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Abstract— Mobility assistance robots (MARs) provide sup-
port to elderly or patients during walking. The design of a safe
and intuitive assistance behavior is one of the major challenges
in this context. Here we present work on two modes of physical
Human-Robot interaction; one where the human in is direct
contact with the MAR, e.g. by holding some handles, and the
other where the human releases the handles whilst the MAR
has to follow him/her from the front, i.e. contactless.

For the first mode, we present an integrated approach
for the context-specific, on-line adaptation of the assistance
level of a rollator-type MAR by gain-scheduling of low-level
robot control parameters. A human-inspired decision-making
model, the Drift-Diffusion Model, is introduced as the key
principle to gain-schedule parameters and with this to adapt
the provided robot assistance in order to achieve a human-like
assistive behavior. The MAR is designed to provide a) cognitive
assistance to help the user follow a desired path as well as
b) sensorial assistance to avoid collisions with obstacles while
allowing for an intentional approach of them.

For the second mode, an intention-based assistive controller
for allowing the robot to follow a human while moving in the
front is analysed. This task is particularly challenging in indoor
environments, as there are situations that are undecidable,
namely in junctions. We describe a novel local kinodynamic
planner which concurrently detects discrete routes and contin-
uous motion paths. An intention recognition algorithm is also
detailed, along with tests in a T-Junction.

I. INTRODUCTION

A sufficient motor performance that allows performing
physical daily activities is a critical requirement for maintain-
ing mobility and vitality, especially for elderly people and
patients. Changes due to aging or disease may result in the
limitation of human motor performance, sensing capabilities
and cognitive functions, and thus reduce the ability to per-
form activities of daily living such as walking, transferring
or performing personal hygiene. The constantly increasing
elderly population, especially in industrialized countries, has
led to a strong demand for healthcare specialists and assistive
devices. Mobility assistance robots (MARs) can partly cover
this demand by providing physical, sensorial, and cognitive
assistance.

1G.P. Moustris and C.S. Tzafestas are with the School of Electrical &
Computer Engineering, National Technical University of Athens, Greece,
emails: gmoustri@gmail.ntua.gr, ktzaf@cs.ntua.gr

2M. Geravand is with the Chair of Automatic Control Engi-
neering, Technische Universität München, Munich, Germany, email
milad.geravand@tum.de

3A. Peer is with the Bristol Robotics Laboratory, University of the West
of England, Bristol, UK,email: Angelika.Peer@brl.ac.uk

II. CONTEXT-AWARE DECISION MAKING AND SHARED
CONTROL

How to adapt the provided assistance depending on the
actual context is a major challenge in the controller design of
assistive robots. An assistive robot under direct user control
can have difficulties guaranteeing acceptable performance
and safety due to cognitive, sensorial and physical weak-
nesses of target users being elderly or disabled people. On
the other hand, a fully autonomous system that ignores the
user’s intention can result in user dissatisfaction and dan-
gerous situations in case of human and robot disagreement.
Therefore, a shared control approach allowing human and
robot to share the control over resulting actions is typically
employed.

In literature most adaptive shared control mechanisms
attempt to tune the level of assistance to improve met-
rics related to the task. Thus, an inherent difficulty lies
in deciding on suitable metrics and adaptation strategies
such that the overall robot assistance results in a natural
behavior to the user. In this context natural refers to an
intuitive cooperative control scheme that considers human
and robot to collaborate as peers, meaning that the robot is
allowed to make own decisions to online adjust its level of
assistance taking current and past information on the user
and environment into account. We believe that an intuitive
and natural behavior can be achieved if the robot can decide
on the provided level of assistance in a similar way to
humans. Thus, we formulate the problem of the allocation of
control authority as a decision-making problem and employ
human-inspired decision-making models. We use the Drift-
Diffusion (DD) model, firstly proposed by [1], that describes
the decision-making mechanism in humans as a process in
which decisions are based on past decisions and the decision
criteria are continuously adjusted in order to maximize the
reward obtained throughout task execution. Following the
principles of the DD model, we propose a mathematical
formulation for an integrated control architecture to adapt
the parameters of the shared control system of a rollator-
type MAR.

The proposed architecture allows to intuitively adapt the
short-term a) cognitive assistance helping the user to follow
a desired path towards a predefined destination, the robot b)
sensorial assistance to avoid collisions with obstacles and to
allow an intentional approach of them, and the more long-
term adaptation of the robot c) physical assistance based on
measured user performance and fatigue.

The adaptive shared control architecture, see Fig. 1 fore-



sees three decision-maker blocks for sensorial, cognitive
and physical assistance which are responsible for online
adapting the parameters of the admittance controller in order
to achieve the desired system behavior. The Decision on
cognitive assistance block evaluates the planned path towards
the goal which is generated by the path planner block, the
human navigational intention in form of force and torque
applied to the robot handles as well as the actual human
performance. The Decision on sensorial assistance block
uses human input and the information provided by the
Environment state block, which provides information on the
position of obstacles around the robot. Finally, the Decision
on physical assistance block processes all inputs and adjusts
the level of support provided accordingly by manipulating
low-level admittance control parameters of the MAR.

Fig. 1. MAR adaptive shared control architecture.

The effectiveness of the proposed architecture is tested
by means of experiments technically validating each of the
three aforementioned functionalities of the architecture, see
Figure 2 for an example of the autonomous adaptation of the
linear damping parameter dx in case of online adjusting the
sensorial assistance as function of the user task performance
and human-robot agreement and associated rewards.

Fig. 2. Results of the sensorial assistance during human-robot cooperation
in scenario II.

We further demonstrate the performance of the algorithm
with real end-users in a user study with 35 elderly focusing

specifically on the sensorial assistance functionality. Ob-
tained results indicate that the required functionalities can
be realized with the proposed decision making algorithm
showing a general high potential of the proposed adaptive
shared control architecture for MARs.

