
TangoHapps - An Integrated
Development Environment for Smart

Textiles

Juan Haladjian





INSTITUT FÜR INFORMATIK DER TECHNISCHEN UNIVERSITÄT
MÜNCHEN

Forschungs- und Lehreinheit I Angewandte Softwaretechnik

TangoHapps - An Integrated
Development Environment for Smart

Textiles

Juan I. Haladjian Madrid

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation.

Univ.-Prof. Dr. Hans-Joachim BungartzVorsitzender:
Prüfer der Dissertation: 1. Univ.-Prof. Bernd Brügge, Ph.D

2. Prof. Daniel Siewiorek, Ph.D

Die Dissertation wurde am 28.06.2016 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 05.09.2016 angenommen.





A Chechu, con cariño.

v





Acknowledgments

This work would not have been possible without the support of many other people.
First of all I would like my professor Bernd Brügge to know how much of a positive

influence he has been to my personal and professional development and thank him for
encouraging me to grow in his team. I would also like to thank my second supervisor
Daniel Siewiorek for his great insight and exhaustive feedback on my Interactex and
KneeHapp papers.

I am very grateful to all the members of the Chair for Applied Software Engi-
neering at the TUM. A special mention goes to my colleagues Zardosht Hodaie, Han
Xu, Stephan Krusche, Emitzá Guzmán and Yang Li for proof reading my papers and
different parts of my thesis and to Jan Knobloch for his support during the Custo-
dian project. Furthermore, I would like to thank my friends Mohammed Souiai and
Jelena Prsa for their emotional support throughout my times at TUM and for our
motivational meetings at the Mensa.

TangoHapps was developed in collaboration with the Design Research Lab at the
Universität der Künste in Berlin. In particular, TangoHapps came to life thanks to the
great insights and efforts from Katharina Bredies. I would like to thank Katharina and
her colleagues Sara Diaz Rodriguez, Pauline Vierne, Hannah-Perner Wilson, Gesche
Joost for our fruitful four year collaboration. Thanks also to Martijn ten Böhmer
and Oscar Tomico from Technische Universiteit Eindhoven, Kyle Zhang from the
Universiteit Twente and Jussi Mikkonen from Aalto University for contributing to
TangoHapps’ code base.

The research leading to these results has received funding from:

• Federal Ministry of Education and Research (BMBF) under grant number
”01IS12057” as part of the German program “Software Campus”.

• EIT ICT “Connected Textiles” activity in the Activity Nr. 13087 under the
“Smart Spaces” Action Line.

• Bavaria California Technology Center (BaCaTeC).

The responsibility concerning the content in this dissertation is left to the author.

vii





Abstract

Construction kits and development environments have dramatically reduced the time
and expertise required for the development of physical interactive devices. The field
of smart textiles, however, is relatively new and still lacks of established tools that
support their development. In this dissertation, we introduce TangoHapps, a vi-
sual programming and simulation environment specifically designed for smart textiles.
TangoHapps supports different activities related to smart textile development, includ-
ing application software development, testing and circuit design. TangoHapps’ visual
programming semantics span across mobile phone and smart textile enabling users to
take advantage of capabilities present on both devices without writing source code.
TangoHapps has a high-ceiling, which we demonstrate by recreating two smart tex-
tiles from different application domains. Furthermore, we provide evidence from two
user studies that TangoHapps lowers entrance barrier to smart textile development.

ix





Contents

1 Introduction 1
1.1 Research Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Use Case Development . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Use Case Validation . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 IDE Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Foundations 7
2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Wearable Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Smart Textiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Output Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 TangoHapps Framework 25
3.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Development Tools for Smart Textiles . . . . . . . . . . . . . . . 26
3.1.2 Development Tools for Physical Devices . . . . . . . . . . . . . 26
3.1.3 Hardware Construction Toolkits . . . . . . . . . . . . . . . . . . 28
3.1.4 Circuit Layout Software . . . . . . . . . . . . . . . . . . . . . . 30
3.1.5 Simulation Environments and Operating Systems . . . . . . . . 30

3.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Non-Functional Requirements . . . . . . . . . . . . . . . . . . . 33

3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Model of Smart Textiles . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Model of an Application . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Model of the Editor . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.3.4 Model of the Simulator . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.5 Model of the Deployer . . . . . . . . . . . . . . . . . . . . . . . 39

xi



CONTENTS

4 TangoHapps Design 41
4.1 Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2 High-Level Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.4 Hardware/Software Mapping . . . . . . . . . . . . . . . . . . . . . . . . 47
4.5 Running Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5.1 Electronic Devices . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5.2 UI Widgets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.3 Programming Objects . . . . . . . . . . . . . . . . . . . . . . . 53

4.6 Plugin Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Firmata Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.8 Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8.1 Palette . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.8.2 Toolbar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.8.3 Canvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.8.4 Circuit Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.9 Plugin Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.10 Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.11 Deployer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 TangoHapps User Interface 69
5.1 Interactex Designer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Project Selection Screen . . . . . . . . . . . . . . . . . . . . . . 69
5.1.2 Editor Screen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.3 Canvas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.4 Circuit Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.1.5 Simulator Screen . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.2 Interactex Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1 Download Screen . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 User Applications Screen . . . . . . . . . . . . . . . . . . . . . . 76
5.2.3 Default Applications Screen . . . . . . . . . . . . . . . . . . . . 76
5.2.4 Application Screen . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 TextIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Usage Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.4.1 Development of an Interactex Application . . . . . . . . . . . . 79
5.4.2 Development of TextIT plugin . . . . . . . . . . . . . . . . . . . 81

6 Applications 85
6.1 Application 1: KneeHapp Bandage . . . . . . . . . . . . . . . . . . . . 85

6.1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.1.2 KneeHapp Bandage . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.3 Implementation with TangoHapps . . . . . . . . . . . . . . . . . 93

6.2 Application 2: Custodian Jacket . . . . . . . . . . . . . . . . . . . . . . 102
6.2.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.2.2 Custodian Jacket . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2.3 Implementation with TangoHapps . . . . . . . . . . . . . . . . . 106

xii



CONTENTS

7 Evaluation 115
7.1 User Study 1: Novice Users . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2 User Study 2: Professional Smart Textile Developers . . . . . . . . . . 117

7.2.1 Study Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8 Conclusions and Future Work 121
8.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

A Application Objects 125
A.1 Events Methods and Variables . . . . . . . . . . . . . . . . . . . . . . . 125
A.2 Palette Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.3 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
A.4 Simulation Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
A.5 TextIT Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.5.1 Code Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
A.5.2 Line Chart Displaying Jogging Signal . . . . . . . . . . . . . . 159
A.5.3 TextIT Plugin for Counting Peaks in a Signal . . . . . . . . . . 159

Bibliography 167

xiii



CONTENTS

xiv



Chapter 1

Introduction

"The most profound technologies
are those that disappear. They
weave themselves into the fabric of
everyday life until they are
indistinguishable from it."

Mark Weiser

In the 1950s, computing devices occupied an entire room. They were so expensive
that only governments and big corporations could afford them and only technicians
with special training were able to use them. Miniaturization of electronics, reduction
in hardware prices and advances in usability engineering have enabled the appearance
of smaller, yet more powerful, cheaper and more usable computing devices. Comput-
ing devices evolved from personal computers to mobile phones and wearable devices.
Each new generation of computing device is smaller and integrates more seamlessly
into users lives.

Mark Weiser foresaw that computing devices would disappear entirely from a
user’s perspective, becoming “indistinguishable from the fabric of everyday life”. His
metaphor has become a reality today, as electronic devices are being integrated in the
fibers used to create fabrics. For example, tiny electronic components can be hidden
inside yarn by wrapping fiber strands around them [96]. Textiles with integrated
electronic devices are called smart textiles and are the focus of this dissertation.

Smart textiles worn on the body, also called smart garments, are particularly
interesting if they access information about their wearer such as his/her posture m[74],
physical activity [43], heart rate [17], pH levels [87] or even the presence of an infection
[1]. This information can be used for monitoring vital signs of patients [89], soldiers
[90], firefighters [20], tracking athlete’s performance [51] and helping blind users avoid
obstacles [6]. Smart textiles enable new ways of interaction that can be integrated
seamlessly into users’ lives. For example, smart textiles do not require users to look
at a screen (eyes-free) or to use their hands (hands-free) for interaction.

Several construction kits [49, 54, 97] and development environments [24, 48, 7]
have been created, which lower the entrance barrier and reduce the time needed to
develop physical electronic devices. Smart textiles, however, still have no established
tools that support their development. Furthermore, smart textile developers are still

1



CHAPTER 1. INTRODUCTION

using tools originally designed for other purposes such as circuit layout software for
conventional electronics and programming environments designed for general-purpose
microcontrollers. Software development environments for smart textiles face the fol-
lowing challenges:

1. The development of a smart textile is time consuming. In contrast to the
field of physical devices, ready-to-use textile components can rarely be bought.
Instead, they usually have to be designed and fabricated manually and tailored
to the textile. Textile sensors and connections often have to be created in the
same fabrication process as the rest of the textile. In addition, the production
of a smart textile is relatively risky due to the uncertainty during its creation,
whether the choice of materials and structuring (e.g. sewing, knitting) pattern
will fulfill the requirements of the application.

2. The development of a smart textile requires knowledge in multiple
disciplines. Smart textile development encompasses activities of different na-
ture: textile design (e.g. choosing a sewing pattern), circuit design (e.g. deciding
on the shape and placement of components) and software development. This
knowledge is rarely present in a single individual and hence, a collaboration of
people with a background in different disciplines is required. These disciplines
include computer science, electrical engineering, material science and textile
design [16].

3. Smart textiles require the development of complex algorithms. One
of the facts that make smart garments so interesting is that they can provide
diverse kinds of information about the wearer. However, high-level information
needs to be extracted from the sensor data using complex signal processing and
classification algorithms. Furthermore, data produced by smart garments tends
to be noisy and unreliable for two reasons. First, garments change their position
due to the wearer’s movements when they slide and fold during usage. Second,
textile sensors and connections based on conductive yarn or thread typically
used in smart textiles are not as accurate and stable as traditional silicon-based
sensors and connections.

To tackle these problems, we have developed TangoHapps. TangoHapps is an Inte-
grated Development Environment (IDE) specifically designed for the development of
smart textiles.

1.1 Research Process

The field of smart textiles is still relatively new and likely to change in the future due
to the new technologies and functionalities that will be available. In order to explore
the field as it evolves, we applied a formative iterative model-based research process.
Formative approaches have the goal to form a technology or process by iteratively
applying, assessing and improving it. Summative approaches, in contrast, do not

2



1.1. RESEARCH PROCESS

Summative
Approach

(a)

Fe
ed
ba
ck

Fe
ed
ba
ck

V1 V2 V3

Formative
Approach

(b)

Figure 1.1: a) In the summative research approach the artifacts produced by a
technology are assessed. b) In the formative research approach, the artifacts produced
by a technology are used to assess and improve the technology.

intend to improve the technology or process but rather assess the artifacts produced
by them. The difference between the formative and summative approach is sketched
in Figure 1.1. In the context of education, a formative approach would assess the
teaching methodology with the goal to identify possible improvements to the course’s
program. A summative approach, on the other hand, would be an examination written
by students at the end of the course to assess how much they have learned.

The formative assessment approach we applied consists of three phases: Use Case
Development, Use Case Validation and IDE Extension. We applied these three phases
iteratively. In every iteration, we have refined TangoHapps’ abstractions to support
the use cases described in the following sections.

1.1.1 Use Case Development

We iteratively extended TangoHapps to explore the development of abstractions with
a set of use cases. First, the core requirements of TangoHapps were elicited based on
a set of smart textiles. These smart textiles were realized during several workshops
in collaboration with researchers from the Universität der Künste (UdK) in Germany,
Technische Universiteit Eindhoven and Universiteit Twente in The Netherlands, Aalto
University in Finland, Telekom Innovation Laboratories and Philips1. We chose the
smart textiles with two main criteria. First, we aimed for smart textiles with a high
complexity in terms of development time, amount of functionality and types of sensors
used. Second, we chose smart textiles from different application domains in order to
derive general core requirements that are usable also in new application domains.
Table 1.1 describes four of the smart textiles we chose for the core requirements
elicitation.

1Part of this collaboration was funded by the European Institute of Innovation & Technology
(EIT ICT) and is documented in the EIT ICT’s “Connected Textiles” Activity Nr. 13087 under the
“Smart Spaces” Action Line.

3



CHAPTER 1. INTRODUCTION

Once an initial version of TangoHapps was developed, we extended its functionality
to support the development of two additional smart textiles developed at the Technical
University Munich (TUM). The first one is the KneeHapp Bandage and the second
one the Custodian Jacket. KneeHapp is a smart bandage and sock that tracks the
rehabilitation progress of a patient after a knee injury. The bandage uses its integrated
motion sensors to measure patients’ performance at different rehabilitation exercises.
For example, KneeHapp measures the amount of shaking of the leg while a patient
performs squats. The sock has an integrated textile pressure sensor at the sole used
to determine the duration of a one-leg hop - an important measurement used by
orthopedists to assess whether the patient is ready to go back to sports. The Custodian
Jacket supports technicians during maintenance activities in a supercomputer center
with the goal to improve their safety and work performance. The jacket uses motion
sensors to determine user physical activity (e.g. walking, running, lying down on the
ground) and proximity sensors to help technicians find servers in a rack. Both smart
textiles and their implementation with TangoHapps are described in detail in Chapter
6.

1.1.2 Use Case Validation

After a use case was developed, we used TangoHapps to replicate it. We validated the
version of the smart textile developed with TangoHapps upon the following metrics:

• Coverage. The versions of the smart textiles that we developed with TangoHapps
usually had less functionality than the original smart textiles. An important
metric to validate the use cases was the amount of functionality covered by the
replication.

• Wearability. This metric is used to assess how comfortable the smart textile is
to the user.

• Accuracy. Most of the smart textiles we developed had the goal to extract
information about the user’s context based on sensor data. A metric we used
to validate these use cases was the accuracy with which the smart textile could
extract user information.

• Performance. TangoHapps facilitated the development of the use cases by mak-
ing high-level reusable functionality components available to developers. These
functionality components were general-purpose and not designed for any specific
use case. As a consequence, the use case might have caused a loss in performance.
This metric tried to assess execution performance and energy consumption.

We used different research techniques for the validation of the use cases. One tech-
nique included case studies to estimate degree of functionality coverage. Another
used semi-structured interviews with users and application domain experts to inquire
about wearability and usability of the application. A third one shadowed developers
while replicating the use case. We also conducted controlled experiments to estimate
accuracy by comparing measurements of the smart textile against base values.

4



1.1. RESEARCH PROCESS

Name Domain Description
WaveCap Music A knitted hood and shawl that plays radio

through a textile speaker inside the hood. The
ends of the shawl - made of conductive yarn - close
a switch when knotted together causing the radio
to be turned on. The volume is controlled by
pulling strings attached to the hood. Textile-based
switch and sensor on the hood are used to control
the radio sender and frequency.

Knit Alarm Elderly A knitted jacket for elderly patients to call for
help in case of emergencies. Knit Alarm sends an
emergency signal when users either pull the left
sleeve or when they touch their right chest with
the left sleeve. An analog textile sensor integrated
in the left sleeve changes resistance depending on
the deformation .

CTS-Gauntlet Rehabilitation A sleeve for patients of Carpal Tunnel Syndrome
(CTS) that detects strain on the wrist. The sleeve
triggers a visual and auditive signal when the
strain goes beyond a certain threshold for a
specific amount of time.

Shuffle Sleeve Music A knitted sleeve that plays music. A handful of
coins is inserted in the sleeve - which has the
shape of a circular tube. Rotating the sleeve
causes coins to fall due to gravity, closing textile
switches that control the playlist and volume.
Four conductive strings can be knotted together to
start, stop and pause the music.

Table 1.1: Smart textiles used to elicit the initial requirements of TangoHapps.

5



CHAPTER 1. INTRODUCTION

1.1.3 IDE Extension

The research process we followed was iterative. We developed TangoHapps in a series
of sprints based on feedback provided by smart textile developers from the Univer-
sität der Künste in Berlin. In each iteration, we refined and extended TangoHapps by
adding the necessary hardware support and the software abstractions to support the
use cases. For instance, the functionality that enabled the Custodian Jacket to de-
tect user physical activity (e.g. running, walking, climbing, not moving) is currently
available in TangoHapps as a “first class citizen” type called “Activity Classifier ”.
Furthermore, the need for a text-based programming interface and signal processing
algorithms were identified with the KneeHapp project.

1.2 Outline

Chapter 2 provides an overview of the field of smart textiles, including definitions,
the evolution from wearable computers in the early 90s and describe different types of
technologies used to construct smart textiles. We also provide an overview of common
smart textile applications. The concepts, techniques and processes provided in this
chapter set the basis for the requirements elicitation process we followed in order to
develop TangoHapps. Chapter 3 first describes similar development tools for smart
textiles, wearable computers and other physical devices. Furthermore, it lists the
core requirements, models and abstractions behind TangoHapps. Chapter 3 serves
as a starting point for the design of TangoHapps, which is introduced in Chapter 4.
Chapter 4 starts with a detailed description of the design decisions we made in the
design of TangoHapps. Then it describes the IDE’s internal structure, including its
architecture, how we decided to map the different software components to hardware
nodes and how the functionality of each software component is organized in different
classes. Chapter 5 focuses on TangoHapps’ user interface. It describes every view of
TangoHapps and provides an example application to illustrate the usage of the IDE.
In Chapter 6, we demonstrate the applicability of TangoHapps in the development of
the KneeHapp Bandage and Custodian Jacket. We chose these smart textiles for two
reasons. First, because we had access to real-world projects with real customers, end
users and target environments. Second, these smart textiles differ considerably from
each other. This allows us to draw more solid conclusions about the applicability of
TangoHapps to different domains. Chapter 7 presents the results of two user studies
we conducted in order to gain insight into the usage of TangoHapps.

6



Chapter 2

Foundations

Smart textiles, also known as intelligent textiles, electro textiles or e-textiles, are tex-
tiles that have the ability to sense and respond to stimuli and responses of diverse
nature, including mechanical, electrical, thermal, chemical and optical environmental
stimuli [16][117]. Functional textiles are textiles with a specific function added, for
instance, by using additives or coatings [18]. Examples of functional textiles include
fire-resistant or phase changing 1 textiles. Smart textiles are sometimes defined to in-
clude functional textiles. However, this is technically incorrect because smart textiles
have special properties (e.g. electrical and optical conductivity) or special functional-
ity (e.g. the ability to sense mechanical stimuli such as pressure) which is not present
in functional textiles.

Smart textiles have been categorized according to the extent of their “intelligence”
into passive, active and very smart textiles [113]:

• Passive smart textiles are
textiles that can sense the
environment.

• Active smart textiles are
textiles that can sense stim-
uli from the environment
and react to them.

• Very smart textiles are tex-
tiles that can sense, react
and adapt to the environ-
ment.

