)

should be satisfied. If T is fixed instead, then H(W*, u*, A*) is still constant over time but
not necessarily equal to 0. When the final state of the system is specified, an additional
transversality condition is necessary, which, in the one-dimensional case, states that

A*(T) = 0. (3.8)

When the Hamiltonian does depend explicitly on time, one can treat ¢ as another state
variable and introduce also a costate for it. In the case that the terminal point T is free, the
following condition can be obtained using (3.7) and (3.8):

H(T, W*(T), u*(T), A*(T)) = 0. (3.9)

The proof as well as more detailed analysis of the PMP can be found in various literatures
e.g. [62-64].

For the wireless transceiver under consideration, the rate function R and the power
consumption function P are both independent of the cumulative energy consumption of
the system. As a result, the Hamiltonian as defined by (3.4) does not depend on the system
state W explicitly, which suggests that A* is a constant according to (3.5). The remaining
conditions need to be discussed with additional specifications on R and P, which rely on
the features and assumptions of each individual scenario. We investigate in the following
sections, the throughput-maximizing operation strategies i.e. the optimal solutions to the
basic problem of a transmitter, a receiver, and a pair of transmitter and receiver.

3.3 Optimal Control of the Transmitter

In this section we consider a wireless transmitter as the object under control, which
exploits the energy budget Aj to send data to a certain receiver. We discuss a number
of different cases which are summarized in Table 3.1.
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Table 3.1: Scenarios considered for the transmitter and the optimal control strategies

Case Features Rate function R Power function P
Continuous transmit Strictly concave, Convex, monotonically
pOWGI' ptx/ ) mOnOFonl.Cally increasing ln thl
I constant channel mcreasing in pPix, P(0) =0
R(0)=0

Employ constant transmit power, pj, = P~1(Ag/T)

Convex, monotonically

Continuous transmit : /
increasing for pi > 0,

power pix,

Same as in Case | P(0) = 0
constant channel =Y,

1 P (0+) =co>0
Employ constant transmit power p;, = P~1(Aq/T) if Ag/T > po, otherwise
use p;y, = Pix,0 until all energy is exhausted, and then turn into sleep mode,

where piy o solves (R - Py — Ry, - P) (pex) = 0, and po = P(pix,0)
Discrete set of Discrete (P, R) pairs each corresponding
modulation orders, to one available modulation order,

III constant channel for which the Pareto boundary is constructed
Employ time-sharing of the bounding modulation orders of Ag/T
Time-varying, Same as Same as
known channel in Case I or II in Case I or II

v

Employ the water-filling or modified water-filling solution;
Convex optimization for block-fading channels

Discrete set of
modulation orders,
I block-fading channel

Log-normal shadowing added
to the model of Case III

+
v Optimal control obtained by solving a linear program,
near-optimal control from proposed heuristic algorithm
Causally known Same as Same as
v block-fading channel in Case L or II in Case L or II
Online decision making based on dynamic programming
Stochastic deadline Same as Same as
for transmission in Case I or II in Case I or II
VI
Employ monotonically decreasing transmit power
until the deadline or the depletion of Ay
3.3.1 Casel

In a very basic and generic setup, the transmit power, denoted with py, is taken
as the control variable which assumes continuous values without an upper limit i.e.
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U = [0,+0o0). The rate function R is assumed to be time-invariant, strictly concave and
monotonically increasing in pi, and it satisfies R(0) = 0. These conditions are met by
many common communication systems. An example of such rate functions is given as

R(pi) = Blog, <1 + %) , (3.10)
which is the Shannon formula for the capacity of the AWGN channel in bit/sec, where
o2 denotes the noise power which has the same unit as pt, and B denotes the signal
bandwidth in Hz.

Circuit power and hardware imperfection are inevitable to digital communication
devices. Considerations on these factors are especially important for wireless sensor
nodes due to the typically short communication ranges, rendering the transmit power
required to achieve a sufficiently good receive SNR not significantly larger than the
analog/digital processing power. Consequently, it is necessary and imperative to include
the power consumption of the circuitry into account. In the context of the basic generic
model, we assume convex and monotonically increasing functions P with P(0) = 0. Note
that this includes the special case P(pix) = pix, i.e. circuit power is neglected and an ideal
power amplifier is assumed at the transmitter.

3.3.1.1 Optimal transmission strategy

For the control p;, and the costate A* to be optimal, it is necessary that

H(pix, A*) = —R(pix) + A" - P(pix) (3.11)

is minimized with p{, at every time instant. This implies that the constant costate A* is
positive, for otherwise H(pix, A*) would be unbounded from below. As R(-) is strictly
concave and P(-) is convex, we have H(-,A*) is strictly convex, suggesting that the
minimum of H(-,A*) is unique i.e. p;, has to be constant. This is to say, in order to
maximize the throughput on [0, T | with a fixed energy budget, the optimal transmission
strategy as indicated by the PMP is to employ constant transmit power. Since R increases
monotonically with py, all available energy should be exhausted by the end of the time
interval, leading to pf, = P~1(Ao/T), Vt € [0,T] where P~! stands for the inverse of
function P.

When the functions R and P are differentiable, we can achieve the same result using
the first-order condition as required by (3.6):

HPtx (Pfxr A*) = _Rptx (p:x) + A" Pptx (p:x) =0, (3.12)
which in turn gives
A = Ry (Pi) f‘) : (3.13)
PPtx (ptx)

Since R is strictly concave in pyy, the first-order derivative R, decreases monotonically.
On the contrary, Py, is non-decreasing as P is convex in pi. As a result, the function
Rp,./ Py, is monotonically decreasing, hence the optimal control py, has to be constant so
that A* stays invariant over time. When the first-order derivatives Ry, and Py, are also
differentiable, the second-order condition

HPtthx (p’fx' A*) = _RPtthx (pjrkx) + A* ' Pptxptx (p’jx) > 0 (3-14)
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suffices to ensure that H(-, A*) is minimized by the constant control py;.

With the assumption of a concave rate function R and a convex power function P,
the convexity of the optimal control problem (3.3) can be easily seen. This guarantees
that the local optimal solution we find via the PMP is indeed the global optimum. The
corresponding optimal trajectory W* is exactly the straight line connecting (0,0) and
(T, Ap) on an time-energy graph, as shown on the left side of Fig. 3.1.

In fact, the convexity requirement on P may be too strong for the constant transmit
power strategy to be optimal. The PMP requires the function R, / Pp,, to be single-valued,
if p{y is constant. When both Ry, and Py, are continuous, this translates to Ry, /Py, being
monotonic which is equivalent to

Rptxptxpptx - Rptxpptxptx <0 (315)

based on (3.13) and (3.14), given that Ry, and P, are also differentiable. Obviously, P
being convex is sufficient but not necessary for (3.15) to hold. One can also come to this
point by contemplating that (3.11) is minimized by pj; at every time instant, which only
requires that the minimum of H(-, A*) is unique if pj should be constant. For example,
H(-, A*) being strongly unimodal is sufficient, which does not call for the function P to
be convex which makes H(-,A*) convex. However, having non-convex P destroys the
convexity of the optimal control problem, which may lead to situations where the PMP is
not sufficient for optimality or where the optimal control does not even exist. Taking this
into account, we do not discuss further, what are the exact conditions P needs to fulfill
such that a constant control is optimal, but settle ourselves with convex functions P for
convenience.

The optimal solution can also be understood from a geometric point of view.
Intuitively, as we aim at maximizing the throughput with a given energy budget, the
operation modes of better energy efficiency should be preferred, i.e. those with relatively
larger R/P values. To this end, we consider the achievable rate as a function of the power
consumption and illustrate it on a power-rate graph. The energy efficiency of any point
on the curve corresponds then to the slope of the straight line connecting the point with
the origin. We let f(P) = R(P~!) denote the rate function as dependent on the power
consumption of the transmitter. By using the chain rule, one can obtain that

fP - RPtx ’ Pp_txl = Rptx/PPtx/ (3.16)

which is strictly monotonically decreasing in P since the positive numerator is strictly
decreasing whereas the positive denominator is non-decreasing in piy, and P increases
monotonically with pi. This is to say, the achievable rate R as a function of the power
consumption P is strictly concave. Noting that R and P are both equal to zero when no
power is radiated, we depict an exemplary R-P curve on the left in Fig. 3.2.

Due to the strict concavity of the curve, the line segment connecting two arbitrary
points on the curve lies below the curve. This means, the time-sharing of the two
corresponding operation modes, characterized by their (P,R) coordinates, leads to a
reduction in the achievable throughput as compared to using the single operation mode
with the same average power. Consequently, the optimality of employing a constant
control is validated. This consideration shares the same essence as Jensen’s inequality,
and we will see in the sequel, that the power-rate graph is very helpful in analyzing less



44 3. Energy-constrained Throughput Maximization on a Finite Time Interval

R R R

A A A

0 P 0 Cco Po
Casel Case I1 Case I11

Fig. 3.2: Power-rate graphs and construction of the Pareto boundaries

regular situations. Also notice, by observing equations (3.13) through (3.16), that the strict
concavity of R in P is an equivalent condition for the PMP to lead to the constant control
conclusion, and is a less demanding one than restricting P to be convex.

3.3.1.2 On the maximum achievable throughput

The maximal throughput achieved by employing py, is givenas I* = T - f(Ao/T). It can
be immediately seen that [* as a function of A( shares the properties of the function f for
fixed T: it is monotonically increasing and strictly concave. When Ay is fixed instead, it
can be computed for I* as a function of T that

Ao Ag Ag
= f(2) -2 () >0 3.17
A2 Ag
Ity = =5 ‘fPP(T) <0, (3.18)
40
32t
24t
16
8
—
=== Upper limit Ay/(NyIn2)
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Ao T
(a) I" as dependenton Ay, T =1 (b) I* as dependenton T, Ag = 25

Fig. 3.3: Maximum throughput I* as functions of Ag and T, R and P given by (3.20) with
B=10=1
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where (3.17) and (3.18) follow from the first- and second-order concavity conditions [65]
of the function f:

0= 501 <5 (4) () (0- ) =5 (4) -2 (%), o
fn( ) <o

This is to say, I* as a function of T is also monotonically increasing and strictly concave.
If we take the generic model

_ Pix —
R = Blog, (1 + ?) . P=py, (3.20)
then the asymptotic values of I* = TBlog, (1 + %) can be calculated by using the
L'Hopital’s rule as

. . B AogT
limI* =lim — - ———— =0,
T—0 T—0 In2 To?+ Ay
B AgT BA A
1' I* — 1' . 0 — 0 — 0 .21
T oo Tostoo In2 To? 4 Ay 0%2ln2  Ngoln2’ (3.21)

where Nj stands for the noise power spectral density. Note that the upper limit of I*
is achieved by the asymptotically minimum energy per bit of NyIn2 which is derived
in (2.7), since the system is allowed to operate for infinitely long time in this case.
We show some numerical examples in Fig. 3.3 for an illustrative impression that the
maximum throughput I* is monotonically increasing and strictly concave in the energy
budget Ap and the operation time T, respectively. Notice also, that we normalize the
fixed parameters and do not always specify the units of variables for the generic model,
and focus on the behavior and property of the system mainly from a mathematical
perspective.

3.3.2 Case Il

When circuit power of the transmitter is taken into account, special attention should be
paid to the potential discontinuity brought to the power consumption function P. More
specifically, we consider that the transmitter works either in active mode or in sleep mode.
When it is not sending any signal, the transmitter is turned into sleep mode for which
we assume there is no power consumption of the circuit, i.e. P(0) = 0. Otherwise,
the transmitter is considered in active mode and its circuit incurs additional power
consumption, which means P > 0 for py > 0. We further assume that switching between
the two modes does not require any power or time. This is of course idealistic, and it
should be taken care that mode switches in the optimal control is avoided as much as
possible. It is necessary to explicitly define these two operation modes since they may
lead to a discontinuous point of P at pyx = 0. For instance, there is often a positive
constant power consumption term associated with the active mode caused by baseband
processing etc. Let this constant be denoted with ¢y, and assume that pt = 0 is the single
discontinuous point of P, where P(0) = 0 but the right-sided limit P(07) = ¢y > 0. In
addition, for py > 0 we assume P is convex and monotonically increasing as before, and
the rate function R also fulfills the same conditions as in Case I.
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3.3.2.1 Optimal transmission strategy

The PMP takes as prerequisites that the Lagrangian R and the time differential of the
system state P are continuous. The discontinuity of P therefore calls for special treatment
and the result from Case I needs to be reexamined. Intuitively, turning the transmitter into
sleep mode could be beneficial in this case due to the energy that can potentially be saved.
Since the channel state is assumed invariable, when is the transmitter sleeping during the
time interval [ 0, T'| does not influence the achieved throughput. We therefore assume that
the transmitter begins transmission at t = 0, and terminates at some time instant ¢;, where
t1 < T.To this end, an optimal control problem with free endpoint but specified final state
can be formulated, for which the function P is continuous. The constant control result we
obtain previously is then valid, i.e. during the time that the system is in active mode,
using constant transmit power is the optimal. The remaining question is to determine #1,
at which point all available energy is exhausted and the transmission is terminated. For
t; < T, the constant Hamiltonian condition (3.7) applies as

H(pi, A*) = —R(pix) + A" - P(pi) =0, (3.22)
which, together with the first-order condition (3.13), gives us the relation

— R(pjckx) — RPtx (p:ckx) )
P(p:ckx) PPtx (p:ckx)

Consequently, we have that the optimal transmit power is the solution to the equation

A*

(3.23)

(R- Ppy = Rpy - P) (prx) =0, (3.24)

which we denote with py, o. The corresponding power consumption of the transmitter
is given as py = P(pix,0)- Note that pi o depends only on the inherent properties of the
communication system e.g. functions R and P. The specific operation parameters Ay and
T determine whether, and for how long, can the transmit power py, o be employed.

The optimal transmission strategy for Case II can be stated as follows: if Ag/T > po,
then the transmit power P~1(Ag/T) should be employed constantly on [0, T]; otherwise, the
transmit power pyo should be used for a time period of length Ao /po, and the transmitter is
turned into sleep mode for the rest of the time interval.

On the time-energy graph, the optimal trajectory in the former case is still the straight
line segment connecting (0,0) and (T, Ap), shown by Wj in Fig. 3.1. In the latter, the
optimal trajectory consists of straight line segments of slope py and horizontal lines,
representing the active and the sleep modes of the transmitter, respectively. As we assume
mode switches do not cost any power or time, the required sleep period can be realized in
infinitely many ways in terms of segmentation and concatenation with the active periods.
We call the class of trajectories that begin and end at the same points, in our case that is
(0,0) and (T, Ap), and are comprised exclusively of horizontal lines and straight lines
with slope pg equivalent trajectories. As simple examples, the trajectories W, and W3 in
Fig. 3.1 are equivalent, which we denote with W, ~ Wj3. Note that equivalent trajectories
all lead to the same throughput.

The result derived above can also be interpreted with geometric illustrations on the
power-rate graph. As shown in the middle graph of Fig. 3.2, due to the positive constant
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power consumption co associated with the active mode, the achievable rate R as a
function of the power consumption P is undefined on the open set (0, ¢y | and exhibits an
isolated point in its domain at P = 0. We make the tangent line from the origin towards
the R-P curve and name the tangent point X, with coordinates (P(pe x), R(pix,x))- It can
be immediately seen, that the time-sharing between the sleep mode and the active mode
with transmit power py x outperforms the exclusive use of any power value in the range
of (0, px,x), for the tangent line lies above the part of the R-P curve until the tangent
point. The slope of the tangent line satisfies the relation

R(pex,x) Ry, (Pix,x)
Bl — X)) = 57—, 3.25
Plpox) PP = B, (px) (3:29)
which leads to
(Rpy - P = R Py) (Pix,x) = 0. (3.26)

Comparing with (3.24), we immediately discover that py x = pix,0. The corresponding
total power consumption at the tangent point X is therefore py, as indicated in Fig. 3.2.

Clearly, by making the tangent line OX we have constructed the Pareto boundary
of the graph given by R as a function of P. The linear tangent part between (0,0) and
(po, R(px,0)) corresponds to the time-sharing region, i.e. any transmit power between
0 and pix0 should be realized by the time-sharing of the two endpoints, whereas the
curved part beyond the tangent point, which is strictly concave, corresponds to the
constant power region. The slope of the line connecting the origin and any point beyond
the tangent point is smaller than that of the tangent line, suggesting that the maximal
energy efficiency is achieved at the tangent point. This can also be verified with the
algebraic method, via inspection of the maximization of R/P. The stationary point of the
optimization is given exactly by (3.24). To this end, we refer to piy o as the energy efficient
transmit power, and claim that using any positive transmit power below pyy (o is bound to
be suboptimal.

40

32r

241

Ptx,0

161

0 i i i i
0 20 40 60 80 100
co/c1

Fig. 3.4: Energy efficient transmit power as the solution to (3.28), o0 = 1
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3.3.2.2 On the energy efficient transmit power and the maximum achievable throughput

For the numerical examples, we employ the following rate and power functions:

C1- ptx + Co, ptx > O/

(3.27)
01 Ptx - OI

R = Blog, (1+53), P:{

ie. R is given by the Shannon formula and P has a discontinuous affine form with
constants ¢c; > 1, cg > 0. The equation (3.24) that defines the energy efficient transmit
power can be written as

Pix + co/c1 Pix
x0T —In (14 22, 3.28
Pix + 02 n < + 02 ) (3.28)
from which piy o can be solved using an iterative algorithm. We let ¢ = ¢y /c; and define
_ Ptx,0 Ptx,0 +C
F ,0)=In(1 — =0, 3.29
(Proo €)= In ( i ) Pix,0 + 02 (3:29)

which enables us to study the properties of the energy efficient transmit power as a
function of the ratio ¢. It can be computed that

dPt>_<,o __FE_ pxot (7_2 >0,
dC Fptx,O ptxro + ¢

d2py 0 (dpeo) dpeo | 0 (dpw x0+0%)?
P_t 0 _ Pt_,o Pt_,o + 9 Pt_,o _ (Pox,0 + U_ ) <0, (3.30)
de? Opixo \ d¢ dec oc \ de (Ptxo0 +€)3

suggesting that py o is monotonically increasing and strictly concave in ¢. We demonstrate
the relation between the two quantities in Fig. 3.4. The monotonic behavior of pi o is
intuitive since the R-P curve is drifted away from the origin and/or pressed more flat
along the R-axis with increasing co/c;, driving the tangent point further to the right on
the power-rate graph. As py, o = 0 for ¢y = 0, we see that Case I can actually be regarded
as a special instance of Case II, for which the energy efficient transmit power is never
employed since the relation Ay/T > py = 0 always holds.
The maximum throughput I* achieved by employing pf, is given as

A X A
. p—s Blog, <1 + p;z,()), TO < po, 331
"\ togs (14 AU e .
g |1+ 2 ’ otherwise.

When T is fixed and Ay > poT, time-sharing with the sleep mode is not necessary and
the situation is the same as in Case I, i.e. I* is strictly concave in Ag. When Ay < poT
on the other hand, I[* becomes linear in A as indicated by (3.31), since the instantaneous
data rate is constant. We illustrate this result in Fig. 3.5(a), where the linear part of I*
is drawn with solid lines and the strictly concave part is drawn with dashed lines. For
a fixed energy budget Ap, on the contrary to Case I, the upper limit of I* is achieved
with finite interval duration which satisfies T > Ag/po, as shown in Fig. 3.5(b). Since Ay
is fully exploited by using the energy efficient transmit power pi o, reducing T below
Ap/po would diminish the achievable throughput.
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Fig. 3.5: Maximum throughput I* as functions of Ayg and T, R and P given by (3.27) with
B=1,0=1

3.3.3 Case III

In practical communication systems, it is often the case that the transmit power can not be
adapted continuously, but has to be chosen from a limited, discrete set. With each allowed
transmit power corresponding to a distinct achievable rate, this scenario is characterized
by a number of discrete points on the power-rate graph, which are also referred to as
the feasible operation modes. If time-sharing is allowed, then any point that lies within
the convex hull of these discrete points is also achievable. The linear interpolation of
the discrete points forms a monotonically increasing rate function in the total power
consumption of the transmitter, which, however, can be non-concave.

3.3.3.1 Optimal transmission strategy

To find the optimal transmission strategy, the same approach as used for Case II can be
pursued: we construct the Pareto boundary of the given discrete points on the power-rate
graph, which satisfies

- Any point on the boundary is achievable;

- There does not exist any achievable point that lies both above and to the left of any

point on the boundary.

The resulting rate function as dependent on the power consumption is clearly concave.
The Pareto boundary can be constructed as follows: the origin (0, 0) is first selected, and
we denote it with (P,, R, ). Then, among the points that are to the right of the last selected
point, the one with the largest ratio (R — R,)/(P — P,) is chosen, and (P,, R,) is updated
by its coordinates. The process terminates when there is no more point to select, and
the eligible discrete points are connected consecutively by straight line segments. The
constructed curve, which consists of a series of lines with decreasing slopes, possesses
the defining properties of the Pareto boundary as listed above. This can be easily verified
by the method of contradiction. In Fig. 3.2, the rightmost graph illustrates the scenario
under discussion, with five available operation modes marked by crosses. Four modes
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can be found eligible via the proposed procedure, and the Pareto boundary given by the
linear interpolation between them is shown with the red curve.

We say that the discrete points on the Pareto boundary represent the energy efficient
operation modes of the transmitter. Moreover, for a given power consumption, we term
the two closest energy efficient points to its left and right as the bounding operation modes.
Using this concept, we state the optimal transmission strategy as follows: the two bounding
operation modes of the power value Ay/T should be employed in a time-sharing manner such
that the same average power is achieved. If Ag/T is exactly equal to the power consumption
of an energy efficient operation mode, then this mode should be used exclusively and
no time-sharing is necessary. If, on the other hand, A/T is larger than the power
consumption of the most power demanding operation mode, then this mode should be
used exclusively also, but we will not be able to utilize all the available energy on the
given time interval.

3.3.3.2 Optimal control of MQAM transmission

We introduce next, a concrete system model in which the transmitter employs
uncoded M-ary quadrature amplitude modulation (MQAM). The modulation format,
or equivalently, the constellation size M, is the control parameter here which can be
adapted over time within a predefined, limited discrete set. Due to the convenience in
implementation and analysis, we discuss only square QAM in the following, meaning
that log, M is an even number. The model is based on the one proposed in [36], and
modifications are made to include the effect of pulse shaping.

Let the distance between the transmitter and the receiver be denoted with d (in
meters), and assume it does not change during [0, T|. Considering only path loss for
the radio propagation effect, we write the receive SNR as [36,66]

Prx Pix
_ _ , 32
Y= NoB ~ M, Gyd~ NoB (3:32)

where % is the double-sided noise power spectrum density, « is the path loss exponent,
and B is the signal bandwidth. The parameter G; stands for the power loss at the reference
distance of 1 meter which is dependent on the antenna patterns and the wavelength of
the transmitted signal. Shadowing, interference, other background noise, and internal
hardware loss are compensated with the link margin M;. An upper bound on the uncoded
bit error probability for the MQAM transmission is given by [67]

o < g (v Q)

2 1 3y
< o 7)o (o) (3.33)
wexp(<i?/2) 1 o ¥

where Q(x) = /x du < > exp< — 7) for x > 0. (3.34)

V2

The approximation in (3.33) is due to the improved upper bound of the Q function (3.34)
derived by [68], which is one half of the Chernoff bound used in [36]. From (3.33) the
minimum receive SNR to achieve a target bit error ratio (BER) can be calculated directly.
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Table 3.2: System parameters for the uncoded MQAM transmission

carrier frequency fe = 2.5 GHz || signal bandwidth B =10 kHz

path loss exponent K=23.5 noise power density % = —174 dBm/Hz
link margin M; = 10* path loss at 1 meter Gy =10°

drain efficiency of PA | n = 0.35 constant circuit power | Pt = 100 mW
roll-off factor B=03 symbol duration Ts = % =0.13ms
required BER ﬂl(grq) =103 || modulation formats M € {4,16, 64,256}

Although even better approximations of the Q function can be found e.g. in [69], they are
usually more involved in the variable and less convenient to compute.

Let the predefined target BER be denoted with ﬂgq). Based on (3.32) and (3.33), the
transmit power required to realize the target depends on the constellation size M as well
as the static system parameters such as the transmission distance d. The achieved data
rate in bit/sec is computed as

(rq)
_1_7qu

R = T

-log, M, (3.35)

where T is the symbol duration which relates to the signal bandwidth by B = (1 + 3)/Ts,
with 3 being the roll-off factor of the pulse shaping filter. Note that we assume T; to be
much smaller than T, so that the continuous-time model can still be regarded valid.

We model the total power consumption of the transmitter as

P = Pamp + Pt = Xamp Ptx + Pet, (3.36)

where pt is a constant term standing for the sum power dissipation of the DAC, the
transmit filters, the frequency synthesizer as well as other processing units, and pamp
denotes the power consumption of the power amplifier (PA). Given a Class A linear PA,
Pamp can be expressed as [37,70]

&
Pamp = Xamp * Ptx, Xamp = E ;& =¢&mod * &rre (3.37)

where 1 is the drain efficiency of the amplifier, and & represents the peak-to-average ratio
(PAR) of the input signal. For square MQAM with equally probable symbols, the PAR of

VM-1
VM1
of a root-raised-cosine filter further changes the PAR. With decreasing roll-off factor j3,

the impulse response of the filter have higher amplitude in the sidelobes, the frequency
response becomes sharper, and the PAR &;. increases [37]. For the roll-off factor 3 = 0.3
that we choose, &;rc can be taken approximately as 2.8 [71]. The PAR of the input signal to
the PA is then given by the product of £,,,4 and &r.

By using (3.35) and (3.36), we obtain the power-rate graphs for different values of 4
as shown in Fig. 3.6, where the relevant system parameters are summarized in Table 3.2.
We have in total 5 possible discrete power levels, determined by the sleep mode and

the constellation points is given by &9 = 3 - Pulse shaping e.g. the utilization
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Fig. 3.6: Pareto boundaries of (P, R) pairs for MQAM transmission

the 4 available modulation formats. Depending on the transmission distance, different
numbers of these levels can be found energy efficient. With a short distance typically,
using higher modulation formats is favorable, since the static circuit power dominates
the total power consumption which renders low modulation formats inefficient.

