
Technische Universität München
Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen

Stochastic Scheduling
with Precedence Constraints

Chris Pinkau

i3 7→

i2

Technische Universität München
Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen

Stochastisches Scheduling
mit Präzedenz-Relationen

Chris Pinkau

i3 7→

i2

Technische Universität München
Fakultät für Informatik
Lehrstuhl für Effiziente Algorithmen

Stochastic Scheduling with Precedence Constraints

Chris Pinkau

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Tobias Nipkow, Ph.D.

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Ernst W. Mayr

2. Univ.-Prof. Dr. Helmut Seidl

Die Dissertation wurde am 13.06.2016 bei der Technischen Universität München eingereicht
und durch die Fakultät für Informatik am 23.01.2017 angenommen.

ii

Abstract

Scheduling partially ordered tasks on several parallel processors has been a topic of many
scientific articles over the past 40 years. Mokotoff, Pinedo, and Lawler et al give many promi-
nent examples, some of them polynomially optimizable, others NP-hard. The landscape of
scheduling is vast, changing just one variable in the problem statement can dramatically alter
the process of finding results and the results themselves. One special branch of scheduling that
has been considered is stochastic scheduling, with stochastic processing times for the tasks,
subject to some probability distributions.

This thesis starts by examining the scheduling problem given by two processors, exponentially
distributed processing times, intree precedence constraints, and (expected) makespan opti-
mization. This specific problem has been polynomially solved many years ago by Chandy and
Reynolds, but, to our knowledge, has not been generalized to other distributions yet. This thesis
describes an optimal solution for the geometric distribution, and provides insights and experi-
mental results for the uniform and Erlang distributions.

We shed light on some strategies for general precedence constraints and the extension to three
processors by indicating characterizations of the proposed scheduling problems that may lead
to finding optimal strategies in future work.

iii

Zusammenfassung

Seit nun schon über 40 Jahren ist Scheduling von partiell geordneten Prozessen auf paralle-
len Systemen Thema zahlreicher wissenschaftlicher Arbeiten. Mokotoff, Pinedo, und Lawler
et al nennen einige der berühmtesten Beispiele, viele davon lösbar in Polynomialzeit, andere
wiederum sind NP-schwer. Das Spektrum von Scheduling ist reichhaltig, das Ändern einer Vari-
able in der Problembeschreibung kann zu großen Unterschieden in den Ergebnissen führen. Ein
großes Teilgebiet ist dabei das stochastische Scheduling, bei dem die Ausführungszeiten der
Prozesse stochastischer Fluktuation unterliegen, d.h., sie sind nicht deterministisch gegeben,
sondern durch Zufallsvariablen mit zugrundeliegenden Wahrscheinlichkeitsverteilungen
beschrieben.

Das Ausgangsproblem dieser Arbeit ist das Scheduling-Problem, das gegeben ist durch zwei
Prozessoren, exponentiell verteile Prozesszeiten, Präzedenzen in Form von Intrees, und Opti-
mierung der totalen (erwarteten) Laufzeit. Zu diesem Problem gibt es schon seit einiger Zeit
eine Polynomialzeit-Lösung von Chandy und Reynolds , doch ist es bisher (nach unserer Erken-
ntnis) noch nicht auf andere Verteilungen erweitert worden. Diese Arbeit zeigt den Beweis
einer optimalen Lösung für geometrisch verteile Prozesszeiten, und fasst Einblicke und experi-
mentelle Ergebnisse für gleichverteilte und Erlang-verteilte Prozesszeiten zusammen.

Außerdem befassen wir uns mit verschiedenen Strategien für allgemeine Präzedenzen und die
Erweiterung des Problems auf mehr als zwei Prozessoren, bei denen die genaue Untersuchung
von nicht-optimalen Strategien und deren Charakteristika zum Auffinden einer optimalen Strate-
gie für zukünftige Arbeiten führen könnte.

v

Contents

Abstract ii

List of Figures ix

Part I Introduction & Motivation 1

Part II Definitions & Concepts 5

1 General Scheduling Concepts 7

2 Task Characteristics 9

3 Optimality Criteria 10

4 Notation 12

5 Reductions between Scheduling Problems 12

6 The Highest-Level-First Scheduling Strategy 13

7 Configuration 14

8 Profile 15

Part III Mathematical Concepts 17

9 Sums and Series 19

10 Power Series and Generating Functions 21

11 Hypergeometric Summation 23

12 Integrals 24

13 Probability Theory 24

Part IV The Expected Makespan 29

14 Discrete Case 31

15 Continuous Case 32

vi

Part V The Exponential Distribution 33

16 Calculating the Expected Makespan 36

17 The Optimal Scheduling Strategy 38

18 Formulas for the Expected Makespan 44
18.1 Naive Approaches . 45
18.2 Using the Configuration Relation . 48
18.3 Using the Profile Relation . 51
18.4 Using the {h, b} values . 52
18.5 One Chain . 57
18.6 Two Chains . 57

18.6.1 Using the Combinatorial Approach to Find a Closed Form 57
18.6.2 Using Generating Functions to Find a Closed Form 60

18.7 k Chains . 66
18.7.1 Using the Combinatorial Approach . 66
18.7.2 Using Generating Functions for Specific Examples 70
18.7.3 Using a Stair Function for the General Case 71

18.8 Y-graphs and Psi-graphs . 80
18.9 Intree Decomposition . 81

Part VI The Geometric Distribution 87

19 Calculating the Expected Makespan 90

20 The Optimal Scheduling Strategy 93

Part VII The Uniform Distribution 97

21 Discrete Case 99

22 Continuous Case 102

23 Calculating the Expected Makespan 104
23.1 Discrete Case . 105
23.2 Continuous Case . 108

24 HLF and Uniform Processing Times 110

vii

Part VIII The Erlang Distribution 113

25 Calculating the Expected Makespan 116

26 The Generalized Erlang Distribution 120

27 HLF and Erlang processing times 121

Part IX General Precedence Constraints 129

28 Directed Acyclic Graphs 131
28.1 The Coffman-Graham Algorithm is not Optimal 131
28.2 The Chandy-Reynolds Algorithm is not Optimal 137
28.3 Static, Semi-Static, and Dynamic Scheduling Strategies 139

28.3.1 Level and Number of Descendants of a Task 143
28.3.2 Number of Induced Paths of a Task . 147

28.4 Choosing Pairs of Sources . 149

29 Calculating the Expected Makespan 154

30 sp-graphs 157

Part X Three Processors 161

31 Difference to the Deterministic Setting 163

32 Minimal Counterexamples 163
32.1 Supergraphs of Counterexamples . 166
32.2 Y-subgraphs of Counterexamples . 167

32.2.1 Fix one Source . 167
32.2.2 Fix two Sources . 168
32.2.3 Probability of Reaching Certain Y-subgraphs under Different Strategies . 170

33 Times of Busy and Idle Processors 173

34 More Differences to the Two Processor Case 174

35 HLF is Asymptotically Optimal 174

viii

Conclusion 177

Appendix Detailed Calculations 179

A Equivalence of Approaches for Exponential Processing Times 180

B Equivalence of Approaches for Geometric Processing Times 181

C Induction Bases for Exponential Processing Times 183

D Induction Bases for Geometric Processing Times 185

E Induction Bases for Uniform Processing Times 188

F Induction Bases for Erlang Processing Times 192

ix

List of Figures

Fig. 1 A Gantt chart. 8
Fig. 2 An intree with 10 tasks. 9
Fig. 3 An inforest and the corresponding intree with a supersink. 10
Fig. 4 Examples of configurations. 15
Fig. 5 Intrees with different profiles. 16
Fig. 6 Crucially different dominating paths. 40
Fig. 7 The profile does not say anything about the number of available tasks. 40
Fig. 8 Four intrees with G2 ∝ G1, G2 ∝ G3, G1 ∼ G3, and G4 is incomparable. 41
Fig. 9 G and G′ and their respective successor configurations. 42
Fig. 10 Different heads of the chain for the same intree. 45
Fig. 11 An intree with profile (1, 2, 3, 3). 46
Fig. 12 Hasse diagram for the configuration relation of the intree in Fig. 2. 49
Fig. 13 Four isomorphic intrees. 50
Fig. 14 A configuration and its successor configurations. 51
Fig. 15 Successor configurations can have different profiles. 52
Fig. 16 Hasse diagram for the profile relation of the intree in Fig. 2. 53
Fig. 17 Two different intrees with the same {h, b} values. 54
Fig. 18 Hasse diagram of the {h, b}-relation for the intree in Fig. 11. 56
Fig. 19 The lattice for the computation of aij via dynamic programming. 61
Fig. 20 Two configuration paths that lead from [2, 1, 1] to [1, 0, 0]. 67
Fig. 21 The chain grid for [5, 5, 4, 2]. 72
Fig. 22 Corresponding grids to some examples. 74
Fig. 23 The base cases of the recurrence relation . 75
Fig. 24 Examples for (18.21) and (18.22) on the left and right, respectively. 75
Fig. 25 The grids to be considered in the example from Fig. 21. 76
Fig. 26 The configuration graph for [4, 4, 3, 2]. 79
Fig. 27 A Y-graph Yr ,s,t . 80
Fig. 28 A Psi-graph Ψr ,s1,...,sk . 81
Fig. 29 An intree with width 2 and three join nodes on join levels i1, i2, and i3. 82
Fig. 30 HLF applied to the intree in Fig. 29. 82
Fig. 31 An intree with decomposition (G1, . . . , G4). 83
Fig. 32 The chain grid for [4, 3, 3, 2] and its simplified version without labels. 85
Fig. 33 G and G′ and their respective successor configurations. 95
Fig. 34 Case A: i < a and i > b − a. 101
Fig. 35 Case B: i < a and i < b − a. 101
Fig. 36 Case C: i ≥ a and i > b − a. 101
Fig. 37 Case D: i ≥ a and i < b − a. 101
Fig. 38 Case E: i < a and i = b − a. 102
Fig. 39 Case F: i ≥ a and i = b − a. 102

x

Fig. 40 Case A: i < a and i > b − a. 103
Fig. 41 Case B: i < a and i ≤ b − a. 104
Fig. 42 Case C: i ≥ a and i > b − a. 104
Fig. 43 Case D: i ≥ a and i ≤ b − a. 105
Fig. 44 The reduction from Erlang to exponential processing times. 121
Fig. 45 The configurations G and G′ and their respective successor configurations. . . . 124
Fig. 46 G, G′, and their successor configurations. 124
Fig. 47 G, G′, and their successor configurations. 125
Fig. 48 G, G′, and their successor configurations. 126
Fig. 49 G, G′, and their successor configurations. 127
Fig. 50 A dag and its corresponding optimal schedule. 132
Fig. 51 Part of the configuration graph for the Coffman-Graham scheduling strategy. . . . 133
Fig. 52 Part of the configuration graph for the optimal scheduling strategy. 134
Fig. 53 Two degenerated configurations. 135
Fig. 54 A dag’s χ-blocks are processed in order in an optimal schedule. 136
Fig. 55 Part of the configuration graph for an HLF. 138
Fig. 56 Different HLFs result in different makespans. 139
Fig. 57 The levels are static values. 140
Fig. 58 The α-values are static values. 140
Fig. 59 The number of tasks on the same level is semi-static. 140
Fig. 60 The number of ancestors of a task is semi-static. 141
Fig. 61 The tuple of the number of ancestors and descendants of a task is semi-static. . 141
Fig. 62 Part of a configuration graph for the strategy using the number of tasks on the

same level. 142
Fig. 63 Part of a configuration graph for the strategy using the number of ancestors. . . . 143
Fig. 64 Part of a configuration graph for a strategy always choosing one of the highest

sources. 144
Fig. 65 The tuple of the level and the number of descendants of a task. 144
Fig. 66 The optimal strategy for these graphs implies that 2|3 � 3|2. 145
Fig. 67 Four graphs that show (from left to right): 2|4�3|3, 3|3�2|5, 2|5�3|4, and 3|4�2|6.145
Fig. 68 The order of some x |y values. 146
Fig. 69 The four different possibilities for a task with values 3|4. 146
Fig. 70 The tuples 5|5 and 3|8 are incomparable. 147
Fig. 71 Only one edge makes the difference for the optimal strategy. 147
Fig. 72 Even for a big difference in the number of edges, 3|16 � 3|17. 148
Fig. 73 The number of induced paths of a task as a priority. 148
Fig. 74 Part of the configuration graph of an optimal HLF schedule for the left graph in

Fig. 71. 150
Fig. 75 Part of the configuration graph of an non-optimal HLF schedule for the right graph

in Fig. 71. 151
Fig. 76 Part of the configuration graph of an optimal schedule for the right graph in Fig. 71. 152

xi

Fig. 77 A dag with 16 tasks, which is optimally scheduled by a non-HLF. 153
Fig. 78 Induced subconfigurations of pairs of sources do not hold any value as a priority. 153
Fig. 79 An M-graph and i singular tasks. 154
Fig. 80 A dag consisting of two M-graphs. 154
Fig. 81 The recursive reduction of a sequence of three M-graphs. 156
Fig. 82 An incomplete bipartite graph with j + i nodes. 157
Fig. 83 The level-2 task with 16 successors is prioritized over the level-7 tasks, i.e., 7|6 �

2|16. 157
Fig. 84 The parallel and series compositions of two different two-terminal sp-graphs. . . 159
Fig. 85 A counterexample to HLF for sp-graphs. 159
Fig. 86 Not all dags can be created as an sp-graph. 160
Fig. 87 One of the minimal counterexamples to HLF. 164
Fig. 88 Another smallest counterexample to HLF. 165
Fig. 89 Supergraphs of the graph in Fig. 87 which are also not optimally scheduled by HLF.166
Fig. 90 Supergraphs of the graph in Fig. 88 which are also not optimally scheduled by HLF.166
Fig. 91 Gd ,`. 167
Fig. 92 The product of probability and sum of makespans does not work as a priority. . . 168
Fig. 93 The sum of makespans alone does also not work as a priority. 169
Fig. 94 The values for the example graph from Fig. 92, this time with two fixed sources. . 169
Fig. 95 The values for the example graph from Fig. 93, this time with two fixed sources. . 170
Fig. 96 Part of the configuration graph of the graph in Fig. 88 using HLF. 171
Fig. 97 Part of the configuration graph of the graph in Fig. 88 using the optimal strategy. . 172
Fig. 98 Optimizing T1 or T3 does not necessarily yield an optimal schedule. 173
Fig. 99 Same profiles do not infer same optimal strategies. 174
Fig. 100The intree [5, 3]. 180
Fig. 101An intree with expected makespan 190

27 . 181

Listings

18.1 Mathematica code for (18.5). The execution yields the expression in (18.6). . . . 60
18.2 Mathematica code for (18.7), resulting in (18.8). 60
25.1 Mathematica code for reproducing the formulas from Part V by setting k = 1

and/or t = 0 in the formulas from above. 120
F.1 Mathematica expressions for the values from case k = 2 from above. 194
F.2 Mathematica expressions for the values from case k = 3 from above. 195
F.3 Mathematica expressions for the values from Calculations 25 and 26. 197
F.4 Mathematica expressions for the values from Calculations 27 and 28. 200

Part I

Introduction & Motivation

2

3

Suppose we are given several tasks that need to be processed on several machines or pro-
cessors. Then we require some scheduling strategy that provides an algorithm that determines
the order and on which processors the tasks should be processed. The result, i.e., a listing of
what every processor is doing at each time point, is called a schedule (More mathematically for-
mal definitions will follow later). The landscape of scheduling is vast, Mokotoff [42] compiled a
survey covering many important deterministic scheduling problems, the same is true for Lawler
et al [37]. For a quick overview of deterministic as well as stochastic scheduling we refer to a
book of Pinedo [47]. There are many different variables that can be tempered with to obtain
thousands of very different scheduling problems.
Consider a very basic setting: there are several parallel and identical processors available, as
well as some number of tasks, and the objective is to derive a schedule that minimizes the
total time it takes to process all tasks on those processors. This problem is NP-hard [26].
Even the restriction to only two processors is NP-hard [39]. In fact, both problems belong to a
class of combinatorial optimization problems, for many of which the hardness was also proven
[16, 33]. However, restricting these problems further in certain directions may very well make
them tractable, for example the problem with a fixed number of processors, unit processing
times, and general precedences is still open and might be polynomially solvable, whereas the
variant with the same restrictions but arbitrary number of processors is proven to be NP-hard
[55].
All of the aforementioned results only deal with deterministic scheduling, whereas, in this work,
we focus on stochastic scheduling, meaning that the processing times of the tasks – i.e., the
time needed for the tasks to be fully processed – are not fixed constant values, but rather take
values according to some probability distributions. The two easiest distributions (apart from
trivial distributions) that can be taken into account are the geometric distribution in the discrete
case and the exponential distribution in the continuous case. The simplicity comes from the fact
both are memoryless (see Parts V and VI for a definition and further results), and they are the
only two distributions that have this property.
Furthermore, it may be the case that not all the tasks are available in the beginning, so a valid
scheduling strategy may not choose from all tasks, but only from all available tasks. We impose
certain restrictions on the set of tasks, called precedence constraints (or precedence relations
or just precedences), which describe that some tasks need others to be fully processed before
they can be chosen for being processes themselves. As an example, consider a cooking recipe.
For some steps in the recipe, others have to precede them, e.g. noodles may only be put into
the pot when the water is already boiling, so the task “heat water until it boils” has to precede
the task “put noodles into water”, which in turn has to precede “mix noodles with sauce”, and
so on. There are many different scenarios for precedence constraints as well. Some task may
be allowed to depend on more than some other task, or may be critical for more than one other
task as well. However, one relationship should not be allowed for the precedence constraints: a
mutual dependence of two (or more) tasks, meaning that one task would need the other to be
fully processed to be available, and vice versa.

4

The overall goal of such a scheduling strategy is to optimize some objective function. There
are many possibilities to define such a function. Probably, the most natural way would be to
try to minimize the total time the schedule needs, i.e., the time point at which the last task is
finished on any processor. This is often called the makespan, and is the objective function we
will use in all of our problems. We will mention a few more common objective functions later on
in Chapter 3.
In all cases in this work, we will not impose more restrictions on our problems. So, for example,
we will not allow:

• preemption (a processor that is processing a task may interrupt its current work to
process another task and it or another processor continues processing the interrupted
task later on),

• shop scheduling (a task has to be processed by several processors in a certain order),

• that the processors have different speeds with which they can process the tasks,

• that some tasks may only be scheduled on certain processors,

• deadlines, meaning that tasks have to be finished by a certain time point.

The basic scheduling problem that is the origin of all this work is the case with two parallel,
identical processors, processing times which are all independent and identically distributed ac-
cording to an exponential distribution with mean value 1, and an underlying precedence relation
which forms an intree (for the definition, see Chapter 2). This means that no task can have
more than one task that directly depends on it, but may itself depend on any number of other
tasks. The objective is to minimize the expected makespan, i.e., the total expected time needed
to completely process all tasks. The optimal scheduling strategy for this particular problem was
proven some decades ago by Chandy and Reynolds [12], but many similar problems are still
open. We try to find simplified and/or closed formulae for the already proven parts and solutions
for open problems. These open problems include assuming other precedence relations, other
distributions for the processing times, a higher number of processors, or a combination of those.
The first part of this thesis provides an introduction to the topic of scheduling. In the second
part, we define the basic concepts of scheduling theory and introduce our notations of these
concepts. Part three deals with the mathematical basics such as sums, series, or probability
theory. The next short part is devoted to the general way of calculating the expected makespan.
With part five, we begin to examine certain stochastic scheduling problems, with the two proces-
sor problem using exponentially distributed processing times and intree precedence constraints
being the first to be considered in this part. The next part is a brief discussion of its discrete
counterpart, using geometrically distributed processing times instead. Parts seven and eight
consider yet two other distributions and their implications: the uniform distributions, and the
Erlang distribution. Part nine follows with a discussion and simulations for general precedence
constraints, followed by part ten which is about using three processors. The last part sums up
and concludes this work.

Part II

Definitions & Concepts

Table of Contents

1 General Scheduling Concepts 7

2 Task Characteristics 9

3 Optimality Criteria 10

4 Notation 12

5 Reductions between Scheduling Problems 12

6 The Highest-Level-First Scheduling Strategy 13

7 Configuration 14

8 Profile 15

7

1 General Scheduling Concepts

First, we will have some definitions to properly classify our problem(s).

Definition 1 (Task). A task (or job) is given by an identifier (id) or a name and its processing
time which describes the time it takes a processor of unit speed to fully process this task.

Usually, the tasks are given as a set, and their names are identical to their respective ids, and
given as a list (x1, . . . , xn). Throughout this work we use pi as the processing time of the task
with id xi (they share the index i), and n as the total number of tasks (unless specifically stated
otherwise). The set of all tasks is denoted by T .
A task is called available at a given time point if it can be chosen to be processed by a processor
at that time point. Reasons why a task might not be available can be seen in Chapter 2. A task
is called active at a given time point if it is currently being processed by a processor at that time
point.
In deterministic scheduling, the processing times of the tasks are fixed. They may differ from
one task to another, but they will always be known values. In the case of stochastic scheduling,
the processing times of the tasks are given by random variables, and may take on many different
values in general. Scheduling problems may differ greatly whenever the constraints on the tasks’
processing times are altered (in deterministic and in stochastic scheduling). In this work, the
random variables are all independent and identically distributed according to some well-known
probability distributions. Different distributions are studied, as well as their commonalities and
differences.
What follows next is a definition that deals with the question of when exactly an algorithm has
to choose a task.

Definition 2 (Decision Point). A decision point is a point in time when a processor finishes
processing a task and becomes ready for processing a next one. A processor which is ready
for processing a task is called idle.

In preemptive scheduling, every time point can potentially be a decision point. However, when
preemption is not allowed, the above definition completely characterizes decision points. In the
following, we will use that definition.

Definition 3 (Scheduling Strategy). Let T be a set of tasks. Given a set of m processors, a
scheduling strategy determines, at any decision point, which available task (if any) is assigned
to which idle processor.

In all of our cases, we will deal with identical processors. Because of this, it is of no use for us
to distinguish between them. Although a general scheduling strategy would assign an available
task to a specific idle processor, we just say that a task is being scheduled and processed
by some processor. There may also be another layer introduced in this process by having a
Processor Allocation Strategy that assigns chosen available tasks to processors in a specific
manner. As mentioned before, this extra layer could be useful when dealing with non-identical

8

processors. In our case, we can have any processor allocation strategy, which is why we do not
mention it any further at all.

Definition 4 (Schedule). A schedule is a map S : R+
0 7→ (T ∪ {∅})m, that is determined by an

underlying scheduling strategy and denotes, at any point in time, the allocation of the processors
to the tasks.

In our case of non-preemptive scheduling, a schedule could also be defined as a list for each
processor, where each list contains the starting times of all tasks that are processed on this
processor along with their ids.
Schedules are often depicted by Gantt charts (invented/formalized by Clark in [13]). The Gantt
chart of a possible schedule for some set of tasks T = {x1, . . . , x10} can be seen in Fig. 1.

Processor P1 x1 x5 x9 x10

Processor P2 x2 x3 x4 ∅ x6 x7 ∅ x8

Time t
0 5 10 15

Fig. 1: A Gantt chart.

Using the mathematical definition above, the schedule seen in Fig. 1, can also be given by

S(t) =



(x1, x2) for t ∈ [0, 3)

(x1, x3) for t ∈ [3, 5.5)

(x1, x4) for t ∈ [5.5, 6)

(x5, x4) for t ∈ [6, 8)

(x5,∅) for t ∈ [8, 9.5)

(x5, x6) for t ∈ [9.5, 10.5)

(x5, x7) for t ∈ [10.5, 12)

(x5,∅) for t ∈ [12, 13.5)

(x5, x8) for t ∈ [13.5, 14)

(x9, x8) for t ∈ [14, 15.5)

(x9,∅) for t ∈ [15.5, 16)

(x10,∅) for t ∈ [16, 17)

(∅,∅) for t ∈ [17,∞).

Equivalently, the list of starting times for this schedule are

(0, x1), (6, x5), (14, x9), (16, x10)

for the first processor P1, and for the second processor P2:

(0, x2), (3, x3), (5.5, x4), (9.5, x6), (10.5, x7), (13.5, x8).

9

2 Task Characteristics

Definition 5 (Precedence Relation). Let T be a set of tasks. A precedence relation (or prece-
dence constraints or just precedences) R is a partial order on the set T . If a task i has to be
finished before another task j becomes available to be processed, then (i , j) ∈ R. In this case, j
is a (direct) successor of i , and i is a (direct) predecessor of j .

If R contains a sequence (k1, k2), . . . , (kr−1, kr) with i = k1 and j = kr for some r ≥ 2, then we
say that j is a descendant of i , and i is an ancestor of j .
Usually, we picture a precedence relation by its corresponding Hasse diagram [6] with an arc
from task i to task j if (i , j) ∈ R∗, i.e. (i , j) is in the transitive reduction of R. The convention is that
the direction of the arcs in the diagram go from the top to the bottom, thus the arcs can be drawn
as normal edges, see Fig. 2 for an example. Available tasks, i.e., tasks without predecessors,
are also called sources.
In general, the corresponding graph to a precedence relation can be a directed acyclic graph, or
dag for short. It is directed as a precedence relation should not be symmetric, and it is acyclic,
because a cycle within a precedence relation implies that two tasks depend on each other, a
situation which can never be solved. However, for most of this work, we restrict ourselves to a
special case of a dag.

Definition 6 (Intree). Let G = (V , E) be a graph. G is an intree, if it is acyclic and connected,
and every node in V has outdegree at most 1.

Each intree G contains one distinct node with outdegree 0, called the root (or sink) of G. See
Fig. 2 for example.

=

Fig. 2: An intree with 10 tasks.

Definition 7 (Inforest). A graph whose connected components are intrees is called an inforest .

An inforest may have several nodes with outdegree 0 and might no longer be connected, see
Fig. 3. Connecting all roots/sinks of an inforest to a common supersink results in an intree again.
This supersink is depicted by the white node in Fig. 3.
In the following, we write about a task whenever we mean the scheduling concept, and write
about a node whenever we mean the graph theoretical object. As each task is represented by
a node in the figures, sometimes these two notions can be used interchangeably.
Notice that in Fig. 2 and Fig. 3 we do not give names to the tasks like we did for the tasks in
Fig. 1. Most of the times, we do not care about them anyway because the optimal schedule is

10

7→

Fig. 3: An inforest and the corresponding intree with a supersink.

not affected by the naming scheme of the tasks. This is why we name the tasks in our examples
in a way that we deem easiest or most appropriate. This means that isomorphic (with respect
to naming the tasks) precedence graphs are considered identical. Actually, the names only
become important when a final schedule is calculated and we want to visualize it in form of a
Gantt chart or something similar, cp. Fig. 1.

3 Optimality Criteria

The last thing to be defined to characterize a scheduling problem is the optimality criterion that
is used. This is done by an objective function that, most of the times, depends on the finishing
times of the tasks. There is a whole variety of objective functions, some of which are explained
below. We will focus on the very common makespan.
Denote the finishing time (or completion time) of task i by Ci , i.e., the time task i is fully pro-
cessed on any processor. The two most common types of objective functions are either

max{fi (Ci) : i = 1, . . . , n}

or
n∑

i=1

fi (Ci)

where the fi ’s are special functions. Most of the times, the index is dropped from the notation as
it is often obvious that i ranges over all tasks.

Definition 8 (Makespan). The makespan, denoted by Cmax, is the time at which the last task
finishes, i.e.,

Cmax = max{Ci : i = 1, . . . , n}.

Given a precedence relation by a graph G, we also call the makespan the processing time of
G.
The optimality criterion which we use throughout this work is to minimize the makespan, i.e., to
minimize the time at which the last task finishes. In other words, we want to find a scheduling
strategy that results in the shortest (in terms of time) schedule that processes all tasks.
Other common objective functions (taken from [8]) are mentioned below, but will not be dis-
cussed any further in this work.

11

Consider a scenario with given deadlines (or due dates) di for each task i . Then the following
values can be defined

Li = Ci − di lateness,

Ei = max{0, di − Ci} earliness,

Ti = max{0, Ci − di} tardiness,

Di = |Ci − di | absolute deviation,

Si = (Ci − di)2 squared deviation,

Ui =

{
0 Ci ≤ di

1 otherwise
unit penalty.

Many different objective functions can be generated from these values, e.g. the sum of the
finishing times

∑
Ci or the maximum lateness Lmax = max{Li : i = 1, . . . , n}. Other common

objective functions are
∑

Ti ,
∑

wiTi (with weights wi),
∑

Ui ,
∑

wiUi , and other combinations
of the values above.

Definition 9 (Optimality). Given a scheduling problem, a scheduling strategy is optimal if, for
any given set of tasks, the resulting schedule optimizes the objective function. Here, it means
that there is no other scheduling strategy that results in a smaller makespan, i.e., a shorter
schedule.

As we consider stochastic scheduling, and have to deal with probabilistic measures, the defini-
tion of our objective has to be changed a little bit.

Definition 10 (Expected Makespan). The expected makespan, denoted by E(Cmax), is the ex-
pected time at which the last task finishes, i.e.,

E(Cmax) = E(max{Ci : i = 1, . . . , n}) ,

where the expected value is taken over all possibilities that can occur according to the given
distributions and scheduling strategy.
This is also called the expected processing time of G for a given precedence relation G.

In the same way, the definition of optimality must be adjusted for our purposes.

Definition 11 (Expected Makespan Optimality). Given a scheduling problem, a scheduling strat-
egy is optimal if, for any given set of tasks, the resulting schedule minimizes the expected
makespan.

Here, this means that there is no other scheduling strategy that results in smaller value for the
expected makespan. Note that there may now be many different schedules as a result from
only one scheduling strategy because of the stochastic nature of the problem. For two different
scheduling strategies for the same problem, it may even be the case that one of those strategies
is optimal, although the other one produces a shorter schedule in some specific instances. Of

12

course, the issue with a stochastic setting is that we can never be sure at which instances of
a problem we are looking at, and what the processing times are. This is the reason why we
have to optimize the expected values taken over the probability space of all possible resulting
schedules.

4 Notation

A short notation to characterize a scheduling problem was introduced in [30]. The format is
α|β|γ with the following.

α: The machine environment. In our case, this is typically just two or three parallel iden-
tical (P) machines, but there are a lot of possibilities to characterize this, e.g. uniform
machines (Q), unrelated machines (R), job shop (J), flow shop (F), and many more.
Because we will always focus on identical machines, we will drop the letter P in the
notation and only denote the number of processors.

β: The task characteristics as described in Chapter 2. Here we describe up to six different
properties of the tasks, separated by a semicolon:

– If preemption is allowed, then we write pmtn.

– If there are precedence relations, then we write e.g. prec (for general directed
acyclic graphs). More specific cases like intree, chains, or sp-graph (for series-
parallel graphs) are possible as well.

– If release dates are specified, then we write ri . A release date ri denotes that task i
is not available before time ri , even if it has no predecessors.

– The processing requirements are described, like pi = 1 (unit processing require-
ments) or pi ∈ {1, 2}, or stochastic processing requirements like e.g. pi ∼ exp(λ)
(unless specified otherwise, the mentioned distributions are always independent
and identical).

– If deadlines are specified, then we write di .

– If batching is required, then we write p-batch or s-batch. Batching describes group-
ing the tasks into several blocks/batches and then schedule these batches.

γ: The optimality criterion as described above. Here we write e.g. Lmax,
∑

Ti , or some
stochastic criterion like E(Cmax).

Many of the characterizations above will not show up in this work, but it should be clear that the
tiniest change in one of those characteristics can make way for a whole new family of scheduling
problems. We will only consider a glimpse of some of those problems, see [8] for a more
elaborate description and some more examples.
The above notation has been widely accepted as standard notation and is also used in this
work.

13

5 Reductions between Scheduling Problems

Because of the many different characteristics we defined above, there are hundreds of different
scheduling problems. Some of those can be reduced to others, meaning some are just special
cases of others. For example, consider a scheduling problem with unrelated parallel machines.
Then any scheduling strategy for this problem will also work for identical machines, but not nec-
essarily vice versa. An example which is more suited to the scheduling problems we deal with
here in this work is that any strategy for a scheduling problem with intree precedence constraints
will also work if the precedence constraints are just chains. Of course, this is because a graph
of chains is always an inforest, and we have seen in Fig. 3 that an inforest can be reduced to
an intree. These kinds of reductions do not necessarily show us the easiest scheduling strategy
as that may simplify when the considered scheduling problem is simplified as well. But if the
considered strategy is optimal for intrees for example, then it surely is optimal for a graph of
chains, too.

6 The Highest-Level-First Scheduling Strategy

Definition 12 (Level). Given an intree G = (V , E) and v ∈ V , define level(v) as the number of
edges on a path from v to the root of G, called the level of v .

Let L denote the maximum level of any node, i.e., the length of a longest path going to the
root. Whenever it is obvious from the context which tasks are at level 0, then we can use the
concept of a level even for inforests or dags. Usually, the level-0-tasks are the ones which have
no successors.
Throughout a great part of this work, we will focus on a very famous scheduling strategy, namely
the highest-level-first scheduling strategy.

Definition 13 (HLF). The highest-level-first (HLF) scheduling strategy assigns to idle proces-
sors the highest possible available tasks.

In general, there may exist several HLF scheduling strategies. If there are more available tasks
on the highest level than we have idle processors, even an HLF scheduling strategy must make
a choice. Thus, there are two different types of optimality regarding HLF scheduling strategies:

1. There exists an HLF scheduling strategy that is optimal for the given scheduling problem.

2. All HLF scheduling strategies are optimal for the given scheduling problem.

The first type is shown by proving that one specific HLF scheduling strategy is optimal. The
second type can be proven in two ways:

• The claims and results are proven given arbitrary HLF scheduling strategies.

• The claims and results are proven given one specific HLF scheduling strategy, then the
different strategies are proven to be equivalent.

14

In examples, we will use the level-oriented HLF scheduling strategy as defined in the following
definition. In the theory section, we will prove the results using the first way and consider
arbitrary HLF scheduling strategies. The first distinction between “existential optimality” and
“universal optimality” is not particularly interesting in this chapter, but we will see more remarks
about this in Part X.

Definition 14 (Level-oriented Topological Sorting). Given an intree G, we define a level-oriented
topological sorting as a bijection from the set of tasks T to {1, . . . , n} with the following:
The root is assigned 1, its k predecessors are assigned the numbers 2, 3, . . . , k + 1, their pre-
decessors are assigned the next available numbers, and so on, assigning numbers to a task at
level i only if all tasks at level i − 1 have already been assigned numbers.

Whenever we draw an intree or a precedence relation, respectively, we position the tasks with
respect to the level-oriented topological sorting, i.e. within a level the numbering forms an
increasing sequence when going from left to right. Since we interpret the level-oriented topo-
logical sorting with priorities for the tasks, for an HLF scheduling strategy this means that tasks
on the same level are chosen to be processed from left to right if available.
Whenever we want to refer to the specific HLF scheduling strategy that breaks ties between
equally high tasks by using the level-oriented topological sorting, we call this scheduling strategy
“level-oriented HLF ”.
In the following, we shorten the notation and use “HLF ” (written in italics) as a placeholder for
“HLF scheduling strategy” in general.

7 Configuration

Earlier, in Definition 2, we defined the concept of a decision point. Like the name suggests,
a decision point is a point in time in the schedule when the scheduling strategy has to decide
what to do next, i.e., which tasks to process on which processors, if any. And since we do not
allow preemption in our schedules, a scheduling strategy cannot make any decisions between
two decision points. This means that for the scheduling strategy, the state of the schedule
during those intervals is not relevant, its choices only depend on the state of the schedule at the
current decision point. To this end, we have the following definition to incorporate all relevant
information at a decision point.

Definition 15 (Configuration). Let G be a precedence relation. A configuration of a scheduling
strategy at a given decision point is defined as the tuple (G′, L), where G′ ⊆ G describes the
remaining tasks, and L ⊆ T × R is a list of currently active tasks along with their respective
already processed times, with |L| ≤ m − 1 where m denotes the number of processors used by
the scheduling strategy.

We observe that not all possible combinations of subgraphs G′ of G and task lists L are config-
urations that can occur. G′ has to be an appropriate subgraph of G, and in the case where G

15

is an intree, G′ has to be an intree as well. In the following, we will use m = 2 processors, but
the definition of a configuration allows us to make that distinction. We could also allow the case
where all processors are not identical, then the list of active tasks L has to model a mapping to
the processors as well. In this work, only identical processors are considered.
Usually, we depict configurations by drawing the underlying graph and marking the active tasks
instead of giving the tuple as defined in Definition 15. In Fig. 4 we can see three examples of a
configuration, all based on the same graph G. The configuration on the left has no active tasks,
so the graph itself represents the configuration (G,∅) – or just G. The middle configuration is
(G, (x1 : i)), depicted by the graph G with one marked (crossed) task, which has been processed
for i time units so far. The configuration on the left has two active tasks, one processed for j ,
the other for k time units, respectively. The corresponding formal notation is (G, (x1 : j , x4 : k)).
Observe that this is not an HLF configuration for an intree such as G, as the task x4 was
scheduled (and is being processed) before x3.

x6

x4 x5

x2

x1

x3

(G,∅) = G

i

(G, (x1 : i))

k

j

(G, (x1 : j , x4 :k))

Fig. 4: Examples of configurations.

Definition 16. Let G be an intree, c a configuration of G, and S a scheduling strategy. Then
CSc (c) denotes the expected makespan of a schedule according to S of the configuration c.
If S is any HLF, then we drop the superscript and just write Cc

(
c
)
.

We sometimes also write Cc
(
G
)

for the configuration that represents the intree G without any
active tasks. Alternatively, we sometimes provide G, or c, respectively, as a drawn image.

8 Profile

Definition 17 (Profile). Given a graph G = (V , E) with well-defined levels, define the profile of G
as the sequence profile(G) = (p1, p2, . . . , pL), with pi the number of tasks on level i , 1 ≤ i ≤ L.

Let L′ denote the highest level with pL′ > 1, if available. Otherwise, i.e., if G is a chain, then L′ is
not defined. Note that if there is more than one task on the highest level L, then L′ = L. Fig. 5
shows two different intrees, with profiles (1, 2, 4, 3) and (1, 1, 4, 3, 1), respectively.
Now, we have defined enough concepts to have a first small result.

16

level

0

1

2

L = L′ = 3

(1, 2, 4, 3)

level

0

1

2

L′ = 3

L = 4

(1, 1, 4, 3, 1)

Fig. 5: Intrees with different profiles.

Lemma 18. Let G be an intree with profile (p1, . . . , pL). If pL ≥ 2, then the two highest sources
are at level L. Otherwise, the highest source is at level L and the second highest source is at
level L′.

Proof. Tasks at level L are all sources, so if pL ≥ 2, the claim is obvious.
If pL = 1, start searching for the second highest source at the level below. We know that one
task at this level has a predecessor in level L, thus is not a source. So, if pL−1 = 1, continue
searching at the level below, and so on. At the first level L′ we encounter with pL′ > 1, we
have one task with a predecessor at level L′ + 1. Since G is an intree, all encountered tasks so
far have exactly one successor each. Hence, at least one other task at level L′ is without any
predecessor, i.e. a source.

We define the notation (p1, . . . , pL, 0, . . . , 0) to be equal to (p1, . . . , pL), i.e., empty levels can
always be added to the top of the intree. Then the highest level is defined as the highest level
with at least one task on it. This way we can have the notation (p1, . . . , pL−1) even though level
L might now be empty, i.e., pL − 1 = 0.

Definition 19. Let G be an intree with profile p, and S a scheduling strategy. Then, CSp (p)
denotes the expected makespan of a schedule according to S of any configuration with profile
p.
If S is any HLF, then we write Cp

(
p
)
.

We will show in Chapter 17 that this definition is actually well-defined and makes sense.

Part III

Mathematical Concepts

Table of Contents

9 Sums and Series 19

10 Power Series and Generating Functions 21

11 Hypergeometric Summation 23

12 Integrals 24

13 Probability Theory 24

19

In this subsection, we will define a few mathematical tools that we need for our analyses in the
subsections afterwards. Most of the definitions and explanations come from [29, 17].

9 Sums and Series

We adopt the usual notation for sums, namely

a1 + a2 + · · · + an (9.1)

with the ellipsis mark (the three dots . . .), or, most of the times,

n∑
i=1

ai (9.2)

with appropriate lower and upper (inclusive) limits, 1 and n here. This notation was introduced
by Joseph Fourier in 1820, e.g. reprinted in [11], and has been used ever since. In general, the
limits can be replaced by any conditions that describe the set of indices used for the summation.
We have already seen this notation in Chapter 3 on page 10, but it should have been known to
the reader even before that anyway.
A series describes an infinite sum, i.e., a sum like

∞∑
i=1

ai =
∑
i≥1

ai ,

where there is no upper limit for the summation index i .
Although a series is the sum over infinite terms, it may very well have a finite value. In fact, there
are a lot of those converging series, e.g. the geometric series:∑

i≥0

x i =
1

1− x
(9.3)

for any real number x with |x | < 1 (it should be obvious that this series does not converge if
|x | ≥ 1). There is also an analogous result about finite geometric sums, i.e.,

n∑
i=0

x i =
1− xn+1

1− x
, (9.4)

which holds for any x ∈ R \ {1}. For more details, we again refer to [29].
We also use multi-dimensional sums and series, which use more than one summation index. To
this end, let (aij : i , j ∈ N) be a two-dimensional sequence with the indices i and j both ranging
over all natural numbers N. Then we either write a two-dimensional sum following the notation

20

of (9.1) as

a11 + a12 + · · · + a1m

+ a21 + a22 + · · · + a2m

...

