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ABSTRACT: Shear damage development under constant stress is studied on the basis of
the analytical solution of kinetic equations of damage accumulation. The existence of two
threshold stresses is linked with the presence of three various stress intervals and respective
regimes of damage growth. Utilization of the limit value of damage level as the failure crite-
rion allows the scaling of the time-to-failure to be analyzed. The effect of initial damage on
failure development is investigated.

KEY WORDS: damage accumulation, shear deformation, failure criterion, time-to-failure
scaling.

INTRODUCTION

HE MULTIAXIAL LOADING of brittle and quasi-brittle materials (especially in

the presence of the compressive component) usually results in a complicated
scenario of the damage evolution and macroscopic crack nucleation and develop-
ment. The latter is characterized by the branching, curvilinear crack propagation,
which necessitates the introduction of mixed-mode fracture models (Liebowitz,
1968). The possibility for the description of such mutli-mode behavior in terms of
continuum damage mechanics (CDM) is linked with the transition from the scalar
damage parameter to one of the higher tensoral rank (see discussion and respective
references on the models and history of topic in Chaboche, 1988; Chow and Wang,
1988; Murakami, 1988; Krajcinovic, 1989; Lemaitre and Chaboche, 1990; Lemai-
tre, 1992). The recent state of the introduction and utilization of various damage pa-
rameters, and their structure as well, is reflected, for instance, by Lubarda and
Krajcinovic (1993); Lesne and Saanouni (1993) (see also references in these pa-
pers). Traditional CDM approaches to the multi-mode damage are formulated
mainly as an extrapolation of the idea of effective stress, used by Murzewski
(1957)—with damage being interpreted as the probability of microelements’ fail-
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ure—and by Kachanov (1958) [some historical references on these concepts are
given by Murzewski (1992)] for the uniaxial creep, to the multiaxial states. Another
way, developed for the analysis of brittle fracture under compression, is utilization
of a one-mode damage approach: description of the array of compression-induced
tension cracks [see Deng and Nemat-Nasser (1994) and references there] in analy-
sis of the shear faults formation. Such a procedure is applicable to isotropic homo-
geneous elastic bodies, as far as the crack’s wings develop in them in a direction,
minimizing shear—II-mode—component (Nemat-Nasser and Horii, 1982; Horii
and Nemat-Nasser, 1985, 1986).

Still, in highly heterogeneous materials under compression both modes are to be
accounted. The multiple experiments, especially in rock mechanics, vividly reflect
the sufficient difference in the realization of various modes of fracture/damage
(Hoek and Bieniawski, 1965; Kranz, 1983; V. G. Silberschmidt et al., 1992). It is
naturally explained by the different micro- and mesomechanisms governing these
processes under various conditions. The mechanisms’ interaction results in the
non-trivial damage development (for instance, cataclastic character of salt rock’s
failure when a complicated fracture surface with portions of orthogonal orientations
is formed). Different modes of damage are linked with the evolution of the ensem-
bles of various microdefects; nucleation, growth and coalescence of tensile mi-
crocracks (Naimark and Silberschmidt, 1991) can be referred to as damage of the
mode I [in terms, traditional to the fracture mechanics (Liebowitz, 1968)], while the
macroscopic result of the microshifts’ development (closed microcracks, generated
by the shear stresses, for instance, in the presence of a compressive stress component
acting along the normal to their edges) will be called the shear damage, or the II-
mode damage. General description of mixed-mode damage evolution should in-
clude evolution laws for both modes and also account for coupling effects. Still, at
the initial stage of research, specific features of single-mode damage are also of in-
terest, as far as respective model stress-state situation are obvious. Corresponding
kinetic equations for both modes of damage are discussed in authors’ recent papers
(Silberschmidt, 1993b; Silberschmidt and Chaboche, 1994).

The fracture evolution in real brittle materials, linked with the spatio-temporal
development of different damage modes, is characterized by the high level of sto-
chasticity, which should be adequately reflected in the models. In such a case dam-
age evolution kinetics is described in terms of stochastic differential equations,
stationary solutions of which were obtained (Silberschmidt, 1993b; Silberschmidt
and Chaboche, 1994). Unfortunately, high level of non-linearity of these equa-
tions excludes the possibility of the analytical solutions and necessitates the use of
advanced numerical algorithms, which were recently developed (Kloeden and
Platen, 1992; Milstein, 1995) and were adopted for damage accumulation kinetics
(Silberschmidt, 1995, 1998). But this analysis should be preceded by the investi-
gation of the specific temporal features of the deterministic behavior of the dam-
age, i.e., in approximation of negligible level of effect of stochastic component(s).
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Note that traditional CDM-approaches usually utilize the last assumption. This pa-
per is dedicated to the study of the [I-mode (shear) damage evolution under the ac-
tion of a constant external load and thus the study is devoted to creeping materials.