We again take a look at the maximal achievable throughput I* as dependent on A
and T, respectively, the numerical results of which are illustrated in Fig. 3.7. For given
energy budget Ag and interval duration T, one looks for the energy efficient operation
modes to realize the average power consumption of Ag/T. If this is feasible, we let the

two bounding points be (P, Ry) and (P,, Ry), which gives
% — Py + (1— )P, (3.38)

with a being the time-share of the first point, 0 < o < 1. Solving for « and plugging the
result in, we obtain the maximal throughput as

* R1—R; RoPy — R P, Ap
. _— < . .
I" = T((XRl + (1 (X)Rz) = P — D, AO + P =D, T, P1 T < P2 (3 39)
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Fig. 3.7: Maximum throughput I* as functions of Ag and T for the MQAM model

From (3.39) one can expect the piecewise linear shape of I* both as functions of Ay and
T. Moreover, it can be shown that the slopes of these linear segments are decreasing. We
suppose (P2, Ry) does not represent the most power demanding operation mode and let
the next energy efficient mode be characterized by (P5, R3). Due to the concavity of the
Pareto boundary, we have

Ri—Ry _ Ro—Rs
5D, > B, D’ (3.40)
b B R —R3 Ro—R3 , Ri—Rp
R3 =Ry (P2 P3) P, — Py >Ry + Ps Py — D ) PP, (3.41)
By rearranging the terms in (3.41) we can obtain
R3Py — RoPs  RoPy — RiP, (3.42)

P, — P Py — P,

When T is fixed and Ay is increased, the average power A(/T increases and the coefficient
of Ap in (3.39) decreases according to (3.40). The upper limit of I* is determined by
the most power demanding, which also has the maximal rate, operation mode that is
available. For the MQAM model, this corresponds to the highest feasible modulation
order. On the other hand, when Ay is fixed and T is increased, the average power
decreases and the coefficient of T decreases as well due to (3.42). The upper limit of I*
is achieved by using the most energy efficient operation mode. For the MQAM model,
this corresponds to the lowest energy efficient modulation order.

3.3.4 CaselV

We consider in this case that the wireless channel is time-varying on the time interval
[0,T], and the transmitter has perfect, non-causal knowledge about the channel
state. The transmit power is taken as the control variable again, which is assumed
continuous-valued and unbounded from above. The rate function R is now dependent
on time via the time-varying channel gain, but is still assumed strictly concave in pi. The
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cases that the power consumption function P is continuous or discontinuous at pix = 0
shall be discussed respectively.

3.3.4.1 Optimal transmission strategy for the non-constant channel

Let g(t), t € [0,T] be the channel gain function which is positive and piecewise
continuous. Recall that for the constant channel case we assume the rate function R to be
strictly concave in the transmit power pix. As the channel gain usually comes into effect
through the product with the transmit power, we write now R(v) = R(gpi ), which has
the first- and second-order partial derivatives

Rpo (8 Px) = & Ro(8Ptx) >0, Rpppu (8 Pix) = 8%+ Roo(gpix) < 0. (3.43)

For such a rate function R and a convex power function P, the Hamiltonian evaluated
at the optimal costate i.e. H(t, pix, A*) is strictly convex, Vt € [0, T|]. Based on (3.6), the
optimal transmit power at any time instant is either the stationary point of H(¢, pix, A*)
which satisfies the first-order condition

Ry (8 Prx) + A"~ Pp (px) =0, (3.44)

or equals 0 if the stationary point at the time is negative. The resulting optimal control py
is obviously non-constant. If the Shannon formula is taken for R and there is no circuit
power i.e. we have

R = Blog, (1+ g(fztx) , P =p, (3.45)
then the optimal control follows from (3.44) as
. B o2\t A o2\ T
Ptx—(;\*mz‘g) _<”_§> ’ (3-46)

where (x)* = max{0, x}. The constant y, often referred to as the marginal gain, should
lead to W(T) = Aj to guarantee that the given energy budget is fully exploited. This is to
say, instead of the constant slope condition along the optimal trajectory when the channel
is time-invariant, we have now the constant marginal gain condition for the time-varying
channel. The result (3.46) is the well-known water-filling solution, which can be realized
via an iterative search of p. One could, for instance, start with an arbitrary p > 0 and
compute the corresponding control using (3.46). If the total energy consumption is less
than Ay, then p is increased by a predefined amount called the step size, otherwise p is
reduced by the same amount. The procedure is ended when the energy consumption of
the obtained control is close enough to Ag. The optimal control given by (3.46) holds for
linear power functions as well. For convex functions P in more complex forms, solving
(3.44) can be difficult and p;, might not have a closed-form expression.

We derive next, the optimal control when P is convex for p > 0, but is discontinuous
at prx = 0. Recall from Case II, that the optimal positive transmit power should not
be smaller than the so-called energy efficient transmit power defined by (3.24). With a
time-varying channel, this lower bound changes over time as well. We define

G(8 Pix,0) = Rpu (& Pix,0) P(Pix,0) — R(Ptx,0) Ppe (Pix,0) = O, (3.47)
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which gives py o as an implicit function of g. The partial derivatives of G with respect to
Pix,0 and g can be computed respectively as

Fg = gptx,Ova (gptx,O)P(ptx,O) + RU (gptx,O) (P(ptx,O) - ptx,OPptx(ptx,O))
< 8Ptx,0R00(8P1x,0) P(Pex,0) <O, (3.48)
Fyo = 8 Rov(8P1,0)P(Pix,0) — R(8P1x,0) Ppocpis (Pix.0) < O, (3.49)

where the first inequality in (3.48) is due to the convexity of P. Consequently, we have
Pix,0 decreases monotonically in g since

F
dreo 5 <, (3.50)

dg FPtx,O

Intuitively, the optimal control should in turn be equal or greater than the energy
efficient transmit power on a pointwise basis. To show this, we assume for the moment
that the channel power gain g is monotonically decreasing in time. In such a scenario, the
optimal control can be expected to also decrease monotonically, which is made clear by
observing (3.46). This suggests that there exists a time instant t; € (0, T |, such that pf, > 0
fort € [0,t1],and p§, = 0fort € (t1, T|. To this end, we obtain a free endpoint, fixed final
state problem on [0, #; | with a continuous state equation, for which the optimal transmit
power can be computed by solving (3.44). The transversality condition (3.9) specifies the
relation that needs to be fulfilled at the endpoint:

H(ty, pic(t1), A7) = =R(g(t1)pix(f1)) + A" P(pix(t1)) = 0. (3.51)

Plugging in A* which can be obtained from (3.44), we have

Rpy (8(t1), pix (1)) P(pix(t1)) — R(8(t1)pix(t1)) Pp (Pix(t1)) = O, (3.52)

which means the optimal transmit power at the endpoint t; equals the corresponding
energy efficient transmit power. As pi o decreases with improving channel, we have

Pic > Pixo(g(t)) forall t € [0,t).
When R is given by the Shannon formula and P has the discontinuous affine form

R=Blog, (1+55x),  p= { ‘1Pt co poc> 0, (3.53)

02 0, Ptx = O/

where ¢; > 1, ¢y > 0 are given constants, the optimal control can be obtained as

g 8(t)
0, otherwise,

Pix = (3.54)

2 2
{ w—2, >4 paolg(d),

where p = is the constant that ensures all available energy is consumed by time

B
)\*C1 In2
T, which can be found via iterative searching algorithms. Note, however, that (3.54) is
only valid for those channel functions that are strictly monotonic or take the same value

only at a finite number of points. If there exist time intervals on which the channel is
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constant, then (3.54) might not be the optimum. To see this, consider the extreme scenario
that ¢ is time-invariant on [0, T |. The potentially necessary time-sharing between the
sleep mode and using the energy efficient transmit power can not be identified by (3.54),
which always gives the same transmit power for the same channel gain. To accommodate
for the partially constant channel functions, we modify the optimal control as

o? o?
-, >+ po(g(t),
Pox =0 0 or puo(g(t), w= gcz—t) + Pio(8(1)), (3.55)
0, otherwise,

where the decision at the exact threshold is dependent on the global energy allocation. For
any given positive constant p, we call the channel gain § that satisfies 1 = 02 /g + pix,0($)
the critical channel gain, which acts as a threshold for determining whether the transmitter
should be active or not at a certain time instant. At those times that g(f) > g, the
transmitter is active and the constant marginal gain condition needs to be fulfilled. The
total energy consumption W during these times can be computed accordingly. If W > Ay,
then we have set u too high and a reduction is required; otherwise, we need to determine
what to do with the unused energy. If there exists one or more time intervals with exactly
the critical channel gain, then the remaining energy could be spent on these intervals with
the corresponding energy efficient transmit power piy o(g). If there is still energy left or
no such intervals exist, then u needs to be increased. We can find p by iteratively going
through these steps until a control with the energy consumption approximately equal to
A is obtained, which is then the optimum control.

Some simple numerical examples are given for a more direct impression of the
results we have derived. In Fig. 3.8, we illustrate the optimal controls and the optimal
state trajectories for a predefined monotonically decreasing channel gain function. When
P = pi ie. no circuit power is considered, the energy efficient transmit power pi
is constantly zero, and pj, decreases in a continuous fashion to zero. When P has the
discontinuous affine form given in (3.53), the decreasing py, jumps to zero right after the
point at which it is equal to the corresponding energy efficient transmit power.

3.3.4.2 Optimal transmission strategy for the block-fading channel

A relevant and common scenario that necessitates the treatment of partially constant
channels is the transmission over block-fading channels. We let T}, denote the duration of
each block, and assume T = N - T, where N € N*. The independent channel realizations
on the N blocks are assumed perfectly known in advance. We introduce two different
ways for obtaining the optimal control in the following.

e PMP based search algorithm
The search procedure described previously can be tailored for the block-fading
channel and is summarized in Algorithm 1. We sort and examine the blocks in the
descending order of their channel gains. In each iteration, we regard the considered
block as the critical block on which the transmit power can be either zero or the
corresponding energy efficient transmit power. The channel gain and the energy



3.3 Optimal Control of the Transmitter 57

— Pix, P = pux
12H ptx,OrP:2Ptx+4
== P P=2puct4

0.8f

g = (t—24)2/600 |

0.6f

0.41

transmit power

0.2f

0 5 10 15 20 0 5 10 15 20

t t
(a) Channel gain (b) The optimal and the energy efficient transmit
power
80 —
L4
/4
701 /
4
4
4
60 X
U4
4
50 )
4
* ’
= 40f i
4
"
301 7
’
’
14
20F 4
[
’
10—'/ — P =pu
g == P=2py+4
% 5 10 15 20

t
(c) Optimal state trajectories

Fig. 3.8: Optimal transmit power and optimal trajectories for a monotonically decreasing
channel function, Ag = 80, functions R and P given by (3.53) withB =1,0 =1

efficient transmit power determine together the constant marginal gain p according to
(3.55). During the blocks with worse channel conditions, the transmitter is turned into
sleep mode, while during the blocks with better channel conditions, the transmitter
employs the transmit power given by the difference between p and the respective
noise-to-channel-gain ratio. If the corresponding total energy consumption is larger
than Ag, then the critical block under consideration should not be active, and
the transmit power on the active blocks needs to be recomputed with the regular
water-filling procedure, i.e. via an iterative search for the optimal p. Otherwise, the
time-sharing solution on the critical block that exhausts the remaining energy is
computed. In case such a solution does not exist, we move on to the next best block
and repeat the procedure.

We exemplify the two possible cases resulting from Line 9 and Line 12 of Algorithm 1
in Fig. 3.9. The time interval of interest contains N = 5 blocks, and in both cases there
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Algorithm 1 Finding the optimal control for a block-fading channel

Require: Channel gains of all blocks, and subroutine to compute pyy o
Ensure: Optimal transmit power and the corresponding active time for each block
1: Sort and index all blocks in descending order of their channel gains: g(1) > g(2) >

2: Compute pi (1) according to (3.47),n =1,...,N
3: Initialize the transmit power: pi(n) <~ 0,n=1,...,N
4: forn=1,...,Ndo

2

5: Block 7 is assumed critical: 1 < pio(n) + ﬁ
2
6: Transmit power for previous blocks: pix (i) < 1 — g(z—i)' i=1,...,n—1
n—1
7. Total energy consumption for previous blocks: W <— Ty, Y _ (c1pe (i) + o)
i=1
8: if W > A then
9: Compute p (i), i =1,...,n — 1 with regular water-filling procedure
10: return
11: end if AW
12:  Block 7 can be active: pix (1) < pi (1), Ta + =
, ' P(pu(m))
13: return if T, < Tj,
14: end for
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Fig. 3.9: Optimal transmit power for block-fading channels, Ay = 80, T;, = 4, functions R
and P given by (3.53) withc; =2,c0=4,B=1,0=1

are 3 blocks over which the transmitter is in sleep mode. As shown in Fig. 3.9(a), the
transmitter is completely active over the other 2 blocks in this case, but enabling the
next best block i.e. the critical block would cost too much energy. For the case shown
in Fig. 3.9(b) on the other hand, time-sharing takes place on the critical block, and the
transmit power for the best block can be computed directly from the optimal marginal
gain without going through the regular water-filling procedure.
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I*

Convex optimization formulation

For the block-fading channel, one can also reformulate the infinite-dimensional
optimization (3.3) into a finite-dimensional resource allocation problem. More
specifically, we let w, > 0, n 1,...,N be the energy allocated to each of the
blocks, and let J(w, g) denote the maximal achievable throughput on a block with
channel gain g and energy consumption w. The throughput maximization problem is
formulated as a constrained optimization on the energy allocation parameters as

N
max 2 J(wn, gn)
{uq,nqunq} n=1
N
s.t. (3.56)

Wy f; /40, Wy Ei 0, n = 1,.. .,PJ.
=1

n

As the channel stays constant on each block, the function | can be evaluated by
using the optimal control derived for Case II, and it is a concave function of w given
fixed g. Consequently, the optimization problem (3.56) is convex and any standard
solver of convex optimization can be applied to obtain the optimal energy allocation,
from which the optimal transmit power can be computed. This method, although
straightforward and easy to implement, is not as insightful as the PMP based method,
and can have high complexity when the number of blocks is large.

5
.-
et .
ar St 3
L4 - -
.
. - s
. *
. i d
3 JRe
*
0' *
* ~
*
.
2 -
4
(4
| A
o = Block-fading = Block-fading
4
o === Constant average === Constant average

10 20 30 40 50 2 4 6

o2 /o?

(b) I* as dependenton T, Ay = 10

8 10

Ao
(a) I* as dependent on Ay, 07 /0% =1

Fig. 3.10: Maximum throughput I* as dependent on Ay and ¢7/0?, T = 1, N = 10,
functions R and P given by (3.53) withc; =2,co =4,B =1

We simulate the scenario with a Rayleigh fading channel where the channel coefficient

h ~ CN(0,07) is assumed to change independently from block to block, i.e. the real
and imaginary parts of / are i.i.d. zero-mean Gaussian with variance o7 /2. The maximal
achievable throughput I* as dependent on the energy budget A and the ratio between
the variance of the channel and the noise is illustrated in Fig 3.10. The blue solid
curves represent the averaged results over 10° realizations of the block-fading channel
on the time interval of interest. The red dashed curves, on the other hand, are generated



60 3. Energy-constrained Throughput Maximization on a Finite Time Interval

assuming a constant channel with the channel gain o7. The crossing of the curves can
be explained as follows: if constant transmit power were employed, the throughput on
the time-invariant channel would be larger than that of the block-fading channel due to
the strict concavity of the rate function, and the difference becomes smaller if the energy
is not adequate or the average channel gain is reduced. The optimal energy allocation
enables diversity gain by spending more energy on blocks with good channel conditions.
This gain surpasses the said difference in the low energy or low SNR regime, causing the
blue curves to come above the red ones as shown in the figures.

3.3.5 CaseIII +1IV

Features of Case III and IV are now combined: we assume a block-fading channel and
the transmitter employs uncoded MQAM for data transmission. A random variable ©
characterizing the effect of shadowing is added to the concrete system model introduced
in Case III, which is assumed to change independently from block to block. We employ
the log-normal shadowing model [66] and modify the receive SNR formula (3.32) as

_ pI'X o 1 ) th
Y7 NoB ~ M;GiNoB 10®/10x ’ (3.57)

where ® is Gaussian distributed with zero mean and variance 03 . Recall that for a given
modulation order and a target BER, the minimum required receive SNR can be computed
according to (3.33). The transmit power that is demanded then follows from (3.36), which
depends now not only on the modulation order and the constant system parameters, but
also on the time-varying parameter ®. To this end, the Pareto boundary of the discrete
(P, R) pairs on the power-rate graph changes from block to block, as dependent on the
realization of @, which is exemplified in Fig. 3.11. Each marked point in the figure
represents one modulation order. We see that not only are the positions of the points
changed for different @, but also is the set of energy efficient operation modes different.

We assume the transmitter is aware of the realizations of ® on all blocks before the
transmission starts, and denote them with ¢1,...,pn where N is the total number of
blocks as before. The throughput maximization problem can be formulated in a similar
way as (3.56), where | is evaluated by finding the time-shares of the energy efficient
operation modes corresponding to the designated energy consumption. Equivalently,
one can optimize directly over the time-shares instead of the energy consumption. We
let P,, and R, be the vector of power consumptions and achievable rates of the energy
efficient modulation orders for block 7, respectively, and let the vector «; contain the
time-sharing factor of each mode which is a real number between 0 and 1. The throughput
maximization problem is then formulated as a linear program as

N
max Ty Z Rgcxn

{tXl,...,tXN} n=1
N

st. Ty Y Pray < Ay, (3.58)
n=1

1Tan:1, a,>~0, n=1,...,N.
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Fig. 3.11: Pareto boundaries of (P, R) pairs for MQAM transmission over a block-fading
channel, d = 15 meters

When the number of available modulation orders is not very large, the linear
programming formulation is less complex to solve than the convex optimization in the
form of (3.56). Moreover, the result provides the system directly with the operational
actions that should be taken.

Upon observing the obtained optimal control, we find that in most cases, there is only
one block with the time-sharing of two modulation orders while all other blocks employ a
single operation mode. This motivates us to propose a heuristic algorithm which chooses
one modulation order for a number of blocks each, and allows time-sharing on one of
the remaining blocks. We propose to select the modulation orders based on their energy
efficiency represented by the rate-to-power ratio, until the total energy consumption
exceeds the given budget. Then, for each loaded block, we examine the reduction in
throughput when the energy consumption on the block is cut to fit the total budget
with the time-sharing solution that consumes this required energy. The block that leads
to the least throughput reduction is chosen to employ the corresponding time-sharing
solution, and all the other blocks are either inactive or use exclusively a single modulation
order. This heuristic algorithm, which has much lower complexity than the optimal linear
program, is summarized in Algorithm 2.

From the simulation results shown in Fig. 3.12, we see clearly that the heuristic
algorithm achieves almost the optimal performance for both test scenarios: in the first
one we fix the energy budget and let the transmission distance vary, and in the second
we do the contrary. This suggests the applicability of the heuristic algorithm for systems
with different levels of energy sufficiency.

3.3.6 Case V

We have discussed with Case IV the optimal control of the transmitter when the channel
is time-varying and known in advance, which is an idealized scenario established for
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Algorithm 2 Heuristic algorithm for the control of MQAM transmission over a
block-fading channel with given energy budget

Require: Energy budget A, fading parameters ¢q,..., ¢y, the achievable rate and
power consumption models that enable the computation of the (P, R) pairs for all
available modulation orders on each block

Ensure: Time shares of each modulation order on each block

1: W < total energy consumption when the highest order is chosen for every block

: return if W < A

wy—0,n=1,...,N

. while W = Y, w, < Ag do
Find among the unselected energy efficient modulation orders the one with the

maximal energy efficiency and denote its power-rate value as (P, R)

n < block index of the pair (P,R), w, < P- T,

end while

: returnif W = A

B+ {n:W—-w, <Ay}

10: foreachn € B do

11: Compute the time-sharing solution on block n to consume the energy Ag — W +w;,

12: AR, - reduction in throughput

13: end for

14: i < argmin AR,

15: Replace the exclusive modulation order usage on block i with the corresponding
time-sharing solution

SN
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Fig. 3.12: Maximum throughput I* as functions of d and Ag for MQAM transmission over
a block-fading channel, 09 =3 dB, T = 1sec, N = 100

theoretical analysis. To move towards the more practical situation, we assume in this
case that the transmitter only has instantaneous as well as statistical channel state
information (CSI) about the underlying communication channel, which is assumed
Rayleigh and block-fading. That is, beside the probability distribution of the random
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channel coefficient, the transmitter knows at the beginning of each block its realization
for the block, without any delay or error. Naturally, the transmitter could make its
operational decision online based on this information.

Suppose at the beginning of the n-th block ie. time instant t = (n — 1)Tj, the
transmitter has the remaining energy budget of A,_1,n = 1,..., N, and the knowledge
of the channel gain on block n given as g,. Based on A,_; and g, the transmitter
makes a decision on how much energy is allocated to block n, denoted with w,, while
the rest amount A, = A,_1 — w, would be exploited by later blocks. We define the
function V,(w) forn = 1,...,N and w > 0, which stands for the maximal expected
sum throughput on blocks n,n + 1,...,N given the available energy w, where no
instantaneous CSI is available. Intuitively, in order to maximize the total throughput, the
decision on the energy allocation for block 7 should be made according to

wy, = argmax (J(w,gn) + Vys1(Ap-1—w)), n=1,...,N—1, (3.59)
0<w<A,_1

i.e. the sum throughput of block n and the expected throughput on all subsequent blocks
is maximized. As the feasible energy allocation is constrained on the closed interval
[0, A;—1] and the objective function is finite, the optimal solution to the maximization
always exists. The energy that is still available is updated after each block, before the next
decision is to be made. For the last block, we have wy = An_1.

In computing the sequence of functions V, we apply backward induction as

Vn(w) = Eq [](w,g)],
Va(w) = max (Vnﬂ(w —w') +Eq [](w,g)]), n=1,...,N-1, (3.60)

0<w'<w

where [(w, g) represents the maximal achievable throughput by using energy w on a
single block with channel gain g. The recurrence relation (3.60) is based on Bellman'’s
Principle of Optimality [72] that, for the throughput on blocks n to N to be maximized,
the throughput on blocks 7 41 to N needs to be maximized with the respective energy
input?. To this end, the optimization on a horizon of N — 7 + 1 blocks is broken down
into subproblems with a single block, and with N — n blocks which can be further
reduced to subproblems with fewer blocks. One can therefore start with solving the
single-block problem for all possible input, and obtain results for multi-block problems
incrementally. Such an approach is called the dynamic programming (DP), the essence
of which is presented by the dynamic relationship (3.60). The function V is called the
value function in this context, and the time interval between consecutive decision-making
points, in our case a block, is referred to as a stage.

Depending on the rate and the power consumption models, the function | can be
computed based on the optimal solutions of Case I, II, or III. Recall from our previous
discussions that | is concave in w in all three cases. Since g is always positive, the
expectation of | with respect to ¢ is also concave in w. As a result, the maximization

2 The principle is originally stated as: an optimal policy has the property that whatever the initial state
and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state
resulting from the first decision.
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in the recurrence relation (3.60) is solved by equally splitting the available energy to the
N — n + 1 blocks with independently changing channel, which means

Vn(w):(N—nH)Eg[](N_LM,g)], n=1,...,N. (3.61)

We compute the value function offline for a number of energy levels resulting from
discretizing the energy space [0, A ], and store the results so that less computations are
required during the online operation.
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Fig. 3.13: Maximum throughput I* as dependent on A and o?/0?, T = 1, N = 10,
functions R and P given by (3.53) withc¢; =2,c0 =4, B =1

Numerical results are demonstrated in Fig. 3.13, where we compare the maximal
throughput achieved by having only causal CSI and employing DP, to that of equally
allocating the available energy to each block. The scenario where the transmitter has
non-causal CSI, the solution of which has been discussed in Case IV, is also shown
which provides an upper limit for the causal CSI case. We first fix the average channel
condition and vary the energy budget, and then do the contrary. It can be observed
that having causal CSI is almost as good as having non-causal CSI when the energy is
abundant i.e. approaching the right side in both figures, which degrades the performance
of the system by only a few percents. The throughput achieved with uniform energy
allocation also comes close to the optimum attained by DP in this case. When the energy
is relatively scarce, the absence of non-causal CSI can lead to as much as 50% decrease
in throughput, and the gap between employing DP and the uniform energy allocation
increases to 10%-20% of the latter as well. Nevertheless, based on these test results,
the uniform energy allocation strategy appears a good candidate for the control of the
transmitter due to its simplicity and robustness.

3.3.7 Case VI

Lastly, we consider a scenario that is rather different from all the previous ones. In contrast
to the fixed, deterministic parameter T, we consider here that the duration of the time
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interval on which the available energy Ay is to be spent is a random variable, denoted
with 7. One could think of this scenario as if the transmitter is restrained by a random
deadline at which the transmission has to terminate, and it wishes to deliver on average as
much data as possible before the deadline. In the context of energy harvesting supported
communications, the time interval can be seen as the stage between two consecutive
energy arrivals, presuming the arrivals discrete. The scenario happens if the transmitter
aims at maximizing the throughput until the next arrival instant, which is unknown
but usually conforms to some statistical distribution. To this end, we assume that 7 is
exponentially distributed, which follows from the common modeling of random arrivals
known as the Poisson process, and that the channel condition is time-invariant. We come
back to the PMP for obtaining the optimal control in this case.
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Fig. 3.14: Optimal transmit power and optimal state trajectories for the discounted rate
function, A9 = 25, v = 1, blue curves correspond to model (3.20) and red curves
correspond to model (3.27),B=1,0=1

The optimization objective is adjusted to the expected throughput until the deadline,
which can be derived as

I(pe) = F [ / TR(m)dt} = [ pelo) [(Rp)dra
= [Rew) [ pe@drae = [T RO (1 Felt))

_ / e VIR (p) dt, (3.62)

where p: and F; stand for the probability density and the cumulative distribution
functions of the exponentially distributed random variable 7, respectively, and v denotes
the rate of the distribution. Note from (3.62) that the Lagrangian depends explicitly on
time via the term e/, which can be seen as a discounting factor for the data rate and
has no influence on the strict concavity of the Lagrangian in pix. The Hamiltonian and the
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tirst-order condition for the establishment of (3.6) are given in this case by

H(t, Ptx, A) = —e . R(Ptx) +A- P(Ptx)/ (3.63)
HPtx(t/ p:ckx/ A*) = _e_w : RPtx(pjckx) + AT PPtx (pjckx) =0, (364)

where A* is the constant costate since H does not depend on W explicitly. For a strictly
concave function R and a convex function P, H(t, p;, A*) is strictly convex in pi, which is
minimized either by p{, that solves (3.64), or by pf, = 0 if the solution to (3.64) is negative.
When the functions R and P are given by the generic model (3.20), we have the following
optimal control:
% Be 2 +

= (5050 t=0, (3.65)

where A* is the constant that leads to

ty
/0 P (pt) dt = A (3.66)

with #; denoting the endpoint of operation, i.e. pj, > 0 for t € [0,¢1] and pf, = 0 for
t € (t1,+00). Obviously, the optimal control is a monotonically decreasing function of
time. The transversality condition (3.9) requires

H(tll Pfx(tl)/ A*(tl)) = _e—th : R(p:x(tl)) + AT P(p:x(tl)) =0 (367)
to be fulfilled, which further leads to
(Rptx -P—R- PPtx) (p:x(tl)) =0, (3'68)

showing that the optimal transmit power at t; is equal to the energy efficient transmit
power piy o. For the generic model (3.20) where P is continuous at pix = 0, we have
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Ptx,0 = 0 which means the optimal transmit power smoothly fades away at t;. On the
other hand, in the case that P has the affine discontinuous form (3.27), we have pix o > 0
and the formula for the optimal transmit power can be modified as

Be ) 1 A*c1In2 2
e < -
Py = Afcrln2 o, s v<1n ( B ) +In(o” + ptx’0)>’

0, otherwise,

(3.69)

which suggests a sudden decrease of py, at the endpoint ¢;. The constant A* should ensure
that the available energy Ay is fully exploited. We notice that the derivations and results
presented above bear a lot of resemblance with those of Case IV. We show an example
of the optimal controls and the corresponding optimal state trajectories in Fig. 3.14, and
demonstrate the average throughput achieved by employing the optimal control with
respect to Ay and v in Fig. 3.15, respectively. Note that the mean value of the random
variable 7 is given by 1/v. Therefore, in Fig. 3.15(b), increasing 1/v corresponds to the
prolongation of the transmission interval on average, and the behavior of the achieved
throughput as increasing with decreased rate can be expected.