III. INTENTION BASED FRONT-FOLLOWING

The main problem with the front-following task, concerns
the treatment of eventual undecidable situations. This can be
exemplified in crossroads (Fig.3 left), where there are distinct
routes, completely disjoint from each other. Since the robot
resides in front of the user, there might be scenarios where it
might be too late for the robot turn correctly, as it may have
already moved ”too far” and can’t make the turn the user
has chosen. Another example is a T-Junction (Fig.3 right).
In this case the risk of collision is exacerbated by the fact
that, in the time needed to resolve the user intention when
the “left” and “right” routes are detected, the robot might be
in a “limbo” state, moving further into the junction and either
making the routes infeasible or, worse, hitting the wall.

Fig. 3. Example of an undecidable areas; a crossroads (left) and a T-
Junction (right).

These two examples reveal a crucial condition; the avail-
able routes depend on the environment geometry as well as
the robot velocity. As such, the planer must take the robot
dynamics into account. For example, in the crossroads the
robot might be moving too fast to make the “left/right” turns,
and the only feasible direction would be the “front” route.

In contrast, when moving inside a corridor the available
motions form a ”continuum” and the planner must select the
best one, according to some scoring function. Identifying
undecidable areas is a first key step in the ”front-following”
behaviour, with the second one being the undecidability
resolution through user-intent identification.

An undecidable area can be characterized by the presence
of two or more distinct ”routes”. To detect these routes we
turn to the notion of path homototy. Two paths, with the same
starting and ending points, are path homotopic if they can
be continuously deformed to one another, without colliding
with obstacles [2]. The standard definition is too restrictive
for local path planning because firstly, a goal point is not
available and secondly, the path deformation is unconstrained



i.e. the resulting paths might not satisfy the differential
equations of the robot’s motion. By relaxing the condition
of the same ending point and imposing constraints on the
characteristics of the paths e.g. bounded curvature, we can
talk about a more general path equivalence [3]. We present
a new simple way of producing path equivalence classes
in real-time, using a modified dynamic window approach
(DWA). Our planner has the advantage of producing geomet-
rically concise classes (called path clusters henceforth) and
allowing for the definition of straightforward metrics that
convey useful information e.g. cluster span, mean/median
path etc.

The DWA [4] is a widely used kinodynamic local planner
which searches for collision-free paths in the input space
(v, ω). Given a robot velocity tuple (vR, ωR), the algorithm
samples paths from a window, and simulates them forward
in time, selecting an optimal one. The DWA essentially
produces arcs. For our problem, arcs are a poor candidate
since we are not only checking for collision-free paths,
but want to calculate ”openings” in the surroundings which
signify distinct routes of motions. We thus propose to test,
instead of arc paths, arc-line paths i.e. arcs that are followed
by a straight line. These seem more natural a solution for
finding possible routes in space, as they can handle turns in
a more intuitive way than arcs.

To generate the path, the planner samples an occupancy
grid with a fixed spatial resolution from the robot position
up to a circle of radius R, centred at the robot, checking
for obstacle collision along the way. If the path collides, it is
cut off to the collision point (Fig.4). The path is assigned the
minimum cell cost of the cells it traverses, unless it collides,
in which case it has a predefined maximum cost.

Fig. 4. Path bundle for a T-Junction. Costmap obstacles are cyan, laser
points are yellow and white are the AL paths. Robot frame is with thick
red-green lines (x-y resp.).

As we can see from Fig.5, the planner produces two cluster
as it approaches the T-Junction. In that moment, the robot has
to “signal” the user that it has detected an undecidable area
and is reading his/her intention. However, the question arises
as to what to do until the intention is resolved. It is evident
that the robot must, in parallel, scan its immediate area ahead
and create feasible motion clusters for that short period of
time. To accompany this, we define two scanning circles,

called levels, with different radii Rfar and Rnear (set to 4m
and 2m resp. in our study). The near level is seen in Fig.5,
comprising a single cluster (in red). Until the robot resolves
the user intention, it switches from the far level to the near
level for motion commands. Simultaneously, it enters into the
“intention estimation” mode and tries to discern in which far
cluster the user is heading to. Upon resolution, it discards
the near level and uses again the far level for motion.

Fig. 5. Far and Near clusters for a T-Junction.

A. Intention Estimation

In the context of the front-following task, intention esti-
mation is referring to the selection of the user-intended far
cluster, in the presence of undecidability. By observing the
user position w.r.t. the robot, we select an angle φH on the
circle of the far level. Now consider that there are N far
clusters. During the intention estimation, the robot assigns
scores Si to the clusters, and increases them by picking
the one closest to φH based on their angle. The selected
cluster has its score incremented, by adding a vote. The
voting mechanism assigns a lower vote to clusters that are
“ahead” than clusters that are “on the side”. This has been
selected because, if the user wants to promote side clusters,
he/she will have to step away from his/her normal walking
direction, in order to increase the offset. Such a motion is
improbable to have been performed by chance and it is most
likely a deliberate user action. Hence, when the robot detects
it, the “confidence” is high and quickly promotes the selected
cluster.

Fig. 6. Histogram of 20 human traces on a left turn in a T-Junction.



After each iteration, the robot selects the top two scoring
clusters and compares their scores. If the top score is 50%
bigger than the second one, the algorithm terminates and
outputs the top cluster. A second condition is that the clusters
must have at least a predefined number of votes (currently
10). If these conditions aren’t satisfied after a timeout e.g.
3sec, it picks the top cluster and exits.

User tests on a T-Junction are seen in 6. Twenty users
where asked to perform a left turn on a T-Junction, having the
robot following them from the front. The statistical analysis
shows the benefit of the assistive mode
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