A MODEL

One of the principal questions in the CDM models is the formulation of the dam-
age evolution (accumulation) law. Linked with its micromechanical background,
damage develops as a result of (mainly) irreversible growth and coalescence of
microdefects, the processes which occur even under the action of the non-
changing external load (not to mention, for instance, thermal fluctuations). Thus,
adequate description of the damage accumulation should account for not only
stress-damage relations, but also for the temporal characteristics of such a process.
The damage evolution equation is a part of general irreversible-thermodynamic
formalism describing a macroscopic effect of microscopic processes. This con-
cept was used, for instance, by Rice (1972, 1975) and Krajcinovic and Sumarac
(1989) for description of the deformation behaviour of solids under quasi-static
loading. It is worth mentioning that formulation of the evolution law naturally in-
troduces a time axis into the model description that is very important in the analy-
sis of the temporal effects of failure, reliability, etc. An elaboration of the general
evolution law for the damage parameter—high-order tensor—is possible, for in-
stance, in terms of the thermodynamical formalism (Naimark and Silberschmidt,
1991), but such an approach hides to a certain extent real mechanisms and left
complicated problems of modes’ interaction open. In order not to overcomplicate
the analysis we will study the “pure” II-mode damage as the first approximation.
In the following parts the analysis is performed in approximation of a physical
point, thus the exact loading scheme-—pure shear, compression, etc.—is of no in-
terest. But at the level of spatial description—in terms of boundary-value problem,
for instance—it becomes a dominant factor: stress distribution determines both
the level of shear damage and its orientation, thus making the basement for general
analysis of spatio-temporal effects of failure development.

Let analyze the shear damage development (characterized by a scalar parameter
5), which is determined by an action of the maximal shear stress z along the respec-
tive plane; its level and orientation depend on the stress state of the system. The in-
troduced damage parameter has a deformation nature; it thus describes the part of
general shear deformation linked with the macroscopic realization of the evolu-
tion of microshifts’ array in contrast to traditional parameters of CDM which are
(for the I-mode damage in our terms) either referred to the decrease of cross sec-
tion or related to the part of the life expectancy. Such type of parameter is not
linked with necessity for an introduction of—mainly artificial—norm; its limiting
value is determined by material properties and a loading scheme.

The possibility to generate microshifts is linked with the necessity to overcome
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the resistance of the crack edge’s interaction and of the friction, and while the
former is a constant parameter, the latter depends on the level of the compressive
force acting perpendicular to the shear plane (Nemat-Nasser and Horii, 1986;
Krajcinovic, 1989; Bigel, 1992). The general form of the kinetic equation for the
shear damage evolution then can be written as follows (Silberschmidt and Cha-
boche, 1994):

d n
d—j: As® + Bs + D{r — 7*) (N

where 4, B and D are material parameters, 7* is the threshold value, accounting
both for friction and cohesion; ( ) denote the McCauley bracket; an exponent nal- _
lows to describe arbitrary extent of non-linearity (an introduction of it is proposed
by J.-L. Chaboche, 1996). The system described by such an equation is character-
ized by the “trigger-like” kinetics (Silberschmidt and Chaboche, 1994): the pro-
cess starts only after the overcoming the potential barrier, linked with the presence
of resisting forces.

For a definite class of loading types (used in rock mechanics, for instance)
7* can be considered to be a constant value for a given non-changing level of
external load (rock pressure). In such a case Equation (1) can be solved ana-
lytically (Kamke, 1967). For the absence of initial damage (s = 0 for z = 0)
the shear damage dependence on time is described by the following ex-
pression:

2D (A7)"(1- exp(~tA))

= - — ., A<O0

(B+A)exp(—tA)— (B— A)

Bt
Tl Ze-sy a=0 @

A - -

1 ~tan (tA/Z)-tBA_B A0

24 A — Btan (tA/2)

Here A = 4AD(Aty — B2, At = (1 — 1*); A= JTA_I Shear damage accu-
mulation curves are shown in Figure 1 (here and below the results are presented
forn=1and4 = 1;B=-2.5; D = 1). Itis obvious, that for the given mate-
rial parameters, the increase in the shear stress level causes the change in the
asymptotical behavior of the II-mode damage accumulation: for the rela-
tively small level of the parameter At a transition to a saturation regime is
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Figure 1. Shear damage evolution for various levels of Ar.

possible, while for sufficiently high Az the unrestricted growth of damage with
time under the non-changing load is observed. The boundary between these
two regimes is related to the transition value At* = (B*4A4D)'” [note that it
corresponds to Equation (2b)]. So, the interval of the shear stress’ values can
be divided into three sections: for 0 < 7 < t* the shear damage initiation is
impossible because of the resistance of friction and cohesion forces; for
* < 7 < t* + Ar*the value of shear damage is limited, the level of limit s° be-
ing determined by the 7 value; for 7* + At* < rthere is a transition to the infi-
nite growth of damage. This last regime can be naturally associated with the
damage localization and generation of macroscopic defect.

