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Abstract: Traditional solution methods for fault trees or reliability block diagrams can only be
applied as long as the failure and repair events of all components of the system are stochasti-
cally independent. In this paper, an efficient algorithm is presented based on binary decision
diagram-like data structures that are able to evaluate systems including intercomponent
dependencies between arbitrary components. The algorithm, which was integrated into the
software package OpenSESAME, is shown to be as good as traditional algorithms for the special
case of independent components. The performance of the algorithm in the more general case
was empirically analysed using some real-world examples. Very short running times and a
moderate memory consumption were observed.
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1 INTRODUCTION

The availability of fault tolerant systems can be
estimated by the use of stochastic models, which
calculate the availability of the system from the prop-
erties of its components. Two types of stochastic
model are distinguished. The first type is so-called
combinatoric models such as reliability block dia-
grams (RBDs) or fault trees (FTs). Combinatoric
models are very intuitive and easy to handle, but
they usually imply that there are no dependencies
between the failure and repair events of the compo-
nents. Consequently, it is not possible to model
important system properties such as common cause
failures, limited repair personnel, failure propaga-
tion, imperfect failure-detectors, and fail-over times.
This may lead to overoptimistic results. The second
type of model is state-based models (SBMs) such as
Markov chains, stochastic process algebras, or sto-
chastic Petri nets. They can handle dependencies,
but lack usability. In comparison to FTs or RBDs,
they are not very intuitive, do not support modular
or hierarchic models, and are hard to modify [1].

To overcome this problem, the authors have devel-
oped the tool OpenSESAME, which allows for
an inclusion of intercomponent-dependencies into
combinatorial availability models (see section 2.2 of
this paper). Several other approaches exist, based on
similar principles (see section 6). Because traditional
solution methods cannot be applied in all cases, the
models are automatically transformed into an SBM.
This usually involves two steps:

1. An SBM structure (e.g. a Markov chain or a Petri
net) is created, representing the behaviour of the
components of the system. The structure and
the number and kind of its states depends on the
intercomponent dependencies.

2. A Boolean reward function is derived from
the RBD or FT that tells the solver of the SBM
which combinations of failed components result
in an available or unavailable system respec-
tively. A reward function is a transformation of
a Boolean expression especially for SBMs where
the Boolean variables are equated with certain
states in the SBM.

Inpractice, the size of the state-space grows exponen-
tially with the number of components. It is therefore
better to create not a single SBM, but several models,
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one for each so-called set of interdependent compo-
nents (SICs). The components are grouped into SICs
in such a way that there are no dependencies between
two components, if they are not in the same SIC.

As a result, several small SBMs can be solved
instead of a single large one, which greatly reduces
the computational demands. However, this also
implies that the reward function must be divided
according to the SIC decomposition of the model.

In this paper, an algorithm is proposed and evalu-
ated that creates a symbolic representation of the
structure formula from an RBD and decomposes
the formula in accordance with a given set of SICs.
Obtaining the SICs and creating the state-based
model, as well as solving the SBM, is outside the
scope of this paper as these issues are described in
reference [2] and related work (section 6).

The paper is structured as follows: section 2 gives
an overview on RBDs and the tool OpenSESAME
and contains a more formal problem statement. The
proposed algorithm and its implementation are
described in sections 3 and 4. An evaluation of the
proposed algorithm can be found in section 5.
Section 6 contains the related work, and the paper
is summarized in section 7.

2 PRELIMINARIES

2.1 Reliability block diagrams

RBDs are undirected graphs whose edges are labelled
with components of which the system consists
(Fig. 1). In the general case investigated here, a com-
ponent may occur more than once in the graph.
There are no limitations on the structure of the
graph. In particular, the authors do not restrict them-
selves to series-parallel diagrams and also allow
‘bridges’ in the graph. There is a pair of two special
nodes s and t, called the ‘terminal nodes’. If there is
a path between s and t through the RBD that contains
only edges labelled with available components, the
whole system is available; otherwise it is unavailable.

An RBD can be transformed into a Boolean expres-
sion by finding all simple paths from s to t. A simple
path from s to t is a set of edges which connects s
with t and does not contain an edge more than
once. Finding these paths is an NP-complete pro-
blem [3]. The probability that this Boolean expression
is true equals the availability of the system. Deter-
mining this probability implies determining the
satisfiability of the function and is NP-complete, too.

