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Fast Visual Odometry using Intensity assisted
Iterative Closest Point

Shile Li1 and Dongheui Lee1

Abstract—This paper presents a novel method for visual
odometry estimation from a RGB-D camera. The camera motion
is estimated by aligning a source to a target RGB-D frame using
an intensity assisted Iterative Closest Point (ICP) algorithm. The
proposed method differs from the conventional ICP in following
aspects. (i) To reduce the computational cost, salient point
selection is performed on the source frame, where only points
that contain valuable information for registration are used. (ii)
To reduce the influence of outliers and noises, robust weighting
function is proposed to weight corresponding pairs based on
statistics of their spatial distances and intensity differences. (iii)
The obtained robust weighting function from (ii) is used for
correspondence estimation of the following ICP iteration. The
proposed method runs in real-time with a single core CPU
thread, hence it is suitable for robots with limited computation
resources. The evaluation on TUM RGB-D benchmark shows that
in the majority of the tested sequences, our proposed method
outperforms state-of-the-art accuracy in terms of translational
drift per second with a computation speed of 78 Hz.

Index Terms—Visual Tracking; RGB-D Perception; Visual-
Based Navigation

I. INTRODUCTION

S IX degrees of freedom (DOF) odometry estimation from
visual data, estimation of camera’s position and orienta-

tion from images, is one of the most active research area in the
last decade [1][2][3][4][5][6][7]. Visual odometry is important
for a wide range of robotic applications such as localization
and mapping tasks. Also understanding ego motion from visual
odometry can provide additional sensor information for tasks
such as obstacle avoidance [8], object pose estimation [9],
scene flow estimation [10] and robot walking [11]. Especially
visual odometry provides 3D pose, whereas wheel odometry
or GPS navigation only provide 2D pose.

In recent years, the availability of lightweight RGB-D
sensors such as Asus Xtion raised the popularity of visual
odometry estimation from both color and depth images or
depth images alone. The recent proposed depth based visual
odometry algorithms can be categorized into two groups.

The first group formulates the task as an energy min-
imization problem [14][1][15][16]. The energy function is
devised from pixelwise photometric and/or depth residual
error between the target image and the warped source image,
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(a) Visual odometry estimated from
the conventional ICP method [12]

(b) Visual odometry estimated from
our ICP method

Fig. 1. Comparison of estimated camera trajectories on ”fr1/desk” sequence
from TUM RGB-D benchmark [13]. Our method improves the conventional
ICP greatly.

where ”warping” is performed by rigid transforming the source
image and projection onto the target image. This problem is
iteratively solved by numerical optimization such as gradi-
ent descent method, where linearized Jacobian matrix with
respect to the 6 DOF motion is required for each optimization
iteration. These methods are efficient to solve, however it
is based on a strong assumption that the energy function is
locally smooth with respect to the 6 DOF pose, which is
often not true due to the non-linear nature of image and
sensor noises. Therefore a coarse-to-fine strategy is used in
most methods, where image pyramid is built to make the
energy function smoother in coarser levels, but image pyramid
building and image gradient estimation for each level require
extra computation.

The second group [2][17] relies on the classic registration
method: Iterative Closest Point (ICP) [12]. Corresponding
points between the source and the target frames are first
estimated based on a certain metric. Then the relative transfor-
mation is estimated with a closed-form solution to minimize
the distances between correspondences. The above two steps
are performed iteratively until a convergence criterion or the
maximum iteration number is reached. However ICP suffers
from the risk to be trapped in a local minimum, especially
in cases of large camera motion or lack of 3D structure in
the observed scene. One option to avoid local minimum is
to use a feature (such as SIFT, SURF) based alignment first
and use ICP only as a refinement step [17][18]. The feature
based method improves the probability of convergence in the
global minimum, however detection, description and matching
of sophisticated keypoint require substantial computation time
that hinders the performance to keep up the camera frame rate.
Another option is to establish correspondences using normal
projection instead of finding nearest points [2][19][6], which
helps ICP to avoid some local minimum. However surface
normal estimation requires even more computation than a
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Fig. 2. Our method estimates the camera motion by aligning the scene points
observed from different frames. (a): The scene points are rigidly transformed
with T in the camera coordinate. (b): The corresponding camera motion in
the world coordinate is the inverse of T.

feature based method, because the surface normal is densely
needed for each pixel. Meilland et. al. [16] choose 3D pixels
which best condition the 6 degrees of freedom of the camera,
but their method still needs to compute the image Jacobian.