3.4 Optimal Control of the Receiver

We turn our focus now onto the receive side, and discuss the optimal control of a receiver
on the time interval [0, T| given a fixed energy budget. Instead of the transmit power
or the modulation format, the control variable we consider at the receive side is the
bit resolution employed by the A/D converter. As introduced in Section 2.3.1, the ADC
resolution b is a key parameter that governs the trade-off between the spectral and energy
efficiency of the receiver. We shall treat the capacity lower bound (2.26) as the rate function
R, and the power consumption model (2.29) as the power function P in this section:

B 1+vy B a1(2b—1)+a0, b>0,

where y is the receive SNR, ap and a4; are known constant parameters, and B is the
signal bandwidth which is also constant. We discuss two control scenarios and derive the
respective optimal receive strategies. In the first scenario, the ADC resolution is assumed
real-valued, whereas in the second it is restricted to integer numbers. Although having
different physical meanings and interpretations, the control problems we formulate
here are mathematically very similar or even equivalent to some of the problems at
the transmit side. Consequently, the corresponding conclusions obtained previously are
directly applied without giving detailed derivation or reasoning.

3.4.1 Casel

We consider that on the time interval [0,T], a transmitter is to send information to
a receiver which is powered by a limited amount of energy. The transmitter is able
to cooperate with the receiver so that the maximal amount of data can be conveyed,
meaning that the transmitter adapts its transmission strategy e.g. the transmit power, the
modulation and coding scheme, as desired by the receiver. The communication channel
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is assumed invariant on the time interval, with the power gain a exactly known, and the
transmitter and receiver are assumed perfectly synchronized.

In this case we let our control variable, the ADC resolution b be a non-negative real
number. Upon examining the rate and the power function (3.70), we find that R is strictly
concave in b since
2By 4By -2%0.1n2

bb = <0, (3.71)

whereas P is convex in b for b > 0. This is to say, we have mathematically the same
scenario as Case II of the transmitter. Instead of the energy efficient transmit power, we
now have the energy efficient bit resolution by as the solution to the equation

(Ry-P —R-Py)(b) =0, (3.72)

and the corresponding power consumption is denoted with py = P(bg). In complete
analogy to the transmit side, the throughput-maximizing receive strategy is stated as:
If Ag/T > po, then the bit resolution P~1(Ag/T) should be employed constantly on [0, T];
otherwise, the energy efficient bit resolution by should be used for a time period of length Ay /po,
and the receiver is turned into sleep mode for the rest of the time interval.

Plugging R, P, and their respective derivatives into (3.72), we obtain the relation

277( by _ a_())_ by | b A
T 1 2 1+a1 = 2% .In 17y 20 ) (3.73)

from which by can be solved numerically. To see how by changes with y and the ratio
a = ag/ay, we define the function

2y(2b0 —1+a
F:2b0-ln< LR )—y( )y, (3.74)

147y -272b 22b0

and calculate its partial derivatives

oAb 14y 4y -2b0 (20 — 1 4 7)
Fb0—201n2[ln(1+y'2_2b0)+ PR >0,
(2200 + )
2y
po_oh | W1 20N -142)2%
T @)@ ty) (22 4 9)°
:zbo' 2% — 1 B S 1+y
_(1 + 7/) (22170 +J/) y(zzho + 7/) 1+7vy- 2—2bg
< b0 22by _ 1 B 23bo y(ZZbo _ 1) (3.75)
[(1T+y) (220 +y)  y(2%0+y) 220(1+7) '
2b0 (2200 — 1) (1 — 2%
_ 2 It ) <0, (3.76)

(1+7y)(2%0 4 v)



3.4 Optimal Control of the Receiver 69

where the inequality In(1 + x) > ﬁ for x > 0 is applied in (3.75). Consequently, we
have

db, F, dby  F

= — =——>0, 3.77
da Fbo - dy Fbo > ( )

meaning that by is monotonically increasing in both @ and y. This is to say, from an energy
efficiency point of view, higher ADC resolution is in favor when the channel condition is
good or when the constant power consumption that is only associated with the active
mode is comparatively large. Moreover, for very low and very high y and a fixed a, by
fulfills asymptotically the equations:

y—0: 20(2%0 —3) =2(a-1),
y— +oo: 20(byln2—-1)=a—1. (3.78)

On the other hand, for a fixed receive SNR, by = 0 if 2 = 0, and b, increases boundlessly
when 7 — +4-o00. We illustrate the dependencies of the energy efficient bit resolution by on
the ratio 7 and on the receive SNR vy in Fig. 3.16.
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Fig. 3.16: Energy efficient bit resolution as dependent on a¢/a; and the receive SNR

Based on the optimal receive strategy, the maximal throughput achieved on [0, T |,
denoted with I*, is given by

A 14y Ap
29 Blog, (7) , 22 < po,
* ]. + * Z_Zb T
F=1{ Po Ve 2y (3.79)
TB [logz(l +7v) —log, <1 + (o7 _1a0 " al)zﬂ ,  otherwise.

With fixed y and T, I* as a function of A( consists of a linear part which corresponds
to the first conditional branch in (3.79), and a strictly concave part which corresponds to
the second. As A( approaches infinity, I* converges to TBlog,(1 + v), suggesting that
the receiver is limited by the receive SNR but not quantization in this case. With Ay and
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v fixed, I* as a function of T is monotonically increasing and strictly concave for T <
Ao/ po, and stays constantly at its maximal value for T > Ay /po where the energy efficient
bit resolution by is employed to exhaust all energy. These analyses are verified with the

numerical examples shown in Fig. 3.17.
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3.4.2 CaseIl

In practice, the bit resolution of the A/D converter assumes an integer value from a
finite set {0,1,..., bmax}. The situation here is mathematically equivalent to Case III of
the transmit side, where the modulation order is chosen from a finite discrete set. The
conclusion on the optimal control strategy carries over directly: the desired average power
consumption Ao/ T is realized by the time-sharing of its bounding bit resolutions on the Pareto
boundary of the feasible power-rate pairs.

As illustrated in Fig. 3.18, each feasible ADC resolution b is marked on the power-rate
graph according to its coordinates (P(b), R(b)). The Pareto boundary for the set of all
feasible resolutions is constructed by connecting the energy efficient bit resolutions with
straight lines. Note that the concept of energy efficient bit resolution here is different from
that of Case I, where b is assumed a non-negative real number. We have defined by as the
solution of (3.72), and call it the energy efficient bit resolution in Case I since it maximizes
the bit per Joule metric. For b > by, higher rate is achieved with more power consumption,
and the ratio between the rate and the power consumption decreases. In Case II here,
we have a finite number of integer-valued bit resolutions, and call some of these energy
efficient if they satisfy: there is no achievable point on the power-rate graph at which
a higher rate is obtained with less power consumption. The linear interpolation of the
points representing the energy efficient bit resolutions results in the Pareto boundary,
which is concave in P. For a given average power Ay /T, one needs to find the neighboring
energy efficient bit resolutions and compute the required time-sharing factor, in order to
achieve the maximal throughput on the operation interval. The parameters ag, a1, and y
all have an impact on which bit resolutions are energy efficient, and the role of a¢ is more
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critical with this respect than the others. Also note from Fig. 3.18, that the achievable rate
increases rapidly with small b while the power consumption is not significantly boosted,
whereas for large b the rate almost saturates but the power consumption increases
drastically. This is to say, from an energy efficiency point of view, lower bit resolutions
are more favorable for the design and operation of the receiver.
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Fig. 3.19: Maximal achievable throughput as dependent on Ay and T for integer-valued
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The maximal achievable throughput in this case, as shown in Fig. 3.19, is very similar
to that of Case I. With fixed T, I* as a function of Ag is piecewise linear and hence less
smooth than its counterpart in Case I. The upper bound that I* converges to is unchanged
since it depends only on the receive SNR y. On the contrary, the upper bound of I* is
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reduced compared to Case I when Ay is fixed and T is varied. This is due to the restriction
of b to be an integer, which makes the maximal energy efficiency that can be achieved in
Case II smaller than the energy efficiency corresponding to by.

3.5 Optimal Control of a Pair of Transmitter and Receiver

We have discussed in the last two sections respectively, the optimal control of a
transmitter and a receiver operating on the finite time interval [0, T | with a given energy
budget Ag. The natural question to arise at this point is: how about jointly optimize
a pair of transmitter and receiver? More specifically, we consider the point-to-point
communication between a transmitter and a receiver, and take the transmit power at the
transmit side and the ADC resolution at the receive side as the two control variables
which are to be adapted jointly. With the respective energy budgets A; and A,, the
transmitter and the receiver carry out the communication in a cooperative way with the
common goal of achieving the maximal possible throughput on the given time interval
[0, T']. To this end, we think of the system as having a central control unit which is aware
of all the relevant system parameters, performs the offline optimization, and informs the
transmitter and the receiver how they should operate before communication starts. We
assume perfect synchronization between the transmitter and the receiver, and a constant
communication channel on the given time interval which is known exactly.

3.5.1 Casel

We let piy be the transmit power and b be the ADC resolution, respectively, and assume
both of them to be non-negative real numbers in this case. The achievable rate of the
system has the form given in (2.26), but is now a function of both p¢ and b:

1+y 04
R = BlOgZ (m) ’ where Y = Oi_gztx, (380)

The discontinuous affine model (3.27) is adopted for the power consumption of the
transmitter, which is denoted with P;, and (2.29) is taken to address the power
consumption of the receiver which is denoted with P:

: , >0, 2b -1 , b>0,
p = Pt P P, = ay ( ) +ao, b> (3.81)
0, pix =0, 0, b=0.
The throughput maximization problem (3.3) can be written in this case as
T
max / R (pix, b) dt
Pix,b 0
st. Wi=DP(pw), Wi(0)=0, (3.82)

Wy = Py(b), W»(0) =0,
Wl(T) S Al/ WZ(T) S AZ/

where W; and W, stand for the state of the transmitter and the receiver i.e. their
cumulative energy consumption since t = 0, respectively. Note that the system states
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are decoupled in the control variables. For better tractability of the problem, we perform
a variable transform and reformulate (3.82) as an optimization on P; and Ps:

T
max / R (P, Pp) dt
0

Py,Py
st. Wi=P, W(0)=0, (3.83)
Wo =P, W,(0)=0,
Wi(T) < A;, Wa(T) < Ay,
where the rate function R is expressed as
0, PP, =0,
R(Py, Py) = 1+y (3.84)

Blogz <m) ’ Py > cg, P, > ay,

with y = a(P; —¢p)/(c102), 272 = a2 /(P, — ag + a1)*. The isolated point R(0,0) = 0
renders the domain of the problem disjoint and the function R non-concave in the control
variables. Moreover, the first- and second-order partial derivatives of R for P; > co, P, >
ay can be calculated as

R, — _ Bx 220 —1
P o?in2 (119)(22 +7)’
Ba? (22 -1)(2% 2y +1)

Rp,p, = — : ,

PP T2 T (119222 +9)2

Ro — 2B 9%

2T M2 (22 ) (P —ag tar)

oo L 2B 32y

PR (@24 )2 (B —ag + )2

2Ba 22b

Rp,p, = (3.85)

C10'2 In2 . (22h—|—')/)2(P2 — 4y —I—Ell) '

It is clear that R is concave in both P; and P, since Rp,p, < 0, Rp,p, < 0 given that P; > ¢y,
P> > ay. However, the determinant of the Hessian matrix of R can be evaluated as

|H(R)| = RP1P1RP2P2 - (RP1P2)2
2B%”  y(3-22+7) (2" —1) (22 +2y+1) —2(1+)%2¥

) , 3.86
c% o4In?2 (1+7v)2(220 + y)*(P, — ag + a1)? ( )

the sign of which is not definite. This is to say, even on the continuous domain (¢g, +-00) x
(ag, +00), the function R is not always jointly concave in P; and P,. We propose in the
following a reconstruction method to obtain a function R from R that is defined on
[0, 4+00) X [0, +00), and is jointly concave in P; and P;.

3.5.1.1 Reconstruction of the rate surface

For a pair of arbitrary power consumption values (P;, P,) with P, > 0, we let the ratio
between P; and P, be denoted with 3, which gives P; = 3 P. In the 3-dimensional space
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which describes the achievable rate of the system as a function of P; and P,, the origin
and 3 uniquely determine a vertical plane which intersects with the surface defined by R.
On this vertical plane, we make the tangent line from the origin towards the intersecting
curve with R. The situation is similar to what is illustrated as Case II in Fig. 3.2, and
we call the interval between the origin and the P,-coordinate of the tangent point the
time-sharing region, which corresponds to the straight line segment that is constructed. If
we make the tangent lines for all positive 3 and enforce the value zero for P, = 0, a new
rate function R is defined on [0, +00) X [0, +00), the surface of which consists of a part
that corresponds to the time-sharing regions and a curved part that is exactly the same as
R. Denoting the P»-coordinate of the tangent point in direction 8 with u(3), we formally
define this new rate function as

0, PZ =0,
R(P, Py) = “f;) -R(Bu(B), 1(B)), 0<Py<pu(B), with g= % (3.87)
R(Py, P2), P, > u(p)

Every point on the surface of R is obviously achievable. The concavity of R with respect
to P; and P, can be verified numerically, and is proven analytically in Appendix A2.
The procedure is briefly summarized in the sequel. We consider two arbitrary points
X(B1v1,v1) and Y (3202, v2) on the P1-P; plane, where 31, 82 > 0, v1, v, > 0. Any point Z
resulting from the time-sharing of X and Y can be expressed as

Z(AB1o1 + (1 = A)Bava, Avg + (1 — A)vy) 2 Z(Bzv,v)

. ~ AB1or + (1= A)Bovs _ _
with 7 = PR o= o+ (1- Aoy, (3.88)

where 0 < A < 1 represents the time-sharing factor. We denote the data rate at point Z
after the construction by Rz. When Z is in the corresponding time-sharing region, we shall
show the concavity of R by verifying d?R,/dA? < 0; when Z is beyond the time-sharing
region, we resort to the Hessian matrix of R and show it is negative definite forv > u(f3z).
In order to determine whether Z is in or beyond the corresponding time-sharing region,
we characterize the tangent point by writing the equation

R(Bw, p) _ dR(Bu,u)
= T (3.89)

which means the slope of the tangent line on the vertical plane specified by  and the
origin is equal to the derivative of R at the tangent point. This leads to an implicit function
of i defined by

G(B, 1) = R(Bu, 1) — u(Rp, (Br, 1) + B+ Rp,(Br, 1)) =0, (3.90)

which can be further calculated as

1+y o Bu 220 1 2y u
In = . + , 3.91
(1 +y-22h> c10? (1+y)(2%+y) (2% +y)(u—ao+a1) (39D
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where ¥ = a (Bu — co)/(c10%),2?% = (1 — ag + a1)?/a3. The derivative of p with respect
to 3 can be calculated by means of G as

du _ Gp(B, 1)
(1ﬁ; (;p([slﬁl)
—u2(BRp,p, + Rp,p,) . w(BRp,p, + Rp,p,)

—1(B2Rp,p, + 2BRp,p, + Rp,p,)  B?Rp,p, + 2BRp,p, + Rp,p,

(3.92)

An inequality condition between y and u can be obtained from (3.91). This relation is then
used to show d?Rz/dA? < 0 and |H(R)| > 0, for the respective cases that point Z is in or
beyond the corresponding time-sharing region.
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Fig. 3.20: Variations of the tangent point with respectto 3,49 = 2,41 = 0.1,c0 = 4,c1 = 2,
a/o? =1

The variations of the P,- and Pj-coordinates of the tangent point with respect to 3 are
illustrated in Fig. 3.20 for a set of chosen parameters. For very small 3, 1 goes to infinity
but Bu converges; for very large 3, 1 converges but 3u goes to infinity. The asymptotic
values satisfy the equations

B—0: (1+y)1n(1+y):ﬂ§‘,
C10°
. H—ap+ar\ _ %

B — 4o0: ln<7a1 )—7“_610_'_”1, (3.93)

which can be obtained from (3.91). In both cases the tangent points are infinitely far away
from the origin, yet the achievable rates at those points are finite.

3.5.1.2 Optimal control strategy

We illustrate an exemplary rate function R and the constructed new rate function R in
Fig. 3.21. The non-convex part in the original surface has been replaced with straight lines
which represent the time-sharing of the origin and the corresponding tangent points,
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bringing about a convex shaped surface for the new function R. The most obvious
difference by the construction, as can be seen in the figures, lies in the completion of
the surface for the undefined region {(P;,P,) : 0 < P; < ¢g or 0 < P, < ag}. Note that
every point on the surface of R is either on the surface of R or is constructed using points
on the surface of R.

Algorithm 3 Obtaining the optimal control for Case I of a transmitter and a receiver with
individual energy budgets

Require: System parameters T, ag, a1, o, ¢1, channel gain «, energy budgets A; and A,
Ensure: Optimal power consumption functions Pj and P;
1: 3+ A1/Ajy, compute u(B) by solving (3.91)
2: if A/T > u(fB) then
3. Transmitter and receiver operate actively for the whole time interval [0, T | with
Pl =A/T, Py = AyJT
4: else
5. Transmitter and receiver operate actively for a time period of A, /() with power
Pf = - u(p), Py = u(B), and then turn into sleep mode
6: end if

To obtain the optimal control of the two transceivers, we do not need to construct the
whole new surface but to explore the important property of R being concave. Clearly,
the energy budgets of both sides should be exhausted in order to achieve the maximal
throughput, for otherwise we can always increase the transmit power or the ADC
resolution and attain a higher data rate. This means, the average power consumption
of the transmitter and the receiver are fixed to A1/T and A, /T, respectively. Since the
constructed rate function R is concave, the data rate at point (A1/T, Ay/T) gives the
maximal average data rate on the considered time interval. If the corresponding point
is on the surface of R, then P = A;/T and P; = A,/T should be used during the whole
interval, meaning that the transmit power and the ADC resolution are kept constant;
otherwise, the power consumption values at the corresponding tangent point should be
employed to deplete the given energy, and the two transceivers are turned into sleep
modes for the rest of the interval. The key to determining which strategy should be taken
lies in the ratio between the average power consumption values given by A;/A,. This is
to say, for solving a specific problem (3.82), we only need to compute the coordinates
of one single tangent point. The optimal solution to the problem can be found using
Algorithm 3. The optimal transmit power and ADC resolution can then be recovered
from (3.81).

3.5.2 Case Il

We consider now the discrete counterpart of Case I: MQAM transmission is employed
for the communication between the transmitter and the receiver, where the transmitter
can choose the radiated power from a finite set, and the ADC resolution of the receiver is
restricted to integer values. Instead of approximating the achievable rate with the capacity
lower bound (2.25) or (2.26), we evaluate numerically the mutual information between the
channel input and output for equally probable QAM symbols and distortion-minimizing
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A /D converters. The resulting data rate is achievable but not equal to the channel capacity
in general. We are motivated to investigate this model for two reasons: first, the obtained
achievable rate is a more reasonable approximation of the system behavior than (2.26) in
the medium-to-high SNR regime; second, the model takes more practical aspects of the
system into account, and can be seen as an extension of Case III of the transmit side to the
jointly optimal control problem.

3.5.2.1 Analysis of the mutual information
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Fig. 3.22: Quantized channel with MQAM input modeled as a DMC

As shown in Fig. 3.22, we model the quantized channel with MQAM input as a discrete
memoryless channel (DMC). The input symbol ¥ belongs to the set of constellation points
X = {%;|i = 1,...,M}, which has the cardinality |X| = M and unit average power,
leading to the relation

M M
Y Pr{x=x} |5 =1 = Y |fm*=M. (3.94)
i=1 i=1

The transmit power pi that can be employed is restricted to a discrete set P =
{0,A,,2A,,...,NpyAp}, where A, € RT, and N,A, gives the maximal transmit power
that is allowed. We consider only large-scale fading of the wireless channel, and denote
its power gain with «. The received signal is corrupted by the additive noise 71, which
is assumed ii.d. zero-mean circularly symmetric complex Gaussian (ZMCCG) with
variance o2. The average receive SNR is then given as ¥ = « pix/0?. The in-phase and
quadrature components of the receive signal are then separated and quantized by the
respective ADCs, both of which employ the same bit resolution b, yielding the binary
outputs Jg,7; € {0;1}". As in Case III of the transmit side, we also assume square
constellations here i.e. v/ M is assumed an even number. Since the phase shift of the channel
is assumed perfectly compensated, the in-phase and quadrature components have the
same statistical property and contribute each to one half of the mutual information
between §§ = i +j- §; and %. To this end, we study either one of the orthogonal
subchannels as shown in Fig. 3.23, where all the involved quantities are real-valued.
Welet X = {x;|i = 1,...,VM} be the set of real (or imaginary) coordinates of the
constellation points, where the cardinality |X'| = VM is an even number. The additive
white noise n ~ A(0,02/2), leading to the conditional probability distribution of the
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Fig. 3.23: DMC modeling of the in-phase or quadrature branch

quantizer input z given as

— VX Pix i2 .
falz|m) = e = ESVEREE) o vm (3.95)

With equally probable input symbols, the probability density function of z can be
calculated as

¥ 1 (2 — Japm )
— 12 Prix = x;} - fox(2%;) = P 1; exp( — . ) (3.96)

o

Using b bits to represent each sample of z, the ADC divides the possible range of z i.e.
(—00,+), into L = 2V intervals with the decision thresholds #q,...,# 1. To make
the notation consistent, we define in addition ty) = —oo and t; = +o0. In a practical
system, the output of the quantization operation is usually the representative value g;
of the interval j on which z is found, i.e. y = g; if t; 1 < z < t;. Since we investigate
here the mutual information, what is of concern is the probability distribution of the
output of the ADC rather than the specific values it takes. We can, therefore, also assign
the quantizer output to the binary index of the interval on which the input finds itself,
as is shown by y € {0;1}’ in Fig. 3.23. A common design criterion of the decision
thresholds is to minimize the average distortion which is defined by the mean squared
error between the input and the corresponding representative value. We assume the ADC
employs the minimum-distortion quantizer, which can be acquired numerically by using
the Lloyd-Max algorithm [73].

Let the conditional probability of z falling on interval j given that the symbol x; is sent
be denoted with s ;. From the definition we have

A i
Sji = Pr{t]'_l <z <t |x =x;} = /t 1fz|x(z|xi) dz
i

- %(m(@) —erf(TLTVEININY o UM, =1, L, (397)

where erf(-) denotes the Gauss error function. The conditional entropy of y given x is
then computed as

VM VM L
H(y|x) = 2 Pr{x = x;} - H(y|x = x;) Z Y sjilog,sji. (3.98)
i=1j=1

The probabilities of z on interval j, denoted with s;, j = 1,...,VM, constitute the
probability mass function of the channel output y and enable the computation of its
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entropy:
A VM
si=Pr{tj 1 <z<tj} =) Pr{x=ux} Pr{tj 1 <z <tj|x=x}
i=1
1 M .
—stji, i=1,...,vM, (3.99)
i=1
L
H(y) = —)_s;log,s;. (3.100)
j=1

The mutual information between the channel input x and output y is then calculated as
I(x;y) = H(y) — H(y|x) based on (3.97)-(3.100). Note that the evaluation of I(x; y) does
not require any Monte-Carlo simulation. Due to the orthogonality between the in-phase
and quadrature subchannels, a formula for the achievable rate of the system is given as

R =2I(x;y) inbit/channeluse or R =2I(x;y)/Ts inbit/sec, (3.101)

where T is the duration of one MQAM symbol in second.

Because of the symmetry in the constellation and in the distribution of the additive
noise, the set of decision thresholds that lead to the minimum mean distortion is also
symmetric about the origin. When b = 1, the domain of z is divided into two intervals
with the threshold t; = 0. In this case we have

sli:%(l—erf(@)), szl':%<1—i—erf<@>>, i=1,...,vM, (3.102)
1 1 VM
Sl:\/—Mi_leli:\/—M.T

where the terms with the error function in the summation of (3.103) can be paired up and
canceled out. The mutual information can then be expressed in closed-form by virtue of
the error function as

=0.5=s, (3.103)

I(x;y) = H(y) — H(y|x) = 1+— Z }:S]zlogzsp
1 1j=1

=1+ —= Z ( erf(@)) <log2 (1 — erf(@)) — 1). (3.104)

In the very low SNR regime i.e. ¥ — 0, we have the following asymptotic result based on
the approximations erf(x) ~ 2x/y/7 and In(1 + x) ~ x for x — 0:

(- (S)) o (1 - (7)) )
+ <1 +erf<@)) <log2 (1 +erf(@>> - 1) ~ 2(— erf2<‘/(x—pt"xl> - 1)

In2
~o (Hrxi
~2 <7r1n2 _ 1), (3.105)
VM/2 >
242 b o
R~2+ 7 l; 2 (nlnz 1) = iIno (bit/channel use), (3.106)
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where the property of the constellation points as having unit average power is applied
in the last equation. Notice that the achievable rate decreases with the square root of
the modulation order M as indicated by (3.106), meaning that R is maximized by the
lowest modulation scheme available in the very low SNR regime. This result is due to
the assumption of equally probable input symbols, which is not capacity-achieving in
general. The capacity lower bound (2.25) can be approximated by y(1 — p)/In2 for y —
0, which is equal to (3.106) with M = 4 and p = 1 — 2/7r = 0.3634, which is exactly the
value indicated by Table 2.1. In the very high SNR regime on the other hand, we have

L s1;, =0, sp; =1 for x; >0,
00 :
Y s;i=1, s5i =0 for x; <0,
R = —-4-0.5log,(0.5) =0 =2 (bit/channel use), (3.107)

i.e. the achievable rate reaches its upper limit of 2 bits per channel use as imposed by
the two 1-bit quantizers. With b > 1, the decision thresholds need to be determined
numerically by using the Lloyd-Max algorithm, and closed-form expressions for R do
not exist in general.