In practice, systems are often available only if at
least k out of n subsystems are available (or good) at

the same time. Using traditional RBDs, n
k

� �
parallel

paths were required to describe such a system.
To avoid such a large number of edges, RBDs are

therefore often extended by so-called k-out-of-n: G
edges as shown in Fig. 2.

2.2 OpenSESAME

The ‘simple but extensive, structured availability
modelling environment’ allows for an easy-to-use
modelling of high-availability systems including
intercomponent dependencies. The redundancy
structure of the system is specified by a monotone
RBD. In the editor of OpenSESAME, RBD-edges may
be labelled with sub-RBDs instead of single compo-
nents. This allows for a hierarchic arrangement of
RBDs and avoids RBDs which become too large to
be readable. Furthermore, in top-level RBDs, more
than one pair of terminal nodes may be specified to
allow for a simultaneous evaluation of several avail-
ability measures.

Intercomponent dependencies can be specified in
several ways. First, non-zero fail-over times stem-
ming from fault detection and reconfiguration of
stand-by redundant components can be specified at
the k-out-of-n: G edges. For dependencies concern-
ing the failure behaviour of the components, Open-
SESAME provides so-called ‘failure dependency
diagrams’. They can be used to define failures with
a common cause, different kinds of failure propaga-
tion, imperfect fault detection, and so on. Finally, by
defining repair groups, the modellers may specify
which components are repaired by a group of repair
personnel and how many repairs can be performed
in parallel by each group.

For a quantitative analysis of the model, it is trans-
formed into a set of state-based models. Alternatively,
either stochastic Petri nets or process-algebraic mod-
els are created. The Petri nets are solved by the tool
DSPNexpress [4] whereas CASPA [5] is used to analyse
the algebraic models. Both steady-state and transient
availabilities can be computed. More information on
the solution process can be found in reference [1].

2.3 Formal statement of the problem

A given set of components C is classified into disjunct
sets of interdependent components (SICs). Let ai be

Fig. 1 A reliability block diagram (RBD)

Fig. 2 An RBD containing a 2-out-of-3: G edge with the
subsystems: B, C, and D ^ E
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the probability that component i is available. For n
components i1, i2, . . ., in from n different SICs the
probability ai1^ i2 ^ ...^ in that all components are avail-
able at the same time is ai1 � ai2 � . . . � ain as
all components are jointwise independent. It is
further assumed that aj1 ^ j2 ^ ...^ jm is known for all
cases where j1, j2, . . ., jm belong to the same SIC. In
practice, this probability is computed by the state-
based solver. Similarly, ai can be computed for every
component i.

Furthermore, a monotone RBD with terminal
nodes s and t is given whose edges are labelled
with components from C. The RBD may contain
k-out-of-n: G edges. What is the terminal pair avail-
ability of the RBD?

3 THE MERGE-AND-DELETE ALGORITHM

3.1 Overview

In this section, an efficient algorithm to extract the
Boolean expression from a general RBD is proposed.
The expression stores all simple paths of the RBD
by using a so-called edge expansion diagram (EED).
In contrast to, for example, storing the term in con-
junctive normal form (CNF), the EED avoids an ex-
plicit enumeration of all paths or cut sets and is
therefore much more efficient in the average case.

The proposed algorithm, called Merge-and-Delete,
is a generalization of the work proposed in reference
[6]. There, EED were defined as directed, acyclic
graphs. After executing the Merge-and-Delete algo-
rithm, the nodes of the EED contain RBDs (Fig. 3)
and their related Boolean expressions (Fig. 4),
whereas the edges are labelled with Boolean variables.
An EED is constructed by step-wisely contracting the
original RBD. To simplify the algorithm, it is first
assumed that there are no k-out-of-n: G edges in the
RBD. The algorithm is extended to RBDs including
k-out-of-n: G edges in section 3.4.