Dealing with a large amount of color and depth data,
achieving real-time performance that keeps up the camera
frame rate (30 Hz) becomes an issue. In order to perform
online visual odometry, some approaches that only use single
core CPU [14][1][20], need to perform their algorithms on
lower resolution images than the original sensor data to
compromise between accuracy and processing time. Some
other approaches that directly perform on the original reso-
lution [2][4][6] require state-of-the art Graphics Processing
Unit (GPU) to parallelize their algorithms, however not every
mobile platform is equipped with a GPU.

In this paper, we present a fast and robust ICP based visual
odometry method that uses both intensity and depth data. As
the example shown in Figure 1, the proposed method improves
the conventional ICP significantly. The contributions of this
paper are as follows:
• An intelligent salient point selection method for the

source frame is proposed, where points that provide valu-
able information for ICP are selected. With the reduced
point number, substantial computation time is saved.

• With robust statistics on the real data [21], intensity
values are integrated into correspondence estimation and
correspondence weighting stages of ICP.

• The proposed method runs with a single CPU thread in
real-time (78 Hz) with state-of-the-art accuracy on the
TUM dataset [13].

This paper is organized as follows. Preliminaries about cam-
era model and the conventional ICP method [12] are described
in section II. The proposed intensity assisted ICP method is
explained in section III. The performance of our methods is
shown with evaluation on TUM RGB-D benchmark in section
IV. Finally, a conclusion is given in section V. The code of
our method is available at www.hri.ei.tum.de/download.

II. PRELIMINARIES
A. Camera model

Given a 3D point p=(x,y,z,1)T in homogeneous coordinate
relative to the camera, the image pixel coordinate x = (u,v)T

(u ∈ [0,width− 1],v ∈ [0,height− 1]) of p is calculated with
the camera projection function π:

x = π(p) = (
x fx

z
+ox,

y fy

z
+oy)

T , (1)

where height and width are the pixel number in image’s x-
and y- direction, fx, fy are the camera focal lengths and ox,
oy are the camera center coordinates.

As shown in Figure 2, in the camera coordinate, if the scene
points are rigidly transformed with a transformation matrix
T∈R4×4, then a camera motion T−1 in the world coordinate is
implied. In the camera coordinate, the point p is then changed
to: p′ = Tp, and its pixel coordinate becomes x′ = π(p′) =
π(Tp).

At time step t, an intensity image It and an organized point
cloud Pt with the resolution width×height are obtained, where
Pt(i) indicates the ith point in Pt . Intensity value of pixel x
is It(x) ∈ [0,255], the pixel x’s corresponding 3D point p is
indicated as Pt(ind(x)), where ind() is a function that maps a
image coordinate to a point index of a one-dimensional list of
organized point cloud:

ind(x) = ind((u,v)T ) = v×width+u, (2)

To retrieve the image coordinate x of a point index i, the
inverse function is:

x = ind−1(i) = (i−b i
width

cwidth,b i
width

c)T . (3)

B. Conventional ICP

Let us consider two subsequent frames that need to be
aligned as < I1,P1 > for the source frame and < I2,P2 > for
the target frame. The conventional ICP method [12] uses the
point cloud pair P1,P2 to iteratively find the optimal relative
rigid transformation matrix T∗, such that after transforming
P1 with T∗, the source observation will be aligned with the
target observation (Figure 2(a)). ICP is an iterative method, the
matrix T∗ is initialized as an identity matrix, the kth iteration
of the ICP algorithm can be summarized as follows:

1) Search for each point of the source cloud a closest point
in the target cloud as correspondence. For the ith point in P1,
the index of the corresponding point in P2 is denoted as c(i),
where c(i) = argmin

j
‖T∗P1(i)−P2( j)‖. (4)

2) Compute the optimal incremental transformation Tk that
minimizes the distances between the established correspon-
dences:

Tk = argmin
T

∑
i
‖TT∗P1(i)−P2(c(i))‖ (5)

This is usually solved with a closed-form solution [22] such
as Singular Value Decomposition [23].