+ an1 + an2 + · · · + anm

or following the notation of (9.2) in a shorter way as

n∑
i=1

 m∑
j=1

aij

 ,

and in general, the parentheses are not used. Similarly, we can have the series∑
i≥1

∑
j≥1

aij =
∑
i ,j≥1

aij , (9.5)

ranging over all natural numbers again. However, the notation on the right in (9.5) is not pre-
ferred as it can easily be overlooked that this describes a two-dimensional series, because it
only uses one summation sign. Similarly, we may use sums or series with higher dimensions
than two.
The more interesting thing about more-dimensional sums and series is that sometimes we can
change the order of summation (in particular, this can be done if the sums or series converge).
For example, because addition is commutative, the following identity holds:∑

i≥1

∑
j≥1

aij =
∑
j≥1

∑
i≥1

aij .

We can make use of this property whenever summing over one index first would yield an easier
intermediate results than when summing over the other first.

Binomial Coefficients

In all this work, combinatorics is omnipresent. It deals with counting certain objects or elements.
A widely-used example in this work is the question “How many possible pairs of available tasks
can we choose?”, or “How many possible ways can a schedule go along to arrive at a certain
configuration?”. For both of these examples we use binomial coefficients, that count the number
of k -element subsets from an n-element set.

Lemma 20 (Binomial Coefficients). The binomial coefficient
(n

k

)
, read “n choose k”, denotes the

number of k-element subsets of an n-element set, and is equal to

n(n − 1) · · · (n − k + 1)
k !

=
n!

k !(n − k)!
,

where n! = n · (n − 1) · · · 2 · 1 denotes the factorial of n, i.e., the product of all natural numbers
up to (and including) n.

21

A proof for Lemma 20 can be found in [15].
There are many different identities and inequalities using binomial coefficients, for example in
[28, 27]. One we will use more often than others is(

n
k

)
=
(

n
n − k

)
.

Considering the interpretation of binomial coefficients as choosing k out of n elements, this
should be obvious, as there is the same number of possibilities for choosing the remaining n−k
elements instead of choosing the k elements themselves. Another identity used in this work is
the following.

Theorem 21 (Binomial Theorem). Let a, b ∈ R and n ∈ N0. Then

(a + b)n =
n∑

k=0

(
n
k

)
ak bn−k .

The name “Binomial Theorem” refers to different versions of this identity (sometimes using real
numbers n and so on) depending on the source material. Our version is the one seen in [3].1

The proof is left as an easy exercise.

10 Power Series and Generating Functions

A power series in one (auxiliary) variable is a series of the form∑
i≥0

aiz i (10.1)

for a sequence (ai : i ≥ 0) and a complex variable z. It can be seen as a generalization of a
polynomial to infinite degree. We have already seen a power series before, the geometric series
in (9.3) is one with ai = 1 for all i ≥ 0. A generating function for a given sequence (ai : i ≥ 0) is
exactly that power series in (10.1), i.e., the generating function of (ai : i ≥ 0) is

A(z) =
∑
i≥0

aiz i .

Again, there are countless examples of converging power series and generating functions that
have a closed form. We want to give two short examples. First, consider the geometric series
from (9.3) again, then we have that the generating function for the sequence (1, 1, 1, . . .) is
A(z) = 1

1−z for |z| < 1. As a second example we have seen in Theorem 21 and in its footnote,
that (1 + z)n is the generating function of the sequence (

(n
i

)
: i ≥ 0). The most interesting thing

1One can also show that (a + b)n =
∑

k≥0
(n

k

)
ak bn−k (with an infinite summation) if the binomial coefficients are

properly defined to be 0 for k > n. But the interpretation tells us that these should be equal to 0 anyway, so this identity
holds as well.

22

about these examples is that some infinite sequences can be represented entirely by short
formulas, i.e., their behaviors are encoded in the closed forms.
As with sums and series in the subsections before, we can generalize this concept to higher
dimensions as well. For example, the generating function of a two-dimensional series (aij : i , j ≥
0) is given by

A(x , y) =
∑
i≥0

∑
j≥0

aijx iy j ,

which is now a function in two variables x and y .
A short introduction as well as many detailed tools for dealing with generating functions can be
found in [54].

Convolution

Now, consider two sequences (ai : i ≥ 0) and (bi : i ≥ 0) with corresponding generating
functions A(z) and B(z), respectively. Then the product of these two generating functions is

A(z) · B(z) =

∑
i≥0

aiz i

 ·
∑

i≥0

biz i

 ,

which itself is a power series, as seen in the following lemma.

Lemma 22 (Convolution). Let (ai : i ≥ 0), (bi : i ≥ 0) be sequences with corresponding power
series

∑
i≥0

aiz i and
∑
i≥0

biz i , respectively. Then,

∑
i≥0

aiz i

 ·
∑

i≥0

biz i

 =
∑
i≥0

 i∑
j=0

ajbi−j

 z i .

This lemma shows that the product of two power series is again a power series with coefficients

ci =
i∑

j=0

ajbi−j .

The sequence (ci : i ≥ 0) is called convolution of the sequences (ai) and (bi).
Generalizing this to two dimensions, we get the following.

Lemma 23 (Multivariate Convolution). Let (aij : i , j ≥ 0) and (bij : ij ≥ 0) be sequences with
corresponding generating functions

∑
i≥0

∑
j≥0

fijx iy j and
∑
i≥0

∑
j≥0

gijx iy j , respectively. Then,

∑
i≥0

∑
j≥0

aijx iy j

 ·
∑

i≥0

∑
j≥0

bijx iy j

 =
∑
i≥0

∑
j≥0

(
i∑

k=0

j∑
`=0

ak`bi−k ,j−`

)
x iy j .

23

In particular, the product of a two-dimensional power series
∑
i≥0

∑
j≥0

aijx iy j with a one-dimensional

power series
∑
i≥0

bix i can be calculated with

∑
i≥0

∑
j≥0

aijx iy j

 ·
∑

i≥0

bix i

 =
∑
i≥0

∑
j≥0

(
i∑

k=0

akjbi−k

)
x iy j .

The proofs for Lemma 22 and Lemma 23 are easy and left out here.

11 Hypergeometric Summation

A good introduction (and much more) to this topic can be found in [46].
We have seen an example of geometric summation in (9.3) in Chapter 9. To put it in a more
formal way, a geometric series has the property that the ratio of every two consecutive terms is
constant, i.e., for a geometric series

∑
i≥0 ai it must hold that ai+1/ai is a constant function of i .

Consider the example in (9.3), then it is easy to see that ai+1/ai = x , which is constant in i . This
means that all geometric series are of the form∑

i≥0

cx i .

A hypergeometric series does not have to have this property. However, the ratio of two consec-
utive terms must follow some constraints, namely that, for a series

∑
i≥0

ai ,

a0 = 1 and
ai+1

ai
=

P(i)
Q(i)

for two polynomial functions P and Q. This means that the ratio between two consecutive terms
is a rational function of the summation index i .
Now consider that P and Q are completely factored, which yields

ai+1

ai
=

P(i)
Q(i)

=
(i + a1)(i + a2) . . . (i + ap)

(i + b1)(i + b2) . . . (i + bq)(i + 1)
· x

with some constant x . Then, the notation for the hypergeometric series (or hypergeometric
function)

∑
i≥0

aix i is

pFq

[
a1a2 . . . ap

b1b2 . . . bq
; x
]

.

Maybe the best-known example of a hypergeometric series is the exponential series

exp(x) = ex =
∑
i≥0

xk

k !
.

24

Its ratio of consecutive terms is x /(i + 1), which gives

ex = 0F0

[−
− ; x

]
.

Identifying a series as a hypergeometric series is not trivial at all, and for most examples that
follow in this work, we used computer software to do that job for us, mostly Mathematica1 and
Maple2.

12 Integrals

Isaac Newton and Gottfried Leibniz independently invented the principle of integrals in the late
17th century, before Bernhard Riemann properly defined it in the 19th century. Intuitively, inte-
grals can be seen as a generalization of summations for an uncountable number of elements.
At least we use integrals in the same places as sums and series whenever the need arises. We
adopt the usual notation

b∫
a

f (x) dx

for an integral ranging over the interval [a, b] of the function f , and use the integration variable x
here. The choice of the integration variable depends on the context and on whichever variable
is already in use. In general we may also write∫

A

f (x) dx

for an appropriate region of integration A, which will be an interval most of the times.
The fundamental theorem of calculus [25] (or a corollary thereof, respectively) gives us a tool to
calculate an integral by

b∫
a

f (x) dx = [F (x)]ab = F (b)− F (a), (12.1)

where F is the antiderivative of the function f , i.e., d
dx F = f , whenever F exists.

13 Probability Theory

The following concepts can be found (among others) in [17, 23].
Probability theory is an essential tool for this work as we want to model the tasks’ processing
times with randomly distributed values and not deterministic, fixed ones.

1Version 10.1.0 for Linux x86 (64-bit)
2Version 2015 (X86 64 Linux)

25

First, we must have the sample space, a (possibly infinite) set of possible results of the experi-
ment or observation that we want to focus on. Each of those possible results is called elemen-
tary (or simple) event. One of our running examples throughout this subsection is tossing one
or multiple coins. For this experiment we have the sample space

Ω = {H, T},

where H and T stand for head and tail, respectively, the two outcomes of a coin toss. Similarly,
for tossing two coins, we get Ω = {HH, HT , TH, TT} (whenever the two coins are distinguish-
able). An event is a subset of the sample space, here for example, the event of tossing at least
one head E = {HH, HT , TH}. And because events are sets, they can be treated with the same
algebraic principles as all other sets, i.e., we can form the union of two events, intersections,
complements, differences, and so on.
We denote the probability of an event E by

P(E)

and define the probability measure P for all (elementary) events in Ω such that the following
axioms are fulfilled:

1. P(E) ≥ 0 for all events E ⊆ Ω.

2. P(Ω) = 1.

3. P(E ∪ F) = P(E) + P(F) for any two mutually exclusive events E , F ⊆ Ω, i.e., E ∩ F = ∅.

A probability distribution is a way to define the probability measure P.
The probability that any (or both) of the two events E and F occur is given by

P(E ∪ F) = P(E) + P(F)− P(E , F) ,

where P(E , F) denotes the probability of the two events E and F occurring simultaneously. If
P(E , F) = 0, then E and F are mutually exclusive or independent and

P(E ∪ F) = P(E) + P(F) .

A meaningful1 definition of the probability measure for the example with two coin tosses would
be

P(HH) = P(HT) = P(TH) = P(TT) =
1
4

,

describing that all possible outcomes are equally likely to occur. Now, the two events “head
on the first toss” {HH, HT} and “tail on the first toss” {TH, TT} are independent, whereas the
events “at least one head” {HH, HT , TH} and “at least one tail” {HT , TH, TT} are not, because
they overlap when the outcome is one of HT or TH.

1when using a fair coin

26

A discrete probability distribution is defined over a finite or countably finite sample space Ω.
Then, for every event E , we have

P(E) =
∑
x∈E

P(x) ,

where the x ’s are elementary events. For example, for the two coin tosses, we get that

P(at least one head) = P(HH) + P(HT) + P(TH) =
3
4

.

In general, the axioms above yield that the sum of the probabilities of all elementary events is
always 1, i.e., ∑

x∈Ω
P(x) = 1, (13.1)

because
⋃

x∈Ω x = Ω and because elementary events are defined to be pairwise mutually ex-
clusive. Of course, this makes sense since the union of all elementary events amounts to all
possible outcomes and no other possibility is left.
A continuous probability distribution is defined over a real interval Ω = [a, b] with a < b. Since
there is now an uncountable number of elementary events, almost all of those have a probability
of 0 so as to satisfy axioms 2 and 3. Of course, (13.1) would not work in this case, but still, we
can satisfy all axioms if we consider integration instead of summation (which would not be
properly defined for an uncountable set anyway). To this end, we define

P(E) =
∫
E

pdf (x) dx ,

where E ⊆ [a, b] and pdf is the probability density function defining the probability distribution.
Similar to (13.1), we get ∫

Ω

pdf (x) dx =

b∫
a

pdf (x) dx = 1. (13.2)

The conditional probability of an event E conditioned that another event F occurs is defined by

P(E |F) =
P(E ∩ F)
P(F)

,

read “the probability of E given F ”, whenever P(F) 6= 0. In particular, for independent events
E , F , we have

P(E |F) = P(E) ,

because E and F being independent means P(E ∩ F) = P(E)P(F).
A random variable X : Ω→ R is a function from a sample space to the real numbers. Its purpose
is to assign values to the outcomes of the experiment, and the probabilities of the different
outcomes are given by the underlying probability distribution on Ω. Depending on the used
distribution, a random variable can be discrete or continuous. We denote this by X ∼ D where
D denotes the used distribution, see Part V for the first example. Usually, a continuous random

27

variable X is defined by giving the probability density function fX (or pdfX). The support of a
random variable is the set S ⊆ Ω with non-zero values for x ∈ S, i.e., S = {x ∈ Ω : fX (x) 6= 0}.
The cumulative distribution function FX (x) = P(X ≤ x) describes the probability that the random
variable X takes a value less than or equal to x . In the case that X is discrete, we have

FX (x) = P(X ≤ x) =
∑
k≤x

P(X = k) ,

whereas, in the case that X is continuous, we have

FX (x) =

x∫
−∞

fX (z) dz.

From this identity, we see that the choice of small and capital letters f and F , respectively, is not
arbitrary, it actually conforms to the notation in (12.1) as the cumulative distribution function is
the antiderivative of the probability density function.
The expected value E(X) of a random variable X is defined by

E(X) =


∑
x∈Ω

x · P(x) X is discrete∫
Ω

x · fX (x) dx X is continuous.

In some special cases, there are other ways to calculate the expected value, see the following
lemma.

Lemma 24. Let X be a nonnegative random variable, i.e., X ≥ 0, then the expected value can
be calculated by

E(X) =

∞∫
0

1− FX (x) dx .

Proof. By partial integration [25] we have

E(X) =

∞∫
0

x · fX (x) dx

= [−x(1− FX (x))]∞0 −
∞∫

0

−(1− FX (x)) dx

=

∞∫
0

1− FX (x) dx .

28

Part IV

The Expected Makespan

Table of Contents

14 Discrete Case 31

15 Continuous Case 32

31

Using the general nature of the definition of a configuration, we can propose a formula for
calculating the expected makespan for a whole variety of scheduling problems. For a brief
moment, we consider a very general scheduling problem with m processors, and assume that
the current configuration is c, then the idea is that we are waiting until the next decision point,
i.e., the next point in time when a task is finished, and then look at the possible configurations
from then on:

Cc
(
c
)

= expected time until next decision point +
∑

possibility p

P(p) · expected remaining time,

where different possibilities describe different successor configurations.
We introduce the notation X ∧ Y = min{X , Y} for the minimum of two random variables. And
because the minimum operator is commutative and associative, we also introduce X1∧. . .∧Xn =
min{X1, . . . , Xn} as the minimum of n random variables.

14 Discrete Case

The interpretation above put in a more formal expression then looks like

Cc
(
c
)

= E(X1 ∧ . . . ∧ Xk) +
k∑

i=1

P(X1 ∧ . . . ∧ Xk = Xi) · Cc
(
ci
)
, (14.1)

where the Xi ’s denote the discrete distributions of the processing times of the k ≤ m processed
tasks (we note that we still implicitly assume a certain scheduling strategy, otherwise finding
these processed tasks is a non-trivial task itself), and ci is the configuration that follows if the
task with processing time distributed with respect to Xi is finished first. For the case where there
is only one successor configuration (or none), the formula becomes much simpler, since the
sum is not needed anymore.
Knowing the underlying scheduling strategy (and, of course, the structure of the precedence
constraints) we can easily (not necessarily in the sense of efficiency) determine all possible
configurations that might occur in an actual schedule, save for the already passed processing
times of the active tasks.
However, there is an alternative way to interpret the expected makespan. Instead of consid-
ering the expected time until the next decision point, i.e., the expected value of the minimum,
we can have a weighted sum of expected makespans corresponding to all possible successor
configurations (as we have above) added to the passed time steps until that next configuration.
Mathematically this means that

Cc
(
c
)

=
∑

possibility p

P(p) · (passed time + expected remaining time) .

Again, plugging in the actual definitions and values yields

Cc
(
c
)

=
k∑

i=1

ri∑
j=1

P(X1 ∧ . . . ∧ Xk = Xi)P
(
aj
)
·
(
aj + Cc

(
ci
))

. (14.2)

32

where the aj ’s are the ri different values that the random variable Xi can take. Note that the
configuration ci may depend on the value of j . (14.1) can be obtained from (14.2) by consid-
ering

∑∑P(X1 ∧ . . . ∧ Xk = Xi)P
(
aj
)

aj as a separate sum whose value can be determined.
The proof of the equivalence for different distributions can be seen in the respective parts, for
example in Part V in (16.3) (page 37) for the exponential distribution.

15 Continuous Case

In the case where the processing times are continuously distributed, we need to introduce ad-
ditional integrals, one for each possible successor configuration, and the formula looks like the
following:

Cc
(
c
)

= E(X1 ∧ . . . ∧ Xk) +
k∑

i=1

∫
Ii
P(X1 ∧ . . . ∧ Xk = Xi) pdfX1∧...∧Xk (x) · Cc

(
ci
)

dx , (15.1)

where an integral is over the interval Ii of all possible values for Xi , and pdfX1∧...∧Xk denotes
the probability density function of the minimum X1 ∧ . . . ∧ Xk . Observe, that in some cases,
both P(X1 ∧ . . . ∧ Xk = Xi) and Cc

(
ci
)

may be functions of x , i.e., then they are not constant
factors within the integral, but non-trivial functions for the integration. We refrain from using the
notations P(X1 ∧ . . . ∧ Xk = Xi) (x) and Cc(ci , x) for the sake of readability.
There are even more details hidden in the notations, as the configurations incorporate active
tasks and their already passed processing times, which means that ci may depend on the Xi ’s
and X1 ∧ . . . ∧ Xk . Also, the expected value, the probability, and the probability density function
may actually be a conditional expected value, a conditional probability, or a function conditioned
on some previous results as well, respectively. To this end, we define E as the event that
Xj1 ≥ i1, . . . , Xj` ≥ i` for some indices {i1, . . . , i`} ⊆ {1, . . . , k} and some appropriate values
i1, . . . , i`. Then this results in

Cc
(
c
)

= E(X1 ∧ . . . ∧ Xk |E)

+
k∑

i=1

P(X1 ∧ . . . ∧ Xk = Xi |E)
∫

Ii
pdfX1∧...∧Xk |E (x) · Cc

(
ci
)

dx ,

meaning that we have to calculate the expected value and the probability under the condition
that some tasks Xi1 , . . . , Xi` have already been processed for i1, . . . , i` time units, respectively.
The same holds for the probability density function, which can be conditioned on this event as
well.
Similar to the discrete case, we have a formula for the other interpretation as well, i.e., an
analogon to (14.2) for the continuous case:

Cc
(
c
)

=
k∑

i=1

∫
Ii
P(X1 ∧ . . . ∧ Xk = Xi) pdfX1∧...∧Xk (x)

(
x + Cc

(
ci
))

dx . (15.2)

disregarding the notation with the conditional probability for easier readability.

Part V

The Exponential Distribution

Table of Contents

16 Calculating the Expected Makespan 36

17 The Optimal Scheduling Strategy 38

18 Formulas for the Expected Makespan 44

18.1 Naive Approaches . 45

18.2 Using the Configuration Relation . 48

18.3 Using the Profile Relation . 51

18.4 Using the {h, b} values . 52

18.5 One Chain . 57

18.6 Two Chains . 57

18.7 k Chains . 66

18.8 Y-graphs and Psi-graphs . 80

18.9 Intree Decomposition . 81

35

Most of the following concepts and results are taken from [50].

Definition 25 (Exponential Distribution). A continuous random variable X with support R+ is
(negatively) exponentially distributed with parameter/rate λ > 0, denoted by X ∼ exp(λ), if its
probability density function fX is

fX (x) =

{
λe−λx x ≥ 0

0 otherwise,

that is, its cumulative distribution function is

FX (x) = P(X ≤ x) =

{
1− e−λx x ≥ 0

0 otherwise.

The expected value (or mean) of an exponentially distributed random variable X with parameter
λ is

E(X) =
∫
R

x fX (x) dx =
1
λ

.

Given a task with processing time distributed according to X ∼ exp(λ), this means that the
expected time until this task finishes is 1

λ
.

The next property of the exponential distribution is a crucial one when regarding the calculation
of the makespan.

Theorem 26 (Memorylessness). The exponential distribution is memoryless, i.e., for X ∼
exp(λ) and x ≥ y we have

P(X > x |X > y) = P(X > x − y) .

Proof. Starting with the left hand side and the definition of the conditional probability, we have

P(X > x |X > y) =
P(X > x , X > y)
P(X > y)

=
P(X > x)
P(X > y)

,

where the second equality holds because x ≥ y . Plugging in the definition for the cumulative
distribution function yields

P(X > x)
P(X > y)

=
e−λx

e−λy

= e−λ(x−y)

= P(X > x − y) .

Consider X to be the processing time of a task. Then, if we want to know how much longer
this task is going to be processed, the memorylessness tells us that it does not matter how long

36

this task has been processed so far. The probability of the task to be processed for t more time
units is the same whether it was already processed s time units or not:

P(X > s + t |X > s) = P(X > t) .

In particular, the memorylessness shows that the expected value of an exponentially distributed
random variable is 1

λ
in any case, even if it has a conditional lower bound.

What we can actually show is that the property of memorylessness for a continuous random
variable is exclusive for the exponential distribution, see the following result.

Theorem 27. Every memoryless continuous random variable is exponentially distributed.

The proof can be found in [24].
Next, we have the following result.

Lemma 28. Let X1, . . . , Xn be independent exponentially distributed random variables with pa-
rameters λ1, . . . ,λn respectively. Then X1 ∧ . . . ∧ Xn is exponentially distributed with parameter
λ1 + · · · + λn.

Proof. The proof is done for n = 2, the case for arbitrary n can be proven by induction.

P(X1 ∧ X2 ≤ x) = P(X1 ≤ x) + P(X2 ≤ x)− P(X1 ≤ x , X2 ≤ x)

= 1− e−λ1x + 1− e−λ2x −
(
1− e−λ1x) (1− e−λ2x)

= 1− e−λ1x + 1− e−λ2x − 1 + e−λ1x + e−λ2x − e−λ1xe−λ2x

= 1− e−(λ1+λ2)x .

Let X ∼ exp(λ) and consider the processing times of the tasks independent and identically
distributed according to X . Then, due to the memorylessness of the exponential distribution,
the expected remaining processing time of a task that has already been processed for i time
units is again 1

λ
.

Furthermore, when regarding a two machine problem, at any given time when both machines
are busy processing two tasks, the expected time until one of them finishes is 1

2λ time units.

16 Calculating the Expected Makespan

Now consider a scheduling problem with two processors and independent, identically and ex-
ponentially distributed processing times, each with parameter λ, or in the notation introduced in
Chapter 4 on page 12:

2|pi ∼ exp(λ)|E(Cmax) .

As an abbreviation, we also write “exponential processing times” for “independent, identically
and exponentially distributed processing times”.

37

Because the minimum of two exponential distributions is again an exponential distribution, see
Lemma 28, we can easily determine the value E(X ∧ Y) = 1

2λ . And due to the memorylessness
of the exponential distribution, it does not matter how long an active task has already been
processed, it is always distributed with mean λ. This means that both processed tasks are
again identically distributed and are equally likely to finish first, i.e.,

P(X ∧ Y = X) = P(X ∧ Y = Y) =
1
2

.

In total, calculating the expected makespan of a configuration of such a scheduling problem can
be done as in (15.1):

Cc
(
c
)

=
1

2λ
+

1
2

∞∫
0

λe−λxCc
(
cx
)

dx +
1
2

∞∫
0

λe−λxCc
(
cy
)

dx

=
1

2λ
+

1
2

Cc
(
cx
) ∞∫

0

λe−λx dx

︸ ︷︷ ︸
=1

+
1
2

Cc
(
cy
) ∞∫

0

λe−λx dx

︸ ︷︷ ︸
=1

=
1

2λ
+

1
2

Cc
(
cx
)

+
1
2

Cc
(
cy
)
, (16.1)

with cx and cy denoting the configurations where the task x or y finishes first (and is then missing
from the graph), respectively. The crucial part to lose the integrals in this calculation is between
the first and second lines when we remove the values Cc

(
cx
)

and Cc
(
cy
)

from the integrands.
Because of the memorylessness, these values do not depend on the integration variable x , and
thus, can be removed from the integral. The equation in (15.2) amounts to

Cc
(
c
)

=
1
2

∞∫
0

fX∧Y (x)
(
x + Cc

(
cx
))

dx +
1
2

∞∫
0

fX∧Y (x)
(
x + Cc

(
cy
))

dx

=
1
2

∞∫
0

2λe−2λx (x + Cc
(
cx
))

dx +
1
2

∞∫
0

2λe−2λx (x + Cc
(
cy
))

dx . (16.2)

It is easy to see that both approaches (16.1) and (16.2) are identical:

(16.2) =
1
2

∞∫
0

2λe−2λx (x + Cc
(
cx
))

dx +
1
2

∞∫
0

2λe−2λx (x + Cc
(
cy
))

dx

=

∞∫
0

2λe−2λx · x dx +
1
2
(
Cc
(
cx
)

+ Cc
(
cy
)) ∞∫

0

2λe−2λx dx

=
[(
−e−2λx)]∞

0 +

∞∫
0

e−2λx dx +
1
2
(
Cc
(
cx
)

+ Cc
(
cy
))
· 1

=
1

2λ
+

1
2

Cc
(
cx
)

+
1
2

Cc
(
cy
)

= (16.1) (16.3)

38

In the formulas above we drop the superscript for the scheduling strategy in the notation for the
expected makespan, meaning that we explicitly use HLF. Here, it is used for easier readability,
but later on, we show that this is actually justified, see Chapter 17.
Despite not having to consider active tasks thanks to the memorylessness, these formulas
still do not cover all cases needed for calculating the expected makespan. They work only
when there are at least two available tasks so that there are always two different successor
configurations that are possible. However, the formulas are only becoming simpler in the case
that there is at most one available task. If we only consider trees, then these cases occur exactly
when the underlying graph is a chain. In particular, (16.1) then results in

Cc
(
c
)

=
1
λ

+ Cc
(
cx
)
,

where cx is the unique successor configuration of c obtained by removing task x . The expected
time until the one processed task finishes is exactly the mean value of the exponential distribu-
tion, i.e., 1

λ
. The very last case that we need in order to fully describe the expected makespan

via this recurrence is when there are no tasks left in the graph, i.e., when the underlying graph
is empty. Obviously, the formula is then

Cc
(
ε
)

= 0,

where ε stands for the empty graph, or the empty configuration, respectively. In case the graph
is a chain, we can even remove the recurrence, and have the formula

Cc
(
c
)

=
1
λ
· n, (16.4)

where n denotes the height of the chain. Note that for n = 0, we have exactly the case for the
empty graph.
Another interesting property of exponential processing times is that both equations in (16.1) and
(16.2) are scaled by the factor 1

λ
. Consider (16.1) as an example. For the first summand this is

obvious. For the recursive calls to Cc this is also true, because every new Cc-call on another
level of the recursion brings another summand 1

2λ and the base cases of the recursion are given
by (16.4), which also scale with 1

λ
. This is why, from now on, w.l.o.g., we always use λ = 1 as

the parameter for the exponential distribution of the processing times. Then, the expected time
until a specific task finishes is 1. If there are two tasks being processed simultaneously, then
the expected time until one of those two finishes is 1

2 .

17 The Optimal Scheduling Strategy

In this section, we prove that HLF is the optimal scheduling strategy when considering ex-
ponentially distributed processing times on two processors when the underlying precedence
constraints are given by an intree, i.e.,

2|pi ∼ exp(1); intree|E(Cmax) . (17.1)

39

What we use in order to show this is that we can just as well calculate the expected makespan
of a given graph or configuration using only its profile. For this definition, we explicitly use HLF,
which makes it differ from what we have seen before in (16.1) although the recurrence itself is
very similar to it.
Originally, Chandy and Reynolds [49] proved that HLF is optimal for (17.1) in 1979. However, as
their proof is not always very detailed, in the following, we recreate their proof with some other
methods as well and (hopefully) add more clarity to it.

Lemma 29. Let G be an intree with profile(G) = p, then the expected makespan of G when
applying any HLF can be calculated by:

(i) If p = (), then Cp
(
p
)

= 0,

(ii) If p = (1), then Cp
(
p
)

= 1,

(iii) If G is a chain, i.e. pL = 1 and n = L, then

Cp
(
p1, . . . , pL

)
= 1 + Cp

(
p1, . . . , pL−1

)
,

(iv) If the highest level has more than one task, i.e. pL > 1 and n > L,

Cp
(
p1, . . . , pL

)
=

1
2

+ Cp
(
p1, . . . , pL − 1

)
,

(v) If the highest level has only one task and G is not a chain, i.e. pL = 1 and n > L, then

Cp
(
p1, . . . , pL′ , . . . , pL

)
=

1
2

+
1
2

Cp
(
p1, . . . , pL′ , . . . , pL−1

)
+

1
2

Cp
(
p1, . . . , pL′ − 1, . . . , pL

)
.

Proof. Cases (i) to (iii) are obvious by definition of the exponential distribution as seen in (16.1)
and (16.4).
In case (iv), we have at least two tasks on the highest level. Thus, any HLF will choose two of
those. Hence, at the next decision point, the finished task has to be one of those on the highest
level. Then the profile is (p1, . . . , pL−1). And because the expected time until of these two tasks
finishes is 1

2 , the above equality follows.
In case (v), we have that G is not a chain, but there is only one task on the top level L. By the
pigeon hole principle, this means that there is a level with more than one task, denoted by L′.
Then the two highest available tasks are on level L and on level L′, respectively. Because we
use HLF, the one task at level L will be chosen, as well as one task at level L′. The expected
time until the one of these tasks finishes is again 1

2 . Then, with identical probability of 1
2 , we

either process the task at the top level or the task at level L′, resulting in

Cp
(
p1, . . . , pL′ , . . . , pL

)
=

1
2

+
1
2

Cp
(
p1, . . . , pL′ , . . . , pL−1

)
+

1
2

Cp
(
p1, . . . , pL′ − 1, . . . , pL

)
.

40

Remark: Note that this lemma only works for the two processor case. Here, a singular task on
the highest level can only dominate one path (the blue nodes), i.e., one task per level below,
meaning that only one path of tasks consists of descendants of that task on the highest level,
see Fig. 6 on the left. This is why in case (v) we only have to find the level L′ for another available
task which can be scheduled. For the three processor case, consider a case where two tasks
on the highest level are processed. These two tasks dominate two paths now, so if we find a
level L∗ with pL∗ ≥ 3, then we can be sure to have another available task. But if there is no level
with more than two tasks, then we cannot be sure if there is an available task or not. This is
because the two active tasks on the highest level can dominate two tasks per level below, see
Fig. 6 in the middle, or the two dominating paths may meet and then dominate only one task
per level below that, see Fig. 6 on the right. This argument is not dependent on the profile itself,
which means that the profile alone does not suffice to know whether three or only two tasks can
be scheduled. The same is true if only one task is on the highest level, then there can be two
or three available tasks for different intrees of the same profile, see Fig. 7.
In other words: given a profile, we can easily deduce whether there are at least two available
tasks or only one. In contrast, we cannot deduce whether there are at least three available tasks
or less from the profile alone.

Fig. 6: Crucially different dominating paths.

Fig. 7: The profile does not say anything about the number of available tasks.

For the following proofs, we use a concept called flatness of an intree, which was introduced in
[12]. Here, we use a restricted version of it that is enough for our purposes.

41

Definition 30. Let G, H be two intrees with the same number of tasks and profile(G) = (p(G)1, . . . , p(G)LG)
and profile(H) = (p(H)1, . . . , p(H)LH).
The flatness is a partial relation on intrees, defined as follows.

• G is as flat as H, denoted by G ∼ H if and only if profile(G) = profile(H).

• G is as flat as or flatter than H, denoted by G ∝− H, if and only if there is a level i such
that

LG∑
k=i+1

p(G)k ≤
LH∑

k=i+1

p(H)k ,

i.e., the number of tasks above level i in G is less than or equal to the number of tasks
above level i in H.

• G is flatter than H, denoted by G ∝ H, if and only if there is a level i such that

LG∑
k=i+1

p(G)k <
LH∑

k=i+1

p(H)k ,

i.e., the number of tasks above level i in G is strictly less than or equal to the number
of tasks above level i in H.

Again, sometimes we use intrees and configurations interchangeably as well as the flatness
relation on configurations. As the flatness does not consider active tasks, this is just as fine as
comparing the respective intrees, at least for exponential processing times. Fig. 8 shows four
different intrees with the following flatness relationships: G2 ∝ G1, G2 ∝ G3, G1 ∼ G3, and G4

cannot be compared to any of the other three, because it has one more task.

G1 G2 G3 G4

Fig. 8: Four intrees with G2 ∝ G1, G2 ∝ G3, G1 ∼ G3, and G4 is incomparable.

First, we observe that all HLFs will result in the same expected makespan. This was partly
shown in Lemma 29. The following results show that an arbitrary HLF is optimal, and hence, all
of them are.

Lemma 31. Let G be an intree and let G′ be obtained by attaching a source of G on a lower
level. Then Cc

(
G
)
≥ Cc

(
G′
)
.

Proof. We prove this by induction on the number of tasks.

42

Induction Base: It holds that

Cc

()
= 3.75 < 4 = Cc

()
,

see Appendix C for the details.

Induction Step: Let n be the number of tasks in both G and G′. We have the scenario as seen
in Fig. 9. We introduce the notation Gv for the graph/configuration G \ {v}, where v denotes a

G
s

x y

Gs Gx

G′

s

x y

G′yG′x

IH & memorylessness

IH & memorylessness

Fig. 9: G and G′ and their respective successor configurations.

node corresponding to an available task, meaning that the node/task v as well as all its incident
edges are removed from G. Then, the two outer configurations Gs and G′y (i.e., the leftmost
and the rightmost configurations in Fig. 9) both have underlying intrees with n − 1 tasks and
the rightmost intree can be obtained from the leftmost intree by reattaching the source y on a
lower level. Then, because of the memorylessness we do not have to specifically mark tasks as
active as long as we know that they will be processed in the next time steps anyway. But as we
are choosing tasks according to HLF, and every HLF leads to the same expected makespan,
see Lemma 29, we just take the one with we had in the step first. In particular, this means that
the task that is active is chosen to be processed next even if we do not mark it as active. The
arguments for the case with the two inner configurations Gx and G′x is the same.

Note that this proof does not necessarily hold for G′ ∝ G in general, because we only reattached
one task.

43

Lemma 32. The expected makespan of a scheduling strategy S that uses exactly one step that
is not an HLF step is worse than the expected makespan of HLF.

Proof. Without loss of generality, let the first step of S be the non-HLF step and let G have
more than two available tasks, where at least one of them is not on the highest level. Let the
two successor configurations of G under HLF be denoted by c1 and c2. Because S is not HLF,
at least one of the two possible successor configurations of G under S is after a task finished
which was not chosen by HLF in the step before. Let this successor configuration be denoted by
c′. The other successor configuration c′′ might be one of c1 or c2 or some other configuration.
One obvious thing is that the intree in c′′ can never be flatter than both the intrees in c1 and c2,
by the properties of HLF. Hence, we have that

c1, c2 ∝ c′ and ci
∝− c′′

for at least one i ∈ {1, 2}. Then with Lemma 31 we obtain

Cc
(
c′′
)
≥ ci and Cc

(
c′
)

> cj

for at least one i ∈ {1, 2} and j ∈ {1, 2}, i 6= j .

With this result, it is shown that a single non-HLF step does not improve the expected makespan.
Of course, now the question is whether two or more non-HLF steps can improve the makespan.
Or in other words: can one non-HLF step counter the worsening effects done by other non-HLF
steps before?

Lemma 33. Let G and H be two intrees with the same number of tasks, and G ∝− H. Consider
an HLF being applied to G and a non-HLF S being applied to H. Then the expected makespan
of G is at most the expected makespan of H.

Proof. Without loss of generality, suppose that the first step applied to H is a non-HLF step.
The claim is proven by induction on the number of tasks.

Induction Base: It holds that

Cc
()

= 3.5 < 3.75 = Cnon-HLF
c

()
with G (on the left) being flatter than H, and

Cc

()
= 3.625 < 3.75 = Cnon-HLF

c

()
,

where Cnon-HLF
c is introduced in order to denote the value of the processing time of a config-

uration which is not necessarily optimal (because it is not scheduled according to HLF) and
because Cc was defined using HLF explicitly. The gray tasks mark tasks which will be chosen
next by the strategies HLF or S, respectively.

44

Induction Step: Let n be the number of tasks in G and H, respectively. Furthermore, let G′

and G′′ be the successor configurations of G under HLF, and let H ′ and H ′′ be the succes-
sor configurations of H under S. The underlying intrees all have n − 1 tasks. We show that
G′, G′′ ∝− H ′, H ′′.
First, we assume that G ∝ H, because if G is as flat as H, then with the same arguments as in
Lemma 32, we have that H ′ and H ′′ have flatter corresponding counterparts in G′ and G′′. This
assumption is justified anyway, because we want to use this lemma to compare an intree that
stems from an HLF schedule and another from a non-HLF schedule. And the HLF intree will
be flatter than the other.
So, if G ∝ H, then by definition, there exists a lowest level i with p(G)i > p(H)i and p(G)j = p(H)j

for j < i where profile(G) = (p(G)1, . . . , p(G)LG) and profile(H) = (p(H)1, . . . , p(H)LH).
This means that HLF on G schedules one task from level LG and one task from level i , whereas
a non-HLF on H schedules something which is not specified further (but we can w.l.o.g. assume
that the scheduled tasks are not both the same as the ones from HLF). Now, assume for con-
tradiction that one of H ′ or H ′′ (denoted by H∗) is flatter than both G′ and G′′. Then there exists
an i∗ such that p(H∗)i∗ > p(G∗)i∗ and p(H∗)j = p(G∗)j for j < i∗, where G∗ ∈ {G′, G′′}. Hence,
HLF must have finished a task on level i in G and non-HLF must not have finished a task on
level i or else we have p(G∗)i > p(H∗)i in contradiction to H∗ ∝ G∗. But this is a contradiction to
the definition of HLF as it may schedule a task on level LG which might finish before the other
task on level i .

Combining the last results proves the optimality of all HLF scheduling strategies.

Theorem 34. Any HLF is optimal for the scheduling problem 2|pi ∼ exp(1); intree|E(Cmax).

18 Formulas for the Expected Makespan

One of the goals of this work is to calculate the optimal expected makespan of a scheduling
problem. In a deterministic setting, probably the easiest way to do this is to just run the optimal
strategy and evaluate the resulting schedule. But there are some issues with this approach.
Firstly, we must know the optimal strategy in order to use it, which is obviously the hardest
part in most cases. Secondly, this is just not possible when we consider stochastic scheduling.
As argued before, one schedule does not tell us much about optimality. Even if we know the
optimal strategy in terms of optimizing the expected optimality criterion, then there is still some
variation in its outcome. One possibility to counter this would be to create several schedules
and calculate the arithmetic mean of all these sample schedules, but we would probably need a
lot of samples to have some meaningful result in the end. Other than that, creating the schedule
may take a long time. So the goal here is to calculate the makespan without actually creating a
schedule.

45

Consider the 2|pi ∼ exp(1); intree|E(Cmax) scheduling problem, then we know that HLF is opti-
mal, see Chapter 17. So, at least we know the optimal strategy. In this section, we elaborate
several different approaches to obtain the expected makespan of an instance of this scheduling
problem.

18.1 Naive Approaches

When we apply any HLF scheduling strategy to our scheduling problem, we observe that at
some point, the remaining intree becomes a chain. From that point on, there is always at least
one processor which is idle. Without loss of generality, let the first processor P1 be the one
which processes all the remaining tasks in the chain while P2 is idle and does not do anything
for the remainder of the schedule. Because the underlying precedence relation is an intree,
it will never be the case again that two tasks will be available at the same time. We consider
the first time when such a chain occurs, and call the topmost task in this chain the head of the
chain. Note that this must be an available task at that time, but it may also be a task which is
already being processed, i.e., active. In both cases, it is the first (in the sense of time in the
schedule) task that is being processed alone on a processor, while the other processor is idle.
Consider the intree in Fig. 2 from page 9. Then, Fig. 10 depicts two examples of possible chains
as subtrees of that intree. Already processed tasks are drawn with dashed lines. Both of those
configurations can occur in an HLF schedule, although with different probabilities.

Fig. 10: Different heads of the chain for the same intree.

Using the fact that the processing times of the tasks are exponentially distributed, and thus,
memoryless, we can give a short formula for calculating the expected makespan of any HLF.

Lemma 35. The optimal expected makespan of the 2|pj ∼ exp(1); intree|E(Cmax) scheduling
problem can be calculated as

E(Cmax) =
∑
x∈T
P(x is head of the chain) ·

(
1
2
· (n − level(x)) + level(x)

)
(18.1)

Proof. Because the processing times are exponentially distributed we have:

Case 1: Both processors are busy. Then let X and Y denote the two random variables that
describe the processing times of the two processed tasks. By definition, X and Y
are independent and identically, exponentially distributed with mean 1, even if one (or
both) of the tasks has (have) already been processed for some time. Of course, this

46

is due to the memorylessness of the exponential distribution. Hence, one of the those
processed tasks is expected to finish within E(X ∧ Y) = 1

2 time units.