Very
smart textiles

Active 
smart textiles

Passive
smart textiles

Smart textiles can be wearable (garments) and non-wearable (carpets, curtains).
Wearable smart textiles are called smart garments or smart clothing. Smart garments
can be compared to other wearable devices according to their level of integration with

1Phase-changing materials are materials that release energy when in the process of changing its
phase (e.g. melting or freezing)

7



CHAPTER 2. FOUNDATIONS

smart
garment

wearable
computer

hearing
 aid

smart 
contact
lense

smart 
tattoo

smart
implant

weak
integration
with body

strong
integration
with body

worn attached insertedcarried

mobile
phone

smart
card

(a)

Device

Carriable Wearable Attachable Insertable

Mobile
Phone

Smart
Card

Smart
Garment

Wearable
Computer

Hearing
Aid

Contact
Lense

Smart
Tattoo

Smart
Implant

(b)

Figure 2.1: a) Smart garments compared to other devices according to their inte-
gration with the human body, based on previous work from Steve Mann [71]. b)
Wearable devices represented as a taxonomy.

the human body. Steve Mann categorized devices according to their wearability (or
portability) into: environmental intelligence (e.g. cameras and microphones installed
in a building), hand-held devices (e.g. mobile phone, tablets), in-pocket devices (e.g.
smart card), clothing, underclothing and implants [71]. We refine Mann’s categoriza-
tion into devices that are carriable, wearable, attachable or insertable in the body, as
shown in Figure 2.1.

The weakest level of integration consists of devices that users carry, for example
either in their pockets, or hand-held devices. Devices that are worn on the body
include smart garments and wearable computers. Wearable computers are fully func-
tional, self-powered and self-contained computer worn on the body [10]. The difference
between smart garments and wearable computers is that the electronics of a smart
garment are integrated in the textile, whereas wearable computers have no integration
to the garments of the wearer [18]. The third level of integration includes devices that
are attached to specific parts of the body, such as smart contact lenses and hearing
aids. These devices are added to parts of the body without chirurgical intervention.
Attachment and de-attachment of devices in the third level of integration is usually
done by the user itself. The strongest level of integration consists of devices that
are inserted into the human body such as smart tattoos, prostheses and smart im-
plants. The insertion and removal of such devices is done by specialized individuals
and usually requires surgery.

Smart textiles have also been categorized according to the way in which the elec-
tronic components are integrated into the textile [18]. The first generation of smart
textiles used the textile only as a substrate for attachment of electronics (e.g. sensors,

8



2.1. HISTORY

wearable
computer

First generation:
Textile as a substrate

weak
integration
with textile

strong
integration
with textile

Third generation:
Fibertronics

Second
generation

Figure 2.2: The three generations of smart textiles.

output devices or printed circuit boards). Smart textiles in the first generation were
similar to wearable computers where there was almost no integration between the
electronics and the textile. The second generation adapted traditional textile fabrica-
tion methods for adding special functionality to the textile [18]. E-broidery is a textile
fabrication technique which uses embroidery machines adapted to sew or weave con-
ductive textiles using a numerically controlled process [94]. In the third generation,
electronics and materials with sensing properties are integrated directly in the fibers
of the textile. This technique is also referred to as fibertronics. Figure 2.2 displays
the different categories ranging from weak to strong integration into the textile. In
the next section, we discuss these categories in more detail.

2.1 History

In this section, we summarize the history of wearable computing and their transition
into smart textiles. We provide first an overview of different wearable devices created
until 1990 and then describe in more detail the different generations of smart textiles
based on the previous work done by Cherenack et al. [18].

2.1.1 Wearable Devices

Wearables with “computation” capabilities date back to the 17th century. A silver
ring with an inlaid abacus created by the Qing Dynasty that has recently been found
is considered by some to be the first wearable “device” in history. The ring is shown
in Figure 2.3 a).

Wrist watches emerged in the 19th century because pocket watches became im-
practical in some situations such as while riding horses or driving cars 2. Wrist watches
became popular later on during the war at the end of the 19th century and beginning
of the 20th century mainly due to the need to coordinate attacks during battles.

In 1957 Earl Bakken invented the first wearable pacemaker [57, 63]. The pace-
maker’s pulse generator and battery were worn by the patient and the leads (the parts

2http://www.smithsonianmag.com/innovation/pocket-watch-was-worlds-first-wearable-tech-
game-changer-180951435/?no-ist

9



CHAPTER 2. FOUNDATIONS

(a) (b) (c)

Figure 2.3: a) Qing Dynasty’s abacus ring. Image taken from
http://www.chinaculture.org. b) Eudaemonics’ shoe used to cheat at the casino.
Image taken from: http://eyetap.org/wearcam/eudaemonic/ with permission of
Steve Mann. c) Ivan Sutherland’s HMD [111]. Communications of the ACM 2002,
Vol. 11:2. Copyright c⃝2002 by ACM, Inc. Reprinted with permission of ACM, Inc.

(a) (b) (c)

Figure 2.4: a) Steve Mann’s HMD [69]. Reprinted with permission of Steve Mann.
b) CMU’s VuMan 2 wearable computer [105]. Reprinted with permission of Daniel
Siewiorek. c) Forms for wearability [35]. Reprinted with permission of Francine
Gemperle.

10



2.1. HISTORY

that conduct the electrical impulses into the heart) were implanted through the tissue
inside the heart.

Most people consider Edward Thorp and Claude Shannon’s smart shoe for cheating
at a casino as the first wearable device in history [116]. The shoe was developed in
1961 and had switches controlled by the toes that enabled the user to time when a
roulette’s ball crossed a reference line. The electronics in the shoe were connected
over a wire to a computer hidden in a cigarette box. The computer in the cigarette
box communicated wirelessly with a receiver device that provided auditive output
to the user. A similar shoe was created later by a group that called themselves the
’Eudaemonics’, shown in Figure 2.3 b).

The first Head-Mounted Display (HMD) or Heads Up Display (HUD) was devel-
oped in 1968 by Ivan Sutherland. The HMD recognized the user’s head position and
rotation within a room using an arm that hanged from the ceiling of the room. The
HMD is also widely considered to be the first Augmented Reality (AR)3 and Virtual
Reality (VR)4 HMD [111], although the terms would be defined only a decade later.
Sutherland’s head mounted display is shown in Figure 2.3 c).

Until 1980 wearable devices were not general purpose, but rather bound to specific
use cases or testing environments. In 1980, Steve Mann created a general purpose
multimedia wearable computer [70]. Mann attached a camera, a display and two
antennas to a helmet and connected them to a 6502 computer that was carried in a
backpack. During subsequent years, Mann continued shrinking the size of his wearable
device and transmitted live images from his head-mounted camera to the internet for
the first time in history [69]. An early version of Mann’s device is shown in Figure
2.4 a).

Research on wearable computing gained more attention after 1990 and was led
primarily by institutions such as Carnegie Mellon University (CMU), Massachusetts
Institute of Technology (MIT), Georgia Tech and Columbia University. Technologies
used to develop wearable computers between 1990 and 2000 included HMDs such
as the Private Eye, speech recognition units, cameras, GPS, wearable mouses and
keyboards. Popular application fields of wearable computers during this period were
navigation and maintenance of vehicles and machinery.

Relevant wearable systems created after 1990 include CMU’s VuMan and Navi-
gator series, Steve Mann’s backpack-based multipurpose wearable computer and the
Java Ring from Sun Microsystems. The VuMan and Navigator series were developed
between 1991 and 1996. Vuman 1 included a HMD and a unit fixed to the user’s
belt with three buttons and was used to navigate the user through the blueprints of
a building. VuMan 2 displayed maintenance information and helped the user locate
people and buildings. VuMan 3 provided maintenance information during inspection
of amphibious military tractors. Navigator 1 consisted of a computer mounted on a
backpack, the Private Eye HMD, a speech recognition unit, a portable mouse for user
input and a GPS for position tracking. Navigator 2 supported maintenance workers

3Augmented Reality refers to a system in which 1) real and virtual imagery are combined, 2) is
interactive in real time and 3) is registered in three dimensions [5]

4Virtual Reality is a system that “senses the participant’s position and actions and replaces or
augments the feedback to one or more senses, giving the feeling to the user of being immersed or
present in a virtual world” [99]

11



CHAPTER 2. FOUNDATIONS

during aircraft inspection. An image of the VuMan 3 is shown in Figure 2.4 b). The
Java Ring was a ring introduced by Sun Microsystems in 1998 [21]. The Java Ring
had an integrated microprocessor able to run Java scripts and had no internal power
but received power when it was in contact with the receiver device. One of the use
cases of the Java Ring was unlocking doors after identifying the wearer with a unique
identifier integrated within the ring.

In 1991 Mark Weiser coined the term Ubiquitous Computing or ubicomp referring
to a vision where computing devices embedded in everyday artifacts support people
in daily activities and work [62, 120].

In 1997 the first International Symposium in Wearable Computing was co-hosted
by CMU, MIT and Georgia Tech. Most wearable devices presented during the event
were based on Head Mounted Displays and eye glasses [22, 32, 102, 106, 115, 81, 69,
108]. Voice was commonly used as an input strategy [22, 104]. Application fields
included blue collar working [22, 81, 86, 102, 115], navigation [32], sports [88], affec-
tive wearables [92] and disabled support [108]. Research presented at the conference
focused on usability of wearables, such as wearable keyboard based input [114] and
haptic output based on vibrations [112]. During the conference, Post and Orth in-
troduced the concept of smart fabric together with some techniques to create textile
connections and sensors [93].

In a study published in 1998, Gemperle et al. studied wearability (i.e. the interac-
tion between a wearable device and the body) [35, 56]. The study provided guidelines
for the design of wearable devices. For example, the study identified the positions
around the body where wearable devices can be placed based on the size and amount
of movement in the different body parts. The guidelines led to the term wearable
forms. A wearable form is proven ways how wearable devices can be mounted on the
body. Wearable forms are shown in Figure 2.4 c).

2.1.2 Smart Textiles

The first generation of smart textiles used the finished textile as a substrate for in-
tegration of electronic devices. The textile itself did not play any role besides that
of a carrier for electronic devices and connections. Examples of this category include
Georgia Tech’s Wearable Motherboard (GTWM) and Virginia Tech’s Beam-Forming
textile [82]. GTWM, shown in Figure 2.5 a), was a soldier’s vest able to detect bul-
let wounds and monitor soldier’s vital signs during combat [18, 90]. GTWM had an
integrated grid of optical fibers and attached off-the-shelf sensors. Virginia Tech’s
Beam-Forming textile was used to estimate the position and direction of moving vehi-
cles [18, 82]. For this purpose, it contained several microphones attached to a woven
grid of interconnection lines.

In the second generation of smart textiles, the textile played an essential role in
the electrical system, rather than just being a substrate for attachment of electronic
devices. Traditional textile fabrication techniques (e.g. embroidery) were adapted
to provide the textile with special functionality [18]. Another characteristic of this
generation was that it merged electronic design techniques with technologies from the

12



2.2. FABRICATION

(a) (b)

Figure 2.5: a) Georgia Tech’s Wearable Motherboard (GTWM) [90]. Copyright
c⃝2002 by ACM, Inc. Reprinted with permission of ACM, Inc. b) Musical Jacket
[94]. Reprinted with permission of Maggie Orth.

textile industry. For example, the Musical Jacket - developed by MIT in the late
1990s - used Computer-Aided Design (CAD) to specify the circuit layout and stitch
pattern of a textile keyboard, which was embroidered in the jacket. The jacket and
embroidered textile keyboard are shown in Figure 2.5 b).

The third and most recent generation, fibertronics, is characterized by the inte-
gration of electronics and materials with special properties into the textile during the
fabrication of the textile. One way to achieve this is by replacing traditional fibers
(e.g. cotton) with conductive or sensitive fibers in the creation of yarn. Another
approach is the integration of miniaturized electronics during the fabrication of yarn
by twisting strands of fiber around an electronic device [121, 96]. Zysset et al. de-
veloped a technique to create woven textiles with electronic circuits [125]. Electronic
circuits are integrated in thin plastic film lines which are woven with conductive and
traditional yarn lines.

2.2 Fabrication

The textile fabrication process consists of different phases which may vary depending
on the materials used and the purpose of the textile. In the beginning of this chapter,
we described what smart textiles are. In this section, we describe how smart textiles
are created. We start by describing how traditional textiles are created and then
explain how special functionalities are added. It should be noted that the textile
fabrication process described in this section has been simplified for the purpose of
this dissertation - textile fabrication processes include other phases and activities
that are not shown in this section. The textile fabrication process we describe in this
section is illustrated in Figure 2.6.

Textiles are hierarchically structured fibrous materials [16]. Fibers are the smallest
unit in the textile hierarchy [16]. Fibers are raw materials which are either extracted

13



CHAPTER 2. FOUNDATIONS

cotton

sheep

silkworm

fibers yarn fabric

spinning
twisting

knitting
weaving

cutting
sewing

cloth

carpet

T-shirt

Figure 2.6: Textile fabrication process.

from natural sources or created synthetically. Natural sources of fibers are either
animal (sheep, silkworm), vegetable (cotton, flax) or mineral (asbestos). Fibers with
no further processing have little tensile strength which limits their use to stuffing
objects such as pillows and jackets. For this reason, fibers are spun into long strands
(called spinning) which are then twisted together in order to form yarn. Thread is
a type of yarn which is usually finer and suitable for sewing. Fabric is created by
structuring yarn in specific patterns. Two popular ways to structure yarn into fabric
are knitting and weaving. Knitting is the process of intertwining two sets of yarn
in a series of consecutive loops [18]. Weaving is the process of interlacing two sets
of yarns perpendicularly [18]. Fabric panels are cut in parts and different parts are
sown together in order to form cloth. The terms cloth and textile are often used
interchangeably. In this document, we use the definitions provided by Castano et al.
[16]. We refer to “cloth” as the finished textile product and treat the term “textile” as
fibers in any phase of the textile hierarchy.

Special functionality can be added to the textile at any phase of the fabrication
process (i.e. by making modifications to the fibers, yarns or fabrics used to create
cloth). Fibers can be naturally conductive or be treated to become conductive [78].
Naturally conductive fibers are made from metallic materials such as stainless steel,
titanium or aluminum. Metallic fibers can be created by “shaving-off” fibers from
the edge of a thin metal sheet [78]. Electrically conductive fibers can be created
by coating non-conductive fibers with metals, galvanic substances and metallic salts
[78]. Metallic fiber coatings produce highly conductive fibers. However, it can be
challenging to achieve a metallic coating that adheres to the fiber and does not corrode
[78]. Galvanic coatings are coverings rich in zinc that provide high conductivity and
corrosion resistance but can only be applied to conductive substrates [78]. Metallic
salt solutions achieve low conductivity which is further reduced during laundry [78].
Fibers can be also mixed with materials sensitive to mechanical or chemical stimuli
[16]. For example, piezoresistive materials5 can be used to coat fibers in order to make
them sensitive to strain [16][52]. We discuss textile based sensors in more detail in
Section 2.3.1.

Yarns can also be made conductive and sensitive to stimuli. Conductive yarns

5Piezoresistive materials react to mechanical stress by presenting a change in the electrical resis-
tance, which can be measured

14



2.2. FABRICATION

(a) (b) (c)

Figure 2.7: Different types of conductive yarns. (a) A copper foil wrapped around
a non-conductive yarn. Reprinted with permission of Maggie Orth of International
Fashion Machines. (b) A wire wrapped around non-conductive fiber strands [109].
Licensed under Creative Commons BY 4.0. (c) Multifilament yarn coated with a
metallic layer [109]. Licensed under Creative Commons BY 4.0.

are created using either fully metallic wires or by combining traditional yarn with
conductive materials. Metallic wires tend to have a high conductivity but are less
flexible and therefore more likely to break during weaving and knitting [18]. Yarn
and conductive material can be combined in different ways, including: wrapping a
metallic foil around a non-conductive yarn [94], twisting non-conductive fiber strands
around a metallic core [78] or by twisting a metallic wire together with non-conductive
fiber strands [109]. Like fibers, yarns can be made conductive by coating them with
conductive metals or polymers [78] and sensitive, by wrapping sensitive fibers around
an elastic core [16]. Figure 2.7 displays different types of conductive yarn.

Special functionality can also be added to fabric after its creation. A common way
to achieve this is by attaching conventional electronic devices (e.g. microcontrollers,
memory units, wireless links) to interconnect lines in the textile [18]. Electronic
devices can be attached to circuits in the textile using cables, conducting adhesives,
conductive thread or by means of mechanical methods. Cables add rigidity to the
textile and are likely to get entangled or break due to strain in areas of the body
where movement occurs. The Arduino Lilypad [14] hardware kit elements feature
broad circular pins to facilitate their attachment to the fabric using conductive thread.
The same conductive thread is used to connect the circuit. Mechanical methods (e.g.
crimping 6) apply force on the electronic devices or conductive elements in order to
attach them to the textile. Figure 2.8 shows electronic devices attached to a fabric
using different techniques.

Other techniques to add functionality to the fabric after its creation include lam-
ination and coating. Lamination is the process of adding a layer (e.g. a film) with
special functionality (e.g. an LED display) to a fabric substrate, usually by applying
adhesives [18]. Leah Buechley has attached electronics to fabric by ironing them to
the fabric using heat-activated adhesive [14]. Coatings can be used to add conducting
and sensing properties to a fabrics [16]. For example, polymer coatings have been
used to create fabric sensitive to temperature [11] and strain [66].

6Crimping: deforming one or two pieces of metal such that one can hold the other

15



CHAPTER 2. FOUNDATIONS

(a) (b)

Figure 2.8: Electronic devices attached to fabric. (a) Flexible electronic module
glued to the fabric and connected with embroidered conductive lines developed by the
Fraunhofer’s Institute for Reliability and Microintegration [67]. (b) Microcontroller
connected with conductive thread to conductive snap buttons crimped. Developed in
collaboration between the Technische Universität München and the Universität der
Künste [43].

2.3 Anatomy

Smart
Textile

Sensor Output
Device

ConnectionElectronic
Device

MicrocontrollerTextile

connects

Figure 2.9: Model of a smart textile.

Current generations of computing devices such as personal computers and mobile
phones are constructed on rigid plastic substrates. The trend in smart textiles is to
replace the traditional silicon-based plastic substrates with textile-based components
and connections that integrate more seamlessly into the textile substrate. In this
section, we provide an overview of the different types of textile-based components
and connections used in smart textiles.

Figure 2.9 displays a simplified UML model of a smart textile. Smart textiles
consist of textile materials and electronic devices. Electronic devices can be sensors,
output devices and microcontrollers. Connections transmit signals and power between
two or more electronic devices. An electronic device can be connected to several
other electronic devices. In particular, electronic devices usually have two or more
connections to a microcontroller.

16



2.3. ANATOMY

2.3.1 Sensors

Sensors devices measure physical properties and transform them into digital signals
that can be processed [18]. Physical properties include parameters from the environ-
ment such as temperature, light intensity and physiological parameters from humans
such as heart rate. Most textile sensors operate following one of three principles:
resistive, capacitive and optical sensing. Next, we describe these sensing principles.