3) Update T∗ as:
T∗← TkT∗. (6)

The above steps are performed iteratively until the in-
cremental transformation is smaller than a threshold or the
maximum allowable iteration number has reached.
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Fig. 3. Intensity assisted ICP overview

III. INTENSITY ASSISTED ITERATIVE CLOSEST POINT

Rusinkiewicz et. al. discussed in [24] about ICP variants,
where the variants differ in the following stages: selection,
matching, weighting, rejection, error metric and minimizing.
Based on the categorization from [24], our proposed ICP
method differs from the conventional ICP in the following
stages.

1) Selection - Salient points selection is performed on the
source frame, where points that provide valuable infor-
mation for ICP are selected. For the target frame, the
original image resolution is kept without any sampling.
See details in section III-C.

2) Matching - The search of correspondences is performed
by examining nearby points in the image coordinate,
where the matching point is determined by considering
both intensity and geometric distance. See details in
section III-B.

3) Weighting - Weighting of corresponding pairs is per-
formed based on robust statistic [21]. This improves
the robustness of ICP against false correspondences.
Additionally, the sensor noise model of the depth camera
is also considered for the weighting. See details in
section III-A.

An overview of our method is illustrated in Figure 3.

A. Robust correspondence weighting

With the method in section III-B, correspondences between
source and target frames are established, where corresponding
point of the ith point in source frame P1(i) is P2(c(i)). In
practice, not every correspondence is determined correctly.
The resulting outliers have a bad influence on the accuracy of
the estimated transformation. Moreover the precision of depth
value depends on the distance to the camera, where a more
distanced point has lower precision for depth value. In our
method, robust weighting function is applied to reduce the
influence of outliers and to adapt to the sensor noise model,
where the ith corresponding pair a weight w(i), thus Equation
(5) changes to:

Tk = argmin
T

∑
i

w(i)‖TT∗P1(i)−P2(c(i))‖. (7)

Intensity residuals between the correspondences are consid-
ered for weighting, the intensity residual r(I)i of the ith pair is
calculated as:

r(I)i = I1(ind−1(i))− I2(ind−1(c(i))). (8)

(a) 220th frame of ’fr1/room’ (b) 221st frame of ’fr1/room’
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(c) intensity residual by 1st iteration
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(d) intensity residual by 30th iteration
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(e) spatial distance by 1st iteration
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(f) spatial distance by 30th iteration

Fig. 4. (a)(b): The illumination of the 221st frame is lower than the 220th
frame due to auto-exposure, the average intensity has dropped by 43 in
221st frame. (c)(d): The intensity residual distribution changes towards the
true illumination model as iteration number grows. (e)(f): The distribution
of spatial distance between correspondences moves from larger value toward
zero as iteration number grows.

Inspired by [14], the Student’s t-distribution, a M-Estimator
function, is used to weight each intensity residual. Following
[25], the derived weighting function based on the t-distribution
is:

wI(r
(I)
i ) =

ν +1

ν +((r(I)i −µ(I))/σ (I))2
, (9)

where ν is the degree of freedom of t-distribution, ν = 5
is used as the same in [14]. The mean µ(I) of all intensity
residuals, is estimated as the median value:

µ
(I) = Med({r(I)i }

N
i=1), (10)

where N is the number of correspondences. The standard de-
viation σ (I) is estimated using the median absolute deviation:

σ
(I) = 1.4826 Med({|r(I)i −µ

(I)|}N
i=1). (11)

The t-distribution fits the real data nicely as shown in Figure
4(c)(d), which gives outliers very small weights. An important
reason to weight the correspondences based on the statistics
over all residuals is to consider the changing illumination
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caused by auto-exposure of the camera. Figure 4 gives an
example from ’fr1/room’ sequence of TUM dataset, the aver-
age pixel intensity value has dropped by 43 from Figure 4(a)
to Figure 4(b). By first iteration, the mean value of intensity
residuals is still almost zero (Figure 4(c)), as iteration number
grows, the intensity residual distribution changes towards the
correct illumination difference value (Figure 4(d)). Then the
statistic based weighting ensures larger weights for the correct
intensity residuals.