Case 2: Only one processor is busy and the other is idle. Then one processed task is expected
to finish within E(X) = 1 time unit.

We know that at some decision point t in the schedule, a chain must occur, i.e., during the time
interval [0, t] both processors are busy, and during the interval (t ,E(Cmax)] only one processor
is busy and the other one is idle. That means that at time t the head of the chain x is still
being processed. The final chain is then of height level(x), and the tasks being processed in
the interval [0, t] are exactly all the tasks which are not in the final chain, of which there are
n − level(x), i.e., all remaining tasks. Using the results from the two cases above, we get that
the expected makespan for the case that x is the head of the chain is

1
2
· (n − level(x)) + level(x) .

The result in the lemma is derived from summing over all possible tasks for head of the chain.

Note that (18.1) can be rewritten as

E(Cmax) =
∑
x∈T
P(x is head of the chain) ·

(
1
2
· (n + level(x))

)
,

which is just a weighted sum
∑

x wxcx with wx = P(x is head of the chain) and cx = 1
2 (n +

level(x)).
Consider an example with the intree given in Fig. 11.

x9

x7

x4

x1 x2

x5

x3

x6

x8

Fig. 11: An intree with profile (1, 2, 3, 3).

47

The probabilities from (18.1) are given by

P(x1 is head of the chain) =
1

32
,

P(x2 is head of the chain) =
1

32
,

P(x3 is head of the chain) =
1

16
,

P(x4 is head of the chain) =
1
8

,

P(x5 is head of the chain) =
1
8

,

P(x6 is head of the chain) =
3

16
,

P(x7 is head of the chain) =
15
64

,

P(x8 is head of the chain) =
15
64

,

P(x9 is head of the chain) = 0.

Given these probabilities, we can use (18.1) to calculate the makespan:

E(Cmax) =
1
32

(
1
2
· 5 + 4

)
+

1
32

(
1
2
· 5 + 4

)
+

2
32

(
1
2
· 5 + 4

)
+

4
32

(
1
2
· 6 + 3

)
+

4
32

(
1
2
· 6 + 3

)
+

6
32

(
1
2
· 6 + 3

)
+

7
32

(
1
2
· 7 + 2

)
+

7
32

(
1
2
· 7 + 2

)
=

1
32

(6.5 + 6.5 + 2 · 6.5 + 4 · 6 + 4 · 6 + 6 · 6 + 7 · 5.5 + 7 · 5.5)

=
187
32

= 5
27
32

.

Right away, we can see the difference to the scheduling problem’s deterministic counterpart
2|pi = 1; intree|Cmax. Using Coffman and Graham’s algorithm [14] for the deterministic problem,
we obtain an optimal makespan of 5. This immediately shows that the makespan of an optimal
deterministic schedule and the expected makespan of an optimal stochastic schedule may very
well differ, and in general, do so. Again, there may be a very short stochastic schedule, even
shorter than an optimal deterministic schedule, but of course, only with a certain probability.
Generally, the optimal stochastic makespan is higher than the optimal deterministic makespan
of the equivalent scheduling problem.
Another observation is that for tasks xi and xj that lie on the same level, the values 1

2 (n + level(xi))
and 1

2

(
n + level

(
xj
))

are the same. With this, we directly get another way to sum all tasks.

48

Lemma 36. The optimal expected makespan can be calculated by

E(Cmax) =
L∑

i=1

1
2

(n + i) ·
∑
x∈T ,

level(x)=i

P(x is head of the chain)

 .

Obviously, the issue with these approaches so far is to calculate the probabilities that a certain
task is the head of the chain. To the best of our knowledge, these approaches require a great
amount of calculation, and the a priori knowledge of all possibilities. For larger inputs, this could
be quite inefficient. This is why we present several other methods to calculate the expected
makespan in the following.

18.2 Using the Configuration Relation

In the 2|pi ∼ exp(1); intree|E(Cmax) setting, a configuration simplifies to (G′, x), with x being
the currently processed task. Because of the memorylessness of the exponential distribution,
it does not matter how long the task has already been processed, its expected remaining pro-
cessing time is always the expected value of the distribution. Note that x can also be missing in
three different cases:

• at the start of the schedule,

• one task has been processed alone and just finishes, i.e., the configuration is a chain,

• two tasks have been processed and both finish at the same time.

But the last case occurs with a probability of 0, because we are dealing with continuous random
variables here.
Now, we define a relation R on the set of configurations as follows. A pair of configurations
(c1, c2) is contained in R if and only if, when applying a fixed scheduling strategy, there is a
direct transition from c1 to c2 with some probability greater than zero.
As an example we consider level-oriented HLF. Furthermore, we define a cost function for a pair
of configurations in R corresponding to the transition probabilities between the configurations.
Fig. 12 shows the Hasse diagram of the relation R for the graph in Fig. 11. As defined before,
a crossed node in a configuration corresponds to an active task. Whenever there are two arcs
going out of a configuration, each of them has a value of 1

2 assigned to it as this refers to the
transition probability of going to either of those successor configurations (it is equally probable
for either of the processed tasks to finish first). For only one possible successor configuration,
that value is of course 1. In order not to overload the picture, the transition probabilities are
not displayed. The number to the right of a configuration indicates the probability that it occurs
during an execution of HLF. The probabilities in a given level sum up to 1, as every way a
scheduling strategy takes to get to the last configuration on the bottom must cross this level
(i.e., no scheduling strategy can skip a level), and as all configurations on the same level are
mutually exclusive.

1

5 27
32

1
2

5 11
32

1
2

5 11
32

1
4

4 27
32

1
2

4 27
32

1
4

4 27
32

1
8

4 7
16

1
4

4 1
4

1
4

4 1
4

1
4

4 7
16

1
8

4 7
16

1
16

4 1
8

1
8

3 3
4

1
4

3 3
4

1
4

3 3
4

1
8

3 3
4

1
8

4 1
8

1
16

4 1
8

1
32

4

1
16

3 1
4

3
16

3 1
4

3
8

3 1
4

3
16

3 1
4

1
16

3 1
4

1
16

4

1
32

4

1
8

3

3
16

3

7
16

2 1
2

1
8

3

1
16

3

1
16

3

7
322

7
32

2

9
162

11

Fig. 12: Hasse diagram for the configuration relation of the intree in Fig. 2.

50

The graph in Fig. 12 can be condensed further if we allow isomorphic configurations to be
merged. As these do not behave differently under any (reasonable)1 strategy, they will be
merged in future figures. In the very special case of two processors and exponential processing
times, we can even disregard active tasks, and just focus on isomorphisms of the underlying
intrees. In particular, this means that all the intrees in Fig. 13 are considered isomorphic (in
the 2|pi ∼ exp(1); intree|E(Cmax) setting). Fortunately, the tree isomorphism problem can be
handled very easily, see for example [7].

Fig. 13: Four isomorphic intrees.

The next lemma describes how the configuration (and the configuration relation) can be used to
calculate the expected makespan of an HLF schedule.

Lemma 37. Let c be a configuration with underlying intree precedence constraints and S a
scheduling strategy. Then:

(i) If c =
(
{root},∅

)
, i.e., the intree consists of a singular node called “root” without any arcs

and without any active tasks, then CSc (c) = 1,

(ii) If c has only one successor configuration c′, i.e., it corresponds to a chain, then

CSc (c) = 1 + CSc (c′),

(iii) If c has two successor configurations c′ and c′′, then

CSc (c) =
1
2

+
1
2

CSc (c′) +
1
2

CSc (c′′).

Proof. The first case is obvious since it refers to a configuration with only one task left, e.g.
at the very bottom of Fig. 12 or on the left of Fig. 14. The second case is as obvious: if c is
succeeded by only one other configuration c′, then the subgraph in c is a chain. Because we
have exponential processing times, and λ = 1, the claim follows. The only thing left to show
is the third claim. As seen in Fig. 14 on the right, c has two successor configurations, each
equally probable to be reached, with a probability of 1

2 . This is only the case when two tasks
are processed simultaneously. The expected time until one of those tasks finishes is 1

2 . Hence,

1We may as well define a strategy that chooses tasks according to their names or indices. But it should be obvious
that these kinds of strategies are not the ones we want to focus on, and, in general, are not meaningful.

51

c

c′

1

c

c′ c′′

1
2

1
2

Fig. 14: A configuration and its successor configurations.

after half a time unit we arrive either at configuration c′ or at c′′. Thus, the expected makespan
from c on is given by

CSc (c) =
1
2

+
1
2

CSc (c′) +
1
2

CSc (c′′).

Note that all this works only with the exponential distribution as we can disregard active tasks
because of the memorylessness.

In the following, we will use this result with HLFs only, i.e., only with the Cc := CHLF
c values.

The Cc values of all feasible level-oriented HLF configurations can be seen in Fig. 12 on the
lower left of each configuration node in blue. As can be seen in the figure as well, the expected
makespan of configurations with identical profiles is the same.

18.3 Using the Profile Relation

We have already seen in Chapter 17 in Lemma 29 how to calculate the expected makespan
using the concept of a profile. Of course, using the approach above with the concept of a
configuration does not change the result. The following lemma proves that.

Lemma 38. Let G be an intree, c a configuration of G, and p the corresponding profile of c.
Then Cc

(
c
)

= Cp
(
p
)
.

Proof. By induction on n, the number of tasks in c.

Induction Base: For n = 1 or n = 2, the claim holds by definition of Cc
(
c
)

and Cp
(
p
)
.

Induction Step: Now let c be a configuration with n + 1 tasks, then there are two cases.

Case 1: c has only one successor configuration c′, see Fig. 14 on the left. Then the graph in
c is a chain, and c′ is a chain without the topmost task of the graph of c. But then,
there is only one successor profile p′, for which the claim already holds by assumption.
Hence,

Cc
(
c
)

= 1 + Cc
(
c′
)

IH= 1 + Cp
(
p′
)

= Cp
(
p
)
.

52

Case 2: c has two successor configurations c′ and c′′, see Fig. 14 on the right. Then either the
two corresponding successor profiles are different, see Fig. 15 on the left, or they are
the same, see Fig. 15 on the right. In both cases, we can write that

(1, 2, 1)

(1, 1, 1) (1, 2, 0)

(1, 2, 2)

(1, 2, 1) (1, 2, 1)

Fig. 15: Successor configurations can have different profiles.

Cc
(
c′
)

+ Cc
(
c′′
)

= Cp
(
p′
)

+ Cp
(
p′′
)
,

where, in the second case, we have that Cp
(
p′
)

= Cp
(
p′′
)
. Hence,

Cc
(
c
)

=
1
2

+
1
2

Cc
(
c′
)

+
1
2

Cc
(
p′′
)

IH=
1
2

+
1
2

Cp
(
p′
)

+
1
2

Cp
(
p′′
)

= Cp
(
p
)
.

Again, the issue with this approach is that it is actually needed to know the configuration graph
as seen in Fig. 12.
In Fig. 16, we can see the Hasse diagram of the feasible profile values of the intree in Fig. 11
and the profile relation. As for the configuration relation in Fig. 12, the values Cp are written
at the lower left of the nodes in blue. We observe that these are the same values as in the
corresponding configurations in Fig. 12. To the right of each node, there is the probability that
this profile occurs during an HLF schedule.

18.4 Using the {h, b} values

Recall the fact from (18.1) that, given a head of the chain, the expected remaining processing
time is only dependent on its level. This is the idea behind the next approach that identifies an

53

(1, 2, 3, 3) 1
5 27

32

(1, 2, 3, 2) 1
5 11

32

(1, 2, 3, 1) 1
4 27

32

(1, 2, 3) 1
2

4 1
4

(1, 2, 2, 1) 1
2

4 7
16

(1, 2, 2) 3
4

3 3
4

(1, 2, 1, 1) 1
4

4 1
8

(1, 2, 1) 7
8

3 1
4

(1, 1, 1, 1) 1
8

4

(1, 2) 7
16

2 1
2

(1, 1, 1) 9
16

3

(1, 1) 1
2

(1) 1
1

Fig. 16: Hasse diagram for the profile relation of the intree in Fig. 2.

54

intree G by only two numbers h and b, where h denotes the height of G, i.e., the length of a
longest path from a node to the root, and b is the number of tasks in G which are not on this
longest path. Using our usual notation, we have h = L and b = n − L. Again, we can define
a relation similar to those in the sections before describing the possible {h, b} values any HLF
encounters.

Lemma 39. Let G be an intree with values {h, b}. Define Ch,b
(
h, b

)
as the expected makespan

of an HLF schedule of G. Then:

(i) If G is a chain, i.e., b = 0, then Ch,b
(
h, 0
)

= h,

(ii) If G has exactly one task on the highest level, i.e., pL = ph = 1, then

Ch,b
(
h, b

)
=

1
2

+
1
2

Ch,b
(
h − 1, b

)
+

1
2

Ch,b
(
h, b − 1

)
, (18.2)

(iii) If G has at least two tasks on the highest level, i.e., pL = ph ≥ 2,

Ch,b
(
h, b

)
=

1
2

+ Ch,b
(
h, b − 1

)
. (18.3)

Proof. The first case is obvious. For (18.2) there are two cases: either the one task on the top
level finishes, then the successor values are {h − 1, b}; or one other task finishes, which is not
on the longest chain, then the successor values are {h, b − 1}. Each of those possibilities has
a probability of 1

2 as argued before. For (18.3) there are no distinctions to make as there will be
at least one task left on the top level h, which means that the successor values are {h, b − 1}.

In contrast to the definitions for the expected makespan with the configuration, see Definition 16
on page 15, or with the profile, see Definition 19 on page 16, we do not define Ch,b with general
scheduling strategies S. We could do this, but we will not use this any further.
Note that the values of h and b can be easily determined given the profile, namely by

(p1, . . . , pL) corresponds to

{
L,

L∑
i=1

(pi − 1)

}
.

Also note that this correspondence is not bijective. For example, Fig. 17 shows that the values
{3, 1} might refer to an intree with profile (1, 2, 1) (left) or to an intree with profile (1, 1, 2) (right).

Fig. 17: Two different intrees with the same {h, b} values.

If we are additionally given the original intree, then the profile is uniquely determined. This
seems to make sense, as we need the profile of the intree in order to distinguish between those

55

cases defined above. This way, we can come up with a similar recursive relation to that of the
profile relation.
The Hasse diagram that shows all feasible combinations of {h, b} values of the intree in Fig. 2
on page 9 and their relation can be seen in Fig. 18. Again, at the lower left of each node in blue,
the Ch,b values are drawn that describe the expected makespan of the intree with a profile that
corresponds to the one in this node. And again, these values are the same as in Fig. 16 and
Fig. 12, respectively. The occurrence probabilities are given to the right of each node again, as
well.

Lemma 40. Let G be an intree, p the profile of G, and {h, b} its corresponding values. Then
Cp
(
p
)

= Ch,b
(
h, b

)
.

Proof. By induction on n, the number of tasks in p. For n = 1 or n = 2, the claim holds by
definition of Cp and Ch,b. Now, let p be a profile with n + 1 tasks. Then we have to distinguish
between several cases:

Case 1: p describes a chain, i.e. ph = 1, h = n + 1, b = 0. Then, p has only one possible
successor profile p′ = (p1, . . . , ph−1), thus

Cp
(
p
)

= 1 + Cp
(
p′
)

IH= 1 + Ch,b
(
h − 1, 0

)
= Ch,b

(
h, 0
)
.

Case 2: p is no chain and it holds that ph > 1. Then, p has only one possible successor profile
p′ = (p1, . . . , ph − 1), thus

Cp
(
p
)

=
1
2

+ Cp
(
p′
)

IH= 1 + Ch,b
(
h, b − 1

)
= Ch,b

(
h, b

)
.

Case 3: p is no chain and it holds that ph = 1. Then, p has two possible successor profiles
p′ = (p1, . . . , ph−1) and p′′ = (p1, . . . , pL′ − 1, . . . , ph) (with L′ as before as the largest
index with pL′ > 1), thus

Cp
(
p
)

=
1
2

+
1
2

Cp
(
p′
)

+
1
2

Cp
(
p′′
)

IH=
1
2

+
1
2

Ch,b
(
h − 1, b

)
+

1
2

Ch,b
(
h, b − 1

)
= Ch,b

(
h, b

)
,

where the last equalities each hold because of the definition of Ch,b.

Part IV defined several equivalent approaches to calculate the expected makespan of an optimal
HLF schedule. The issue with all these approaches is that more information about the structure

56

{4, 5} 1
5 27

32

{4, 4} 1
5 11

32

{4, 3} 1
4 27

32

{3, 3} 1
2

4 1
4

{4, 2} 1
2

4 7
16

{3, 2} 3
4

3 3
4

{4, 1} 1
4

4 1
8

{3, 1} 7
8

3 1
4

{4, 0} 1
8

4

{2, 1} 7
16

2 1
2

{3, 0} 9
16

3

{2, 0} 1
2

{1, 0} 1
1

Fig. 18: Hasse diagram of the {h, b}-relation for the intree in Fig. 11.

57

of the schedule in form of the configuration graph, or the profile graph, is needed. This is
why in the following section, we consider a special case of our scheduling problem in order to
derive some formulas for the expected makespan with only the information about the structure
of the input graph, but without any information about the structure of the configuration graph. In
particular, we consider the problem where the precedence constraints are restricted to only a
sequence of chains. Then the scheduling problem we consider is denoted by

2|pi ∼ exp(1); chains|E(Cmax) .

18.5 One Chain

We start with the easiest (and very trivial) example: only one chain. In this case, a second
processor does not help in processing these tasks, as there is never a time when two tasks are
available. The expected makespan for such a chain of length (or height) n is of course n.
Before we head on, we need some notations for the appearing precedence constraints.

Definition 41. Given a set T of n tasks, a chain of these tasks is a set of precedence constraints
such that j1 → j2 → · · · → jn with ji ∈ T , i = 1, . . . , n. We denote a chain of length n by [n].

Using the notation from the definition above, we have

Cc
(
[n]
)

= n, (18.4)

when applying HLF (or any other scheduling strategy that does not leave processors unneces-
sarily idle for that matter).

18.6 Two Chains

The situation becomes a lot more interesting if we consider a second chain, i.e., some prece-
dence constraints for the tasks which consist of two separate independent chains of generally
different lengths. To this end, we define the following.

Definition 42. Given a set T of n tasks, k chains correspond to precedence constraints for T
such that the connected components of the corresponding graph are chains where the com-
bined number of tasks in all chains is exactly n. For chain lengths l1, . . . , lk with l1 + · · · + lk = n,
we denote these precedence constraints by [l1, . . . , lk].

For reasons of simplicity we might assume without loss of generality that l1 ≥ l2 ≥ · · · ≥ lk . First,
we focus on the case with only two chains, i.e. [s, t] with s ≥ t .

18.6.1 Using the Combinatorial Approach to Find a Closed Form

The interesting part is to determine the expected makespan of the schedule without actually
running the schedule. To this end, we try to reduce this case to one where there is only one of

58

the two chains left, because for only one chain we can determine the expected makespan right
away with (18.4). So, eventually, we will end up in a configuration where one of the two chains
is fully processed. Then we have three parameters to look after:

• How many tasks are left in the one chain that is not fully processed?
For this, we consider the different cases separately and use the law of total probability,
i.e., we have to sum over all possibilities multiplied by their respective probabilities.

• How much time has passed since the beginning of the schedule up to the point where
only one chain remains? And how much time will pass until the end of the schedule?
This is easily determined. Given two chains [s, t], consider the configurations
([i , 0], top of first chain) or ([0, i], top of second chain)2, respectively, i.e., one chain is
fully processed and the other has i tasks left.3 Then, the expected time passed until
this configuration is exactly 1

2 (n − i), and the expected remaining processing time until
completion of the schedule is i .

• What is the probability to get to this configuration? The probability of arriving at a certain
configuration is the hardest part of the calculation. We split this into two cases, one for
either of the chains being the first chain that is completed.

Consider the configuration [s′, 0]. Then, looking at the configuration graph, we know that the
probability of arriving at a given configuration is of the form

p · 2−`,

where ` denotes its distance from the starting configuration and p is the number of paths to
reach it. The distance ` can be easily calculated, it is exactly the number of tasks that have
been processed before, in this case ` = n−s′. The number of paths leading to this configuration
is determined by the binomial coefficient

(n−s′

t

)
, because there are n− s′ tasks to be processed

until then, and exactly t of them must be from the second chain with length t . Considering a
timeline of finished tasks, we now have

(n−s′

t

)
possible ways to arrange jobs from the two chains

onto this timeline. Unfortunately, this includes cases where the last task in this arrangement is
from the chain [s], which means that the preceding configuration was [s′ +1, 0], which should be
considered separately. To make sure that we are not counting configurations more than once,
we want the last task finished in this arrangement to be the last one of chain [t]. This is why we
consider the following:

1. Calculate the number of possible ways to arrive at the configuration [s′, 1] for some s′ ∈
{1, . . . , s}. Then, the desired configuration [s′, 0] is only one step away, and is reached with
a probability of 1

2 from [s′, 1]. Using this fact, and the arguments we stated above, we have

2Usually, these two configurations would not differ as we said that the chains are ordered according to their heights.
But for considering only two chains, we will make that distinction.

3In the following, we will denote a configuration only by its corresponding precedence constraints. In this case, there
is only one possible way to schedule the tasks according to HLF, so we do not declare the task which is already in
process in that configuration. And because of the memorylessness of the exponential distribution it does not matter
either, as we argued before.

59

that the number of possible ways to reach [s′, 1] are
(n−s′−1

t−1

)
, and the probability of reaching

it is 2−(n−s′−1). Thus,

P
(
[s′, 0] is the first configuration with only one chain left

)
=
(

n − s′ − 1
t − 1

)
· 2−(n−s′).

The expected processing time until arriving at that configuration and from there until the end
of the schedule are then given by 1

2 (n − s′) + s′.

2. Similarly, we do these calculations for the case where we reach the configuration [0, t ′] for
t ′ ∈ {1, . . . , t}.

In total, we have for the expected makespan of [s, t]:

Cc
(
[s, t]

)
=

s∑
s′=1

2−(n−s′)
(

n − s′ − 1
t − 1

)(
1
2

(n − s′) + s′
)

+
t∑

t′=1

2−(n−t′)
(

n − t ′ − 1
s − 1

)(
1
2

(n − t ′) + t ′
)

.

Simplifying this expression, we obtain the following result.

Theorem 43. Given a set T of n tasks with exponential processing times with mean 1, and
precedence constraints [s, t] with s + t = n, then the optimal expected makespan is

Cc
(
[s, t]

)
= 2−(n+1)

(
s∑

s′=1

2s′
(

n − s′ − 1
t − 1

)
(n + s′) +

t∑
t′=1

2t′
(

n − t ′ − 1
s − 1

)
(n + t ′)

)
. (18.5)

Proof. We have already shown that HLF is the optimal scheduling strategy in Chapter 17.
Adding a sink node to the two chains as seen in Fig. 3 on page 10, results in an intree that is
optimally scheduled by HLF with an expected makespan equal to 1 plus the expected makespan
of the two chains. Thus, HLF is optimal for inforests, and in particular, for chains, as well. By
the arguments above, the equation in (18.5) correctly captures the essence of the configuration
tree. The only thing left to discuss is the case [1, 1], because this configuration is counted twice
in the above approach, once for [s′, 1] with s′ = 1, and once for [1, t ′] with t ′ = 1. However, [1, 1]
has the two possible successor configurations [1, 0] and [0, 1], which are considered each with
a probability of 1

2 . This means that because [1, 1] is the only configuration where we can reach
two of those desired configurations [s′, 0] or [0, t ′], respectively, we have to count it twice.

The calculation for some example can be seen in Calculation 1 in Appendix A.
Using Mathematica, we can write this in a even more succinct way without the use of sums,
i.e.,

Cc
(
[s, t]

)
= 2−n(n + 1)

((
n + 2
t − 1

)
3F2

[
1, 1− s, n + 2
2− n, n + 1

; 2
]

+
(

n − 2
s − 1

)
3F2

[
1, 1− t , n + 2
2− n, n + 1

; 2
])

,

(18.6)
where we used the code from Listing 18.1 to obtain this result.

60

 2^(-s-t-1)*(Sum[2^i*Binomial[s+t-ss-1,t-1]*(s+t+ss), {ss,1,s}] +
Sum[2^j*Binomial[s+t-tt-1,s-1]*(s+t+tt), {tt,1,t}])

Listing 18.1: Mathematica code for (18.5). The execution yields the expression in (18.6).

However, (18.6) contains hypergeometric functions, see Chapter 11 on page 23, and thus it
can be argued that this formula is not really more succinct than than one in (18.5), because
hypergeometric functions are such powerful tools and contain so much information in just a few
symbols. Nevertheless, for people who are more comfortable with the theory and application of
hypergeomtric functions, this may seem more elegant.
One interesting special case is if s = t , then the whole equation (18.5) can be simplified even
further to obtain

Cc
(
[s, s]

)
=

s∑
k=1

2−(n−k)
(

n − k − 1
s − 1

)
(n + k). (18.7)

We can even have a closed form of (18.7) without a summation and without hypergeometric
functions:

Cc
(
[s, s]

)
= s + 2−(2s−1)(2s − 1)

(
2s − 2
s − 1

)
, (18.8)

where we have used the code from Listing 18.2 to get this identity.

 Simplify[Sum[2^(-2*s+k)*Binomial[2*s-k-1,s-1]*(2*s+k), {k,1,s}]]

Listing 18.2: Mathematica code for (18.7), resulting in (18.8).

18.6.2 Using Generating Functions to Find a Closed Form

A generating function is a power series of the form
∑

i≥0 aix i , see Chapter 10 on page 21,
and for many specific functions, this series converges (under some specific circumstances). If
that happens, the corresponding limit encodes the behavior of the sequence (ai : i ≥ 0). We
consider the multivariate power series ∑

i≥0

∑
j≥0

aijx iy j ,

with the sequence (aij : i , j ≥ 0) denoting the expected makespan of a given precedence graph
[i , j]. If the limit has a closed form, we try to formulate it in such a way that it resembles an
already known generating function, so that we can make some statements about the sequence
(aij). The expectation from this approach is that it might be generalized to three or more chains
in a straightforward way.
The recursive formula of the sequence is our case is given as follows:

a00 = 0, a10 = a01 = 1, ai0 = i , a0j = j ,

aij =
1
2

+
1
2
(
ai−1,j + ai ,j−1

)
, i , j ≥ 1. (18.9)

61

Using the base cases, we can calculate the aijs using dynamic programming with the lattice
seen in Fig. 19. Consider the value aij in the black square. Then, this can be calculated using
only the two values in the gray squares.

aij

ai ,j−1

ai−1,j

i

j

Fig. 19: The lattice for the computation of aij via dynamic programming.

Before we solve the recurrence to get a non-recursive expression for the aijs, we need a helpful
result.

Lemma 44. The following equality holds:

∑
i≥0

∑
j≥0

(
i
j

)
1{j≤i}

(
1
2

)i

x i−jy j =
∑
i≥0

∑
j≥0

(
1
2

)i+j (i + j
j

)
x iy j ,

where 1j≤i is the indicator function of the set {j ≤ i}, i.e.,

1j≤i =

{
1 j ≤ i

0 j > i .

Proof. Consider the sum on the left and focus on all the terms with x i∗y j∗ . These are exactly
these with j = j∗ and i − j∗ = i∗, i.e., i = i∗ + j∗. Thus, we can rewrite the separate summands in
this manner, and obtain the sum on the right. The indicator function vanishes because on the
sum on the left, there can never be negative exponents.

62

As a notational shorthand, we define the values

F∗0 = 0 + x + 2x2 + 3x3 + · · · =
∑
i≥0

ix i =
x

(1− x)2 ,

F0∗ = 0 + y + 2y2 + 3y3 + · · · =
∑
j≥0

jy j =
y

(1− y)2 ,

where the difference in both lies in the choice of the variable. These identities are taken from
[29]. F∗0 is the one-dimensional power series over the first variable x whereas F0∗ has the
variable y . We note that the first summands are actually 0, which means that F∗0 =

∑
i≥1 ix i

and F0∗ =
∑

j≥1 jy j . With this, we can define our power series

F = F (x , y) =
∑
i≥0

∑
j≥0

aijx iy j

and plug in the known relations from above to get

F =
∑
i≥1

∑
j≥1

aijx iy j +
∑
j≥1

a0jy j +
∑
i≥1

ai0x i + a00︸︷︷︸
=0

=
∑
i≥1

∑
j≥1

(
1
2

+
1
2

(ai−1,j + ai ,j−1)
)

x iy j + F0∗ + F∗0

=
1
2

∑
i≥1

∑
j≥1

x iy j +
1
2

∑
i≥1

∑
j≥1

ai−1,jx iy j +
1
2

∑
i≥1

∑
j≥1

ai ,j−1x iy j + F0∗ + F∗0

=
1
2

∑
i≥1

∑
j≥1

x iy j +
1
2

∑
i≥0

∑
j≥1

ai ,jx i+1y j +
1
2

∑
i≥1

∑
j≥0

aijx iy j+1 + F0∗ + F∗0

=
1
2

∑
i≥1

∑
j≥1

x iy j +
1
2

x

∑
i≥0

∑
j≥0

aijx iy j −
∑
i≥0

ai0x i


+

1
2

y

∑
i≥0

∑
j≥0

aijx iy j −
∑
j≥0

a0jy j

 + F0∗ + F∗0

=
1
2

∑
i≥1

∑
j≥1

x iy j +
1
2

x · F − 1
2

x · F∗0 +
1
2

y · F − 1
2

y · F0∗ + F0∗ + F∗0

=
1
2

∑
i≥0

∑
j≥0

x iy j −
∑
i≥0

x i −
∑
j≥0

y j + 1

 +
1
2

x · F +
(

1− 1
2

x
)

F∗0 +
1
2

y · F −
(

1− 1
2

y
)

F0∗

=
(

1
2

x +
1
2

y
)

F +
1
2

∑
i≥0

∑
j≥0

x iy j − 1
2

∑
i≥0

x i − 1
2

∑
j≥0

y j

+
(

1− 1
2

x
)

F∗0 +
(

1− 1
2

y
)

F0∗ +
1
2

. (18.10)

63

At this point, we have two directions to move in. The first is to use the formulas∑
i≥0

x i =
1

1− x
and

∑
i≥1

∑
j≥1

x iy j =
x

1− x
· y

1− y
,

cp. (9.3) from page 19, to obtain a more succinct and more readable expression for F as a
rational function in the variables x and y . The second direction is about letting the sums be
sums and using the convolution results from Lemma 22 and Lemma 23 (page 22) to obtain an
expression for F as a sum where we can see the (non-recursive) description of the aijs. What
we do in the following is to go in the second direction and come up with an expression for the aijs
without any recursive parts. Then, we apply the methods of the second direction to the result of
the first to obtain a succinct formula for the generating function of the sequence (aij : i , j ≥ 0).
The second approach yields

F =
1

1− 1
2 x − 1

2 y
·

1
2

∑
i≥0

∑
j≥0

x iy j − 1
2

∑
i≥0

x i − 1
2

∑
j≥0

y j

+
(

1− 1
2

x
)∑

i≥0

ix i +
(

1− 1
2

y
)∑

j≥0

jy j +
1
2

 .

We define the notations

A =
1

1− 1
2 x − 1

2 y
,

B =
1
2

∑
i≥0

∑
j≥0

x iy j − 1
2

∑
i≥0

x i − 1
2

∑
j≥0

y j +
(

1− 1
2

x
)∑

i≥0

ix i +
(

1− 1
2

y
)∑

j≥0

jy j +
1
2

.

and have a look at the factors A and B separately. First, for B, we get

B =
1
2

∑
i≥0

∑
j≥0

x iy j − 1
2

∑
i≥0

x i − 1
2

∑
j≥0

y j +
(

1− 1
2

x
)∑

i≥0

ix i +
(

1− 1
2

y
)∑

j≥0

jy j +
1
2

=
1
2

∑
i≥0

∑
j≥0

x iy j +
∑
i≥0

(
i − 1

2

)
x i − 1

2

∑
i≥0

ix i+1

︸ ︷︷ ︸
= 1

2
∑
i≥0

ix i− 1
2

+
∑
j≥0

(
j − 1

2

)
y j − 1

2

∑
j≥0

jy j+1

︸ ︷︷ ︸
= 1

2
∑
j≥0

jy j− 1
2

+
1
2

=
1
2

∑
i≥0

∑
j≥0

x iy j +
1
2

∑
i≥0

ix i +
1
2

∑
j≥0

jy j − 1
2

64

As for A, we have

A =
1

1− 1
2 x − 1

2 y

=
∑
i≥0

(
1
2

x +
1
2

y
)i

=
∑
i≥0

i∑
j=0

(
i
j

)(
1
2

x
)i−j (1

2
y
)j

=
∑
i≥0

∑
j≥0

1{j≤i}

(
i
j

)(
1
2

)i

x i−jy j ,

=
∑
i≥0

∑
j≥0

(
1
2

)i+j (i + j
j

)
x iy j , (18.11)

where, for the second-to-last equality, we use that
(i

j

)
= 0 for j > i , and the corresponding

indicator function 1{j≤i}, i.e., it is 1 if j ≤ i , and 0 if j > i . For the last equality, we used
Lemma 44 to get rid of the difference in the exponent, as well as the indicator function.
In total, this yields

F = A · B

=

∑
i≥0

∑
j≥0

(
1
2

)i+j (i + j
j

)
x iy j

 ·
1

2

∑
i≥0

∑
j≥0

x iy j +
∑
i≥0

ix i +
∑
j≥0

jy j − 1
2

 .

The separate products of the sums can be solved by convolution, see Lemma 23. Thus, with a
little more simplifying, we obtain a formula

F =
∑
i≥0

∑
j≥0

aijx iy j

and the following theorem.

Theorem 45. The expected makespan of two chains of lengths i and j, respectively, i.e., a
configuration [i , j], is

aij =
i∑

k=0

j∑
`=0

(
1
2

)k+`+1(k + `
`

)

+
i∑

k=0

(
1
2

)k+j+1(k + j
j

)
(i − k)

+
j∑
`=0

(
1
2

)i+`+1(i + `
`

)
(j − `)

−
(

1
2

)i+j+1(i + j
j

)
. (18.12)

65

(18.12) gives us a way to calculate the optimal expected makespan of a configuration [i , j] with-
out even simulating a schedule in the same way that (18.5) does this. Calculation 1 in Ap-
pendix A on page 181 shows the equivalence to the other approaches from (18.5) and Lemma 37
with a small example.
Now that (18.12) gives us a nicer expression for the sequence (aij : i , j ≥ 0), we can use these
sums to find another succinct expression for the generating function of this sequence, i.e., the
first direction which we described above. To this end, we have

∑
i≥0

∑
j≥0

(
i∑

k=0

j∑
`=0

(
1
2

)k+`+1(k + `
`

))
x iy j =

∑
i≥0

∑
j≥0

bijx iy j

∑
i≥0

∑
j≥0

cijx iy j


by Lemma 23 with bij =

(1
2

)i+j+1 (i+j
j

)
and cij = 1. Thus, this is equivalent to

∑
i≥0

∑
j≥0

(
i∑

k=0

j∑
`=0

(
1
2

)k+`+1(k + `
`

))
x iy j =

1
2

∑
i≥0

∑
j≥0

(
1
2

)i+j (i + j
j

)
x iy j

∑
i≥0

∑
j≥0

x iy j


=

1
2

∑
i≥0

∑
j≥0

(
i + j

j

)(x
2

)i (y
2

)j
∑

i≥0

∑
j≥0

x iy j


=

1
2
· 1

1− 1
2 x − 1

2 y
· 1

(1− x)(1− y)

=
1

2− x − y
· 1

(1− x)(1− y)
,

parts of which we have already seen in (18.11). Similarly, we can find expressions for the
generating functions of the other three lines of the right hand side of (18.12). For the second
line, for example, we have, again with the result about convolution of Lemma 23,

∑
i≥0

∑
j≥0


i∑

k=0

(
1
2

)k+j+1(k + j
j

)
︸ ︷︷ ︸

=bkj

(i − k)︸ ︷︷ ︸
=ci−k

 x iy j =

∑
i≥0

∑
j≥0

bijx iy j

∑
i≥0

cix i



=
1
2

∑
i≥0

∑
j≥0

(
i + j

j

)(x
2

)i (y
2

)j
∑

i≥0

ix i


=

1
2− x − y

· x
(1− x)2 .

For the remaining two lines, we have

∑
i≥0

∑
j≥0

(j∑
`=0

(
1
2

)i+j+1(i + `
`

)
(j − `)

)
x iy j =

1
2− x − y

· y
(1− y)2

and ∑
i≥0

∑
j≥0

((
1
2

)i+j+1(i + j
j

))
x iy j =

1
2− x − y

.

66

Altogether, this amounts to∑
i≥0

∑
j≥0

aijx iy j =
1

2− x − y

(
1

(1− x)(1− y)
+

x
(1− x)2 +

y
(1− y)2 − 1

)
. (18.13)

Our efforts to simplify (18.13) were not succesful. Both Mathematica and Maple, as well as
several results and tools from the theory of generating functions did not yield a simplified form of
(18.13). We used methods from [54] or [34] for example, but unfortunately, no simpler equivalent
formula was found.

18.7 k Chains

We generalize the situation from the previous section and consider more than two chains. This
means that now we are given a set T of n tasks corresponding to the precedence constraints
[l1, . . . , lk], i.e., k different chains with lengths l1, . . . , lk . Without loss of generality, we may
assume that l1 ≥ · · · ≥ lk . And because HLF is the optimal scheduling strategy for inforests,
this means that tasks are scheduled from left to right.
For the special case with k = 2 we derived a closed formula for the expected makespan that
can be computed without running a schedule. So, the objective for this section is to derive such
a formula for the general case as well.

18.7.1 Using the Combinatorial Approach

In Theorem 43, we used methods from combinatorics to determine the expected makespan
of a two-chain-configuration [s, t]. The binomial coefficients essentially capture the number of
different configuration paths a schedule may take to arrive at a certain configuration. When
only two chains are present then exactly one task of each chain will be scheduled at any time
(until one of the chains is processed completely). As every two-processor scheduling strategy
on two chains is HLF, all possible orders in which the tasks are processed are possible without
contradicting the “highest-level first” paradigm.
Now consider three chains. There is a generalization of the binomial coefficients, aptly called
the multinomial coefficients. These can be defined by(

n
l1, . . . , lk

)
=

n!
l1! · · · lk !

, (18.14)

where l1 + · · · + lk = n, and can be interpreted as the number of possible combinations of how
to put n distinct objects into k distinct bins (with l1 objects into the first bin, l2 objects into the
second, and so on). The interpretation that we want to use here is to pick tasks (objects) from
the k chains (bins) to be processed on the two processors. Now, the order of the tasks being
picked from one particular chain does not matter, because we can only pick the topmost task
anyway. However, the order of the tasks from different chains really is important.

67

Consider the graph [2, 1, 1], and the desired configuration [1, 0, 0]. Then the multinomial coeffi-
cient (

3
1, 1, 1

)
= 6

gives the number of possibilities a schedule can process tasks from these three chains to arrive
at [1, 0, 0], i.e., one task from each of the three chains. However, two of those possibilities are
the ones where the tasks from the second and third chains are processed before the topmost
task from the first chain, see Fig. 20. But this is clearly against the paradigm of HLF, making
the multinomial coefficient useless in this form.

[2, 1, 1]

[2, 1, 0] [2, 0, 1]

[2, 0, 0]

[1, 0, 0]

Fig. 20: Two configuration paths that lead from [2, 1, 1] to [1, 0, 0].

Exceptions from this are the cases where we have exactly as many chains as we have proces-
sors available. If we had three processors for our three chains as in the example, then again,
every scheduling strategy would be HLF. The same holds for k chains and k processors. Thus,
the number of paths that lead to a certain configuration can be calculated using the multinomial
coefficients. Still, the formula does not look that easy, because we have to adjust the factors
in it as soon as one chain is fully processed. As long as there are k chains to choose from,
the expected time until the next tasks finishes is exactly 1

k and the probability that a task of a

68

particular chain will be finished next is again 1
k . After one chain is completely processed, these

values reduce to 1
k−1 . This means that we would have a formula for k chains, which recursively

uses every possible/feasible formula for k − 1 chains.
For example, consider [i , j , k]. As in the case with two chains and two processors, see Theo-
rem 43, we focus on the configurations [r , s, 1], [r , 1, t], and [1, s, t], i.e., configurations where
one chain is almost completely processed and the schedule only needs 1

3 time units longer (with
a probability of 1

3) to arrive at a configuration with only two chains remaining. The expected
makespan for [i , j , k] is

Cc
(
[i , j , k]

)
=

i∑
r=1

j∑
s=1

(
1
3
·
(

1
3

)i−r+j−s+k−1

·
(

i − r + j − s + k − 1
i − r , j − s, k − 1

)
︸ ︷︷ ︸

prob. to arrive at [r , s, 0] via the config. [r , s, 1]

·
(

1
3

(i − r + j − s + k − 1) +
1
3

+ Cc
(
[r , s]

)))

+
i∑

r=1

k∑
t=1

(
1
3
·
(

1
3

)i−r+j−1+k−t

·
(

i − r + j − 1 + k − t
i − r , j − 1, k − t

)
︸ ︷︷ ︸

prob. to arrive at [r , 0, t] via the config. [r , 1, t]

·
(

1
3

(i − r + j − 1 + k − t) +
1
3

+ Cc
(
[r , t]

)))

+
j∑

s=1

k∑
t=1

(
1
3
·
(

1
3

)i−1+j−s+k−t

·
(

i − 1 + j − s + k − t
i − 1, j − s, k − t

)
︸ ︷︷ ︸

prob. to arrive at [0, s, t] via the config. [1, s, t]

·
(

1
3

(i − 1 + j − s + k − t) +
1
3

+ Cc
(
[s, t]

)))
. (18.15)

The case with the configuration [1, 1, 1] is counted multiple times, namely three times in this
case. But because its three successor configurations [1, 1, 0], [1, 0, 1], and [0, 1, 1] are all con-
figurations with only two chains (for the first time), we have to count it three times.
In order to generalize (18.15) to k chains and k processors, we have to define some abbrevia-
tions in our notation so that we can derive a rather succinct expression. To this end, let α be a
multiindex with k entries, i.e., α = (α1,α2, . . . ,αk) (see [48] for example). We define the size of
a multiindex by

|α| = α1 + · · · + αk .