Sensing Principles

Resistance is the difficulty of an electrical conductor to
conduct an electric current. Conductivity is the opposite
of resistance. Resistive sensing works by measuring
the resistance of a material, which changes depending
on the physical property to be measured. For exam-
ple, a temperature sensor can be made with a specific
type of fiber that change their resistance depending on
temperature [18].

Capacitive sensing works by measuring the amount
of electric charge transferred from two charged objects
- called electrodes - into a third conductive object (e.g.
the human finger). The amount of electric charge trans-
ferred between both electrodes changes depending on
the parameters to be measured. This principle can be
used to measure environmental parameters such as hu-
midity and skin proximity - indeed, it is the technology
used by most modern mobile phones to detect human
touch. Capacitive sensing can be realized in smart tex-
tiles using conductive fabric and coatings [16].

Optical fibers are flexible and transparent strands of
plastic or glass. Due to the transparency of optical
fibers, light can travel through them. Optical sens-
ing works by measuring different properties of the light
transmitted through optical fibers (e.g. intensity, wave-
length), which can change due to external stimuli such
as strain. The GTWM used optical sensing to detect
wounds in military scenarios by detecting cuts in the
optical fibers [90].

Source

Sensor Types

This subsection describes the different types of sensors that are used in smart textiles
and presents examples of each sensor type. Figure 2.10 displays an UML model of
textile sensors and their relationship with the environment.

17



CHAPTER 2. FOUNDATIONS

Textile
Sensor

l
Sensor

Optic
Sensin

e
Sensin

citive
Sensin

T ture
Sensor

in
Sensor

orce
Sensor Sensor

Envi ent

Sensor

Sensin
iple

uses

reacts to

Figure 2.10: Taxonomy of textile sensors.

Pressure sensors, also called force sensors measure the amount of force applied
to a surface. Pressure sensors integrated within textiles can be used as input sources
(e.g. buttons integrated in a garment) or to monitor physiological parameters from
a wearer (e.g. weight distribution when integrated into socks). Pressure sensors can
be built using the resistive or capacitive principle. Resistive pressure sensors can
be created by mixing conductive and non-conductive fibers or yarn in a textile and
measuring the resistance of the material. When pressure is applied to the textile,
the conductive fibers are squeezed, which increases the conductivity of the material.
Another way to create a resistive pressure sensor is by using pressure sensitive polymer
coatings (i.e. materials that generate an electric signal when pressure is applied to
them) [16, 13]. At a yarn level, specific structures of yarn can be created so that
resistance of the textile structure changes when deformations are applied to it [55].
Capacitive pressure sensors have been achieved by separating two conducting textile
surfaces with a spacer material and measuring changes in capacitance occurring when
the conductive surfaces get closer to each other due to pressure [79]. Pressure sensors
have been used to create keyboards [3], touchpads [18] and sportswear [51][110].

Heart rate sensors, also called electrocardiogram or ECG sensor measure the
electrical changes on the skin caused by heart contractions. Several textile heart rate
sensors have been developed until today, such as the MagIC vest [25], the NuMeTrex
sports bra [103] and the Intellitex suit [109]. Respiratory activity sensors are
created using strain sensors that change their electrical resistance due to stretching of
the thorax. The WEALTHY suit used strain fabric sensors and piezoresistive yarns
to measure users’ breathing patterns [89].

Temperature sensors can be of resistive or optic types. Resistive temperature

18



2.3. ANATOMY

sensors work by measuring conductivity of metal fibers woven or knitted inside the
textile, which change depending on the temperature [18]. Fiber optic sensors and
temperature sensitive coatings have also been used for temperature sensing [16, 101].
Alternatively, thin-film temperature sensors can be integrated in yarn [18].

Strain sensors can be used to detect body postures or joint movements. This
can be useful in sports and rehabilitation scenarios. Strain sensors can resistive or
optical. Resistive strain sensors can be created by knitting piezoresistive metal fibers
[16]. Zhang et al. structured yarn in a special pattern that favors changes in resistance
when strain occurs [123]. Optical strain sensors work based on the fact that the strain
applied to the textile alters the strength of the optical signal traveling along the optical
fiber. The strength of an optical signal can be measured by the optical sensor [18, 25].

Biological sensors detect the presence and composition of biological fluids such
as sweat, urine and blood. These sensors are created using chemicals that react
electrically to specific substances present in the biological fluids. Chemicals are either
applied as a coating to textile fibers or screen printed 7 on fabric [18].

Gas sensors detect the presence of gases such as hydrogen (H2), carbon monoxide
(CO) in an area [26]. Gas sensors are of particular interest in hazardous or contam-
inated environments (e.g. firefighting) because of their ability to detect the presence
of toxic gases for humans or animals. Similar to biological sensors, gas sensors are
realized using coatings that react electrically when exposed to specific gases [16]. The
PROeTEX firefighter’s suit incorporated a CO2 sensor within the boot and a CO
sensor in the jacket next to the collar [19].

Humidity sensors can be resistive or capacitive. Resistive humidity sensors
change their conductivity depending on the humidity in the air and capacitive hu-
midity sensors react to water vapor [16]. Humidity sensors can also be built using
coatings [16].

7Screen printing is a technique to transfer ink into a textile by using a “mold” to fix the distribution
of ink in the textile.

19



CHAPTER 2. FOUNDATIONS

2.3.2 Output Devices

Output
Device

isu
Device

tic
Device

ive
Device

on
Motor

Envi ent

ic
er

ic e

Figure 2.11: Taxonomy of output devices.

Output devices, also called actuators, are devices used to communicate changes in the
smart textile to the environment [18]. Output devices provide mainly visual, auditive
and haptic information to users. Figure 2.11 displays a taxonomy of output devices.

Visual output suitable for smart textiles include Light Emitting Diodes (LEDs),
electroluminescent (EL) fabrics and chromic materials. Arrays of LEDs have been
combined in a grid-fashion using conductive yarn in order to create a textile display
[16]. EL fabrics emit light when they receive an electrical stimulus and can be con-
structed by applying coatings with EL polymers [16]. Chromic materials are materials
that change their color depending on external stimuli such as light (photochromic),
temperature (thermochromic), pressure (piezochromic) or electrical (electrochromic).
[16]. Chromic fabric can be obtained using chromic fibers or material coatings. Figure
2.12 a) displays a thermochromic display developed by the UdK. A chromic material
coating has been applied to the textile. Wires behind the textile heat due electrical
stimulus, causing a change in the color of the textile.

Smart textiles can provide auditive output using miniaturized off-the-shelf
speakers. These speakers are smaller than a fingertip and can be sewn to interconnect
lines on the textile. Speakers can also be constructed on fabric by arranging conduc-
tive yarn or ink in a spiral form. A magnet in the center of the spiral generates an
electromagnetic wave which is intensified as the signal flows along the spiral. Figure
2.12 b) shows a textile speaker integrated into a sweatshirt developed by the UdK.

Haptic output technologies include miniaturized vibration motors and shape-
changing materials (i.e. materials that change their shape upon certain stimuli).
Shape-changing materials are either polymers or alloys. Electrically active polymers
are materials able to change their shape or dimensions when they receive an electrical
stimulus [15]. Shape-memory alloys and shape-memory polymers are materials that
“remember” a shape to which they return when influenced by external stimuli such as
heat. Haptic output can also be produced using using motors. The adidas smart shoes

20



2.3. ANATOMY

(a) (b)

Figure 2.12: Textile output devices. a) Textile thermochromic display. Reprinted
with permission of Katharina Bredies. b) Textile thermochromic display. Reprinted
with permission of Katharina Bredies.

use a motor connected to the cushioning system in order to adapt their cushioning
depending on the surface on which the wearer runs [29].

Visual output is the most common output modality of many computing devices
- such as desktop computers and mobile phones. However, the usefulness of visual
outputs on a smart garment is limited to the relatively small range of the wearer’s
vision - around the face and on the upper-front body. Instead, visual outputs in the
case of smart garments is often used to address other individuals around the wearer
of the smart garment. For example, a textile display attached to the back of the
wearer has been used to communicate performance parameters to athletes during joint
sports [77]. On the other hand, auditive output devices rely on a suitable environment
(e.g. not too loud and socially acceptable to produce sound). Haptic output is more
discrete than the visual and auditive output modalities, therefore it suffers less from
social acceptance issues. However, haptic output devices might not be suitable if the
user is wearing several layers.

2.3.3 Connections

Connections suitable for smart textiles can be realized in several ways: attaching wires
to the textile, building the textile using conductive yarn or thread, applying coatings
or inks, or integrating optical fibers in the textile. Figure 2.13 displays a taxonomy
of connections.

21



CHAPTER 2. FOUNDATIONS

Connection

Wire Conductive
n

uctive uctiveOptic

uctive

Figure 2.13: Taxonomy of connections used in smart textiles.

One way to connect electronic devices in a smart textile is by attaching metallic
wires to the textile. However, wires tend to have a limited flexibility and to be less
resistant to strain. Particularly in the case of smart garments - which are subject to
strain and movement - wires have a higher risk to break or get entangled with objects
in the wearer’s environment.

Conductive yarn and conductive thread can be woven into a textile using tra-
ditional weaving machinery. Conductive thread can be additionally sewn and embroi-
dered into a textile [78]. Embroidery with conductive thread offers some advantages
like the ability to create multiple layers of fabric in a single step and to specify circuit
layouts using Computer Assisted Design (CAD) [94].

Connections with varying degrees of conductivity can be realized using conduc-
tive coatings. Some polymers used to create conductive coatings are even more
conductive than metals and have also high adhesion and non-corrosive properties [78].
Additionally, coatings do not alter the textile properties (e.g. flexibility) significantly
and are applicable to most textile substrates [16].

Conductive inks are created by adding conductive materials such as carbon,
copper or silver to traditional printing inks [78]. Conductive inks can be applied to
a textile using inkjet printers or by means of screen printing. Inkjet printers propel
drops of ink into the textile [78]. Screen printing comprises the printing of a viscous
pasta through a patterned fabric screen, which is followed by a drying process [109].
Screen printing is also suitable for integration of electronics in a textile [109]. In
contrast to some conductive coatings, conductive inks do not loose conductivity due
to bending or laundering [78].

Optical fibers are transparent fibers where signals are transmitted through pulses
of light [16]. Optical fibers possess good strength and sunlight resistance and are in
general not affected by electromagnetic interference [78]. Optic fibers are relatively
stiff and possess poor flexibility, drapability (i.e. the ability to wrap loosely with folds
around an object) and abrasion resistance [78].

22



2.4. APPLICATIONS

2.4 Applications

Smart textiles have been developed for a wide range of fields. In this section we
focus on three main areas: health and rehabilitation; sports and fitness; and security
and safety. We provide examples of relevant research and industrial smart textiles
developed in these domains.

Health and Rehabilitation

Several smart T-Shirts are able to detect physiological parameters from the wearer
such as heart, respiration rate, electrocardiogram, activity and posture. Examples
include the LifeShirt by Vivometrics [39] the MagIC system [25] and the T-Shirts
developed in the EU-funded projects WEALTHY [87, 89] and MyHeart [40].

Smart textiles for rehabilitation measure performance in different rehabilitation
exercises and provide live feedback to the wearer or track the exercising over time[43,
4, 36, 2]. Most of these systems use motion sensors, some use the textile itself to
provide feedback to the user [2]. The UdK collaborated with Philipps on a sleeve
worn on the wrist for rehabilitation of Carpal Tunnel Syndrome (CTS). The sleeve
uses strain sensors to measure the range of motion in the user’s wrist and contain blue
light LEDs which can help relax muscles and increase blood flow. Zhang et al. created
a textile band able to react to muscle electrical signals (also called electromyography
or EMG). The textile band classifies electrical signals and enables amputees to control
their prostheses [124].

Sports and Fitness

Holeczeck et al. developed a sock with integrated pressure sensors that tracks and
classifies movements during snowboarding [51]. Sundolm et al. developed a smart
textile mattress with integrated pressure sensors that classifies physical exercises per-
formed on the mattress such as push ups and squats [110]. A more recent research
studied the use of conductive ink and flexible LED displays for supporting athletes
during group sports [77]. Smart textile products have been introduced to the market
by Nike, Polar and Adidas. Nike+ and Polar collaborated on a heart rate monitor
that straps around the wearer’s chest and Adidas developed a smart jogging shoes
[29]. Another smart textile that reached the market was NumeTrex’s sports bra.
NumeTrex’s bra used knitted conductive fibers as electrodes to monitor the wearer’s
heart rate [18].

Security and Safety

An early smart textile for safety was the Georgia Tech Wearable Motherboard
(GTWM). As mentioned in Section 2.1.2, the GTWM was able to monitor soldiers’
vital signs during combat [90]. For this purpose, the GTWM integrated a heart rate,
temperature sensors and a network of optical fibers to detect possible wounds caused
by projectiles into a soldier’s vest. Another smart garment for safety was the ProeTEX
firefighter’s jacket. The ProeTEX jacket used several sensors to measure physiological

23



CHAPTER 2. FOUNDATIONS

parameters from the wearer (e.g. breathing rate, heart rate, body temperature) and
other parameters from the environment such as the presence of toxic gases [20] in
order to foresee dangerous situations. The University of Twente in The Netherlands
developed a T-Shirt also for firefighters able to track the user’s motion and interpret
heart beats using accelerometer and microphone data.

24



Chapter 3

TangoHapps Framework

This chapter starts by describing the state of the art in development tools for smart
textiles and other related domains, such as wearable computers. Then, we describe
the core requirements upon which we created TangoHapps and provide a detailed
description of the models and abstractions behind TangoHapps.

3.1 Related Work

Our related work research encompasses not only IDEs but also other tools that support
the development of smart textiles (e.g. circuit design tools). Furthermore, we not only
focus on smart textiles but include tools designed for other related fields (e.g. wearable
computers) for which more research and tools from the industry are available.

Most of the existing integrated development environments and tools do not tar-
get smart textiles. Therefore, they do not fulfill the specific requirements of smart
textile development, which we address in the next section. Only few development
environments have been developed for smart textiles. However, most of them have
an educational purpose. Their goal is to teach programming and basic electronics to
children and novice. Furthermore, these tools support only few activities involved in
smart textile development (e.g. software development or electronic circuit design).
In contrast to other existing tools, TangoHapps is intended for rapid prototyping of
smart textiles and offers high-level reusable software components such as user posture
and motion classifiers. TangoHapps targets a broad user audience of smart textile
developers, including professional software developers and users without experience
in programming or electronics. Furthermore, TangoHapps is the first attempt to sup-
port the circuit design, application development and testing of a smart textile in a
single environment.

25



CHAPTER 3. TANGOHAPPS FRAMEWORK

3.1.1 Development Tools for Smart Textiles

Few IDEs have been developed that support smart textiles. Indeed we were able to
find only five:

The i*Catch framework consists of a set of plug-and-play components and a flow-
based visual programming tool that produces source code as output [84]. Deployment
of source code is done manually by users by copy-pasting the produced source code into
the Arduino IDE1. i*Catch targets novice users (e.g. children) with little background
experience in electronics and programming.

The Co-eTex framework is similar to i*Catch. It consists of craft materials and a
visual block-based programming environment to support the creation of smart textiles
[83]. Block-based programming is a visual programming paradigm in which language
constructs (e.g. if-conditions, for-loops) with lego-type blocks. Blocks feature color
codings and quasi-physical constraints to facilitate comprehension of the language’s
syntax. One of Co-eTex’s distinguishing features is its support for collaborative work
- it enables users to work on different activities (e.g. programming, circuit layout)
asynchronously.

Plushbot is a tool to facilitate the creation of interactive stuffed toys [53]. Its
current prototypical state includes features to layout hardware elements from the
Arduino Lilypad family and to create textile circuit layouts. Plushbot targets young
users with little experience and lacks any support for software development. Plushbot
facilitates the design of stuffed textile toys with electronic circuits embedded in them
but lacks functionality to create applications.

Eduwear is a construction Kit for wearables and tangible textile interfaces [58].
Eduwear consists of actuators, LEDs, buzzers and vibration motors. A development
environment based on a block-based visual programming language facilitates applica-
tion development using the parts in the Eduwear kit. The development environment
outputs Arduino code that is uploaded to an Arduino Lilypad microcontroller.

Harms et al. developed a system for rapid prototyping smart garments for activity
recognition applications based on a shirt called SMASH [47]. SMASH consists of a
technology to quickly attach sensors to clothing, a platform to interconnect sensors
and a processing architecture optimized for distributed on-body signal processing and
pattern recognition.

3.1.2 Development Tools for Physical Devices

Tools that facilitate the creation of physical devices have had a longer history than
the tools for smart textiles. IDEs for the creation of devices, including smart textiles,
support the development of software, construction of hardware (e.g. building a device
by plug and playing its parts), or both. Two common goals of such IDEs are: 1)
to lower the entrance barrier (i.e. enable its usage by users with little experience)
and 2) to reach a high ceiling (i.e. to offer enough flexibility to support complex

1https://www.arduino.cc/

26



3.1. RELATED WORK

solutions). With the goal to lower the entrance barrier, many IDEs are based on a
visual programming language. Some of these IDEs are:

a CAPpella is a tool for building context aware applications by exploiting the
programming by demonstration technique [23]. Programming by demonstration is a
programming paradigm that enables a system to learn behaviors based demonstra-
tions performed by humans. a CAPpella records sensor data and displays a visual
representation of the data on top of which users annotate and label time fragments.
Data and user annotations are then used for training the classifier.

Exemplar is a tool similar to a CAPpella for programming input sensor devices us-
ing the programming by demonstration technique [48]. The programming by demon-
stration semantics in a Exemplar enables users to grab a physical device and perform
a gesture in order to program the system to detect that particular user gesture. Ex-
emplar divides its workflow in three phases: demonstrate, edit and review. During
the demonstrate phase, users demonstrate the usage of an input device. During the
edit phase, users label and apply signal-processing algorithms to different parts of the
received signal stream. During the review phase, users are able to test whether the
system recognizes user gestures as expected.

VoodooSketch is a toolset for customizing physical interfaces by drawing on a sheet
of paper with a smart pen [12]. The content of the pen is digitalized automatically.
At the same time physical components are plugged into paper. Next to the physical
components, a label can be written with the smart pen, in order to associate a func-
tionality to the physical component. Controls can also be drawn on paper and are
associated to a UI widget based on their shape.

Circuit Stickers is an IDE to create electronic circuits on paper using an inkjet
printer filled with electronic (conductive) ink [50]. Circuit Stickers offers a widget for
each electronic element available in the kit. Users build circuits by dragging widgets
into a canvas. After printing the circuit on a sheet of paper, electronic elements glued
to a flexible substrate with conductive adhesive are attached to the circuit.