Another component of the weighting function is based on
the spatial distance between correspondences. It follows the
same procedure as intensity based weighting, where spatial
distance is considered as residual:

r(G)
i = ‖T∗P1(i)−P2(c(i))‖. (12)

The computation of wG(r
(G)
i ) follows the same as the weight-

ing for intensity residual.

wG(r
(G)
i ) =

ν +1

ν +((r(G)
i −µ(G))/σ (G))2

. (13)

The t-distribution also fits the distribution of spatial residuals
nicely as shown in Figure 4(e)(f). By the first iteration (Figure
4(e)), the spatial distance is relative large due to the camera
motion, the variance is also large due to the rotation compo-
nent of the camera motion. By later iteration (Figure 4(f)),
the current transformation estimate T∗ gets closer to the true
transformation, thus the mean spatial residual value is closer
to zero and the variance is also much smaller.

To compensate the noises caused by depth sensor model,
another weight wS(i) is assigned. The sensor noise model
devised from [26] is used without considering the influence
of surface normal. The weight for the ith corresponding pair
is computed based on the average depth value of P1(i) and
P2(c(i)):

wS(i) =
1

0.0012+0.0019( eT
z P1(i)+eT

z P2(c(i))
2 )2

, (14)

where eT
z = (0,0,1,0).

The total weight w(i) for ith corresponding pair combines
the three weights from intensity difference, spatial distance
and sensor noise model:

w(i) = wI(r
(I)
i )wG(r

(G)
i )wS(i), (15)

where the three weight components are complementary to
downweight outlying correspondences and correspondences
with higher sensor noise. The multiplication in Equation (15)
ensures that only corresponding pairs that have relative larger
weight in all three components, are assigned with large total
weight. With weighting stage using robust estimation from
statistic, the outliers are intuitively downweighted.

B. Intensity assisted point matching

The conventional ICP method establishes correspondences
only based on spatial distance (Equation (4)). In this paper,
intensity difference and spatial distance are both used to
determine ”closest” point by considering the robust statistic

Fig. 5. The search pattern for matching point: the blue points within the
circle of the radius 3l in the image coordinate are examined

obtained from section III-A. Given the query point pair
< P1(i),P2( j)>, the score function for this query pair is:

s(i, j) = wI(I1(ind−1(i))− I2(ind−1( j)))
w(0)

G (‖T∗P1(i)−P2( j)‖),
(16)

wI() and w(0)
G () are the robust function derived from last ICP

iteration (Equation (9) (13)). 1 w(0)
G () has the form:

w(0)
G (r) =

ν +1
ν +((r−0)/σ (G))2

, (17)

where the mean value is set to zero, because we adopt the
assumption from the conventional ICP [12], where closer point
is more probable to be the correspondence. In case of a
large camera motion, where closest point assumption does not
necessarily hold, the intensity weight term in Equation (16)
provides an additional constrain compared to the conventional
ICP. For the first iteration, where the robust statistic is not
available, µ(I) is set to zero, and σ (I),σ (G) are initialized with
10 and 0.04m in our implementation. The matching point for
P1(i) is then the point that results in the highest score:

c(i) = argmax
j

s(i, j). (18)

Taking advantage of the organized point cloud, the search of
matching point is performed in the image coordinate. Based
on the current known transformation T ∗ from last iteration,
P1(i) is warped onto target frame to determine the area of
search, where P1(i)’s image coordinate in the target frame is
x′ = π(T∗P1(i)). With x′ as the center, the search pattern is
illustrated in Figure 5, where the blue points within the circle
of the radius 3l are examined.

The offset parameter l ∈ Z+ (Figure 5) is used to control
the size of the search area. To cope with large camera motion,
the search area should be larger in the initial iterations, thus
l is set with larger values. As the iteration number grows
and ICP converges, l decreases accordingly until 1, which
brings a decreasing search area and increasing precision as
ICP proceeds.