The achievable rate of the system as dependent on the average receive SNR is
illustrated in Fig. 3.24, where the capacity lower bound (2.25) and the Shannon capacity
for the AWGN channel are plotted for comparison. With higher modulation orders and
higher ADC resolutions, the gap between R and the Shannon capacity closes up, yet R
always converges to min{log, M, 2b} for sufficiently large y. In the low SNR regime, the
lower bound (2.25) and the achievable rate (3.101) are very close to each other, whereas
in the high SNR regime, (2.25) lies in between the curves representing (3.101) and the
Shannon capacity, and converges very slowly to the asymptotic upper limit of 2b.

In Fig. 3.24 we have illustrated the matched cases where log, M = 2b, meaning that the
upper limits on the achievable rate as imposed by the modulation scheme and the A/D
conversion are identical. A few mismatched cases are shown in Fig. 3.25. For QPSK as an
example, using an ADC resolution higher than 1 bit is beneficial in the low-to-medium
SNR regime, yet the SNR above which R saturates is almost the same for different
resolutions. This trend stays invariant even if the distribution of the input symbols is
optimized by using the Blahut-Arimoto algorithm [74] for instance.

3.5.2.2 Energy efficient operation modes and the optimal control strategy

The power consumption of the transmitter and the receiver, denoted with P; and P,
respectively, can be computed in the same way as introduced in Section 3.3.3 and Section
2.3.1. The additional system parameters are summarized in Table 3.3.

Having introduced the system model, analyzed the achievable rate, and specified how
the power consumption can be modeled, we discuss next the determination of the energy
efficient operation modes as well as the optimal control strategy of the transmitter and the
receiver. In this case, each operation mode of the system corresponds to a triple (p, M, b)
which specifies the transmit power, the modulation order, and the ADC resolution that
are employed. The feasible triples are then translated to a set of discrete points in the
3-dimensional space composed by P;, P, and R. More specifically, there are in total Nj, x
| M| X bmax + 1 of these points due to the N, positive transmit power levels, the | M|
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Fig. 3.24: Function R as dependent on the average receive SNR v, solid curves represent
the achievable rate of the system in terms of mutual information between the channel
input and output for equiprobable input symbols obtained with (3.101), while dashed
curves represent the capacity lower bound of the quantized channel obtained with (2.25).
Shannon capacity of the AWGN channel is given by the dotted curve as reference.

available modulation orders, the bmax eligible ADC resolutions, and the all zero point
which corresponds to the origin. An operation mode (pix, M, b);, i € {1,...,Np x |[M| x
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Fig. 3.25: Achievable rate (3.101) as dependent on the average receive SNR, with matched
and mismatched modulation orders M and ADC resolutions b

Table 3.3: System parameters for MQAM transmission over quantized channels

Constant circuit power of TX co = 100 mW

Constant circuit power of RX ap = 100 mW
Granularity of feasible transmit power levels | A, =5 mW

Maximal transmit power NpAp =100 mW
Available modulation formats Me M = {4,16,64,256}
Available ADC resolutions be{l,23,4}

Scaling factor in the ADC power consumption | a1 = 5 mW

bmax + 1} is called energy efficient, if there does not exist a convex combination of the
(P1, P, R) triples of other operation modes which results in no more power consumption
than (Py, P,); but an achievable rate larger than R;. Mathematically, this means

R; > max ATR
A-0

st. 1"TA=1, ATP<P;, ATP, <P, (3.108)
needs to be satisfied for (pi, M, b); to be energy efficient, where P, P, R € RNpIM|bmax+1
are the vectors containing the power consumptions and the achievable rates of all feasible
operation modes, and A € [0,1]NeIMIbmaxt1 contains their time-sharing factors which
sum up to 1. The zero operation mode guarantees the feasibility of the maximization
in (3.108), and is energy efficient by definition. The other operation modes need to be
examined by solving and checking (3.108), and once an operation mode is determined
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as energy inefficient, it can be eliminated from the subsequent optimizations to reduce
the computational complexity of the procedure. Note that (3.108) is a straightforward
criterion to determine the subset of energy efficient operation modes, which can be
applied in an exhausitive way to all feasible modes if the total number of them is not
very high. For a more effective and efficient implementation, one may apply convex
hull algorithms from computational geometry e.g. [75]. We let P1, P,, R be the vectors of
power consumptions and achievable rates of the energy efficient operation modes, which
are subvectors of P;, P>, R, and are of the same dimension.

For the throughput maximization problem on the finite time interval [0, T | where
the transmitter and the receiver have fixed energy budgets A1 and A; respectively, one
needs to find the maximal achievable rate corresponding to the power consumption
(A1/T, A2 /T) by employing the feasible operation modes. The problem is equivalent to

Ts
R

may v
T, _ T Ay Tt Ay

st. 1'u=1, uPlgT, yPZST (3.109)

where u contains the time-share of each energy efficient operation mode, since the energy
inefficient modes do not contribute to the optimal time-sharing solution that leads to the
maximal achievable data rate for a given pair of power consumptions. We let u* be the
optimal solution of (3.109), and call the energy efficient operation modes that correspond
to the positive entries of u* the active modes with respect to (A1/T,A2/T). From a
geometric point of view, a concave surface in the 3D space of P;, P, and R is constructed
based on all the energy efficient operation modes. The point on the surface corresponding
to the power consumption pair (A; /T, Ap/T) lies in the polygon determined by the said
active modes. The polygon is usually a triangle since it is quite unlikely, that more than
three energy efficient operation modes are on the same plane in the power-rate space.
This means, the optimal control strategy consists in general of the time-sharing of three
different operation modes. Moreover, as the projection of the surface of achievable rates
does not cover the whole P;-P; plane, there can be cases where the available energy at the
transmitter and/or the receiver is not exhausted at the end of the time interval.

We illustrate in Fig. 3.26 the feasible as well as the energy efficient operation modes
and the constructed achievable rate surface in the power-rate space for three different
communication distances d. For small 4, the operation modes with relatively large M and
b tend to be energy efficient. As d increases, more operation modes with lower modulation
order and coarser A/D conversion become energy efficient. Note that the achievable rate
exhibits the saturation behavior in the receive SNR for given M and b, which means for
sufficiently large y, the increment in R is trivial no matter how large the transmit power
becomes. To this end, we can set a small offset e > 0 and regard the operation modes
with R > (1 — €) min{log, M, 2b} as energy inefficient. For the shown simulation results
€ = 1073 is chosen.

The optimal state trajectories Wy of the transmitter and W} of the receiver are
demonstrated in Fig. 3.27 for a pair of chosen energy budgets. For d = 20, 50 and
100 meters, the optimal control strategies all involve the time-sharing of three different
operation modes, which are obtained by solving (3.109) and are listed in Table (d).
Consequently, the resulting optimal state trajectories all consist of three straight line
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Fig. 3.27: Optimal state trajectories of the transmitter and the receiver as well as the
corresponding maximal throughput, T = 10 sec, A; = 4 Joule, A, = 1.5 Joule, the green
crosses indicate the switches between different operation modes

segments with different slopes. It can be noted that the modulation orders and the ADC
resolutions of the active modes do not always match.

The jointly optimal control strategy is compared to a distributed solution in terms
of the achieved throughput in Fig. 3.28. In the case without central control and the
transmitter and the receiver are not aware of the situation of each other, a distributed
solution has to be employed where the operation of each transceiver is only based on the
local energy information. We propose a fixed modulation scheme i.e. a single M is selected
and employed throughout the operation interval, while the transmitter and the receiver
have the freedom to choose their transmit power and ADC resolution, respectively. We
assume that the two transceivers choose the highest operation mode possible to make the
most use of the available energy. As shown in the figures, there is always a performance
gap between the optimal centralized control and the distributed solution. How large is
the gap depends on the selected modulation order and also the energy budgets of both
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Fig. 3.28: Throughput achieved with the optimal control strategy and a distributed
solution which employs a fixed modulation order, T = 10 sec, d = 100 meters

transceivers. In some situations the performance of the distributed solution comes very
close to that of the optimal control, while in some other situations the system suffers
considerably from the lack of effective cooperation.

3.6 Summary

We have discussed in this chapter the throughput maximization problem of a
communication system that operates on a finite time interval with a given energy budget.
The focus is on how the available energy should be spent over the available time,
such that the total amount of data conveyed is maximized. To this end, we formulate
the problem within the framework of the optimal control theory, and introduce the
Pontryagin’s maximum principle to aid the derivation of the optimal solution. We
consider the problem for the transmitter, the receiver, and a pair of transmitter and
receiver, where a number of different cases are investigated for each system. In scenarios
where the channel condition stays constant and is known by the system, the key to finding
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the throughput-maximizing control strategy lies in the determination of the energy
efficient operation modes. This can be accomplished by constructing a concave relation
between the achievable data rate and the power consumption of the system. Based on
the obtained results, scenarios with time-varying channels can be solved. Depending
on the availability of non-causal channel knowledge, convex optimization algorithms
or dynamic programming techniques are employed in the derivations. Moreover, the
variations of the maximal achievable throughput in the energy budget and in the duration
of the operation interval are studied for many of the cases. The conclusions drawn
from these fixed-energy problems shall lay the basis of the varying-energy problems we
investigate in the next chapter.



4. Optimal Control of Energy Harvesting Transceivers

Centering around the energy efficiency of wireless communication systems, we have
reviewed and discussed previously some important performance trade-offs on the
component and link levels of these systems. In the last chapter, we focus on the efficient
utilization of energy in a system constrained by a fixed energy budget. To support
even better sustainability of wireless devices, energy harvesting techniques, which have
emerged and developed quickly over the past decades, can be employed to provide
additional or exclusive power supply for these devices by harnessing energy from their
surrounding environment. From an operational point of view, this helps prolong the
operation time of the systems before any human intervention is necessary, e.g. for a
battery change or recharge. Such an advantage is of particular importance to wireless
sensor networks deployed in prohibited environment and to wearables for healthcare
where maintenance of the system can be inconvenient or difficult. From an environmental
point of view, exploiting the ambient energy contributes to the evolution of Green
Communications [76] as it helps alleviate the increasing demand on fixed power supply
utilities and batteries. On the other hand, the power densities that the energy harvesting
techniques are able to provide, although dependent on the energy sources, the materials
used for the harvesters, and the specific converting techniques, are in general very limited
which restricts applications mostly to low-power devices. Nevertheless, the potential of
energy harvesting techniques applied to wireless communications are worth exploring,
and have indeed attracted significant attention from both academia and industry.

In this chapter, we will focus on wireless communication devices powered purely
by harvested environmental energy, and refer to them as energy harvesting nodes. The
functional module that each of these devices is equipped with, which harnesses and stores
the ambient energy, is referred to as the energy harvester. One of the essential features of
operating with an energy harvester, as opposed to operating with fixed power supply
utilities, lies in the time-variant and intermittent nature of the harvested energy. As the
external energy source is often unsteady and not part of the control system, the arrival of
the harvested energy can be modeled as a stochastic process. This is to say, when and how
much energy can be harnessed is random and practically unknown in advance. If there
is some time correlation or characteristic pattern in the behavior of the energy source,
the energy arrivals can be predictable to a certain extent. Moreover, the energy harvester
can be designed to regularize its output, making the energy that becomes available for
communication tasks less random and sporadic. We do not consider these issues within
the scope of this thesis, i.e. the energy harvested over time is assumed completely random

89
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and uncorrelated. As a consequence of the inconstant and intermittent power supply,
new resource allocation strategies and design methodologies are required for energy
harvesting nodes. More specifically, how the available energy is spent over time is the
main focus here, which calls for a dynamic viewpoint of the system under consideration.
To this end, the optimal control theory and the theory on Markov decision processes are sought
for as the appropriate tools for the treatment of related problems. In consistency with the
terminology thereof, the parameters of the energy harvesting node that can be adapted
are referred to as control variables, and the way they are adapted is called the control.

As mentioned before, there has been a burst of research activities since a few
years ago on the operation and optimization of energy harvesting nodes. In [77],
various aspects of energy harvesting sensor systems have been surveyed, including
their architecture, energy conversion and storage technologies, and exemplary harvesting
based applications. Detailed measurement results of an indoor radiant energy harvesting
system are presented in [78], where energy management strategies are also developed for
different environments and communication scenarios. In [79], a throughput maximization
framework is established for an energy harvesting transmitter with non-causal energy
arrival information, from which we see the possibility and necessity of making
connections to the optimal control theory and exploiting results of the studies on energy
efficient communications. To this end, we take into account the circuit power of the energy
harvesting nodes and investigate its impact on the optimal operation strategy. Not only
were we among the first to consider this important issue [80], but we also established
more general results than the several other works that deal with a similar problem [81,82].
The optimization framework can be elaborated and extended to include more ingridients
such as a fading channel [83,84], non-linear behavior and imperfections of the battery [85],
etc. We investigate in some of these directions also with the consideration on circuit power
[86,87]. Another category of problems arise if only causal and statistical energy arrival
information is assumed at the transmitting node, which have been studied in research
papers such as [84,88-90]. Unlike the case with non-causal energy arrival information in
which we usually maximize the short-term throughput, optimization of infinite-horizon
is formulated instead to meet the goal of designing an operation policy that works the best
on average. Although different methods such as Markov decision process and dynamic
programming are found suitable here, some basic conclusions we have drawn previously
in the non-causal information case lay the basis for the construction of the optimal
operation strategy. Similar investigations can be performed for an energy harvesting
receiver, and a pair of communicating energy harvesting nodes, where multiple control
variables are involved [91, 92]. Based on the studies on these basic scenarios, more
complex communication setups and techniques such as relaying [93,94] and multiple
access systems [95,96] are explored under energy harvesting constraints. One may refer
to [97] for recent developments in energy harvesting wireless communications.

In this chapter, we first present a short overview of energy harvesting techniques
that are commonly applied to power wireless devices, and then follow the optimization
framework established in the last chapter to discuss the general throughput maximization
problem. In Section 4.2, we consider the case with a priorily known energy arrival
functions. Properties of the optimal solution are deduced from a geometric perspective,
and algorithms for the construction of the optimal state trajectories are proposed and
proven. The optimal control of energy harvesting nodes with causal and statistical
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Table 4.1: Considered scenarios for communications using energy harvesting nodes

Arrival Control Channel
EH node knowledge variable state Reference
transmit power constant [80,98]
(continuous) time-varying [87]
non-causal
TX modulation order constant [86]
(discrete) time-varying [87]
transmit power constant [99]
causal - - -
modulation order time-varying [100]
ADC resolution
RX non-causal and bandwidth constant [101]
(continuous)
transmit power
non-causal and ADC resolution constant [102]
(continuous)
TX and RX -
transmit power,
causal modulation order, constant [103]
and ADC resolution

knowledge of the energy arrival process is treated in Section 4.3, where the objective
is changed to maximizing the average throughput over an infinite time horizon, and
the mathematical tools used are Markov decision processes and dynamic programming.
In particular, we apply the policy-iteration algorithm to obtain the optimal operation
policy with respect to a number of single-stage strategies. The joint control of two energy
harvesting nodes communicating over a single link is also investigated in the respective
sections. In addition, decentralized control strategies are proposed for the two nodes
when only local state information is available. Our investigations under various scenario
assumptions are listed in Table 4.1, where the previous publications of the respective
parts are referenced. Note that some of the scenarios are not discussed or presented in
detail due to their similarity in terms of solution methods with others. The chapter is
summarized and concluded in Section 4.4.

4.1 Energy Harvesting Techniques

Various forms of energy, such as solar, thermal, and kinetic energy, can be captured and
gathered from the environment to power wireless communication devices. The process
of harnessing energy from ambient sources and converting it to electrical energy, which is
then utilized for powering wireless devices and carrying out communications, is known
as energy harvesting or energy scavenging. In the following, we give a brief introduction to
common energy harvesting and storage techniques. For a more thorough and dedicated
treatment of the topic, one may refer to [28,77,104].
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4.1.1 Photovoltaic

The harnessing and utilization of solar energy is very common in our daily lives, from
building-integrated systems with large-scale solar panels on rooftops [105] to low-power
portable electronics such as pocket calculators. Using semiconducting materials that
exhibit the photovoltaic effect, which refers to the production of electric current from the
excitation of electrons upon exposure to light, photovoltaic energy harvesters are able
to provide power densities that are much higher than other harvesting techniques. Yet
the presence and intensity of the light sources greatly affect the output power, which
can be intermittent and differ by several orders of magnitude. Another limiting factor
of photovoltaic energy harvesting is the area restriction for deployment which confines
the output power level, as the latter is proportional to the area of the solar panels. For
small sized stand-alone electronics, this can be a major concern which calls for efficient
energy management so as to better support the desired quality of service of the system.
In addition, the costs of materials, manufacturing, and maintenance are also relevant for
large-scale systems.

4.1.2 Piezoelectric, electromagnetic, and electrostatic

Kinetic energy can be converted into electrical energy with piezoelectric, electromagnetic,
or electrostatic transduction mechanisms. In response to mechanical strain, piezoelectric
materials such as piezoelectric crystals and certain ceramics become polarized and
produce electric current or voltage, the value of which is proportional to the applied
strain. This effect can be employed to harvest energy from deformations caused by human
motions, e.g. walking or pressing buttons. Induction based electromagnetic transdunction
and capacitor based electrostatic transduction on the other hand, exploit the relative
displacement that occurs within the system because of external vibrations. The three
mechanisms exhibit different characteristics and are suitable for different application
scenarios, with their respective constraints and preferences. As alternating current is
produced with these transducers, rectifiers are needed to turn the signal into direct
current for further use.

4.1.3 Thermoelectric

A temperature difference in metal or semiconductor materials causes the charge carriers
to diffuse from the hot end to the cold end, resulting in an electric voltage. By virtue
of this property known as the thermoelectric effect, thermal energy can be converted and
harvested. Thermoelectric energy harvesting is reliable and is of particular interest to
power medical devices and consumer electronics, due to the potential utilization of the
body heat. An example of application is the thermoelectric wristwatch, which is driven by
the electrical power converted from the body heat of the wearer. The conversion efficiency
of thermoelectric energy harvesters depends on the materials used, and improves with
larger temperature differences. However, it is typically rather low, achieving the value of
a few percent.
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4.1.4 Radio frequency

Ambient RF energy can be harvested using a high gain antenna and a rectifier which
converts the RF signal into direct current. The output power of an RF energy harvester
is in the order of 0.1 uW in general, which is relatively lower than other harvesting
techniques. However, RF energy is omnipresent, and this makes it especially suitable
for wireless sensor nodes deployed in places where battery replacement is difficult.
Moreover, the rapidly growing wireless services and the ever expanding wireless network
coverage help improve the applicability and the strength of RF signals in the background,
e.g. from analog/digital TV broadcast, cellular networks, and Wi-Fi services. In some
cases, RF signals are intentionally sent from a base station to power distributed energy
harvesting nodes.

The common energy harvesting techniques are listed in Table 4.2, where their power
densities are roughly given by the orders of magnitude.

Table 4.2: Common energy harvesting techniques

Type of energy Source Power density
Light Sun (outdoor) 10* uW/cm?
[Numination (indoor) 10 uW/cm?

Kinetic Human motion, vibration 1mW ~ 100 W
Thermal Temperature difference 100 uW/cm?
RF RF fields, RF waves 0.1 uW/ cm?

4.1.5 Energy storage

Energy storage is the process of converting the harvested energy to forms that
can be stored for longer time, more economically, and with less loss. Batteries and
supercapacitors are the traditional and rising energy storage media for wireless sensors.
While batteries have higher energy densities and less leakage, supercapacitors have
higher power densities which make them more suitable for bursty energy input and
output. Moreover, supercapacitors are more durable in terms of charge-discharge cycles.
As aresult, the choice for the energy storage medium depends on the system specification
and application scenario. For a given system, the capacity and other characteristics of the
energy storage in turn influence the optimal design of resource allocation algorithms and
operation strategies that are to be employed.

4.2 Optimal Control with Non-causal Energy Arrival Information

In the previous chapter, we have investigated the throughput maximization problem
for transceivers with a fixed energy budget. The problem is called basic, because it can
be viewed as a static phase in an energy harvesting process i.e. no energy is harvested
during the time interval of interest, and also because its solution provides important
insight and serves as the building block for the solution of the general problem. For an
energy harvesting transceiver, the energy that becomes available for communications is
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in general a function of time which depends on the environment, the energy harvester,
the capacity of the energy storage, etc. This means, in view of the formulation of the
basic problem (3.3), the distinction of the general problem mainly lies in the constraint
on the system state. Depending on the type of information the transceiver has about this
constraint function, the control optimization is formulated respectively and solved using
different mathematical tools. More specifically, when non-causal knowledge about the
available energy is assumed for the energy harvesting node, the optimal transmit/receive
strategy can be obtained offline with the optimal control theory and convex optimization
algorithms. On the other hand, if the node only has causal and statistical information
about the potential energy arrivals, stochastic models and control methodologies are
employed which produce a set of rules to guide the online operation of the system.

Due to the aforementioned differences, we focus on the optimal control problem with
non-causal energy arrival knowledge in this section, and leave the causal knowledge case
to the next one. After the formulation of the general throughput maximization problem,
we derive and discuss the properties of the optimal transmit and receive strategies, as
well as how to obtain them in different cases.

4.2.1 Problem formulation

Our goal is to find, among all admissible controls, the one that leads to the maximal
throughput on the time interval of interest. For a control to be admissible, it needs to
fulfill constraints imposed both by physics and by system design. In the context of energy
harvesting nodes, the most critical constraint is that at any time instant, the cumulative
energy expenditure of the system can not surpass the cumulative energy that becomes
available. Since the harvesting of ambient energy is time-variant and practically unknown
in advance, the integration of this condition into the optimal control problem depends on
the assumption we make about the system and can be quite a subtle issue. To start with,
we analyze first a basic form of the general control problem, the solution of which will be
employed later as the most important building block for the general optimal solution.
Recall that we aim at maximizing the throughput of an energy harvesting node on a
given time interval [0, T |, and that the state of the system W is defined as the cumulative
energy consumption of the node. As the node has no fixed power supply but depends
solely on the ambient energy, W is upper bounded by the cumulative harvested energy
plus the energy that is initially available from the battery, Vt € [0, T |. This condition may
be called the passivity constraint as the node only consumes the harvested energy but does
not produce any energy on its own. It may also be called the causality constraint from the
viewpoint that the node can not consume any energy that is to be harvested in the future.
We let A(t) denote the cumulative maximal energy that can be harvested, and A(t)
denote the cumulative actual harvested energy, t € [0, T|. It is necessary to distinguish
between these two functions, when the storage capacity of the node is limited. In the
extreme case, if the node does not consume any power but only harnesses energy, the
storage eventually gets full and the node becomes incapable of further obtaining ambient
energy even if it is available. We term such occasions as energy miss events, which result
in a gap between A(t) and A(t). On the other hand, if the node has infinite storage
capacity, then whatever energy can be harvested from the environment can be stored and
eventually utilized, leading to A(t) = A(t). We denote the storage capacity of the energy
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harvesting node with Enayx, and assume it a finite constant. The passivity constraint or
the causality constraint imposes a pointwise upper bound on the state trajectory as

W(t) < A(t), Vtelo,T]. 4.1)

Taking into account the nature of common external energy sources and potential
power control mechanisms of the energy harvester, we assume that the function A of
t is piecewise continuous, i.e. it is continuous in its domain except for a finite number
of discontinuities. Note that A is non-decreasing as a cumulative energy function. A
discontinuous point then corresponds to a sudden increment representing the arrival of
a certain amount of energy within very short time. We refer to this kind of arrival as
energy packets. On the other hand, the system state W of ¢, which is also non-decreasing,
should be piecewise smooth i.e. having continuous first-order derivative except for a
finite number of points. This is due to the assumption that the energy harvesting node
is capable of switching between discrete values of the control variable within very short
time, but is not able to dissipate infinite power. As for the non-causal information case
under consideration, we assume that A is perfectly known by the energy harvesting node
before the communication takes place.

It is clear from the above analysis that, while the function A(t) is completely
determined by the environment and the equipped energy harvester, the function A(t) can
be dependent on W(t) and Emax due to the possible energy miss events. To circumvent
this complication, we propose a pre-processing step to construct the maximal function A
from A for which it is possible to avoid energy miss events altogether. Given Emax < 00
and the maximal power consumption Pnax < 0o, we initialize A with A and construct
the state trajectory Wmax from t; = 0 on according to Algorithm 4. The trajectory goes

with the maximal increasing rate possible, i.e. Wmax = Pmax Or Wmax = A for the

parts where W« coincides with A but A < Ppax. At each intermediate end point
of the trajectory, we examine whether an energy miss event is inevitable indicated by
A(t1) > Wmax(f1) + Emax. If so, the right part of the curve A(f) with t € [#;, T | should
be shifted downward by the amount A(#1) — Wmax (1) — Emax, suggesting that the node
has missed the chance of harnessing the corresponding energy. The final state Wiax(T)
reveals the maximal energy consumption of the node on [0, T ]. As no additional energy
can be utilized, we set the part of A that is above this level to Wiax(T). The constructed
A(t) is a genuine and tighter bound on W than A(t), and is called the effective cumulative
available energy function. We give an exemplary construction result in Fig. 4.1(a), where
the harvested energy as represented by the curve A becomes available in the form of
energy packets, rendering A and consequently A to be increasing staircase functions.