PaperPulse is an IDE similar to Circuit Stickers which additionally enables users
to demonstrate program behavior by recording actions [95]. PaperPulse also imple-
ments simulation functionality to test the circuit before printing it. In addition to
the printable file containing the circuit’s layout, it outputs the code that has to be
uploaded to the microcontroller.

Topiary is a tool for rapid prototyping location-enhanced applications [65]. It
features a storyboard-like UI where users define transitions between screens based on
location events such as the arrival of the user to a specific location. Topiary targets
mobile devices.

CRN Toolbox is a visual flow-based programming tool that focuses solely on the
rapid prototyping of activity recognition algorithms [9]. Some of its features (e.g.
multiple threads of execution, data stream merging and splitting) target software
developers with knowledge on machine learning algorithms.

Intuino is a visual authoring tool that enables users to define behavior of physical
devices using graphical representations (e.g. time-line operations and drawing splines)
[119]. For instance, users can define the pattern how an LED should increase and
decrease its intensity by drawing a spline on a canvas, thus saving users from having
to program such behavior.

27



CHAPTER 3. TANGOHAPPS FRAMEWORK

Node-RED2 is a visual flow-based environment for developing software for different
microcontrollers, including the Arduino Lilypad. Its goal is to facilitate integrating
devices to the Internet of Things (IoT). Cloud9 3 is a text-based development environ-
ment in the cloud. Facilitates simultaneous collaboration between different developers.
Espruino4 is a hybrid text and visual block-based programming environment for the
Espruino microcontroller. ModKit5 is a block-based programming environment for
microcontrollers.

These IDEs simplify the communication with the hardware (e.g. reading from
sensors and writing to output elements) but do not provide higher-level functionality
specific to the domain of smart textiles.

3.1.3 Hardware Construction Toolkits

During the last decade, a large number of hardware construction kits, also called
toolkits, have been introduced in the research community. A hardware construction
kit is a set of physical devices that users connect to each other in order to create
an electronic device. Toolkits are usually accompanied by an IDE that facilitates the
development of software using the toolkit’s components. Components include sensors,
output devices, communication modules (e.g. a Bluetooth module) that are connected
to a microcontroller.

Phidgets was one of the first hardware device construction kits [37, 72]. Hardware
components in the kit receive the name of “physical widgets” (i.e. phidgets). Phidgets
are a mean to facilitate the development of physical user interfaces as an analogy to
the UI widgets that developers reuse when building graphical user interfaces. The
framework consists of the phidgets, a software API to access and control the phidgets
and an architecture for communicating and connecting to the phidgets. Phidgets offers
a way to simulate the runtime of the hardware device.

Input Configurator Toolkit is a toolkit used to create software for computers visu-
ally [28, 27]. Applications developed with the Input Configurator Toolkit accept inputs
from a variety of computer peripherals such as keyboards, mouses and microphones.
The Input Configurator Toolkit uses a flow-based programming paradigm to support
the development of behaviors that react to user input (e.g. scrolling an application’s
window based on a keystroke).

Calder is an IDE for rapidly building physical devices similar to Phidgets, con-
sisting of a variety of reusable input and output devices equipped with a wireless
transmitter [64]. Calder supports product and interaction designers during early pro-
totyping activities.

Papier Mache is a toolkit for building tangible user interfaces that use computer
vision, electronic tags and barcodes [61]. The input sources sense the presence, removal

2http://nodered.org/
3https://c9.io/
4http://www.espruino.com/Web+IDE
5http://www.modkit.com/

28



3.1. RELATED WORK

and modification of objects and notify the application. Developers can choose how
the application should react to such events.

d.tools is a tool for the visual design and programming of physical devices built
with off-the-shelf components [49]. d.tools divides its workflow in three phases: design,
testing and analyze. During the design phase, designers drag and drop input and
output elements and define links or transitions between them. Users can demonstrate
transition events in the physical world in order to teach the tool desired behaviors. For
example, to cause the tilting of a device to transition from one screen to another, the
user selects the transition and performs the tilting. d.tools features a tight coupling
between the digital and physical world. Plugging a sensor to the microcontroller
board causes the sensor to appear in the canvas immediately. During the testing
phase, users use the physical device while being recorded. The recording contains
every state transition performed by users and can be later on reviewed together with
a usage video during the analyze phase.

e-blocks is based on reusable off-the-shelf components that are plug-and-played
into a main board [68]. A rule-based system defines the behavior of the e-blocks and a
simulation environment enables developers to test the behavior before producing the
actual device.

Midas is a software and hardware toolkit to support the design, construction and
programming of flexible capacitive touch sensors that are attached to physical objects
[97]. Developers use a high-level specification in order to define shape, layout and type
of the areas sensitive to touch. After the touch sensitive area has been defined, Midas
provides instructions to users for creating and assembling the parts using conductive
ink and vinyl cutters.

Boxes is a toolkit consisting of easy-access materials like cardboards, foil, tape and
thumbtacks to create very rapid prototypes (in seconds or minutes) [54]. Boxes can
react to users pinning or unpinning thumbtacks to a sensitive material and features a
tool to specify software reactions to user pinning actions.

iStuff is a toolkit of physical devices (e.g. buttons, sliders, speakers, buzzers,
microphones) and a software framework to support the development of applications
using such physical devices [8].

iStuff Mobile is a tool based on the iStuff environment that helps designers explore
interactions with mobile phones [7]. iStuff Mobile makes use of a visual flow-based pro-
gramming paradigm and enables development of applications that use mobile phones
as output or input device to control other devices.

Amarino is a toolkit that enables the rapid prototyping of mobile ubiquitous com-
puting applications [59]. Amarino consists of a mobile phone application, a set of
tutorials and a library to facilitate the communication between the mobile phone and
the microcontroller.

.NET Gadgeteer offers a set of hardware components that can be plugged to a
motherboard [118]. The .NET Gadgeteer uses different types of connections to pre-
vents users from connecting two electrically incompatible components, thus elimi-
nating the risk of shortcuts. An IDE facilitates electronic layout and application
development using the .NET Gadgeteer hardware components.

Arduino Lilypad is a construction kit for smart textiles [14]. The Arduino Lilypad
Kit consists of conductive thread, needles, small batteries and hardware components.

29



CHAPTER 3. TANGOHAPPS FRAMEWORK

Its hardware components are lightweight, flat and feature broad pin holes. Thread
- in particular conductive thread - is wrapped around the pin holes. Conductive
thread fulfills the purposes of attaching the hardware components to the textile and
interconnecting them at the same time.

Perner-Wilson et al. propose the usage of craft materials for the creation of elec-
tronic textiles [91] and present evidence about the increased freedom the approach
gives to creators when compared to the approach of kits of parts.

3.1.4 Circuit Layout Software

A challenging task in the creation of an electronic device is the design of its circuits.
In the case of smart textiles, it is particularly important to design the circuits in
advance because of the high amount of effort required for the construction of textile
circuits manually. Circuit design tools range in their complexity and target audience.
Smart textile designers use either tools for professional electronic circuit design or tools
for prototyping electronic circuits. Eagle6 enables the creation of custom hardware
designs that can then be printed on a circuit board and targets users with a high
level of expertise in electronics. Fritzing7, on the other hand, targets hobbyists and
users with minimal experience in electronics and facilitates the creation of hardware
layouts using breadboards and jumper wires. Fritzting contains diverse hardware
components available in the market, including the Arduino Lilypad and its set of
sensors and actuators.

3.1.5 Simulation Environments and Operating Systems

Further tool support for smart textiles includes simulation environments and operating
systems.

Martin et al. developed an environment that enables the simulation of different
parameters related to the design of a smart textile (e.g. behavior of sensors when
attached to unstable fabrics) [73, 107].

Mattmann et al. developed a simulation environment to investigate how different
postures and physical activity influence the elongation of clothing [75]. One of the
findings obtained thanks to the simulation environment is that a T-Shirt can be
subject to elongations as long as 20% of their original size on the upper back.

Schneegass et al. developed an operating system called Garment OS [98]. Gar-
ment OS facilitates the development of applications for smart garments with software
components for data processing and user activity recognition.

6http://www.eagle.org/
7http://www.fritzing.org/

30



3.2. REQUIREMENTS

3.2 Requirements

In this section, we list the functional and non-functional requirements upon which we
developed TangoHapps. As described in Chapter 1, these requirements were elicited
iteratively during a four-year collaboration with professional smart textile developers.
Before we present the requirements we elicited, we would like to define the target
user of TangoHapps. Throughout this dissertation, we refer to the target users of
TangoHapps as developers because they use TangoHapps to develop applications for
smart textiles. The term developer, in the context of this dissertation, refers to a
smart textile developer and not necessarily to a software developer. Indeed, most
smart textile developers have no or very limited experience in programming, such as
people with a background in fashion or textile design. We use the term user to refer
to target users of the smart textile and applications developed with TangoHapps. It
should be noted that the term user is not always equivalent to wearer. In most cases,
the user will also wear the smart textile. However, in at least two cases it would be
wrong to address as users as wearers. First, as described in Chapter 2, not every
smart textile is wearable. Second, the user of a smart garment might be a different
individual than the one wearing it [77].

3.2.1 Functional Requirements

Software functionality

Similar software functionality repeats across different smart textiles. Software func-
tionality includes:

• Transferring sensor signals to remote devices for processing.

• Filtering noise produced by resistive and capacitive textile sensors.

• Calibrating custom-made textile sensors.

• Extracting data from raw sensor signals (e.g. mean, deviation, correlation, peak
detection).

• Recognizing physiological states such as human posture and motion (e.g. walk-
ing, standing, running, lying down).

• Showing plots of sensor signals for development purposes.

TangoHapps should make software functionality commonly used in smart textile de-
velopment available for reuse.

31



CHAPTER 3. TANGOHAPPS FRAMEWORK

Hardware support

There exists a limited number of electronic devices suitable for attachment or inte-
gration onto smart textiles. Electronic devices include:

• Sensors able to measure environmental parameters (e.g. light intensity, temper-
ature).

• Sensors that measure physiological parameters from the wearer of a smart gar-
ment (e.g. motion, heart rate, pressure applied on a specific surface).

• Output devices to communicate information to users in a visual, auditive and
haptic manner (e.g. LEDs, speakers, vibration motors).

• Microcontrollers that execute the application (e.g. Arduino Lilypad, Intel’s
Curie).

TangoHapps should offer high-level APIs to control these electronic devices.

Smartphone support

As opposed to smart textiles, smartphones are widespread and most individuals in
different cultures nowadays carry a smartphone throughout the entire day. Modern
smartphones offer capabilities that can help complement those of a smart textile.
Some capabilities of smartphones include:

• High resolution displays that can render text, images and videos.

• User interfaces with a variety of input mechanisms (e.g. sliders, switches, multi-
touch gestures).

• Access to contacts and functionality to make calls.

• Access to music libraries and functionality to play music.

• Ability to use the camera to take photos and videos.

TangoHapps should enable the creation of applications that use capabilities available
on the smart textile and on modern smartphones at the same time.

Circuit design

The design of electronic circuits on textile is more challenging than the design of
circuits for printed circuit boards, mainly due to the flexibility of the textile substrate
and the strain it is subject to. Uninsulated textile connections can break or produce
shortcuts when the substrate deforms or folds. The circuit design for a smart garment
must additionally consider user comfort and wearability [35], adding constraints to
placement, shapes and materials to use. TangoHapps should facilitate the design of
circuits on top of a model of the textile so that its folding and usage patterns can be
taken into consideration. Because a smart textile developer might not have experience
in electronics, the IDE should additionally provide feedback about the correctness of
circuits.

32



3.2. REQUIREMENTS

Simulation

The production of a smart textile object is relatively risky as it is unclear at the mo-
ment of creation whether the choice of materials and structuring pattern (e.g. sewing,
knitting) will fulfill the requirements of the application. Malfunctioning circuits and
the unsuitability of data delivered by sensors might be discovered only after having
created the smart textile and developed its application. Furthermore, the creation of a
textile circuit might be time consuming because connections and custom-made textile
sensors usually have to be created (e.g. sewn) manually. Simulations allow flaws to be
identified sooner, before considerable costs have been invested in a product. There-
fore, there is a high motivation for simulating the smart textile before its creation.
TangoHapps should provide a way to execute applications within the development
environment and to simulate behavior of sensors and output devices.

Debugging

In order to facilitate comprehension of runtime behavior of an application, Tango-
Happs should communicate runtime information to developers. In particular, Tango-
Happs should display sensors signals as plots and communicate the state of output
devices during the simulation of an application. For example, the sound emitted by
a speaker could be played within the environment and the vibration produced by a
vibration motor could be communicated to developers by means of an animation.

Deployment

In Circuit Stickers [50] and PaperPulse [95] circuit layouts are printed on a sheet
of paper using an inkjet printer filled with conductive ink. After printing the cir-
cuit sheet, developers attach the electronic elements to the sheet of paper. Most
development environments for physical devices facilitate software deployment by gen-
erating source code, which is uploaded to a microcontroller either manually by users
or automatically by the environment. TangoHapps should transform a development
representation of the application (e.g. source code) into an executable application.
Furthermore, TangoHapps should be able to upload the generated executable into the
smart textile.

3.2.2 Non-Functional Requirements

Low entrance barrier

Similar development tools for physical devices facilitate development by offering ready-
to-use software components [37, 72, 28, 27, 12, 118, 50, 95, 68]. For example, Mi-
crosoft’s .NET Gadgeteer offers software components to perform the most common
operations with the devices available in the kit (e.g. functionality to make the camera
start recording a video) [118]. Developers reuse the provided software components
without having to understand its internal behavior. Target users of TangoHapps

33



CHAPTER 3. TANGOHAPPS FRAMEWORK

might not have experience in software development or electronics. In order to lower
the entrance barrier to such users, TangoHapps should provide common smart textile
functionality in ready-to-use software components.

High ceiling

The ceiling of a development environment refers to the flexibility it offers developers to
develop new use cases. Low-level software abstractions tend to allow more flexibility
at the cost of a higher degree of expertise needed from developers. High-level software
abstractions tend to be easier to grasp but might limit development freedom to specific
domains or use cases. TangoHapps should offer software abstractions that provide
enough flexibility to experienced software developers, while maintaining a low entrance
barrier to users with less experience in software development.

Performance

Hardware integrated into a smart textile is ideally small, thin and lightweight to
preserve the positive properties of the textile (flexibility, softness, lightness). More
computations to be performed on the smart textile hardware lead to more memory
and processing power requirements and to bigger and bulkier microcontrollers and
batteries. Software functionality available in TangoHapps should be optimized for
execution on hardware with limited resources.

Extensible with respect to software

In the Functional Requirements, we identified software functionality used across dif-
ferent smart textile applications. However, this functionality is unlikely to cover every
use case smart textile developers might want to address. TangoHapps should make it
possible to add new software functionality components without forcing developers to
having to refactor big parts of the environment.

Extensible with respect to hardware devices

Smart textiles are not widespread in the market yet and new target hardware plat-
forms are likely to appear as the field grows. TangoHapps should make it possible
to add support for new electronic devices without having to refactor big parts of the
environment.

34



3.3. ANALYSIS

3.3 Analysis

<<component>>
Editor

<<component>>
or

<<component>>

<<component>>
ion

<<component>>

ne

<<component>>
t

Textile

Figure 3.1: Overview of TangoHapps.

TangoHapps consists of various components that fulfill specific purposes in the
creation of Applications for smart textiles. The Editor is the main mean by which
developers access the functionality of the IDE in order to create the Application.
The Running Engine executes applications created in TangoHapps. The Simulator
supports developers at understanding application’s behavior and fixing undesired ap-
plication behavior. The Deployer is similar to a compiler - it transforms high-level
representations of applications into executable applications and uploads them into the
Smart Textile. Figure 3.1 shows an overview of TangoHapps. In the next subsections,
we explain each component in more detail.

3.3.1 Model of Smart Textiles

Smart Textiles have Textile and Electronic Circuits, which are integrated into the
Textile. Electronic Circuits consist of Electronic Devices and Connections between
them. Electronic Devices can be sensors, output devices and microcontrollers, as we
have seen in Chapter 2. Electronic Devices have Pins, which are an interface for
transmission of electric signals with other Electronic Devices. There are two main
categories of Pins: Electric Pins and Data Pins. Electric Pins cause current to flow
through Electronic Devices and Data Pins are used to transfer electric signals from
Sensors to Microcontrollers and from Microcontrollers to Output Devices. On the
other hand, there are two types or Electric Pins: Power Pins and Ground Pins. The
current in a Circuit flows from Power Pins, through Electronic Devices into Ground
Pins.

Data Pins can be digital or analog depending on the way how signals are trans-
mitted along them. Digital Pins operate with two possible values: high current and

35



CHAPTER 3. TANGOHAPPS FRAMEWORK

Electronic
Device

Connection

d

t
Textile

Electric

Electronic
Circuit

Textile

connects
integrated

Figure 3.2: Model of a Smart Textile.

low current and can be used for input (i.e. transmitting data from a Sensor to a
Microcontroller) and for output (i.e. transmitting data from a Microcontroller to an
Output Device). In contrast to Digital Pins, Analog Pins operate with a range of
values and can be used only for input purposes. GPIO Pins (General-Purpose In-
put/Output Pins) are Pins that can be configured at runtime to be used for input or
output. Connections connect two or more Electronic Devices through their Pins. An
UML model of smart textiles is shown in Figure 3.2.

3.3.2 Model of an Application

Applications in TangoHapps are object-oriented, hence they consist of a collection
of objects - called Application Objects - that interact with each other. Application
Objects also interact with the Electronic Devices on the smart textile (e.g. by reading
values from Sensors and writing values to Output Devices).

Application Objects contain data in the form of Variables and code in the form
of Methods. Methods might require parameters (called Variables) in order to execute
their code. The interaction between objects occurs by means of method invocations.
A Method might invoke another Method if the appropriate number and type of pa-
rameters required by the target Method are provided.

Application Objects can emit Events. Events are occurrences that might be han-
dled application, such as when the user presses a button on his smart jacket. Events
can deliver Variables, such as the temperature measured by a temperature sensor.
An Event can trigger one or more Methods. However, Events invoking a Method are
also constrained by the number and type of parameters required by the Method. The

36



3.3. ANALYSIS

model of Applications is depicted in Figure 3.3.

Application
Object

Variable

+trigger()

Event

-name

+execute()

Method

Running
Engine

Application

Electronic
Device

*

*

*

*

1

*

*

1

0..1

*

*
*

*

*
*

invokes

provides

requires

triggers

controls

executes

Figure 3.3: Main abstractions of an Application in TangoHapps.

3.3.3 Model of the Editor

Editor

Circuit
Designer

face
Designer

Code
Editor

Circuit
La

Smartphone

face

Code

controls

controls

edits

designs

creates

Figure 3.4: Model of the Editor.