C. Salient point selection

Due to 3D motion between two frames and projective nature
of image, some points in P1 might be occluded in P2. If

1Notice that for each iteration, the parameters (mean, variance) of weighting functions
for correspondence ’matching’ (Eq. (18)), and for correspondence ’weighting’ (Eq. (15))
are different. Parameters for correspondence ’matching’ are based on the statistic from the
last iteration (for the 1st iteration, default values are used). Parameters for correspondence
’weighting’ are derived from the statistic over newly established correspondences of the
current iteration.
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Fig. 6. Salient point selection. Top: the original source and target frame.
Middle: selected salient points based on three different criteria. Down: all
salient points combining three criteria.

occluded points from P1 are used for correspondence esti-
mation, the established correspondences is definitely wrong,
which influences the accuracy of estimated pose (Equation
(5)). Therefore, by correspondence estimation, the points from
P1 which have high probability to be occluded in P2, are
discarded. These points are background points that are near
the edges of foreground region, where a subtle motion might
cause the occlusion. The point P1(ind(x)) is considered to have
high occlusion probability, and is discarded if it satisfies:

eT
Z P1(ind(x))− eT

Z P1(ind(x+(0,5)T )) > τr ,
or eT

Z P1(ind(x))− eT
Z P1(ind(x+(0,−5)T )) > τr ,

or eT
Z P1(ind(x))− eT

Z P1(ind(x+(5,0)T )) > τr ,
or eT

Z P1(ind(x))− eT
Z P1(ind(x+(−5,0)T )) > τr ,

(19)

which implies that P1(ind(x)) is discarded if it has a much
larger depth value than a nearby point.

After background point rejection, a lot of the remaining
points in the source frame still might fail to find their correct
correspondences in the target frame. In particular, the points
which lie in homogeneous regions of intensity image or depth
image have higher chances to be matched to false correspon-
dences. Figure 7 illustrates example cases of correspondence
matching result for a translated scene2. For a source frame
point in homogeneous region of depth image, the target frame
points near the correct match can be closer to the query
point, thus many false matches can occur (Figure 7(a)). Even
with an intensity assisted matching term (Eq. (18)), a lot
of source frame points in homogeneous region of intensity
image can still be matched to wrong points (Figure 7(b)).
Figure 7(c) shows that by neglecting homogeneous regions,
the ratio of correct matches can be increased and this leads to
more accurate incremental transformation result (Eq. (5)). To
avoid homogeneous regions, three selection criteria are used to
determine whether a source frame point should be considered.

1) Intensity residual based: The first criterion is intensity
residual. By computing intensity residual of same pixel be-
tween two frames, pixels in homogeneous regions of intensity

2Notice that Figure 7 is only an illustrative example, the ratio of homoge-
neous region in real scene is much larger.

source frame

target frame

salient points

target frame

source frame

target frame

actual translation 
from source to target

(a)

(b)

(c)

Fig. 7. Point pair matching for a translated scene. (a) Conventional ICP, (b)
Conventional ICP + matching score with Eq. (16), (c) Conventional ICP +
matching score with Eq. (16) + salient point selection

image do not result in large intensity difference. In contrast,
pixels in textured regions or border of homogeneous regions,
might result in large intensity residual from camera motion.
Therefore the first criterion for salient points is:

|I1(x)− I2(x)|> τ1. (20)

2) Intensity gradient based: Points inside homogeneous
region have low intensity gradient, therefore points with high
intensity gradient are selected:

|I1(x+(0,2)T )− I1(x+(0,−2)T )| > τ2,
or |I1(x+(2,0)T )− I1(x+(−2,0)T )| > τ2,

(21)

where either gradient in x-direction or y-direction of the
image coordinate should be greater than the gradient threshold
τ2. Based on the intensity term from Equation (16), these
points have higher probability to distinguish their correct
correspondence.

3) Depth gradient based: Similar to intensity, points inside
a homogeneous depth space also have ambiguity to find its
correct correspondence. Therefore the third criterion is depth
gradient, where points that contains variation in the depth
space are selected:

|eT
Z P1(ind(x+(0,2)T ))−eT

Z P1(ind(x+(0,−2)T ))|
eT

Z P1(ind(x)) > τ3,

or |eT
Z P1(ind(x+(2,0)T ))−eT

Z P1(ind(x+(−2,0)T ))|
eT

Z P1(ind(x)) > τ3.
(22)

In summary, for salient point selection, one rejection cri-
terion and three acceptance criteria are used. The algorithm
to retrieve the salient points is described in Algorithm 1. The
salient point selection is efficient, because a salient point only
needs to meet one of the three criteria. As soon as the point
fits one criterion, the algorithm skips the rest of criteria and
proceeds to check next point. The salient points selected based
on different criteria are illustrated in Figure 6.