The expression for the value of s° = lim shas the following form for the first
regime of shear damage accumulation:

_ 2D(Ar)y
A-B

o]

(©))

while for the second regime s° - o.The dependence of the saturation value of the
II-mode damage on the acting shear stress is reflected in Figure 2. With increase in
At the nearly linear growth of the saturation value s° is accomplished by the singu-
larity with Az - At*

Account for the non-zero initial damage (s = s; for t = 0) transforms Equation
(2) to the following form:
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[(Bs; - 2D(Ar)")[exp(—t£) - 1] + s,Z[exp(—rZ) + 1]
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Here the indication ¥ is introduced in order to distinguish between this regime of
damage accumulation and the initially non-damaged case. Calculations, based on
Equation (4), have shown two different temporal asymptotes of the equation:
(1) for T < t* + Ar* the effect of initial damage level diminishes, i.e., 5 =85
the rate of such diminishment decreases with the increase in stress; (2) for
7 > t* + Ar, in contrast, the difference s — safter some period of nearly constant
(or slightly enlarging) value sharply enters the zone of an abrupt growth. This zone
of singularity begins earlier for greater levels of stress.

1.4
1.2

T—1T%*
Figure 2. Effect of stress on the limiting level of shear damage.
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DISCUSSION

The intervals of shear stress and respective regimes in [I-mode damage accumu-
lation reflect various types of material’s response to the external load. The first
threshold value—t*—corresponds to the minimal level of shear stress, which is
necessary to initiate the II-mode damage development. The application of
stresses, higher than this first threshold value but smaller than the second thresh-
old—rt* + Ar*—results in the finite response of the system to loading: no matter
how long the load is applied, it cannot cause the overcoming of the saturation value
s° (At). The transition over this second threshold sharply changes the temporal
asymptotic behavior: from the saturation regime to the unrestricted increase in the
level of damage even under the non-changing external load. In order to character-
ize temporal effects of the shear damage accumulation additional parameters
should be introduced.

For the first type of behavior—restricted growth of s—the useful information is
on the proximity of the system to the saturation regime. It is especially important
for the cases of the dangerously high (pre-failure) levels of damage. So, lets intro-
duce a characteristic time ¢ which corresponds to the moment when the damage
enters the e-zone of saturation—shear damage is equal to s°(1 — &). Then, substi-
tuting Equation (3) into Equation (2a) and accounting for introduced determina-
tion for #,, one gets:

1 B(B-A)-24D(Aty(2-¢)  p4+A
t, = =|In + In =
A 2AD(AT)’e B-—A

%)

The respective dependence of z, on the level of shear stress is shown in Figure 3 for
various values of €. For the stresses far from the second threshold the introduced
parameter changes insufficiently, much slower, than a respective level of satura-
tion damage s° (compare Figure 3 with Figure 2). The infinite growth of the II-
mode damage under the action of stresses, higher than the second threshold, ex-
cludes the possibility of introduction of the analogous characteristic for this type
of material’s behavior.

Starting from the first works on CDM, the problem of the macroscopic failure
criterion, linked with the damage parameter, was intensively discussed (Kraj-
cinovic, 1989; Lemaitre and Chaboche, 1990; Lemaitre, 1992; Kachanov,
1992). The initially unrealistic condition linked with the total loss of the bearing
ability by the cross section (damage parameter being in this case the portion of
the area occupied by the failed zones) was transformed to the criterion, based on
the introduction of a norm—a limiting value—for the damage level (Kachanov,
1992; Lemaitre, 1992). Analogous ideas were used in micromechanical ap-
proaches [see reviews of Tvergaard (1995) and Pineau (1995) and references
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Figure 3. Effect of stress on characteristic time of reaching the e-zone of saturation regime for
various levels of ¢.

there] linking the fracture occurrence with the critical value of volume fraction of
cavities. In terms of such a description let introduce the critical value s* for II-
mode damage: the transition over this threshold causes an initiation of a macro-
scopic failure process (shear faults’ formation, etc.). The value of s* depends on
the type of material and is its characteristic parameter. Then, with the obtained
analytical linkage between the shear damage, stress and time, one can calculate
the time-to-failure parameter ¢°:

( ~ ~
B+24s*— A
Ll oA mBrA) A<
A B+24s*+ A B-A
4 As*
t° = __s__’ A=0 6)
B(B + 2A4s*)
A ok
iarctan —AS——, A>0
| A 2D (At)" + Bs*

The next step is to study the time-to-fracture-stress relation. This dependence, ob-
tained by the treatment of experimental data for traditional schemes of uni-axial
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loading, has a power-law form ¢, « o~¢ with the scaling parameter a being ap-
proximately equal to 1. The results in our cases [described by Equation (6)] are
presented in Figure 4 fors* = 0.1. It is clearly seen that Equation (6) can be ap-
proximated by the power law ¢° « At™#. The scaling parameter § is only
slightly higher than 1. Thus, exponent n, which was introduced in kinetic Equation
(1), should have the value, differing not much from 1. Its exact value, of course,
should be obtained by treatment of experimental data on damage accumulation un-
der creep conditions. The deviation from the power-law behavior (from the
straight line in double logarithmic coordinates) is linked with the existence of the
limiting value Az° for the cases when the damage threshold s* is lower than the
maximal possible [for given materials’ parameters—coefficients of kinetic Equa-
tion (1)] saturation level of shear damage (determined as lim s|27z47"). For shear
stresses, less than

. S* X Vn
Ar°= (——E(As + B)) )

the transition to the macroscopic failure is impossible—it is stable damage accu-
mulation regime, while respective parameter ¢° —z 5= . Analysis of the

time-to-failure—stress dependence for the various levels of the damage threshold
(Figure 5) proves its universal character: all respective graphs are straight lines in
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Figure 4. Time-to-failure-stress dependence for s* = 0.1.
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double logarithmic coordinates and have the same slope. Additional corroboration
of such a universality is the analysis of the case with initial non-zero damage. Fig-
ure 6 presents two sets of time-to-fracture—stress graphs: for conditions of initially
non-damaged state and for cases with initial damage. It is obvious that presence of
defects at the beginning of damage accumulation causes a drastic reduction of
life-expectancy of specimen—up to two times. But the type of universality is still
the same: all the graphs in both sets have the same slope (scaling parameter). Note
that the analogous scaling character was obtained for the stochastic brittle failure
under tensile loading for both the I-mode damage accumulation (Silberschmidt
and Silberschmidt, 1994) and crack propagation (with account for crack-damage
interaction) (Silberschmidt and Yakubovich, 1993; Silberschmidt, 1993a, 1995).
Thus, these considerations can be used in the various applications for reliability
analysis, etc.

CONCLUSION

The evaluation of a “pure” effect of shear damage is investigated in order to ex-
clude the necessity to account for effects of interaction of various damage modes.
The introduced damage parameter represents the macroscopic result (in terms of
the respective portion of deformation) of the initiation and development of micro-
scopic shifts. The proposed model for the II-mode damage accumulation demon-
strates the differences in material’s response to loading for three intervals of shear
stresses. The first threshold value for stress divides the zones of the absence of
damage (an external action is not sufficient for overcoming the friction and cohe-
sion) and of its initiation/growth. The second threshold marks the transition (under
the increase in the stress level) from stable damage accumulation (with saturation
character for the long-time action) to an unstable one, characterized by the sharp
change in temporal asymptote (singularity). The possibility of the unrestricted
growth of II-mode damage under the non-changing stress on finite time intervals
can be referred to as a macroscopic failure initiation.

The analytical solution of the kinetic equation for the shear damage accumula-
tion provides a basis for the estimation of the temporal effects in stress-damage
relation. The characteristic time for reaching the stationary regime—an ap-
proach to the saturation level of damage for respective stress intervals—is intro-
duced. The scaling character of the time-to-failiure—stress dependence is shown
to be the universal feature of the macroscopic fracture caused by the damage ac-
cumulation; the traditional CDM failure criterion limiting the damage level is
used for such an analysis. It is proved that for the given material properties (in-
cluding the threshold value of damage) there is a definite interval of load which
cannot cause the transition to macroscopic failure, no matter how long the load is
applied.

The non-zero initial damage can sufficiently influence the damage accumula-
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tion kinetics especially in a case of relatively high stresses (for small levels of ex-
ternal action, in contrast, this effect diminishes with time). Respective time-to-
failure decreases sharply, but the scaling character remains the same.

The obtained analytical results for the deterministic conditions (neglecting the
fluctuations linked with loading and/or with the damage evolution) can be utilized
as a base for the study of the stochasticity effect on damage accumulation [using
the stochastic differential equation for description of damage kinetics (Sil-
berschmidt and Chaboche, 1994)].
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