The Editor offers developers the means to design electric circuits, to implement the
functionality of the application and to create user interfaces for smartphones. For this
purpose, the Editor consists of three main components, the Circuit Designer, the Code
Editor and the UI Designer. The Circuit Designer is used to create Circuit Layouts

37



CHAPTER 3. TANGOHAPPS FRAMEWORK

visually by arranging electronic devices on top of a model of the smart textile. The
Code Editor is an interface for implementing, extending and reusing Code. Instances
of the Code class specify the runtime behavior of the Application, including how
Electronic Devices and capabilities of a smartphone should be controlled. The User
Interface Designer enables the creation of Smartphone User Interfaces by making
components that wrap common smartphone capabilities (e.g. music playing) available
for reuse. An UML model of the Editor is shown in Figure 3.4.

3.3.4 Model of the Simulator

Debugging
Information

Application

User
Input

Simulator

Virtual
Smart
Textile

Virtual
Smartphone

Virtual
Device

Running
Engine

controls

pr

reacts to

executes

Figure 3.5: Model of the Simulator.

The Simulator displays Debugging Information with the purpose of helping de-
velopers to understand runtime behavior of an Application. Debugging Information
is provided by the Running Engine during execution of an Application. In order to
execute an Application without having to deploy it to the real hardware, the behavior
of the different devices is simulated within TangoHapps. Virtual Devices fulfill two
main purposes. First, they communicate the state of the device to the developer by
means of images, animations and sounds. For example, a buzzer will begin to shake
and produce a sound to indicate that it has been turned on. Second, they accept
User Input in order to simulate user interaction with the device and environmental
parameters. For example, touching a simulated temperature sensor causes it to deliver
a higher temperature reading. The Virtual Device superclass provides the means for
its subclasses to control an Application by modifying its internal state in the same
way as the Running Engine would during real execution. In order for simulations to
be as close to real executions as possible, the Application class does not offer special
functionality or a special interface for simulation purposes. An UML model of the
Simulator is shown in Figure 3.5.

38



3.3. ANALYSIS

3.3.5 Model of the Deployer

Project

Application

Uploader Smartphone Smart
Textile

DeviceDeployer

targets
uploads

represents

inputs

outputs

Figure 3.6: Model of the Deployer.

The main tasks of the Deployer are to “compile” Projects into Applications and
to upload executable Applications into the target devices. Projects are high-level
representations of Applications that contain the assets necessary to create an Appli-
cation. The main difference between a Project and an Application is that, in contrast
to Projects, Applications are executable. The Deployer first transforms a Project
into an executable Application and then transfers the executable Application into the
target Device. Target Devices include a Smartphone and the Smart Textile. The
Deployer delegates the task to serialize and transfer applications wirelessly to the
Uploader. An UML model of the Deployer is shown in Figure 3.6.

39



CHAPTER 3. TANGOHAPPS FRAMEWORK

40



Chapter 4

TangoHapps Design

In previous chapter, we elicited the functional and non-functional requirements and
created first models that serve as a basis for the development of TangoHapps. This
chapter first describes the trade-offs we encountered and decisions we made in the
design of TangoHapps. In particular, we describe how the different alternatives we
analyzed would have affected the system in terms of the non-functional requirements
elicited in previous section. The rest of the chapter describes TangoHapp’s internal
structure in a top-down manner. We start with TangoHapps’ high-level design and
architecture and then focus on the details of each subsystem. We f

4.1 Design Decisions

In this section we describe the design decisions we made in order to optimize for
qualities of the system, which we described in Section 3.2.2. These are:

Hybrid text and visual programming

Visual programming languages have been shown to lower the entrance barrier to users
with little programming knowledge [68, 49, 7, 83, 84]. In TangoHapps, software func-
tionality components, electronic devices and elements composing the user interface
of a smartphone are represented visually. However, a visual programming language
might not scale well for complex applications and might result inconvenient to users of
TangoHapps who already possess software development experience. In order to fulfill
both non-functional requirements of Low entrance barrier and High ceiling, we decided
to make TangoHapps support both, a visual and a textual programming language.

41



CHAPTER 4. TANGOHAPPS DESIGN

Prototype-based programming

Prototype-based programming is an object-oriented programming paradigm in which
new objects are created by cloning existing object prototypes. After an object has
been cloned, functionality is added to it that distinguishes it from its prototype. As
an example, to create a tennis ball out of a soccer ball, one might clone the soccer
ball, change its color to green and reduce its size to 6.5 cm. This is in contrast to
the class-based programming paradigm, where a model has to be created before any
object can exist. TangoHapps should offer high-level reusable components. In order
to facilitate reuse of these components, we decided to make them available in a palette
of object prototypes that developers can clone by simply drag- and dropping them
into a canvas.

Flow-based programming

Flow-based programming is a programming paradigm in which data is passed through
different components or boxes. Each box executes specific computations in order to
transform the data. Program behavior is defined by connecting boxes to each other
causing the output of a box to be the input of a subsequent box. The flow-based
programming paradigm has been successfully implemented in several development
environments for physical devices [37, 72, 28, 27, 84, 9] and development tools for
other domains, such as Node-RED, Max/MSP and PureData. For example, the CRN
Toolbox represents ready-to-use software components including filters, feature extrac-
tion and classification algorithms as boxes that are shown in a canvas. Users of the
CRN Toolbox connect the outputs of a box to the inputs of another box in order to
create machine learning algorithms.

According to the requirements we elicited in Section 3.2, TangoHapps should
provide high-level reusable components. Furthermore, we decided that Tango-
Happs should feature a visual programming language. The flow-based programming
paradigm would enable developers of TangoHapps to develop applications by connect-
ing visual representations of the functionality components.

Tablet device for design

We decided to implement the visual programming interface on a tablet device based
on the following reasons, aligned with our requirement of Low entrance barrier :

1. Tablet devices allow for direct manipulation of objects on the touchscreen. Rep-
resenting software functionality components visually and further making them
tangible could help make programming less abstract to novice.

2. Tablet devices enable usage by multiple users simultaneously which can be ben-
eficial for developers with less experience in programming and electronics to

42



4.1. DESIGN DECISIONS

learn by collaborating on the same project.

3. TangoHapps should support the creation of applications for smart textiles that
use the capabilities within smartphones. Because tablet devices have similar
capabilities to smartphones, they allow for a realistic design and simulation of
the smartphone application.

Delegation of computations to a smartphone

As we discussed in Section 3.2.2, complex computations would lead to heavier and
bulkier hardware attached to the textile. In order to allow for lightweight constructions
of smart textiles, we decided to delegate most of TangoHapps’ runtime computations
to a smartphone. As possible devices for delegation of computations, we considered
mobile and non-mobile devices. We decided for a mobile device based on three facts:

1. As discussed in the Functional Requirements, we decided that TangoHapps
should support smartphones because they offer useful capabilities not provided
by current smart textiles. The choice to delegate computations to other devices
would require the smart textile to have to communicate with yet another exter-
nal device, which adds a point of failure and might limit performance. Instead,
the computations can be delegated to the same smartphone.

2. Non-mobile devices would require the transmission of sensor data over longer-
range communication technologies, which in general lead to higher power con-
sumption rates. Instead, modern mobile devices enable communication over
Bluetooth Low Energy (also called Bluetooth 4.0), a Bluetooth technology op-
timized for low energy consumption.

3. The delegation of computations to an external device makes the smart textile
dependent on it for its functioning. However, long-range communication tech-
nologies, might not be available everywhere (e.g. in the metro). Hosting the
computations on mobile device with a direct communication with the smart
textile would enable the usage of smart textiles everywhere assuming the mobile
device is carried by the user.

Interpreted language

We chose to have TangoHapps applications interpreted rather than compiled, for the
following reasons:

1. An advantage of interpreted languages over compiled languages is platform inde-
pendence. Code interpreters handle platform specific issues, making applications
reusable across different platforms. The use of an interpreted language, there-
fore, would make TangoHapps better extensible to new hardware, as described
in the non-functional requirement Extensibility with respect to hardware.

43



CHAPTER 4. TANGOHAPPS DESIGN

2. Related to the previous point is the fact that an interpreted language would
allow users of TangoHapps to deal with a high-level syntax independent of spe-
cific platforms rather than forcing them to deal with the nuances of different
platforms.

3. Interpreted languages can be easier to debug because interpreters process the
same representation of the software as the one used by developers. Compiled
languages, instead, transform the representation used by developers making it
harder to relate execution errors to mistakes in the language. An interpreted
language would offer more potential for TangoHapps to display useful runtime
information, which is aligned with the non-functional requirement of Low en-
trance barrier.

44



4.2. HIGH-LEVEL DESIGN

4.2 High-Level Design

Figure 4.1: High-level design of TangoHapps.

TangoHapps consists of two main components: Interactex and TextIT. Interactex
is a visual programming environment that includes three tools: Interactex Designer,
Interactex Client and Interactex Firmware [42]. Interactex Designer is used to develop
and debug applications. Applications created in Interactex Designer are deployed to
Interactex Client, where they are executed. Interactex Client controls the hardware on
the smart textile through APIs offered by Interactex Firmware. Interactex Firmware
runs on the microcontroller attached to the smart textile. TextIT is a hybrid text
and visual programming environment used to extend the functionality of Interactex.
Software components are developed using TextIT and imported into Interactex De-
signer where they are linked to a specific hardware setup and reused in the context
of an application. Figure 4.1 depicts the high-level design of Tangohapps.

45



CHAPTER 4. TANGOHAPPS DESIGN

4.3 Architecture

dware

<<component>>
e

Drivers

<<component>>
Microcontroller

ecution

<<component>>
ata

Libra

<<component>>
Running
Engine

Development

<<component>>
or

<<component>>
Simulator

<<component>>

<<component>>
Smartphone

<<component>>
n

Interpreter

Figure 4.2: TangoHapps’s layered architecture. Software components on the Hard-
ware layer appear grayed out because they consist of libraries developed by third-party
developers reused within TangoHapps.

TangoHapps is based on a layered architecture. The Development layer is the
uppermost layer in the hierarchy and contains the functionality to develop, debug
and deploy smart textile applications. For this purpose, the Development layer has
three main components: the Editor, the Simulator and the Deployer. The Editor is
the equivalent to a source code editor in a traditional IDE and is the main interface
developers use in order to create applications. The Simulator contains the main func-
tionality to simulate and debug an application from within the environment, without
having to deploy it to the smart textile. The Deployer transforms the application’s
source code into executables and uploads the executable into the target devices. The
Development layer is distributed among TextIT and Interactex Designer.

The Execution layer contains the main functionality to execute applications de-
veloped in TangoHapps. Software components in the Execution Layer include the
Running Engine, the Plugin Interpreter and the Firmata components. The Running
Engine executes applications developed in Interactex Designer and the Plugin In-
terpreter interprets plugins developed in TextIT. Firmata executes input and output
operations on the smart textile’s hardware and offers a service for other components to
control the hardware remotely. The Execution layer is distributed among Interactex

46



4.4. HARDWARE/SOFTWARE MAPPING

Client and Interactex Firmware.
The lowest layer in the architecture is the Hardware layer. The Hardware layer

contains drivers and libraries to control the electronic devices attached to the textile
and the user’s smartphone. The Hardware layer offers an interface to upper layers for
accessing the hardware capabilities without having to deal with the complexity of the
hardware implementation. The Hardware layer is composed by Hardware Drivers, the
Microcontroller Firmware and a set of APIs provided by the Smartphone’s OS. The
Hardware Drivers software component consists of a set of source code libraries used
to control specific sensor and output devices. Similarly, the Microcontroller Firmware
component consists of a set of source code libraries for controlling capabilities of differ-
ent microcontrollers. The Mobile Phone OS component manages the mobile phone’s
hardware and software resources and provides high-level APIs to other components
to control it. TangoHapps’ architecture is shown in Figure 4.2.

The following subsections in this chapter describe in detail each software compo-
nent in TangoHapps in a bottom-up manner, starting at the Hardware layer up to the
Development layer.

4.4 Hardware/Software Mapping

TangoHapps runs on four different hardware devices. TextIT runs on a browser.
Therefore, it executes on any computing device able to run a browser. Interactex De-
signer executes on multi-touch tablet devices. Interactex Client executes on smart-
phones. The current implementation of Interactex Designer and Interactex Client
are made for iOS. Therefore, Interactex Designer can be installed on an iPad device
and Interactex Client on an iPhone or iPod Touch. Interactex Firmware executes on
a microcontroller. The current implementation of Interactex Firmware is made for
Arduino. Figure 4.3 displays the distribution of the software components introduced
in previous section into hardware nodes.

47



CHAPTER 4. TANGOHAPPS DESIGN

Tan

Interactex

e
Drivers

rocontroller

ata

TextIT

n
Interpreter

n
or

Interactex
Designer

Runni gine

Simulatoror

n
Interpreter

Interactex
t

Runni gine

ata
Libra

n
Interpreter

Mobile Phone OS

Applications

App 1 App 2 App N

>>

<<Bluetooth

Figure 4.3: Deployment of software components in TangoHapps.

48



4.5. RUNNING ENGINE

4.5 Running Engine

-name

+execute()

Application

Application
Object

-name

-value

V able
-name

ecut

Method

+invoke()

on

+run()

-name

+trigger()

*

* *

*
*

1

*

*

1

*

invokes

Figure 4.4: Main classes of the Running Engine software component.

The Running Engine is the main responsible component for executing applica-
tions. Runner is the class that initiates execution of an application by instantiating
the Application class and invoking its execute() method. Applications are a container
for Application Objects and interactions between them. We mentioned earlier that
Application Objects consist of Events, Methods and Variables and that Events of an
Application Object can invoke Methods of other Application Objects if the number and
types of parameters match. Types supported in TangoHapps are Numbers, Boolean
values and Strings. Objects in TangoHapps are treated as every other Type, which
enables Events to provide and Methods to expect Objects as parameters. Instances
of the Invocation class store the necessary information to perform the invocation at
runtime. More specifically, Invocations reference the Event that triggers the invoca-
tion, the Method that should be invoked, and the Variables that should be passed
as a parameter to the Method. Figure 4.4 displays the main classes of the Running
Engine.

The functionality that is executed by the Running Engine is distributed among
Application Objects. Application Objects are reusable abstractions of physical or dig-
ital entities. For example, the Light Sensor Application Object is an abstraction in
TangoHapps that represents a physical light sensor. Application Objects include Elec-
tronic Devices, UI Widgets and Programming Objects. Electronic Devices encapsulate
low-level microcontroller instructions to access sensors, output devices and microcon-
trollers and offer a high-level API to control such devices. UI Widgets represent
the widgets present in a smartphone’s user interface. Programming Objects are con-
structs commonly present in programming languages such as arithmetic operators and
functions. In the following subsections, we list every Application Object available in
TangoHapps. A complete description of Application Objects including their Events,

49



CHAPTER 4. TANGOHAPPS DESIGN

Methods and Variables is available in the Chapter A in the Appendix. In order to
distinguish between an Application Object and the physical or digital entity it repre-
sents, Application Objects appear in italics throughout the rest of this Ph.D thesis.
A taxonomy of Application Objects is presented in Figure 4.5.

-name

Application
Object

-position

oun

Electr c
Object

Sensor

t rocontroller

-value

V able
-
-

+operate()

Operator
+execute()

F

cat

Operator
son

Operator
ecut

F
ecut

ed
F ecut

n

Figure 4.5: Taxonomy of Application Objects.

4.5.1 Electronic Devices

TangoHapps supports every sensor, output device and microcontroller from the Ar-
duino Lilypad1 hardware kit and additional sensors that are also suitable for inte-
gration in smart textiles, such as the MPU 6050 Inertial Measurement Unit (IMU).
Sensors supported in TangoHapps are listed next.

• Buttons are similar to UI Widget Buttons. Buttons can be pressed and emit
events when pressed and when released.

• Switches are on/off switches and like UI Widget Switches, they emit events when
their state change.

• Light Sensors measure the intensity of the light and emit an event when a new
sensor reading is available.

1https://www.sparkfun.com/products/retired/10354

50



4.5. RUNNING ENGINE

• Temperature Sensors are similar to Light Sensors. Temperature Sensors mea-
sure temperature and emit an event when a new sensor reading is available.

• Accelerometers measure acceleration forces in a 3D space and emit an event
when a new sensor reading is available.

• LSM Compass represents the LSM303C 3-axis accelerometer and 3-axis com-
pass2. The LSM Compass emits events when either new accelerometer or com-
pass readings become available.

• MPU 6050 represents the MPU 6050 3-axis accelerometer and 3-axis gyroscope3.
Like the LSM Compass, the MPU 6050 emits events when new accelerometer
or gyroscope readings become available.

• Potentiometer represents a generic analog textile sensor, including sensors based
on the capacitive, resistive and optical principles.

Output Devices supported in TangoHapps are:

• LEDs stand for Light Emitting Diodes. LEDs can be turned on and off and
their intensity can be set. These LEDs emit light of a single color.

• Buzzers emit a sound at a specified frequency. Like LEDs, Buzzers can be
turned on and off and their frequency can be set.

• Three-Color LED emit light in different colors. Three-Color LEDs can be turned
on and off, and the intensities of their red, green and blue components can be
set in order to produce different light frequencies.

• Vibration Boards produce a vibration at a specified frequency. Like Buzzers,
they can be turned on and off and their vibration frequency can be set.

TangoHapps supports three Arduino Lilypad microcontroller models. All of them
operate with voltages that oscillate between 2.7 and 5.5 V at 8 MHz frequency. The
specific capabilities of these microcontrollers are listed below:

• Lilypads represent the microcontroller officially called “Lilypad Arduino Main
Board”4. Lilypads contain 14 digital, 6 analog pins and 16 Kb of flash memory.
Lilypads have no placeholder for a battery and do not include a module for
wireless communication; these hardware parts need to be attached externally to
the board.

• Lilypad Simple represents the microcontroller officially called “Lilypad Arduino
Simple”5. Lilypad Simple microcontrollers have less pins and more memory than
Lilypads: 9 digital, 4 analog pins and 32 Kb of flash memory. Lilypad Simple
microcontrollers have a placeholder for a battery but no wireless communication
module.

2https://www.sparkfun.com/products/13303
3http://www.invensense.com/products/motion-tracking/6-axis/mpu-6050/
4https://www.arduino.cc/en/Main/ArduinoBoardLilyPad
5https://www.arduino.cc/en/Main/ArduinoBoardLilyPadSimple

51



CHAPTER 4. TANGOHAPPS DESIGN

• BLE-Lilypad represents a microcontroller developed by the Universität der Kün-
ste in Berlin based on the Lilypad Arduino Main Board. The BLE-Lilypad has
the same features as the Lilypad and additionally features a placeholder for
battery and an integrated Bluetooth Low Energy module.

4.5.2 UI Widgets

UI Widgets (i.e. reusable elements of a graphical user interface) are used to create the
interface shown on the mobile device. UI Widgets range from simple elements such
as buttons, labels and sliders to more complex elements to access specific capabilities
of a smartphone such as its contacts and music lists. UI Widgets have Variables
that enable developers to configure their visual appearance, such as their position
and dimensions within the mobile device’s screen and their background color. UI
Widgets can be simple (e.g. a button) or contain other UI Widgets (e.g. Music
Player, which contains Buttons, Labels, Switches and Sliders). The subclasses of UI
Widgets supported in TangoHapps are listed next.