As in Algorithm 1, every 16th source frame point (every 4th
row and 4th column) is checked for its saliency. This reduces
the computation time for salient point selection stage by a
factor of 16, but the lost of accuracy is not too much because
no subsampling is performed on the target frame < I2,P2 >. In
contrast, energy minimization based methods [1][20] perform
subsampling on both source and target frames, which results
in a relative higher accuracy lost.

For each ICP iteration, a different subset of salient points
is randomly selected and used for registration. The reason of
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the random selection for each iteration is: firstly, it further
reduces the computation cost by using less points per itera-
tion; secondly, all selected salient points should have equal
possibility to contribute in registration. The number of this
randomly selected subset per iteration is set as ca. 100−200,
which is found empirically based on trade-off between the
computational cost and the accuracy. Experimental results
show the accurate 6 DOF pose estimation from this amount
of correspondences.

Algorithm 1 Salient point selection
Input: - Source frame < I1,P1 > and target frame < I2 >
Output: - List list that contains indexes of salient points from P1.

- list← /0
for u = 1 : 4 : width do

for v = 1 : 4 : height do
- get the point to be checked: P(ind((u,v)T )) with intensity I((u,v)T )
if P(ind((u,v)T )) satisfies rejection criterion (Equation (19)) then

continue;
end if
for c=1:3 do

if P(ind((u,v)T )) satisfies cth criterion (Equation (20) or (21) or (22)) then
- list.append(ind((u,v)T ));
- continue;

end if
end for

end for
end for

IV. EXPERIMENT
The proposed method is evaluated using the TUM RGB-D

benchmark [13]. The benchmark contains 89 RGB-D video
sequences, for each video sequence, accurate ground truth
for camera motion is provided by a motion capture system.
We evaluated our method on 14 video sequences, which are
commonly used in the previous publications. For evaluation of
visual odometry accuracy, the root mean square error (RMSE)
of translational drift in m/s is used, which is a standard metric
to measure accuracy of visual odometry method [13].

In this section, our method is first compared with other
RGB-D based visual odometry methods [1][6][4] that use both
intensity and depth data. Then our method is compared with
depth only based methods [27][20] by turning off all intensity
related process in our method. The computation performance
is also evaluated with different parameter settings. Finally we
show some qualitative result of reconstructed scenes based on
our visual odometry method.

Our experiments are performed on a desktop computer with
Ubuntu 12.04, equipped with Intel Core i7-4790K CPU (4
GHz) and 16GB RAM. Notice that our implementation only
runs on a single CPU thread.

TABLE I
ON THE TWO ’FR1’ DESK SEQUENCES, EACH OF THE THREE ALGORITHM

COMPONENTS PROVIDES INCREMENTAL CONTRIBUTION TO THE
ACCURACY.

Method RMSE of translational drift[m/s] Average improvementfr1/desk fr2/desk
ICP 0.175 0.182 0%
ICP+s 0.045 0.056 71.7%
ICP+s+w 0.044 0.051 73.4%
ICP+s+m 0.029 0.041 80.39%
ICP+s+m+w 0.021 0.038 83.25%

TABLE III
RMSE OF TRANSLATIONAL DRIFT (M/S): COMPARISON WITH OTHER

DEPTH ALONE BASED METHODS

fr1/desk fr1/desk2 fr1/room fr2/desk
Our method
(depth only) 0.0297 0.384 0.0484 0.0330

Sparse depth [27] 0.058 0.073 0.073 0.028
Fast 3-D [20] 0.0366 0.0528 0.0489 0.0313

A. Accuracy

For each ICP iteration, a subset of 100 salient points are
used (section III-C). In total we run 30 iterations: 3 levels with
10 iteration per level. For the first 10 iterations, the offset l for
correspondence search is set to 6, for the second 10 iterations
l is set to 3 and for the last 10 iterations l is set to 1. Every
5th frame is used as the source frame (< I1,P1 >), and the
current frame is used as the target frame (< I2,P2 >). The
values of the thresholds < τr,τ1,τ2,τ3 > are empirically set
as < 0.02,30,30,0.03 > in all experiments.