The data transmission or reception models we investigate posses the property that
R(Py) > R(Py) if P, > P,. As a result, the available energy should be fully used in
the sense that no energy miss event happens and that all energy is exhausted at the
termination point T. To assure the first condition, we define a lower bound D(¢) on the
state trajectory which represents the minimal amount of energy that has to be consumed
by time t in order to avoid energy misses. On the time-energy graph, this corresponds to
shifting A downward by Enax and obtaining

D(t) = max(0, A(t) — Emax), Vt€[0,T]. (4.2)
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Algorithm 4 Construct the effective cumulative available energy function A(f)

Require: Epax < 00, Pmax < 00, A(t), t € [0,T]

Ensure: A(t),t € [0,T]
1: A<+ A, t; + 0, Wnax(t1) < 0, At: infinitesimal step in time
2: while t; < T do

5: A(t) + A(t) — (A(t1) — Wmax(t1) — Emax), t € [#1, T
6: end if

7 Wmax(t) — Wmax(tl) + Pmax - AL, t € (tl, t + At]

8: else )

9: Wmax(t) — A(tl) + min(A(tl),Pmax) ALt € (tl,tl + At]
10: end if

11: t1 «+ t1 + At

12: end while

13: if Wimax(T) < A(T) then

14:  A(t) + min (A(t), Wmax(T)), t € [0,T]

15: end if
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Fig. 4.1: Geometric view of the general throughput maximization problem: time-varying
boundaries for the state trajectory

For the exemplary curve A we constructed in Fig. 4.1(a), the corresponding lower
bound D is shown in Fig. 4.1(b). Any state trajectory W satisfying D < W < A on a
pointwise basis is physically feasible as well as free from energy misses. If the final state
W(T) = A(T) is also fulfilled, then the trajectory is qualified as one of the candidate
optimal trajectories, which we call admissible. Correspondingly, an inadmissible trajectory
violates either or both conditions, and can not lead to the maximal throughput. The region
bounded by the curves A and D on the time-energy graph is called the admissible region.
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Finally, we give the formal expression of the general throughput maximization
problem of an energy harvesting node as

u

T
max / R(t,u)dt
0

st. W =P(u), W0)=0, (4.3)
D<WE<A,
W(T) = A(T).

Compared with our objective, i.e., to control the energy harvesting node from time 0 to T
by continuously adapting the control variable in such a way, that the maximal throughput
can be achieved while the causality constraint is not violated, (4.3) contains in addition
the lower bound and final state conditions. These are necessary for optimality, and more
importantly, provide us with a causality constraint that is independent of the control we
choose, therefore leading to a much more tractable problem structure.

4.2.2 Transmit strategies

When discussing the optimal solution of the basic problem in Chapter 3, we have
considered several cases with different system models and obtained quite distinct optimal
trajectories. In the following, we solve the general problem for each case based on the
respective optimal solutions of the basic problem.

4221 Casel

If the transmit power can be adapted continuously in magnitude and the power
consumption function P is convex on [0, +-00), we have that the throughput-maximizing
strategy given fixed energy budget is to use constant transmit power, which corresponds
to the optimal trajectory W* as a straight line. Based on this result, the following theorem
and the its direct consequence, the optimality criterion, can be obtained and proven.
Theorem 1. Let W(t), t € [0, T| be an admissible trajectory to the general problem (4.3) and
L(t), t € [#, tu] be the straight line segment that adjoins (t;, W(t))) and (tu, W(ty)) where t;,
tusatisfy 0 < ) < ty < T.If Lsatisfies D < L < Aand L # Wont € [t ty], then the new
admissible trajectory

W, t e [0, tl]/
Whew = L, te (tl, tu), (4.4)
W, tety,T].

leads to an increase in throughput.

Proof. The constructed trajectory Whpey is identical to W except on the subinterval (f), t,,).
Therefore, we only need to prove that on [, t ], the straight line segment L gives larger
throughput than any other admissible trajectory. Since W is admissible, we have

D(t) <W(h) < A(h), D(tu) < W(ts) < A(ta). (4.5)
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Let us define the horizontal lines Ay, (t) = W(ty) and Dy(t) = W(t), t € [#, ty ]. For any
trajectory L adjoining (f;, W(t;)) and (ty, W(ty)) to be admissible, it should satisfy the
boundary conditions

max(D,Dy) < L <min(A, Ap), Vte€ [t tu]. (4.6)

The resulting admissible region is a subset of the rectangular region bounded by Ay
and Dy, which is exactly the admissible region of the basic problem between (¢, W(#))
and (ty, W(ty)) with the energy budget W(t,) — W(#). Therefore, the optimal trajectory
to this basic problem, i.e. L, leads to the maximal throughput among all admissible
trajectories L. Consequently, for W(t) # L(t), t € [t ty], the replacement with L in W
always results in an increase of the throughput. O

Theorem 1 states that if there exist two points on an admissible trajectory which can
be connected with a straight line segment without violating any boundary condition, i.e.
the resulting trajectory is still admissible, then the replacement with the corresponding
straight line segment would increase the throughput. To this end, we claim the optimality
criterion which is a necessary condition for an admissible trajectory to be optimal: there do
not exist any two points on the optimal trajectory W* that can be adjoined by a distinct admissible
straight line.

We let Wy be an admissible trajectory which satisfies the optimality criterion. The
following lemma characterizes the slope changes on W, i.e. under which conditions
should the transmit power be changed, and how should it be changed.

Lemma 1. The points at which Wy changes slope are either on A or on D. Moreover, the slope
change at a point on D is negative, whereas the slope change at a point on A is positive.

Proof. We prove the lemma by assuming its contrary and then showing that the optimality
criterion is violated. This is conveniently achieved with the schematic drawings shown
in Fig. 4.2. The trajectories in red are all admissible, but the existence of the dashed green
lines indicates that they violate the optimality criterion. When the slope change happens
at a point which is neither on A nor on D, as shown in Subfigure (a), a straight line
segment can always be constructed above or under the point, depending on whether the
slope change is positive or negative. Similarly, we see in Subfigures (b) and (c) that, when
a negative slope change happens at a point on A, or a positive slope change happens at a
point on D, the optimality criterion shall not be satisfied. O

With the enforced properties on R and P for Case I, the basic throughput maximization
problem (3.3) is convex, rendering the local optimum found by the PMP the unique global
optimal solution. Convexity of the general problem (4.3), however, can be impaired by
the lower boundary D on the state trajectory which causes the set of feasible controls
non-convex.! Yet fortunately, we can validate the existence and uniqueness of the optimal
trajectory with the following theorem.

Theorem 2. The admissible trajectory that satisfies the optimality criterion is unique, and it
corresponds indeed to the optimal control of (4.3).

!The upper boundary A does not ruin the convexity of the set of feasible controls given convex functions
P. Also, if P is affine in pix, the general problem can be shown convex.
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Fig. 4.2: Violations of the optimality criterion for Case I

Proof. Let us start with the uniqueness part. Suppose the admissible trajectory that
satisfies the optimality criterion is not unique. Let W, and W, be two admissible
trajectories satisfying the optimality criterion and W, # W,. They share the same starting
point (0,0) and both terminate at (T, A(T)). Since the two trajectories are not identical,
they must differ over some subinterval of [0, T]. Let ; > 0 be the left boundary of the
subinterval, i.e. the last time instant at which the two trajectories coincide, and ¢, < T be
the right boundary which is the first time instant that the two trajectories intersect again.
Without loss of generality, we establish the relation

D) < Wy(t) < Walt) < A(H), ¢ € (b ta). 47)

From W, > D and Lemma 1, we know that the slope of W, does not decrease over
(t1, tu). Since W, is a nondecreasing function, it can be seen that W, is convex over (f), ty,).
Similarly, W, can be found concave on (], ty). Starting from the same point (t;, W,(t)) =
(t1, Wy(t)), the convex function W, which is strictly larger than the concave function W
can not intersect with W, again at point (t,, W,(ty)), leading to a contradiction. As a
result, the admissible trajectory that satisfies the optimality criterion has to be unique.
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Next we show that the unique admissible trajectory that satisfies the optimality
criterion, denoted with W, leads to larger throughput than any other admissible
trajectory, denoted with Wj. Since Wy # Wy, with the same argument before, there exists
some subinterval [, t, | over the interior of which the two trajectories differ, but at the
boundary points Wy (f) = Wy (t), Wo(tu) = Wi(tu). Again we assume D(t) < Wi(t) <
Wo(t) < A(t) for t € (,t,), which means the slope of W, does not decrease on the
subinterval. The gap between the two trajectories is characterized by

AW(E) 2 Wy(t /Podt—/ Pldt_/ APdt (4.8)

l l
>0, te (b, tu),

49
=0, t=1t or t=+t,, (*9)

AW() {

where Py and P; are the respective power consumption over time corresponding to the
two trajectories. With a little abuse of notation, we directly write R(P) in the following to
indicate the achievable rate R as dependent on the power consumption P. The difference
in throughput, Al = Iy — I, is bound to be positive since

AI:/tuR(Po)dt—/tuR(Pl)dt:/tu (R(Po) — R(Py + AP)) d t

f f f

tu
> —/ Rp(Py) - APd t (4.10)
b
tu d
= | AW (Rp(P)) dt — (Rp(Py) - AW) " >0, (4.11)
1

where the inequality in (4.9) is due to the strict concavity of R in P (see Case I in

Section 3.3.1), and integration by parts is applied from (4.9) to (4.10) noting that AW =
AP. Since the first-order derivative Rp is positive and strictly decreasing in P, the
non-decreasing Py renders Rp(P)) to be non-increasing in time. Therefore, the first term
in (4.10) is positive. As the second term is obviously trivial, we have AI > 0, which
means on the subinterval | #, t, |, the trajectory Wy gives better throughput than Wj. The
same conclusion can be drawn for the case that Wy < W on the subinterval of interest.
Consequently, we are able to claim that the unique admissible trajectory satisfying the
optimality criterion is the global optimal trajectory for (4.3). O

In [106], the essentially same theorem for the case P = pix is proven by the verification
of the convexity of the problem, as well as the compactness of the admissible region which
guarantees the existence of the optimal solution. Some of the conditions used therein are
in fact unnecessarily strong. In our case, the extension to convex functions P damages the
convexity of the problem, yet with the approach shown above, the global optimality of the
unique admissible trajectory that satisfies the optimality criterion can still be proven. The
key feature to the establishment of the conclusion is the strict concavity of the achievable
rate as a function of the power consumption, which is also the essential reason why using
constant transmit power is the optimal solution to the basic problem.

Our remaining task now is to find a way to construct the admissible trajectory Wy
that satisfies the optimality criterion. Due to the similarity in mathematics, the algorithm
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proposed in [106], though for a different problem setup, can be tailored and applied. We
summarize the procedure and its validation in the following.

Consider a time instant ty € [0, T). It can be observed that as soon as the total energy
consumption during [0, tp) is determined, the throughput maximization problem over
the time slot | to, T'| is independent of the specific transmission strategy employed during
[0, ). To this end, the construction of Wy can proceed in a recursive fashion. Let the
point (ty, Eg) be in the admissible region, i.e. D(tg) < Ey < A(to). Straight lines of
nonnegative slopes starting from this point, denoted by L(;, ) (f), can be distinguished
by whether they intersect with the upper boundary A or the lower boundary D first.
Note that intersection here means, take D and the time instant t; > t; as an example,
that L g,)(t1) = D(t1) if D is continuous at point #1, or L, g, (f) — D(t) changes sign
at t1 if D is discontinuous at that point. Let Sx(to, Eg) and Sp(to, Eg) denote the sets
of slopes which lead L g, to intersect with A and D first, respectively. To ensure that
Sp(to, Eo) is non-empty, we define the discontinuity D(T+) = A(T) at the termination.
Since A(t) > D(t) forallt € [0, T), one can see that

ka >kp, Vka € Sa(to,Eo), kp € Sp(to, Eo), (4.12)

which further leads to

2

inf S (tg, Eg) = sup Sp(to, Eo) = k(to, Eo)- (4.13)

Note that the critical slope k(t, &p) belongs either to S4(to, Eg) or to Sp(fo, Eg). Using
these notations and definitions, we describe the construction procedure of the optimal
trajectory in Algorithm 5.

Algorithm 5 Construction of the optimal trajectory for Case I

Require: Boundary curves A(t) and D(t), t € [0, T |
Ensure: Optimal trajectory Wy
1: (tlrEl) — (0, 0), Wo(O) 0
2: repeat
3 (to,Eo) < (t1,E1)
4: Determine the critical slope k(to, E)
5: Wo(t) < Lk, (t) with slope k(to, Eo) until the intersection point (¢1, E1)
6: untilt1 =T

Starting with (0, 0), the algorithm constructs the trajectory Wy segment by segment
from a series of feasible points. In each of the iterations, the critical slope at (fo, Eo),
which is the current end point of Wy, is determined and used as the direction in which
the trajectory evolves. In principle, Wy takes the straight line with slope k(tg, Eg) until it
intersects with A or D. The intersection point then becomes the starting point for the next

iteration. If (o, Eo) is on the upper boundary A and k(to, Eo) is equal to A (t§), we assume
that Wy shall intersect with A after an infinitesimal step. The same goes for (o, Eg) on D

with k(tg, Eg) = lf)(tar ). To this end, Wy would follow the corresponding boundary curve
until the point at which the equal tangent condition is no longer fulfilled. During the
time that W coincides with either of the boundary curves, the power consumption of the
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node is equal to the energy arrival rate. If it happens with the upper boundary A, then
the corresponding part of A is convex; if it happens with the lower boundary D, then the
corresponding part of D is concave.

Theorem 3. The trajectory Wy constructed with Algorithm 5 does not violate the optimality
criterion, and is therefore the optimal trajectory to the throughput maximization problem (4.3), i.e.
Wo = W™

Proof. From the construction procedure, it is clear that the trajectory Wy adjoins (0, 0) and
(T, A(T)), and lies completely within the admissible region. Therefore, W) is admissible.
Moreover, it can be seen that the changes of slopes can only happen at points which
are either on A or on D. Consider that in some iteration, the trajectory is constructed
from (tg, Eg) until (¢1, E1), where the end point is on D. This implies Wy(t) < A(t) for
t € (to, t1], since otherwise the construction would stop at the intersection point with
A. According to the definition of the critical slope (4.13), there exists some small number
€ > 0, such that any straight line L;, g (t) with slope in the range (k(to, Eo), k(to, Eo) + €)
intersects A(t) at a point ; > t;. Consider in the next iteration, a straight line L, ()
with the slope k € (k(ty, Eo), k(to, Eo) + €) is constructed, which intersects with one of the
boundary curves at (#], E}). The slope of the straight line connecting (to, Eg) and (#}, E})
is also within the range of (k(to, Eg), k(t9, Eg) + €), which means the intersection point
(#1,E}) has to be on A. As a result, we have k(t1,E1) < k(to, Eg), suggesting that the
slope changes on the lower boundary D is negative. Similarly, it can be shown that the
slope changes on the upper boundary A is positive. Therefore, we conclude that, around
every point on Wy where the slope of the trajectory changes, it is infeasible to construct
an admissible line segment as described by Theorem 1. Hence, Wj does not violate the
optimality criterion. Based on Theorem 2, Wj is the unique optimal trajectory of (4.3), for
which we have previously given the notation W*. O

(a) Emax = 12 (b) Emax = 8

Fig. 4.3: Construction of the optimal trajectory: a continuous energy input example

We design some examples to illustrate the construction of the optimal trajectory. In
the example shown by Fig. 4.3, the effective cumulative energy arrival is defined by the
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piecewise continuous function

20— (t—4)2, te[0,4),
A(t) = 20, t € [4,6), (4.14)
20+ (t—6)%2, te[6,10].

With Enmax = 12, as depicted in Fig. 4.3(a), the critical slope at the origin is determined by
the tangent line to A, as this line does not intersect with D before the tangent point at t; ~
7.48. The optimal trajectory follows the straight tangent line until 1 and then coincides
with A, since A is convex in its last piece. When the storage capacity is reduced to 8, as
shown in Fig. 4.3(b), the admissible region in the shape of a tunnel becomes narrower and
is therefore more restrictive. The optimal control changes as the critical slope at the origin
belongs now to Sp, meaning that Wy should take the tangent line to D until the tangent
point t; ~ 2.76. After that, Wy coincides with D for a short time before the derivative of
D becomes smaller than the slope of the tangent line to A, at which point W takes the
straight tangent line again. The tangent point is at t, ~ 7.24, after which Wj coincides
with A. Taking the rate function R = log,(1 + pw) and the power function P = p,
we achieve a throughput of 14.95 for the first case, and 14.84 for the second. As can be
expected, when the energy arrival rate changes frequently which leads to a less regular
cumulative energy arrival curve, finding the critical slope in each iteration can be rather
complicated.
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Fig. 4.4: Construction of the optimal trajectory: a discrete energy input example

When the energy arrives in the form of packets, the cumulative energy arrival
curve is a staircase function. Constructing the optimal trajectory in this case is more
straightforward, since the change of the slope can only happen at the discrete time
instants that new packets arrive, rendering the computation of the critical slope much
simpler. The optimal trajectories, with two examples shown in Fig. 4.4, are piecewise
linear. We again observe the difference in the optimal controls caused by the variation in
Emax. The throughput achieved with Epax = 35 is larger than that with Ejnax = 25, as can
be expected.
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4.2.2.2 Casell

The power consumption P in this case has an isolated point at ptx = 0, due to the constant
circuit power ¢g that is only incurred during the active mode. For p > 0 the function is
assumed convex. Recall that the optimal trajectory for the basic problem, depending on
the relation of the energy efficient transmit power pi, g and P~1(Aq/T), is either a straight
line segment, or consists of a horizontal part and a straight line of slope po = P(pix0)-
Based on this result, we propose a construction algorithm for the optimal trajectory of the
general problem following a similar procedure as in Case I: we first declare the optimality
criterion that the optimal trajectory must fulfill, then propose an algorithm to construct a
trajectory which does not violate this criterion. In the end, we prove that the constructed
trajectory is indeed the optimum.

We have mentioned the concept of equivalent trajectories when discussing the optimal
solution of the basic problem. Here we give a formal definition which is also suitable for
the general problem.

Definition 1. Let W; and W, be two admissible trajectories of (4.3) which differ only on
a finite number of subintervals (f;;,t,,), 1 = 1,2,...,K, 0 < tj; < tyq1 < -+ < g <
tu,x < T.If on these subintervals, W; and W, both consist only of horizontal lines and
straight lines with slope p, then W; and W, are called equivalent, denoted by W; ~ W.

One can see that equivalent trajectories following this definition yield the same
throughput. We also write Wi (t) ~ Wy(t) for t € [f, ty ], if Wi(t) = Wa(t), Wi(ty) =
W;(ty), and the two trajectories consist only of horizontal lines and straight lines with
slope pp on t € [#, ty]. This defines the partial equivalence, as opposed to the complete
equivalence given by Definition 1. On the equivalent subinterval | t, t, |, W7 and W, also
produces the same throughput.

Theorem 4. Let W be an admissible trajectory of (4.3) and L(t), t € [#,tu] be a curve that
adjoins (t,, W(t)) and (ty, W(ty)) where t}, t, satisfy 0 < t; < t, < T. Denote the slope of the
straight line that connects (t;, W(t,)) and (t,, W(ty)) with k.
1) Ifk < po and L(t) satisfies

- L(t) consists only of horizontal lines and straight lines with slope py,

S L() £ W), EE (Bt

- D(t) < L(t) < A(t), YVt € [, tu],
2) Ifk > pg and L(t) satisfies

- L(t) is a straight line segment,

L) £ W), e (B k),

- D(t) < L(t) < A(t), Vt € [, tu],
then replacing the part of W between [ 1}, t,, | with L increases the throughput.

Theorem 4 suggests that reconstructing part of a given admissible trajectory with
the optimal trajectory of the corresponding basic problem, if feasible, leads to an
improvement in the achieved throughput. The proof is similar to that of Theorem 1 and
we do not restate it here. The optimality criterion for an admissible trajectory of Case II
follows as: along an optimal trajectory W* there do not exist any two points between which the
part of W* can be reconstructed as indicated by Theorem 4.

A few properties of the optimal trajectory can be deduced.

Lemma 2. The slope at any point on W* is greater than or equal to pg except for the horizontal
parts.
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Since the upper boundary A is strictly above the lower boundary D and we are
considering a continuous-time model, the reconstruction around a point ¢ for which

W(t) < po is always possible. We illustrate the violation of the optimality criterion in
Fig. 4.5 (a) when Lemma 2 is not fulfilled.

Lemma 3. Any horizontal part of W* is arrived at and/or followed by a straight line segment of
slope po. More specifically, let W*(t), t € [t1,tp] be a horizontal line. If (t1, W*(t1)) is not on
D, then W* must arrive at (t1, W*(t1)) with a straight line segment of slope py; if (t2, W*(t2))
is not on A, then W* must be followed by a straight line segment of slope pg after (to, W*(t2));
otherwise, the horizontal line is connected at both ends with straight lines of slope py.

Horizontal lines appear in the optimal trajectory because of the time-sharing between
the sleep mode and using the energy efficient transmit power py o, and are therefore
connected with straight lines of slope pg. The only two possible scenarios that a horizontal
line is not connected to a straight line of slope pg are: the starting point of the line is
on D, and, the end point of the line is on A. Any other case is suboptimal as we can
reconstruct the connecting part by using straight lines of slope py, as shown in Fig. 4.5 (b)
and Fig. 4.5 (c).

EA
A
AP0 p o
0 Tt
(a)

EA EA

A A

D : /D
0 T t 0 T Ot
(b) (0)

Fig. 4.5: Violations of the optimality criterion for Case II
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Besides theses two properties, the optimal trajectory should also satisfy Lemma 1 for
the part where its derivative is larger than py.

Now we suppose an admissible trajectory W* has been found optimal and it contains
at least one horizontal part. Then there exist infinitely many admissible trajectories that
are equivalent to W*, and they all lead to the same maximal throughput. The theorem
below guarantees the uniqueness of the optimal admissible trajectory in the sense of
equivalence.

Theorem 5. The admissible trajectories that satisfy the optimality criterion are either equivalent
or identical. The controls they correspond to are all optimal for (4.3).

Proof. Suppose there exist two distinct admissible trajectories W, and W}, which do not
violate the optimality criterion. As before, we let (#], t,) be a subinterval over which W, #
Wy and W, () = Wy(f), Wa(tu) = Wp(ty), and assume without loss of generality, that
D(t) < Wy(t) < Wa(t) < A(1), £ € (b, ta).

If both trajectories do not contain horizontal lines on (#, ty), then according to the
proof of Theorem 2, they can not intersect at (fy, W;(ty)). Due to the same reason, W,
must arrive at (fy, W, (fy)) with a horizontal line. Let fy € (), t,) be the starting point of
this horizontal line. Since W, (tg) > D(to), the point (to, W,(to)) is reached with a straight
line of slope pg according to Lemma 3. As the slope of W, does not decrease except for
the horizontal lines, it can be inferred that W, consists only of straight lines with slope
po and horizontal lines on t € [ f}, t, ]. Moreover, the first segment of W, after ¢ must be

a straight line of slope pg, as W; > W,. The condition W.(t) > Wy(f) and Lemma 2
then require that W, follows a horizontal line after ¢;. Based on Lemma 3, W, also consists
only of straight lines with slope pg and horizontal lines, which is to say, W,(t) ~ W(¢),
t € [#,ty]. The argument holds for all subintervals on which the two trajectories differ,
which is to say, if W, is not identical to W, then it must be equivalent with W,

Let Wy be an admissible trajectory which does not violate the optimality criterion.
We have learned from the proof of Theorem 2, that the strict concavity of the achievable
rate as a function of the power consumption plays the key role in showing the global
optimality of such a trajectory for Case I. For Case II, the R-P curve is made concave by
the time sharing between the sleep mode and using the energy efficient transmit power,
as illustrated in the middle in Fig. 3.2. To this end, if we assume an admissible trajectory
W which differs from Wy on (#), t,) but shares the same boundary points, then the same
throughput is achieved on this interval if both trajectories consist only of horizontal lines
and straight lines of slope pg. Otherwise, Wy yields larger throughput which is shown
using the same steps (4.8)-(4.11). Note that the strict inequalities in (4.10) and (4.11) still
hold since Py > po, Vt € [, t,]. Consequently, the equivalent trajectories that fulfill the
optimality criterion correspond all to the global optimal controls of (4.3). O

We can construct one of the optimal trajectories using Algorithm 6. Note that Step 2
is always possible since A > D and a continuous-time model is considered. It should
be taken care of, when implementing Step 2, that the number of mode switches is well

controlled. To this end, multiple subintervals with WO < po can be treated together to
reduce the number of mode switches.

Theorem 6. The trajectory Wy constructed with Algorithm 6 does not violate the optimality
criterion, and is therefore one of the optimal admissible trajectories of (4.3).
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Algorithm 6 Construction of the optimal trajectory for Case II

Require: Boundary curves A and D, energy efficient power consumption pg
Ensure: Optimal trajectory W
1: Wy < construction result of Algorithm 5

2: On each subinterval where Wo < po, replace the part of Wy with horizontal lines and
straight lines of the slope pp while keeping the admissibility of the trajectory

Proof. Theorem 3 guarantees that the trajectory Wy, as after Step 1, is admissible and can
not be reconstructed with the second option described in Theorem 4. Step 2 is in itself the
construction procedure indicated by the first option in Theorem 4. It is also clear, that after
Step 2 there is no more subinterval that can be reconstructed. Therefore, the trajectory W
resulting from Algorithm 6 fulfills the optimality criterion, which qualifies it as one of the
optimal trajectories of (4.3). O

We illustrate the constructed trajectories and the maximal throughput in Fig. 4.6 where
a discrete energy arrival profile is assumed. The affine power consumption model (3.27)
is employed, and we vary the parameters cy and c; to observe the difference in the
optimal trajectories. With no circuit power taken into account, the trajectory Wy consists
of 4 straight line segments with different slopes, as shown in Fig. 4.6(a). As the circuit
power increases, the energy efficient transmit power becomes larger. The segment with
the smallest slope needs to be replaced with a horizontal line and a straight line of slope
po, which is the case depicted in Fig. 4.6(b). As py further increases, more segments are
reconstructed as shown in Fig. 4.6(c), suggesting that the node stays for longer time
in sleep mode. The maximal throughput achieved as dependent on the circuit power
parameters is shown in Fig. 4.6(d).

4.2.2.3 Case 111

Diverging from the information theoretic model, we assume for this case that the
transmitter is restricted to a discrete set of modulation schemes. The key step in finding
the optimal control of the basic problem, as discussed in Section 3.3.3, is to determine
the energy efficient modulation schemes which contribute to the Pareto-boundary of the
available power-rate pairs. The required average power consumption is then achieved
by the time-sharing between the so-called bounding operation modes. Applying this
result to the general problem and considering the similarity with Case II, we propose
the following construction algorithm for the optimal trajectory.