• Buttons are equivalent to push buttons on mechanical devices. Buttons emit
events when they start to be pressed and when they are released.

• Labels are used to display text. Their text can be set statically or dynamically.

• Switches are equivalent to an on/off switch (e.g. a light switch). Switches have
two possible states on and off and emit events when their state change.

• Sliders have a handle that allows users to select a value through a range of
allowed values. Sliders emit events when the handle is moved.

• Touchpads represent an area on the smartphone where multi-touch gestures are
recognized. Multi-touch gestures supported by the Touchpad are: tap, double
tap, long tap, pinch and pan. Touchpads emit events when a multi-touch gesture is
recognized.

• Image Views are used to display an image, which is set statically.

• Music Players are composite widgets that contain Buttons, Labels, Image Views
and Sliders. Music Players contain functionality to iterate and play music stored
on the user’s mobile device. Music playlists can be controlled by users through
the Music Player ’s user interface or by other Application Objects through its
methods.

• Contact Books are composite widgets similar to Music Players that contain
Buttons, Labels and Image Views. Contact Books contain functionality to iter-
ate through the user’s contacts, and to make phone calls if the mobile device
supports it. In a similar way to Music Players, Contact Books offer an interface
to users as well as to other Application Objects to access its functionality.

52



4.5. RUNNING ENGINE

• Monitors are composite widgets used to display series of values in a plot. This
is useful for applications where users need to monitor sensor values over time.

4.5.3 Programming Objects

Programming Objects are the main means by which developers reuse, extend and
implement behavior in TangoHapps. Programming Objects range from abstractions
over simple programming constructs (e.g. variables, arithmetic operators) to high-
level software components (e.g. an accelerometer-based human posture classifier).
Programming Objects can be either: Operators, Variables or Functions.

Operators can be Arithmetic, Comparison or Logical Operators. Arithmetic Oper-
ators take two numeric inputs and produce a numeric output. Supported Arithmetic
Operators are Addition, Subtraction, Multiplication, Division and Modulo. Compar-
ison Operators compare two numeric values and provide the result of the comparison as
a Boolean Variable. Supported Comparison Operators are: Bigger , BiggerEqual , Smaller ,
SmallerEqual , Equal and NotEqual . Logical Operators take two Boolean inputs and
provide the result of a logical operation as output. Supported Logical Operators are the
AndOperator (an AND-conjunction) and the OrOperator (an OR-disjunction).

Variables store values and emit events when the stored value has changed so
that other objects can react to the change. Supported Variables in TangoHapps are:
Booleans, Numbers, Strings and Objects. Booleans store Boolean values, Numbers
store real numbers including integer and floating point numbers and Strings store
chains of characters.

Functions are executable code procedures, comparable to functions in text-based
programming. An example of a Function is the Mean Extractor. The Mean Extractor
calculates the mean of a set of values it receives as input. Functions can be Predefined
Functions, Plugins or Composite Functions. Predefined Functions are functions al-
ready available in TangoHapps. In contrast, Plugins are code not originally available
in TangoHapps but imported from TextIT. We explain the concept of Plugins with
detail in the next Section 4.6. Predefined Functions for signal processing are:

• Windows take streams of values, buffer them and deliver chunks of values. Win-
dows are useful for signal processing algorithms to process chunks of a signal.
The amount of samples contained in a chunk and the amount of overlapping
samples between two consecutive chunks can be configured by developers.

• Low-Pass Filters smooth out a signal by attenuating its high frequencies.

• High-Pass Filters are the opposite of Low-Pass Filters. High-Pass Filters at-
tenuate the low frequencies of a signal and pass its high frequencies.

• Mean Extractors compute the mean of a set of values.

• Deviation Extractors compute the deviation of a set of values.

• Peak Detectors compute the highest peak of a set of values and deliver its value
and index within the set of values.

53



CHAPTER 4. TANGOHAPPS DESIGN

• Activity Classifiers determine user physical activity (walking, running, climbing,
quiet) based on accelerometer input.

• Posture Classifiers determine the user posture (standing, lying down on belly,
lying down on the back) based on accelerometer and gyroscope input.

Other Predefined Functions available in TangoHapps are:

• Timers generate events after a specified amount of time.

• Sounds reproduce audio files over the user’s mobile device. Sounds differ from
Music Players in that they do not access the device’s music lists, but rather play
a sound predefined at development time. Sounds are useful for user interfaces.

• Recorders offer functionality to store a set of values on the mobile device’s hard
drive and to reproduce it later.

• Mappers scale numeric values within a specified range. They are useful for
adapting either sensor input to a specific range or values to the range required
by an output device.

Composite Functions group Programming Objects and Invocations between them in
order to construct complex Programming Objects by aggregating simpler ones. Com-
posite Functions were designed as a Composite design pattern [34]. Composite Func-
tions enable developers to dynamically define their Methods and Events. Methods and
Events of a Composite Function do not contain any specific behavior, but simply redi-
rect to a Method or Event of a Programming Object contained within the Composite
Function.

4.6 Plugin Interpreter

The Plugin Interpreter executes JavaScript plugins developed in TextIT. The Inter-
preter class is the Facade of the Plugin Interpreter [34] and offers a service to other
components for interpreting Plugins. Plugins have code, which is contained within the
Script class. A Script might reuse code contained in other Scripts. The Plugin class is
a subclass of Application Object. This allows Plugins to be executed by the Running
Engine in the same way any other Application Object. The Interpreter delegates the
execution of Scripts to the JSContext.

The JSContext is a class provided by Apple’s JavaScriptCore framework that rep-
resents a JavaScript execution environment. The data used by the JSContext class is
stored in instances of the JSValue class. JSValue represent JavaScript variables. Sup-
ported variable types include numbers, arrays, objects and functions. The JSContext
produces execution information when it executes JavaScript code.

The Interpreter parses the execution results provided by the JSContext and creates
an instance of the Debug Info class for each error, warning and output message. The
Debug Info contains the message represented in a String and the line number where

54



4.7. FIRMATA LIBRARY

+interpr
Interpreter

e

Script
er

ecut
n

Figure 4.6: Main classes of the Plugin Interpreter component.

the message was originated. The Interpreter passes instances of Debug Info over to
the Debugger. The Debugger displays syntax errors, warnings and output messages
in order for developers to identify issues in the code syntax and undesired runtime
behavior. The main classes of the Plugin Interpreter and their relationships are shown
in Figure 4.6.

4.7 Firmata Library

The Firmata Library is the closest component to the Hardware Layer and acts as
an adapter between the Execution Layer and the Hardware Layer. The Firmata
Library transforms high-level operations with hardware devices into instructions that
the microcontroller attached to the smart textile is able to execute. For example,
an operation to turn an LED on will be transformed by the Firmata Library into an
instruction to execute a digital output command on the microcontroller pin connected
to the LED.

The communication between the mobile device and the microcontroller attached
to the smart textile conforms to the Firmata protocol6. Firmata is a generic protocol
that enables the communication between a microcontroller and a host computer. The
Firmata class is the Facade of the component and offers a set of high-level methods
to send messages to the microcontroller and to handle messages received from it.
Internally, Firmata converts high-level method calls into sequences of bytes and parses
sequences of bytes in order to invoke the appropriate handler method.

The Communication Module defines an interface for sending and receiving data.

6http://www.firmata.org

55



CHAPTER 4. TANGOHAPPS DESIGN

-handleDigitalResponse()
-handleAnalogResponse()
-handleI2CResponse()
+sendDigitalMessage()
+sendAnalogMessage()
+sendI2CMessage()
+sendCapabilitiesRequest()
+receiveData()

ata
-number
-mode
-value

-name
-address -number

-value

I2C

+registerAsReceiver()
+sendData()

Communication
Module

+registerAsReceiver()
+sendData()

unication
Module

+registerAsReceiver()
+sendData()

Virtual
unication

Module

+subscribe(Subscriber)
+unsubscribe(Subscriber)
+notify()

Publisher

-bytes
-size
-register
-device

I2C
e

+receiveData()

<<Interface>>
unication

Modu e

+update()
Subscriber

*

1 1

1

*

1..*

sends

delegates

Figure 4.7: Main classes of the Firmata Library component. The Virtual Communi-
cation Module belongs to the Simulator software component.

There are currently two implementations of the Communication Module. The BLE
Communication Module sends data over the device’s Bluetooth Low Energy interface.
The Virtual Communication Module belongs to the Simulator software component
and is used to display data on a debugging interface in order for developers to keep
track of messages sent to the microcontroller.

The Firmata Library follows the Observer [34] and the Delegation patterns for
sending data to the microcontroller and handling received data. The Observer pattern
is used by the Firmata class, which observes for changes in Pins and I2C Devices and
synchronizes their state with the actual hardware. The Delegation pattern is used
between the Communication Module and the Firmata class. The Communication
Module delegates data to Firmata without knowing the details of its implementation
besides the fact that it implements the Communication Module Delegate interface.
The Communication Module Delegate interface enforces the implementation of the
receiveData() method, which handles data received over the current Communication
Module. The use of the Observer and Delegation patterns decouples the Pin, I2C

56



4.8. EDITOR

Device and the Communication Module classes from the Firmata class. Furthermore,
the usage of these design patterns improves maintainability of the Firmata class and
reusability of the classes it communicates with. An UML model of the Firmata Library
is shown in Figure 4.7.

4.8 Editor

+selectView()
alette

+draw()

Objects
V

+draw()

Properties
V

+draw()

Palette
V

Editor
Controller

oolbar

+addObject()
+removeObject()

as

+handlePressed()

oolbar

+recognize()

Multi-touch
Gesture

Edition
Object

1 *

*

2

1

1

*

1

1

reacts to

draws

Figure 4.8: Overview of the Editor software component.

The Editor offers an interface for developers to design circuits and create applications.
The Editor consists of three main components: the Palette, the Toolbar and the Can-
vas. The Palette fulfills two tasks. First, it displays a list of Application Objects that
developers drag into the Canvas in order to reuse their functionality. Second, it offers
an interface to developers for modifying the Variables of the object that is currently
selected in the Canvas. The Toolbar contains Toolbar Buttons that are used to ma-
nipulate objects in the Canvas and modify the Editor ’s state. The Canvas displays
Edition Objects and enables developers to manipulate them (e.g. move them, delete
them, define Invocations between them). Developers manipulate Edition Objects by
means of Multi-touch Gestures. The Multi-touch Gesture is an abstract class that
defines an interface for recognizing multi-touch gestures. Subclasses of Multi-touch

57



CHAPTER 4. TANGOHAPPS DESIGN

Gesture implement the behavior for recognizing a gesture based on sequences of user
touches. Currently supported multi-touch gestures are taps, double tap, pans, pinches
and rotation gestures. An UML model of the Editor’s main classes is shown in Figure
4.8. We continue this section with a more detailed description of the components in
the Editor and finally describe how they can be used to design a circuit and develop
an application.

4.8.1 Palette

+draw()

Objects
View

-name
-image

+handleDrag()
+handleDrop(Position)
+canBeDropped(Position)

Palette

Edition
Object

ation
View

-label

+draw()

Variables
View

+draw()

Palette
View

+handleDr
Static Palett ic Palette It

tiate>>

Figure 4.9: Main classes involved in the Palette.

The Palette enables developers to add objects to a Project and edit them. The
Palette contains two views, the Objects View and the Configuration View. The Ob-
jects View displays a list of every object available in TangoHapps for reuse and the
Configuration View enables developers to modify an object’s configuration.

Objects displayed in the Objects View are called Palette Items. A Palette Item is
a visual representation of an Application Object that contains an image and a name.
Palette Items can be dragged into the Canvas. Palette Items can be dropped at
specific positions within the canvas. For example, UI Widgets can only be dropped
on top of the smartphone and Hardware Devices can only be dropped on top of a
textile. For this reason, each Palette Item subclass has a different implementation of
the canBeDropped() method.

When dropped, each Palette Item instantiates a different Edition Object. Palette
Items that instantiate Edition Objects available in TangoHapps by default are called
Static Palette Items. We have described the concept of Composite Functions in Sec-
tion 4.5. Composite Functions are Programming Objects that have been created by
aggregation of simpler Programming Objects, in order to improve reusability of the

58



4.8. EDITOR

functionality developed with TangoHapps. Composite Functions that have been cre-
ated in the canvas can be dragged into the Palette for later reuse in the same or in
a different Project. Palette Items that were originally available in TangoHapps are
called Static Palette Items. Static Palette Items are programmed to instantiate a
specific Editable Object. In contrast, Dynamic Palette Items instantiate a Composite
Function that has been added to the Palette at runtime.

It is unlikely that the default configuration of an Application Object fulfills the
requirements of a specific use case. Application Objects can expose their Variables in
order for developers to modify the default behavior of an Application Object. Vari-
ables exposed by an Application Object are modified through the Variables View.
Each Edition Object generates a different instance of a Variables View containing a
user interface with controls to modify an Application Object ’s exposed Variables. A
complete list of every Application Object ’s Variables is available in Chapter A in the
Appendix. An UML model of the main classes of the Palette and the relationships
between them is provided in Figure 4.9.

4.8.2 Toolbar

T ar

+handlePressed()

T ar

+handlePressed()+handlePressed()

Connection

+handlePressed() +handlePressed()

dware

Editor

+handleGesture()

Tool
State

+handleGesture()

Connection
State

+handleGesture()
State

+handleGesture()
State

+handleGesture()

dware
State

+recognize()

Multi-touch
Gesture

1

1

1

1 *

*

handles

sets

Figure 4.10: Main classes involved in the Toolbar.

Toolbar Buttons available in the Toolbar are the Connection Button, the Copy
Button, the Remove Button and the Hardware Button. Each Toolbar Button sets the
Editor into a different state. The Editor reacts differently to user input depending
on its current state. We have designed the Editor ’s response to user input as a State

59



CHAPTER 4. TANGOHAPPS DESIGN

pattern [34]. Every subclass of Tool State conforms to the Tool State interface by
implementing the handleGesture() method. Each Tool State handles a Multi-touch
Gesture differently. The Editor ’s state is modified by setting its reference to the
current instance of Tool State. Figure 4.10 displays the relationship between the
Toolbar and the Editor in a class diagram.

4.8.3 Canvas

-applicationObject
-image
-label

+draw()

ion
Object -position

-shape
-color

sHook()

+draw()
+acceptsHoo...

Method

+draw()
+acceptsHoo...

Variable

+draw()
+acceptsHook()

+draw()

cation
View

as cation

*

*

*

1 1

*

2*
connects

represents

Figure 4.11: Main classes involved in the Canvas.

The Canvas is where the main visual programming in Interactex Designer takes place.
Applications in Interactex Designer are created by adding Edition Objects into the
Canvas and by defining Invocations between them. Edition Objects are representa-
tions of Application Objects that expose the Application Objects’ Events, Methods
and Variables in order for developers to define how Events should be handled, when
Methods should be invoked and how Variables should be set at runtime. Edition
Objects are shown as an image with a label on screen. Edition Objects have the so
called Hooks. Hooks are visual representations of Methods, Events and Variables that
developers use to define method invocations. Connecting an object’s Event Hook to
another object’s Method Hook causes an Invocation to be created that will invoke the
specified Method when an Event triggers at runtime.

Invocation Views are a visual representation of an Invocation. Invocation Views
draw lines between objects in the Canvas and display Variable Hooks. Variable Hooks
fulfill two purposes. First, they display the types of parameters being passed in an
Invocation. Second, Variable Hooks enable developers to pass an Application Object ’s
Variables as parameters into any Invocation. For example, an Invocation between the

60



4.8. EDITOR

Button’s buttonPressed() event and the LED ’s setIntensity(Number)would not valid
because the event does not provide a parameter of type Number, as expected by the
setIntensity(Number) method. In this case, the Invocation View will still be shown
with an icon indicating that the parameters provided by the event do not comply
with the parameters expected by the method. The different icons used by Invocation
Views are shown in Section 5.1.3. In this case, the Variable Hook of a third object
with a Variable of Number type might be dragged into the Invocation View. At
runtime, when the buttonPressed() event triggers, the Running Engine will fetch the
third object’s Variable and pass it in the setIntensity(Number) method call. Figure
4.11 displays a model of the main classes involved in the Canvas.

4.8.4 Circuit Layout

raint

+fulfills()

Allowed
Pin

Constraint
+fulfills()

Allowed

Constraint
+fulfills()

es
Resistor

Constraint

+connectTo(Microcontroller)

Electronic
-position

+canConnectT

Pin
Connection

Routin
Node

t T

connec

Figure 4.12: Main classes involved in the Editor ’s functionality to create circuit
layouts.

In order to create circuits, developers lay out Electronic Devices on top of the
Smart Textile and draw Connections between them. Connections connect two or
more Pins. An Electronic Device’s Pin, however, can have more than one Connection.
Connections can be straight lines between two Pins or a collection of line segments.
In order to split a Connection into two or more line segments, developers add Routing
Nodes to a Connection. Routing Nodes are fixed positions defining the edges of the
segments composing the Connection.

Not every Pin should be connected to every other Pin. A set of Constraints limit
the amount of Pins a Pin can be connected to. The Allowed Pin Constraint enforces
a Pin to be connected to a specific type of Pins. The Allowed Device Constraint
enforces a Pin to be connected to Pins of a specific type of Electronic Device. The

61



CHAPTER 4. TANGOHAPPS DESIGN

Requires Resistor Constraint enforces that a Pin is connected to another Pin through
a Resistor. A Pin can have multiple Constraints at the same time. An UML model
of the main classes involved in the lay out of electronic circuits and the relationships
between them is provided in Figure 4.12.

Next, we describe the concept of pin constraints with an example of a Button
connected to a digital pin of the Arduino Lilypad. The Button has two Pins : a Power
Pin and a Digital Pin. The Power Pin has an Allowed Pin Constraint that enforces
it to be connected to other Power Pins. The Digital Pin has three constraints: a
Constraint to enforce the usage of a Resistor, a Constraint to enforce its connection
to a Digital Pin, and a Constraint to enforce its connection to a Microcontroller. All
three Constraints are satisfied because the Digital Pin is connected to the Lilypad’s
Digital Pin 9 and to the Lilypad’s Ground Pin through a Resistor. Figure 4.13 shows
the described circuit layout created with Interactex Designer.

(a)

tal Pin

pinType = Digital

Pin
Constraint

deviceType = Microcontroller

Constraint

resistance = 10KOhms

es
Resistor

Constraint

lil
Microcontroller

dPin

pin
tal Pin

uit.Allowed
Pin

Constraint

(b)

Figure 4.13: Layout (a) and object diagram (b) of an electric circuit that consists of
a Button connected to an Arduino Lilypad.