3.2 Creating the EED

At the beginning of the algorithm, an EED-node
attributed to the original RBD is created. This node
is referred to as the ‘root’ of the EED. One hash table
is also constructed for the whole EED that maps the
components to a set of respective edges in the root-
RBD. This hash table is referred to as the ‘component
index’. A second hash table is created which maps
the RBDs to EED-nodes. At the beginning, there
is only one entry, mapping the original RBD to
the root. This hash table is called the ‘node map’.
The algorithm works as follows:

1. The contraction is started at s. Assume that the
component called A of an edge adjacent to s is
available. In this case, it is possible to go from s

to the other end of this RBD-edge. Both RBD-
nodes can be merged; the edge in between is
included in a possible simple path. If the RBD
has more edges containing A, their adjacent
RBD-nodes will be merged, too. These edges
can be found in constant time using the compo-
nent index created before. During the search for
simple paths, it is not allowed to include a node
of the RBD in a path twice, so all the other edges
adjacent to s can be deleted.

2. Slings and inner nodes with degree one in the
RBD are deleted because they cannot be part of
a simple path, either.

Fig. 4 The extraction of the Boolean expression out of the
EED

Fig. 3 The construction of the EED
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3. The node map is checked for the modified RBD.
In this case, the EED-node found in the map is
used. Otherwise, a new EED-node is created,
containing the modified RBD. The newly created
RBD is put in the node map, with the RBD used
as key. Then the EED-node that was found or cre-
ated is linked with the root, using an edge attrib-
uted with A.

This is repeated for all components that are part of
the edges adjacent to s. Up to deg(s) new EED-nodes
will be created, all linked with the root.

The algorithm is repeated on the newly created
EED-nodes. It stops when all edges in the RBD have
been removed or both border nodes have been
merged. Therefore, the EED has one leaf containing
only one border node. Figure 3 shows the algorithm
applied to the example RBD of Fig. 1.

3.3 Extraction of the symbolic expression

After creating the EED, the Boolean expressions in
the nodes have not been set yet. This is done by
beginning with the leaf of the EED; it will be set to
true. The expression of other nodes can be obtained
using the method getExpr(EEDNoden). This algo-
rithm uses several other methods and attributes.
The attribute nodeExpr stores the expression of this
node after it has been calculated once. The method
getComp() returns an expression that consists just
of the component of an EED-edge. The method
getTarget() returns the target of an EED-edge.

Method getExpr(EEDNode n):
01) if nodeExpr !¼null
02) return nodeExpr
03) Expression expr¼ false
04) for all outgoing EEDEdges ei of n do:
05) Expression Ai¼ ei.getComp()
06) EEDNode ci¼ ei.target()
07) Expression Gi¼ getExpr(ci)
08) expr¼ expr _ (Ai ^ Gi)
09) end for
10) nodeExpr¼ expr
11) return expr

By calling getExpr(root) the expressions of all EED-
nodes are calculated recursively. The result will
not be an operator tree. Instead, a directed acyclic
graph (DAG) will be constructed automatically which
normally needs less memory than a corresponding
tree, as the same subexpressions are stored only
once. Figure 4 shows the example EED with attribu-
ted expressions.

3.4 k-out-of-n edges

In the subsections 3.2 and 3.3 it was assumed that
there are no k-out-of-n: G edges in the RBD. One

way to treat these edges is to replace them by n
k

� �

parallel paths each containing k components in the
series. However, for the special case that

(a) each configuration of the k-out-of-n: G edge is a
single component or a series system, and

(b) none of the components of the k-out-of-n: G
edge appears somewhere else in the RBD,

a more efficient solution exists. For this case, the
Boolean algebra is extended to be able to describe
these edges in one simple expression called ‘k-out-
of-n: G expression’. Let A1, . . ., An be Boolean expres-
sions representing series systems, k and n natural
numbers. Then a k-out-of-n: G expression is written
as follows

k out of n : G½A1;A2; :::; An�

This kind of expression is true if and only if at least k
of the n given subexpressions are true. With these
expressions, k-out-of-n: G edges can be solved
easily in the EEDs. If the Merge-and-Delete
algorithm hits a k-out-of-n: G edge, the expression
analogous to the edge is created. This expression
will be used like the Boolean variable for normal
edges. A small example is shown in Fig. 5. The
resulting Boolean expression for this RBD A _ (2 out
of 3 : [B, C, D _ E]) _ F. Note that this action only
brings a benefit if the SBM-solver is capable of
calculating the probability of this expression
efficiently, i.e. it must support arbitrary algebraic
terms as reward functions and must not be
restricted to, for example, the Boolean algebra.