To prove the contribution of each component in our method,
’fr1/desk’ and ’fr1/desk2’ sequences are used. Selection (s),
matching (m) and weighting (w) component of our method
are incrementally added to the conventional ICP method,
Table I shows that each component provides an incremental
improvement on the accuracy. Among the three components,
the selection component contributes the most by neglecting
the source frame points that have higher probability to be
incorrectly matched. The matching component provides the
second largest contribution by combining intensity term for
more accurate correspondence matching process. Finally the
weighting component reduces the influences from outliers and
sensor noises.

Table II shows the comparison of our method and other
state-of-the-art visual odometry methods based on both depth
and intensity, where in Table II, ’-’ means that result is not
provided in the corresponding literature.3 Our method provides
the best accuracy in 11 of the 14 tested sequences, and even
outperforms the method RGB+D+KF+Opt from [1] that uses
loop closure detection and global pose optimization. This is
probably because our method can avoid some local minimum,
which energy minimization based methods cannot avoid due
to the non-linear nature of images.

There is another group of methods that only uses depth
information, our method is compared with two recent ones
[27][20]. For comparison, depth only based method is simu-
lated by setting all pixels’ color to a same value. As shown in
Table III, our method outperforms in most sequences. This
indicates that our method can also handle poor lightening
condition and textureless scene.

B. Computation time vs. Performance

Real-time capability is crucial for online application, there-
fore some algorithms require GPU for parallelization and some
others operate on lower resolution image and hence loose some

3Since the performance varies depending on the parameter settings and the optimal
parameters of other methods are unknown, for fair comparison, we only listed the reported
values from the original publications[1][6][4].
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TABLE II
RMSE OF TRANSLATIONAL DRIFT (M/S): COMPARISON WITH OTHER RBG-D BASED METHOD

Sequence
average

translational
velocity [m/s]

average
angular

velocity [degree/s]
Our method RGB+D [1] RGB+D+

KF [1]
RGB+D+

KF+Opt [1]
ICP+RGB-D

[6] Inverse depth [4]

fr1/desk 0.413 23.327 0.0217 0.036 0.030 0.024 0.0393 0.026
fr1/desk2 0.426 29.30 0.0381 0.049 0.055 0.050 - 0.0387
fr1/room 0.344 29.882 0.0416 0.058 0.048 0.043 0.0622 0.0491
fr2/desk 0.193 6.388 0.0204 - - - 0.0208 0.0121
fr1/xyz 0.244 8.920 0.018 0.026 0.024 0.018 - -
fr1/rpy 0.062 50.147 0.031 0.040 0.043 0.032 - -
fr1/360 0.210 41.600 0.072 0.119 0.119 0.092 - -
fr1/floor 0.258 15.071 0.10 fail 0.090 0.232 - -
fr1/teddy 0.315 21.320 0.048 0.060 0.067 0.043 - -
fr1/plant 0.365 27.891 0.018 0.036 0.036 0.025 - -
fr3/office 0.249 10.188 0.016 - - - - -

fr3/nostructure texture far 0.299 2.890 0.047 0.073 - - - -
fr3/structure notexture far 0.166 4.000 0.034 0.038 - - - -
fr3/structure texture far 0.193 4.323 0.023 0.039 - - - -

TABLE IV
COMPARISON OF COMPUTATION TIME PER FRAME [MS] VS. HARDWARE

SETTING VS. IMAGE RESOLUTION

Time CPU GPU Resolution
Our method 12 i7-4790K

@4.0GHz
- 640×480

RGB+D+KF [1] 32 i7-2600
@3.4GHz

- 320×240

ICP+RGB-D [6] 18 i7-3960X
@3.3GHz

NVIDIA
GeForce
680GTX

640×480

Inverse depth [4] 47 i5-2500
@3.3GHz

NVIDIA
GeForce
660GTX

640×480

Sparse depth [27] 67 i7-2860QM
@2.5GHz

- VoxelGridFilter
voxel size: 1cm

Fast 3-D [20] 28 i7-3820
@3.6GHz

- 320×240

TABLE V
DIFFERENT PARAMETERS VS. PRECISION VS. COMPUTATION TIME

Iterations
per level

Salient point number
per iteration

RMSE of translational drift [m/s] Time [ms]
fr1/desk fr1/desk2 fr1/room fr2/desk mean max