Furthermore, let A1 be a set of multiindices α with 1 ≤ αi ≤ li for all 1 ≤ i ≤ k and at least one
entry equal to 1, i.e.,

A1 = {α = (α1, . . . ,αk) : ∀ i ∈ {1, . . . , k} : 1 ≤ αi ≤ li and ∃ i : αi = 1},

and define the multinomial coefficient, see (18.14), by(
n − |α|
α

)
=
(

n − |α|
α1, . . . ,αk

)
.

69

Then, the expected makespan of a configuration [l1, . . . , lk] for the k -processor problem is

Cc
(
[l1, . . . , lk]

)
=
∑
α∈A1

(
1
k

)n−|α|

·
(

n − |α|
α

)
· 1

k
·
(

n − |α|
k

+
1
k

+ Cc
(
[α]
))

. (18.16)

Here, [α] just denotes the configuration [α1, . . . ,αk] (after appropriately sorting the chains). The
interpretation for (18.16) is the same as in (18.5), or later in Theorem 49: the first two factors
describe the probability of arriving at a given configuration, the third factor is the probability that
one chain vanishes at the next decision point, and the summands in the last factor describe
the expected processing time so far, the expected time until the next decision point, and the
expected remaining processing time after the next decision point, respectively.
We end the brief excursion to k processors and focus on the case with two processors again.
But still, the combinatorial approach is the one we want to use. We argued that the multinomial
coefficients will produce wrong results in the general case when the number of chains is not
equal to the number of available processors. However, with a recursive approach as in (16.1)
on page 37 applied repeatedly, we can use the binomial coefficient very well. For a configuration
[l1, l2, l3, . . .] with l1 ≥ l2 ≥ l3 ≥ . . . , we know that (in an optimal schedule) only tasks from the
first two chains are processed until one of those chains has less than l3 tasks. To this end, we
consider the following two cases.

Case 1: The first (leftmost) chain is processed until it has exactly l3 tasks left while the second
chain has j tasks left, with l3 ≤ j ≤ l2. Then the number of possible configuration paths
to get there is (

l1 − l3 + l2 − j
l1 − l3

)
.

The probability for any one of these paths is(
1
2

)l1−l3+l2−j

.

The expected time that has passed while processing any one of these paths is

l1 − l3 + l2 − j
2

.

Then, we need one more step, with a probability of 1/2, to get to a configuration where
the first chain is lower than the third. This whole case (or cases as j is a variable)
amounts to the sum in (18.17).

Case 2: The second chain is processed until it has exactly l3 tasks left while the first chain has
i tasks left, with l3 ≤ i ≤ l1. Then, analogously to the first case, we have(

l1 − i + l2 − l3
l2 − l3

)
possible configurations paths, each with probability(

1
2

)l1−i+l2−l3

70

and expected time
l1 − i + l2 − l3

2
.

Add one more step, then the second chain is lower than the third. This amounts to the
sum in (18.18).

Hence, the expression for the expected makespan is

Cc
(
[l1, l2, l3, . . .]

)
=

l2∑
j=l3

(
l1 − l2 + l2 − j

l1 − l3

)
·
(

1
2

)l1−l3+l2−j

· 1
2

·
(

l1 − l3 + l2 − j
2

+
1
2

+ Cc
(
[l3 − 1, j , l3, . . .]

))
(18.17)

+
l1∑

i=l3

(
l1 − i + l2 − l3

l2 − l3

)
·
(

1
2

)l1−i+l2−l3

· 1
2

·
(

l1 − i + l2 − l3
2

+
1
2

+ Cc
(
[i , l3 − 1, l3, . . .]

))
. (18.18)

Note that the configurations in the recursion are not in order yet, e.g., in (18.17) the second
chain with j tasks is now the highest chain, followed by the third chain and any other chain of
height l3. Only then we have the first chain of height l3−1 in the order. So, after rearranging the
chains in the notation the recursion can go on.
Another approach which was quite fruitful in the special case with only two chains was using
generating functions, see Section 18.6.2. The results of using these with k chains are presented
in the next section.

18.7.2 Using Generating Functions for Specific Examples

For starters, we consider the easy example [l1 = i , 1, . . . , 1] with j + 1 chains in total, i.e., one
high chain of height i and j small ones with only one task each. We use the notation

bij := Cc
(
[i , 1, . . . , 1︸ ︷︷ ︸

j

]
)
.

This is denoted by `ij in [10]. Then, we can define a recurrence relation very similar to (18.9) to
describe the recursive nature of bij :

b00 = 0, b10 = b01 = 1, bi0 = i , b0j =
j + 1

2
,

bij =
1
2

+
1
2

(bi−1,j + bi ,j−1), i , j ≥ 1. (18.19)

Because of the highly similar structure to (18.9) – actually, only the last base case is different
– the end result is again highly similar to what we have calculated before. The intermediate

71

calculations are omitted here, and the result is

bij =
i∑

k=0

j∑
`=0

(
1
2

)k+`+1(k + `
`

)

+
i∑

k=0

(
1
2

)k+j+1(k + j
j

)
(i − k)

+
j∑
`=0

(
1
2

)i+`+2(i + `
`

)
(j − `) (18.20)

Notice that the exponent in the last sum has a “+2” instead of just a “+1”. This is because one of
the base conditions is a ratio with denominator 2, cp. (18.19). Moreover, here we have no term
without a summation, in contrast to the result with the aijs from (18.12).
A formula for a general case, however, would not look as nice and clean as (18.20), which is
why we try another approach in the following section.

18.7.3 Using a Stair Function for the General Case

We want to reduce the general case to the special case with k = 2. This means that we have to
calculate the probability that a configuration with only two remaining chains occurs, as well as
the expected time until we reach such a configuration.
We derive expressions for the same approach we used in the case of two chains. There, for [s, t],
we considered configurations of the form [s′, 1], or [1, t ′], resp., and calculated the corresponding
probabilities as well as the expected makespans. Here, we consider configurations of the form
[l ′, 1, 1, 0, . . . , 0], i.e., configurations which are only one step away from having only two chains
left. First, we show that these are exactly the kind of configurations we can focus on, and not
more have to be considered. To this end we show the following lemma.

Lemma 46. Given a sequence of chains [l1, . . . , lk] with k ≥ 3 and consider the first time a
configuration with only two chains left occurs, i.e., a configuration of the form [l ′, i ′, 0, . . . , 0].
Then it holds that i ′ = 1.

Proof. Assume that the first time only two chains are left is at [l ′, i ′, 0, . . . , 0] with l ′ ≥ i ′ > 1.
Then the preceding configuration must have been [l ′, i ′, 1, 0, . . . , 0]. But as l ′ > 1 and i ′ > 1, the
lone task from the third chain cannot be scheduled without contradicting HLF.

Again, the expected time that passes from the start of the schedule until a certain configuration
is easy to determine, as long as there are always both processors busy during this time. For
our cases this is true and we only have to take care of calculating the probability of arriving at a
certain configuration. We do this by calculating the ratio of the number of possible paths to such
a configuration and the number of all paths of that length. The length is easy to determine as it is
just the number of tasks which have been finished processing until then, say `. And the number
of all paths of that length is 2−` because we have two possible successor configurations for the
two tasks that are being processed by HLF. In some cases, the two successor configurations

72

are identical as we do not distinguish between two tasks which are on the same level. We take
this into account by counting these two cases separately.
Let us consider an example. Given a sequence of chains [5, 5, 4, 2], we have the following grid
of configurations, see Fig. 21.

[5, 5, 4, 2]

[5, 4, 4, 2]

[5, 4, 3, 2]

[5, 3, 3, 2]

[5, 3, 2, 2]

[5, 2, 2, 2]

[5, 2, 2, 1]

[5, 2, 1, 1]

[5, 1, 1, 1]

[5, 1, 1, 0]

[5, 1, 0, 0]

[4, 4, 4, 2]

[4, 4, 3, 2]

[4, 3, 3, 2]

[4, 3, 2, 2]

[4, 2, 2, 2]

[4, 2, 2, 1]

[4, 2, 1, 1]

[4, 1, 1, 1]

[4, 1, 1, 0]

[4, 1, 0, 0]

[3, 3, 3, 2]

[3, 3, 2, 2]

[3, 2, 2, 2]

[3, 2, 2, 1]

[3, 2, 1, 1]

[3, 1, 1, 1]

[3, 1, 1, 0]

[3, 1, 0, 0]

[2, 2, 2, 2]

[2, 2, 2, 1]

[2, 2, 1, 1]

[2, 1, 1, 1]

[2, 1, 1, 0]

[2, 1, 0, 0]

[1, 1, 1, 1]

[1, 1, 1, 0]

[1, 1, 0, 0]

Fig. 21: The chain grid for [5, 5, 4, 2].

The structure of the grid can tell us some information:

• The columns represent configurations with the same value for the highest chain. For
example, the first column corresponds to configurations where the highest chain has

73

height 5, the second to height 4, and so on. In general, the first column would corre-
spond to a highest chain of height l1, the second to height l1 − 1, etc.

• The grid has steps in it. The height of the steps can be determined as well, they are
exactly the number of tasks on the levels minus 1. This is because for more than
one task on the highest level, HLF will have two identical configurations disregarding
isomorphisms. The number of tasks on each level is known and can be determined
with the lengths of the chains, namely these are the pi values from the profile. For
example, the height of the first step is the number of tasks on the highest level minus 1,
i.e., p5 − 1 = 1, the height of the second step is p4 − 1 = 2, and so on.

• The width of each step is exactly 1.

For future figures we will not make the edges directed, we define edges to either go to the
right or down. Also for simplicity, we will mostly consider configurations with l1 > l2 as starting
configurations, because this is the first configuration with two different successor configurations.
Now, the task is to find out how many paths there are reaching from the starting configuration
[5, 5, 4, 2] to a configuration in the second-to-last row, i.e., to a configuration that is only one step
away from another with only two chains left. For this, we define the stair function.

Definition 47 (Stair function). The stair function F H
W (x1, . . . , xm) is defined as the number of

possible paths in a grid with total width W , total height H, and x1, . . . , xm the number of double
edges at each step of the grid, with m ≤W .

The total width W corresponds to the number of edges along the bottom row of the grid, the
total height H corresponds to the number of edges along the leftmost column of the grid. The
values x1, . . . , xm−1 also denote the step heights, whereas xm might be less than the height of
the last step, i.e., the last step consists of double edges and single edges. See Fig. 22 for some
examples. We omit the node labels, as we only care about the number of paths starting from
the upper left corner and ending in the lower right corner of the grid. Nodes in the grids are
drawn as gray rectangles, in order to avoid confusion with tasks in graphs (that are drawn as
circles in black, gray, white, or other patterns).
Now, this number of paths can be described using a recurrence relation.

Lemma 48. Given a grid with steps and double edges (e.g. as in Fig. 22) with total width W,
total height H, and step sizes x1, . . . , xm, the number of paths from the upper left corner to the
lower right corner is given by

74

Grid for F 7
W (2, 2, 3) Grid for F 5

2 (2, 3) Grid for F 4
5 (2, 1)

Grid for F 6
1 (3) Grid for F 4

3 (0) Grid for F 4
3 (2)

Fig. 22: Corresponding grids to some examples.

F H
W (x1, . . . , xm) = F H−1

W (x1, . . . , xm) + F H
W−1 (x1, . . . , xm) if m = W , (18.21)

F H
W (x1, . . . , xm) = 2x1 · F H−x1

W (x2, . . . , xm) if m = W + 1, (18.22)

F H
0 (0) = 1, (18.23)

F H
1 (0) = H + 1,

F 0
W (0) = 1,

F H
W (0) =

(
W + H

H

)
. (18.24)

Proof. We prove this by induction on n, the number of nodes in the grid. The trivial base cases,
i.e., (18.23) to (18.24), are as follows: F H

0 (0) corresponds to a grid which only consists of a
single chain of height H (without any double edges), F H

1 (0) corresponds to a 1×H-grid (without
any double edges), F 0

W (0) corresponds to a single row of width W , and F H
W (0) corresponds to

a W × H-grid (without any double edges). See Fig. 23 for examples of the base cases.
Consider a grid with n + 1 nodes with width W , height H and steps x1, . . . , xm. The first line

(18.21) is when there are the two possibilities to either go down or to the right. Then, the total
number of ways to the bottom right node is the sum of the total number of ways from those two

75

...

F H
0 (0)

...
...

F H
1 (0)

. . .

F 0
W (0)

...
...

. . .

. . .

. . .

...

F H
W (0)

Fig. 23: The base cases of the recurrence relation

reachable nodes. The claim then follows by the induction hypothesis. The second line (18.22)
captures a node where there are no possibilities to go to the right, only downwards. Then, there
are no possibilities for choosing the way until a node is reached with a right neighbor. Such a
node is reached after x1 many steps, because this is exactly the step size. So, the number of
possible ways contains a factor of 2x1 , and the claim again follows by the induction hypothesis.
Fig. 24 shows an example for each of those two equations. The thick red arrows indicate the
two possibilities to continue the way.

2x 1
po

ss
ib

le
pa

th
s

Fig. 24: Examples for (18.21) and (18.22) on the left and right, respectively.

Although there is a large amount of research already been done in the field of lattice (grid)
paths [52, 53], like the discovery of Catalan numbers [1] and Delannoy numbers [2] for square-
shaped lattices, or general formulas and number sequences for rectangular lattices [20], even
with weighted edges [21], none of the works that we looked at relate to our cases with chain
grids and double steps. In the special case that there are no double steps, we can use a slightly
smaller formula than the one in Lemma 48, using only recursion and the binomial coefficient(

W + H
W

)
,

which denotes the number of paths in an W × H-grid with only single steps.
Getting back to the example [5, 5, 4, 2], we want to calculate the number of paths from the
starting configuration to a configuration in the second-to-last row from Fig. 21. So we have to
consider the number of paths from the configuration [5, 5, 4, 2] to the configurations [1, 1, 1, 0],

76

[2, 1, 1, 0], [3, 1, 1, 0], [4, 1, 1, 0], and [5, 1, 1, 0], which are

|paths from [5, 5, 4, 2] to [1, 1, 1, 0]| = F 9
4 (1, 2, 2, 3, 1) = 21 · F 8

4 (2, 2, 3, 1) ,

|paths from [5, 5, 4, 2] to [2, 1, 1, 0]| = F 9
3 (1, 2, 2, 3) = 21 · F 8

3 (2, 2, 3) ,

|paths from [5, 5, 4, 2] to [3, 1, 1, 0]| = F 9
2 (1, 2, 2) = 21 · F 8

2 (2, 2) ,

|paths from [5, 5, 4, 2] to [4, 1, 1, 0]| = F 9
1 (1, 2) = 21 · F 8

1 (2) ,

|paths from [5, 5, 4, 2] to [5, 1, 1, 0]| = F 9
0 (1) = 21 · F 8

0 (0) .

Fig. 25 shows the grids to be considered (on the first level of the recursion at least) in the
five equations above, i.e., the grids for F 9

4 (1, 2, 2, 3, 1) and F 9
3 (1, 2, 2, 3) (at the top, from left

to right), and the grids for F 9
2 (1, 2, 2), F 9

1 (1, 2), and F 9
0 (1) (at the bottom, from left to right).

The configurations which correspond to the start or the end of the paths are the top-left or the
bottom-right nodes, respectively.

[5, 5, 4, 2]

[1, 1, 1, 0]

[5, 5, 4, 2]

[2, 1, 1, 0]

[5, 5, 4, 2]

[3, 1, 1, 0]

[5, 5, 4, 2]

[4, 1, 1, 0]

[5, 5, 4, 2]

[5, 1, 1, 0]

Fig. 25: The grids to be considered in the example from Fig. 21.

Using the above values we can calculate the expected makespan for [5, 5, 4, 2].

Cc
(
[5, 5, 4, 2]

)
=

5∑
i=1

1
2
· |paths from [5, 5, 4, 2] to [i , 1, 1, 0]| · 2−((2−0)+(4−1)+(5−1)+(5−i))

·
(

1
2

((2− 0) + (4− 1) + (5− 1) + (5− i) + 1) + Cc
(
[i , 1]

))
,

where we can determine Cc
(
[i , 1]

)
by using the formula developed for two chains, which simpli-

fies to Cc
(
[i , 1]

)
= i + 2−i .

For the general case with k chains [l1, . . . , lk], we use some definitions to shorten the formula
and for a better understandability. First, we have L = l1. Then, define

xi = pL−i − 1, for i ∈ {0, . . . , L− 2},
xL−1 = p1 − 2,

77

while using the values from the profile p = (p1, . . . , pL). These can be easily determined from
the li values by

pi = max{j : lj ≥ i}, i ∈ {1, . . . , L = l1}.

In addition, define

Pi = (l1 − (i − 1)) + (l2 − 1) + (l3 − 1) + l4 + · · · + lk

= l1 + · · · + lk − i − 1,

i.e., the length of a path from the starting configuration to the configuration [i , 1, 1, 0, . . . , 0], and

H = (l2 − 1) + (l3 − 1) + l4 + · · · + lk =
k∑

j=2

lj − 2

for k > 2, and H = l2 − 1 for k = 2. Then, the formula for the expected makespan is given by

Cc
(
[l1, . . . , lk]

)
=

L∑
i=1

2x0 · F H
L−i (x1, . . . , xL−i)︸ ︷︷ ︸

no. of paths to [i ,1,1,0,...,0]

· 2−Pi︸︷︷︸
pr. of one path

· 1
2︸︷︷︸

pr. to next conf.

·
(

1
2

(Pi + 1) + Cc
(
[i , 1]

))
︸ ︷︷ ︸

expected processing time

.

When simplified, this leads to the following result.

Theorem 49. Given a set T of n tasks as k chains [l1, . . . , lk] with exponential processing times,
the optimal expected makespan is given by

Cc
(
[l1, . . . , lk]

)
=

L∑
i=1

2x0−Pi−1 · F H
L−i (x1, . . . , xL−i) ·

(
1
2

(Pi + 1) + i + 2−i
)

,

with L = l1,

xi = pL−i − 1, i ∈ {0, . . . , L− 2},
xL−1 = p1 − 2,

Pi =
k∑

j=1

lj − (i − 1), i ∈ {1, . . . , L},

H =


k∑

j=2

lj − 2 k > 2

l2 − 1 k = 2,

and the recurrence relation F as defined in Lemma 48.

Alternatively, one could make a distinction between the different chains, i.e., not order them by
decreasing height in every step. This way, it is easier to count the possibilities, because there

78

are no configurations which have to be counted twice or even more times. For example, with
four chains, there are four possible configurations with only one task left if the chains are not
ordered, namely [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 0, 1]. When we order the chains by
decreasing height, then only [1, 0, 0, 0] remains, but may have to be counted several times now.
See Fig. 26 for the configuration graph of the example configuration [4, 4, 3, 2]. The arcs relate
to the (up to two) successor configurations, the labels on the arcs indicate the index of the
chain of the last task that was finished. They are not important for the calculation, just for a
better understanding. In the end, we want to calculate the number of paths from the starting
configuration (the topmost one) to one of the blue configurations. These are all of the form that
one chain has only one task left, another chain has at least one task left, and all the other chains
do not have any tasks left.
The upside of this approach is that it is easy to calculate because all it takes is to build the
graph of the transitions between the configurations. This can be done efficiently, because con-
sidering some configuration, and implicitly using the level-oriented HLF, we just have to find
the two highest (and leftmost) of the k chains and we get the two successor configurations by
decreasing the height of those chains by 1, respectively. For example, consider the configu-
ration [1, 2, 3, 2] in Fig. 26, marked with a dashed border. Our HLF schedules the two tasks
from the second and third chains. Then, the two corresponding successor configurations are:
[1, 1, 3, 2] if the task from the second chain finishes first, or [1, 2, 2, 2] if the task from the third
chain finishes first. After creating this graph, we only need to run a graph traversal algorithm like
Breadth-First-Search or Depth-First-Search to find the number of possible ways from the start
configuration to the desired end configuration, with can be done very efficiently, i.e., in linear
time in the size of the graph.
Observe, that not all possible configurations for exactly two chains with exactly one task each
occur in this graph. This is due to the chosen scheduling strategy. When ties are to be broken,
tasks on the left are prioritized over tasks on the right. Hence, for example, the configuration
[1, 1, 0, 0] can never occur. It may occur when using another scheduling strategy.

[4, 4, 3, 2]

[3, 4, 3, 2] [4, 3, 3, 2]

[2, 4, 3, 2] [3, 3, 3, 2] [4, 2, 3, 2]

[2, 4, 2, 2] [2, 3, 3, 2] [3, 2, 3, 2] [4, 2, 2, 2]

[1, 4, 2, 2] [2, 3, 2, 2] [2, 2, 3, 2] [3, 2, 2, 2] [4, 1, 2, 2]

[1, 4, 1, 2] [1, 3, 2, 2] [2, 2, 2, 2] [1, 2, 3, 2] [3, 1, 2, 2] [4, 1, 1, 2]

[1, 4, 1, 1] [1, 3, 1, 2] [1, 2, 2, 2] [2, 1, 2, 2] [1, 1, 3, 2] [3, 1, 1, 2] [4, 1, 1, 1]

[0, 4, 1, 1] [1, 3, 1, 1] [1, 2, 1, 2] [1, 1, 2, 2] [2, 1, 1, 2] [1, 1, 3, 1] [3, 1, 1, 1] [4, 0, 1, 1]

[0, 4, 0, 1] [0, 3, 1, 1] [1, 2, 1, 1] [1, 1, 1, 2] [1, 1, 2, 1] [2, 1, 1, 1] [0, 1, 3, 1] [3, 0, 1, 1] [4, 0, 0, 1]

[0, 4, 0, 0] [0, 3, 0, 1] [0, 2, 1, 1] [1, 1, 1, 1] [0, 1, 1, 2] [0, 1, 2, 1] [2, 0, 1, 1] [0, 0, 3, 1] [3, 0, 0, 1] [4, 0, 0, 0]

[0, 3, 0, 0] [0, 2, 0, 1] [0, 1, 1, 1] [1, 0, 1, 1] [0, 0, 1, 2] [0, 0, 2, 1] [2, 0, 0, 1] [0, 0, 3, 0] [3, 0, 0, 0]

[0, 2, 0, 0] [0, 1, 0, 1] [0, 0, 1, 1] [1, 0, 0, 1] [0, 0, 0, 2] [0, 0, 2, 0] [2, 0, 0, 0]

[0, 1, 0, 0] [0, 0, 0, 1] [0, 0, 1, 0] [1, 0, 0, 0]

[0, 0, 0, 0]

1 2

1 2 1 2

3 2 1 2 1 3

1 2 3 2 1 3 1 2

3 2 21 3 1 21 1 3

4 2 4 2 1
3 3 2 1

3 1 4

1 2 4 2 23 1
3 3 4 1

4 1 3

3 2 1 3 4 2 3 4 1
4 3 1 1

2 1 3

4 2 3 2 1 2 4
1 3

11 2 3 2 1
3 1 4

2 4 2 3 2 1
2 4

23 21 3 3 4 1
4 1

2 4 2 3 2 1 3 4
3

3
4

1
4 3 1

2 4 43
1

44 3 1

2 4 3 1

Fig. 26: The configuration graph for [4, 4, 3, 2].

80

18.8 Y-graphs and Psi-graphs

In the last section, we focused on very simple precedence constraints, namely only sequences
of chains. One decisive property of a sequence of chains is that every node has indegree at
most 1. In the following, we will consider precedence constraints (and corresponding graphs)
where this assumption is loosened and there can be nodes with an indegree of more than 1.
At first, we study the case where at most one node is allowed to have two predecessors.

Definition 50 (Y-graph). A Y-graph is an acyclic, connected graph with the following properties:

• every node has outdegree at most 1,

• every node has indegree at most 2,

• at most one node has indegree 2.

A Y-graph can be decomposed into three chains as seen in Fig. 27. Using this fact, we denote
a Y-graph with chain lengths r , s and t by Yr ,s,t .

...

...
...

r

s
t

Fig. 27: A Y-graph Yr ,s,t .

As for all intrees, a Y-graph is optimally scheduled using HLF when considering exponential
processing times and two processors, i.e., it optimally solves the scheduling problem

2|pi ∼ exp(1); Y |E(Cmax) .

And because a Y-graph consists of three linked chains, we can reduce the problem of finding
the expected makespan for such a schedule to the problem of calculating this value for a graph
of two chains and a single chain. In particular, we get that

Cc
(
Yr ,s,t

)
= Cc

(
[s, t]

)
+ r .

This follows from the fact that the last r tasks in the chain [r] can only be processed when both
the chains from [s, t] are completely processed, because every task from [s, t] is an ancestor of
every task in [r], and of the highest task from [r] in particular.

81

We can generalize the idea of a Y-graph to a graph where one node can have an outdegree 3
or more, see Fig. 28. We will call these graphs Psi-graphs and, using the same decomposition
approach as for the Y-graphs, denote them by Ψr ,s1,...,sk . Similarly to Y-graphs, the calculation
of the expected makespan of an HLF schedule can be reduced to a case with a sequence of
chains. In particular, it holds that

Cc
(
Ψr ,s1,...,sk

)
= Cc

(
[s1, . . . , sk]

)
+ r .

...

...
...

r

s1
sk

Fig. 28: A Psi-graph Ψr ,s1,...,sk .

As we can see, the case where only one node is allowed to have a large indegree is easily
handled, we can just use the formulas we derived for the special case with a sequence of
chains to calculate the makespan of such a graph. Now, the question is whether we can derive
a formula for a generalized case which relies only on the formulas for a sequence of chains.
The following section covers that.

18.9 Intree Decomposition

In Section 18.8, we considered intrees where at most one node has more than one predecessor.
These kinds of graphs are very restricted, which is why we want to generalize our approach to
intrees which can have more than one node with more than one predecessor each. In this
section, we decompose such an intree into several parts and consider the parts separately to
find a formula for the expected makespan of an optimal HLF schedule. First, we introduce a
notion to simplify the notations and improve the understanding of the decomposition.

Definition 51 (Join Node). A join node in G, or join for short, is a node with indegree more than
1. A join level denotes a level which contains at least one join node.

See Fig. 29 for an example. The join nodes are the blue ones.
At first, we consider a special class of intrees with a width of at most 2, i.e., all entries in the
corresponding profiles are at most 2. The intree in Fig. 29 is an example for such an intree.

82

i1

i2

i3

Fig. 29: An intree with width 2 and three join nodes on join levels i1, i2, and i3.

Because HLF is the optimal strategy in this case, it is clear to see that the lower sources below
the join level i3 can only be scheduled when at least one of the “arms” protruding from the
join node on that level is completely processed, thus letting one processor be idle, and ready
for processing other, lower sources. After this has happened, the situation is the same as
before. Now, sources below join level i2 must wait until one arm above that level is completely
processed. And because the width of the intree is at most 2, we only have to calculate expected
makespans of sequences of two chains for all cases that appear. This behavior is depicted
in Fig. 30. Applying HLF to the intree in Fig. 29 first processes only the tasks above level i3,
marked by the gray rectangle on the left. These tasks form two chains. After one of these chains
is completely processed, the schedule arrives at the scenario on the right (or a similar one), and
now processes the tasks in the gray rectangle on the right, also forming two chains. And so on.

i3

7→

i2

Fig. 30: HLF applied to the intree in Fig. 29.

Before we get into more detail in the corresponding calculations and expressions here, we
generalize this approach to arbitrary wide intrees as this approach does not change that much
by doing that. This means, that now, we consider general intrees and try to decompose them
into several disjoint parts, see Fig. 31 for an example.

83

G4

G3

G2

G1i1

i2

i3

Fig. 31: An intree with decomposition (G1, . . . , G4).

Let (i1, i2, . . . , im) be the increasing sequence of join levels for some m, i.e., i1 < i2 < · · · < im.
Then the decomposition is as follows. G1 contains all levels from 1 to i1, G2 contains all levels
from i1 + 1 to i2, and so on, with Gm+1 containing all levels from im + 1 to L. The decomposition
of G is given by the ordered sequence G = (G1, . . . , Gm+1), see Fig. 31.
With this decomposition we can address our previous problem of finding a formula for the ex-
pected makespan in parts.
Let G be an intree with decomposition G = (G1, . . . , Gm+1). Note that each of the Gj ’s is a
sequence of chains, cp. Section 18.7. In particular, we have that G1 contains only one chain (of
length i1), and Gj contains pij−1+1 chains. First, HLF only schedules tasks from Gm+1, up until the
decision point when there is only one chain of Gm+1 left. Then, HLF only schedules available
tasks from Gm plus the ones that are left from Gm+1. After Gm has only one task left, then HLF
only schedules tasks from Gm−1 plus the ones left from Gm, and so on, as seen in Fig. 30.
Given a part of the decomposition Gj , define

Gj ∪ [s]

to be the graph that is obtained by adding a chain of length s to the longest chain in Gj (recall
that Gj is a sequence of chains). Furthermore, define the following:

Gj 7→ [s] = configuration where Gj is processed until only one chain of height s remains,

P
(
Gj 7→ [s]

)
= probability that Gj is processed until only one chain of height s remains,

Cc
(
Gj 7→ [s]

)
= expected processing time HLF takes to schedule Gj until only one chain

of height s remains.

The above definitions can be made similarly when Gj is substituted by Gj ∪ [s], because the
structure of the underlying graph does not change. In addition, let height(Gj) and height(Gj ∪ [s])
denote the height of the highest chain in the sequence of chains of Gj or Gj ∪ [s], respectively.
Obviously, height(Gj ∪ [s]) = height(Gj) + s.

84

Then, for an intree G and its decomposition G = (G1, . . . , Gm+1) we get

Cc
(
G
)

=
height(Gm+1)∑

s=1

P(Gm+1 7→ [s]) ·
(

Cc
(
Gm+1 7→ [s]

)
+ Cc

(
Gm ∪ [s]

))
,

and C(Gm ∪ [s]) is defined recursively by

Cc
(
Gj ∪ [s]

)
=

height(Gj∪[s])∑
t=1

P
(
Gj ∪ [s] 7→ [t]

)
·
(

Cc
(
Gj ∪ [s] 7→ [t]

)
+ Cc

(
Gj−1 ∪ [t]

))
for j ∈ {2, . . . , m}, and a base case (see below).
From Section 18.7 on page 66 and due to the Gj ’s being sequences of chains, we can plug in
the formula for Cc

(
Gj ∪ [s] 7→ [t]

)
. Suppose that Gj is of the form [l j1, . . . , l jk j]4, then Gj ∪ [s] is of

the form [l j1 + s, l j2, . . . , l jk j]. Hence,

Cc
(
Gj ∪ [s] 7→ [t]

)
=

1
2
(
l j1 + s + l j2 + · · · + l jk j − t

)
=

1
2

s +
k j∑

c=1

l jc − t

 .

Putting these expressions together, we obtain the following lemma.

Lemma 52. Given an intree G with its decomposition G = (G1, . . . , Gm+1) for some m, the
expected makespan of an HLF schedule for G can be calculated by the recurrence relation

Cc
(
Gj ∪ [s]

)
=

height(Gj∪[s])∑
t=1

P
(
Gj ∪ [s] 7→ [t]

)
·

1
2

s +
k j∑

c=1

l jc − t

 + Cc
(
Gj−1 ∪ [t]

)
for any s and j = 2, . . . , m + 1, and the base case

Cc
(
G1 ∪ [s]

)
= height(G1) + s.

Moreover,
Cc
(
G
)

= Cc
(
Gm+1

)
.

So, again, we focus on calculating the probabilities that a certain configuration is reached.
When we have a look at a sequence of chains and consider the possibilities and paths to a
configuration with only one remaining chain, we observe that the situation is similar to when
we wanted to know the number of possible paths in the configuration graph to a configuration
with only two chains remaining, cp. Section 18.7 and Fig. 21. As an example, consider Gj =
[4, 3, 3, 2], then the chain grid can be seen in Fig. 32.
We are interested in the number of paths through the grid starting in the upper left corner, i.e.,
at node [4, 3, 3, 2], and reaching a node in the lowest row, i.e., nodes [4, 0, 0, 0] to [1, 0, 0, 0].
Identically to the approach before, we choose the nodes directly above as endpoints of the

4Here, the superscript j is another index, and not to be confused with an exponent. (The same holds for this footnote.)

85

[4, 3, 3, 2]

[4, 3, 2, 2]

[4, 2, 2, 2]

[4, 2, 2, 1]

[4, 2, 1, 1]

[4, 1, 1, 1]

[4, 1, 1, 0]

[4, 1, 0, 0]

[4, 0, 0, 0]

[3, 3, 3, 2]

[3, 3, 2, 2]

[3, 2, 2, 2]

[3, 2, 2, 1]

[3, 2, 1, 1]

[3, 1, 1, 1]

[3, 1, 1, 0]

[3, 1, 0, 0]

[3, 0, 0, 0]

[2, 2, 2, 2]

[2, 2, 2, 1]

[2, 2, 1, 1]

[2, 1, 1, 1]

[2, 1, 1, 0]

[2, 1, 0, 0]

[2, 0, 0, 0]

[1, 1, 1, 1]

[1, 1, 1, 0]

[1, 1, 0, 0]

[1, 0, 0, 0]

Fig. 32: The chain grid for [4, 3, 3, 2] and its simplified version without labels.

paths. Note that for the special case to [1, 1, 0, 0] we then have to multiply that number by 2 to
get the correct number of paths to [1, 0, 0, 0]. Also note that [4, 0, 0, 0] = [4]. Hence, using the
notation we derived in Section 18.7, we get

|paths from [4, 3, 3, 2] to [4]| = F 7
0 (0) · 2−7,

|paths from [4, 3, 3, 2] to [3]| = F 7
1 (2) · 2−8,

|paths from [4, 3, 3, 2] to [2]| = F 7
2 (3) · 2−9,

|paths from [4, 3, 3, 2] to [1]| = 2 · F 7
3 (2, 3, 2) · 2−10.

Similar to what we used in Section 18.7, for every j ∈ {1, . . . , m + 1}, we use the notations

hj = l j1,

x j
i = pj

hj−i − 1, i ∈ {1, . . . , hj − 2},
x j

hj−1 = pj
1 − 2,

H j =
hj∑

c=2

l jc − 1,

Lj
t =

hj∑
c=1

l jc − t − 1 = H j + hj − t , for some t ,

86

and, additionally,

δab =

1 a = b,

0 a 6= b.

Because adding a chain [s] to the top of the highest chain of Gj does not create additional paths,
we can look at paths in the chain grid starting at level hj , and have the following.

Lemma 53. Let Gj = [l j1, . . . , l jk j], then

P
(
Gj ∪ [s] 7→ [t]

)
= (1 + δt1) · F H j

hj−t

(
x j

1, . . . , x j
hj−1

)
· 2−Lj

t .

Using this result, we can simplify the formulas we derived in Lemma 52 to obtain the following
result.

Corollary 54. Given an intree G and its decomposition (G1, . . . , Gm+1) for some m, we have that
Gj = [l j1, . . . , l jk j] for j = 1, . . . , m + 1. Define

hj = height(Gj) = l j1, j ∈ {1, . . . , m + 1}

to be the height of the highest chain of Gj . Let (pj
1, . . . , pj

Lj) denote the profile of Gj , and define

x j
i = pj

h−i − 1, i ∈ {1, . . . , hj − 2},
x j

h−1 = pj
1 − 2,

H j =
hj∑

c=2

l jc − 1,

Lt =
hj∑

c=1

l jc + s − t − 1 = H j + hj − t .

Then the expected makespan of an HLF schedule for G can be calculated by the recurrence
relation

Cc
(
Gj ∪ [s]

)
=

hj +s∑
t=1

2−Lj
t +δt1 · F H j

hj−t

(
x j

1, . . . , x j
hj−1

)
·

1
2

s +
k j∑

c=1

l jc − t

 + Cc
(
Gj−1 ∪ [t]

)
for any s and j = 2, . . . , m + 1, and the base case

Cc
(
G1 ∪ [s]

)
= l11 + s.

Moreover,
Cc
(
G
)

= Cc
(
Gm+1

)
.

Part VI

The Geometric Distribution

Table of Contents

19 Calculating the Expected Makespan 90

20 The Optimal Scheduling Strategy 93

89

Part V has shown us that the exponential distribution is relatively easy to handle because of
the memorylessness. The obvious idea would be to consider other distributions with the same
property. Unfortunately, as we have seen in Theorem 27, memorylessness is an exclusive
property of the exponential distribution when considering continuous distributions. But luckily,
there is another memoryless distribution, this time a discrete one.

Definition 55 (Geometric Distribution). A discrete random variable X with support N is ge-
ometrically distributed with parameter/success probability p, denoted by X ∼ geom(p), if its
probability mass function is

P(X = k) =

{
p(1− p)k−1 k ∈ N

0 otherwise.

The interpretation is to repeatedly perform a random experiment with only two possible out-
comes, i.e., a Bernoulli experiment, where the parameter p indicates the probability that an
experiment is successful. This is why p is also called success probability. The geometrically
distributed random variable X tells us the number of performed experiments before there is a
first success. A well-known example is tossing a coin until it comes up heads. In this case,
p = 1

2 .
Similar to an exponentially distributed random variable with parameter λ, which has an expected
value of 1

λ
, a geometrically distributed random variable with parameter p has an expected value

of 1
p .

What we show with the next theorem is that the geometric distribution is the discrete analogon
of the exponential distribution.

Theorem 56 (Memorylessness). The geometric distribution is memoryless, i.e., for X ∼ geom(p)
and x ≥ y we have

P(X > x |X > y) = P(X > x − y) .

Proof. As in Theorem 26, we prove this using only basic calculations. Then,

P(X > x |X > y) =
P(X > x)
P(X > y)

=
1− P(X ≤ x)
1− P(X ≤ y)

=
1−∑x

k=1 p(1− p)k−1

1−∑y
`=1 p(1− p)`−1

(9.4)
= 1−

(
1− (1− p)x−y)

= 1−
x−y∑
k=1

p(1− p)k−1

= 1− P(X ≤ x − y)

= P(X > x − y) .

90

The intuition behind the memorylessness of the geometric distribution can be explained using
the interpretation. The coin tosses are independent, and one toss does not affect a later one
in any way. This means that no matter how often a coin was tossed, the probability of success
for the next coin toss is always the same. In other words: the coin cannot remember previous
results.
But not only is the geometric distribution memoryless like the exponential distribution, it is the
only discrete memoryless distribution, cp. Theorem 27.

Theorem 57. Every memoryless discrete random variable is geometrically distributed.

The proof can be found in [23].
As before, we have to consider the minimum of several independent random variables. In our
cases, they will also be identically distributed, but it is just as easy to give the more general
result.

Lemma 58. Let X1, . . . , Xn be independent, geometrically distributed random variables with
parameters p1, . . . , pn, respectively. Then X1∧. . .∧Xn is geometrically distributed with parameter
1−∏n

k=1(1− pk).

Proof. We show the proof for n = 2, the general case is done similarly with induction. First we
have, for i ∈ {1, 2},

P(Xi ≥ k) = P(Xi > k − 1) = (1− pi)k−1,

because there must have been at least k − 1 failures before the first success. Using this, we
obtain

P(X1 ∧ X2 = k) = P(X1 = k)P(X2 ≥ k) + P(X2 = k)P(X1 ≥ k)− P(X1 = k , X2 = k)

= p1(1− p1)k−1(1− p2)k−1 + p2(1− p2)k−1(1− p1)k−1

− p1(1− p1)k−1p2(1− p2)k−1

= (1− p1)k−1(1− p2)k−1 (p1 + p2 − p1p2)

= (1− p1)k−1(1− p2)k−1 (1− (1− p1)(1− p2))

= (1− (1− p1)(1− p2)) ((1− p1)(1− p2))k−1 ,

and this is the probability for the value k of a geometrically distributed random variable with
parameter 1− (1− p1)(1− p2).

Let X ∼ geom(p) and consider the processing times of the tasks independent and identically
distributed according to X . Then, the expected remaining processing time of an active task that
has already been processed for i time units is 1

p , again due to memorylessness, as in Part V on
page 34 with the exponential distribution.
Whenever two machines are busy processing two different tasks, then the expected time until
one of them finishes is 1

1−(1−p)2 time units.

