Abatement of gaseous nitrogen losses from surface-applied urea with a new urease inhibitor M. Schraml¹⁾, A. Weber²⁾, R. Gutser¹⁾ and U. Schmidhalter¹⁾ - ¹⁾ Chair of Plant Nutrition, Life Science Center Weihenstephan, Technical University of Munich, Freising-Weihenstephan, Germany.schraml@wzw.tum.de - ²⁾ Arbeitsgemeinschaft Landtechnik und landwirtschaftliches Bauwesen in Bayern e.V. (ALB), Freising-Weihenstephan, Germany Key words: ammonia loss, nitrous oxide, urease inhibitor, phosphoric acid diamide #### Abstract Ammonia (NH₃) emissions can occur especially after application of urea. Addition of urease inhibitors (UI) to urea is one possible way to abate NH₃ losses. In these experiments the newly developed UI P204/98 was tested for its reduction potential in NH₃ emission and its possible influence on nitric (NO_x) and nitrous oxide (N₂O) emissions. Granular urea was surface applied to winter wheat and emissions were measured during the growing period. With a modified instrumentation based on the dynamic chamber technique NH₃ and NO_x emissions were measured. N₂O losses were determined using the closed chamber technique. Generally ammonia emissions after application of urea mainly occurred within the first week following fertilizer application and could be reduced by 50% on average with UI P204/98. Emissions of NO_x and N₂O were not significantly influenced by the application of UI. #### Introduction Around 75% of global 54 Mt a⁻¹ of ammonia (NH₃) volatilization is of anthropogenic origin. Agriculture is responsible for 80%-90% of these emissions. Next to animal manure as the dominant source (80%), losses from surface-applied mineral fertilizers - urea and especially ammonium bicarbonate - represent a major source for anthropogenic NH3 losses (10%-15%) (Hofman and van Cleemput, 2004). On average NH₃ losses from surface-applied urea amount to 10%-20% of fertilizer N (Harrison and Webb, 2001). In southern Bavaria, Germany, Weber et al. (2001) determined losses from applied urea N up to only 0.5%-5%. The release of NH₃ from urea catalysed by the urease enzyme and subsequently the risk of NH₃ emissions is affected by soil properties (pH, soil texture) and environmental factors (temperature, rainfall). For the enhancement of nitrogen efficiency urease inhibitors have been developed (Watson, 1998). During nitrogen turnover in soils - nitrification and denitrification-up to 15% increased N₂O emissions have been reported (Brink et al., 2001). The objective of this study was firstly to measure the reduction of NH₃ emissions in fields by the new developed UI P204/98 (phosphoric acid diamide) US compared the approved NBTPT to [N-(n-butyl)-thiophosphoric-triamide] after broadcasting urea to the soil surface. P204/98 offers advantages in formulation of granulated fertilizers. Secondly, possible consequences of UI application on N2O as well as on NOx emissions were determined. ### Materials and methods The outdoor flux measurements were performed at the research station Duernast of the Chair of Plant Nutrition, located in the Tertiary hill landscape of Southern Bavaria, Germany, in the years 2002 to 2004. Annual precipitation is around 800 mm and mean annual air temperature is 7.4°C. The soil is characterized as a silty loam derived from loess with pH(CaCl₂) 6.3. For every application 80 kg N ha⁻¹ of mineral nitrogen fertilizer were surface-applied to winter wheat as granular urea with or without a urease inhibitor (UI). NH₃ and NO_x emissions were measured online with a modified instrumentation based on the dynamic chamber technique for two weeks following fertilization. Ambient air was continuously drawn through chambers (covering ½ m² soil surface) with a constant flow rate. Sample air was collected and led to a NH₃/NO_x-analyzer. NH₃ and NO_x fluxes were calculated from the difference of NH₃ and NO_x concentration in ambient and sample air and from the airflow through the chamber. To minimize the influence of the artificial climate inside the chambers on the volatilization process, the chambers were moved to an undisturbed part of the plot every day. N₂O fluxes were measured using the closed chamber technique (Hutchinson and Mosier, 1981). Climatic data were collected from a meteorological station close to the experimental area. ## Results Urea led to NH₃ losses up to 2.6 kg NH₃-N ha⁻¹ representing 0-3% of the applied N (Table 1). Maximum losses were found in warm and dry periods within 3-6 days following fertilization. Lower temperature and rainfall significantly decreased NH₃ losses. The use of UI led to an average