10 100 0.0217 0.0381 0.0416 0.0204 12.8 17.9
2 100 0.0255 0.0450 0.0425 0.0240 9.3 13.6
5 100 0.0219 0.0369 0.0442 0.0225 10.9 15.0
20 100 0.0218 0.0389 0.0440 0.0184 17.8 22.9
50 100 0.0219 0.0373 0.0455 0.0188 30.4 34.0
100 100 0.0226 0.0389 0.0554 0.0182 58.7 67.6
10 10 0.0274 0.0400 0.0781 0.0312 9.5 12.9
10 20 0.0260 0.0382 0.0467 0.0236 9.9 13.7
10 50 0.0226 0.0384 0.0466 0.0200 11.8 13.6
10 200 0.0219 0.0379 0.0430 0.0195 16.7 22.4
10 500 0.0217 0.0367 0.0415 0.0196 27.3 31.9

accuracy. In contrast, our method uses intelligent salient point
sampling method without sacrificing accuracy. Due to sparse
sampling in the source image, a high frame rate of 78 Hz using
only single CPU thread is achieved. The frame rate is expected
to be even higher if GPU programming is used, however
78 Hz is enough for the real-time requirement. The reported
computation time of different methods and the hardware
settings are compared in Table IV, where the computation time
of our method is obtained by using parameter settings from
section IV-A. The ’-’ symbol in Table IV means that GPU
programming is not used. Table IV shows that our method is
the only one that performs on the original image resolution
(640 × 480) without GPU programming which can keep up
the camera frame rate.

Furthermore different parameter settings are tested and
the influence for accuracy and computation performance are

compared. Fixed three levels of offset l for correspondence
searching are used, for each level, the number of iterations
varies. For each iteration, the number of salient point used for
correspondence estimation is also varied.

Table V shows that our method performs well with small
number of iteration and small number of salient points.
Our method achieved reasonable result even using only 10
salient points per ICP iteration, achieving 100 Hz, which is
much higher than the camera frame rate, saving a lot of
computational resource for additional tasks such as scene
reconstruction. As seen from Table V and Table I, the proposed
approach with only 10 correspondences provided a better
result than the conventional ICP method with ca. 300000
correspondences on ’fr1/desk’ and ’fr1/desk2’ sequences. As
the number of iteration grows, the drift error does not change
much. As the number of salient point per iteration grows, the
drift error decreases. This implies that the number of salient
point is more important than the number of iteration for visual
odometry.

C. Qualitative result

To illustrate the performance of our method qualitatively,
Figure 8 shows four reconstructed scenes from TUM dataset.
The quality of scene reconstruction from video sequence is
sensitive to the accuracy of visual odometry, because the error
of frame-to-frame registration result can be accumulated to a
large drift. Therefore the usual remedy to correct large drift
error is to use loop closure detection and global pose graph
optimization [1].

In our case, no loop closure detection and no global pose
graph optimization are performed by reconstruction. The col-
ored point cloud of each frame is simply added into a global
point cloud based on the estimated visual odometry result.
The estimated visual odometry result is still accurate enough
to reconstruct the scene without large drift.

V. CONCLUSION

In this paper a fast and robust visual odometry estimation
method based on intensity assisted ICP is presented. By
contributing in the selection, matching and weighting stages,
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(a) fr1/desk (b) fr1/room

(c) fr3/nostructure texture far (d) fr3/structure texture far

Fig. 8. Reconstructed scene from TUM benchmark sequences based on
estimated visual odometry.

our method improved the conventional ICP significantly. Intel-
ligent salient point selection is performed on the source frame
thus drastically reduced the computation time. Correspon-
dences are established by searching nearby points in the image
coordinate. With weighting function devised from statistics,
robustness against outlying correspondences is ensured. The
proposed method was evaluated on the TUM Dataset both
quantitatively and qualitatively. In terms of translational drift,
it outperforms state-of-the-art methods in 11 out of the 14
tested video sequences. Our method runs with an average
frame rate of 78 Hz using a single CPU thread. Experimental
results showed that our proposed approach achieved overall
better accuracy than approaches with GPU parallelization.
With changes of parameter settings, our method can even
achieve 107 Hz by loosing ca. 12% precision of drift error.
With the achieved high frame rate, substantial computation
resources can be saved for other online tasks.
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