91

19 Calculating the Expected Makespan

Now we consider the scheduling problem

2|pi ∼ geom(p); intree|E(Cmax) ,

i.e., we have two processors at our disposal, intree precedence constraints between the tasks,
and “geometric processing times” (an abbreviation for “independent, identically and geometri-
cally distributed processing times, each with parameter p”). Then, because of the property of
memorylessness – and because the processing times are identically distributed –, whenever
two tasks are being processed simultaneously, both tasks are equally likely to finish first. Of
course, this is greatly similar to the case with exponential processing times. However, there is
one big and important difference. Since the exponential distribution is continuous, two tasks
being processed in parallel will never finish at the same time, i.e., the probability of that ever
happening is zero. In the discrete case with the geometric distribution, this probability is strictly
greater than zero, and depends on the value p. We will calculate these probabilities and adjust
the formulas for the makespan accordingly. Again, we denote the random variables of the pro-
cessing times of the two processed tasks by X and Y , respectively. First, consider the case that
the task associated with the random variable X finishes first, and at time k :

P(X = k , Y > k) = P(X = k)P(Y > k) = p(1− p)k−1(1− p)k .

Hence, we have that

P(X < Y) =
∞∑

k=1

P(X = k , Y > k)

=
∞∑

k=1

p(1− p)k−1(1− p)k

= p(1− p)
∞∑

k=0

(1− p)2k

= p(1− p) · 1
1− (1− p)2

=
1− p
2− p

.

This formula also has a nice interpretation. Consider the coin tosses for X and Y done simul-
taneously. Because of memorylessness, we ignore all coin tosses where both coins come up
tails, and only focus on the first time that at least one of the coins comes up heads. This is han-
dled as only one experiment (with two coins tossed simultaneously). In order to calculate the
probability of that, we define Ei as the event that coin i comes up heads. Then, the probability

92

that at least one coin comes up heads is 2p − p2, which can be calculated by

P(at least one coin comes up heads) = P(E1 ∪ E2)

= P(E1) + P(E2)− P(E1)P(E2)

= p(1− p) + (1− p)p − p2

= 2p − p2.

Under the condition that at least one coin comes up heads, we now have three distinct cases:
only the first coin comes up heads, only the second does, or both. Calculating these conditional
probabilities gives us exactly the probabilities to the three events X < Y , X > Y , and X = Y :

P(X < Y) = P(X = heads, Y = tails |at least one coin comes up heads)

=
P(X = heads, Y = tails)

P(at least one coin comes up heads)

=
p(1− p)
2p − p2

=
1− p
2− p

,

P(X > Y) =
P(X = tails, Y = heads)

P(at least one coin comes up heads)

=
1− p
2− p

P(X = Y) =
P(X = heads, Y = heads)

P(at least one coin comes up heads)

=
p2

2p − p2

=
p

2− p
.

Now, we want to have a formula for the expected makespan in the same way we do for the
exponential distribution. We formulate two different approaches, cp. (14.1) and (14.2) from
page 31.
The first one is the approach from (14.1):

Cc
(
G
)

=
1

1− (1− p)2 +
1− p
2− p

Cc
(
Gx
)

+
1− p
2− p

Cc
(
Gy
)

+
p

2− p
Cc
(
Gx ,y

)
. (19.1)

The first term is the expected number of time steps until at least one of the two tasks finishes.
The next three expressions correspond to the three cases P(X < Y), P(X > Y), and P(X = Y),
in this order. The successor configurations Gx , Gy , and Gx ,y are defined as G \ {x}, G \ {y},
and G \ {x , y}, respectively, see Lemma 31 on page 41.1 Now, the event that a coin comes up
heads corresponds to a task being finished.

1Not to be confused with the parts Gj of the decomposition seen in Section 18.9. There we have Gj with a numeric
index j , whereas here we have Gx indexed by a task x .

93

The other approach is just a summation over all possible values that can occur. Given an intree
G, we make a case distinction of the three different cases that may occur: one task finishes first,
the other task finishes first, or both tasks finish at the same time. Furthermore we take the sum
over all possible values k , which range from 1 to ∞. Again, for simplicity, we also denote the
configuration corresponding to the intree G by G. Note that we do not need to mark any active
tasks because the underlying distribution for the processing times is memoryless, we just need
to agree on a certain scheduling strategy before. Then, the formula for the expected makespan
of a configuration is

Cc
(
G
)

=
∞∑

k=1

∞∑
`=1

p(1− p)k−1p(1− p)`−1 (min(k , l) + Cc
(
G◦
))

, (19.2)

with

G◦ =


Gx k < `

Gy k > `

Gx ,y k = `.

This is just the formula in (14.2) on page 31 applied to the geometric distribution. To get rid of
the different cases, we can rewrite this as three summations

Cc
(
G
)

=
∞∑

k=1

∞∑
`=k+1

p2(1− p)k+`−2 (k + Cc
(
Gx
))

+
∞∑

k=1

k−1∑
`=1

p2(1− p)k+`−2 (` + Cc
(
Gy
))

+
∞∑

k=1

p2(1− p)2k−2 (k + Cc
(
Gx ,y

))
.

The missing cases, i.e., the base cases of the recurrence, are chains, just like we had before. A
singular task is expected to finish in 1

p time steps. And as the expected value is additive, a chain
of height n has an expected makespan of n

p .
There is one other important difference between using the geometric distribution like here and
using the exponential distribution. As can be seen easily, (19.1) is not scalable by some factor
dependent on p. In Part V, we argued that the calculation for the expected makespan scales
with the factor 1

λ
. In (19.1), there is no such factor. This is due to Lemma 58 which shows that

the parameter for the minimum of two geometric distributions is proportional to the product of
the parameters of those distributions, and not the sum. This yields the squared expression for
the expected value in (19.1), whereas the base case still has the linear expression of n

p . This is
why, in contrast to the continuous case, we cannot just assume p = 1

2 or some other easy value
for p. We have to let the parameter p be arbitrary.
It should be clear that the two approaches from (19.1) and (19.2) are in fact identical, and are
just covering two different interpretations. To be convinced, we consider a small example and
calculate the expected makespan using the two different ways. This can be seen in Appendix B
in Calculation 2.

94

20 The Optimal Scheduling Strategy

Although we have already argued about the equivalence of certain ways of calculating the op-
timal expected makespan in Chapter 19, we have not yet proven what the optimal strategy is.
In the example in Appendix B on page 181 we used HLF without proper justification. What we
want to show is that HLF is the optimal strategy for this intree and for arbitrary intrees as well,
i.e., we show optimality of HLF for the scheduling problem

2|pi ∼ geom(p); intree|E(Cmax) .

What we actually do is a repetition of the results from Chapter 17. Some lines are obviously
different from what we have done before, but the crucial argument we need to prove these
results is the same, namely the memorylessness.
First, we give a recurrence relation for the makespan using only the profile of an intree, cp.
Lemma 29 on page 39.

Lemma 59. Let G be an intree with profile(G) = p, then the expected makespan of G when
applying any HLF can be calculated by:

(i): If p = (), then Cp
(
p
)

= 0,

(ii): If p = (1), then Cp
(
p
)

= 1
p ,

(iii): If the highest level has only one task and G is a chain, i.e. pL = 1 and n = L, then

Cp
(
p1, . . . , pL

)
=

1
p

+ Cp
(
p1, . . . , pL−1

)
,

(iv): If the highest level has more than one task and G is not a chain, i.e. pL > 1 and n > L,

Cp
(
p1, . . . , pL

)
=

1
1− (1− p)2 + 2 · 1− p

2− p
Cp
(
p1, . . . , pL − 1

)
+

p
2− p

Cp
(
p1, . . . , pL − 2

)
,

(v): If the highest level has only one task and G is not a chain, i.e. pL = 1 and n > L, then

Cp
(
p1, . . . , pL′ , . . . , pL

)
=

1
1− (1− p)2 +

1− p
2− p

Cp
(
p1, . . . , pL′ , . . . , pL−1

)
+

1− p
2− p

Cp
(
p1, . . . , pL′ − 1, . . . , pL

)
+

p
2− p

Cp
(
p1, . . . , pL′ − 1, . . . , pL − 1

)
.

Proof. The proof uses the same arguments as the proof of Lemma 29, just using the equations
from (19.1) and (19.2).

We use the concept of flatness defined in Definition 30 on page 41 for the following result.

95

Lemma 60. Let G be an intree and let G′ be obtained by attaching a source of G on a lower
level. Then Cc

(
G
)
≥ Cc

(
G′
)
.

Proof. We prove this by induction on the number of tasks.

Induction Base: It holds that

Cc

()
=

2p2 − 11p + 13
p(2− p)2 <

5p2 − 17p + 16
p(2− p)2 = Cc

()
, (20.1)

due to some more elaborate calculations, which can be seen in detail in Appendix D on page
186.

Induction Step: Let n be the number of tasks in both G and G′. We have the scenario as seen
in Fig. 33. There we have and configurations G and G′ with their successor configurations.
Note that we may even draw the successor configurations without the tasks marked as active
because of the memorylessness. The (now three) cases for the successor configurations can

G
s

x y

Gs Gx Gs,x

G′

s

x y

G′x G′y G′x ,y

IH & memorylessness

IH & memorylessness

IH & memorylessness

Fig. 33: G and G′ and their respective successor configurations.

be handled in the same way as with the exponential distribution by the induction hypothesis (IH)
and the memorylessness.

Lemma 32 can be used identically in the case of geometric processing times as well. This
is because the flatness relation does not change with the other distribution, and we can use
Lemma 60.
Hence, we get the following.

96

Lemma 61. Let G and H be two intrees with the same number of tasks, and G ∝− H. Consider
an HLF being applied to G and a non-HLF S being applied to H. Then the expected makespan
of G is at most the expected makespan of H.

Proof. Again, by induction on the number of tasks.

Induction Base: For the two base cases, it holds that

Cc
()

< Cnon-HLF
c

()
and

Cc

()
< Cnon-HLF

c

()
,

whose proofs can be seen in Appendix D.

Induction Step: The remaining parts of the proof now work exactly as in the proof of Lemma 33.

With these results we get the optimality of HLF for geometric processing times as well.

Theorem 62. Any HLF is optimal for the scheduling problem 2|pi ∼ geom(p); intree|E(Cmax).

Part VII

The Uniform Distribution

Table of Contents

21 Discrete Case 99

22 Continuous Case 102

23 Calculating the Expected Makespan 104

23.1 Discrete Case . 105

23.2 Continuous Case . 108

24 HLF and Uniform Processing Times 110

99

Apart from the memoryless distributions, there are many other distributions that would make
sense to be considered. For example the Erlang distribution as the sum of exponential distribu-
tions (see Part VIII on page 114) or the negative binomial distribution as the sum of geometric
distributions. But at first, the distributions which we deemed the most interesting are uniform
distributions. The applicability of uniformly distributed processing times seems more prominent
than other distributions, as well as easier to calculate with.

21 Discrete Case

Definition 63 (Discrete uniform distribution). A discrete random variable X with support A =
{a1, . . . , an} for some n ∈ N is (discretely) uniformly distributed over the set A, denoted by
X ∼ U{a1, . . . , an}, if it holds that

P(X = ai) =
1
n

for all i ∈ {1, . . . , n}

and P(X = b) = 0 for all b /∈ A.

Whenever it is obvious from the context, we drop the word “discrete” (or “continuous”), and just
say that a random variable is uniformly distributed.
The discrete uniform distribution is symmetric in the sense that each possible outcome, i.e., one
of the values {a1, . . . , an}, is equally likely to be the result. A standard example would be a fair
six-sided die, where the values {1, 2, 3, 4, 5, 6} are all equally likely to show up. In particular, the
probability of a specific side to be on top is 1

6 .
The expected value of a discrete uniformly distributed random variable X ∼ U{a1, . . . , an} is

E(X) =
1
n

n∑
i=1

ai ,

i.e., the arithmetic mean of the support values. Usually, we consider only two different values a
and b for the processing time of a task, which means that the expected time until a task finishes
is a+b

2 .
Moreover, we want to consider the minimum of several uniformly distributed random variables
as we may have several tasks being processed simultaneously. First, consider the simple case
with X , Y ∼ U{a, b}, i.e., X and Y are identically distributed. Then the minimum X ∧Y can also
only take the two values a and b, and we have

P(X ∧ Y = a) = P(X = a) + P(Y = a)− P(X = a, Y = a) =
3
4

, (21.1)

P(X ∧ Y = b) = P(X = b, Y = b) =
1
4

, (21.2)

as well as
E(X ∧ Y) = a · P(X ∧ Y = a) + b · P(X ∧ Y = b) =

3a + b
4

. (21.3)

100

In contrast to the other distributions which we considered so far (Parts V and VI on pages 34
and 88), the discrete uniform distribution is not memoryless as we have seen in Theorem 57.
The big difference is when considering a decision point, and only one task has finished being
processed. Then, the other is still being processed, but apart from what we have done so far, we
cannot just assume that both the newly scheduled task and the active task are identically dis-
tributed. This was a property that was exclusive to memoryless distributions. So, unfortunately,
we only rarely use the results from (21.1) to (21.3). In Parts V and VI, we have shown how
the minimum of several exponentially (or geometrically) distributed random variables is expo-
nentially (or geometrically) distributed, which was an easy calculation even though the random
variables were not necessarily identically distributed. The interesting part is that we did not
need the random variables to be not identically distributed as in later applications – because
of memorylessness – they always were. Unfortunately, now that we need the random variables
not to be identically distributed, these calculations become more tedious. A general formula
can get quite messy, so we restrict ourselves to only a few simple cases, namely with random
variables

X ∼ U{a, b},

Y ∼
{
U{a− i , b − i} i < a

U{0, b − i} i ≥ a.

The interpretation is that X corresponds to the processing time of the task which is scheduled
next. The random variable Y corresponds to the remaining processing time of the active task.
The reason why Y is distributed like that is because it is actually distributed in the same way as
the total processing time Y conditioned on Y > i :

P(Y ≤ j) = P
(
Y ≤ i + j

∣∣Y > i
)

= 1− P
(
Y > i + j

∣∣Y > i
)

= 1− P
(
Y > i + j , Y > i

)
P
(
Y > i

)
=


0 i + j < a
1
2 i + j ∈ [a, b)

1 i + j > b,

which is exactly the probability density function of a uniform distribution over {a − i , b − i}.
So, even though the resulting conditioned distribution is not identical (because of the lack of
memorylessness), it is at least again a uniform distribution. In other words: instead of writing this
as a conditional probability (or a conditional distribution), we consider the equivalent distribution
over all remaining values. In our case, with only two possible values for each random variable,
we have the following six different cases to consider, which are denoted by the letters A-F from
now on.

Case A: Let i < a and i > b − a. There are only two different values for the next decision
point, namely the two values that Y can be mapped to, see Fig. 34. The rectangular

101

markings on the time line indicate the two possible values for X , the circular markings
indicate the values for Y . As i > b− a ⇐⇒ b− i < a, we have that P(X ∧ Y = Y) = 1
in this case. This means that the two different values a− i and b − i are both equally
likely to occur, because Y is uniformly distributed.

0 a− i b − i a b

Fig. 34: Case A: i < a and i > b − a.

Case B: Let i < a and i < b−a. There are three different values for the next decision point, see
Fig. 35. The value a−i is the minimum with a probability of 1

2 as P(Y = a− i)P(X > a− i) =
1
2 · 1. For the value a we have P(Y > a)P(X = a) = 1

2 · 1
2 = 1

4 , and for b − i we have
P(Y = b − i)P(X > b − i) = 1

2 · 1
2 = 1

4 .

0 a ba− i b − i

Fig. 35: Case B: i < a and i < b − a.

Case C: Let i ≥ a and i > b − a. Then, a− i ≤ 0 and as we have the convention that decision
points are considered after a task is finished, a remaining processing time of 0 is
not possible here (except for a = 0). But this means that there is only one possible
value for Y left, i.e., P(Y = b − i) = 1, see Fig. 36. Moreover, as in case A, we have
P(X ∧ Y = Y) = 1, so the only possible value for the next decision point is b − i .

0 a ba− i b − i

Fig. 36: Case C: i ≥ a and i > b − a.

Case D: Let i ≥ a and i < b− a. Again, a− i ≤ 0, but this time there are two possible values to
be considered, both with probability 1

2 , see Fig. 37. This can be checked easily with
elementary probability calculations like in case B for example.

0 a bb − ia− i

Fig. 37: Case D: i ≥ a and i < b − a.

Case E: Let i < a and i = b−a. There are three different possibilities. Y may have the smallest
value a− i alone, i.e., P(Y = a− i)P(X > a− i) = 1

2 , or Y may have the smallest value

102

a = b − i alone, i.e., P(Y = a)P(X > a) = 1
4 , or X and Y both share the value a, i.e.,

P(Y = a)P(X = a) = 1
4 , see Fig. 38.

0 a− i b − i = a b

Fig. 38: Case E: i < a and i = b − a.

Case F: Let i ≥ a and i = b − a. Because a − i ≤ 0 we know that P(Y = a) = 1. So then, we
have P(Y = a)P(X > a) = 1

2 and P(Y = a)P(X = a) = 1
2 , see Fig. 39.

0a− i b − i = a b

Fig. 39: Case F: i ≥ a and i = b − a.

22 Continuous Case

Definition 64 (Continuous uniform distribution). A continuous random variable X with support
[a, b] is (continuously) uniformly distributed over [a, b], denoted by X ∼ U [a, b], if its probability
density function fX is

fX (x) =


1

b − a
x ∈ [a, b]

0 otherwise,

that is, its cumulative distribution function is

FX (x) = P(X ≤ x) =


0 x < a
b − x
b − a

x ∈ [a, b]

1 x > b.

The expected value of a (continuous) uniformly distributed random variable X ∼ U [a, b] is

E(X) =
a + b

2
,

i.e., the same as for a discrete uniform random variable over the values {a, b}.
As no other continuous distribution than the exponential distribution can be memoryless, see
Theorem 27 on page 36, the uniform distribution is not either.
In general, the minimum of several uniform distributions can be handled as easily as in the
case with exponential (or even geometric) distributions. This is why we focus only on the spe-
cial cases that we really need for our calculations. Consider two independent and identically

103

distributed, (continuous) uniform random variables over [a, b], i.e., X , Y ∼ U [a, b]. Then, the
minimum X ∧ Y has support [a, b] as well, and we have

FX∧Y (z) = P(X ∧ Y ≤ z)

= 1− P(X > z)P(Y > z)

=


0 z < a

1−
(

b − z
b − a

)2

z ∈ [a, b]

1 z > b.

From this we can deduce the probability density function

fX∧Y (z) =
d
dx

(FX∧Y) (z) =


2(b − z)
(b − a)2 z ∈ [a, b]

0 otherwise

and the expected value

E(X ∧ Y) =
∫
R

z fX∧Y (z) dz =
2a + b

3
. (22.1)

For the cases with two continuous uniform distributions which are not identical, we consider,
similarly to the discrete case, the two random variables

X ∼ U [a, b],

Y ∼
{
U [a− i , b − i] i < a

U [0, b − i] i ≥ a.

Then again, we have to consider several different cases. But in the continuous case, we have
P(X = Y) = 0, i.e., cases E and F from the discrete case must not be considered as they never
occur.

Case A: Let i < a and i > b − a. Then, P(X ∧ Y = Y) = 1 and the possible values to be
considered are in the interval [a − i , b − i], see Fig. 40. The red diagonally striped
interval is the support of Y whereas the blue vertically striped interval depicts the
support of X . For the possible values we have to calculate an integral and use the
probability density function of Y .

0 a ba-i b-i

support of Y support of X

Fig. 40: Case A: i < a and i > b − a.

104

Case B: Let i < a and i ≤ b−a. We have overlapping values in the interval [a, b− i], i.e., in this
interval both random variables have the chance to be the minimum. Now the values
for the probabilities are no longer trivial. Consider the probability that the minimum
X ∧Y is given by X , or in other words X = tx , Y = ty , and tx < ty for some values tx , ty .
Then we have

P(X ∧ Y = X) = P
(
tx < ty

)
∀ ty

=
ty − a
b − a

∀ ty ,

where “∀ ty ” means that we have to consider all possible values for ty when calculating
this probability, which we do by letting ty be the integration variable. Similarly, we get

P(X ∧ Y = Y) =
tx − (a− i)

b − a
∀ tx

with tx being the integration variable here. For the use of these parameters, see
Chapter 23.

0 a ba-i b-i

support of Y
support of X

Fig. 41: Case B: i < a and i ≤ b − a.

Case C: Let i ≥ a and i > b − a. The only interval to be considered is [0, b − i], see Fig. 42.

0 a ba-i b-i

support of Y support of X

Fig. 42: Case C: i ≥ a and i > b − a.

Case D: Let i ≥ a and i ≤ b − a. Then again, we have to make the adjustments seen in case
B for the interval [a, b − i], see Fig. 43. We obtain

P(X ∧ Y = X) =
ty − a
b − a

∀ ty ,

P(X ∧ Y = Y) =
tx − (a− i)

b − a
∀ tx ,

with the integration variables ty and tx , respectively.

105

0 a ba-i b-i

support of Y
support of X

Fig. 43: Case D: i ≥ a and i ≤ b − a.

23 Calculating the Expected Makespan

23.1 Discrete Case

Now we want to use these results to calculate the expected makespan of the scheduling problem

2|pi ∼ U{a, b}; intree|E(Cmax) ,

i.e., two processors, “(discrete) uniform processing times” (as an abbreviation for “independent,
identically and discretely uniformly distributed processing times over {a, b}”), intree precedence
constraints, and subject to expected makespan minimization.
In contrast to the memoryless distributions we considered before, we now need to characterize
a configuration including the active tasks. By convention, in the two processor case, a configu-
ration at a decision point can have at most one active task, cp. Chapter 7. The notation for such
a configuration is (G, (y : i)), where G is the underlying intree and y has been active for i time
units. We write the expected makespan in the form of (14.2) from page 31:

Cc
(
G
)

=
∑

possibility p

P(p) · (passed time + expected remaining processing time),

where “expected remaining processing time” is one of Cc
(
Gx , (x : j)

)
for some j , Cc

(
Gy , (x : j)

)
for some j , or Cc

(
Gx ,y

)
. Depending on whether the current configuration has two or fewer

successor configurations, the formula for the expected makespan is as follows.

Case 1: The current configuration has only one successor configuration, i.e., it is a chain. Then
the expected makespan can be calculated by

Cc
(
G
)

=
a + b

2
· n,

Cc
(
G, (y : i)

)
=


a + b

2
− i +

a + b
2

(n − 1) i < a

b − i +
a + b

2
(n − 1) i ≥ a,

where n denotes the number of tasks in G. The explanation should be obvious as we
can only process the tasks in the chain sequentially, one after another. For each task,
we have an expected processing time of a+b

2 . This value has to be multiplied by n in
the case that there are no active tasks. If the topmost task in the chain y has been

106

active for i time units, then depending on whether i is smaller or greater than a, the
expected remaining processing time of this task is a+b

2 − i or b − i , respectively.

Case 2: The current configuration has at least two successor configurations. Then there is the
simple case where there is no active task, thus,

Cc
(
G
)

=
1
4
(
a + Cc

(
Gx ,y

))
+

1
4
(
a + Cc

(
Gy , (x :a)

))
+

1
4
(
a + Cc

(
Gx , (y :a)

))
+

1
4
(
b + Cc

(
Gx ,y

))
.

With the help of the equations in (21.1) to (21.3) on page 99 it is easy to see that in
this case the two approaches – one with the expected value written outside the sum,
one with the “passed time” values inside the sum – are equivalent.
If there is an active task y , active for i time units, then we have to consider the six
cases A-F separately, which results in

Cc
(
G, (y : i)

)
=



1
2
(
a− i + Cc

(
Gy , (x :a− i)

))
+

1
2
(
b − i + Cc

(
Gy , (x :b − i)

))
Case A: i < a, i > b − a

1
2
(
a− i + Cc

(
Gy , (x :a− i)

))
+

1
4
(
a + Cc

(
Gx , (y :a + i)

))
+

1
4
(
b − i + Cc

(
Gy , (x :b − i)

))
Case B: i < a, i < b − a

b − i + Cc
(
Gy , (x :b − i)

)
Case C: i ≥ a, i > b − a

1
2
(
a + Cc

(
Gx , (y :a + i)

))
+

1
2
(
b − i + Cc

(
Gy , (x :b − i)

))
Case D: i ≥ a, i < b − a

1
2
(
a− i + Cc

(
Gy , (x :a− i)

))
+

1
4
(
a + Cc

(
Gy , (x :a)

))
+

1
4
(
a + Cc

(
Gx ,y

))
Case E: i < a, i = b − a

1
2
(
a + Cc

(
Gy , (x :a)

))
+

1
2
(
a + Cc

(
Gx ,y

))
Case F: i ≥ a, i = b − a.

107

The values used in this formula are from Chapter 21.
We can actually rewrite this as in (14.1) to have

Cc
(
G, (y : i)

)
=



1
2

(a + b − 2i) +
1
2

Cc
(
Gy , (x :a− i)

)
+

1
2

Cc
(
Gy , (x :b − i)

)
A: i < a, i > b − a

1
4

(3a + b − 3i) +
1
2

Cc
(
Gy , (x :a− i)

)
+

1
4

Cc
(
Gx , (x :a + i)

)
+

1
4

Cc
(
Gy , (x :b − i)

)
B: i < a, i < b − a

b − i + Cc
(
Gy , (x :b − i)

)
C : i ≥ a, i > b − a

1
2

(a + b − i) +
1
2

Cc
(
Gx , (y :a + i)

)
+

1
2

Cc
(
Gy , (x :b − i)

)
D: i ≥ a, i < b − a

1
2

(2a− i) +
1
2

Cc
(
Gy , (x :a− i)

)
+

1
4

Cc
(
Gy , (x :a)

)
+

1
4

Cc
(
Gx ,y

)
E: i < a, i = b − a

a +
1
2

Cc
(
Gy , (x :a)

)
+

1
2

Cc
(
Gx ,y

)
F: i ≥ a, i = b − a.

The equivalence of these six cases can be easily proven separately, all that needs to
be done is to calculate the expected value of the minimum of the two distributions.

What we can see from the formulas is that, broken down to the smallest pieces, all appearing
functions are either polynomials or rational functions in the variables a, b, and i , each with
degree at most n, where n is the number of tasks. Each level of the recursion references the
function Cc in six different ways, meaning that a fully executed case distinction on each level
has almost 6n different calls to the function Cc . Because of this property, this approach is not
very efficient when regarding larger graphs, i.e., with more than 15 tasks.
Not only does the calculation of the expected makespan become more complicated than with
exponential processing times, cp. Chapter 16 on page 36, but the resulting formulas are not
scaled by the parameters a and/or b. With exponential processing times, we showed that the
parameter λ does not matter for the calculation because it acts as a scaling factor. As a result,
we can set it to 1 and simplify our efforts. For uniform processing times, the parameters a and
b of the distribution really do matter and cannot be set arbitrarily to make life easier. Of course,
this is not expected since U{1, 3} differs vastly from U{7, 11}, for example. The same then
holds for the following continuous case as well.

108

23.2 Continuous Case

We transfer this approach onto a continuous uniform distribution over an interval [a, b], i.e., we
consider the scheduling problem

2|pi ∼ U [a, b]; intree|E(Cmax) .

Now that the distribution is continuous we have to deal with integrals instead of finite sums. In
addition, we have that the probability of two tasks finishing at the same time — no matter what
the distributions are — is zero. This case was captured in the cases E and F before. So, after
starting processing in the first step, no schedule ever creates a time where both processors are
idle until all tasks are finished.
Again, we distinguish between two different cases.

Case 1: The current configuration has only one successor configuration, i.e., it is a chain. Then,
the expected makespan can be calculated by

Cc
(
G
)

=
a + b

2
· n,

Cc
(
G, (y : i)

)
=


a + b

2
− i +

a + b
2

(n − 1) i < a

b − i
2

+
a + b

2
(n − 1) i ≥ a.

Case 2: The current configuration has at least two successor configurations. At first, we con-
sider the case without any active tasks, i.e., X and Y are identically distributed. Then,
the expected value of the minimum, cp. (22.1), is

E(X ∧ Y) =
2a + b

3
.

The values P(X ∧ Y = X) and P(X ∧ Y = Y) are easily calculated, as both cases are
equally likely to occur. Altogether we get

Cc
(
G
)

=
2a + b

3
+

1
2

b∫
a

1
b − a

Cc
(
Gx , (y :z)

)
dz +

1
2

b∫
a

1
b − a

Cc
(
Gy , (x :z)

)
dz,

or, equivalently,

Cc
(
G
)

=
1
2

b∫
a

1
b − a

(
z + Cc

(
Gx , (y :z)

))
dz +

1
2

b∫
a

1
b − a

(
z + Cc

(
Gy , (x :z)

))
dz.

109

That these two formulas are in fact equivalent can be seen below in (23.1). For the
more difficult case with an active task, we use the values from Chapter 22 and obtain

Cc
(
G, (y : i)

)
=



b−i∫
a−i

1
b − a

(
z + Cc

(
Gy , (x :z)

))
dz A: i < a, i > b − a

a∫
a−i

1
b − a

(
z + Cc

(
Gy , (x :z)

))
dz

+

b−i∫
a

1
b − a

· z − a + i
b − a

(
z + Cc

(
Gy , (x :z)

))
dz

+

b−i∫
a

1
b − a

· z − a
b − a

(
z + Cc

(
Gx , (y : i + z)

))
dz B: i < a, i ≤ b − a

b−i∫
0

1
b − i

(
z + Cc

(
Gy , (x :z)

))
dz C: i ≥ a, i > b − a

a∫
0

1
b − i

(
z + Cc

(
Gy , (x :z)

))
dz

+

b−i∫
a

1
b − i

· z − a + i
b − a

(
z + Cc

(
Gy , (x :z)

))
dz

+

b−i∫
a

1
b − i

· z − a
b − a

(
z + Cc

(
Gx , (y : i + z)

))
dz D: i ≥ a, i ≤ b − a

Like in the discrete case, the appearing functions inside the integrals are all either polynomial
or rational, with degrees not higher than 2n. The 2 in here is because of cases B and D where
there is a quadratic function (in the variables a and b) in the denominator. The number of inte-
grals grows by a constant number with each level, i.e., the number of nested integrals is linear (in
the size of the graph). However, the number of cases or possibilities to be considered grows ex-
ponentially in the continuous case, too. In the case distinction, there are 8 recursive references
to the function Cc with 2 different sets of values. This makes the base of the exponent for the
number of possibilities smaller, but it is exponential nonetheless, implying that a computational
approach using this formula is not really efficient.
For the exponential distribution we have already argued that the two different approaches from
(15.1) and (15.2) on page 32 are the same, see (16.3) on page 37. We can show this for the

110

continuous uniform distribution, too:

(15.2) =
1
2

b∫
a

fX∧Y (x)
(
x + Cc

(
cx
))

dx +
1
2

b∫
a

fX∧Y (x)
(
x + Cc

(
cy
))

dx

=

b∫
a

2(b − x)
(b − a)2 x dx +

1
2
(
Cc
(
cx
)

+ Cc
(
cy
)) b∫

a

2(b − x)
(b − a)2 dx

=
2a + b

3
+

1
2
(
Cc
(
cx
)

+ Cc
(
cy
))
· 1

= (15.1) (23.1)

Of course, this covers only the simple case, where there are no active tasks and at least two
tasks are available. The other cases can be proven similarly, although with more complexity.
The interesting part about calculating the expected makespan is the way how the different dis-
tributions are handled. In our approach, we adjusted the range of the active task’s distribution
to start at min(0, a− i). However, we could have defined and calculated the expected makespan
with the same distributions all along, and adjust the limits of the integrals to contain the expected
value of the minimum. Both approaches will actually lead to the same result, but we will use
only the one approach presented above for the sake of consistency. Some exemplary identities
showing that the different approaches are in fact equivalent can be seen in [22].

24 HLF and Uniform Processing Times

In this section, we consider the scheduling problem

2|pi ∼ U{a, b}; intree|E(Cmax) ., (24.1)

In order to understand how to deal with uniform processing times, we want to have a look at the
deterministic scheduling problem

2|pi ∈ {1, 2}; intree|Cmax. (24.2)

The processing time of each task is known before and is not subject to stochastic fluctuation, it
is either one or two. We find this helpful in understanding the uniform processing times because
these are not memoryless and the tasks’ expected remaining processing times are not identical
anymore as they were in the case with exponential processing times, see (16.1) and (16.2).
The idea is that if this deterministic problem is not optimally solved by HLF, then the stochastic
uniform problem (24.1) for a = 1 and b = 2 probably is not either.
Nakajima, Leung, and Hakimi [44] showed that the problem (24.2) is polynomially solvable by a
method which they called Largest Subtree First (LSF). The method itself is similar to HLF as it
is a greedy method, too. The problem is that LSF alone does not result in an optimal schedule,
that is why there is another step in the algorithm that repairs a possible suboptimal choice made

111

by LSF before. Although the difference is small, the optimal strategy proposed in [44] is no
longer greedy and thus, vastly different from HLF. Another issue with the strategy is that it is
originally designed to solve (24.2) but with outtrees1 instead of intrees. This poses no problem
in the deterministic case because the optimal schedule for an outtree can just be reversed to
provide an optimal schedule for the corresponding (reversed) intree. But it seems that there is
no immediate analogous method for stochastic schedules that translates an optimal schedule
for an outtree into one for the corresponding intree. To sum up, although we cannot rule out HLF
or something similar, we suspect that at least the LSF method does not help in the stochastic
case.
On the other hand, Du and Leung [18] showed that the version of (24.2) with the processing
times being integer powers of an integer is NP-hard. This may point in the direction that for
arbitrary parameters a and b for the uniform distribution the stochastic scheduling problem (24.1)
is NP-hard as well.
Moreover, there are proofs that (24.2) but with an arbitrary number of processors is NP-hard
[18], as well as a variant with dag precedences [55, 56]. This may imply that the corresponding
variants of the stochastic problem are NP-hard too, but this is a topic for future work and is not
discussed further here. The analysis of (24.1) is elaborated enough.
What follows are some observations that may indicate that HLF is not the optimal strategy for
this problem. If it were, we would suspect the results below to hold.

Observation 65. Let G be an intree and also represent a configuration with an active task s. G′

is obtained by setting another source on a lower level to active and making s non-active. Then
no statements can be made about the comparability of the expected makespans of G and G′.

Proof. Consider the case with a = 3 and b = 7, then it holds that

Cc

 2
 =

154
8

>
120

8
= Cc

(
2
)

,

but

Cc

 1
 =

66
4

<
90
4

= Cc

(
1
)

,

where the crossed nodes in the intrees correspond to active tasks. The number next to an active
task describes the time this task has already been processed.

In the cases of exponential or geometric processing times, the above result would actually hold
because we can disregard active tasks. Thus, choosing a source on a lower level would always
be worse than choosing the higher source.
Note that this does not rule out HLF as the optimal strategy. The provided counterexamples
above might actually never occur during an HLF schedule.
Similarly to Observation 65, we can show the following.

1An acyclic, connected graph where every node has indegree at most 1 (compared to outdegree at most 1 for an
intree).

112

Observation 66. Let G be an intree and also represent a configuration with an active task s. G′ is
obtained by removing s and attaching it to a lower level, but still in HLF range, and letting it stay
active. Then no statements can be made about the comparability of the expected makespans
of G and G′.

Proof. Consider the case with a = 3 and b = 8. It holds that

Cc

 1
 =

70
4

<
101
4

= Cc

(
1
)

.

But with a = 7 and b = 16, it holds that

Cc

 3
 =

145
4

>
138

4
= Cc

(
3
)

.

Take note, that the two configurations G and G′ are not to be considered as two subtrees
that occur in the same schedule. For Observation 65 for example, this can only be the case
when preemption is allowed anyway. The idea behind these observations is to consider G
and G′ as two configurations from two different schedules, but at comparable decision points,
i.e., they have the same number of tasks. What we want to achieve with these observations
is to either construct a proof that HLF is an optimal strategy for this scheduling problem, or
determine a counterexample that HLF is not optimal. To this end, we consider the approach
from Chapters 17 and 20 on pages 38 and 94 which we used to show that HLF is optimal. The
first step in our proofs was showing that “a flatter intree has a smaller makespan” by attaching
a source on a lower level and comparing makespans. In the case of uniform processing time
where active tasks have to be considered, this has to be true for several cases with and without
active tasks. Observations 65 and 66 show counterexamples for two of those cases. Though
this is not enough to dismiss HLF as the possible optimal strategy, at least we can say that the
approach to show this has to be different from the one we used for exponential and geometric
processing times.

Part VIII

The Erlang Distribution

Table of Contents

25 Calculating the Expected Makespan 116

26 The Generalized Erlang Distribution 120

27 HLF and Erlang processing times 121

115

The Erlang distribution, named after Danish mathematician Anger Krarup Erlang (1878-1929),
is another distribution that we want to consider as the distribution for the tasks’ processing
times. The Erlang distribution can be modeled as a sum of exponential distributions, giving it a
reasonable interpretation to be considered in the first place.
Let the tasks be divided into several smaller parts/(sub-)tasks that all have stochastic process-
ing times, but have to be processed in succession in order to completely finish the larger task.
If we consider the processing times of the smaller parts of the tasks to be exponentially dis-
tributed, then the large tasks themselves are Erlang distributed. Formally, we have the following
definition, taken from [32].

Definition 67. A continuous random variable X with support R+ is Erlang distributed with shape
k ∈ N and rate λ > 0, denoted by X ∼ Ek (λ), if its probability density function fX is

fX (z) =


λk zk−1

(k − 1)!
e−λz z ≥ 0

0 z < 0,

that is, its cumulative distribution function is

FX (z) =


1−

k−1∑
j=0

(λz)j

j !
e−λz z ≥ 0

0 z < 0.

Sometimes in literature, the equivalent scale parameter µ = 1
λ

is used in the definition of the
Erlang distribution. The expected value of a Erlang distributed random variable X ∼ Ek (λ) is

E(X) =
k
λ

= kµ.

As we can easily see, the special case k = 1 yields the exponential distribution with parameter
λ. But, as mentioned before, we can actually show that each Erlang distribution can be seen as
the sum of several identically exponentially distributed random variables. Formally, we have the
following result.

Lemma 68. Let X1, . . . , Xk be independent, identically exponentially distributed random vari-
ables with parameter λ. Then their sum is Erlang distributed with shape k and rate λ, i.e.,

Xi ∼ exp(λ) ⇒
k∑

i=1

Xi ∼ Ek (λ).

The proof uses the fact that the density (probability density function) of the sum of two or more
independent random variables is exactly the convolution of their densities [32]. Here, this means
that we have to calculate the convolution of the k exponential densities. This only involves some
basic calculations and induction, and is left out here.

116

Using either this result or the definition directly, we can show that the Erlang distribution scales
in the same way that the exponential distribution does, see Part V:

X ∼ Ek (λ) ⇒ α · X ∼ Ek

(
λ

α

)
for all α > 0. (24.3)

This means that we may restrict ourselves to the simple case with λ = 1 again, and simplify our
calculations that way.
Using the same calculations as in the proof of Lemma 68 we can show that the sum of two
Erlang distributions with the same rate yields an Erlang distribution where its shape is the sum
of the shapes before, i.e.,

X ∼ Ek (1), Y ∼ E`(1) ⇒ X + Y ∼ Ek+`(1).

In other words: Erlang densities are closed under convolutions, meaning that the convolution of
two Erlang densities again results in an Erlang density.
The Erlang distribution can also be generalized to non-integral shape parameters. The resulting
distribution is called Gamma distribution, see for example [24]. We do not use this distribution
here, the interpretation seems too far-fetched to consider it. What we will use, however, is the
incomplete Gamma function as a notational shorthand in our calculations later on. For this we
have the following definition, taken from [4], for example.

Definition 69. The (upper) incomplete Gamma function I : N×R→ R is defined as the integral

I (k , z) =

∞∫
z

tk−1e−t dt .

In general, the parameters k and z can be complex numbers, but in the same way that we use
the Erlang distribution as the specialized version of the Gamma distribution, we only use integral
k and real-valued z, too. In that case, we even have the following equality:

I (k , z) = (k − 1)! ·
k−1∑
j=0

z j

j !
e−z for k ∈ N.

The equivalence that will be used most often throughout this chapter is

k−1∑
j=0

(λz)j

j !
e−λz =

I (k ,λz)
(k − 1)!

.

25 Calculating the Expected Makespan

Despite the Erlang distribution being very similar to the exponential distribution – actually, it can
be seen as a generalization of it – we cannot recreate the same calculations with the same ease

117

as we did in Part V. Mostly, this is due to the Erlang distribution not being memoryless while
the exponential distribution has this very nice attribute. Other than that, the calculations can be
carried out in the same way, with straight-forward probability theoretical concepts and the like,
as seen in Part VII for example.
Let X and Y be identical Erlang distributed random variables with shape k ∈ N and rate λ > 0,
i.e., X , Y ∼ Ek (λ). The probability density function and cumulative distribution function of X and
Y , respectively, are

fX (z) =


λk zk−1

(k − 1)!
e−λz z ≥ 0

0 z < 0,

FX (z) =


1−

k−1∑
j=0

(λz)j

j !
e−λz = 1− I (k ,λz)

(k − 1)!
z ≥ 0

0 z < 0,

cp. Definition 67.
Then, for the minimum X ∧ Y , we have

FX∧Y (z) = 1−

k−1∑
j=0

(λz)j

j !
e−λz

2

=
(

I (k ,λz)
(k − 1)!

)2

and

E(X ∧ Y) =

∞∫
0

k−1∑
j=0

(λz)j

j !
e−λz

2

dz

=
1

2λ

k−1∑
j=0

k−1∑
i=0

1
2i+j

(
i + j

i

)
,

where we used Lemma 24 on page 27 for calculating the expected value.
The more general case is when a task is active and has already been processed for some t time
units, t > 0. The total processing time of that task can be calculated by using conditional prob-
abilities again, like we did in Part VII. There, the remaining processing time was still uniformly
distributed, albeit with different parameters. In contrast to that, the remaining processing time
here is not even Erlang distributed.