62



4.9. PLUGIN EDITOR

4.9 Plugin Editor

+handleInput()
+produc ()

TextIT
Object

+execute()

Control
Object

+draw()

Visuali on
Object

-name

+send()
+r

Port

Connection
-paperSize
-gridSize
-origin

evel

+findView()
+addObject(object : TextITObject)
+removeObject(object : TextITObject)

as

-tagName

+addObserver(object : TextITObject)
+removeObserver(object : TextITObject)
+notify()
+update(object : TextITObject)

Object Obs

1

2

*

1

1
*

connects

Figure 4.14: Main classes in the Plugin Editor.

The Plugin Editor offers an interface to create code plugins in TextIT that can be
imported into Interactex. In order to create a plugin, developers drag and drop TextIT
Objects from a palette into the Canvas. There are two main categories of objects,
the Control Objects and the Visualization Objects. Control Objects execute code that
modifies input data and Visualization Objects display input data without modifying
it. With exception of the Library Manager, every object in TextIT has input and
output Ports used to send and receive data to other objects. Developers define the
flow of data between TextIT Objects by creating Connections. Connections connect
the output Port of a TextIT Object to the input Port of another TextIT Object.

The Plugin Editor follows the Observer pattern to handle the flow of data between
TextIT Objects. When a Connection between two TextIT Objects is defined, the
receiving TextIT Object subscribes to the receiving object’s Object Observer. Figure
4.14 displays the main classes of the Plugin Editor and their relationship.

Next, we describe every Control Object in TextIT.

• The Start Object initiates execution of an application. The Start Object does
not have input ports and has a single output port that triggers an event when
the Start Object’s button is clicked.

• The Data Source accesses files containing data in JSON format. The Data
Source contains an input port that can be triggered by other objects to load the
data file and an output port that delivers the data organized as a keys/values
dictionary.

• The Conditional Statement is equivalent to an if/else condition in text-based
programming. It is similar to the Code Editor in that it also offers a view with
syntax highlighting where developers can edit and debug code. However, it

63



CHAPTER 4. TANGOHAPPS DESIGN

differs from the Code Editor in that its output is restricted to a single value of
Boolean type.

• The Iterator iterates through an array or list of data. The Iterator accepts an
input of JavaScript types List or Array and has two output ports. The Iterator ’s
”result” output port delivers elements of the input array or list sequentially,
together with their index within the array or list. The “finished” output port is
triggered after the last element of the list or array has been reached.

• The Delayer is used to delay the internal execution of the object it connects
to. The delay time is specified by developers. The Delayer is useful to simulate
sensor sampling rates and to deliver data at a convenient speed to Visualization
Objects.

• The Code Editor enables code-based programming and features syntax high-
lighting and debugging functionality. The Code Editor has a single input port,
which accepts any type of data. Output ports are generated dynamically by the
Code Editor after execution of the code.

• The Library Manager enables developers to specify which libraries will be needed
at runtime. Libraries are JavaScript files containing JavaScript functions. When
loaded, every function of the imported library becomes available to every other
object in the canvas. The Library Manager has no input or output ports.

TextIT ’s Visualization Objects are:

• Labels display a value and have an input port providing the value.

• The Line Chart displays a series of 2D points in a line chart. The Line Chart
has an input port that receives an array or pairs of values representing a point.
Developers can decide whether data is fed as single array or as a series of value
pairs. Alternatively, developers can also configure the Line Chart to use “time”
as one of the axis, and supply only single values.

• The Pie Chart displays data as a pie chart. The Pie Chart has an input port
that accepts key-value pairs. The Pie Chart can be used to compare values (e.g.
the accuracies of two algorithms).

• The Scatter Chart is similar to the Line Chart in terms of input and output
ports. However, the Scatter Chart displays the input values as non-connected
points.

• Gauge Charts display a numeric value that is known to be within a range. The
value is provided by the Gauge Chart ’s single input port.

• 3D Viewers render an object in a 3D space. Object rotation values are passed
to the 3D Viewer in the form of quaternions. The 3D Viewer might be helpful
to understand body postures and limb movements.

64



4.9. PLUGIN EDITOR

• JSON Viewers provide a visualization of data in the JSON format. The JSON
Viewer receives a dictionary over its single input port and displays it as nested
key/value pairs. Because data between TextIT Objects is exchanged in a JSON
format, the JSON Viewer might be useful for debugging TextIT applications.

• The Table Viewer displays data in a tabular format. The Table Viewer has a
single port that accepts 2D arrays and an output port that triggers after the
table data has been rendered on screen.

• Video Players are used to play video files that are loaded from the developer’s
filesystem. Video Players have an input port to control the video (i.e. start,
stop) and an output port that emits events to communicate the state of the
player (i.e. started, stopped). Furthermore, while playing, the Video Player
sends the elapsed time through an output port called tick. Video Players are
useful to relate sensor values and algorithm results to situations on the real
world. For example, displaying a slow-motion video of a user jumping next
to the motion data collected during the jump might help developers relate the
specific phases of the jump (jump preparation, take off, height peak, landing)
to the signal.

Every Visualization Object has an output port that triggers an event when the last
data sample has been rendered.

65



CHAPTER 4. TANGOHAPPS DESIGN

4.10 Simulator

The Simulator is responsible for executing an Application in Interactex Designer.
This enables developers to test Applications without having to deploy them to the
smart textile. The Simulator Controller class is the Facade of the Simulator. The
Simulator Controller offers an interface to other components for starting and stopping
a simulation.

Applications in TangoHapps are an aggregation of Application Objects. Therefore,
in order to test an Application, developers test the different states of each Application
Object. The functionality to simulate applications is distributed along the subclasses
of the Simulation Object class. Each subclass of Simulation Object is a visual repre-
sentation of an Application Object. Simulation Objects display runtime information
about the Application Object they represent and react to User Gestures by modifying
an Application Objects’s state. Section A.4 in the Appendix lists the behavior of each
Simulation Object subclass.

+start()
+stop()

Simulator
oller -image

+handleGesture()

Simulation
Object Application

Object

+draw()
+handleGesture()

get
Simulation Object

+draw()
+handleGesture()

Electroni
Simulation Object

+draw()
+handleGesture()

Programming
Simulation Object

*

1

*

1 1

handles

Figure 4.15: Main classes in the Simulator.

Simulation Objects are designed following the Decorator and Observer design pat-
terns [34]. The Decorator design pattern enables adding behavior to Application
Objects without modifying them. In agreement with the Decorator pattern, Applica-
tion Objects and Simulation Objects share a common interface. Having Application
Objects and Simulation Objects share a common interface enables the Simulator Con-
troller to interact with Simulation Objects in the same way as the Runner class from
the Running Engine component would interact with an Application Object. Simu-
lation Objects handle user input during simulation time and delegate the state of
the Application Object accordingly. The Observer design pattern enables Simulation
Objects to observe the state of Application Objects. Simulation Objects update their
visual representation to match the state of the Application Objects they represent.

66



4.11. DEPLOYER

-on
-intensity

+turnOn()
+turnOff()
+setIntensity(Number)

Simulation
Object

-on
-intensity

+turnOn()
+turnOff()
+setIntensity(Number)

+turn
+turn

)

LED
Interface

SimulatorRunner

+subsc riber)
+unsubscr iber)
+notify()

Publisher
+update()

Subscriber

*

11

modifies

Figure 4.16: Usage of the Decorator pattern in the Simulator.

Figure 4.16 illustrates the application of the Decorator and Observer patterns to
extend the functionality of the LED for simulation purposes. The LED and LED
Simulation Object share a common interface, called “LED Interface”. The LED Sim-
ulation Object handles user taps by invoking the LED ’s turnOn() method. When
the LED has been turned on, it notifies its observers about the state change. When
notified about the LED ’s state change, the LED Simulation Object displays a sprite
of a light beam on top of the LED Simulation Object ’s image. Note that the LED
Simulation Object could directly respond to user taps by displaying and hiding the
sprite. However, Application Objects might change their state independently from
user input applied to a Simulation Object. Having the Simulation Objects respond
to changes in Application Objects’ state ensures that Simulation Objects are updated
independently of how the Application Object ’s update happened.

4.11 Deployer

The Deployer executes on Interactex Designer and is responsible for two main tasks.
First, the Deployer converts a Project into an executable Application. For each Edition
Object in the Project, the Deployer instantiates an Application Object. If Invocations
between Edition Objects have been defined in the Project, the references between them
have to be mapped to references between the corresponding Application Objects in the

67



CHAPTER 4. TANGOHAPPS DESIGN

Application. After every Application Object has been created, the Deployer converts
references between Edition Objects into references between Application Objects. In
order to resolve a reference in constant O(1) time, the Deployer uses the Reference
Lookup Table that contains a reference to an Application Object for each Edition
Object.

Second, the Deployer is responsible for serializing an application and uploading it
to Interactex Client. The main class responsible for serializing and uploading appli-
cations is the Deployer Controller. The Deployer Controller is also the Facade of the
Deployer and offers a single method to other software components to deploy an ap-
plication. The deploy method first converts a Project into an executable Application,
as described earlier in this section. Once the instance of the Application has been
created, the Deployer Controller passes it over to the Application Uploader.

Every Application Object in TangoHapps implements the Serializable protocol.
The Serializable protocol contains a method to serialize and another to deserialize
the Application Object. The serialize method is an instance method that returns a
byte stream representing the instance. The deserialize method is a class method that
creates an instance based on a byte stream. The Application Uploader first serial-
izes an Application by invoking the serialize method of each Application Object and
then transfers the Application to a smartphone running Interactex Client. The Appli-
cation Uploader also discovers nearby smartphones running an instance of Interactex
Client, serializes Applications and transfers a serialized Application to the Application
Downloader.

The Application Downloader runs in Interactex Client and is responsible for down-
loading a byte stream and deserializing it into an Application. In order to deserialize
an Application, the Deployer Controller invokes the deserialize() method of every
Application Object.

-r eferences()
roject)

oller

Project Application

Application
Object

Edition
Object

+discover(Devices)

Application
ader

-unm all()
+download()
+advertise()

Application
Downloader

+serialize()
Seria ble

1 1

1

*

1 1

*

1

*

*

1

*

1

*

transfers uploads

outputsinputs

Figure 4.17: Main classes of the Deployer.

68



Chapter 5

TangoHapps User Interface

This chapter describes every view of Interactex and TextIT and the navigation be-
tween them. Furthermore, at the end of this chapter, we present a step by step
description of how a smart textile application is developed in TangoHapps.

5.1 Interactex Designer

Interactex Designer has three main views. The first view the user sees when the
application has been opened is the Project Selection Screen. The Project Selection
Screen enables developers to start a new project and select already existing projects
to continue working on them. Developers use the Editor Screen to develop applications
for smart textiles and the Simulator Screen to test applications. Usually, developers
open a project and then navigate back and forth between Editor Screen, where they
add new functionality, and the Simulator Screen, where they test the latest developed
functionality.

5.1.1 Project Selection Screen

The Project Selection Screen displays the projects stored in the iPad’s hard drive.
Projects can be arranged on a grid or list fashion. When projects are arranged as
a grid fashion, a screenshot of each project’s last state and the project’s name are
displayed. When projects are displayed as a list, only their name and creation date
are shown. The navigation bar at the top of the Project Selection Screen contains
two buttons: Edit and New. The Edit button turns displayed projects into editable
mode. In editable mode, projects can be renamed, rearranged, duplicated and removed.
The New button starts an empty project. A project is selected by tapping on its
screenshot. Selecting an existing project or starting a new project lead to the Editor
Screen. Figure 5.1 shows a screenshot of the Project Selection Screen.

69



CHAPTER 5. TANGOHAPPS USER INTERFACE

F
ig

ur
e

5.
1:

In
te

ra
ct

ex
D

es
ig

n
er

’s
P
ro

je
ct

S
el

ec
ti
on

S
cr

ee
n
.

70



5.1. INTERACTEX DESIGNER

5.1.2 Editor Screen

The Editor Screen is the main interface for developers to create an Application for
smart textiles. The main components of the Editor Screen are the Canvas, the Palette
and the Toolbar, which we have already introduced in Section4.8. In order to create
an Application, developers drag elements from the Palette into the Canvas.

The Palette has two main tabulations labelled Library and Properties. The Li-
brary tabulation displays the Objects View and the Properties tabulation displays the
Configuration View. Figures A.1 and A.2 in the Appendix display the Objects View
and Figure A.3 displays the properties of a Label and Timer objects.

The Toolbar contains five buttons to edit and manipulate objects in the Canvas
and to perform specific actions on the current application. Table 5.1 lists the differ-
ent buttons available in the Toolbar and describes their functions. The Simulation
Button is used to start and stop the simulation of the current application. Starting a
simulation hides the Palette and every connection between objects. Figure 5.2 shows
an overview of Interactex Designer ’s Editor Screen.

Figure 5.2: Interactex Designer UI overview.

71



CHAPTER 5. TANGOHAPPS USER INTERFACE

Image Name Description

Connect
Sets the Editor in Connection mode so that

lines can be drawn between objects in order
to create Invocations.

Duplicate
Sets the Editor in Duplicate mode causing
the creation of copies of objects dragged in

the Canvas.

Delete
Sets the Editor in Delete mode. During
Delete mode, user taps on objects on the

Canvas causes objects to be deleted.

Circuit
Layout

Switches Editor to the circuit layout view.

Deploy

Deploys the project into Interactex Client.
The Deploy toolbar button becomes

enabled when an instance of the Interactex
Client is found nearby.

Table 5.1: Toolbar Buttons in Interactex Designer.

5.1.3 Canvas

The Canvas is where the visual programming in Interactex takes place. The Can-
vas displays Edition Objects and Invocations between them. Figure 5.3 shows the
Invocations between a Button and a LED. Developers draw lines between an Edition
Object ’s Event Hook and another Edition Object’s Method Hook in order to define a
new Invocation. Hooks display different images depending on the type of parameters
provided by an Event or required by a Method. Hook images also indicate whether the
parameters provided by the Event comply with those required by the Method (filled
shapes) or not (hollow shapes). Table 5.2 displays the different images used by Hooks.

72



5.1. INTERACTEX DESIGNER

Type Compliant Parameters Non-compliant Parameters

Boolean

Numeric

String

Object

Table 5.2: Images of Hooks in Interactex Designer. Filled shapes indicate that a
parameter provided by an Event comply those expected by a Method. Hollow shapes
indicate that the Event does not provide a parameter of the type expected by the
Method.

Figure 5.3: Invocations between Events of a Button and Methods of an LED.

73



CHAPTER 5. TANGOHAPPS USER INTERFACE

5.1.4 Circuit Layout

The Canvas is also where developers create the circuit layout of a smart textile.
Figure 5.4 shows the circuit layout of the CTS Gauntlet, described in Section 1.1.
Circuit layouts are created by drawing connections between Hardware Devices’ Pins.
Hardware Devices’ Pins that can be assigned to only one Microcontroller Pin (e.g. the
power pin of a Button) are wired automatically when the Hardware Device is added to
the Canvas. The Canvas can be zoomed in and out to facilitate the accurate drawing
of connections.

Different types of connections are drawn in different colors. Connections to a
Power Pin are drawn in red; connections to a Ground Pin are drawn in gray and
Connections between Data Pins are drawn in purple by default and can be configured
by developers over the Properties View.

Figure 5.4: Circuit layout of the CTS-Gauntlet developed in Interactex Designer.

5.1.5 Simulator Screen

The Simulator Screen displays an interactive representation of the smart textile and
smartphone. Multi-touch gestures and iPad sensors are used to simulate sensor values.
Touching (covering) a light sensor causes the light intensity to decrease. The analog

74



5.2. INTERACTEX CLIENT

textile sensor displays a handle to set the value it should deliver. Accelerometers
and compasses attached to a smart textile respond to acceleration and compass read-
ings measured by the tablet device. Behavior of output devices is represented with
animations, sounds and images. Vibration motors shake and emit a noise with an
intensity and sound frequency proportional to their vibration intensity. LEDs display
a semitransparent image of light that gets brighter the higher the LED’s intensity
is. Sensors and variables display their values on the Canvas for debugging purposes.
Figure 5.5 displays different objects in Simulator Screen.

Figure 5.5: Simulation of different objects in Interactex Designer.

5.2 Interactex Client

Interactex Client has four screens. The Download Screen is used to download appli-
cations from Interactex Designer. The User Applications and Default Applications
Screens are used to choose and open an application. The Application Screen displays
the application.

5.2.1 Download Screen

The Download Screen is used to download applications from Interactex Designer.
When the user enters the Download View, Interactex Client begins advertising itself
to nearby instances of Interactex Designer using Bluetooth or Wi-Fi. The Download

75



CHAPTER 5. TANGOHAPPS USER INTERFACE

Screen displays a status label to inform users about the connection state. The sta-
tus label displays the following connection states: “Connecting”, “Connection Request
Sent”, “Connected”, “Downloading Project”, “Download Finished”. Once an appli-
cation download started, the Download Screen displays the application’s name and
download progress in addition to the status label. Applications that finished down-
loading appear in the User Application Screen.

5.2.2 User Applications Screen

The User Application Screen displays the projects downloaded from the Interactex
Designer arranged into a grid or list, configurable by users. Projects are represented
with an icon and a name. If no project has been downloaded into Interactex Client,
the grid or list are empty and instead a label is shown to users with the message: “No
projects available.”. The User Application Screen displays a navigation bar at the
top of the screen with two buttons: Edit and +. The Edit button enables users to
change applications’ names and to delete them. The + button is used to navigate to
the Download View. Tapping on an application’s icon leads to the Application View.
A screenshot of the User Application Screen is shown in Figure 5.6 a).

5.2.3 Default Applications Screen

Interactex Client offers nine default applications for testing the communication be-
tween the smartphone and the smart textile and proper functioning of Interactex
Firmware. The default applications are:

• Digital Output. Two Buttons on the smartphone’s interface are used to turn on
and off an LED.

• Digital Input. A Label displays the state of a Button attached to the textile.

• Buzzer. Two Buttons and a Slider are used to turn on and off a Buzzer and to
control its vibration frequency.

• Analog Input. A Label displays the value of an analog sensor (e.g. Temperature
Sensor).

• Three Color LED. Three Sliders enable the user to control the color of a Three-
Color LED.

• LSM303. Three Labels display the accelerometer values along x y and z-axes
delivered by the LSM303 sensor.

• Accelerometer. Three Labels display the accelerometer values along x y and
z-axes delivered by the Accelerometer sensor.

76



5.2. INTERACTEX CLIENT

(a) (b)

Figure 5.6: Interactex Client ’s User Application Screen (a) and Default Application
Screen (b).

• Music Player. A Button attached to the smart textile is used to start and stop
the music on the smartphone.

• MPU 6050. Three Labels display the linear acceleration values along x y and
z-axes delivered by the MPU 6050 sensor.

The default applications provide information to developers about how they should
connect the electronic devices to the microcontroller. The Default Application Screen
is displayed in Figure 5.6 b).