4 DECOMPOSITION OF THE EXPRESSION

The next step after gaining the structure formula
from the RBD in the form of an attributed EED is
to derive the reward functions for the individual
SICs. For each SIC, an SBM is created which has
to be attributed with the respective reward func-
tions. Finally, the computed results for each function
are used to compute the overall availability of the
system.

Fig. 5 An EED for an RBD with a k-out-of-n: G edge
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4.1 Concept

Thus, the next step is to decompose the redundancy
structure into independent subexpressions. For
example, assuming that the system redundancy
structure f (gained from an RBD not shown in this
paper) is defined by

�¼ðA _ BÞ ^ ðC _D _ EÞ ^ ðA _ FÞ
Assuming further that there are three SICs, one
containing A and B, the second containing C and D,
the third one E and F. By applying the ‘Shannon
Decomposition’ twice, on variables A and B, it obtains

�¼ðA ^ BÞ ^ �A¼ true;B¼ true _
ðA ^ BÞ ^ �A¼ true;B¼ false _
ðA ^ BÞ ^ �A¼ false;B¼ true _
ðA ^ BÞ ^ �A¼ false;B¼ false

The terms on the right contain neither the variable
A nor B any more, as these were substituted by
constants. Because the subsystems AB and CDEF
are stochastically independent and all conjunction
terms are disjoint, it holds

Pð�Þ¼ PðA ^ BÞ � Pð�A¼ true;B¼ trueÞ
þ PðA ^ BÞ � Pð�A¼ true;B¼ falseÞ
þ PðA ^ BÞ � Pð�A¼ false;B¼ trueÞ
þ PðA ^ BÞ � Pð�A¼ false;B¼ falseÞ

¼ PðA ^ BÞ � PðC _D _ EÞ
þ PðA ^ BÞ � PðC _D _ EÞ
þ PðA ^ BÞ � P�ðC _D _ EÞ ^ F

�
þ PðA ^ BÞ � PðfalseÞ

The decomposition can be continued analogous on
the expressions C _ D _ E and (C _ D _ E) _ F.

The whole process can be easily generalized. Let
SD(f, SICi) be the Shannon Decomposition for the
SIC SICi applied on the expression f. For an expres-
sion f with n SICs, the decomposition for all SICs
can be described as follows

SDð. . . fSD½SDð�; SIC1Þ; SIC2�; . . .g; SICnÞ
The result is an algebraic term with several

probabilities as its operands. As every probability
contains only variables from one SIC, it can be
associated with the respective SBM as a reward
function. After the evaluation of the SBM, the
probabilities are known and the overall availability
can be computed.

4.2 Efficient implementation

The decomposition can be represented graphically
by a decision tree whose size grows exponentially
with the number and the size of the SICs. The tree
of the example above would need 17 nodes. In larger
trees, many of these nodes would be equal, leaving
room for optimization. For instance, even in the
small example mentioned before, the expression
C _ D _ E appears twice.

A well-known technique to efficiently handle binary
trees is reduced ordered binary decision diagrams
(ROBDDs) [7]. As this tree is not binary, this technique
cannot be applied directly; the ROBDDs have to
be generalized. This kind of decision diagram is called
a ‘multiple binary decisions diagram’ (MuBDD)
throughout this paper, as several binary decisions are
made in each step, depending on the size of the SIC.
The MuBDD for the given example is shown in Fig. 6.

Fig. 6 The MuBDD for f¼ (A _ B) ^ (C _ D _ E) ^ (A _ F)
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A MuBDD is, again, a directed acyclic graph. A
node � contains a Boolean expression, stored as an
EED, which can be manipulated by substituting the
Boolean variables with constants. For every node,
only the variables of one SIC are substituted at a
time. For a SIC with n variables, 2n different substitu-
tions exist. For every possible substitution, an out-
going edge is added. The substitution is stored in
the edge as a conjunction term of the respective vari-
ables. This edge leads to a node u which is attributed
to the Boolean expression obtained by substituting
the variables. In most cases, such a node already
exists, and the edge will be connected to an already
existing node. To check whether such a node exists,
the nodes are saved in a hash table, where the expres-
sions are used as keys. If no node with the appropri-
ate expression can be found, a new node is created
and the hash table is updated.