It can be proven, with a similar procedure for Case II, that the state trajectory
constructed using Algorithm 7 is the global optimal trajectory. We do not repeat the
validation here and directly show some simulation results. The system parameters have
been summarized in Table 3.2. For each simulation, we generate randomly a discrete
energy arrival profile and compute the throughput achieved with the constructed optimal
trajectory. The arrival of the energy packets is assumed a Poisson process, i.e. the
interarrival time follows the exponential distribution and is independent of each other.
The length of the packets, denoted with Ey, is assumed fixed or uniformly distributed. In
either case, we take care that Ey < Enax. Notice that the generated energy arrival profiles
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Algorithm 7 Construction of the optimal trajectory for Case III

Require: Boundary curves A and D, power-rate pairs of energy efficient operation modes
{(Py,Ry), ..., (Px,Rk)}
Ensure: Optimal trajectory W
1: Wy < construction result of Algorithm 5
2: fori=1,...,Kdo
3: On each subinterval where P;_; < WO < P, replace the part of Wy with straight
lines of the slopes P;_; and P; while keeping the admissibility of the trajectory
4: end for

correspond to the cumulative harvested energy functions A. The effective cumulative
energy arrival functions A are obtained taking into account the storage capacity Emax
and the maximal power consumption of node. Since we assume a fixed set of modulation
formats and a common BER requirement, the maximal power consumption increases with
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Fig. 4.7: Optimal state trajectories for MQAM transmission with a randomly generated
energy profile, Emax = 40 Joule, Eg ~ U(0, 0.8 Emax)

the transmission distance, meaning that the energy miss events are more likely to happen
for short-range communications.

We first show the construction results for one randomly generated energy profile
in Fig. 4.7. The trajectory produced by Algorithm 5, termed as the basic trajectory, is
depicted in Fig. 4.7(a). The optimal trajectories for different transmission distances are
obtained by appropriately applying the time-sharing solutions of the corresponding
energy efficient operation modes to the basic trajectory. In the remaining three figures,
we see that depending on the involved operation modes, the limiting points on the
boundary curves appear at different positions. When implementing the replacement step
of Algorithm 7, it should be taken care that switching between different modulation
formats occurs as seldom as possible. Note that the outcome trajectory can be further
smoothed by considering multiple subintervals that share a common operation mode
jointly. The maximal achievable throughput for the transmission distances ranging from
10 to 100 meters is shown in Fig. 4.8.
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4224 CaselV

With a time-varying channel, the optimal control is no longer constant. Yet the optimal
transmit power plus the inverse of the channel gain should stay time-invariant, according
to (3.46) and (3.54). Therefore, naming the constant u the marginal gain, we translate the
constant slope condition for Case I and Case II to the constant marginal gain condition. For
example, when the optimal control of the basic problem is given by (3.46), the optimality
criterion for the state trajectory of the general problem can be stated as: there do not exist
any two points on the optimal trajectory W* that can be adjoined by a distinct curve with a
constant marginal gain. Although lack of geometric intuition, the optimal trajectory can be
obtained by exploiting the analogy with the previous cases and basing the construction
algorithm on the critical marginal gains, as summarized in Algorithm 8. Note that what is
presented is a generic and theoretical algorithm which suits any channel gain function.
The determination of the critical marginal gain requires a searching process and may be
rather difficult depending on the shape of the boundary curves.

We focus in the following on block-fading channels and discuss the cases that the
transmitter has non-causal CSI, instantaneous CSI, or only statistical CSI. The arrival of
energy is assumed discrete, and the affine power consumption model (3.27) is employed.
In this scenario, the optimal transmit power is piecewise constant as it might only change
when the channel varies or when an energy packet arrives, except for the switches
between active and sleep modes. As a result, we decide for the transmit power to be
employed on a per stage basis, where a stage is a subinterval of [0, T] over which
there is no energy arrival and the channel gain stays constant. The starting point of
each stage, at which the operation during the stage is determined, is called the decision
epoch. Approaches different from before are to be exploited when we view the system as
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Algorithm 8 Construction of the optimal trajectory for Case IV

Require: Boundary curves A and D, channel gain function g, P = ¢ pix 4+ co withcy > 1,
co >0
Ensure: Optimal trajectory Wy
1: (tllEl) — (0, 0), Wo(O) 0

2: repeat

3: (to,Eo) — (tlrEl)

4: Determine the critical marginal gain p(tg, Eg)

5: Wo(t) < the curve with the constant marginal gain p(to, Eg) until the intersection

point (1, Eq)
6: untilt1 =T

evolving through the stages based on the decisions we have made and the changes of
external parameters.

When the transmitter has non-causal knowledge about the channel states, the optimal
transmit power can be computed offline. One straightforward way to do this is to
reformulate the infinite-dimensional optimization (4.3) into a finite-dimensional resource
allocation problem. To this end, let us assume that the time interval [0, T'| consists of
S stages, the divisions of which are due to channel changes and the arrival of energy
packets. The energy allocated to each stage, denoted with ws, s = 1,..., S, are taken as
optimization variables. We let I(w, g, T) denote the throughput achieved on a stage of
length 7 and channel gain g, when the energy w is allocated. This function is evaluated
according to the solution of the basic problem discussed in Section 3.3.2, and has been
proven concave in w for fixed g and 7. At each arrival instant, the total energy allocated
to the previous stages should be bounded within the admissible range. Consequently, the
throughput maximization problem (4.3) is reformulated as the constrained optimization
on the energy allocation parameters as

S
max Z I(ws, gs, Ts)

{wl,u-,ws} s=1
Li—1

s.t. Y. D) <ws <A(t), i=1,...,L, (4.15)
s=1

S
Y ws=A(T), ws>0, s=1,...,85,
s=1

where t; and L; stand for the arrival instant and the corresponding stage index of energy
packet 7, respectively, and L is the total number of energy arrivals on [0, T ]. Since problem
(4.15) is convex, any standard solver of convex optimization can be applied for obtaining
the optimal energy allocation, from which the optimal transmit power can be computed.

When the transmitter does not have any knowledge about the channel realization,
we can employ the value-iteration (VI) algorithm [107] to attain the optimal operation
policy, which guides the energy harvesting node to adapt its transmit power optimally.
As a first step to apply the algorithm, we need to specify some essential elements e.g.
the state of the system and the action that can be taken, with the corresponding physical
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quantities. Since the transmitting node has no instantaneous CSI, it can not determine the
energy-efficient transmit power pyy o for each stage, and is therefore not able to employ the
optimal time-sharing solution. To this end, we take the energy-efficient transmit power
for the average channel gain, denoted with p, o, as the lower limit of the transmit power
that the node actively employs. As before, the node varies its transmit power only at the
decision epochs, except for switching between active and sleep modes. The state of the
system is defined as the amount of stored energy, and the action as a choice of energy
allocation. Let X be the system state at decision epoch s. Depending on whether there is
an energy arrival just before that instant, Xs; can have a zero or positive lower limit, yet
the upper limit X; < Enax must be satisfied for all stages. Note that the action, i.e. the
energy consumption w; of stage s, is restricted to the range [0, X; .

The key procedure of the VI algorithm is the so-called backward induction, where
the expected throughput given any system state is optimized inductively from the last
decision epoch backwards. To this end, the energy space needs to be discretized so that
there is a finite number of system states and also a finite number of feasible actions. The
quantization step size, denoted with §, affects both the computational complexity of the
algorithm as well as the precision of the obtained optimal solution, and therefore should
be chosen carefully. We assume Enax = 8N where N is an integer number, rendering
N + 1 system states in total. The underlying theory of the backward induction is the
Bellman'’s principle of optimality which we have encountered in Section 3.3.6.

Let the function Gs(X) indicate the maximal expected throughput that can be achieved
on stages s until S given state X, and 7(s, X) be the corresponding optimal action to take
for stage s. The task of the backward induction is to determine the policy 7r via computing
Gs,Gs_1,...,Gq for all system states. For the last stage, the throughput to expect function
Gs and the corresponding optimal action are given by

Gs(X) =E[J(X,gs5,75)], 7(S,X)=X, X=0,5,...,6N, (4.16)

where the expectation is on the channel gain g, and the function | is computed as

_5 -Blog, (1 —i—gﬁtx,o), pot > X,
J(X,g1)=4 P N 4.17)
7-Blog, (1+gP~! (%)), otherwise.

For previous stages, we have

Gs(X) = max {E[}(w,gs,fs)}+GS+1(5-min(L%J+1,N))}, (4.18)

we{0,5,...,.X}
(s, X) = argmax {E [J(w, 86, 7s) ] + G (8- min(| Xt | 4 1,N))}, (4.19)
we{0,5,...,.X}
AT = A(t7), s=1L;
where U, — J A1) = A, s =1L s=S—1,...1 X=0,5.. 5N.
0, otherwise,

When the actual transmission takes place, the transmitter, knowing the available energy
at each decision epoch but not knowing the channel condition, simply chooses its action
according to the function 7r. Note that the algorithm essentially breaks the multi-stage
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decision-making problem down to single-stage problems as suggested by (4.18) and
(4.19), but the enumeration of system states for each stage can be computationally

extremely expensive.
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Fig. 4.9: Averaged maximal throughput achieved over known, partially-known, and
unknown block-fading channels, T = 10, T, = 1, functions R and P are given by (3.27)
with B = 1, 0 = 1, number of repetitions = 103

In the scenario that the transmitter has statistical as well as instantaneous CSI, we can
include the channel gain as another component of the system state and apply basically the
same algorithm. Representative values and quantization thresholds for the channel gain
are obtained from applying the Lloyd-Max quantizer to the Rayleigh distribution. The
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function | in (4.16), (4.18) and (4.19) are replaced with the function I since the optimal
time-sharing solution for each stage is applicable because of the instantaneous CSIL.

Due to the intensive computational requirement caused by the large number of system
states, we propose a dynamic programming based approximation algorithm for the
causal CSI case. Instead of obtaining the optimal policy via the backward induction, we
determine the sequence of actions online by sequentially solving the optimization

w} = argmax { E[I(wgs )] + Gsﬂ(é-min(LWJ + 1,N))}, s=1,...,5—1,
0<w<X;

(4.20)
where G;(X) represents the maximal throughput that can be achieved on stages s until S
given state X and the constant average channel gain. For the last stage, we have wg = X
to exhaust the available energy. The function G, s = 2, ..., S can be computed offline for
all system states, but not necessarily with backward induction. As the average channel
gain is assumed for all stages, the evaluation of G; can be realized using Algorithm 6 and
is much simpler than the evaluation of G;.

The results of some numerical simulations are depicted in Fig. 4.9, where the energy
arrival profile is taken from Fig. 4.4. We immediately see, that having causal CSI yields
a performance that comes very close to that of having non-causal CSI. The lack of
instantaneous CSI results in a performance degradation which is more severe when the
circuit power is large. This can be understood as the energy efficient transmit power and
subsequently the optimal time-sharing solution on a single stage can not be determined
without the CSI. On the other hand, the approximation algorithm proposed for the causal
CSI case exhibits almost the optimal performance as given by the VI algorithm, while the
latter suffers from much higher computational complexity.

4225 Caselll + IV

For the uncoded MQAM transmission over a block-fading channel, we find in Section
3.3.5 that the energy efficient operation modes depend on the channel conditions. We also
propose a heuristic algorithm to determine the modulation order on each block based
on the ordering of energy efficiencies of all operation modes. Let us shortly review the
algorithms before coming to the simulation results. In the case that the transmitter has
perfect non-causal CSJ, i.e. it knows all realizations of @ on [0, T | before the operation
takes place, the optimal energy allocation for each stage can be found by solving (4.15),
where the function I is evaluated according to the optimal single-stage solution. As
the number of candidate modulation schemes is quite small, we can also formulate the
problem as an optimization of the time shares of each candidate modulation scheme on
all stages. Such a formulation leads to a constrained linear program, which can be solved
more efficiently than the original non-linear program. Note that energy miss events are
possible since we have an upper limit of transmit power given by the highest modulation
order allowed. As a result, a pre-processing step is required where the inevitable energy
miss events are detected and the boundary curves are adjusted accordingly.

The heuristic Algorithm 1 can be extended and further developed to solve the general
problem in the non-causal CSI case as well. To cope with the time-varying energy
constraints, the algorithm is repeatedly applied to make sure that the obtained state
trajectory is admissible. More specifically, we start with the global domain and use
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the basic algorithm to find a modulation adaptation scheme without considering the
restrictions imposed by the boundary curves, i.e. as if we have a basic problem with
Ap = A(T). If the corresponding state trajectory happens to be admissible, the algorithm
terminates; otherwise, we formulate a subproblem from ¢ = 0 to the time instant that the
first constraint violation happens. This subproblem is again treated like a basic problem,
and its energy budget is given by the value of the boundary curve A or D at the point
that the violation takes place. In this way, we break the general problem into a sequence
of subproblems which could eventually be solved with the basic heuristic algorithm.
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In the case that the transmitting node has causal CSI, the channel gain is included
as another element of the system state and the VI algorithm is applicable as well. The
approximated DP algorithm on the other hand, optimizes the action for each stage
online where the average channel gain is assumed constantly for all future stages. Based
on the test results from Case IV, this approximation algorithm achieves near-optimal
performance with much lower complexity, due to which reason we implement it here
for the comparative study instead of the optimal VI algorithm. Since with the uncoded
MQAM model we assume reliable transmission subject to a predefined BER, the no CSI
case is not explored here.

For the numerical simulations, we employ the framework from Case III to generate
random energy arrivals. The averaged maximal throughput achieved in the non-causal
CSI case is shown in Fig. 4.10(a), where the size of the energy packets is either
deterministic and equal to half of the energy storage, or is a uniformly distributed random
variable on the range [0, Emax |. The results are rather similar, with the deterministic case
having a slight advantage. In Fig. 4.10(b) and Fig. 4.10(c), the throughput achieved with
the heuristic algorithm in the non-causal CSI case, the DP and approximate DP algorithms
in the causal CSI case are compared to the optimum shown in 4.10(a) in the form of
their ratio. The heuristic algorithm we propose for the general problem clearly achieves
near-optimal performance with losses less than 5%. The lack of non-causal CSI is also not
largely harmful, as the approximate DP algorithm reaches more than 80% of the optimal
performance for both arrival profiles and all transmission distances.

4.2.3 Receive strategies

The control of an energy harvesting receiver, as we have discussed in Section 3.4,
involves the adaptation of the bit resolution of the A/D converter as a real number
or an integer. The solutions to the basic problem have been derived and connected to
their counterparts at the transmit side: due to the constant power consumption ag which
is only associated with the active mode, the optimal controls in the two cases involve
time-sharing of the energy efficient bit resolutions and are equivalent to Case II and III
of the transmitter. Since the construction of the optimal state trajectory of the general
problem is based on that of the basic problem, the corresponding algorithms we have
proposed for the transmit side can be directly applied: Algorithm 6 to the former case and
7 to the latter. Additional considerations of a time-varying channel and different degrees
of channel state knowledge at the receiver can be treated using the same approaches for
the transmitter as well.

4.2.4 Transmit and receive Strategies

For a pair of transceivers that can be jointly controlled, we have discussed in Section 3.5
the optimal solution to the basic throughput maximization problem where the transmitter
and the receiver each have a fixed energy budget to exploit. In the general case, the
amount of available energy is a function of time which depends on the uncontrolled
environment. Assuming non-causal information about this function, we can formulate
an optimal control problem which aims at maximizing the short-term throughput with
an upper boundary on the state trajectory. The problem has a similar form as (4.3),
except that there would be two state equations and two sets of constraints on the state
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trajectories, one for the transmitter and one for the receiver. As we have explained in
Section 4.2.2, when the channel is assumed unchanged during the time interval of interest,
the optimal control of an energy harvesting transmitter can be found via construction of
the optimal state trajectory W*. Based on the solution of the basic problem, W* is either
uniquely determined by the boundary curves in a geometric sense, such as described
by Algorithm 5, or is further tailored to accommodate the required time-sharing modes
as described by e.g. Algorithm 6. Unfortunately, there is no equivalent solution here for
the communicating pair of energy harvesting nodes, and complex iterative algorithms
would be needed to find the optimal state trajectories. If the energy arrivals are discrete i.e.
in the form of energy packets, we can formulate the throughput maximization problem
as a non-linear optimization on the allocated energy for each stage as defined by the
intervals between consecutive arrivals. This optimization is convex due to the concavity
of the rate function R (see Section 3.5) and the linear constraints on the optimization
variables. Standard convex optimization tools can therefore be applied to obtain its
optimal solution. Moreover, we are able to derive some necessary conditions for the
optimal state trajectories, which shall be explained in the following.

We first consider the less general scenario that one of the two nodes has a time-varying
energy arrival curve while the other has a fixed energy budget. Without loss of generality,
let us take the transmitter as the one with a fixed energy budget. In essence, the optimal
strategy for the basic problem is to use constant power; the energy consumption ratio
only determines whether time-sharing with the sleep mode is necessary. To this end,
a preliminary state trajectory of the receiver can be constructed using Algorithm 5,
which would be optimum if no time-sharing is required. As the power consumption
and respectively the ADC resolution of the receiver is determined, the control of the
transmitter is equivalent to one that sends data over a time-varying channel, which has
been discussed as Case IV in Section 3.3.4. Since R is concave in P; for fixed Py, the optimal
control which minimizes the Hamiltonian as suggested by (3.6) satisfies

—Rp,(P{,P;) + A =0, Vte[0,T], (4.21)

where A} is the optimal costate of the transmitter which is a constant. This is to say,
the derivative of R with respect to P; stays constant when evaluated by the optimal
transmit and receive controls. As a result, the optimal state trajectory of the transmitter
is not a straight line but varies its slope according to the power consumption of
the receiver, which is similar to the constant marginal gain condition discussed in
Section 3.3.4. We say in this case, that the change of slope in the state trajectory of the
transmitter is initiated by the receiver. The energy allocation for each stage on which the
receiver has a constant power consumption is determined for the transmitter by using
iterative algorithms or convex optimization tools. Once this is accomplished, the energy
consumption ratio between the two nodes on each stage can be computed and used
to decide whether time-sharing with the sleep mode is necessary. With these steps, the
throughput-maximizing transmission and reception strategies can be found.

We design and demonstrate a simple example in Fig. 4.11, where the transmitter
has a fixed energy budget of 10, and the receiver is supported by two energy packets
which arrive at t = 0 and t = 12, respectively. The storage capacities of the two nodes
are assumed very large so that they do not play any role here. It can be seen that the
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Fig. 4.11: Optimal state trajectories for a pair of energy harvesting nodes, where the
transmitter has a fixed energy budget and the receiver is supported by two energy packets
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point (12,40) on the time-energy graph of the receiver is a turning point for its optimal
state trajectory. A preliminary trajectory which consists of two straight line segments and
passes through the points (0, 0), (12,40), and (20, 100) can be constructed. The change of
slope at the turning point is inevitable due to the imposed upper boundary in available
energy. In order to fulfill (4.21), the optimal state trajectory of the transmitter also has a
positive slope change at t = 12. The energy consumption of the transmitter before and
after this point can be computed with searching algorithms or convex optimization tools.
After the energy allocation is determined, we calculate the energy consumption ratios
between the two nodes on the two stages, and find that time-sharing with the sleep mode
is necessary for the first stage. The resulting state trajectories are shown in the figures.

For the general problem, we state the optimality criterion that a pair of optimal state
trajectories W, and W3 should satisfy as follows: there does not exist a subinterval [ t,, f; |
of [0,T] such that the parts of W; and W; on the subinterval can be replaced by the
optimal state trajectories of the corresponding basic problem without violating the given
energy constraints. Based on this necessary condition, we infer that the change of slope
in the optimal state trajectory can happen either on the boundary or in the interior of
the admissible region. In the former case, the change of slope has to be positive if the
intersection point is on the upper boundary, and negative if the intersection point is on
the lower boundary. The latter case on the other hand, only happens due to the change of
slope in the state trajectory of the other node at the same time instant. Around these points
where the slope change is initiated by the other node, the derivative of the rate function
with respect to the power consumption of the node should give a constant. Notice that
the change of slope we mention here does not include the change of operation mode due
to the potential employment of a sleeping period with a certain time-share.
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4.3 Optimal Control with Causal Energy Arrival Knowledge

It has been assumed in the last section, that the energy harvesting node has non-causal
knowledge about the energy that is to be harvested on the time interval of interest.
Since we do not consider the energy sources as part of the control system and presume
that the harvesting of environmental energy is a random process, this assumption is
idealized for the purpose of theoretical evaluation of the performance limit of the
system. In this section, we investigate the case that the energy harvesting node only has
causal knowledge about the energy arrivals. This scenario is of more practical relevance,
although a number of assumptions would still be needed regarding the statistical
properties of the arrival process to make the problem more tractable.

In Chapter 3, we have employed a continuous-time model and formulated the
throughput maximization problem on the given time interval [0, T | with a given energy
budget. The Pontryagin’s maximal principle has been applied to obtain the optimal
control for this so-called basic problem under different circumstances. These results serve
as the corner stones for the construction of the optimal state trajectory of the general
problem, as discussed in the first part of last section. In the scenario of a block-fading
channel and the node obtains the channel state information causally, we take a different
approach and view the system as a Markov decision process (MDP) to deal with the
randomness present in the system. To this end, the time interval of interest is divided
into stages, and the system decides for an operational action at the beginning of each
stage, depending on the state of the system at that moment. Instead of the maximal
principle which plays a central role in the optimal control theory, the mathematical tools
for this framework are those of dynamic programming, value-iteration, etc. In this section,
we further employ this framework to model the control optimization of one or a pair
of energy harvesting nodes, the block diagram and working mechanism of which are
illustrated with Fig. 4.12, due to the stochastic nature of the energy arrival process. We set
the optimization goal to maximizing the long-term average throughput, which falls into
the category of infinite-horizon problems. The policy-iteration algorithm, which would be
more suitable for this kind of problem than the value-iteration algorithm, is introduced
and applied to find the optimal control strategy. Similar to the situation presented in
the last section, the receiver does not need special treatment as it shares in common the
optimal single-stage operation with the transmitter. For the control of a pair of energy
harvesting transmitter/receiver, centralized as well as distributed solutions shall both
be proposed. The modeling of an energy harvesting node as MDP, the formulation of
the average throughput maximization problem, the application of the policy-iteration
algorithm, and finally the simulation results for an energy harvesting transmitter are
explained and demonstrated through Subsections 4.3.1 to 4.3.5, respectively. Following
these, presentations on the control optimization of a transmit-receive pair can be found
in Subsection 4.3.6.

4.3.1 MDP modeling and the average throughput maximization

We first focus on the transmit side scenario where the channel is assumed time-invariant.
As the two essential elements of a Markov process, the state of the system is defined in this
case as the amount of energy in the storage medium, and the state transitions correspond to
the shift from one state to another according to certain probability distributions. In order
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to have a finite-state system, the state space [0, Emax | is discretized with quantization
step 6, leading to the set of feasible states S = {0,6,...,0L}, where L = Emax/6 is
assumed an integer. The state of the node changes due to the energy consumption caused
by the data transmission, as well as to the arrivals of energy from the harvesting process.
We consider that the system is operated on a per stage basis, meaning that the state
transition is only tracked at the beginning of a stage, based on which an operational
action for the undergoing stage is determined. Since the harvested energy is assumed
to arrive at discrete time instants, it is natural to think of defining the stages by the arrival
moments of the energy packets, as we have done before. However, this leads to stages of
unequal lengths which can be less robust and undesirable when new aspects such as a
block-fading channel, or an energy harvesting receiver are added into the picture. As a
result, we design the stages to be of equal length T, where notice should be taken that the
T here has a different meaning than the one used in the last chapter and the last section.

We illustrate the underlying sequential decision process of the energy harvesting node
in Fig. 4.12(b). The arrival of the energy packets is assumed a stationary Poisson process
with known intensity Ag. Let U; and t; denote the size of packet i and the time instant
at which it arrives, respectively. Due to the Poisson process assumption, the interarrival
time between two consecutive packets, A; = t; 1 — t;, is exponentially distributed with A
as its mean value. From the viewpoint of every decision epoch, the time it takes until the
next energy packet arrives is identically distributed because of the memoryless property
of the exponential distribution. The amounts of energy that are contained in each packet
ie. U, n = 1,2,..., are assumed i.i.d. random variables taking positive values with a
stationary probability density function. The random energy arrival process as described
above is known as compound Poisson [108].

During each stage, there can be one or more energy arrivals, or no arrival at all. Let Z,,
be the set of packet indices i such that (n — 1)T < t; < nT, n = 1,2,.... The state of the
node at decision epoch 1 + 1, denoted with X, 1, is evolved from the state X, at decision
epoch n according to

Xn+1 = Qe (Xn - Wn + Z ui)/ (4.22)
icZy

where W, stands for the energy consumption on stage 7, and the function Qg (X) rounds
the energy value X down to the closest element from the set S. In the optimization process
described below we will impose the restriction W, < X, Vn, which guarantees that
(4.22) gives a valid system state. The occupation of the new state follows a probability
distribution which depends on the previous state, the action taken, the length of the
stage, and the property of the energy arrival process. We let ®(S;|S;,a) denote the
transition probability from state S; to state S; given that the action a is taken. The relation
Y.ires ©(Sr|Si,a) = 1 holds due to consistency, VS; € S.

Notice, that (4.22) is an approximation in that the update of the system state is
assumed to take place at the next decision epoch instead of at the very instants that the
packets arrive. As a result, the node is not able to respond immediately to the increment in
the available energy. Besides, we could be optimistic about the amount of missed energy
during the stage. Yet the principle here is that we do not look into the details of energy
variation during a stage, since that would lead to unnecessarily tedious computations of
the transition probabilities of the system states, which are not accurate anyway as the
energy levels are discretized. In the mean time, we take care that a reasonable value is
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chosen for T, such that the induced deviation from the true situation is well limited. Also
notice that the value of 6 should match the choice of T, such that a balance between
granularity and complexity can be accomplished.

Based on the state X, an action a, is chosen from a finite set for the stage n which
can be the energy allocated to the stage, the modulation order to employ, etc. Some action
could be infeasible for a certain state, e.g. when the system is in state X, allocating the
energy a > X to the stage would not be possible. This requires the definition of a finite set
of feasible actions for each state, which we denote with A(X). The energy consumption
W, can be obtained, directly or through some calculations, given the action a, and a
predetermined operation strategy on a single stage. Furthermore, associated with the
action is a reward of stage n in terms of throughput, denoted with I,,. We optimize the
system for the maximal average throughput per stage, which falls into the infinite-horizon
problem category of MDP. This performance metric is suited for the case that the system
is to operate for a long time, or that there is no specified endpoint of operation. The
optimization variable is the policy which provides the node with a prescription of which
action to take from each state. Note that the policy we consider is Markovian as it depends
only on the current state but not on any previous ones. We formulate the maximization
of the average throughput per stage as

= lim — Y I 4.2
m7;;1x p Nl_I)I;O Z n (4.23)
st. X=X,

n(X)=a€ec A(X), VXeS,

where X? is the initial state of the node, and the policy 7 must be feasible as the constraint
indicates. We denote the optimal solution of (4.23) with 7*, and the corresponding
maximal average throughput with p*. The existence and uniqueness of p* with respect
to different X° shall be discussed when we explain the policy-iteration algorithm.