118

Let Y be the total processing time, and Y the remaining processing time, given that the task
has already been processed for t > 0 time units. Then, for z ≥ 0, we have

FY (z) = P(Y ≤ z)

= P
(
Y ≤ z + t

∣∣Y > t
)

= 1− P
(
Y > z + t

∣∣Y > t
)

= 1− P
(
Y > z + t , Y > t

)
P
(
Y > t

)
= 1− 1− P

(
Y ≤ z + t

)
1− P

(
Y ≤ t

)
= 1− I (k ,λ(z + t))

I (k ,λt)
, (25.1)

fY (z) =
λk (z + t)k−1e−λ(z+t)

I (k ,λt)
,

E(Y) =

∞∫
0

I (k ,λ(z + t))
I (k ,λt)

dz. (25.2)

Consider the random variable Y , conditioned on Y > t , then we have

E(Y) =
I (k + 1,λt)
λI (k ,λt)

− t = E
(
Y
∣∣Y > t

)
− t ,

which is the desired result because Y describes the remaining processing time after the first t
time units.
Even though Y is no longer Erlang distributed, the minimum X ∧ Y can be calculated and we
get

FX∧Y (z) =

1− I (k ,λz)
(k − 1)!

· I (k ,λ(z + t))
I (k ,λt)

z ≥ 0

0 z < 0,

fX∧Y (z) =


λk e−λz

(k − 1)!I (k ,λt)
(
(z + t)k−1I (k ,λz) e−λt + zk−1I (k ,λ(z + t))

)
z ≥ 0

0 z < 0,

E(X ∧ Y) =
1

(k − 1)!I (k ,λt)

∞∫
0

I (k ,λz) I (k ,λ(z + t)) dz. (25.3)

119

For the expected makespan of a configuration (G, (y : t)), i.e., with underlying intree G where the
task y has been active for t time units, we have the recursive formula

Cc
(
G, (y : t)

)
= E(X ∧ Y) +

∞∫
0

P(X ∧ Y = X)︸ ︷︷ ︸
FX (z)

fX∧Y (z)Cc
(
Gx , (y : t + z)

)
dz

+

∞∫
0

P(X ∧ Y = Y)︸ ︷︷ ︸
FY (z)

fX∧Y (z)Cc
(
Gy , (x :z)

)
dz, (25.4)

with Gx and Gy as before. The fact that P(X ∧ Y = X) = FX (z) if the integration variable is z is
because of

P(X ∧ Y = X) = P
(
tx < ty

)
∀ ty

= FX (ty) ∀ ty ,

with the same notation and arguments already seen in Part VII. In the same manner, we have
P(X ∧ Y = Y) = FY (z) for the integration variable z.
For smaller examples it can also be helpful to compute the expected value of the maximum
X ∨ Y . Then, for X ∼ Y , we have

E(X ∨ Y) = 2
k
λ
− 1

2λ

k−1∑
j=0

k−1∑
i=0

1
2i+j

(
i + j

i

)
.

If X and Y are distributed differently, in particular, Y models the expected remaining processing
time and is distributed as in (25.1), then

E(X ∨ Y) =

∞∫
0

1−
(

1− I (k ,λz)
(k − 1)!

)(
1− I (k ,λ(z + t))

I (k ,λt)

)
dz. (25.5)

The integrals in (25.5), as well as in (25.2) and (25.3) can be calculated, but for plugging in
values for k , t and λ, the formulas with the integrals left untouched produce more satisfying
results.
Setting k = 1 in all these expressions yields the results already seen in Part V while setting
t = 0 yields the expressions for X ∼ Y , of course. This can be retraced with the Mathematica
code in Listing 25.1. We use the function Inactivate to prevent Mathematica from evaluating
the expressions in some of the definitions as they (probably) cannot be simplified any further,
but will otherwise be attempted anyway. Activate then allows the evaluation, which is easy for
constant values of k and t .
Lines 1 to 4 show that, for k = 1, the Erlang distribution with rate λ and the exponential distri-
bution with parameter λ are identical. Lines 7 to 10 show the expected value of the minimum
and the maximum of two identically Erlang distributed random variables, and their values for
k = 1. Lines 12 to 15 are the probability density function and cumulative distribution function of
Y for Y > t and Y ∼ Ek (λ), and the corresponding functions for the exponential distribution. We

120

 fX[k_,z_] = lambda*z^(k-1)*Exp[-lambda*z]/(k-1)!
 FX[k_,z_] = 1-Sum[(lambda*z)^j*Exp[-lambda*z]/j!, {j,0,k-1}]
 fX[1,z]
 FX[1,z]

 (* X~Y~E_k(lambda) *)
 EXminX[k_] = 1/(2*lambda)*Sum[Sum[2^(-i-j)*Binomial[i+j,i], {i,0,k-1}], {j,0,k-1}]
 EXmaxX[k_] = 2*k/lambda-1/(2*lambda)*Sum[Sum[2^(-i-j)*Binomial[i+j,i], {i,0,k-1}],

{j,0,k-1}]
 EXminX[1]

 EXmaxX[1]

 fY[k_,z_,t_] = lambda^k*(z+t)^(k-1)*Exp[-lambda*(z+t)]/Gamma[k,lambda*t]
 FY[k_,z_,t_] = 1-Gamma[k,lambda*(z+t)]/Gamma[k,lambda*t]
 fY[1,z,0]
 FY[1,z,0]

 (* X~E_k(lambda), Y~above *)
 fXminY[k_,z_,t_] = Inactivate[lambda^k*Exp[-lambda*z]/((k-1)!*Gamma[k,lambda*t]*(

(z+t)^(k-1)*Gamma[k,lambda*z]*Exp[-lambda*z]+z^(k-1)*Gamma[k,lambda*(z+t)])]
 FXminY[k_,z_,t_] = Inactivate[1 - (Gamma[k,lambda*z]/(k-1)!) *

(Gamma[k,lambda*(z+t)]/Gamma[k,lambda*t])]
 EXminY[k_,t_] = Inactivate[1/((k-1)!*Gamma[k,lambda*t]) *

Integrate[Gamma[k,lambda*z]*Gamma[k,lambda*(z+t)],{z,0,Infinity}]]
 EXmaxY[k_,t_] = Inactivate[Integrate[1 - (1-Gamma[k,lambda*z]/(k-1)!) *

(1-Gamma[k,lambda*(z+t)]/Gamma[k,lambda*t]), {z,0,Infinity}]]
 Activate[fXminY[1,z,0]]
 Activate[FXminY[1,z,0]]
 Activate[EXminY[1,0]]
 Activate[EXmaxY[1,0]]

Listing 25.1: Mathematica code for reproducing the formulas from Part V by setting k = 1 and/or
t = 0 in the formulas from above.

set t = 0 because the exponential distribution is memoryless. However, leaving t as a variable
works as well because it cancels out in the simplified functions anyway. At last, Lines 18 to 25
show the expressions for the minimum, maximum, and the expected values. First, for an Erlang
distribution X and a distribution Y as above in Lines 12 to 15, and finally, for two exponential
distributions, again with t set to 0 because of memorylessness.

26 The Generalized Erlang Distribution

The Erlang distribution can be generalized in the sense that the exponential distributions used in
the sum do not have to be identical. Doing this, we can consider the hypoexponential distribution
(or generalized Erlang distribution) which is the sum of several exponential distributions, each
with their own rate λi as opposed to an Erlang distribution which is the sum of several identical
exponential distributions. This means that X is a hypoexponential distribution with parameters

121

λ1, . . . ,λk if

X =
k∑

i=1

Xi

with Xi ∼ exp(λi). The simpler cases with X being the sum of only two exponential distribu-
tions can be managed more easily than the general case with arbitrary k . Still, as the Erlang
distribution poses enough problems already, we do not want to focus further on even more
generalizations.

27 HLF and Erlang processing times

Of course, we already know from Theorem 27 on page 36 that the Erlang distribution is not
memoryless, but the question is: Is it close enough to the exponential distribution that we can
still have similar results? Before we answer this question we first have to observe that each
task with an Erlang distributed processing time with shape k and rate λ can be split up into
a chain of k tasks that are independent, identically exponentially distributed with parameter λ.
For example, see Fig. 44 with k = 3. Each task can be interpreted as a chain of three tasks
with exponential processing times with parameter λ. For instance, the tasks v1 and v4 are now
reduced to the two chains of green tasks on the right, respectively.

v1

v2 v3

v4

v6

v5

pj ∼ E3(λ) pj ∼ exp(λ)

Fig. 44: The reduction from Erlang to exponential processing times.

This fits the interpretation that Erlang distributed random variables are just sums of several
identically exponentially distributed random variables. We call the k successive parts of a task
the phases of a task. Then, the big difference in handling this model is whether the scheduling
strategy knows at which phases the currently active tasks are or not. If the strategy knows this,

122

then we can instantly reduce the scheduling problem

2|pj ∼ Ek (1); intree|E(Cmax)

to the well-known problem with exponentially distributed processing times, using the reduction
seen in Fig. 44. This means that, again, HLF is optimal even for Erlang distributions. The more
interesting case is when the scheduling strategy does not know the current phases of the active
tasks. Then we cannot just reduce the problem to exponentially distributed tasks.
Chandy and Reynolds [12] claim that even in this case HLF is optimal, but give only a sketch
of the proof for it. Apart from this, we could not find any proof in scientific publications about
this scenario. As the proof is not found anymore in the scientific literature, we are a bit skeptical
about this, and consider this problem to be open.
We try to approach the problem in the same way that we did in Part V:

• First, we have to generalize the flatness relation from Chapter 17 on page 38 to config-
urations with active tasks.

• Then, we establish that with HLF a flatter intree always has a smaller makespan than
one that is not as flat.

• After that, we show that exactly one non-HLF step is worse than none.

• At last, we prove that a non-HLF applied to an intree can never result in a smaller
makespan than an HLF to a flatter intree, in turn showing that more than one non-HLF
is not improving the makespan either.

The flatness relation from Chapter 17 that works well for the case with exponential processing
times, does not cover all necessary cases when dealing with Erlang processing times. The main
issue is with active tasks and how to compare two configurations that are structurally identical
(i.e., the underlying intree is the same) but have different active tasks and/or different times
describing how long the active tasks have already been processed. To this end, we redefine
flatness as follows, cp. [12].

Definition 70. The flatness is a partial relation on configurations, defined by:

• As before for configurations with no active tasks, cp. Definition 30 on page 41.

• A configuration (G, (x : t)) is flatter than a configuration H if t > 0, G ∝− H, and H has no
active tasks.

• A configuration (G, (x : t)) is flatter than a configuration (H, (y :s)) if s, t > 0 and

G ∝− H and G \ {x} ∝− H \ {y}.

123

The part where we have to do a lot more work than in Chapter 17 is the proof showing that
flatter intrees are always better. If HLF is indeed optimal even for Erlang processing times, then
the proof works in the same manner as in Lemma 31 on page 41, only that the expressions
become much more involved and are only calculated fast enough by using Mathematica.
In Chapter 17, we showed that an intree which is changed by one task and is flatter results in a
smaller makespan than before. Because of the memorylessness, we did not have to consider
active tasks for the intrees/configurations. In the case of Erlang processing times, we have
to make this consideration. This is why, in the following, we have different conjectures, each
describing one particular case, instead of only one result in total. Also, the following conjectures
are about configurations, whereas in Lemma 31 we considered intrees. But for exponential
processing times, we argued that these two concepts are equivalent anyway.
We give proof ideas for the following conjectures that work in the same way as the proof for
Lemma 31, the harder parts are again the calculations to be done for the induction base cases.
These are vastly more complex for processing times according to an Erlang distribution than for
the other distributions we considered before.

Conjecture 71. Let c be a configuration with no active sources and let c′ be obtained by at-
taching a source of c on a lower level. Then Cc

(
c
)
≥ Cc

(
c′
)
.

Proof Idea. We prove this by induction on the number of tasks.

Induction Base: For the sake of easier readability, the base case of this is found in Appendix F.
What can be seen is that this is the problematic part in this proof idea. Although the formulas
from Chapter 25 seem sound and are checked by Mathematica, see Listing F.1 in Appendix F
on page 194, we see that these do not work properly for this application. Unfortunately, we did
not manage to find other approaches that prove this base case (the same holds for the base
cases of the following conjectures).

Induction Step: Let n be the number of tasks in both the underlying graphs of c = G and
c′ = G′. Then, the situation is as in Fig. 45. The two outer successor configurations (Gs, (x : t))
and

(
G′y , (x : t)

)
both have underlying intrees of only n − 1 tasks and thus, can be handled by a

induction hypothesis. However, as these configurations now have active tasks, these are cases
for the induction hypothesis in Conjecture 73. The same holds for the two inner configurations
(Gx , (s : t)) and (G′x , (y : t)). They can be handled by the induction hypothesis of Conjecture 75.

Conjecture 72. Let c be a configuration with an active source and let c′ be obtained by attaching
an active source of c on a lower level in HLF range while staying active. Then Cc

(
c
)
≥ Cc

(
c′
)
.

Proof Idea. We prove this by induction on the number of tasks.

Induction Base: See the explanation in Conjecture 71.

Induction Step: Let n be the number of tasks in both the underlying graphs of c = G and c′ =
G′. Then, the situation is as in Fig. 46. The two outer successor configurations (Gs, (x : t)) and

124

G

s

x y

(Gs, (x : t)) (Gx , (s : t))

G′

s

x y

(
G′y , (x : t)

)
(G′x , (y : t))

Conjecture 73

Conjecture 73

Fig. 45: The configurations G and G′ and their respective successor configurations.

G

s

x y

(Gs, (x : t)) (Gx , (s : t))

G′

s
x y

(G′s, (x : t))(G′x , (s : t))

IH

=

Fig. 46: G, G′, and their successor configurations.

125

(G′s, (x : t)) are identical and thus, have the same expected makespan. The two inner successor
configurations (Gx , (s : t)) and (G′x , (s : t)) each n − 1 tasks each and can be handled by the
induction hypothesis as the active task s of the second configuration (on the bottom) is just
reattached on a lower level but stays active in the third configuration. This means, that this
lemma is self-contained and does not need any of the other lemmas to be proven.

Conjecture 73. Let c be a configuration with an active source and let c′ be obtained by attaching
an active source of c on a lower level and making another source in HLF range active. Then
Cc
(
c
)
≥ Cc

(
c′
)
.

Proof Idea. We prove this by induction on the number of tasks.

Induction Base: See the explanation in Conjecture 71.

Induction Step: Let n be the number of tasks in both the underlying graphs of c = G and
c′ = G′. Then, the situation is as in Fig. 47. The two outer successor configurations (Gs, (x : t))

G

s

x y

(Gs, (x : t)) (Gx , (s : t))

G′

s

x y

(
G′y , (x : t)

)
(G′x , (y : t))

IH

Conjecture 75

Fig. 47: G, G′, and their successor configurations.

and
(
G′y , (x : t)

)
each have n−1 tasks and can be handled by the induction hypothesis of Conjec-

ture 75. This is because the non-active source y in the first configuration is just reattached to a
lower level to obtain the fourth configuration. The two inner successor configurations (Gx , (s : t))
and (G′x , (y : t)) can be handled by the IH as the active source s is reattached on a lower level
while another task in HLF range y is made active.

Conjecture 74. Let c be a configuration with an active source and let c′ be obtained by attaching
a non-active source of c on a lower level in HLF range and exchanging its status with the (former)
active source, making it active and the other source non-active. Then Cc

(
c
)
≥ Cc

(
c′
)
.

126

Proof Idea. We prove this by induction on the number of tasks.

Induction Base: See the explanation in Conjecture 71.

Induction Step: Let n be the number of tasks in both the underlying graphs of c = G and
c′ = G′. Then, the situation is as in Fig. 48. The situation here is actually the same as in

G

s

x y

(Gs, (x : t)) (Gx , (s : t))

G′

s
x y

(G′s, (x : t))(G′x , (s : t))

IH

=

Fig. 48: G, G′, and their successor configurations.

Conjecture 72. The arguments for the proof are then identical as well, meaning that this lemma
is self-contained, too.

Conjecture 75. Let c be a configuration with an active source and let c′ be obtained by attaching
an non-active source of c on a lower level. Then Cc

(
c
)
≥ Cc

(
c′
)
.

Proof Idea. We prove this by induction on the number of tasks.

Induction Base: See the explanation in Conjecture 71.

Induction Step: Let n be the number of tasks in both the underlying graphs of c = G and c′ =
G′. Then, the situation is as in Fig. 49. The two outer successor configurations (Gs, (x : t)) and(
G′y , (x : t)

)
each have n−1 tasks and can be handled by the induction hypothesis. The two inner

successor configurations (Gx , (s : t)) and (G′x , (y : t)) can be handled by the IH of Conjecture 73
because the active task s in the second configuration is just reattached to a lower level while
another source in HLF range is made active to obtain the third configuration.

Again, we emphasize that the comparisons we make between the configurations c and c′ in
each of Conjectures 71 to 75 do not correspond to actual choices made by a strategy to pro-
duce a schedule. In particular, c and c′ may not even be part of the same configuration graph.

127

G

s

x y

(Gs, (x : t)) (Gx , (s : t))

G′

s

x y

(
G′y , (x : t)

)
(G′x , (y : t))

Conjecture 73

IH

Fig. 49: G, G′, and their successor configurations.

These comparisons are purely theoretical and display the relationship of several, slightly differ-
ent intrees.

128

Part IX

General Precedence Constraints

Table of Contents

28 Directed Acyclic Graphs 131

28.1 The Coffman-Graham Algorithm is not Optimal 131

28.2 The Chandy-Reynolds Algorithm is not Optimal 137

28.3 Static, Semi-Static, and Dynamic Scheduling Strategies 139

28.4 Choosing Pairs of Sources . 149

29 Calculating the Expected Makespan 154

30 sp-graphs 157

131

28 Directed Acyclic Graphs

In 1972, Coffman and Graham [14] proposed an optimal algorithm for the deterministic anal-
ogon of the scheduling problem from Chapter 17, meaning that they proved their algorithm to
be optimal for a two-processor scheduling problem with intree precedence constraints when
considering and makespan minimization if the tasks’ processing times are identical and de-
terministic. Furthermore, not only did they specialize on intrees, but proved optimality of their
algorithm for general dags (directed acyclic graphs), i.e., they solved the scheduling problem

2|pi = 1; prec|Cmax. (28.1)

Even though Chandy and Reynolds have probably known about this work in 1975, they could
only solve the stochastic problem with intree precedence constraints [12]. However, they gave
a counterexample showing that their proposed HLF does not work when considering general
dags. Apart from these, we could not find any other mentionable results regarding this stochas-
tic scheduling problem with dags. We try to uncover some details about why HLF does not work
in this case and try to find implications for how an optimal strategy might look like.
So, the considered problem is

2|pi ∼ exp(1); prec|E(Cmax) . (28.2)

This can be seen as a generalization of (28.1) to stochastic processing times, or of 2|pi ∼
exp(1); intree|E(Cmax) from (17.1) on page 38 to dags as precedence constraints. In the follow-
ing two sections, we show why the optimal strategies from both Coffman-Graham and Chandy-
Reynolds are not optimal for (28.2).

28.1 The Coffman-Graham Algorithm is not Optimal

Coffman and Graham [14] presented an optimal strategy that uses list scheduling. Their ap-
proach is similar to what we defined in Definition 14 on page 14, as they define priorities for the
tasks as follows:

1. An arbitrary source is assigned priority 1.

2. Among all tasks whose direct successors have already been assigned priorities, compare
the sequences of the priorities of their direct successors in increasing order. The task with
the smallest such sequence (lexicographically) is assigned the next higher priority.

3. Repeat step 2 until all tasks have been assigned priorities.

This is similar to the level-oriented topological sorting from Definition 14 in the sense that prior-
ities are assigned level by level here as well, so that, in the end, an HLF is obtained. However,
the difference lies in choosing the tasks on a certain level. Whereas our definition chooses tasks
from left to right, the approach of Coffman and Graham chooses tasks according to the priorities

132

of their successors. If ties arise, they are broken arbitrarily. The chosen priority is denoted by
α(x) for a task x . We note that this assignment is not unique, but nevertheless, all possible
assignments of these α-values will result in an optimal schedule [14].
The optimal algorithm then just schedules tasks with decreasing α-values, i.e., whenever a
processor becomes idle, the available task with the highest α-value is chosen to be processed
on this processor next.
Unfortunately, this algorithm fails in the stochastic setting with exponential processing times.
Consider the dag on the left in Fig. 50. The indices of the tasks’ names correspond to their
respective α-values, i.e., it holds that α(xi) = i . An optimal schedule for the deterministic setting
with unit processing times is given on the right in Fig. 50.

1 2

3 4

5 6

7

9

8

10 11

Processor P1

Processor P2

x11

x10

x9

x8

x7

x6

x5

x4

x3

x2

x1

Time t
0 5

Fig. 50: A dag and its corresponding optimal schedule.

Now consider stochastic scheduling with exponential processing times. The highest seven lay-
ers of the configuration graph of the dag in Fig. 50 for Coffman’s and Graham’s list scheduling
algorithm are shown in Fig. 51. This image (and the following images) were created using
PROSIT, taken from Camino’s master’s thesis [10]1. Each configuration has its corresponding
expected makespan written below it. Active nodes are colored in orange. Other possible choices
for other strategies are depicted by the gray configurations and edges, respectively. Suboptimal
choices are marked with dashed edges. Here, the makespan is approximately 7.01855468. For
a more detailed explanation of the tool and its features, we refer to the actual thesis [10].

1The thesis as well as PROSIT can be found on www.carlos-camino.de.

www.carlos-camino.de

Fig. 51: Part of the configuration graph for the Coffman-Graham scheduling strategy.

Fig. 52: Part of the configuration graph for the optimal scheduling strategy.

135

In contrast to that, an optimal strategy for the stochastic setting with exponential processing
times chooses tasks x11 and x9 to be processed at first, which is obviously not according to
the “highest-α-value-first” strategy that is optimal in the deterministic setting. Fig. 52 shows the
highest seven layers of the configuration graph of the optimal strategy in the stochastic setting.
The makespan is approximately 6.97949218.
Note that PROSIT finds the optimal schedule by a brute-force method, a more elaborate strategy
behind creating an optimal schedule is still unknown.
In addition to the different optimal strategies we can see the difference in the total processing
time. In the deterministic case, the makespan amounts to 6, cp. Fig. 50. In the stochastic case,
however, the makespan of the same graph is approximately 6.97949218, which is substantially
higher. Of course, this is due to the fact that we may end up with a degenerate configuration,
i.e., one that consists of a high chain and only a small number of other tasks on lower levels or
one where many tasks are successors of only a few and have to wait until these few tasks have
been fully processed to be available, see Fig. 53. Although those configurations have a very low
probability to actually occur, the makespan is greatly influenced by them. In the deterministic
case, there are no such degenerate configurations.

Fig. 53: Two degenerated configurations.

One approach on trying to minimize the expected makespan would be to minimize the possibil-
ities of such degenerate configurations. In the 2|pi ∼ exp(1); intree|E(Cmax) problem, HLF does
exactly that. Because we only deal with intrees in that case, there can never be a configuration
where lots of tasks wait for only a few others to finish. This leaves only the high chains as
bad cases, and their possibilities can be decreased by using HLF. Here, however, we can have
several tasks being dependent on only a few others, see Fig. 53 on the right for an example.
Another example would be task x9 in the graph in Fig. 50, which is an ancestor of the six tasks
x1, . . . , x6 although it is only on level 4. Now, to minimize the possibilities of these configurations,
we have to find a trade-off between scheduling high-level tasks in order to avoid high chains and
scheduling lower-level tasks with many descendants in order to avoid idle processors.
In the example from Fig. 50 and Fig. 52, we see that avoiding idle time is more important than
avoiding high chains. In this case, the optimal strategy schedules not both highest sources, but
only one and the other source on a lower level.

136

The proof from [14] that shows the optimality of the above strategy in the deterministic setting

2|pi = 1; prec|Cmax

uses a structural decomposition of the dag, namely the decomposition in several blocks, which
Coffman and Graham denote by the greek letter χ. These χ-blocks have certain properties:

• Each block χi has odd cardinality.

• Each task in block χi is a descendant of each task in block χi+1.

• All tasks in a χ-block are processed in one batch without any other tasks from other
χ-blocks in between.

An example that is also used in [14] is pictured in Fig. 54. The χ-blocks of the dag on the left all
have different colors. The corresponding optimal schedule shows the consecutive processing
of the χ-blocks.

χ3

χ2

χ1

χ0

x1 x2

x3 x5
x4

x6 x7

x8 x9

x10

x11

x12

x13 x14

x16 x15

x17

x19 x18

t

P1

P2

x19

x18

x17

x6

x16

x15

x14

x13

x12

x11

x10

x4

x9

x8

x7

∅

x5

x3

x2

x1

0 5 10

Fig. 54: A dag’s χ-blocks are processed in order in an optimal schedule.

Note that there may be tasks which do not belong to any χ-block, for example the three left
tasks in Fig. 54. These are tasks that are kind of independent from those blocks and they can
be processed in parallel with the tasks from some χ-block. Actually, this is a desired behavior.
These “blockless” tasks, so called fill-ins, may be processed when there is at most one task from
a χ-block available. Then, as it can never be the case that two tasks from different χ-blocks are
processed simultaneously, such a fill-in can be chosen for processing.
The crucial part in the proof is that, with the first and second properties of the χ-blocks men-
tioned above, there is always an idle processor at the end of processing a block. But this
property only holds because the processing times are deterministic and identical. This way, we
know that every time unit at least one tasks finishes. In particular, while processing a block χi

137

of cardinality 2ni + 1, we know that both processors are busy processing 2ni tasks for ni time
units before one processor becomes idle while the other processes the last task of χi . The
idle processor can then choose to process some available fill-in (if it exists), and we know that
both processors will be ready to process other tasks after exactly p more time units. But this is
exactly the problem with stochastic scheduling. We can never be sure if these processors will
be idle after one time unit, and, even more problematic, we can never be sure if they will both
be ready simultaneously at some time point at all. So, in the worst case, a fill-in takes a very
long time to be processed, and the tasks in the next χ-block have to be processed on only one
processor as long as the fill-in is not finished.

28.2 The Chandy-Reynolds Algorithm is not Optimal

The approach from Chandy and Reynolds [12], namely HLF , does not work well here. It is
proven to be optimal for exponential processing times and intree precedence constraints, but
fails when considering dags. The example seen in Fig. 51 works also as a counterexample
to HLF. Fig. 55 shows the highest seven layers of a configuration graph for an HLF schedule.
Looking at the values for the makespan, we can see that this strategy is suboptimal. In addition,
we see that HLF choices sometimes correspond to dashed edges – for example in the first
step – which indicate suboptimal choices. The makespan is even worse than with the Coffman-
Graham scheduling strategy from Fig. 51, and is approximately 7.046875.

Fig. 55: Part of the configuration graph for an HLF.

139

Moreover, not only is HLF not optimal, but different HLFs yield different makespans. In the
setting with only intree precedence constraints, all HLFs were proven to be equivalent in terms
of the resulting makespan. With dags, this is not the case, see Fig. 56. The HLF on the
left chooses the middle and the right source at the beginning, which results in an expected
makespan of 4.640625, whereas the HLF on the right prioritizes the left and middle source,
resulting in an expected makespan of 4.6875.

Fig. 56: Different HLFs result in different makespans.

This tells us that, even if for some dags the optimal strategy is HLF, then it may be the case that
not every HLF is optimal. Then, we would have to deal with different types of optimalities, cp.
Chapter 6 on page 13.
However, it was shown – empirically, not mathematically – that HLF is near-optimal: in [5],
Adam, Chandy, and Dickson did several benchmark simulations on smaller examples (up to
266 tasks) and for almost all of them, HLF out-performs the other strategies they tested and is
only a few percent away from the optimal solution. Still, this result is not theoretically proven,
although it is indicated that HLF may actually be asymptotically optimal (a result which is actually
proven for intrees and three processors, see Chapter 35 on page 174).

28.3 Static, Semi-Static, and Dynamic Scheduling Strategies

Furthermore, the optimal strategy might not even be static, but rather a dynamic scheduling
strategy. This means that the priorities according to which the next task is chosen can change
during the scheduling process. So far, the strategies that we have encountered were all static,
because the priorities were properties of the tasks which do not change even during the schedul-
ing process. Take the levels for example. A level of a task is only defined by the length of a short-
est path to a root and that path is not altered by iteratively removing sources from the graph.
To change the level of a task, its shortest path to a root has to be changed, but as it contains
only tasks which are descendants of that task, they will never be available before the task itself.
See Fig. 57 for an example. The left graph shows the tasks’ levels, the right graph shows the

140

levels of the remaining tasks after some tasks on the higher levels are removed (corresponding
to being chosen and completely processed during a schedule). These values for the levels are
not changed.

1

2 2

3 3 3

4 4

5

1

2 2

3 3

Fig. 57: The levels are static values.

The same can be said for the α-values. These are defined recursively, and bottom-up. Remov-
ing sources on higher levels of the graph does not change the α-values of the low-level tasks,
see Fig. 58.

1 2

3 4

5 6

7 8

1 2

3 4

5

Fig. 58: The α-values are static values.

A semi-static property of a task is one which can change during the scheduling process (e.g.,
when other tasks have already been processed), but only depends on the current structure of
the graph. This name comes from [41]. For example, consider the following:

1. The number of tasks that are on the same level. Whenever a task finishes, all other task on
that level have to update this value, see Fig. 59. This is just a profile for a dag.

4 4 4

2 2

2 2

1

4 3 3 3

2 2

1

Fig. 59: The number of tasks on the same level is semi-static.

2. The number of ancestors of a task. Whenever a task finished, all its descendants have to
update this value, see Fig. 60.

141

6 4

2 3

1 1

0 0

3 2

0 1

0

Fig. 60: The number of ancestors of a task is semi-static.

3. The tuple of the number of ancestors and the number of descendants of a task. In the same
way that the number of ancestors may change during the process, this value changes, too.
The number of descendants, however, remains the same, see Fig. 61.

6,0 6,0

2,1 3,2

1,2 1,3

0,5 0,4

3,0 1,0

1,1 0,2

0,2

Fig. 61: The tuple of the number of ancestors and descendants of a task is semi-static.

Note that all three of those properties can also be considered in a static fashion if we calculate
them once in the original graph, and then never care to update them later on.
In the following section, we define and examine some scheduling strategies, static as well as
dynamic.

Case Studies on some Static and Dynamic Scheduling Strategies

Considering the examples from Fig. 50, we want to find a strategy that schedules the lower
source, i.e., task x9. At first, we examine the three example strategies that we proposed in
Section 28.3.

1. Priority = number of tasks on the same level: This strategy may be optimal for the graph
in Fig. 50, but it fails on the graph in Fig. 62. The suboptimal choice made by this strategy
is depicted with dashed, gray lines. The optimal choice for the first step is to schedule the
lower source on level 2 and only one of the top-level sources. Because it does not matter
which of the top-level sources an optimal strategy chooses, there is more than one possible
optimal choice. But as these are all isomorphic (because unless we give them names, we
cannot tell these tasks apart), the configuration is only drawn once. The small numbers in
the black circles indicate the number of isomorphic configurations. Obviously, the problem
with this graph is that the one low task has too many descendants, so an optimal strategy
has to choose this task in order to decrease the probability of the degenerated configuration

142

Fig. 62: Part of a configuration graph for the strategy using the number of tasks on the same
level.

where all seven tasks on the first level have to wait for this task to finish while one processor
is idle.

2. Priority = number of ancestors: This strategy is optimal for the graph in Fig. 50 and Fig. 62,
but fails on the graph in Fig. 63. This graph is very similar to the one before, it just has one
more task in the chain on the left. This means that in this graph, decreasing the probability
of a high chain is more important in the first step than decreasing the probability of having
the seven level-1 tasks wait for their common predecessor. For the graph before, it is just the
other way around.

3. Priority = tuple of the number of ancestors and the number of descendants of a task: The first
problem arises with comparing two tuples. It is not clear how these are ordered. But even if
we restrict ourselves to special cases with no ancestors (which correspond to sources), then
we have seen that only comparing the number of descendants does not give us an optimal
strategy.

One commonality among all optimal strategies so far is that they always choose at least one task
on the highest level. So, a strategy that chooses at least one highest source may be optimal.
But as it turns out, this is not the case. Consider the configuration graph for an optimal schedule

143

Fig. 63: Part of a configuration graph for the strategy using the number of ancestors.

in Fig. 64. In the first step, the optimal strategy is to choose both sources on level 2, and choose
one of the sources on level 3 only after one task is finished.

28.3.1 Level and Number of Descendants of a Task

As seen in Fig. 62 and Fig. 63, two crucial properties of the tasks are the level and the number
of descendants. Considered alone, neither of them can be taken as a priority. But considered
in parallel, there are some patterns visible when trying different smaller examples. This section
shows such a pattern and discusses this priority.
Define as a priority the tuple of the level of a task and the number of its descendants. These
priorities are written as x |y where x denotes the level of a task, and y denotes the number of
its descendants, see Fig. 65 for some examples. The white node in the left graph is on level 4
and has five descendants (depicted by the blue nodes), i.e., its values are 4|5. The white node
in the right graph is on level 3 and has three descendants, i.e., its values are 3|3

144

Fig. 64: Part of a configuration graph for a strategy always choosing one of the highest sources.

level 1

level 2

level 3

level 4
4|5

3|3

Fig. 65: The tuple of the level and the number of descendants of a task.

As we argued before, the important part when dealing with tuples is the metric, i.e., how we are
supposed to compare tuples. As a symbol for comparing two priorities we have

x |y � x ′|y ′ ⇐⇒ a task corresponding to the first tuple x |y has strictly smaller priority

than a task corresponding to the second tuple x ′|y ′. (28.3)

In the following, we compare tasks with different values to see if a pattern emerges. The ob-
servations are all done using PROSIT to compute an optimal strategy. For example, we want to
show that 2|3 � 3|2. This means that we construct a graph where we have one source on level
2 with three descendants, and two sources on level 3 with two descendants each, or vice versa,
see Fig. 66. As the optimal strategy chooses both level-3 sources, we know that these have
a higher priority than the level-2 source. Basically, we provide the strategy with two choices:
either both sources with identical values are chosen, or only one of those and a source with

145

other values are chosen. In the first case, the priority of the two level-3 sources with identical
values is higher than the other on level 2. In the second case, it is the other way around.

2

4.34375

3.84375 3.84375 3.875

2

4.343750 4.3593750

2

4.6875

4.7031250

4.1875 4.1875 4.21875

2

4.68750

Fig. 66: The optimal strategy for these graphs implies that 2|3 � 3|2.

Some examples of relationships between other smaller priority values can be seen in Fig. 67.

4.84375

4.34375

2

4.843750

5.234375

4.75 4.71875

2

5.2343750

5.34375

4.84375

2

5.343750

5.734375

5.25 5.21875

2

5.7343750

Fig. 67: Four graphs that show (from left to right): 2|4 � 3|3, 3|3 � 2|5, 2|5 � 3|4, and 3|4 � 2|6.

Altogether, we obtain the some relationships for certain priority values of tasks below level 5,
which can be seen in Fig. 68. The priority increases from left to right, meaning that tasks with
values more to the right have a higher priority than tasks with values to the left. Furthermore, for
these values, the priority relation “�” is transitive. So, for example, it holds that 2|4�4|3 because
we have 2|4 � 3|3 � 2|5 � 3|4 � 4|3. Values corresponding to the same level are depicted on the
same row, with a row for each level. A zig-zag pattern is visible for these small values.
As we can see in Fig. 66 and Fig. 67, the actual structure of the graph does not change the
relationship of the two respective values. This means that no matter how a level-3 task with four
descendants occurs in the graph, it will always have a smaller priority than a level-2 task with

146

priority

level

5

4

3

2 2|3

3|2

2|4

3|3

2|5

3|4

2|6

4|3

3|5

2|7

4|4

3|6

2|8

4|5

5|4

Fig. 68: The order of some x |y values.

six descendants. Fig. 69 gives four different possibilities to have a task with values 3|4 (which
is always the topmost one). These four possibilities are all, up to isomorphisms.

Fig. 69: The four different possibilities for a task with values 3|4.

However, for larger graphs, the structure of the graph itself does becomes important. The
number of descendants alone does not describe the structure well enough, because for larger
graphs there are even more possibilities for the structure to look like with same values for the
respective tasks. The smallest counterexample which we could find is between tasks with values
3|8 and tasks with values 5|5. Depending on how the eight descendants of the level-3 task are
arranged, the priority is higher than that for the level-5 tasks in one case, but lower in the other,
see Fig. 70. For the graph on the left, the optimal strategy chooses the level-5 sources, whereas
choosing the level-3 source over one of the level-5 sources is optimal for the graph on the right.
This proves that even these two values in combination are not enough to characterize an optimal
strategy. Moreover, the crucial part is not even that the reachable roots are distributed among
paths via several level-2 tasks, as we can see in Fig. 71. The two graphs differ only in the
removal of one edge in the left graph. So it appears that not only the number of reachable roots,
but the number of paths to these roots are important as well.
From what PROSIT can manage to calculate, we suspect that the relation x |y � x |(y + 1) still
holds, regardless of the number of paths from the level-x sources to the roots. We compared
tasks on level 3 with up to 17 descendants and up to 64 different paths to roots. The absolute
difference between the optimal strategy and the suboptimal strategy is less than 10−5, but still
we have that

3|16 � 3|17,

147

7.70361328

7.20361328

2

7.703613280

7.7734375

7.27734375 7.26953125

2

7.77343750

Fig. 70: The tuples 5|5 and 3|8 are incomparable.

7.78173828

7.28173828

2

7.781738280

7.81665039

7.32470703 7.30859375

2

7.816650390

Fig. 71: Only one edge makes the difference for the optimal strategy.

where the task with only 16 descendants has the highest possible number of different paths to
its roots (which means connecting it to the complete bipartite subgraph K8,8), and the task with
17 descendants has the smallest number of different paths to its roots (which means having the
maximal number of roots), see Fig. 72. The configuration graph which was used to obtain the
above result is omitted here because the graph is too messy to see anything.

28.3.2 Number of Induced Paths of a Task

We call a path from a task to any of the roots reachable from it an induced path. The number
of induced paths cannot be used as a priority either. For a smaller number of tasks, we can

148

3|16

K8,8

�

3|17

. . .

16

Fig. 72: Even for a big difference in the number of edges, 3|16 � 3|17.

see a pattern emerging in the same way that we have seen in Fig. 68 for the priority with the
level and the number of descendants. However, if the number of tasks increases, then there are
counterexamples for which the number of induced paths or even the tuple of level and number
of induced paths does not work, see Fig. 73 for example.

3 16

. . .

16

�
3 64

. . .

64

Fig. 73: The number of induced paths of a task as a priority.

We introduce the notation x y for a task on level x with y induced paths. It is obvious that a
level-3 task with one (direct) successor and 16 descendants on level 1 has a lower priority than
a level-3 task with one successor and 64 descendants on level 1, giving 3 16�3 64 if we adopt
the priority notation � from (28.3), see Fig. 73. After all, we only added more tasks on the lowest
level as descendants. But then, with Fig. 72 we get that

3 16 � 3 64 � 3 16.

Thus, level-3 tasks with 16 and 64 induced paths are not comparable.
Even more peculiar, if we consider Fig. 72, then the probability that some degenerate configu-
ration is reached is the same in both graphs. For example, take the configuration where there
are only the level-1 tasks and a chain of height 5 left (this configuration is denoted by `5,4 in
[10]). Fig. 74 shows the probability of reaching that configuration when starting with the left
graph from Fig. 71 while applying HLF, which is the optimal strategy here. The values in the
boxes indicate the probability of a configuration. The probability of reaching the configuration

149

`5,4 (bottom right) is 3
16 . Fig. 75 shows the same probability for the right graph from Fig. 71 while

applying the non-optimal HLF, and Fig. 76 shows that while applying the optimal strategy. In
all three cases, the probability of reaching the degenerate configuration `5,4 is the same, i.e.,
it is 3

16 . This means, that even the occurrence probabilities of some degenerate configurations
cannot offer some valuable information about choosing tasks for a strategy.
Of course, all these different configuration graphs are not so different. The underlying graphs
differ only by one edge after all. Nevertheless, this is sufficient to show that we cannot use the
occurrence probabilities alone to define a strategy, or to get some more information about the
optimal strategy.
Altogether, we could see that even tuples of values that seemed promising do not hold much
value when considering larger graphs. We could have considered triples or larger combinations,
but had the feeling that there is always another characterization or another value for a task that
needs to be included in the combination. These values may then only be hand-crafted to fit
some previous counterexamples and/or too complex in the sense that the calculation of these
priority combinations are no longer efficient to be used to find an optimal strategy. This may
indicate that not even a semi-static strategy can be optimal, but rather a dynamic strategy that
takes into account some of the previously made choices.

28.4 Choosing Pairs of Sources

An optimal strategy minimizes the expected makespan. Moreover, it somehow minimizes the
probability of degenerate configurations. The question is always: At what cost? What if there
are several degenerate configurations that can be reached? One problem that may arise is that
the chosen tasks take very long to be processed and no other tasks can be processed while the
processors are busy. So, one idea is to consider the subconfigurations of a pair of sources and
their subgraph of descendants, see Fig. 77 and Fig. 78 for example. Doing this for every pair of
sources and comparing the expected makespan of the respective, induced subconfigurations
may leave a value that may be used as a priority (or part of it). As it turns out, this is not the
case. See Fig. 78 for a depiction of this behavior: Neither the subconfiguration with the highest
makespan, nor the one with the lowest corresponds to the two sources that will be chosen by
the optimal strategy.