Two minimization rules – analogous to the mini-
mization rules of regular ROBDDs – can be applied
to the MuBDD, which are shown in Fig. 7. The first
rule is that two nodes are merged, if they are equiva-
lent. This rule is enforced implicitly by the hash table.
The second rule is for nodes, one of them called �
with outgoing edges that all lead to the same target
node u. � can be deleted, its incoming edges being
linked with u instead.

Calculating the overall probability can be done
recursively. Firstly, the probabilities of the expres-
sions stored in the leafs are calculated by the SBM-
solver, or simply set if they are trivial. The results
are stored in the nodes. For the remaining nodes,
probabilities of the expressions stored in the out-
going edges are computed. As all variables in these
expressions are elements of the same SIC, the SBM-
solver is used to do that. Then the probability of every
edge is multiplied with the probability of the node at
the end of the edge. The sum of these products yields
the probability of the node.

For example, the probability of the expression in
the root of the MUBDD shown in Fig. 6 is obtained
by adding four summands, one for each outgoing
edge

Pð�Þ¼PðA ^ BÞ � PðC _D _ EÞ
þPðA ^ BÞ � PðC _D _ EÞ
þPðA ^ BÞ � P½ ðC _D _ EÞ ^ F �
þPðA ^ BÞ � PðfalseÞ

This is equivalent to the decomposition shown
before. The difference to a naive implementation is
that P(C _ D _ E) is computed only once, so less
time and memory are needed.

4.3 The heuristics

An important issue for ROBDD data structures in
general is choosing a good variable ordering. Like-
wise, for MuBDDs, a good ordering for the SICs
must be chosen. By experiments, the following heur-
istic was determined to deliver the best results in
most cases:

1. The smaller SICs are handled first.
2. If two or more SICs have the same size, the SIC

with most component appearances in the ex-
pression is chosen first.

3. If there are two or more SICs with the same size
and the same number of component appear-
ances, a breadth-first ordering is used.

There are several reasons for these heuristics. Take
the smallest SICs first, as the number of children of
the corresponding MuBDD-node grows exponen-
tially. The calculation time and the required memory
to create a node for a SIC of size n is O(2n), as 2n out-
going edges have to be created. The only exception
are the leaves – children do not have to be created
there; this means that the required calculation time
for creating the node is O(1). Instead, the remaining
expressions can be calculated directly by the SBM.
It therefore makes sense to solve the largest SIC as
the last one, to spare the most time and memory.

While substituting certain variables, it can happen
that the whole expression is reduced so much that it
can be solved trivially. The probability for this event
is higher, if variables are substituted at more occur-
ences. This is the reason for choosing the second
rule. With this rule, big, unnecessary branches of
the MuBDD must be cut off as soon as possible.

If there are SICs that have the same size and the
same number of component occurences, a breadth-
first search (BFS)-ordering [8] is taken to choose the
sequence of these SICs. To make a BFS-order of
the SICs a BFS-order of all edges is made. After that
every SIC is given the minimum order of all its edges.
This is a good choice as many practical systems are,Fig. 7 Minimization of a MuBDD
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in general, series systems with parallel subsystems. If
there is a serial system of parallel subsystems, it is
clear that the whole system is unavailable if only
one subsystem is unavailable. With a BFS-ordering,
this will be detected very soon and can cut off large
branches of the MuBDD earlier.

5 EVALUATION AND COMPARISON

From a theoretical point of view, the algorithm has to
look at the whole RBD and the whole Boolean expres-
sion, so will at least need linear time and space. For
the best case, a complexity of O(n) is expected, where
n is the number of components in the RBD.

In the worst case, it is possible that there are no
already-existing nodes while constructing the EED
and the MuBDD. For these cases, the EED and the
MuBDD will be real trees instead of directed acyclic
graphs. Therefore, the worst-case complexity is O(2n).

In this section are presented the results obtained
by measurements when applying the proposed algo-
rithm to several examples.