4.3.2 Single-stage solutions

The optimization of the policy 7t is based on the transmission strategy chosen for every
stage. For example, we may choose to employ constant transmit power on every stage,
and the policy gives the particular values of the transmit power depending on the system
states. The policy and the single-stage strategy together determine the throughput and
the energy consumption of each stage. It is important to note that the optimality of 7* is
with respect to the underlying single-stage transmission strategy, and is not necessarily
global.

How to operate on a single stage is related to the basic problem discussed in Chapter 3,
as we assume that the energy arrivals during the stage affect the system state only at the
next decision epoch. A single stage can therefore be considered as a time interval without
any energy arrivals, for which the policy directly or indirectly gives the energy budget.
Candidate transmission strategies can be proposed based on the optimal solutions of the
respective basic problems, as listed below.

e For the information-theoretic model with no circuit power or a convex circuit power
function (Case I in Section 3.3.1): let the policy indicate the energy consumption on
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the stage, and employ constant transmit power on each single stage. One can allow
for distinct energy consumptions given different system states, or only one energy
consumption for all states. In the former case, which is abbreviated as CON in the
following, we have A(X) = {0,9,..., X}, whereas for the latter which is termed as
ONE, the chosen energy consumption a serves as a decision threshold:

X
(X) = { 0. , i “ vxes. (4.24)

e For the information-theoretic model with a discontinuous circuit power function (Case
IT in Section 3.3.2): let the policy indicate the energy consumption on the stage, and
employ the optimal control i.e. constant transmit power or time-sharing between the
sleep mode and the energy efficient transmit power on each single stage. As before,
we propose the strategy CON which allows for different energy consumptions for
different states, and the strategy ONE which gives one energy consumption that is
used for all states.

e For the MQAM model (Case III in Section 3.3.3): the strategy CON now stands for the
usage of a single modulation order on an entire stage, while an additional strategy
TS, similar to the CON strategy for the previous two cases, employs the time-sharing
between two neighboring energy efficient modulation orders to achieve an indicated
energy consumption on the stage. The strategy ONE in this case refers to the exclusive
usage of one selected modulation order whenever there is enough energy for a whole
stage. Obviously, this modulation order should be selected from the energy efficient
ones, which form usually a very small set.

From the description one can expect, that the policy optimization of the CON and
TS strategies is more complicated than the ONE strategy, and should also achieve better
performance due to the more degrees of freedom that are allowed. We introduce in the
sequel the policy-iteration algorithm to tackle this problem and show how it can be
applied, also in the case of a block-fading channel, and then demonstrate simulation
results.

4.3.3 Policy-iteration algorithm

The value-iteration and policy-iteration algorithms are the two common methods for
optimizing dynamic systems with sequential decision making. The policy-iteration
algorithm is oriented towards problems of infinite horizon, and is therefore suited for
our average throughput maximization problem. The mechanism of the algorithm is
introduced in Appendix A4. With the goal of maximizing the average throughput per
stage, a reasonable transmitter would try to use the available energy steadily, and yet
reduce the occurrence of energy miss events. Based on the statistical properties of the
energy arrival process, it can be observed that the Markov process underlying such a
transmitter has only one recurrent chain. This means the optimal limit as defined in (4.23)
does exist, and it is independent of the initial state of the system.

For our specific application, we start the algorithm from the value-determination
operation with the myopic policy, meaning that for each state, the action that maximizes
the immediate throughput on the following stage is chosen. For the CON strategy, this
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would suggest 1(X) = X, VX € S. The transition matrix P and the vector of immediate
rewards g under this policy can be evaluated, and we solve the set of linear equations

p-1+(I—-P)v=gq (4.25)

to obtain p and the vector of relative values v. Then, during the policy-improvement
routine that follows, the policy is updated according to

S
7(i) = argmax (q,-(a) + Z pij(a)vj>, i=1,...,S, (4.26)
acA; j=1

with which the algorithm goes for the value-determination operation again. The iterations
terminate when there is no increment in the obtained average throughput or when the
increment falls below a predefined threshold. In our numerical simulations, the algorithm
converges already with a very small number of iterations.

4.3.4 Transmission over a block-fading channel

When the communication channel undergoes block fading, we assume causal CSI at the
transmitter and include the quantized channel gain as another element of the system
state. We let the channel gain on each stage be constant for convenience, which requires
that the duration of a stage is no longer than that of a block. If the block length is relatively
large in the sense that the probability of multiple energy arrivals during one block is
non-trivial, we need to divide the block into several stages. Noticing that the position
of a stage in the block is also relevant to the state transition probabilities because of the
channel gain which does or does not change in the next stage, we include it as the third
element of the system state. To this end, the system state becomes a triple denoted by
(X, g, 1), where g is one of the representative channel gains resulting from quantizing the
probability density function of the random channel gain with the Lloyd-Max quantizer,
and ¢ € {1,...,N;} stands for the position of the stage in a block with N; = T,/Ts. We
assume that Nj is an integer and the number of representative values for the channel
gain is N.. The total number of system states is therefore given by S x Nj X N.. The
policy-iteration algorithm works in the same way as described above, only with an
expanded state space. The single-stage strategies we consider are similar as before,
namely:

e Strategy CON: a single modulation order is chosen for each system state which is to
be employed for a whole stage, and the energy level indicated by the state should be
able to support it;

e Strategy TS: the action determines the energy consumption and in turn the average
power dissipation on the stage, which is to be realized by using the two neighboring
energy efficient modulation orders in the appropriate time-sharing manner;

e Strategy ONE: a single modulation order is chosen for all system states, which is
employed whenever there is enough energy for it to be used on a whole stage,
otherwise the transmitter is turned into sleep mode.

In the value-determination operation, we need to solve a set of linear equations
with the number of unknowns equal to the number of system states. This renders the
complexity of the policy-iteration algorithm rather high when the state space is large.
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We propose as a remedy an averaged version of the algorithm, where we ignore the
instantaneous CSI and employ the expected immediate throughput for the vector g in
(4.25) and (4.26). To this end, the state space involves only the discretized energy levels
and is of dimension S. Degradation in the maximal average throughput can be expected
when this simplification is made, which, according to our simulation results, is favorably
insignificant.

4.3.5 Simulation results and analysis

We have discussed the optimization of an energy harvesting transmitter which has causal
information about the harvested energy, and present now the simulation results. As
before, the energy arrival process is assumed Poisson with i.i.d. energy packet size. For
all simulations we fix the mean interarrival time to 10 and the stage length to T = 1,
which lead to dominant probabilities of no energy arrival or only one energy arrival on
each stage. The optimization algorithms are tested for different scenarios and provide the
optimal policies with respect to the given single-stage strategies. Monte-Carlo simulations
are then performed for 2 x 10* stages to verify whether the maximal average throughput
indicated by the algorithm coincides with the simulated value. As the two are indeed
extremely close to each other, in the figures shown below we only depict the average
throughput obtained with the simulations.

We first examine the most basic scenario with a time-invariant channel, the
information-theoretic data rate model, and no circuit power consideration i.e. as
abstracted by (3.20). The maximal average throughput obtained with the policy-iteration
algorithm for strategies CON, ONE, and myopic is shown in Fig. 4.13. The result for
the case of non-causal energy arrival information is also included for comparison. In
Fig. 4.13(a), we plot the maximal average throughput as a function of the deterministic
and equal size of the energy packets Ey. Both CON and ONE strategies outperform the
myopic strategy significantly, and the CON strategy has an advantage over the ONE
strategy which becomes more obvious with intensive energy input. The performance
gap between the optimized system without non-causal energy arrival information and
the one with this information is illustrated in Fig. 4.13(b). The trend is clear that the
more intensive the energy input is, the more important the non-causal energy arrival
information becomes. When the energy packet fills the entire storage i.e. Ey = Emax,
more than 20% of the throughput gap can be inspected. These observations can be
understood intuitively as the management of energy plays a more important role when
there is abundance in the available energy, requiring more dynamics in the control
variable to avoid energy miss events. On the other hand, if the environment is relatively
poor in supporting the energy harvester, which results in a low intensity of the energy
arrival process with respect to the storage capacity, using an appropriately chosen low
transmit power constantly is good enough in the long run. Exemplary optimal policies are
illustrated in Fig. 4.14, where the monotonicities of 77* in terms of the energy consumption
for the subsequent stage with respect to the system state X as well as to the packet size Eg
can be seen.

When the size of the incoming energy packets is uniformly distributed on the interval
[u1,uy], the case of which is shown in Fig. 4.15, the maximal average throughput
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Fig. 4.13: Maximal average throughput for input energy packets of the same size Ey,
functions R and P given by (3.20) with B =1and 0 =1, 6 = 0.25, Epax = 40

decreases slightly with growing uy — u;. The comparison between the CON, ONE, and
myopic strategies is similar to that of the identical energy packet size case.

In Fig. 4.16, we demonstrate the variation in the maximal average throughput with
respect to the storage capacity Emax. We fix the statistics of the energy input, so that
increasing Enmax implies more room for the harvested energy and less chance of energy
miss events. For both CON and ONE strategies, the maximal average throughput grows
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rapidly before Enax reaches 8 to 10 times of Eg. After Epnax amounts to 15 times of Ey, the
maximal average throughput almost saturates and further increment is very limited. The
advantage of the CON strategy over the ONE strategy also becomes trivial in this regime.
Besides the finite, although large, energy storage, the gap between the CON and ONE
strategies to the non-causal energy arrival information case is also due to the quantization
of the energy space with step size 6. Note that large storage capacities usually require
more space or cost in practice. If the statistics of the harvested energy can be learned,
a reasonable storage capacity can be chosen based on the curves shown in Fig. 4.16
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Fig. 4.16: Maximal average throughput with different energy storage capacities, functions
R and P given by (3.20) with B = 1 and 0 = 1 (information-theoretic model without
circuit power consideration), input energy packets of the same size Eg = 2

and other specifications of the system, which helps the system achieve a good balance
between performance and cost.

Including affine circuit power into the energy consumption model does not influence
the main conclusions we have drawn about the several transmission strategies and
their comparison against the non-causal energy arrival information case, as indicated by
simulations which are not shown here due to similarity. Moreover, similar observations
can also be made when the energy harvesting node employs MQAM transmission,
for which case we depict the maximal average throughput for increasing transmission
distances in Fig. 4.17. The performance gap between the CON strategy and the non-causal
information case is noted to be even smaller compared to previous results. The TS strategy
which allows for the time-sharing between two modulation orders on a single-stage
performs slightly better than the CON strategy, while the simple ONE strategy is almost
as good for large d as the other two. The monotonic behaviors of the optimized policies
with respect to the system state are also illustrated.

Next we investigate the MQAM transmission over block-fading channels of block
length 4. The statistical information about the energy arrival process is kept unchanged
as before, leading to N; = 4 stages per block. Even if we choose a small number of
representative values for the quantized channel gain, the total number of system states
would be dozens of times as in the constant channel case. The remedy we propose for
this is to exclude channel gain from the system state and use the expected throughput as
the performance metric in the policy-iteration algorithm. The performance degradation
of the system when such a simplification is employed is demonstrated in Fig. 4.18, for the
TS and CON strategies respectively. Apparently, the gap is not remarkable over a range
of intensities of the energy arrival process, especially for the TS strategy.
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Fig. 4.17: Maximal average throughput for MQAM transmission and the corresponding
optimized policies, 6 = 0.1 Joule, Emax = 8 Joule, input energy packets of the same size
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Finally, we illustrate the maximal average throughput over increasing transmission
distances for different single-stage strategies in Fig. 4.19. The curves for the TS, CON
and ONE strategies as plotted in the figures are attained using the full policy-iteration
algorithm, i.e. without the averaging simplification. The result of the non-causal
information case is obtained with the heuristic algorithm for MQAM transmission over
known block-fading channels, which has been tested to yield near-optimal performance
(see Case III +IV in the last section, and also Fig. 4.10). We use this result as a comparison
reference since the system is simulated for a huge number of blocks, rendering the
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Fig. 4.18: Maximal average throughput for MQAM transmission over a block-fading
channel, 6 = 0.1, Ejnax = 8, 0p = 3 dB

evaluation of the optimal performance tedious and unnecessarily expensive. With
less energy input, the lack of non-causal energy arrival information does not lead to
considerable performance degradation. When more energy is delivered to the system, this
gap becomes more obvious, but still not significant indeed. For both input parameters,
the TS and CON strategies demonstrate almost the same performance. The simplest ONE
strategy, although not giving a very smooth curve, also does not fall far behind.

In summary, the various simulation results presented above indicate that when the
random process of energy arrivals is well structured with known statistics, the lack of
non-causal energy arrival information does not cause severe performance degradation.
The policy-iteration algorithm is effective in optimizing the long-term performance of
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Fig. 4.19: Maximal average throughput for MQAM transmission over a block-fading
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size E

the system given a good single-stage strategy. On the other hand, using an optimized
constant, state-independent policy in the stationary scenario we consider yields also good
performance, which can be obtained with very low complexity without even provoking

the policy-iteration algorithm.
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4.3.6 Joint control of a pair of energy harvesting transceivers

We consider in this section the joint control of a pair of energy harvesting transceivers
with only causal energy arrival information. It is assumed that the channel is
time-invariant, and the two nodes learn about the energy arrivals causally and locally,
but do not necessarily exchange this information. Same as for the single transceiver case,
the time axis is again divided into stages, and the two nodes decide their actions at the
beginning of each stage i.e. at the decision epochs in a centralized or distributed manner,
with the goal of maximizing the long-term global average throughout.

We assume in addition, that the energy arrival processes of the two transceivers are
not only compound Poisson, but also independent of each other. This may correspond
to the case that the two nodes are located in different environments, or that they employ
different techniques for energy harvesting. We first derive the optimal centralized control
using the policy-iteration algorithm, and then investigate the distributed case that the
transmitter and the receiver only have local state information and are not aware of
the instantaneous situation of the other. From a design point of view, communication
between the two nodes to exchange state information is possible, yet the overhead
takes up resources in terms of energy and time as well. As the simulation results
indicate, the decentralized optimization performs quite close to the centralized case,
which undermines the necessity to exchange the local state information.

We employ the quantized MQAM framework introduced in Section 3.5.2 and model
the system as one or two Markov decision processes, depending on whether the control
is centralized or distributed, and aim at maximizing the average throughput in the
long-term. As the channel is assumed constant, the states of the nodes are given
exclusively by the amount of energy in the respective storage. The state spaces of the
transmitter and the receiver, denoted with S; and S, are confined to discrete sets of
energy values obtained from uniformly sampling the feasible ranges [0, Emax,1] and
[0, Emax,2 ], where Emax 1, Emax2 are the respective storage capacities of the two nodes.
Given a particular state, the transmitter chooses an action for the subsequent stage from
a set of feasible actions. More specifically, an action refers to a certain amount of energy
that is allocated to the subsequent stage, which is to be realized by a particular transmit
power level and a modulation order. Suppose id1 is the energy value at state S; € i,
where 41 stands for the quantization step size, i = 0,1,..., [Emax,1/01] + 1. The set of
feasible actions A1(S;) is then taken as {0, 1, ...,i51}. A similar setup can be done for
the receive side. On the other hand, as the receiver can only choose its ADC resolution
from the set B = {0,1,...,bmax}, we can also let the action simply be the adaptation
to a certain ADC resolution. The set of feasible actions of any state S; € S, denoted
with A»(S;) = {0,1,...,b;}, is then a subset of B where b; stands for the highest bit
resolution the state S; can support for the whole duration of one stage. The value of b;
can be computed based on the power consumption model (2.29) and the quantization
step size 6;.

As before, we optimize the system for the maximal average throughput with respect
to the so-called policies, which provide the two nodes with a prescription of which action
to take from each state. Let 711 and 7> be a pair of transmit and receive policies. They can
be seen as functions that map each state in the respective state spaces to a deterministic,
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feasible action:
7T1(Si) =ai € Al(Si), 7'[2(5]') =a € Az(S]'), VS; € Sy, S] € 5. (4.27)

Notice that the policies we consider are Markovian, i.e. they depend only on the current
state but not on any previous ones. For a given decision epoch and a chosen action, the
system state at the next decision epoch follows a probability distribution which can be
computed based on the parameters of the energy arrival process. Let ®1(S;|S;, a) denote
the transition probability from state S; to state S; given that the action a; is taken at the
transmitter. The following relation must be fulfilled due to consistency

Y @1(SulSi,a) =1, VS; € 8. (4.28)

eSS

Similar constraints are imposed on the transition probability function @, for the receiver.
Given policies 711 and 7, as well as the states of the two nodes, the reward on the
subsequent stage is given as

Zm,m(Si,Sj) = T-R(P1(m1(S)), P2(m2(Sj))), Si€ 81,5, €Sy, (4.29)

where T is the duration of the stage. The average throughput maximization problem is
then formulated as

A 1 N-1
max p= lim — Zr,m (X1(n), Xp(n)) (4.30)

™, N—+oo N =

st. X1(0) =89, Xp(0) = S9,

where X;(n), Xa(n), S and S are the states at stage n and the initial states of the
transmitter and the receiver, respectively.

With finite storage capacity, the average throughput p of the system is clearly
bounded. Since the energy arrival processes are assumed Poisson, i.e. inter-arrival times
between consecutive packets are exponentially distributed, there is always the possibility
of reaching the full state of the energy storage from any state. This is to say, the
decision processes of both the transmitter and the receiver have only one recurrent chain,
rendering the influence of the initial states to fade away after a large number of stages,
and the optimal gain, denoted with ¢g*, to exist as a constant [109].

Recall we have emphasized the important assumption that the state transitions of the
transmitter and the receiver are independent of each other due to the independent energy
arrival processes, which causes the two nodes to couple only through the reward function
R. Several works have concentrated on this type of problems and proposed a number of
algorithms for finding optimal or suboptimal solutions e.g. [110, 111]. In the following,
we first treat the system as a centralized multi-agent system and obtain the optimal joint
policy using the policy-iteration algorithm. The result serves as a performance upper
bound for the decentralized system, to which searching methods as well as a bilinear
programming approach are applied which attain near-optimal solutions.
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4.3.6.1 Centralized control via policy-iteration

Here we assume that there is a central control unit in the system which has the knowledge
of the global state, i.e. the local states of both nodes. At each decision epoch, it determines
a global action, and informs the two nodes with their respective local actions. To this end,
the system can be treated as one MDP with the state space S = S; X &;, for which a joint
policy m = (my, /) is in pursuit. Due to the independence of the two nodes in terms of
state transitions, the joint transition probability function @ satisfies the condition

(D(Si/,Sj/|Si, S]',llk,ﬂl) = (Dl(Si/|Si,ak) . CDZ(S]~1|S]',111),
VS;, Si € 8, S]', S]-/ €S, a; € Al(Si), a, € Az(S]) (4.31)

The policy-iteration algorithm, as we have introduced in Appendix A4 and applied
previously to optimal control problems of an energy harvesting transmitter, can also
be exploited for solving this compound system. For a given policy 71, we compute in
the value-determination phase the transition probabilities from each state, and solve the
following set of linear equations for alli € {1,...,|S1|}, j€ {1,...,|S2|}:

P+ ’01']' = (]1] + Z (D(Si/, S]'/|Si, S], 7T(Si, S])) Ui’j’/ (432)

l'/, ]'/

where g;; stands for the immediate reward i.e. the expected achievable throughput on the
subsequent stage starting with state (S;, S;). The resulting solutions {v;;}, also known as
the relative values, serve as inputs to the policy-improvement routine that follows. By
solving the optimization problem

max q,]+ Z(D(Si/,S'/|S,', S], 71’(51', S])) Z)i/]'/ (433)
7(S:,S}) i,

s. t. 7'((51', S]) € (Al(si)lAZ(Sj))

for each global state (S; S;), we attain an improved policy which is then fed
back to the value-determination operation. The algorithm can be started with the
policy-improvement routine with all relative values initialized to 0, and be terminated
if the increment in the average throughput falls below a predefined threshold. We find
via numerical experiments that the algorithm converges already with very few iterations,
usually less than 10. However, as the scale of the problem goes with |S1| - |Sy|, the
required computations can be still prohibited.

4.3.6.2 Brute-force and joint equilibrium-based search

Let us now return to the decentralized scenario where the transmitter and the receiver
only have respective local state information. A straightforward way of operating the
system is to allow one single modulation order at the transmitter, one single ADC
resolution at the receiver, and a pair of threshold states indicating whether the nodes
should be active. This operational strategy can be described formally by the policy

7T(Si, S]') = (7r1(Si),7r2(Sj)) as

MC/ Z Z iCI bCI 7/ > 01 ] 2 jC/
m(S;) = M (S:) = 4.34
1(51) { 0, otherwise, 2 ]) { 0, otherwise, ( )
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where ic and j. denote the threshold states of the transmitter and the receiver, respectively,
and M. and b, indicate the per-stage modulation order and the ADC resolution to be
employed once the system states are above the respective thresholds. Note that the
receiver is assumed to be able to detect and respond to the case when there is no receive
signal, i.e. it turns into sleep mode irrespective to how much energy it has in the storage.
The transmitter, on the other hand, sends data even if the receiver is asleep due to the
lack of feedback information. One can consider the receive SNR as another component of
the receiver state, which strengthens the asymmetry between the transmitter and receiver
and could potentially improve the system performance. We do not take this step here as
it can be treated with the same optimization procedure but only expands the state space.

One can simply choose the threshold as the lowest energy state that includes the
specified action in its feasible action set. To this end, exhaustive search can be performed
to find the best pair of constant actions and the corresponding thresholds, where for each
action pair, the local policies are evaluated using Monte-Carlo simulations. We refer to
this method as the brute-force search in the sequel.

A more sophisticated treatment is to optimize both the pair of constant actions and
the pair of threshold states. With exhaustive search this would require O(|S;| - M| -
|S2| - bmax) policy evaluations. To avoid the high complexity, we apply an iterative
method proposed by [112] which suggests alternatively fixing the policy of one node
while optimizing the policy of the other. In our case, we first choose an action and a
feasible threshold state for the transmitter. With the corresponding transmit policy fixed,
we enumerate all feasible combinations of actions and thresholds of the receiver. Then,
with the best receive policy fixed, we perform the enumeration for the transmitter. The
iteration cycles are terminated when there is no more improvement in the achieved
average throughput. The method is called joint equilibrium-based in [112], suggesting that
the solution found can be a local optimum which is often the case in our numerical
simulations. In general, this method does not provide better performance than the
brute-force search; in cases where the algorithm is stuck at a bad local optimum, the
performance could be even worse.

4.3.6.3 Bilinear programming approach

The decentralized and transition-independent structure of our problem resembles much
similarity with a bilinear program (BP), where the cost function is bilinear and the feasible
regions of the two sets of variables are disjoint [113]. As efficient algorithms exist for
tackling BP, we try to formulate our problem as a BP where the key step is to randomize
the local policies and introduce the limiting state-action probabilities as optimization
variables. To this end, we let p1(S;,ax) and p2(S;,a;) denote the limiting probability
that the transmitter is in state S; and the action a; € A;(S;) is chosen, and the limiting
probability that the receiver is in state S; and the action a; € A»(S;) is chosen, respectively.
We then optimize for a probabilistic distribution of actions for each state, instead of for



136 4. Optimal Control of Energy Harvesting Transceivers

12

101

B-F search
ALk Bilinear |
=©~ Centralized
0 Oi5 i lj5 2
Eg in Joules
Fig. 4.20: Average throughput achieved with the proposed methods, Enax = 2 Joule,
01 = 8, = 0.08 Joule, d = 50 meters, T = 1, Ag = 0.1, results averaged over 106 stages

one deterministic action. The BP reformulation of problem (4.30) is given by

max Y Y. Y. Y pi(Sia) R(ag,ar) pa(S, ap)
PLP2 5i€810,(S) Si€S2a1(S))
s.t. 0< pl(Si,ak) <1, VS, €8y, a,€ Al(Si),
0< pz(S]',lll) <1, VS €Sy, a € Az(S')

Yo ) @(SilSk ak)m i, k) Z p1(Si,a) =0, VS; €81,  (4.35)
S/GSlak(S/) )

Z Z (Dz S |S]/,a1) p2 ]/,al Z P2 S],al =0, VS] €Sy, (4.36)
S/GSZa]( ])

where we abusively use notations such as a;(S;) for a; € A1(S;) to keep the expressions
more concise, and R(ag, a;) represents the throughput on one stage if actions a; and 4; are
chosen for the transmitter and the receiver, respectively. The constraints (4.35) and (4.36)
correspond to the stationary distribution conditions, i.e. the sum probability flowing into
a state equals the sum probability flowing out. We apply the common iterative procedure
to solve the obtained BP [111,113]: the algorithm starts with any feasible solution p», treats
it as constant and solves the resulting linear program of p;, and then treats p; as constant
and solves the resulting linear program of p,. The procedure terminates when there is no
more increment in the objective function over consecutive iterations. Deterministic local
policies can be obtained from p] and pj simply by picking the most probable action for
each state. Although suboptimal, the complexity of the method is extremely low, and the
algorithm often converges very fast to a satisfactory solution, as we shall observe in the
following simulation results.

We implement all proposed algorithms: the centralized policy-iteration based method,
the brute-force search, the joint equilibrium-based search, and the bilinear programming
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approach, and test them in a homogeneous scenario: the two nodes have the same energy
arrival intensity and the same energy storage capacity. The storage capacities and the
mean inter-arrival times of the two nodes are chosen to be identical. Energy packets
arriving as a Poisson process to each node are assumed to have the same size, the value
of which is varied from 4% to 100% of the full storage. The average throughput achieved
with the aforementioned methods are demonstrated in Fig. 4.20, where their variations
with respect to the sizes of the energy packets can be observed. Note that the results of the
joint equilibrium-based search are almost identical to those of the brute-force search, and
are therefore not shown in the figure. Apparently, the bilinear programming approach
also performs similarly as the brute-force search, with only a slight advantage observed
when the arrival intensity is increased. Taken into account its low complexity, we regard
the bilinear programming approach as the most suitable for our problem in the medium
to rich energy environment, while the brute-force search is also a good choice when the
number of feasible modulation orders and ADC resolutions is not high. The centralized
control exhibits naturally a larger average throughput, which is not very significant for
most arrival intensities due to the independence of the energy arrival processes.