150

1

1/2 1/2

1/4 3/4

1/8 1/8 3/8 3/8

1/16 1/16 1/4 1/4 3/16 3/16

2

1/80

1/40

1/20

1/20

3/40

3/80

10

2

1/20

Fig. 74: Part of the configuration graph of an optimal HLF schedule for the left graph in Fig. 71.

151

2

2

2

2

5

2

2

2

1

0 1/2 1/2

00

1/4 3/4 0 0

00 00 00

1/8 1/8 3/8 3/8 0 0

00 00 00

1/16 1/16 1/4 1/4 3/16 3/16 0 0

1/80

1/40

2

2

1/20

3/40

3/80

2

00

1/20

10

1/20

Fig. 75: Part of the configuration graph of an non-optimal HLF schedule for the right graph in
Fig. 71.

152

1

1/2 1/2

1/4 3/4

1/8 1/8 3/8 3/8

1/16 1/16 1/4 1/4 3/16 3/16

2

1/80

1/40

2

1/20

2

1/20

3/40

3/80

10

2

1/20

Fig. 76: Part of the configuration graph of an optimal schedule for the right graph in Fig. 71.

153

8.92156982

8.42156982

2

8.921569820

Fig. 77: A dag with 16 tasks, which is optimally scheduled by a non-HLF.

6.296875

5.796875

2

6.2968750

7.1196289

6.64941406 6.58984375

7.11962890

4.25

3.4375 4.0625

4.250

Fig. 78: Induced subconfigurations of pairs of sources do not hold any value as a priority.

154

29 Calculating the Expected Makespan

In the same manner as in Chapter 16 on page 36, we want to derive a formula (or several
equivalent ones) which expresses the optimal expected makespan. Many of the expressions for
intree precedence constraints heavily used the fact that HLF is the proven optimal strategy. This
is an issue in the case of dag precedence constraints as we do not know the optimal strategy.
However, for some simpler examples of a specific structure, we can easily calculate the optimal
expected makespan.
Consider a level-2 task with i successors, denoted by Mi in the following, and called an M-graph.
Furthermore consider i singular tasks, denoted by i , see Fig. 79 for an example of both.

Mi

. . .

i

i

. . .

i

Fig. 79: An M-graph and i singular tasks.

The formulas for the makespans of these two types of dags are very simple. For i , we have

Cc
(
i
)

= 1 +
i − 1

2
, (29.1)

whereas for Mi , we have

Cc
(
Mi
)

= 1 + Cc
(
i
)

= 2 +
i − 1

2
. (29.2)

It gets more interesting if we consider a sequence of M-graphs, see Fig. 80 for example. In
particular, sequences of M-graphs form an outforest.

[Mi , Mj]

. . .

i

. . .

j

Fig. 80: A dag consisting of two M-graphs.

The makespan of this dag is much more interesting. In detail, it holds that

Cc
(
[Mi , Mj]

)
=

1
2

+
1
2

Cc
(
[i , Mj]

)
+

1
2

Cc
(
[Mi , j]

)

155

with

Cc
(
[i , Mj]

)
=

1
2

+
1
2

Cc
(
i + j

)︸ ︷︷ ︸
(29.1)

=
i+j−1

2 +1

+
1
2

Cc
(
[i − 1, Mj]

)

=
1
2

+
1
2

(
i + j − 1

2
+ 1
)

+
1
2

(
1
2

+
1
2

(
i + j − 2

2
+ 1
)

+
1
2

Cc
(
[i − 2, Mj]

))
=

1
2

+
1
4

+
1
2

(
i + j − 1

2
+ 1
)

+
1
4

(
i + j − 2

2
+ 1
)

+
1
4

Cc
(
[i − 2, Mj]

)
. . .

=
i∑

k=1

(
1
2

)k (
2 +

i + j − k
2

)
+
(

1
2

)i

Cc
(

[0, Mj]︸ ︷︷ ︸
=Mj

)
(29.2)

=
i∑

k=1

(
1
2

)k (
2 +

i + j − k
2

)
+
(

1
2

)i (
2 +

j − 1
2

)
. (29.3)

The next step is to add another graph M-graph to the sequence, and calculate the makespan
again. Now, this is the first time when we have to consider which choices the optimal strategy
makes in order to recurse to the correct configurations. But, for obvious reasons, we have that
the top task of Mi is always prioritized over the top task of Mj if i ≥ j . Additionally, a level-2 task
is always prioritized over a singular level-1 task. With these rules in mind, we can consider more
than just two of those graphs in a sequence, namely [Mi , Mj , Mk] with i ≥ j ≥ k , w.l.o.g.:

Cc
(
[Mi , Mj , Mk]

)
=

1
2

+
1
2

Cc
(
[i , Mj , Mk]

)
+

1
2

Cc
(
[Mi , j , Mk]

)
=

1
2

+
1
2

(
1
2

+
1
2

Cc
(
[i , j , Mk]

)
+

1
2

Cc
(
[i , Mj , k]

))
+

1
2

(
1
2

+
1
2

Cc
(
[i , j , Mk]

)
+

1
2

Cc
(
[Mi , j , k]

))
= 1 +

1
2

Cc
(
[i + j , Mk]

)
+

1
4

Cc
(
[i + k , Mj]

)
+

1
4

Cc
(
[j + k , Mi]

)
(29.4)

(29.3)
= 1 +

1
2

(i+j∑
`=1

(
1
2

)`(
2 +

i + j + k − `
2

)
+
(

1
2

)i+j (
2 +

k − 1
2

))

+
1
4

(
i+k∑
`=1

(
1
2

)`(
2 +

i + k + j − `
2

)
+
(

1
2

)i+k (
2 +

j − 1
2

))

+
1
4

(j+k∑
`=1

(
1
2

)`(
2 +

j + k + i − `
2

)
+
(

1
2

)j+k (
2 +

i − 1
2

))
.

As we can observe, the makespan of a sequence of three M-graphs can be reduced to a
weighted sum of the makespans of dags of the form seen in Fig. 79, i.e., an M-graph and some
more singular tasks. In Fig. 81, we can see the initial levels of the corresponding configuration
graph. We can infer from (29.4) that this reduction works for an M-graph sequence of any

156

[Mi , Mj , Mk]

. . .

i

. . .

j

. . .

k

[i , Mj , Mk]

. . .

i

. . .

j

. . .

k

[Mi , j , Mk]

. . .

i

. . .

j

. . .

k

Fig. 81: The recursive reduction of a sequence of three M-graphs.

length. For each recursion level, the number of M-graphs in the recursive calls decrease by 1
until only one remains and we can use the equation derived in (29.3).
Next, we can examine some generalizations of M-graphs with more than one source. For
example, we have

Cc
(
K2,i
)

= Cc

 . . .

i

 =
1
2

+ Cc
(
Mi
)

= 2 +
i
2

,

Cc
(
Kj ,i
)

= Cc

 . . .

. . .

i

j  =
j − 1

2
+ Cc

(
Mi
)

= 1 +
m + n

2
,

again using the notation Kj ,i for a complete bipartite graph with independent sets of sizes j and
i . Even if we do not have a complete bipartite graph, but a graph where the k -th level-2 task
has mk successors, k ∈ {1, . . . , j}, and in total there are i level-1 tasks, we can easily have an
expression for the makespan. This kind of incomplete bipartite graph is shown in Fig. 82, with
j nodes on the top and i nodes on the bottom. The k -th top node is connected to mk bottom
nodes (not necessarily nodes which are drawn next to each other, as could be interpreted from
the figure), of which there are i in total.
The optimal strategy prioritizes the source by the number of successors, which means that after
i−2 tasks are finished, only the two sources with the fewest successors remain. Then, after the
next task finishes, an M-graph remains, either the task with the fewest successors, or the task
with the second-fewest successors. Let G be the graph from Fig. 82, and let mmin and m2-min be
the minimal and second-minimal number of successors, respectively, i.e., the two smallest of all

157

. . .

.

m1
m2

mj

j

i

Fig. 82: An incomplete bipartite graph with j + i nodes.

the mk values. Then, it holds that

Cc
(
G
)

=
j − 1

2
+

1
2

Cc
(
Mmmin

)
+

1
2

Cc
(
Mm2-min

)
=

j − 1
2

+
1
2

(
2 +

mmin − 1
2

)
+

1
2

(
2 +

m2-min − 1
2

)
= 1 +

j
2

+
mmin + m2-min

4
.

Unfortunately, for general dags other than M-graphs and the like, calculating the optimal ex-
pected makespan is quite hard. Mostly, this is because we do not know the optimal strategy.
This is why a decomposition of a dag such as in Section 18.9 on page 81 will not work, we
cannot rule out that a much lower task is prioritized over a top-level task, and thus, we do not
know which tasks to include in the different parts of the decomposition, see Fig. 83. If every
source has to be included in the worst case, then the decomposition has only one part which
covers the whole dag. Of course, this does not help at all.

12.51834774

12.01892852 12.01776695

2

12.518347740

Fig. 83: The level-2 task with 16 successors is prioritized over the level-7 tasks, i.e., 7|6 � 2|16.

158

30 sp-graphs

A special subclass of dags are the series-parallel graphs (or short: sp-graphs). These graphs
are defined as two-terminal graphs (i.e., having exactly one source and one sink) that are built
recursively using only two composition operations:

Parallel Composition The disjoint union of two two-terminal graphs, where both the sources
and the sinks are merged. See Fig. 84 for an example. The merged nodes are colored
in blue.

Series Composition The disjoint union of two two-terminal graphs, where the source of the
one is merged with the sink of the other. See Fig. 84 for an example. Note that there
are two possible series compositions.

Altogether, a two-terminal sp-graph is one that is built using only the two above operations and
starting with copies of the K2 = [2], i.e., a chain of two nodes. For a more detailed introduction
to sp-graphs, see [19] for example.
The usage of sp-graphs as precedence constraints is interesting insofar as for some other
scheduling problems, the variant with sp-graphs is easier to solve than the corresponding vari-
ant with dags, see [36, 38] for example. Unfortunately, for the problem at hand, this restriction
does not help us that much. While the overall optimal strategy might be easier to find than for
general dags, at least we can rule out HLF, again. As a counterexample, consider the graph in
Fig. 85. The subgraph consisting only of the black nodes is very similar to the graph in Fig. 62.
The white nodes are added to obtain an sp-graph.
The reason why we cannot use the graph in Fig. 62 as a counterexample is that it contains the
graph in Fig. 86 on the left as a subgraph, which cannot be created as an sp-graph with the
levels as given in the figure. Adding the white source node results in a two-terminal graph at
least. Although it is possible to create the nearly identical sp-graph in Fig. 86 on the right, the
levels of the tasks are not the same. The corresponding precedence relation is also not the
same.
As a matter of fact, the number of small sp-graphs that can be created while also restricting
ourselves to not changing the levels of the tasks during a composition (apart from adding an
offset in case of a series composition, of course) is small. Mostly, because a more elaborate
graph like the one in Fig. 86 on the left is not allowed. This way, the sp-graphs we consider are
much less complex than general ones.
Although we do not have the optimal strategy, we can determine the expected makespan for
some sp-graphs. In particular, for those whose optimal strategy is HLF. For example, we have

159

parallel composition series composition

Fig. 84: The parallel and series compositions of two different two-terminal sp-graphs.

Fig. 85: A counterexample to HLF for sp-graphs.

160

level 1

level 2

level 3

level 4

Fig. 86: Not all dags can be created as an sp-graph.

the following (the number of tasks in the “diamond graph” depicted by the ellipsis . . . is i):

Cc

(
. . .

)
= 1 + Cc

(
i
)

+ 1

= 3 +
i − 1

2
,

Cc

(
. . .

)
= 1 + Cc

(
[Mi , 1]

)
+ 1,

Cc

(
. . .

)
= 1 + Cc

(
. . .

)
= 1 +

i − 1
2

+ Cc

()
︸ ︷︷ ︸

=Cc

(
Y1,2,1

)
= 2 +

i − 1
2

+ Cc
(
[2, 1]

)
.

More complex examples are not really useful, as we would have to calculate the whole config-
uration graph in order to obtain the makespan. Furthermore, the application of the makespan
of an sp-graph is not instantly obvious as well. If we considered a task in a graph and the
subgraph rooted at it, i.e., the task and all its descendants, and the corresponding makespan
of this sp-graph as a priority for this task, we could examine this further. However, the issues
with this approach are: 1) we do not know how to efficiently calculate the makespan of larger,
more complex sp-graphs (like the one in Fig. 85, for example), and 2) for a given task in a dag,
its subgraph need not be an sp-graph, but can be a general dag again. This is why we do not
investigate sp-graphs further.

Part X

Three Processors

Table of Contents

31 Difference to the Deterministic Setting 163

32 Minimal Counterexamples 163

32.1 Supergraphs of Counterexamples . 166

32.2 Y-subgraphs of Counterexamples . 167

33 Times of Busy and Idle Processors 173

34 More Differences to the Two Processor Case 174

35 HLF is Asymptotically Optimal 174

163

For several well-known problems the transition of a variable between the values two and three
seems to be quite influential in terms of computational complexity. Take the well-known sat-
isfiability problem1: the problem of 2-Satisfiability is easily solved [35], whereas the problem
of 3-Satisfiability is proven to be NP-hard [16, 40, 33]. The k -Coloring problem is another ex-
ample2, where the transition between k = 2 and k = 3 is substantial in terms of complexity.
2-Coloring is just checking for bipartiteness, whereas 3-Coloring is NP-hard [33]. So, the ques-
tion remains whether the scheduling problem of interest is of the mentioned type, or is actually
easily solvable for three processors as well. So far, there have not been any proofs regarding
the complexity of the three processor problem

3|pi ∼ exp(1); intree|E(Cmax) , (30.1)

leaving both options to be possible. However, due to our observations – and due to decades
of research without any mentionable output regarding this problem – we suspect that the three
processor problem is indeed not as easily solvable as its two processor variant.

31 Difference to the Deterministic Setting

Hu [31] showed that for deterministic processing times HLF is optimal, not only for two or three
processors, but for an arbitrary and fixed number of processors when regarding intree prece-
dences, i.e., the problem

Pm|pi = p; intree|Cmax.

For the two processor problem with stochastic processing times, we have the result of Chandy
and Reynolds [49], and even more generalizations can be made while HLF still stays the optimal
strategy [9]. But as we will see in the next section, HLF is no longer optimal when considering
exponential processing times and more than two processors.

32 Minimal Counterexamples

One thing that we can say for sure is that the optimal strategy used for the two processor
problem, namely HLF , is not optimal when we have three processors at our disposal. Consider
the two intrees from Fig. 87 and Fig. 88. They are minimal (with respect to the number of tasks)
counterexamples for why HLF is not always optimal. All smaller intrees, i.e., all intrees with up
to ten tasks, are optimally scheduled by any HLF. Fig. 87 shows the first three layers of the
configuration graph of one of those intrees. There are three (apart from isomorphisms) different
choices that a strategy can make in the first step. The HLF choice is depicted on the left side
with the dashed line (denoting a non-optimal choice): it chooses the two sources on the highest

1Is there a variable assignment that satisfies a given boolean formula?
2Is there a way of coloring the vertices of a given graph with k colors such that no two neighboring vertices share

the same color?

164

level and the source on the second-highest level. The optimal choice is depicted in the middle
with the solid black lines, and the third option is on the left and in gray. The difference between
HLF and the optimal strategy is small in terms of the resulting expected makespan (less than
0.005), however HLF is still strictly worse.

2

2

6.96752829

7.0393840

6.56278935 6.77835648 6.56278935 6.77700617 6.56278935 6.77835648 6.77700617

6.806712960 6.885223760

5.95601851 6.3671875 6.36516203 6.60069444 6.36516203 6.68981481 6.36516203 6.60069444 6.68981481

2
6.967978390

2
6.778356480

2

6.562789350

6.967528290

2
6.777006170

Fig. 87: One of the minimal counterexamples to HLF.

The second minimal counterexample from Fig. 88 is similar: the optimal strategy chooses the
lowest sources in the first step, which is not done by any HLF.
Optimal strategies can be found by using a brute-force method that considers all possibilities
and just remembers the best one. Obviously, this algorithm is very inefficient – exponential in
the size of the input graph – but for smaller examples with not more than 20 tasks or so, it is fast
enough for finding the optimum. Maaß discusses a few exponential-time algorithms in [41]. The
ultimate goal of all work focusing on the scheduling problem (30.1) is to successfully classify
the complexity of finding an optimal solution to it. As we stated before, so far, no results come
to mind. We have seen that HLF is not the strategy to go, but we cannot rule out that there
is some other – probably a lot more elaborate – strategy find an optimal schedule. And then,
the question remains what the complexity of that strategy actually is. For example, we already
know that an exponential-time brute-force approach will yield the optimal solution, as we stated
before.
Unfortunately, the complexity of (30.1) has been an open problem for some decades now – at
least since 1975, when it was mentioned by Chandy and Reynolds in [12]. Much to our regret,
this work does not change that fact. However, we try to get a better feeling of the structures
of some counterexamples to HLF, like in Lemma 76 or Conjecture 77. This may assist with
two things: On one hand, we may understand exactly what makes HLF a suboptimal strategy

165

2

2

7.60798182

7.748263880

7.13470936 7.55555555 7.13470936 7.55452674 7.13470936 7.55555555 7.55452674

7.564943410 7.709555040

6.24942129 7.078125 7.07658179 7.51041666 7.07658179 7.54166666 7.07658179 7.51041666 7.54166666

2
7.608324750

2
7.555555550

2

7.134709360

7.607981820

2
7.554526740

Fig. 88: Another smallest counterexample to HLF.

when adding the third processor, and on the other hand, we may find an optimal strategy (or
approaches for one) for (30.1).
One property for an optimal scheduling strategy that is already established is that is must not
be static [41], like HLF for example. It is even shown that a semi-static strategy does not
work either, i.e., a strategy that, at every subconfiguration, may take that subconfiguration’s
structure into consideration for choosing the next sources. Thus, an optimal schedule can only
be achieved by using a completely dynamic scheduling strategy, i.e., one that takes already
made choices into account. Of course, that does not work at the very beginning of a schedule,
because then there are no choices which were already made. So, we try to focus more on those
initial configurations as these pose enough of a problem already.
In the following sections, we try to shed light on some counterexamples and their corresponding
characteristics, such as the structure of certain reachable configurations, their respective prob-
abilities, and different types of optimality. All simulations as seen in the figures in this section
were done using either tasks time written by Müller in his master’s thesis [43] or PROSIT [10],
depending on which output is suited better for the respective use. Here, PROSIT has the ad-
vantage that it can show different strategies all in one picture, whereas tasks time can display
more interesting values.

166

32.1 Supergraphs of Counterexamples

Starting from the minimal counterexamples in Fig. 87 and Fig. 88, we search for whole families
of counterexamples that have some specific property. Consider the 11-task intree from Fig. 87,
and add one more task to it anywhere it may fit. The resulting supergraphs that are also not
optimally scheduled by HLF can be seen in Fig. 89. The added nodes to obtain the supergraphs
are filled with white. All other such 12-node supergraphs are optimally scheduled by HLF, apart
from isomorphism, of course.

Fig. 89: Supergraphs of the graph in Fig. 87 which are also not optimally scheduled by HLF.

We do the same for the intree from Fig. 88 and obtain the intrees in Fig. 90.

Fig. 90: Supergraphs of the graph in Fig. 88 which are also not optimally scheduled by HLF.

In fact, we can generate infinitely many counterexamples to HLF with the following Lemma.

Lemma 76. Let G be any counterexample graph to HLF for the three-processor problem, and
let L◦ be the level of the third highest source in G. Then the graph family

G = {G◦ = G with x tasks added above level L◦, x ∈ N}

is a family of counterexamples against HLF.

Proof. For all G◦ ∈ G, it holds that G occurs as a subconfiguration with a probability strictly
greater than zero when applying HLF. But then, this means that G◦ is not optimally scheduled
by any HLF.

While simulating many examples, we stumbled upon some counterexamples to HLF that (sup-
posedly) can be grouped into another family of counterexamples.

Conjecture 77. Let Gd ,` be a graph as in Fig. 91. Then the graph family

{Gd ,` : d ≥ 0 and ` ≥ 2(d + 1)}

167

`

d

Fig. 91: Gd ,`.

is a family of counterexamples to HLF.

So far, we do not have any proof that this conjecture holds for graphs with larger d and `, but
we strongly suspect that this is indeed the case.

32.2 Y-subgraphs of Counterexamples

32.2.1 Fix one Source

An unfavorable case that can happen during scheduling of the tasks is that a task on a high
level takes many time steps to be processed. In this case, it may be that many more tasks on
lower levels have to wait for either this task to be finished because they are descendants of it,
or they are sources but have to wait for this one processor to become idle. So, one approach
to consider is to fix one source and calculate the rest of the graph as a two processor problem.
This models the absolute worst case, where this one source takes longer than all other tasks
combined. While this is not very likely in most cases, it is always a possibility. The idea is to
compare the values and try to reduce the possibility of such a degenerate configuration.
There are different characteristics that we can focus on:

• The expected makespan of the chain with the fixed source.

• The probability of reaching that configuration.

• The expected makespan of the remaining graph/inforest after the chain with the fixed
source is removed.

• The product of the probability of reaching that configuration with the sum of the expected
makespans of the chain with the fixed source and the remaining inforest.

The first value only depends on the level of the source. The second value is a little bit compli-
cated, but can be computed in the same way as in Section 18.7 on page 66, for example using
the alternative approach of the end of the section. The problem with this is that it actually de-
pends on the strategy that is used. For some strategies, certain configurations may never occur,
so the values for the probabilities that we present here in the following are calculated using the

168

strategy that randomly selects a source (all sources are equally likely). Of course, we can argue
whether this makes sense or if we should rather try different strategies and compare the corre-
sponding probabilities of them. The third value can be calculated using one of the many different
approaches presented in Chapter 18. The fourth value combines all three values before, and
the idea behind that value is that this is the weighted factor of that degenerate configuration
within the calculation for the expected makespan of the whole graph. The table in Fig. 92 shows
the values of the above characteristics for the subconfigurations where one source is fixed and
it and its dominating path are removed from the graph. Most values are rounded, but given with
a precision error of 10−4. The underlying graph is the one from Fig. 87, i.e., one of the smallest
counterexamples to HLF. The optimal strategy initially chooses to process the gray tasks x1, x2,
and x4.

x4

x3

x1 x2

fixed
source

remaining
inforest

makespan
of chain

makespan
of inforest

sum of
makespans

(prob.)·
(sum)

x1 or x2 6 3.375 9.375 1.2635

x3 5 3.84375 8.84375 0.7066

x4 4 5.75 9.75 0.22569

Fig. 92: The product of probability and sum of makespans does not work as a priority.

We observe that the values in the last column cannot be used as a priority for choosing optimal
tasks alone. In this case, we would have to choose the tasks with the highest and the lowest
values. If we used the values in the second-to-last column as a priority, we see that in this case,
we would choose the correct sources that lead to an optimal makespan. However, consider the
graph on the left in Fig. 93. It is optimally scheduled by HLF, initially choosing the gray tasks.
The different values for its subconfigurations are in the table on the right. From these we can
see that using the sum of the makespans of the chain and the remaining inforest cannot be
used as a priority for an optimal scheduling strategy.
In Fig. 93 we omit the last column with the product of the probability with the sum of the
makespans mainly because it does not yield a reasonable output that might be put into an
optimal strategy anyway (as we have seen in the table in Fig. 92).

32.2.2 Fix two Sources

Given a graph, consider subgraphs with exactly two sources, both of which are sources in the
original graph as well. These Y-graphs, cp. Section 18.8, are optimally scheduled by any reason-
able strategy that does not leave processors unnecessarily idle, and their expected makespans
can be calculated quite easily, see Sections 18.6, 18.6.2 and 18.8 on pages 57 ff. The idea

169

x4

x3

x1 x2

x5

fixed
source

remaining
inforest

makespan
of chain

makespan
of inforest

sum of
makespans

x1 or x2 6 3.71875 9.71875

x3 5 4.1875 9.1875

x4 4 5.84375 9.84375

x5 3 7.23047 10.23047

Fig. 93: The sum of makespans alone does also not work as a priority.

is to see how different subconfigurations, or subgraphs, respectively, and their makespans be-
have according to whether HLF or a non-HLF is optimal. This means that, in contrast to Sec-
tion 32.2.1 where we fixed one source and considered the remaining inforest as a two processor
problem, we fix two sources and consider the remaining inforest as a one processor problem.
This models the case where two tasks take very long to be processed and the other tasks only
have one processor to be processed. See Fig. 94 for an example.

x4

x3

x1 x2 fixed
sources

remaining
inforest

makespan
of Y-graph

makespan
of inforest

sum of
makespans

(prob.)·
(sum)

x1 and x2 6.5 4 10.5 0.51849

x1/2 and x3 6.25 4 10.25 0.50314
x1/2 and x4 6.36719 2 8.36719 1.85937

x3 and x4 5.59375 3 8.59375 0.63657

Fig. 94: The values for the example graph from Fig. 92, this time with two fixed sources.

The observation here is similar to the case where we fixed only one source: the makespans
alone do not seem to provide any insight into how an optimal strategy chooses its tasks. Neither
does the weighted sum of the makespans in the last column. Now that we consider tuples of
tasks, it is not even obvious how to compare these values to help some strategy to choose
the tasks. We can consider all three tuples of three tasks and compare their values to all the
others. In this case, this does not help us anything. The second-to-last column, however, may
be used to derive an optimal strategy since the values do work as a priority here. But again, as

170

before, we see that these values do not provide anything when considering another example,
see Fig. 95.

x4

x3

x1 x2

x5

fixed
sources

remaining
inforest

makespan
of Y-graph

makespan
of inforest

sum of
makespans

(prob.)·
(sum)

x1 and x2 6.5 5 11.5 0.94645

x1/2 and x3 6.25 5 11.25 0.92587
x1/2 and x4 6.36719 3 9.36719 2.08159

x1/2 and x5 6.0625 5 11.0625 0.91044

x3 and x4 5.59375 4 9.59375 0.94747

x3 and x5 5.125 6 11.125 0.61031

x4 and x5 4.4375 6 10.4375 0.11449

Fig. 95: The values for the example graph from Fig. 93, this time with two fixed sources.

32.2.3 Probability of Reaching Certain Y-subgraphs under Different Strategies

Consider the counterexample seen in Fig. 88. Then, if we compare the two configuration graphs
of the optimal strategy and HLF, we see that the probability of certain configurations of Y-
subgraphs differ vastly. In the end, this is what makes the difference between the optimal and a
suboptimal strategy (among other things): the optimal strategy reduces the probability of these
degenerate configurations. See Fig. 96 and Fig. 97 for examples, the values at the top of each
configuration corresponds to its respective occurrence probability – these differ when applying
different strategies, or course. The examples show a huge difference between the probabilities
of reaching the Y1,2,6-configuration (third level from the top and third from the left in each of the
figures), it is 0.4 for HLF, but 0.2 for the optimal strategy, i.e., it is only half as likely to be reached
in an optimal schedule than it is in an HLF schedule. However, the Y3,1,4-configuration is twice
as likely to be reached in an optimal schedule with probabilities 0.148 against 0.074, but this
does not seem to prevent the strategy from being optimal.
Fig. 96 and Fig. 97 were created using tasks time from [43]. This tool was chosen for the vi-
sualization here because it shows the probabilities according to the chosen strategy. Tasks that
are chosen by the respective strategy and/or are currently active are marked with the crossed
nodes as usual. Here, we do not make the distinction between chosen tasks (formerly marked
by filled gray nodes) and active tasks (crossed nodes), as it would blow up the figures even
more. The value at the top of each configuration is its occurrence probability.

171

100

7.60833

67 33

66.6667

7.13471

33 33 33

33.3333

7.55556

67 33

22.2222

6.24942

33 33 33

22.2222

7.07658

33 33 33

44.4444

7.07812

50 50

11.1111

7.51042

67 33

7.40741

5.45602

33 33 33

29.6296

6.14062

50 50

14.8148

6.15162

33 33 33

37.037

7.01562

50 50

7.40741

7.0625

50 50

3.7037

7.5

100

Fig. 96: Part of the configuration graph of the graph in Fig. 88 using HLF.

172

100

7.60798

67 33

66.6667

7.13471

33 33 33

33.3333

7.55453

67 33

22.2222

6.24942

33 33 33

44.4444

7.07658

33 33 33

22.2222

7.07812

50 50

11.1111

7.51042

67 33

7.40741

5.45602

33 33 33

18.5185

6.14062

50 50

22.2222

6.15162

33 33 33

33.3333

7.01562

50 50

14.8148

7.0625

50 50

3.7037

7.5

100

Fig. 97: Part of the configuration graph of the graph in Fig. 88 using the optimal strategy.

173

The problem is how can we distinguish between Y-subgraphs to tell which ones are the important
(or crucial) ones to focus on. Also, it may very well be the case that we cannot deduce any
crucial information from the Y-subgraphs alone.

33 Times of Busy and Idle Processors

Suppose the expected processing time of a given intree for any scheduling strategy S is given
by TS , then we can define the expected time this strategy S keeps exactly three, exactly two,
and exactly one processor(s) busy, denoted by TS3 , TS2 , TS1 , respectively. The intuitive approach
to maximize TS3 does not yield an optimal strategy, see Fig. 98 on the left. This graph gives us
two (reasonable) different strategies to choose the tasks in the first step. The optimal schedule,
i.e., HLF, has T ∗3 = 0.7, whereas the suboptimal schedule has T3 = 0.8518. Similar to that,
trying to minimize TS1 does not yield an optimal strategy, either, see Fig. 98 on the right. For this
graph, we can choose between different HLFs in the first step. The optimal strategy chooses
the rightmost source and two of the other three sources to obtain a schedule that has T ∗1 =
2.592, whereas a suboptimal schedule that is obtained by not choosing the rightmost source
has T3 = 2.5. By T ∗ and T ∗i , i = 1, 2, 3, we denote the corresponding values for the optimal
strategy. Again, note that this does not necessarily mean that these are the smallest (or highest)
values that any scheduling strategy can achieve.

5.15277777

4.81944444 4.81944444 4.91666666

4.4375 4.58333333 4.58333333 4.83333333

3

5.152777770

2

3

2

4.819444440

5.185185180

3

4.916666660

2

50

4.37037037

4.05555555 4.05555555 4

3.75 3.66666666 3.66666666 3.83333333

3

4.388888880

2

3

2

4.055555550

4.370370370

3

40

2

4.055555550

Fig. 98: Optimizing T1 or T3 does not necessarily yield an optimal schedule.

174

Another thing that can be seen in Fig. 98 on the right is that different HLFs can result in different
expected makespans. So, unlike in the two processor case, not all HLFs are equal in the three
processor case, i.e., Lemma 29 on page 39 does not hold here.
However, if we consider a combination of both values, in particular, we want to have the value
T1 − T3 minimized – hoping that a longer expected time on only one processor can be coun-
tered by a longer time on three processors – then this value is indeed minimized by all optimal
strategies in the example graphs presented here. There is no further evidence for larger and
more complex graphs, but we may conjecture that this condition holds as well. Nevertheless,
we have not gone into more detail on this, because even if all optimal strategies had something
in common that can be calculated with only the Ti values, then it would still not be clear how
to derive a strategy out of it as these values can not be easily calculated without knowing the
strategies beforehand. Maybe there is a connection of the T ∗i values with the structure of the
graph. Then, this may be a promising approach to focus on.

34 More Differences to the Two Processor Case

In Fig. 98 we have seen that not every HLF results in the same makespan. In addition to
this, another result from the two processor case does not hold either. Consider the two intrees
in Fig. 99. They both have the same profile (1, 2, 2, 2, 1, 1, 1, 2), but the left one is optimally
scheduled by HLF, while the right one is optimally scheduled by a non-HLF. The gray tasks mark
the ones which are initially chosen by the optimal strategy, respectively. This is in accordance
with the observations made in Chapter 17 in Fig. 7 on page 40, where we argued that the profile
is only a reasonable characteristic of a graph when we have at most two processors available.
For more than two processors, the profile can not give the crucial information about the number
of sources.

Fig. 99: Same profiles do not infer same optimal strategies.

35 HLF is Asymptotically Optimal

Despite all the negative results brought forward about HLF in the sections before, it still is a
very good strategy, though not optimal. Papadimitriou and Tsitsiklis [45] showed that for an

175

arbitrary, but fixed number of processors, any HLF will be asymptotically optimal. This means
that, as the number of tasks tends to infinity, the ratio of the optimal expected makespan and the
expected makespan stemming from HLF tends to 1. Practically, this may be good enough when
dealing with large inputs anyway and opens the question whether trying to solve the problem
(30.1) is worth it as nowadays efficient approximations of optimal results are very wide-spread
in practice. For the theoreticians, this is definitely no satisfying answer.

176

177

Conclusion

In this thesis, in particular in Part V, we had a detailed look into the results proposed by Chandy
and Reynolds about the 2|pj ∼ exp(1); intree|E(Cmax) scheduling problem. We rewrote their
proof showing that any HLF is the optimal strategy, and took a lengthy discourse on the calcula-
tion of the optimal expected makespan for a given input intree in Chapter 16. Several, equivalent
approaches on how to actually calculate this have been proposed. In the special case of only
two chains as the precedence constraints, we gave a formula based on combinatorial methods
in Theorem 43, but also another formula that was obtained by using the recursive nature of the
problem and generating functions in Theorem 45. For the more general case with more than
two chains, we used the structure of the configuration graph to define a so-called stair function
and provided a formula for the optimal expected makespan in Theorem 49. This stair function
proved to be useful in the general case as well where we gave a recursive way for calculating
the expected makespan via a special decomposition of an intree in Corollary 54.
Furthermore, we showed that HLF is the optimal strategy if the underlying distribution describing
the tasks’ processing times is memoryless, no matter if it is continuous or discrete, in Part VI.
An interesting task for future work could be to determine whether this is actually an equivalence
and HLF is only optimal if and only if the distribution is memoryless. Chandy and Reynolds
[12] stated that HLF is still optimal for Erlang processing times, but never backed up that claim
with a proof, indicating that this might not be true. Any of these possibilities would be a great
result, which we unfortunately did not manage to show. However, we examined the scheduling
problem with Erlang processing times and came closer to believing that HLF is indeed optimal
for Erlang processing times in Chapter 27.
As for the scheduling problem with uniform processing times (discrete or continuous) we strongly
believe that HLF is not the optimal strategy, but, could not succeed in finding a counterexam-
ple. We provided some observations that lead us to believe that HLF may not work, but cannot
support this conjecture any further. A tool was written to examine several strategies and their
corresponding makespan [22], but the method of calculating the makespan becomes quite inef-
ficient for larger input intrees. We suspect that counterexamples to HLF for uniform processing
times have at least 10 tasks, which cannot be found in short time on a standard machine with
the given tool.
Moreover, we did case studies on several types of strategies for general precedence constraints,
ruling out several characteristics of a graph to be used as a priority.

178

We followed with insights into the scheduling problem with three processors, exponential pro-
cessing times and intree precedence constraints, again showing that HLF is not optimal. Al-
though we could not establish an optimal scheduling strategy, we examined several approaches
and proved their non-optimality in this case.

Appendix

Detailed Calculations

180

A Equivalence of Approaches for Exponential Processing Times

In Chapter 16 on page 36, we gave several approaches for how to calculate the expected
makespan of

2|pj ∼ exp(1); intree|E(Cmax) .

In the following, we want to show the equivalence of the three approaches from Theorem 43,
Lemma 37, and Theorem 45 on pages 50 ff. for a small example intree. For this, consider
exponential processing times, two processors, and the intree [5, 3] from Fig. 100.

Fig. 100: The intree [5, 3].

Calculation 1. Consider the graph from Fig. 100. Then the optimal expected makespan is, using
(18.5) on page 59,

Cc
(
[5, 3]

)
= 2−9

(
5∑

s′=1

2s′
(

7− s′

2

)
(8 + s′) +

3∑
t′=1

2t′
(

7− t ′

4

)
(8 + t ′)

)
= 2−9 (2190 + 558)

=
687
128

,

and, using the recursive formula from Lemma 37,

Cc
(
[5, 3]

)
=

1
2

+
1
2

Cc
(
[4, 3]

)
+

1
2

Cc
(
[5, 2]

)
=

1
2

+
1
2

(
1
2

+
1
2

Cc
(
[3, 3]

)
+

1
2

Cc
(
[4, 2]

))
+

1
2

(
1
2

+
1
2

Cc
(
[4, 2]

)
+

1
2

Cc
(
[5, 1]

))
= 1 +

1
4

Cc
(
[3, 3]

)
+

1
2

Cc
(
[4, 2]

)
+

1
4

Cc
(
[5, 1]

)
= 1 +

1
4

(
1
2

+ Cc
(
[3, 2]

))
+

1
2

(
1
2

+
1
2

Cc
(
[3, 2]

)
+

1
2

Cc
(
[4, 1]

))

+
1
4

1
2

+
1
2

Cc
(
[4, 1]

)
+

1
2

Cc
(
[5, 0]

)︸ ︷︷ ︸
=5


=

17
8

+
1
2

Cc
(
[3, 2]

)
+

3
8

Cc
(
[4, 1]

)
=

17
8

+
1
2

(
1
2

+
1
2

Cc
(
[2, 2]

)
+

1
2

Cc
(
[3, 1]

))
+

3
8

1
2

+
1
2

Cc
(
[3, 1]

)
+

1
2

Cc
(
[4, 0]

)︸ ︷︷ ︸
=4


=

53
16

+
1
4

Cc
(
[2, 2]

)
+

7
16

Cc
(
[3, 1]

)

181

=
53
16

+
1
4

(
1
2

+ Cc
(
[2, 1]

))
+

7
16

1
2

+
1
2

Cc
(
[2, 1]

)
+

1
2

Cc
(
[3, 0]

)︸ ︷︷ ︸
=3


=

138
32

+
15
32

Cc
(
[2, 1]

)
=

138
32

+
15
32

1
2

+
1
2

Cc
(
[1, 1]

)
+

1
2

Cc
(
[2, 0]

)︸ ︷︷ ︸
=2


=

321
64

+
15
64

Cc
(
[1, 1]

)
=

321
64

+
15
64

1
2

+ Cc
(
[1, 0]

)︸ ︷︷ ︸
=1


=

687
128

,

giving an example that, indeed, the two ways to calculate the expected makespan are equiva-
lent. The third equivalent way from Theorem 45 gives us

Cc
(
[5, 3]

)
=

5∑
k=0

3∑
`=0

(
1
2

)k+`+1(k + `
`

)
+

5∑
k=0

(
1
2

)k+4(k + 3
3

)
(5− k)

+
3∑
`=0

(
1
2

)`+6(
` + 5

5

)
(3− `)−

(
1
2

)9(8
3

)
=

451
128

+
443
256

+
57

256
− 7

64

=
687
128

.

B Equivalence of Approaches for Geometric Processing Times

For geometric processing times, we also have several approaches for how to calculate the
expected makespan. In the same manner as in Appendix A, we want to give an example for
the equivalence of the approaches from (19.1) and (19.2) on pages 93-92. We use the intree in
Fig. 101 for this.

Fig. 101: An intree with expected makespan 190
27 .

182

Calculation 2. Consider the intree in Fig. 101, and geometric processing times with parameter
p = 1

2 , then with (19.2), we have

Cc

()
=

4
3

+
1
3

Cc

()
+

1
3

Cc

()
+

1
3

Cc
()

=
4
3

+
1
3
· 56

9
+

1
3
· 56

9
+

1
3
· 14

3

=
190
27

,

where we used the intermediate results

Cc
()

=
4
3

+ 2 · 1
3

Cc
()

+
1
3

Cc ()

=
4
3

+
2
3
· 4 +

1
3
· 2

=
14
3

,

and

Cc

()
=

4
3

+
1
3

Cc

()
+

1
3

Cc
()

+
1
3

Cc
()

=
4
3

+
1
3
· 6 +

1
3
· 14

3
+

1
3
· 4

=
56
9

.

Considering the other approach from (19.1), for the same problem, we have

Cc

()
=
∞∑

k=1

∞∑
`=1

(
1
2

)2(
1− 1

2

)k+`−2 (
min(k , `) + Cc

(
G◦
))

=
∞∑

k=1

∞∑
`=k+1

(
1
2

)k+`(
k + Cc

())

+
∞∑

k=1

k−1∑
`=1

(
1
2

)k+`(
` + Cc

())

+
∞∑

k=1

(
1
2

)2k (
k + Cc

())
=
∞∑

k=1

∞∑
`=k+1

(
1
2

)k+`(
k +

56
9

)

+
∞∑

k=1

k−1∑
`=1

(
1
2

)k+`(
` +

56
9

)

+
∞∑

k=1

(
1
2

)2k (
k +

14
3

)
=

190
27

,

183

where we need to calculate the same intermediate results again, using the other approach this
time:

Cc
()

=
∞∑

k=1

∞∑
`=k+1

(
1
2

)k+`

k + Cc
()︸ ︷︷ ︸

=4


+
∞∑

k=1

k−1∑
`=1

(
1
2

)k+` (
` + Cc

())
+
∞∑

k=1

(
1
2

)2k
k + Cc ()︸ ︷︷ ︸

=2


=

14
3

,

and

Cc

()
=
∞∑

k=1

∞∑
`=k+1

(
1
2

)k+`

k + Cc

()
︸ ︷︷ ︸

=6


+
∞∑

k=1

k−1∑
`=1

(
1
2

)k+` (
` + Cc

())
+
∞∑

k=1

(
1
2

)2k (
k + Cc

())
=

56
9

.