5.1 Examples with independent components

Firstly, the authors compare examples without inter-
component dependencies and compare the results
with the results of reference [6]. For these examples,
outlined in Fig. 8, the inner nodes of the MuBDDs
always have two outgoing edges, which means that
the MuBDD is a traditional ROBDD. The authors
want to show that their algorithm is as efficient as
the known algorithms for examples without depen-
dencies. The comparison is restricted to the number
of EED- and MuBDD/ROBDD-nodes as there was
no access to the code of reference [6], and its runtime
and memory requirements could not be measured on
modern hardware.

Table 1 shows the number of EED- and MuBDD-
nodes in our implementation, and compares it with
the number of EED- and ROBDD-nodes given in
reference [6] with a breadth-first-ordering of compo-
nents. For most examples, the number of EED-nodes
is the same; in two examples it is even lower. Like-
wise, the number of MuBDD/ROBDD-nodes is nearly
the same for both implementations. The discrepan-
cies result mainly from the different heuristic order-
ing used. Overall, both versions can handle these
kinds of example efficiently.

5.2 Models including dependencies

The main goal of the algorithm proposed in this
paper is the possibility to handle models which
include intercomponent dependencies. To analyse
the efficiency of the algorithm in that case, two

examples were analysed with a varying number of
components. The first example, ParSer(k,n), is a par-
allel system of k serial subsystems, each containing n
edges (Fig. 9). The system comprises k · n compo-
nents, A11, . . ., Akn, every component appears exactly
once in the redundancy structure. Two versions of
this example are investigated. In version A, there are
k SICs, each containing all components of one path.
In version B, there are n SICS, each SIC containing
one component from each path.

The second example, Web(k,n), is a model of a
fault-tolerant web server previously published in
reference [9]. The server consists of n HTTP servers,
n application servers, and n database servers. The ser-
vers are connected by a network. The whole system is
available if at least k servers of every type are working
properly and if the network is available. There are

Fig. 8 Some examples taken from reference [6]. Every edge
contains its own component

Table 1 The number of nodes in our implementation com-
pared with the number of nodes from reference [6]

Proposed algorithms KLY99

Example
EED-
nodes

MuBDD-
nodes

EED-
nodes

ROBDD-
nodes

KLY-1 5 11 5 10
KLY-2 9 16 9 15
KLY-3 8 29 8 26
KLY-4 11 23 11 22
KLY-5 16 29 16 50
KLY-7 12 28 17 51
KLY-11 20 41 20 48
KLY-14 45 99 45 126
KLY-15 21 42 21 40
KLY-20 76 146 85 177

Fig. 9 RBDs of ParSer(k,n) (above) and Web(k,n) (below)
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four SICs, one for each type of server and one for the
network. The RBD for this example is shown in Fig. 9.

Table 2, illustrated by the left side of Fig. 10, shows
the calculation time and the number of nodes in the
MuBDD for ParSer(k,n) versus the parameter k.
Regarding the EEDs, there is no difference between
the versions A and B. For constructing the EED, only
the structure of the RBD is important; the dependen-
cies do not have an influence.

Regarding the size of the MuBDDs, there is a signif-
icant difference between versions A and B. For ver-
sions A, the number of nodes and the calculation
time grows linearly with k. In this case, the complex-
ity of the algorithm is perfect. However, the calcula-
tion time and the number of MuBDD-nodes in
version B grow exponentially. In general it holds
that systems where the dependent components are
concentrated on local subsystems have a much better
performance than systems where the dependent
components are spread widely over the whole RBD.
The SICs influence the structure of the MuBDDs
very strongly, as they define which variables have to
be substituted at the same time.

Table 3, illustrated by the right side of Fig. 10,
shows the measured times for the creation of the
EEDs, MuBDDs, and the overall runtime for the
example Web(k,n). While the time for the EEDs and
the MuBDDs is constant, the overall computation
time grows exponentially with n. The reason for this
is that the parameters k and n do not influence the
EED or the MuBDD at all, as the k-out-of-n: G edges

are interpreted as single edges. Independently of k
and n, there are five EED-nodes and six MuBDD-
nodes. However, the number of states of the SBMs
for each type of server grows exponentially with n,
so more time is needed to solve the SBM.

Very good results were also obtained for two other
real-world models of a distributed database [10] and
a fault-tolerant water supply system [2]. In both
cases, the memory demands and compute times
were negligible.