4.4 Summary

The optimal control of energy harvesting transceivers are investigated in this chapter,
where the energy arrival process is assumed random and not part of the control system.
We discuss the cases that the transceiver has non-causal and causal knowledge about the
energy arrivals respectively. The optimal solutions in both cases rely very much on the
conclusions we have drawn for the basic problem in Chapter 3. Numerical simulations
demonstrate the effectiveness of the algorithms we propose, and also provide theoretical
guidance to system design issues such as choosing the appropriate energy storage,
whether it is necessary for the system to attain channel state information, to predict
energy arrival information, or to acquire state information of communication partners.
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5.1 Summary and Conclusions

The control of communication devices powered by a fixed energy budget or by
harvested environmental energy is investigated in this thesis. The topic addresses
the energy efficiency of the studied systems, connects communication theory to the
classic optimal control theory, and is of high practical relevance as an optimized
system can achieve significantly better performance than a simple one without careful
design. We focus mainly on basic communication scenarios where a wireless transceiver
or a pair of wireless transceivers communicate over a single link, and establish
the transmission/reception principles under different assumptions by virtue of the
theoretical frameworks of optimal control and dynamic programming. For systems
with a given energy budget, we find that the control strategy leading to the maximal
throughput on the finite operation interval can be determined based on the property of
the achievable rate R as a function of the total power consumption P of the system. If
the function is independent of time and strictly concave, then the optimal strategy is to
keep the control variable constant on the interval. If, due to considerations on circuit
and processing power or restrictions on the control variable, the function has an isolated
zero point and is not continuously defined, then time-sharing of the so-called energy
efficient operation modes which constitutes a concave Pareto boundary of the function
is necessary for the optimal control. When the communication channel is time-varying,
a constant marginal gain condition needs to be satisfied and the optimal solution can be
obtained using a water-filling procedure. The explorations and the conclusions drawn
for the constant energy constrained systems serve as the basis of optimization of energy
harvesting transceivers. For these devices, the available energy is a function of time
which can be deterministic or random depending on the assumptions made. An energy
storage with limited capacity introduces another factor into the design and optimization.
With non-causal knowledge about the energy arrival profile, the optimal control strategy
can be found using an effective construction method of the state trajectory that meets
all optimality criteria. If only causal and statistical knowledge of the arrival profile is
available, we model the system as a Markov decision process and find the operation
policy that yields the maximal average throughput in an iterative manner. Performance
degradation due to the lack of non-causal arrival information is more severe in an energy
intensive situation, as revealed by numerical simulations. Below we list a number of
potential directions in which our work can be extended in the future.

138
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5.2 Future Perspectives
e Network of energy harvesting nodes

As one of the most important applications of energy harvesting nodes, wireless sensor
networks are expected to operate more autonomously and even perpetually thanks to
the energy harnessed from the environment. Based on the control principles we have
derived for point-to-point communications, energy management and operation policy of
sensor networks powered by energy harvesting are to be investigated. Existing literature
of energy efficient operation studies on wireless sensor networks should be explored
thoroughly to understand the design challenges of these systems, and to distinguish the
imperative problems that need to be treated when energy harvesting comes into play.
Despite some preliminary works on relaying, broadcast and multiple access channels
[114, 115], there are still much to be done regarding the scheduling, routing, and
cooperation in the network. Moreover, distributed design solutions are of particular
interest as exchanging the energy status is rather unlikely within the network. On the
other hand, correlations between the energy arrival processes at adjacent nodes can help
reduce the uncertainty thus improve the overall performance, and should therefore be
modeled and taken into account carefully.

e Energy harvesting transceivers with compact antenna arrays

The energy harvesting technology is applied to many low-power devices such as
autonomous sensors and wearables, which are often limited in their dimensions and
unsuitable for deployment of a large antenna array. Compact arrays with a small number
of antennas can be a promising candidate for enhancing the performance of these devices.
As demonstrated in [116,117], compact antenna arrays with the antenna spacing much
smaller than half of the carrier wavelength have the potential to provide even higher
capacity and better energy efficiency than the conventional half-wavelength arrays. To
fully realize its potential, the configuration of the array needs to be optimized based
on performance considerations and/or physical dimension limitations. Signal processing
techniques for energy harvesting multi-antenna systems need to be developed to realize
their potential, yet it is important to note, that highly complex schemes are not suited
due to the associated high processing cost. The application of 1-bit A/D conversion can
be an interesting solution here because of the great reduction in hardware complexity
and power consumption it is able to offer, and the loss in information can be partially
compensated by using more antennas.

e Cross-layer design of energy harvesting nodes

Energy harvesting nodes can be deployed in different application scenarios where the
performance objectives also differ. In many of the cases, the appropriate performance
metric is related to higher layer parameters, instead of only to those of the physical
layer. For example, in video streaming over wireless networks, the video source rate
from the application layer, the time slot allocation from the data link layer, and the
modulation scheme chosen at the physical layer have a joint impact on the quality
of the received video, and can therefore be optimized at the same time [118]. As a
more systematic treatment, the generalized network utility maximization problem has
been formulated to address the potential of optimizing different layering schemes in
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a communication network [119]. It provides a decomposition framework where the
decomposed subproblems, each corresponding to a layer, are connected by the dual
variables representing the interfaces between layers. These methodologies are known
as the cross-layer design, which is a useful approach for efficient resource allocation in
wireless networks [120,121].

For traditional communication devices powered by batteries or fixed utilities,
cross-layer design helps to match the upper layer parameters that directly influence
the utility function or the quality of service with the channel conditions. For energy
harvesting nodes, the energy state and arrival statistics are additional important
characteristics of the physical layer, which can be taken into account in the cross-layer
framework. To this end, application-oriented parameters, such as frequency of
measurements and coding rate of the information data, should be adapted to both channel
and energy statuses. In a networking scenario, the adaptation of these parameters of each
node should depend on the channel and energy conditions of all nodes, as well as on
each other which determines the overall traffic in the system. Such a problem would
involve a large number of variables and may have a complicated structure. As a result,
the challenge here is not only to find an optimal solution, but also to develop effective,
low-complexity algorithms with satisfactory performance.



Appendix

A1 Properties of the Capacity Lower Bound (2.49)

The capacity lower bound (2.49) of a training based SISO system can be evaluated by
using Monte-Carlo simulations, or by exploiting the exponential integral function. We let

A (1+y)(1+py) + LA -p)y
v= Ly*(1-p) (4D
and rewrite (2.49) in bit/sec/Hz as
1—p)0
CLa=E | log, (1+ ((P+‘;)g )] (A2)

where 0 = |w|? is exponentially distributed with rate 1. Plugging in the corresponding
probability density function, we have
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La= [ e logy (£55)

_ 1 T g T g
_ﬁ</o e 1n(<p+9)de—/0 e~*In(p+p0) do)
+oo +o00
:i<e“’/ e_”lnudu—e%/ e_”lnudu—lnp)
In2 @ ¢
_ 1 ( 9/PEi(—q/p) — e‘pEi(—<p)> (A3)
In2 !

where Ei denotes the exponential integral defined in the following, and integration by
parts is applied in order to obtain (A3).

A1.1 The exponential integral and its expansions

The exponential integral function Ei is defined by the indefinite integral
x ef
Ei(x) = / € a (Ad)
oo t
for any non-zero real number x. As shown in Fig. A1, the function increases rapidly and
unboundedly for x > 0, approaches 0 from below for x — —o0, and is discontinuous at

141
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x = 0. Although unable to be expressed in terms of elementary functions, the exponential
integral has the following series expansions [122]:

. 00 xk x2 3

El(x)—YE+1n|x|+k¥,1W—YE+1H|X|+X+Z+E+"', (A5)
(ee]

. X (k_l)!_ x 1 l 3

El(ﬂ_e;; 7 _e(x+x2+x3+ ), x — 00, (A6)

where yg ~ 0.5772156649 denotes the Euler - Mascheroni constant.
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Fig. Al: The exponential integral

A1.2 Monotonicity and asymptotic properties

We show that C; 4 as given by (A3) is positive and monotonically decreasing in ¢ for
@ > 0. Based on the fundamental theorem of calculus, the derivative of Ei is given as

d er

— Fi = _ A
i =1, (A7)
which further leads to
& (eBi(-)) = *Ei(—x) + . (A8)
dx X
For x > 0, the function e*Ei(—x) satisfies the following inequality [123]
1 . 1 2
~In (14 ) < e"Ei(—x) < ~3In (1+2). (A9)
Consequently, we have
d / o 1 Iy .1 1
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implying that the function e*Ei(—x) is monotonically increasing. Since the distortion
factor p < 1, it follows that e®/PEi(—¢/p) > e?Ei(—¢), and therefore CL,q is indeed
positive.

By using (A8) and (A9), we compute and bound the first-order derivative of Cp 4 with
respect to @ as

d;:(I;d _ ﬁ <%eq’/PEi(—(p/p) _ e(pEi(_(p)> (A1)
<ﬁ(—%ln(1+%)+ln(1+%>). (A12)

Consider the function f(x) defined below and its derivative:

Q=

df x(1—a)(1 +ax)i?
> . .
, x>0,a>0, ir 1+x02 (A13)

(1+ax)
1+x

flx) =

df

For a < 1, the function increases monotonically as 3 is positive. Since f(0) = 1, we see

that f(x) > 1lie (1+ ax)% > 14 x for x > 0. Taking the logarithm on both sides and
replacing x with 1/¢, a with 2p, we have

zipln <1+%"> > In (1+%), (A14)

which proves that the right-hand side of (A12) is negative. Note that when the ADC
resolution is restricted to integer values, the distortion factor p satisfies 2p < 1 according
to Table 2.1. As a result, the derivative of C; 4 with respect to ¢ is negative and hence the
function decreases monotonically in ¢.

In the very low SNR regime, ¢ and Cy 4 can be approximated by

1 1—p _(1—p)’Ly?
: ~—, Cig~ ~ ,
=0 ¢ Joj Ld @Iln2 In2

(A15)

where the asymptotic series expansion (A6) is applied. The reason why Cj 4 decreases
with (1 — p)? and y? is that the variance of the channel estimate decreases linearly with
(1 — p) and y. Moreover, the spectral efficiency np as defined by (S — L)Cy 4/S is clearly
maximized with L = S/2 in this case.

By using (A5), it can be computed that

1

lim Cra =15 (In(e/p) —In(p)) = —log, p, (Al6)

which is the capacity limit of a quantized channel in the very high SNR regime. However,

even wheny — 400, ¢ — ﬁ > 0, implying that (A16) is not achievable for systems

without perfect channel state information.
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A2 Concavity of the Constructed Rate Function R

We show in the following that the rate function R defined by (3.87)

0, P, =0,
R(PyPy) = { s R(Bu(B),u(B)), 0<Pr<u(p), with f=15 (A1)
R(P,, Py), P, > u(B)

is jointly concave in (P, P,) € [0, 4+00) X [0, +00), where the original rate function R is
given by (3.80) and the tangent point (3) satisfies (3.91).

For any given direction specified by 3 > 0, the univariate function R(fu, u) is defined
on {0} U (ap, +00) and is monotonically increasing on its continuous domain. Since
R(0,0) = R(Bag,ag) = 0, it can be inferred that the tangent line from the origin towards
R(Bu, u) is above the function at least until the tangent point is reached. We prove next
that R(Su, u) is strictly concave in u for u > p(3), by showing its second-order derivative
to be negative. To this end, we have

Ry (Bu,u) = BRp, (Bu,u) + Rp,(Bu, 1),
Ryu(Bu, u) = B*Rp,p, (Bu,u) + 2BRp,p,(Bu, u) + Rp,p, (Bu, u)

= — <ﬁ\/—RP1P1 — \/_RP2P2 )2 —2pB (\/ Rp,p,Rp,p, — RP1P2>/ (A18)

where we omit the arguments of the derivatives in (A18) for a more concise expression,
and the negativeness of Rp,p, and Rp,p, as obtained in (3.85) are taken into account.
According to (A18), the relation Rp,p, Rp,p, > Rl%l P, would immediately lead to R, < 0.
From (3.86) we can further calculate that

2B2a2  y(3-2% 4+ 9) (22 —1) (22 42y +1) —2(1 +y)?2%
2otin?2 (1+7)222 + )4 (4 —ag + @1)?

2B2a% 3y 2% 4292020 4y 220 _2.220 D2y
2 g4In?2 . (1+7)2(22 +v)3(u — a0 + a1)?

2B’ y(2 -1 +2(2¥ +y)(y- 2 —y 1)

= . . A19
2 0*1In?2 (1+7)2(2% +v)*(u — ag +a1)? (A1)

2
RP1P1RP2P2 - RP1P2 =

Now we try to extract a relation between y and u based on the tangent equation. Applying
the inequality In(1 4 x) < x for x > 0, we have

( 1+ y(w) ) _ apu 226 —1 4 2y(p)p
Ty(u) - 2720/ a0 (1T+y(w) (2200 +y(w) (220 +y(w)) (1 — a0 + 1)
y(w) (22 1) (A20)

226(1) + ()

where y(u) = a(Bu —co)/(c10?), 22 = (1 — ag + a1)?/a3. The left hand side can
be relaxed by replacing & it/ (c10?) with y(u), which allows for simplification of the
inequality and leads to

2b(p) _
2 < (2 Dy(w) ) (A21)
u—ag+a 1T+ y(u)
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It then follows
> > 0, (A22)

which ensures that

2u
YW > B Ty v —2n (A23)

The right hand side of (A23), when viewed as a function ¢ of p, can be shown
monotonically decreasing in p via the following steps:

(h) = 2 - 2y
(226 —1)(u—ap+a1) =21 (n—ao+2a1)(p—ao)(pu —ap +ar) — 2a3p
= 2011 (A24)
(n—ag)®+3ar(pn—ag)?2 —2a%ay’
Culit) = 02 (1 —ao)®+3a1 (1 — ag)? — 2a3ag — [ 3(n — ag)? + 6a1 (1 — ap) |
pu(H) = 2ay -
[ (1 —a0)® +3aq (1 —ag)? — 2a%a0]2
_ 2 _ 2
_ —211%- (n—a0)*(2u+ag) +3a1(n—ap) (1 +ap) ;—Zalao <o. (A25)
[ (1 —a9)®+3a1 (1 — ag)? — 2a3ay |
Consequently, for u > p, we have
vy 2> y(r) > ¢(u) > ¢(u), (A26)
which leads to
2 2u(l+7y) 2u (2?0 —1) B
V-2 Y 1>I/l—€l0—|—€l1 1>(225—1)(u—a0+a1)—2u 1
~ 2(ay 2" —ay +ag)2% — (2% —1)ay - 2°
N (220 —1)(u — ag +a1) — 2u
28 (a1 (20 —1)% + 24 - 2
_ 2@m@ o)) (A27)

(22 —1)(u—ag +ay) —2u '

The strict concavity of R(Bu,u) for u > pu(fB) then follows from (A18) and (A19). The
importance of this result is that it ensures the existence and uniqueness of the tangent
point for all 3 > 0, and consequently guarantees that our construction method is feasible.

We now consider the point Z(zv, v) resulting from the time-sharing of X(S1v1,v1)
and Y (Byv,vp) with the time-sharing factor A € [0,1], as formulated in (3.88). If
v > u(Pz) ie. Z is beyond the corresponding time-sharing region, the determinant of
the Hessian matrix H(R) evaluated at Z can be shown positive using the derivations
presented above, since (A19) is exactly the formula for the determinant of H(R). Together
with the proven conditions Rp,p, < 0 and Rp,p, < 0, the negative definiteness of H(R)
at point Z is confirmed. If, on the other hand, Z is inside the time-sharing region with
respect to 3z, we write the achievable rate at Z as

Rz = @ R(Bz1(Bz), 1(Bz)) = v(BzRpuy + R, lu,) (A28)
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where the tangent equation (3.89) is applied and Rp,|,, represents Rp, evaluated at
(Bzu(Bz), u(Bz)). By using the chain rule and also (3.92), we obtain

dRp d[J d[3
d}\l = (HRplpl + (BRp,p, + Rplpz)@> -,
dR d
d;\)z = (”Rplpz (BRP1P2 + RPzpz) d/3> b
d dRp dRp dp
a(ﬁRPl—i_RPz) P1 d/\ +ﬁ 1+ dA 2 :RPl az
dR dv dp
d—}\z = (BZRP1 |liz + RPz|uz) E) + Z)RP1 |liz ’ d—)\z (A29)
_ o _ ABror+ (1= A)Bron
From v = Av; + (1 — A)vp and Bz = PR e it can be calculated that
do d*v dBz _ (B1—B2)viv,  d?Bz 2 dvdpy
0T Tl gy T g T Toaaan A0
These results help us attain the following from (A29)
dsz . dﬁz dv dRP1’uz dﬁz dzﬁz . dRp1|,lZ dﬁz
e —2Relgm Gt @ TRl T =t @
— (/31 - BZ) (0102)2 ([lRp P — (BRPIPI + RP1P2)2 )
v3 "1 B2Rp,p, +2BRp,p, + Rp,p,
— ([31 - /32)32(0102)2 . Z'u(RpllePZPZ - R%lpz) S 0, (A31)
(% /3 Rplpl + ZBRPIPZ + RP2P2 Hz

where the equality holds if and only if 31 = 32. The determination of the sign in (A31) is
based on (A18) and the derivations thereafter.

We have heretofore completed the proof that the straight line connecting any two
points on the surface of R lies below that surface, hence demonstrating the concavity of
R. Notice that the relation R PP, Rp,p, — Rl%l p, >0 which is fulfilled by the tangent points
and the points beyond the tangent region plays a critical role in the whole proof.

A3 Markov Chain and Markov Decision Process

Markov chains and Markov decision processes have found wide and enormous
applications in different scientific and engineering disciplines such as finance,
manufacturing, automated control, and communications. In this section, we give a brief
introduction to both models, with the focus on those concepts that are important to the
derivation of the policy-iteration algorithm. Details of the subjects can be found in [107].

A3.1 Markov chain

The evolution of a system involving some random variables can be represented by a
stochastic process. In the discrete time case, we can treat a stochastic process as a sequence
of random variables denoted with {X,|n = 0,1,2,...}, which assume values in a state
space S of cardinality S. To this end, the system can be seen as occupying state X, at time
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instant 7, and making transition to state X, for the next time instant according to a
certain probability distribution, where the duration between two consecutive transitions
is assumed constant. A Markov chain or equivalently a discrete-time Markov process, named
after the Russian mathematician A. Markov, is a stochastic process with the following
memoryless property:

PI‘{X,H_l = xn+1|Xn = Xp,--- /XO = xo} = PI‘{X,H_l = xn+1|Xn = xn} (A32)

foralln > 0and x4 € 5,0 < k < n+ 1, which suggests that conditioned on the
current state, the probability distribution of the next state is independent of all the past
states. Note that for Markov chains, it is usually assumed that the state space is finite or
countable. If the probability Pr{X, 1 = x,11|X» = x,}, which is referred to as a transition
probability, is independent of the time index 1, we call the corresponding Markov process
stationary or time-homogeneous. For such a process, we index the system states with integer
numbers and denote the transition probability from state i to state j with p;;. The matrix

P € R5*S having p; jon its i-th row and j-th column is called the transition matrix.

Two states i and j in a Markov process are said to communicate if and only if one
state can be reached from the other with non-zero probability and vice versa. The
Markov process is irreducible if every of its states communicates with every other state.
Moreover, a state i is called aperiodic if the returning probability after N steps is positive
for all sufficiently large N. It can be inferred that for an aperiodic state, every state
it communicates with is also aperiodic. Irreducible and aperiodic Markov processes
constitute an important class of Markov processes as they possess useful asymptotic
properties, which we introduce in the sequel.

A3.2 Stochastic matrices

The transition matrix P in the way we define it has the property that each of its rows sums
up to 1, which can be represented by

T
S S
j=1 j=1

where 1 is the all-one column vector of dimension S. This kind of matrices is called
stochastic matrices or Markov matrices. It can be verified that P¥, representing the transition
probabilities of the Markov chain in k steps, is also a stochastic matrix. Moreover, from
(A33) it is clear that 1 is a right-eigenvector of P associated with the eigenvalue 1.

Let p(n) € RS be the vector of probabilities that the system occupies each state at time
instant n. The state-occupancy probability for the next time instant can be written as

p'(n+1)=p'(n)P, (A34)

from which it can be induced that p(n) depends on the initial state probability p(0) and
the n-th power of P as
p'(n) =p'(0)P". (A35)

For many Markov processes, the initial state probabilities fade away after a very large
number of transitions, and the the sequence of vectors p converges to a vector of stationary
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state probabilities, which we denote with p. As the limit of p(n) when n approaches
infinity, the vector p is unchanged under the application of the transition matrix P, i.e.

p' =p'P, (A36)

suggesting that p is a left-eigenvector of P associated with the eigenvalue 1. For the
stationary state probabilities to exist and be unique, the Markov process needs to be
irreducible and aperiodic. When this is the case, the Perron-Frobenius theorem guarantees
that P¥ has strictly positive entries for sufficiently large k, and it converges asymptotically
to the Perron projection defined by the outer product of the left- and right-eigenvectors
of P associated to the unique eigenvalue of the largest magnitude:

lim P*=1p". (A37)

k—+o0

This is to say, matrix P has identical rows in the limiting case, with each row equal to the
transpose of the vector of stationary state probabilities.

A3.3 Markov decision process

As introduced above, we consider discrete-time Markov processes for which state
transitions happen at equally spaced instants in time. These intervals of equal length are
termed as stages. Suppose a control unit in the system is able to observe the system states
at the beginning of each stage. One of the feasible control actions is then chosen and taken
based on the observed state and the incurred profit / cost, which would influence the state
transition at the next stage. In this context, the control unit is referred to as the decision
maker or the agent, and the profit or cost associated with an action and the subsequent
state transition is called the reward. Such a control process can be seen as an extension to a
stochastic process with the additional ingredients of actions and rewards. If the transition
probability from state x; to state Xj, Vxi,xj € S, depends only on x; and the action
taken in x; but not on any previous state or action, then the process has the momeryless
property and is called a Markov decision process (MDP). The set of decision rules that the
decision maker follows, i.e. the mapping from system states to actions, is termed as a
policy. Within the framework of MDP, different policies can be evaluated and compared
given a specified performance criterion, which is usually a function of the sequence of
rewards the system receives. Common methods to compute the optimal policy, when it
exists, include dynamic programming, value-iteration, and policy-iteration algorithms.

A4 Policy-Iteration Algorithm for Average Reward Maximization

Assuming that the transition from state i to j is associated with a stationary reward r;; € R
and that the reward for stage n is denoted with R(n), we set the optimization goal for the
MDP as maximizing the average reward, or the gain of the process, which is defined as

.1 Y
g NETMNER(M. (A38)

1>
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Given state i, the expected immediate reward for the following stage is computed as
S .
gi=Y_ pijriy i=1,...,8. (A39)
j=1

In the steady state i.e. the state-occupancy probabilities have converged to p, the gain of
the process can be written as

g=p'q with g=1[q1,...,q5]". (A40)

On the other hand, we let u;(n) denote the expected total reward on the next n stages
when the system is started in state i, and compute it with

S S

ui(n) = Zpij(rij+uj(n—l)) :qi—l—Zpi]'uj(n—l), i=1,...,S, (A41)
j=1 j=1

u(n) =q+ Pu(n—1), (A42)

where (A42) incorporates all the S equations from (A41) into a matrix form. Noting that
u(1l) = q, we have forn > 1

u(n) = g+ P(q+ Pu(n —2))
= (I+P)qg+P*(q+Pu(n—3)) =

=(I+P+---+P" g, (A43)
which further leads to
i _ _ — 1 n-1_ _ T, _ o.
n1_1>r£100 (u(n) —u(n—1)) n1_1>r£100 P lg=1pgqg=g-1 (A44)

This result suggests that the expected total reward grows asymptotically with the rate g
irrespective of from which state the system is started. We therefore write for large 7 the
relation

u(n) =ng-1+mo, (A45)

where the constant vector v is composed of the asymptotic intercepts of u(n). Plugging
(A45) into (A42), we have

ng-1+v=q+P((n—1)g-1+0)
g-1+(I-Pjv=gq, (A46)

which, with given transition matrix P, reveals a set of S linear equations with S + 1
unknowns: g,v1,...,vs. Notice that adding a constant offset o to all components of v
does not influence the fulfillment of (A46). This means, we can not determine the absolute
values of v, but would be able to obtain a set of relative values if we set one of the
components to 0. For example, after setting vg to 0, we attain S linear equations with
S unknowns, and can solve for ¢ and the relative values vy, ..., vg_1.

The policy-iteration algorithm works in an iterative manner where each iteration cycle
consists of two parts: the value-determination operation and the policy-improvement routine.
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Given fixed policy, the value-determination operation computes ¢ and the relative values
by solving (A46). The policy is then improved based on the obtained relative values
during the policy-improvement phase: for each state i, the maximizer of the optimization

S
max  4;(a) + ]_}:1 pij(a); (A47)

is chosen as the action to take, where A; denotes the set of feasible actions at state i.
According to (A41) and (A45), the expected total reward for n + 1 stages starting with
state i can be written, for large 7, as follows

S S
wi(n+1) =q;+ Y pij(ng+v;) = qi +ng+ Y, pijv;. (A48)
= =
Since the action affects only g; and p;; but not g, one needs only to solve (A47) to maximize
u; asymptotically. The updated policy is fed back to the value-determination operation
and a new set of relative values can be computed. The algorithm terminates when
the difference in the gains of the MDP in two iteration cycles falls below a predefined
threshold.

The policy-iteration algorithm yields a sequence of ¢ which increase monotonically, i.e.
the policy-improvement routine leads indeed to a better policy and a higher gain of the
MDP. To show this, we consider two consecutive iterations of the algorithm and label the
quantities that evolve through the iterations with the superscripts A and B, respectively.
During the policy-improvement routine in the former iteration, we solve the optimization
problems (A47) for each state i and obtain a new policy which is used as the input to the
value-determination operation in the latter iteration. The set of inequalities

q° + PBv? > g% + pAov? (A49)

can be inferred as a result of the policy-improvement. The sets of linear equations for the
two iterations are given respectively by

gt 1+ (I-PYHo' =q4, % -1+ (1-PP)o° =45, (A50)
and their difference can be computed as
(g% —gP) 1+ 04 — 0P — Pt + PPoP = g4 — 4P, (A51)
Taking (A49) into consideration, we have

(84— gB) 1+ (I - PB)(v” o) <. (A52)

Let Ag = ¢/ — g8, Av = v/ — vB, and define
Ag-1+ (I-PP)Av = Aq. (A53)

We notice that (A53) has the same form as (A46), implying that Ag can be written as Ag =
ApTAg, where Ap is the stationary state probability under the policy input to iteration B.
Consequently, the entries of Ap and Agq are non-negative and non-positive, respectively,
rendering Ag = g% — ¢ < 0. This concludes the proof that the policies produced
successively during the policy-iteration algorithm lead to non-decreasing gains.
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