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Abstract
Satellite images clustering is a challenging problem in remote sensing and machine vision, where each image content
is represented by a high-dimensional feature vector. However, the feature vectors might not be appropriate to express
the semantic content of images, which eventually leads to poor results in clustering and classification. To tackle this
problem, we propose a novel approach to generate compact and informative features from image content. To this
end, we utilize geometrical information (as meta data accompanied with images) in the context of Non-negative Matrix
Factorization (NMF) to generate new features. We assess the quality of new features by applying k-means clustering on
the generated features and compare the obtained clustering results with those achieved by original features. We perform
experiments on several satellite image data sets represented by different state-of-the-art features and demonstrate the
effectiveness of the proposed method.

1 Introduction

Satellite image patches clustering has attracted strong
attention in the recent years due to noisy and com-
plex image content [1]. Several state-of-the-art tech-
niques have been proposed to represent the content of
images [2, 3]. For instance, these techniques are Scale
Invariant Feature Transform (SIFT) descriptors [4], Ga-
bor descriptors [5], and Weber descriptors [6] are used in
a Bag-of-Words model [7] to represent each image with a
high-dimensional feature vector. However, experimental
results show that these techniques are not strong enough
to prove discriminative representation. However, satellite
images are normally accompanied with meta data that in-
cludes the position of places where they are taken from.
Intuitively, we expect that those images that are captured
from close regions should belong to the same class. For
instance, if two image patches are taken from two regions
with several meters far away from each other, then with
high probability these two image patches belong to the
same class.
In this paper, we aim to use the position of images and
also the current feature vectors in a novel non-negative
matrix factorization in order to generate new features. To
this end, we compute two neighborhood graphs based on
1) the euclidean distances between feature vectors and 2)
the real distance between the position of regions. These
two graphs are used in two constraints coupled to the
main objective function of non-negative matrix factor-
ization to factorize the current features and generate new
features. These constraints are controlled by two param-
eters. We claim that the new features are much more
compact and also discriminative than current features.

2 Position-Aware Non-negative Ma-
trix Factorization

NMF is an unsupervised learning algorithm which al-
lows the user to represent the data in a low dimension
space. It uses the feature information of the image to find
the new representation. As a result, some images that
are semantically similar may have features that are far
away from each other in new representation. This prob-
lem will affect the clustering result seriously. For satel-
lite images, we have not only the images, but also the
meta data which contains geographical positions of these
images. Intuitively, the images from close geographical
positions may contain the similar content. Thus, the us-
age of geographical position may help the NMF to ease
this problem. Based on the original objective function,
new constraints can be added to improve the performance
of NMF and impose the practical meanings for the new
representations. In this section, a Geography Constraint
Non-negative Matrix Factorization (GeoNMF) algorithm
is introduced to find a better representation with practical
meaning.

2.1 Objective Function
The input data is represented as a matrix X =
[x1, ..., xN ] ∈ RD×N , xi ∈ RD, where N denotes the
number of samples and D represents the feature dimen-
sion.
In Graph Non-Negative Matrix Factorization, the locality
property is used. Locality property infers that two images
that are closed in the high dimensional space should also
be close in the low dimensional space. Consider a graph
Ge with N vertices that each vertex is mapped to a image
point. For image point xj , we find its k nearest neighbors
and create edges between xj and its neighbors. Thus,



the graph will contains N vertices and a certain number
of edges. We can represent the graph with an adjacency
matrix W with the size N ∗ N and 0 and 1 are the two
possible values in this matrix. If W(i, j) = 1, it means
xi and xj are neighbor points in high dimensional space.
The first regularization term can be formulated as

R1 =
1

2

N∑
i,j

∥xi − xj∥2Wij

=
N∑
i=1

xT
i xiDii −

N∑
i,j=1

xT
i xjWij

= Tr(V TDV )− Tr(V TWV )

= Tr(V TLV )

(1)

Where D is a diagonal matrix that each entry is the cor-
responding column sum of W , Dii =

∑N
j=1 Wji. In

equation (1), a new matrix L that is equal to D −W is
introduced to facilitate the computation [15].
Similarly, for the geographical distance, another graph
Gg is introduced to represent the geographical position
relationship. Here, we introduce another parameter θ to
define the radius of neighbor position. For example, take
point xi as center, all the points whose geographical dis-
tance to point xi are less than θ are considered as xi’s
geographical neighbors. The edges between xi and these
neighbors are created to link them together. We can con-
vert this graph into another adjacency matrix Q with the
size N ∗ N . Q is created based on the geographical dis-
tance.

Qi,j =

{
1 if ∥xi − xj∥ <= θ

0 else
(2)

The second regularization term can be formulated as

R2 =
1

2

N∑
i,j

∥xi − xj∥2Qij
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N∑
i=1

xT
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xT
i xjQij

= Tr(V TPV )− Tr(V TQV )

= Tr(V TZV )

(3)

where Z = P −Q.
Add these two regularization terms to the original cost
function. The cost function can be written as

C = ∥X − UV T ∥2F + λ1tr(V
TLV ) + λ2tr(V

TZV )

=

N∑
i

N∑
j

(xij −
K∑

k=1

uikvjk)
2 +

1

2
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i,j

∥xi − xj∥2Wij

+
1

2

N∑
i,j

∥xi − xj∥2Qij

(4)
In this equation, parameter λ1 and λ2 control the contri-
bution of Euclidean distance and geographical distance in
the objective function.