C Induction Bases for Exponential Processing Times

The following calculations show the details of the induction base in Lemma 31 on page 41.

Calculation 3. [The expected makespan of]

184

We have

Cc

()
=

1
2

+ Cc

()
=

1
2

+
1
2

+
1
2

Cc
()

+
1
2

Cc

()
︸ ︷︷ ︸

=3

=
5
2

+
1
2

1
2

+ Cc
()︸ ︷︷ ︸

=2


=

5
2

+
5
4

= 3
3
4

.

Calculation 4. [The expected makespan of]
For the second intree in Lemma 31, it holds that

Cc

()
=

1
2

+ Cc

()
=

1
2

+
1
2

+ Cc

()
︸ ︷︷ ︸

=3

= 4.

Putting together Calculations 3 and 4 gives us

Cc

()
< Cc

()
.

For the induction base Lemma 33, we have the following calculations.

Calculation 5. [The expected makespan of]
It holds that

Cc
()

=
1
2

+ Cc
()

=
1
2

+
1
2

+ Cc
()

= 1 +
1
2

+ Cc
()

= 3
1
2

.

185

Calculation 6. [The expected makespan of using non-HLF] The assumption for the non-
HLF is that only in the very first step, the choices are not according to “highest-level-first”. Thus,

Cnon-HLF
c

()
=

1
2

+ Cc

()
=

1
2

+
1
2

+
1
2

Cc
()

+
1
2

Cc

()
︸ ︷︷ ︸

=3

=
5
2

+
1
2

1
2

+ Cc
()︸ ︷︷ ︸

=2


=

5
2

+
5
4

= 3
3
4

.

With Calculations 5 and 6, we have

Cc
()

< Cnon-HLF
c

()
,

proving the first half of the induction base of Lemma 33. For the second half, we have the
following.

Calculation 7. [The expected makespan of]
We get

Cc

()
=

1
2

+
1
2

Cc
()

+
1
2

Cc

()

=
1
2

+
1
2

(
1
2

+ Cc
())

+
1
2

1
2

+
1
2

Cc
()

+
1
2

Cc

()
︸ ︷︷ ︸

=3


=

1
2

+
1
4

+
3
4

Cc
()

+
1
4

+
3
4

=
7
4

+
3
4

1
2

+ Cc
()︸ ︷︷ ︸

=2


= 3

5
8

.

And we have

Cc

()
< Cnon-HLF

c

()
,

hence, the induction base holds.

186

D Induction Bases for Geometric Processing Times

With these calculations we want to show the details of the inequality in (20.1) from Lemma 60
in Chapter 20 on page 95.
First, we observe that

1
1− (1− p)2 =

1
p(2− p)

,

which will simplify the following calculations.

Calculation 8. [The expected makespan of]
First, we calculate an intermediate result we need.

Cc

()
=

1
p(2− p)

+ 2 · 1− p
2− p

Cc

()
+

p
2− p

Cc
()

=
1

p(2− p)
+ 2 · 1− p

2− p
· 3

p
+

p
2− p

· 2
p

=
7− 4p

p(2− p)
.

Then we have

Cc

()
=

1
p(2− p)

+ 2 · 1− p
2− p

Cc

()
+

p
2− p

Cc

()
=

1
p(2− p)

+ 2 · 1− p
2− p

· 7− 4p
p(2− p)

+
p

2− p
· 3

p

=
5p2 − 17p + 16

p(2− p)2 .

Calculation 9. [The expected makespan of]
For the second value, we calculate the intermediate results

Cc
()

=
1

p(2− p)
+ 2 · 1− p

2− p
Cc
()

+
p

2− p
Cc ()

=
1

p(2− p)
+ 2 · 1− p

2− p
· 2

p
+

p
2− p

· 1
p

=
5− 3p

p(2− p)

and

Cc

()
=

1
p(2− p)

+
1− p
2− p

Cc

()
+

1− p
2− p

Cc
()

+
p

2− p
Cc
()

=
1

p(2− p)
+

1− p
2− p

· 3
p

+
1− p
2− p

· 5− 3p
p(2− p)

+
p

2− p
· 2

p

=
p2 − 6p + 8
p(2− p)2 .

187

We use these two to obtain

Cc

()
=

1
p(2− p)

+
1− p
2− p

Cc

()
+

1− p
2− p

Cc

()
+

p
2− p

Cc

()
=

1
p(2− p)

+
1− p
2− p

· 7− 4p
p(2− p)

+
1− p
2− p

· p2 − 6p + 8
p(2− p)2 +

p
2− p

· 3
p

=
2p2 − 11p + 13

p(2− p)2 .

Calculation 10. The inequality (20.1) can be proven by observing that

5p2 − 17p + 16− (2p2 − 11p + 13) = 3p2 − 6p + 3 = 3(1− p)2

which is clearly nonnegative. Furthermore, Cc

()
and Cc

()
are equal if and only if

p = 1, which is a degenerate case anyway.

What follows are calculations for the details in Lemma 61 on page 96.

Calculation 11. It holds that

Cc
()

=
1

p(2− p)
+ 2 · 1− p

2− p
Cc
()

+
p

2− p
Cc
()

and

Cnon-HLF
c

()
=

1
p(2− p)

+ 2 · 1− p
2− p

Cc

()
+

p
2− p

Cc

()
.

We show that Cc
()

< Cc

()
and Cc

()
< Cc

()
, respectively. For the first in-

equality, we observe that the difference between the values is

Cc
()

− Cc

()
=

1− p
2− p

(
Cc
()

− Cc

())
and using (19.1) to calculate these values gives us

Cc
()

=
5− 3p

p(2− p)
<

6− 3p
p(2− p)

=
3
p

= Cc

()
, (D.1)

and thus,

Cc
()

< Cc

()
.

For the second inequality, we do the same and consider the difference Cc
()

− Cc

()
,

which we have already proven to be negative in (D.1). Hence,

Cc
()

< Cnon-HLF
c

()
.

188

Calculation 12. We have

Cc

()
=

1
p(2− p)

+
1− p
2− p

Cc
()

+
1− p
2− p

Cc

()
+

p
2− p

Cc
()

and

Cnon-HLF
c

()
=

1
p(2− p)

+ 2 · 1− p
2− p

Cc

()
+

p
2− p

Cc

()
.

Again, we look at the difference of those values and obtain

Cc

()
− Cnon-HLF

c

()
=

1− p
2− p

(
Cc
()

− Cc

())
+

p
2− p

(
Cc
()

− Cc

())
.

But we know from Calculation 11 that the values in the parentheses are both negative, i.e.,

Cc

()
< Cnon-HLF

c

()
.

E Induction Bases for Uniform Processing Times

Calculation 13. [The expected makespan of]

Cc

()
=

1
4

(
a + Cc

())
+

1
2

a + Cc

 a
 +

1
4

(
b + Cc

())

=
1
8

(2a + 3a + 3b + 2b + 3a + 3b + 4a) +
1
2


2a + 4b 2a > b

a + 4b 2a < b

2a + 3b 2a = b

=
1
2

(3a + 2b) +
1
2


2a + 4b 2a > b

a + 4b 2a < b

2a + 3b 2a = b,

where we used the intermediate results from Calculations 14 to 18.

Calculation 14. [The expected makespan of]

Cc

()
=

3a + 3b
2

.

189

Calculation 15. [The expected makespan of
a

]

Cc

 a
 =



b − a + Cc

 b − a
 C: a > b − a ⇐⇒ 2a > b

1
2

a + Cc

 2a
 +

1
2

b − a + Cc

 b − a
 D: a < b − a ⇐⇒ 2a < b

1
2

a + Cc

 2a
 +

1
2
(
a + Cc

())
F: a = b − a ⇐⇒ 2a = b

=


b − a +

1
2

(4a + 2b) 2a > b

1
2
· 2b +

1
2

(a + 2b) 2a < b

1
2
· 2b +

1
2

(2a + b) 2a = b

=


a + 2b 2a > b
1
2

(a + 4b) 2a < b

1
2

(2a + 3b) 2a = b.

Calculation 16. [The expected makespan of
b − a

]

Cc

 b − a
 =


3
2

(a + b)− (b − a) b − a < a

2
2

(a + b) + b − (b − a) b − a ≥ a.

Calculation 17. [The expected makespan of
2a

]

Cc

 2a
 =

2
2

(a + b) + b − 2a.

Calculation 18. [The expected makespan of]

Cc
()

=
2
2

(a + b).

190

Calculation 19. [The expected makespan of]

Cc

()
=

1
4
(
a + Cc

())
+

1
2

a + Cc

 a
 +

1
4
(
b + Cc

())
=

1
4

(
a +

1
2

(2a + 3b)
)

+
1
2

(
a +

{
2b 2a 6= b

2a + b 2a = b

)
+

1
4

(
b +

1
2

(2a + 3b)
)

=
1
8

(2a + 2a + 3b + 2b + 2a + 3b + 4a) +
1
2

{
2b 2a 6= b

2a + b 2a = b

=
1
4

(5a + 4b) +
1
2

{
2b 2a 6= b

2a + b 2a = b.

The first intermediate result needed for Calculation 19 is the following.

Calculation 20. [The expected makespan of]

Cc
()

=
1
4

(a + Cc ()) +
1
2

(
a + Cc

(
a
))

+
1
4

(b + Cc ())

=
1
4

(
a +

a + b
2

+ 2a + a + b + 2b − 2a + b +
a + b

2

)
=

1
2

(2a + 3b)

The other intermediate result needed in the first equality of Calculation 19 is given in the next
calculation, where it itself has two more intermediate results, which are provided by Calcula-
tions 22 and 23.

Calculation 21. [The expected makespan of
a

]

Cc

 a
 =



b − a + Cc

(
b − a

)
C: a > b − a ⇐⇒ 2a > b

1
2

a + Cc

 2a
 +

1
2

(
b − a + Cc

(
b − a

))
D: a < b − a ⇐⇒ 2a < b

1
2

(
a + Cc

(
a
))

+
1
2
(
a + Cc

())
F: a = b − a ⇐⇒ 2a = b

=


2b 2a > b
1
2

(2b + 2b) 2a < b

1
2

(2a + b + 2a + b) 2a = b

= 2b.

191

Calculation 22. [The expected makespan of
a

]

Cc

(
a
)

=



b − a + Cc

 b − a
 C: 2a > b

1
2

(
a + Cc

(
2a
))

+
1
2

(
b − a + Cc

(
a
))

D: 2a < b

1
2

(
a + Cc

(
a
))

+
1
2

(a + Cc ()) F: 2a = b

=


a + b 2a > b
1
4

(−a + 3b) +
1
4

(−3a + 5b) 2a < b

1
4

(a + 3b) +
1
4

(3a + b) 2a = b

=

{
a + b 2a ≥ b

2b − a 2a < b

Calculation 23. [The expected makespan of
b − a

]

Cc

(
b − a

)
=



1
2

(
a− (b − a) + Cc

(
2a− b

))

+
1
4

(
a + Cc

(
a
))

+
1
4

(a + Cc ()) E: b − a < a

1
2

(
a + Cc

(
a
))

+
1
2

(a + Cc ()) F: b − a ≥ a

=


1
2

(a + b) +
1
4

(
a
2

+
3b
2

)
+

1
4

(
3a
2

+
b
2

)
2a > b

1
2

(
a
2

+
3b
2

)
+

1
2

(
3a
2

+
b
2

)
2a ≤ b

= a + b

Putting all above calculations together, we obtain the following.

Calculation 24. Let 2a > b, then

Cc

()
=

1
4

(5a + 8b) <
1
4

(10a + 12b) = Cc

()
Let 2a < b, then

Cc

()
=

1
4

(5a + 8b) <
1
4

(8a + 12b) = Cc

()
.

192

Let 2a = b, then

Cc

()
=

1
4

(9a + 6b) <
1
4

(10a + 10b) = Cc

()
.

Thus,

Cc

()
< Cc

()
.

F Induction Bases for Erlang Processing Times

The calculations in this chapter are for the induction bases in Conjectures 71 to 75 on pages
123 ff.
In the following, we only calculate the results for k = 2 and k = 3. Doing these calculations for
an arbitrary k proved to be too demanding for Mathematica, which is why we only restricted
ourselves to these two special cases. Furthermore, we consider Y as the distribution denoting
the remaining processing time of an active task, whereas Y denotes that task’s total processing
time as defined and used in cp. Chapter 25 on page 116.
First of all, we can simplify the expressions from Chapter 25 because we restrict ourselves only
to k = 2 and k = 3. Moreover, we use λ = 1 as we have argued that it is a scaling factor, see
(24.3).

k = 2 Since the probability density function and cumulative distribution function vanish for val-
ues less than 0, we only give them for z ≥ 0 in the following. Then, we have

fX (z) =
12x1

1!
e−1z = ze−z ,

FX (z) = 1− I (2, z) ,

E(X ∧ X) =
1
2

1∑
j=0

1∑
i=0

1
2i+j

(
i + j

i

)
=

5
4

,

where we could also write I (2, z) = (1+z)e−z . In addition, for a task that has been active
for t time units, i.e., Y > t , it holds that

fY (z) =
(z + t)e−(z+t)

I (2, t)
,

FY (z) = 1− I (2, z + t)
I (2, t)

,

E(Y) =

∞∫
0

I (2, z + t)
I (2, t)

dz

= 1 +
1

1 + t
. (F.1)

193

For the distribution of the minimum X ∧ Y , we obtain

fX∧Y (z) =
e−z

I (2, t)
(
(z + t)I (2, z) e−t + zI (2, z + t)

)
,

FX∧Y (z) = 1− I (2, z) I (2, z + t)
I (2, t)

,

E(X ∧ Y) =
1

I (2, t)

∞∫
0

I (2, z) I (2, z + t) dz

=
5 + 3t
4 + 4t

. (F.2)

The maximum X ∨ Y can also be calculated, and its expected value is

E(X ∨ Y) =

∞∫
0

1− (1− I (2, z))
(

1− I (2, z + t)
I (2, t)

)
dz

=
11 + 9t
4 + 4t

. (F.3)

k = 3 Again, we only give the formulas for z ≥ 0. Hence,

fX (z) =
z2

2
e−z ,

FX (z) = 1− I (3, z)
2

,

E(X ∧ X) =
1
2

2∑
j=0

2∑
i=0

1
2i+j

(
i + j

i

)
=

33
16

.

In presence of an active task, whose remaining processing time is denoted by Y and total
processing time is denoted by Y , with Y > t , we have

fY (z) =
(z + t)2e−(z+t)

I (3, t)
,

FY (z) = 1− I (3, z + t)
I (3, t)

,

E(Y) =

∞∫
0

I (3, z + t)
I (3, t)

dz (F.4)

And, for X ∧ Y ,

fX∧Y (z) =
e−z

2I (3, t)
(
(z + t)2I (3, z) e−t + z2I (3, z + t)

)
,

FX∧Y (z) = 1− I (3, z) I (3, z + t)
2I (3, t)

,

E(X ∧ Y) =
1

2I (3, t)

∞∫
0

I (3, z) I (3, z + t) dz. (F.5)

194

The expected value of the maximum is

E(X ∨ Y) =

∞∫
0

1−
(

1− I (3, z)
2

)(
1− I (3, z + t)

I (3, t)

)
dz. (F.6)

To retrace the steps taken above and verify the results, we have used Mathematica with the
following expressions, see Listings F.1 and F.2.

 fX[z_] = Simplify[PDF[ErlangDistribution[2,1], z], Assumptions->z>0]

 Simplify[CDF[ErlangDistribution[2,1], z], Assumptions->z>0]
 FX[z_] = 1-Gamma[2,z] (*This is identical to the line above.*)
 expXminX = Expectation[Min[X,Y], {X \[Distributed] ErlangDistribution[2,1], Y

\[Distributed] ErlangDistribution[2,1]}]
 expXminX == 1/2*Sum[Sum[2^(-i-j)*Binomial[i+j,i], {i,0,1}], {j,0,1}] (*check if

formula is true*)

 Probability[Ybar <= z+t \[Conditioned] Ybar > t > 0, Ybar \[Distributed]
ErlangDistribution[2,1], Assumptions->t>0 && z>0]

 FY[z_,t_] = 1-Gamma[2,z+t]/Gamma[2,t] (*This is identical to the line above.*)
 fY[z_,t_] = Simplify[D[FY[z,t],z]]
 expY[t_] = Integrate[1-FY[z,t], {z,0,Infinity}, Assumptions->t>0]

 FXminY[z_,t_] = Simplify[1-(1-FX[z])*(1-FY[z,t]), Assumptions->z>0 && t>0]
 fXminY[z_,t_] = Simplify[D[FXminY[z,t],z]]
 fXminY[z,t] == Exp[-z]/Gamma[2,t]*((z+t)*Gamma[2,z]*Exp[-t]+z*Gamma[2,z+t]) (*check

if formula is true*)
 expXminY[t_] = Integrate[1-FXminY[z,t], {z,0,Infinity}]

 expXmaxY[t_] = Simplify[Integrate[1-FX[z]*FY[z,t], {z,0,Infinity}],
Assumptions->t>0]

Listing F.1: Mathematica expressions for the values from case k = 2 from above.

Calculations for the Induction Base of Conjecture 71

All the following integrals have been computed using Mathematica.
First, we consider the case k = 2.

195

 fX[z_] = Simplify[PDF[ErlangDistribution[3,1], z], Assumptions->z>0]

 Simplify[CDF[ErlangDistribution[3,1], z], Assumptions->z>0]
 FX[z_] = 1-Gamma[3,z]/2 (*This is identical to the line above.*)
 expXminX = Expectation[Min[X,Y], {X \[Distributed] ErlangDistribution[3,1], Y

\[Distributed] ErlangDistribution[3,1]}]
 expXminX == 1/2*Sum[Sum[2^(-i-j)*Binomial[i+j,i], {i,0,2}], {j,0,2}] (*check if

formula is true*)

 Probability[Ybar <= z+t \[Conditioned] Ybar > t > 0, Ybar \[Distributed]
ErlangDistribution[3,1], Assumptions->t>0 && z>0]

 FY[z_,t_] = 1-Gamma[3,z+t]/Gamma[3,t] (*This is identical to the line above.*)
 fY[z_,t_] = Simplify[D[FY[z,t],z]]
 expY[t_] = Integrate[1-FY[z,t], {z,0,Infinity}, Assumptions->t>0]

 FXminY[z_,t_] = Simplify[1-(1-FX[z])*(1-FY[z,t]), Assumptions->z>0 && t>0]
 fXminY[z_,t_] = Simplify[D[FXminY[z,t],z]]
 fXminY[z,t] == Exp[-z]/(2*Gamma[3,t])*((z+t)^2*Gamma[3,z]*Exp[-t]+z^2*Gamma[3,z+t])

(*check if formula is true*)
 expXminY[t_] = Integrate[1-FXminY[z,t], {z,0,Infinity}]

 expXmaxY[t_] = Simplify[Integrate[1-FX[z]*FY[z,t], {z,0,Infinity}],
Assumptions->t>0]

Listing F.2: Mathematica expressions for the values from case k = 3 from above.

Calculation 25. [The expected makespan of]

We have that E(X ∧ X) = 5
4 . This yields

Cc

()
= Cc () + 2k︸︷︷︸

=4

= E(X ∧ X) + Cc

(
5/4

)
+ 4

= 4 +
5
4

+ E(X ∨ Y) with the total processing time Y > 5
4

(F.3)
= 4 +

5
4

+
11 + 9 · 5

4

4 + 4 · 5
4

=
139
18

≈ 7.72.

196

Calculation 26. [The expected makespan of]
In order to calculate the second value we need the intermediate results

Cc

 5/4 + z
 = E(Y) + 2k︸︷︷︸

=4

with Y > 5
4 + z

(F.1)
= 4 + 1 +

1
1 + 5

4 + z

= 5 +
4

9 + 4z
,

Cc

(
z
)

= E(X ∨ Y) + k with Y > z

(F.3)
= 2 +

11 + 9z
4 + 4z

,

and

E(X ∧ Y)
(F.2)
=

5 + 3 · 5
4

4 + 4 · 5
4

=
35
36

.

With these, we obtain

Cc

()
= E(X ∧ X) + Cc

 5/4


(25.4)
=

5
4

+ E(X ∧ Y) +

∞∫
0

FX (z)fX∧Y (z)Cc

 5/4 + z
 dz

+

∞∫
0

FY (z)fX∧Y (z)Cc

(
z
)

dz with Y > 5
4

=
5
4

+
35
36

+
1

I
(
2, 5

4

) ∞∫
0

(1− I (2, z))e−z ·

((
z +

5
4

)
I (2, z) e−5/4 + zI

(
2, z + 5

4

))(
5 +

4
9 + 4z

)
dz

+
1

I
(
2, 5

4

) ∞∫
0

(
1− I

(
2, z + 5

4

)
I
(
2, 5

4

))
e−z ·

((
z +

5
4

)
I (2, z) e−5/4 + zI

(
2, z + 5

4

))(
2 +

11 + 9z
4 + 4z

)
dz

≈ 5
4

+
35
36

+
0.852284
I
(
2, 5

4

) +
1.167

I
(
2, 5

4

)
≈ 5.35571.

197

With Calculations 25 and 26 we have

Cc

()
> Cc

()
for k = 2, showing the induction base for Conjecture 71 for this case. Listing F.3 shows the
Mathematica expressions for Calculations 25 and 26. In order to execute these lines of code
without errors, the code from Listing F.1 has to be executed first.

 Intree1 = Simplify[4 + expXminX + expXmaxY[5/4]]

 c1[z_] = 4 + expY[5/4+z]
 c2[z_] = 2 + expXmaxY[z]
 Intree2 = N[expXminX + expXminY[5/4] + Integrate[FX[z]*fXminY[z,5/4]*c1[z],

{z,0,Infinity}] + Integrate[FY[z,5/4]*fXminY[z,5/4]*c2[z], {z,0,Infinity}], 10]

 Intree1 > Intree2 (*Check validity of induction base.*)

Listing F.3: Mathematica expressions for the values from Calculations 25 and 26.

Next, we do the same calculations for k = 3.

Calculation 27. [The expected makespan of]

We have that E(X ∧ X) = 33
16 . This yields

Cc

()
= Cc () + 2k︸︷︷︸

=6

= E(X ∧ X) + Cc

(
33/16

)
+ 6

= 6 +
33
16

+ E(X ∨ Y) with the total processing time Y > 33
16

(F.6)
= 6 +

33
16

+

∞∫
0

1−
(

1− I (3, z)
2

)(
1− I

(
3, z + 33

16

)
I
(
3, 33

16

))
dz

=
487539
42512

≈ 11.46826778.

198

Calculation 28. [The expected makespan of]
First, we derive the intermediate results that we need later on.

Cc

 33/16 + z
 = E(Y) + 2k︸︷︷︸

=6

with Y > 33
16

(F.4)
= 6 +

∞∫
0

I
(
3, u + 33

16 + z
)

I
(
3, 33

16 + z
) du

= 7 +
32(65 + 16z)

2657 + 32z(49 + 8z)
,

Cc

(
z
)

= E(X ∨ Y) + k with Y > z

(F.6)
= 3 +

∞∫
0

1−
(

1− I (3, u)
2

)(
1− I (3, u + z)

I (3, z)

)
du

= 3 +
63 + 5z(11 + 5z)

8ez I (3, z)
,

and

E(X ∧ Y)
(F.5)
=

1
2I
(
3, 33

16

) ∞∫
0

I (3, z) I
(
3, z + 33

16

)
dz with Y > 33

16

=
29271e−33/16

2048I
(
3, 33

16

)
≈ 1.377070004.

199

Using these, we get

Cc

()
= E(X ∧ X) + Cc

 33/16


(25.4)
=

33
16

+ E(X ∧ Y) +

∞∫
0

FX (z)fX∧Y (z)Cc

 33/16 + z
 dz

+

∞∫
0

FY (z)fX∧Y (z)Cc

(
z
)

dz

=
33
16

+ E(X ∧ Y) +

∞∫
0

(
1− I (3, z)

2

)
e−z

2I
(
3, 33

16

) ·
((

z +
33
16

)2

I (3, z) e−33/16 + z2I
(
3, z + 33

16

))
·(

7 +
32(65 + 16z)

2657 + 32z(49 + 8z)

)
dz

+

∞∫
0

(
1− I

(
3, z + 33

16

)
I
(
3, 33

16

))
e−z

2I
(
3, 33

16

) ·
((

z +
33
16

)2

I (3, z) e−33/16 + z2I
(
3, z + 33

16

))
(

3 +
63 + 5z(11 + 5z)

8ez I (3, z)

)
dz

≈ 33
16

+ 1.377070004 +
3.81676

2I
(
3, 33

16

) +
7.51814

2I
(
3, 33

16

)
≈ 7.73462.

Comparing the makespans from Calculations 27 and 28 gives us the induction base of Conjec-
ture 71 for k = 3:

Cc

()
> Cc

()
.

Again, we did the calculations with Mathematica, too, see Listing F.4. To be executed without
error, the code from Listing F.2 has to be executed first.
However, a value of less than 9 is not to be expected. We can easily calculate that the optimal
expected makespan of a chain of three tasks is 9. The intree used for the induction base case is
a chain of three tasks with two additional sources added to it whose optimal expected makespan
cannot be smaller than the one of the chain itself, obviously. This leaves us to believe that even
a seemingly simple thing such as calculating the expected makespan of a small example, even
for fixed k and λ, is a lot more complex than our approaches before. Unfortunately, we did

200

 Intree1 = Simplify[6 + expXminX + expXmaxY[33/16]]

 c1[z_] = 6 + expY[33/16+z]
 c2[z_] = 3 + expXmaxY[z]
 Intree2 = N[expXminX + expXminY[33/16] + Integrate[FX[z]*fXminY[z,33/16]*c1[z],

{z,0,Infinity}] + Integrate[FY[z,33/16]*fXminY[z,33/16]*c2[z], {z,0,Infinity}],
10]

 Intree1 > Intree2 (*Check validity of induction base.*)

Listing F.4: Mathematica expressions for the values from Calculations 27 and 28.

not manage to come up with a different approach on how to calculate the expected makespan
and hope that future work will succeed in fixing the missing parts of the proof ideas for our
conjectures in Conjecture 71.
Because of this conundrum, we did not bother to calculate the base cases for Conjectures 72
to 75 as the approach does not seem to work here anyway.

201

Bibliography

[1] The on-line encyclopedia of integer sequences. published electronically at http://oeis.
org/A000108[51]. Catalan numbers.

[2] The on-line encyclopedia of integer sequences. published electronically at http://oeis.
org/A001850[51]. Central Delannoy numbers.

[3] M. ABRAMOWITZ, Handbook of Mathematical Functions, With Formulas, Graphs, and
Mathematical Tables,, Dover Publications, Incorporated, 1974.

[4] M. ABRAMOWITZ, I. STEGUN, AND N. SFETCU, Handbook of Mathematical Functions: With
Formulas, Graphs, and Mathematical Tables, Nicolae Sfetcu, 2014.

[5] T. L. ADAM, K. M. CHANDY, AND J. R. DICKSON, A comparison of list schedules for parallel
processing systems, Commun. ACM, 17 (1974), pp. 685–690.

[6] A. V. AHO, M. R. GAREY, AND J. D. ULLMAN, The transitive reduction of a directed graph,
SIAM Journal on Computing, 1 (1972), pp. 131–137.

[7] A. V. AHO AND J. E. HOPCROFT, The Design and Analysis of Computer Algorithms,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st ed., 1974.

[8] P. BRUCKER, Scheduling Algorithms, Springer Berlin Heidelberg, fifth ed., 2007.

[9] J. BRUNO, On scheduling tasks with exponential service times and in-tree precedence
constraints, Acta Informatica, 22 (1985), pp. 139–148.

[10] C. CAMINO, Stochastic scheduling with two processors and arbitrary precedence relations,
Master’s Thesis, Technische Universität München, July 2015.

[11] E. J. CARTAN, Œuvres complètes. Partie II. , [Algèbre, systèmes différentiels et problèmes
d’équivalence], ed. du CNRS, Paris, 1984. Cette édition est la reproduction photomé-
canique de l’édition Gauthiers-Villars parue en 1953.

[12] K. M. CHANDY AND P. F. REYNOLDS, Scheduling partially ordered tasks with probabilis-
tic execution times, in Proceedings of the Fifth ACM Symposium on Operating Systems
Principles, SOSP ’75, New York, NY, USA, 1975, ACM, pp. 169–177.

[13] W. CLARK, W. N. POLAKOV, AND F. W. TRABOLD, The Gantt Chart: a Working Tool of
Management, Ronald Press, 1923.

[14] E. G. COFFMAN AND R. L. GRAHAM, Optimal scheduling for two-processor systems, Acta
Informatica, 1 (1972), pp. 200–213.

[15] L. COMTET, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Springer
Netherlands, 1974.

http://oeis.org/A000108
http://oeis.org/A000108
http://oeis.org/A001850
http://oeis.org/A001850

202

[16] S. A. COOK, The complexity of theorem-proving procedures, in Proceedings of the Third
Annual ACM Symposium on Theory of Computing, STOC ’71, New York, NY, USA, 1971,
ACM, pp. 151–158.

[17] T. H. CORMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN, Introduction To Algo-
rithms, MIT Press, 2001.

[18] J. DU AND J. T. Y. LEUNG, Scheduling tree-structured tasks with restricted execution times,
Inf. Process. Lett., 28 (1988), pp. 183–188.

[19] R. J. DUFFIN, Topology of series-parallel networks, Journal of Mathematical Analysis and
Applications, 10 (1965), pp. 303–318.

[20] M. DZIEMIAŃCZUK, Counting lattice paths with four types of steps, Graphs and Combina-
torics, 30 (2013), pp. 1427–1452.

[21] M. DZIEMIAŃCZUK, Generalizing delannoy numbers via counting weighted lattice paths, in
Integers: Annual, vol. 2013, De Gruyter, 2013, pp. 764–796.

[22] M. ELASHMAWI, Stochastic scheduling with uniformly distributed processing times and in-
tree precedence constraints, Bachelor’s Thesis, Technische Universität München, Novem-
ber 2015.

[23] W. FELLER, An Introduction to Probability Theory and its Applications, Wiley Series in
Probability and Mathematical Statistics: Probability and Mathematical Statistics, Wiley,
1971.

[24] , An Introduction to Probability Theory and its Applications, Volume 2, Wiley India Pvt.
Limited, 2008.

[25] O. FORSTER, Analysis 1: Differential- und Integralrechnung einer Veränderlichen, vieweg
studium; Grundkurs Mathematik, Vieweg+Teubner Verlag, 2013.

[26] M. R. GAREY AND D. S. JOHNSON, “Strong” NP-Completeness results: Motivation, exam-
ples, and implications, J. ACM, 25 (1978), pp. 499–508.

[27] H. W. GOULD, Table for combinatorial numbers and associated identities: Table 2. pub-
lished electronically at http://www.math.wvu.edu/~gould/Vol.8.PDF, 2010.

[28] , Table for fundamentals of series: Part I: Basic properties of series and products.
published electronically at http://www.math.wvu.edu/~gould/Vol.1.PDF, 2011.

[29] R. L. GRAHAM, D. E. KNUTH, AND O. PATASHNIK, Concrete Mathematics: A Foundation
for Computer Science, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
2nd ed., 1994.

http://www.math.wvu.edu/~gould/Vol.8.PDF
http://www.math.wvu.edu/~gould/Vol.1.PDF

203

[30] R. L. GRAHAM, E. L. LAWLER, J. K. LENSTRA, AND A. H. G. RINNOOY KAN, Optimization
and approximation in deterministic sequencing and scheduling: a survey, in Discrete Op-
timization IIProceedings of the Advanced Research Institute on Discrete Optimization and
Systems Applications of the Systems Science Panel of NATO and of the Discrete Optimiza-
tion Symposium co-sponsored by IBM Canada and SIAM Banff, Aha. and Vancouver, P. L.
Hammer, E. L. Johnson, and B. H. Korte, eds., vol. 5 of Annals of Discrete Mathematics,
Elsevier, 1979, pp. 287–326.

[31] T. C. HU, Parallel sequencing and assembly line problems, Operations Research, 9 (1961),
pp. 841–848.

[32] N. JOHNSON, A. KEMP, AND S. KOTZ, Univariate Discrete Distributions, Wiley Series in
Probability and Statistics, Wiley, 2005.

[33] R. M. KARP, Reducibility among combinatorial problems, in Complexity of Computer
Computations: Proceedings of a symposium on the Complexity of Computer Computa-
tions, held March 20–22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown
Heights, New York, and sponsored by the Office of Naval Research, Mathematics Program,
IBM World Trade Corporation, and the IBM Research Mathematical Sciences Department,
R. E. Miller, J. W. Thatcher, and J. D. Bohlinger, eds., Boston, MA, 1972, Springer US,
pp. 85–103.

[34] D. E. KNUTH, The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental Algo-
rithms, Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 1997.

[35] M. R. KROM, The decision problem for a class of first-order formulas in which all disjunc-
tions are binary, Mathematical Logic Quarterly, 13 (1967), pp. 15–20.

[36] E. L. LAWLER, Sequencing jobs to minimize total weighted completion time subject to
precedence constraints, Annals of Discrete Mathematics, 2 (1978), pp. 75–90.

[37] E. L. LAWLER, J. K. LENSTRA, A. H. G. RINNOOY KAN, AND D. B. SHMOYS, Sequenc-
ing and scheduling: Algorithms and complexity, Handbooks in Operations Research and
Management Science, 4 (1993), pp. 445–522.

[38] J. K. LENSTRA AND A. H. G. RINNOOY KAN, Complexity of scheduling under precedence
constraints, Oper. Res., 26 (1978), pp. 22–35.

[39] J. K. LENSTRA, A. H. G. RINNOOY KAN, AND P. BRUCKER, Complexity of machine
scheduling problems, Annals of Discrete Mathematics, 1 (1977), pp. 343–362.

[40] L. A. LEVIN, Universal sequential search problems, Problemy Peredachi Informatsii, 9
(1973), pp. 115–116.

[41] M. MAASS, Scheduling independent and identically distributed tasks with in-tree con-
straints on three machines in parallel, Diplomarbeit, Technische Universität München, Oc-
tober 2001.

204

[42] E. MOKOTOFF, Parallel machine scheduling problems: a survey, Asia-Pacific Journal of
Operational Research, 18 (2001), pp. 193–242.

[43] P. MÜLLER, Investigation of stochastic scheduling problems, Master’s Thesis, Technische
Universität München, November 2013.

[44] K. NAKAJIMA, J. T. Y. LEUNG, AND S. L. HAKIMI, Optimal two processor scheduling of tree
precedence constrained tasks with two execution times, Performance Evaluation, 1 (1981),
pp. 320–330.

[45] C. H. PAPADIMITRIOU AND J. N. TSITSIKLIS, On stochastic scheduling with in-tree prece-
dence constraints, SIAM Journal on Computing, 16 (1987), pp. 1–6.

[46] M. PETKOVSEK, H. S. WILF, AND D. ZEILBERGER, A = B, Ak Peters Series, Taylor &
Francis, 1996.

[47] M. L. PINEDO, Scheduling: Theory, Algorithms, and Systems, Springer Publishing Com-
pany, Incorporated, 4th ed., 2011.

[48] X. S. RAYMOND, Elementary Introduction to the Theory of Pseudodifferential Operators,
Studies in Advanced Mathematics, Taylor & Francis, 1991.

[49] P. F. REYNOLDS AND K. M. CHANDY, Scheduling partially ordered tasks with exponentially
distributed times, tech. rep., Austin, TX, USA, 1979.

[50] T. SCHICKINGER AND A. STEGER, Diskrete Strukturen 2: Wahrscheinlichkeitstheorie und
Statistik, Springer-Lehrbuch, Springer Berlin Heidelberg, 2013.

[51] N. J. A. SLOANE, The on-line encyclopedia of integer sequences. published electronically
at http://oeis.org, 2016.

[52] R. P. STANLEY, Enumerative Combinatorics, Cambridge Studies in Advanced Mathemat-
ics, Wadsworth Publ. Co., Belmont, CA, USA, 2011.

[53] R. P. STANLEY AND S. FOMIN, Enumerative Combinatorics, Volume 2, Cambridge Stud-
ies in Advanced Mathematics, Cambridge University Press, Cambridge, New York, 1999.
Errata et addenda: pp. 583-585.

[54] W. SZPANKOWSKI, Average Case Analysis of Algorithms on Sequences, Wiley Series in
Discrete Mathematics and Optimization, Wiley, 2001.

[55] J. D. ULLMAN, NP-complete scheduling problems, Journal of Computer and System Sci-
ences, 10 (1975), pp. 384–393.

[56] , Complexity of sequencing problems, Computer and Job-Shop Scheduling Theory,
(1976), pp. 139–164.

http://oeis.org

205

Index

antiderivative, 24

binomial coefficient, 20, 58

configuration, 14, 37, 123
configuration graph, 48, 58, 78, 132, 137

decision point, 7, 14
derivative, 24

Erlang distribution, 115, 192
minimum, 117

expected makespan, 11, 15, 31, 37, 44, 92,
105, 119, 154, 180

continuous, 32
discrete, 31

exponential distribution, 35, 38, 45, 131, 180
minimum, 36

flatness, 40, 122

Gamma function, 116
Gantt chart, 8, 132
generating function, 21, 60, 71
geometric distribution, 89, 181

minimum, 90

Hasse diagram, 9, 48, 52, 55
HLF, 13, 38, 94, 111, 122, 137, 163

level-oriented, 14
hypergeometric function, 23, 60

integral, 24
intree decomposition, 82

makespan, 10
memorylessness, 35, 89
multinomial coefficients, 66

optimal strategy, 11, 39, 94
optimality, 11, 13

optimality criterion, 11

precedences, 9
chains, 57, 180
dag, 9, 131
inforest, 9
intree, 9, 39, 45, 163
Psi-graph, 81
Y-graph, 80, 168

probability, 25, 47, 58, 84, 91
conditional, 26, 100
independent, 25

probability distribution, 25
continuous, 26
discrete, 26

profile, 15, 39, 51
join level, see also intree decomposition

random variable, 26
continous, 26
discrete, 26
expected value, 27

schedule, 8
scheduling notation, 12
scheduling strategy, 7

dynamic, 139
static, 139

series, 19
convolution, 22, 63
geometric, 19, 23, 63
hypergeometric, 23
power series, 21, 60

stair function, 73, 85
sum, 19

geometric, 19

task, 7
active, 7, 15

206

ancestor, 9, 140
available, see also source
descendant, 9, 141, 143
expected processing time, 11
level, 13, 39, 45, 81, 139, 143
predecessor, 9
processing time, 7
source, 15
successor, 9

uniform distribution, 99
continuous, 102
discrete, 99, 188
minimum, 99

207

	Abstract
	List of Figures
	Part I Introduction & Motivation
	Part II Definitions & Concepts
	General Scheduling Concepts
	Task Characteristics
	Optimality Criteria
	Notation
	Reductions between Scheduling Problems
	The Highest-Level-First Scheduling Strategy
	Configuration
	Profile

	Part III Mathematical Concepts
	Sums and Series
	Power Series and Generating Functions
	Hypergeometric Summation
	Integrals
	Probability Theory

	Part IV The Expected Makespan
	Discrete Case
	Continuous Case

	Part V The Exponential Distribution
	Calculating the Expected Makespan
	The Optimal Scheduling Strategy
	Formulas for the Expected Makespan
	Naive Approaches
	Using the Configuration Relation
	Using the Profile Relation
	Using the {h,b} values
	One Chain
	Two Chains
	Using the Combinatorial Approach to Find a Closed Form
	Using Generating Functions to Find a Closed Form

	k Chains
	Using the Combinatorial Approach
	Using Generating Functions for Specific Examples
	Using a Stair Function for the General Case

	Y-graphs and Psi-graphs
	Intree Decomposition

	Part VI The Geometric Distribution
	Calculating the Expected Makespan
	The Optimal Scheduling Strategy

	Part VII The Uniform Distribution
	Discrete Case
	Continuous Case
	Calculating the Expected Makespan
	Discrete Case
	Continuous Case

	HLF and Uniform Processing Times

	Part VIII The Erlang Distribution
	Calculating the Expected Makespan
	The Generalized Erlang Distribution
	HLF and Erlang processing times

	Part IX General Precedence Constraints
	Directed Acyclic Graphs
	The Coffman-Graham Algorithm is not Optimal
	The Chandy-Reynolds Algorithm is not Optimal
	Static, Semi-Static, and Dynamic Scheduling Strategies
	Level and Number of Descendants of a Task
	Number of Induced Paths of a Task

	Choosing Pairs of Sources

	Calculating the Expected Makespan
	sp-graphs

	Part X Three Processors
	Difference to the Deterministic Setting
	Minimal Counterexamples
	Supergraphs of Counterexamples
	Y-subgraphs of Counterexamples
	Fix one Source
	Fix two Sources
	Probability of Reaching Certain Y-subgraphs under Different Strategies

	Times of Busy and Idle Processors
	More Differences to the Two Processor Case
	HLF is Asymptotically Optimal

	Conclusion
	Appendix Detailed Calculations
	Equivalence of Approaches for Exponential Processing Times
	Equivalence of Approaches for Geometric Processing Times
	Induction Bases for Exponential Processing Times
	Induction Bases for Geometric Processing Times
	Induction Bases for Uniform Processing Times
	Induction Bases for Erlang Processing Times