6 RELATED WORK

The work presented here is based on the idea of
transforming high-level, user-friendly input diagrams
into low-level, formal, state-based models. Several
other research groups have also developed methods
and tools for reliability/availability assessment based
on this idea. The developed methods can be categor-
ized using the following:

(a) the kind of input used for defining the redun-
dancy structure (e.g. fault trees or reliability block
diagrams);

(b) the kind of supported intercomponent depen-
dencies or other dynamic system properties, and
how they can be defined by the modeller;

(c) the low-level representation generated, i.e. which
back-end tools can be used to analyse the model;

(d) whether and how the tool identifies indepen-
dent submodels to decrease the computational
demands.

The focus of this paper is on the last aspect. In
OpenSESAME, the overall model is divided into
submodels corresponding to the set of interdepen-
dent components. This can be done independently
of the authors’ redundancy structure. To the best of
knowledge this is a unique feature of OpenSESAME.
In other tools, the model can only be divided accord-
ing to the redundancy structure. In an FT, for example,

Table 2 The number of EED- and MuBDD-nodes needed
in ParSer(k,n) for version A and version B

Example EED-nodes MuBDD-nodes A MuBDD-nodes B

ParSer(2,5) 11 4 15
ParSer(3,5) 15 5 31
ParSer(4,5) 19 6 63
ParSer(5,5) 23 7 127
ParSer(6,5) 27 8 255
ParSer(7,5) 31 9 511

Fig. 10 (Left) Number of EED- and MuBDD-nodes needed of ParSer(k,5); (right) calculation time needed for Web(k,n)
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this means that two branches of a tree cannot be
solved separately, as soon as two arbitrary basic events
of the two branches are interdependent, even if all the
other events are independent from each other.

The following sections give a short overview on
other methods based on the idea of high-level model
transformation.

6.1 Boolean-logic-driven Markov processes

In reference [11], an innovative approach for com-
bining FTs and Markov models is presented. Each
leaf of the FT represents a component of the system
which can be described in more detail by a Markov
process. Switching between the states of the chain
can be triggered by the failure or repair of other com-
ponents, which allows for modelling intercomponent
dependencies. To simplify the task of the modeller,
several predefined standard cases can be reused.

6.2 DIFtree

Another tool that transforms high-level input dia-
grams into state-spaced models is the dynamic inno-
vative fault tree (DIFtree) [12]. The input diagrams
are so-called dynamic fault trees, which extend tradi-
tional FTs by a set of new gates that can handle differ-
ent kinds of redundancy (e.g. cold, warm, and hot
redundancies).

6.3 Dynamic reliability block diagrams, DRBDs

In this approach [13] dynamic extensions to reliability
block diagrams are introduced. These extensions can
be used to model various dependencies between
components including several types of redundancy
(hot, warm, standby) and failure propagation. Depen-
dencies are specified by their type (order or strong)
and the action and reaction events (wake-up, repara-
tion, sleep, and failure). In total, 24 different kinds of
dependency are defined.

7 SUMMARY

This paper proposes a new high-level approach to
calculate the availability of fault-tolerant systems.
The proposed algorithm can handle RBDs that

may contain bridges and repeated events. Stochastic
dependencies may occur between any two or more
components of the system. In addition, the algorithm
can cope with k-out-of-n: G edges without having to
transform them into series-parallel diagrams.

As the problem itself is NP-complete, it is possible
to create problems which require an exponential
amount of computing resources and memory to
solve them. However, when applied to some typical
real-world examples, very good results were ob-
tained. In many cases the runtime of the algorithm
grows only linearly with the number of components.
For the special case that all components are indepen-
dent from each other (or the dependencies only
occur sparsely in the system), the proposed algorithm
performs as equally well as the algorithms known
from the literature.

In our future work, the authors will apply the pro-
posed algorithm to a more extended set of real-world
examples. A possible optimization would be to not
store the Boolean expressions in the MuBDD expli-
citly, to save memory. Furthermore, the heuristics
for the ordering of the SICs may be reconsidered.

In its current version, the algorithm does not sup-
port a NOT-logic: only monotone systems can be
modelled. It is therefore planned to extend the algo-
rithm to non-monotone systems, especially impor-
tant for safety-critical systems.

8 AVAILABILITY

A copy of OpenSESAME containing the proposed
algorithm can be obtained from the website http://
OpenSESAME.in.tum.de.
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