2.2 Optimizing rules
To minimize the cost function, Equation (4), we first ex-
pand it to

C = Tr((X − UV T )(X − UV T )T ) + λ1Tr(V
TLV )

+ λ2Tr(V
TZV )

= Tr(XXT )− 2Tr(XV UT ) + Tr(UV TV UT )

+ λ1Tr(V
TLV ) + λ2Tr(V

TZV )
(5)

We define Lagrange multiplier αik and βjk for the con-
straints uik ≥ 0 and vjk ≥ 0, respectively. Therefore, by
defining A = [αik] and B = [βjk], the Lagrangian L is

L = Tr(XXT )− 2Tr(XV UT ) + Tr(UV TV UT )

+ λ1Tr(V
TLV ) + λ2Tr(V

TZV ) + Tr(AU) + Tr(BV )
(6)

The partial derivatives of L with respect to U , V are

∂L
∂U

= −2XV + 2UV TV +A (7)

∂L
∂V

=− 2XTU + 2V UTU + 2λ1LV + 2λ2ZV +B

(8)
Using the Karush-Kuhn-Tucker (KKT) conditions [16],
where αijuij = 0 and βijvij = 0, the following equa-
tions are obtained:

−(XV )ikuik + (UV TV )ikuik = 0 (9)

[−XTU + V UTU + λ1LV + λ2ZV ]jkvjk = 0 (10)

The updating rules for U and V can be written as:

uik ← uik
(XV )ik

(UV TV )ik
(11)

vjk ← vjk
XTU + λ1WVjk + λ2QVjk

V UTU + λ1DVjk + λ2PVjk
(12)

The convergence of updating rules can be proved using
an auxiliary function similar to the one used in [17].

3 Experiments
In this section, we evaluate the performance of proposed
algorithm for data clustering on different data set from
three satellite images. We compare our algorithm with
other methods like PCA, GNMF and so on.

3.1 Feature description
We create three data sets from three satellite images
shown in Figure 1, first image is color image and the rest
two are gray images. Among them, two data sets have 5
classes and each class contains 40 images. Another data
set has 4 classes and each class contains 50 images. We
use the raw data as the feature of each images for the ex-
periments.



(a) (b) (c)

Figure 1: Three satellite image data sets used in our experiments.

3.2 Evaluation metrics
We use two metrics to evaluate the performance of the
compared algorithms, namely accuracy (AC) and normal-
ized Mutual Information (nMI) [18]. The accuracy rep-
resents the percentage of correctly predicted groups com-
pared to the true labels. Given a dataset with N samples,
where for each sample, ci indicates its label given by the
dataset and li the label predicted by the algorithm, the
accuracy is defined as

AC =

∑N
i=1 δ (ci,map(li))

N
, (13)

where δ(x, y) is 1 if x = y and 0 otherwise, and map(li)
is a function that maps each label to the corresponding
label in the dataset. The permutation mapping is deter-
mined using the Kuhn-Munkres algorithm [19].
The similarity of two clusters is determined by normal-
ized mutual information. Given two sets of clusters
C = {c1, ..., ck} and Ć =

{
ć1, ..., ćḱ

}
, the mutual in-

formation metric is computed by

MI(C, Ć) =
∑

ci∈C,ćj∈Ć

p(ci, ćj) log
p(ci, ćj)

p(ci)p(ćj)
, (14)

where p(ci), p(ćj) represent the probability that an arbi-
trarily selected data point belongs to the clusters C or
Ćj , respectively, and p(ci, ćj) represents the joint prob-
ability that a point belongs to both clusters simultane-
ously. As the similarity of the two clusters increases,
the mutual information MI(C, Ć) increases from 0 to
max

{
H(C),H(Ć)

}
. H(C),H(Ć) represent the en-

tropy of the clusters C, Ć respectively.

nMI(C, Ć) =
MI(C, Ć)

max
{
H(C),H(Ć)

} . (15)

3.3 Design
For the experiments, we use the raw data of image as fea-
ture information. While finding the neighbors of a data
point on the graph, we choose the data point that has min-
imum Euclidean distance to current data point as near-
est neighbor and build an edge between them in graph,

namely set 1 in the W matrix. For the geographical dis-
tance, we choose θ = 200 meter. For a data point, only
the data points whose geographical distance to current
data point are less than 200 meter are considered as can-
didate neighbors. Among these neighbors, we choose 2
closest neighbors and build edges between them in graph,
namely set 1 in the Q matrix.

3.4 Result and Discussion
We compare the results of GeoNMF with applying K-
Means algorithm directly on original high dimension
data, PCA, NMF, GNMF, consider geographical distance
only, which is called Spatial NMF. From the figures we
can see that the performance of SNMF and GeoNMF out-
weighs the rest methods. The improvement is about 40%.
When we consider the geographical positions only, we
can get much better result than consider the features of
images. This verifies our proposal that images from close
geographical positions are prone to have comparing con-
tent that may not be easily distinguished by computer.
Compare GeoNMF and SNMF, we can find that if we
also consider the features of image, we can still get lit-
tle improvement, about 2%− 5% in accuracy and mutual
information. From all the results, we can draw a conclu-
sion that considering the geographical distance will help
the NMF with significant improvement. Compared with
Euclidean distance which is measured in feature domain,
the geographical distance dominant the influence of reg-
ularizer.

4 Conclusion
In this paper we have introduced a novel image repre-
sentation technique to represent the content of satellite
images content. Here, we used geometrical information
as well as the original features as constraints in the pro-
cess of non-negative matrix factorization to generate new
features from image content. Experimental results show
that the proposed method efficiently consider these both
information to generate discriminative features that lead
to higher accuracy in clustering applications. As future
work, it would be interesting to also investigate geomet-
ric information in other feature learning process such as
feature coding in the classification applications.
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Figure 2: Accuracy and mutual information for three data sets, city image, SAR with MGB feature, SAR with EEC
feature correspondingly.
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