reduction in NH₃ volatilization by 50 % independent of the absolute level of NH₃ emissions. There was no significant difference between the effectiveness of both UI. Across all early spring seasons UI showed the best result eventually due to a prolonged urease inhibitor activity. Figure 1 shows a typical course of NH₃ emissions following fertilization in May 2003. High temperatures accelerated while precipitations within the first days dramatically reduced further NH₃ volatilization. Losses are decreased by applied UI. Table 1. NH₃ and NO_x emissions following application of urea without or with urease inhibitor | Year | Appl | NH ₃ - emissions after application of | | | | The state of s | | | | | | | | |------------------|--|--|--|----------------------------|---------------------------------------|--|--------------------------|--|----------------------------|--------------------------------|-------------------------------|-----------------------------------|-----------------------------------| | | | Urea | Urea+P204/38 | | Urea+NBTPT | | Urea | NO _x emissions after applie
Urea+P204/38 | | Cation of Urea+NBTPT | | Temp. Rainfall | | | | | g NH ₃ -N ha-1 | g NH ₃ - N ha ⁻¹ | %
of urea | g NH ₃ -N ha ⁻¹ | %
of urea | g NO _x N ha-1 | g NO _x -N ha-1 | % | g NO, N ha-1 | % | ဗ | (day 1-5) | | 2002 | 12 Apr
26 Apr
08 May
23 May | 518
230
223 | 11
191
131 | 2
83
59 | 32
44
113 | 6
19
51 | 62
258
273 | 93
208
264 | of urea
150
81
97 | 78
154 | of urea
126
59 | 8.1
10.7 | (mm)
0.9
6.5 | | 2003 | 27 Mar
08 Mav
26 Mav
11 Jun 6 | 168
192
109
2598
592 | 118
45
105
1978
507 | 70
23
96
76
86 | 109
23
73
7984 | 65
12
67
76 | 45
124
132
117 | 36
133
176
61 | 80
107
133
52 | 295
39
117
235
148 | 108
87
94
178
126 | 15.0
13.2
5.2
11.9 | 21.1
20.3
1.7
33.1 | | | 18 Mar
31 Mav
04 Mar
27 Mav | 1593
229
64
110 | 265
177
56
47 | 17
77
88
43 | 39
73 | 95
61 | 279
-4
52
-6 | 197
0
48
-10 | 7I
-8
92
16I | 158
-35 | 57 | 18.9
19.6
5.0
6.5
9.8 | 0,3
13.6
3.2
1.0
11.5 | | aveta.
2002 i | e
o 2004 | | | 60 | /5 | 66
- 52 | 14 | 5 | 36
88 | 13 | 94
147 | 13.2 | 16.7 | Figure 1. Course of NH₃ emissions following application of urea with and without UI on 11.06.2003. Figure 2. Course of NH₃ emissions following application of urea with and without UI on 29.07.2004. The experimental site conditions imply a small risk for NH₃ losses due to the soil characteristics, frequent rainfalls and temperate climatic conditions. In a further experiment (Fig. 2) NH₃ emissions were measured under elevated conditions for gaseous N losses [higher air temperature (average of 19.9°C), no precipitation, no plant coverage]. The majority of NH₃ emissions resulted within the first 7 days after fertilization. Owing to UI relatively high NH₃ volatilization of 5.8 kg NH₃-N ha⁻¹ 0-% of fertilizer N could be reduced by 75%. A further aim of the project was to investigate possible consequences in the reduction of NH_3 losses due to UI with respect to the emissions of NO_x and N_2O . NO_x losses were continuously low for all measurements (Table 1). A maximum of 400 g NO_x-N ha⁻¹ was emitted within the measuring period which corresponds to 0.5% of the applied N. The reduction of NH₃ losses by means of UI did not alter NO_x emissions. Emissions of N_2O were measured during the whole growing period. Application of urea led to N_2O emissions up to 3.7 kg N_2O -N ha⁻¹ representing 0-2.2% of the applied N. In contrast to results published by Brink *et al.* (2001) UIs did not significantly influence the emissions of N_2O . ### Conclusion The majority of NH₃ emissions occur within the first week following application of urea. Precipitations and low temperatures within this period severely reduce potential losses. An addition of urease inhibitors P204/98 and NBTPT to urea granules led to an average reduction of NH₃ losses by 50 %. Especially following the first fertilization in spring a high reduction potential could be detected. Because of site-specific low NH₃ losses of less than 3 kg N ha $^{-1}$ no effect on emissions of NO_x or N₂O were to be expected. # Acknowledgments This research is supported by the German Federal Ministry for Education and Research. #### References Brink C, et al. 2001. Atmos. Environm. 35, 6313-6325. Harrison R Webb J 2001 Adv. Agron. 73, 65-108. Hofman G, van Cleemput O 2004 In: Soil and Plant Nitrogen. IFA, Paris, ISBN 2 9506299 9 7. Hutchinson GL, Mosier AR 1981 Soil Sci. Soc. Am. J. 45, 311-316. Watson CJ, Poland P and Allen MBD 1998 Grass For. Sci. 53, 137-145. Weber A, Gutser R and Schmidhalter U 2001 Proceedings of the IPNC 2001, Hannover, 884-885.