77



CHAPTER 5. TANGOHAPPS USER INTERFACE

5.2.4 Application Screen

The Application Screen displays the smartphone’s user interface developed in Inter-
actex Designer. The smartphone’s user interface in Interactex Client have a high
fidelity to the design created in Interactex Designer because both tools use the same
UI Widgets available in Apple’s UIKit framework. In addition to the user interface
developed in Interactex Designer, the Application Screen displays a navigation bar at
the top of the view containing two buttons. The Back button is used to navigate
back to the project selection screen and the Connect button connects the smartphone
with the smart textile over Bluetooth Low Energy and starts the execution of the
application.

5.3 TextIT

TextIT ’s user interface was designed to be consistent with Interactex Designer ’s user
interface. TextIT also has a Canvas, a Palette and a Toolbar. An annotated screenshot
of TextIT ’s user interface is shown in Figure 5.7. The Palette contains Palette Items
for every Control and Visualization Object available in TextIT. A full list of TextIT’s
Control and Visualization Objects is provided in Section A.5 in the Appendix. TextIT
Objects are added to the Canvas by clicking on the appropriate Palette Item.

Toolbar Buttons are used to save the state of the current project, zoom the Canvas
in and out and upload the current project to Interactex Designer. The upload button
only becomes available when a nearby instance of Interactex Designer is detected.
Clicking on the upload button sends the code in every Code Editor object to Interactex
Designer.

Figure 5.8 displays the main elements of TextIT objects. TextIT objects are
displayed as a box with a name. With exception of the Library Manager, every object
has input and output Ports. Input Ports are displayed as a green circle above the
element’s box, and output Ports are displayed as red dots below the element’s box.
Furthermore, every element has an icon, an edit button to open the Edit Window and
a cross to remove the element. The Edit Window enables developers to configure the
behavior of the object. For example, the Edit Window of the Scatter Chart enables
developers to define the data series and axis labels.

5.4 Usage Example

In this section, we demonstrate the usage of Interactex by describing how WaveCap
is developed, which we have described in Table 1.1. We then extend the Interactex
application with a TextIT plugin that estimates the jogging speed based on motion
data. The speed estimation is used to adapt the volume of the music player so that
the faster the user runs, the louder the music is played.

78



5.4. USAGE EXAMPLE

Figure 5.7: Overview of TextIT ’s user interface.

5.4.1 Development of an Interactex Application

Figure 5.9 shows the WaveCap project implemented in Interactex Designer. The
application consists of a textile, four Hardware Devices and eight UI Widgets. We used
the following Hardware Devices: one Textile Speaker, two Textile Sensors and a Switch
and the following UI Widgets: 5 Labels, two Switches and a Slider. The behavior of
the application is determined by six Invocations between objects. The Textile Speaker
can be turned on and off with a smartphone switch or with the hardware on/off
switch. The Frequency textile sensor is coupled to the Textile Speaker ’s frequency.
The Volume textile sensor sets the value of a Slider on the smartphone. When the
Slider ’s value changes, the Speaker Radio’s volume is set. This makes it possible
to set the volume by either pulling the strings attached to the hood or through the
smartphone. Another smartphone switch sets the radio sender to AM or FM. Values
passed in an Invocation are represented with a shape - yellow circles represent Boolean
types and a brown squares represent Numeric types.

79



CHAPTER 5. TANGOHAPPS USER INTERFACE

Figure 5.8: Visual components of a TextIT Object.

Figure 5.9: WaveCap implemented in Interactex Designer.

80



5.4. USAGE EXAMPLE

5.4.2 Development of TextIT plugin

In order to develop an algorithm that estimates jogging speed, we start by displaying
accelerometer data of a user jogging. A file containing the accelerometer data stored
in JSON format can be imported into TextIT with the Data Loader TextIT object.
After loading the file containing the jogging data, the Data Loader parses it and
initializes the output ports named “output”, “startTime”, “endTime”, “frequency” and
“data”. These ports correspond to keys in the JSON file. The data port provides the
sensor signal. When the Data Loader ’s output port is connected to the Line Chart ’s
data port, the Line Chart draws every sample in the signal as a line chart. The plot
produced by the Line Chart is shown in Section A.5.2 in the Appendix.

The Data Loader is connected to a Code Editor, where the jogging speed is cal-
culated. To estimate the user’s jogging speed, we filter the acceleration signal and
compute the norm of the deviation vector. A TextIT project that loads the data,
calculates and displays the jogging speed in a Gauge Chart is shown in Figure 5.10.
The Code Editor contains the code shown in Figure 5.11.

After the plugin has been developed, it is uploaded to Interactex by simply clicking
on the Upload Button on TextIT ’s toolbar. Once imported, the plugin appears at the
bottom of Interactex ’s Palette with the name “customComponent”. We renamed the
plugin to “runningSpeed ” over the Properties View in the Palette. The MPU 6050
accelerometer and gyroscope delivers linear acceleration values to the Window object.
The Window object is configured over its Properties View to gather 50 acceleration
samples. Once the 50th sample is collected, the Window emits the filled event, which
triggers runningSpeed ’s execute() Method passing in all 50 samples. Once the speed
has been computed, runningSpeed triggers its executionFinished() event, which in-
vokes the setValue() method of the Mapper. The Mapper maps the value provided by
runningSpeed to a range between 0 and 1 and invokes the Slider ’s setValue() method,
passing in the normalized speed. The speaker’s volume is automatically adapted
when the Slider ’s value changes due to the previously defined Invocation between the
Slider ’s valueChanged() event and Textile Speaker ’s setVolume() method.

Next, we enter Hardware Mode, add the BLE-Lilypad microcontroller to the Wave-
Cap and draw connections between every Hardware Component and the appropriate
pin on the BLE-Lilypad. Figure 5.13 displays WaveCap’s circuit.

The project can be simulated to ensure the application behaves as expected. The
Recorder Application Object can be used to record and replay jogging data. The
Textile Speaker will shake to indicate it has been turned on. The Textile Speaker ’s
volume property can be displayed on a label to test whether the volume changes as
expected. Finally, the project is uploaded to Interactex Client by tapping the Deploy
Button on the toolbar. Once opened from the User Applications Screen, the project
starts.

81



CHAPTER 5. TANGOHAPPS USER INTERFACE

Figure 5.10: Development of an algorithm to detect jogging speed in TextIT.

82



5.4. USAGE EXAMPLE

Figure 5.11: TextIT code to estimate jogging speed for the WaveCap application.

Figure 5.12: Usage of a TextIT plugin in Interactex Designer to control smartphone’s
volume based on estimated jogging speed.

83



CHAPTER 5. TANGOHAPPS USER INTERFACE

Figure 5.13: Circuit layout of WaveCap developed in Interactex Designer. Hardware
Devices from left to right: a Textile Sensor, a BLE-Lilypad and a Textile Speaker
(renamed to “Radio Speaker)”.

84



Chapter 6

Applications

TangoHapps was developed iteratively based on a series of smart textile applications.
In order to ensure a wide breadth of coverage of applications, we have chosen applica-
tions from different domains. In this Chapter, we describe two real-world smart textile
applications. The first smart textile is the KneeHapp Bandage, a smart bandage that
tracks the rehabilitation progress after a knee injury. The second one is the Custo-
dian Jacket, a jacket that monitors and supports technicians’ maintenance activities
in a supercomputer center. Both applications were developed in collaboration with
experts in the field and with access to end users.

In this Chapter, we first describe how we developed each smart textile application
without TangoHapps and then demonstrate how each application can be realized with
TangoHapps.

6.1 Application 1: KneeHapp Bandage

Tear of Anterior Cruciate Ligament (ACL) is a common knee injury that occurs
mostly among athletes [38]. In the US, the number of ACL injuries was estimated to
be between 80,000 and 200,000 per year [33, 100]. The rehabilitation after an ACL
injury can last as long as a year and often includes physical therapy, strength exercises
and frequent visits to physiotherapists and doctors. Successful recovery of an ACL
injury relies on the appropriate design of rehabilitation exercises performed by patients
daily with the goal of recovering full range of motion, strength and coordination.

Currently, patients sustaining an ACL injury perform the rehabilitation exercises
mostly unsupervised and lack quantitative ways to measure the quality and track
performance of their exercising. Orthopedists also lack tools to assess patients’ re-
habilitation progress and still have to rely on subjective observations such as how
much a patient’s leg shakes during a squat due to muscular instability. Furthermore,
orthopedists and patients meet at time intervals as long as three months and the
treatment is decided upon observations during these meetings without consideration
of the patient’s recovery progress in the periods between visits.

85



CHAPTER 6. APPLICATIONS

6.1.1 Problem

We interviewed two orthopedists who perform ACL surgeries on a daily basis and
recorded and shadowed six patients after ACL-reconstruction surgery during their
doctor visits. During these visits, patients had to perform a series of rehabilitation
exercises. Based on our interviews and observations, we identified the problems de-
scribed below.

Range of Motion (RoM)

After a knee surgery, the patient looses range of motion of the knee, mainly due to
pain and swelling. Recovering a certain range of motion is required before patients can
continue with the rehabilitation program. Patients can walk without crutches only
after being able to fully extend their injured leg and can start pedaling a bicycle only
after being able to bend their knees for at least 90 degrees. Therefore, it is important
for patients to recover the flexibility on their injured leg as early as possible. The
range of motion is measured every day at the beginning of the rehabilitation.

Orthopedists measure the range of motion of a patient’s knee using a mechanical
device called goniometer. Goniometers are placed at the knee’s center of rotation
and opened such that their arms are in line with the patients upper and lower leg.
The alignment of the goniometer to the leg is difficult due to muscle and fat in the
leg. Goniometer measurements do not always correlate among different specialists
[85]. Besides, the usage of a goniometer requires a second individual to take the
measurement.

One-Leg Squat

After the ACL injury, patients begin to loose strength in their injured leg. Therefore,
the second phase of the rehabilitation focuses on muscle building. One of the exercises
orthopedists teach patients for this purpose is one-leg squat and different variations
of it. During a one-leg squat, patients stand on the injured leg, bend it as much as
they can and then go back up into their initial position without deviating their knees
from the line between the ankles and hips. The more patients bend their leg during
a one-leg squat, the more difficult the exercise becomes. Therefore, it is desirable to
know how much patients bend their leg during the squat. However, orthopedists lack
of convenient ways to measure the degree of flexion and count only the amount of
repetitions while observing the quality of the movement.

During a squat, many patients are not able to stabilize the leg and deviate from
the optimum axis and rotate their knees inwards (called medial collapse). Bending the
knee inwards indicates a weakness of the hip and leg due to pain or lack of strength
and might result in new knee injuries. Despite the importance of preventing medial
collapses, orthopedists and orthopedists lack ways to quantify the degree of medial
collapse during a squat. To the best of our knowledge, there are currently no solutions
for quantifying the degree of medial collapse during a squat. The shaking of the leg
during a squat is another important parameter indicating muscular instability. This
is observed subjectively by orthopedists.

86



6.1. APPLICATION 1: KNEEHAPP BANDAGE

One-Leg Hop, Side Hops and Running in Eights

At the end of the rehabilitation phase, orthopedists should assess whether patients
are ready to start doing sports again. In order to do this, orthopedists observe the
patient’s injured leg’s performance on different exercises and compare it to their per-
formance on the patient’s healthy leg. While orthopedist’s have not reached a common
agreement on the exercises for the assessment, commonly accepted exercises are one-
leg hops, side hops and running in eights.

One-leg hops is an exercise in which patients should jump forward as far as possible
using only one leg and land stably. Orthopedists measure the distance of the hop by
placing a meter on the ground next to the area where the patient jumps.

During side-hops, patients are asked to hop side-wise over a distance of 20 cm
using only one leg as many times as possible during a period of 15 to 60 seconds of
time. In order for patients to concentrate on the exercise, orthopedists count the hops.
Orthopedists say that counting the hops is cumbersome and that they sometimes lose
count.

Running in eights is another exercise used by orthopedists to assess patient’s
rehabilitation progress. Performance of the running in eights exercise is determined
by the time it takes patients to complete the figure of eight. In the current praxis,
orthopedists use a timer to measure how long it takes patients to complete the exercise.

6.1.2 KneeHapp Bandage

KneeHapp is a compression bandage that patients wear after the knee surgery, with
two Inertial Measurement Units (IMUs) inserted into pockets at the upper and lower
leg. The bandage is shown in Figure 6.1 a). Other research such as[4, 2, 122] and
commercial products such as CoreHab1 use leg bands which are fastened to the upper
and lower part of the leg. Being a single piece, the sensors in the bandage are always
placed in the same relative distance to each other avoiding the risk of inconsistent
measurements caused by a misplacement of the sensors. This cannot be achieved
using the leg bands because they consist of two pieces that are placed independently
on the upper and lower leg. Leg bands should be fastened tight so that they don’t
slide while patients perform several repetitions of a rehabilitation exercise. Fastening
a leg band tight might cause discomfort, especially as muscles need to tense and relax
several times during an exercise session. Because the compression bandage has a bigger
contact surface to the patient’s leg, it is unlikely to slide during exercising. KneeHapp
measures the quality of the different rehabilitation exercises described in previous
section, gives feedback to patients and shares the measurements with orthopedists.

Use Case 1: Range of Motion (RoM)

KneeHapp calculates the angle of flexion of the leg by computing the difference be-
tween the Yaw values delivered by upper and lower IMUs. KneeHapp’s coordinate

1http://www.corehab.it/en/

87



CHAPTER 6. APPLICATIONS

(a) (b)

Figure 6.1: a) KneeHapp Bandage. b) KneeHapp sock.

system is shown in Figure 6.2. By convention, the angle of flexion should be equal to
zero when the leg is relaxed on a flat surface. Because bones are not perfect straight
lines and because of additional muscle and swelling, a direct angle computation does
not usually yield zero degrees even when the leg is relaxed on a flat surface. There-
fore, a calibration is performed to determine the alignment of the IMUs to the leg.
KneeHapp supports two calibration techniques. The first one determines the sensor
alignment while patients extend their leg on a flat surface. However, because most
patients are not able to fully extend their leg after the surgery, we designed the fol-
lowing alternative calibration approach that uses the healthy leg to estimate the offset
angle:

1. Wear the bandage on the healthy leg and measure the orientation of the IMU
on a flat surface.

2. Place leg above any object and measure the angle of flexion.

3. Wear the bandage on the injured leg, place the leg above the same object and
measure the angle of flexion.

Because the angle measurements when using the object should be equal on both legs,
after these calibration steps KneeHapp knows the sensor alignment on the injured
leg. Other approaches we considered were pose calibrations, a static calibration using
a wedge and functional calibration approaches. Pose calibration approaches com-
pare the orientation measured by motion sensors to expected measurements while
the subject performs a specific pose [80]. However, simple pose-based calibration is
not suitable for rehabilitation right after the surgery because of the difference in the
range of motion of both knees. Ayoade et al. use a static calibration technique that
requires patients to place their knee on a wedge with a predefined degree of flexion [4].
The accuracy of this approach will depend on the length of each individual’s leg and
requires a wedge that patients might not have in their homes. Functional calibration
approaches require the individual to perform a series of movements used to infer the
alignment of the motion sensors to the body [31, 30]. These movements should be
performed by a specialist, which makes them unsuitable to home-based applications
with in- expert users [80]. Our calibration approach is suitable for the home and does
not require additional equipment such as cameras or other individuals to take the
measurements.

88



6.1. APPLICATION 1: KNEEHAPP BANDAGE

x

y

yaw

roll
(a)

 Pitch

 Pitch

(b)

Figure 6.2: a) KneeHapp coordinate system. b) Illustration of the medial collapse
during a squat. and how it affects the pitch.

Use Case 2: One-Leg Squat

Using the orientation vectors provided by both accelerometers, KneeHapp tracks the
angle of flexion of the leg during the squat. The technique used to calculate the angle
of flexion during a squat is the same as the one used to calculate the angle of flexion
in Use Case 1: Range of Motion. However, the calibration for a one-leg squat is done
while the patient is standing straight. The iPad application triggers a visual and
auditive feedback when the minimal angle of the squat has been achieved.

During the squat, medial collapse causes upper and lower leg to bend in opposite
directions. In our coordinate system, the pitch rotation component indicates how
much the IMUs have rotated due to medial collapse. Figure 6.2 b) shows that the
upper and lower IMUs rotate in opposite directions, which is reflected in the Pitch
rotation component delivered by the IMUs. Therefore, in order to determine the
degree of medial collapse during a squat, we add up the difference of the Pitch rotation
angles of upper and lower IMUs to the difference of the Pitch stored during the
calibration. We negate the upper sensor’s pitch because a smaller value indicates a
higher medial collapse. The iPad application provides auditive feedback when the
amount of medial collapse is bigger than four degrees in order for users to correct
their deviation.

KneeHapp also determines the degree of shaking of the leg. In order to measure
the degree of shaking of the leg, we compute the standard deviation of the linear
acceleration produced by the upper IMU along the x-axis. We chose to use only the
upper IMU to measure the shaking because squats challenge mostly the muscles on

89



CHAPTER 6. APPLICATIONS

the upper and cause shaking due to muscular instability.

Use Case 3: One-Leg Hop

In order to quantify patient’s performance during one-leg hops, orthopedists measure
the distance of their hops on the injured leg and compare it to the same measurement
on their healthy leg. According to the two orthopedists we interviewed, the dura-
tion of the hop can be an equivalent measurement of a patient’s performance during
this exercise. Therefore we chose the calculation of the duration of one-leg hops as
performance parameter in this exercise.

To measure the duration of one-leg hops, we studied two possible solutions based
on different types of sensors. The first one uses KneeHapp’s accelerometers and the
second uses a sock with integrated textile pressure sensors that can be attached to the
bandage. The highest peak in the signal represents the moment where the patient is
at the highest height during a hop. The lowest negative peak corresponds to moment
where the patient landed. Figure 6.3 shows the linear acceleration along the y and
z-axes of the upper leg IMU recorded during a one-leg hop with annotations for
each phase of the hop. An average one-leg hop has a duration of 0.23 seconds. A
sampling rate of 100 Hz enabled us to detect the different phases of the one-leg hops.
KneeHapp uses a peak detection algorithm to detect highest and lowest peaks and
then measures the difference between both peaks. Since the highest peak in the signal
does not correspond to the moment when the patient jumped off the ground, the
computed difference is scaled.

The second approach uses textile pressure sensors attached to the sole of a sock.
The smart sock is shown in Figure 6.1 and the raw pressure sensor signal recorded
by the sock during a one-leg hop is shown in Figure 6.4. The signal produced by the
textile pressure sock contains two peaks that correspond to the take-off and landing
phases of the hop, when higher pressure is applied to the sole. The duration of the
hop is also estimated by measuring the distance between both peaks. However, in this
case, the peaks indicate the exact time when the foot left and came back in contact
to the ground after a hop.

90



6.1. APPLICATION 1: KNEEHAPP BANDAGE

(a) (b)

Figure 6.3: One-leg hop linear acceleration on y and z-axis raw (a) and filtered (b).

Figure 6.4: One-leg hop average pressure.

91



CHAPTER 6. APPLICATIONS

Use Case 4: Side Hops

For the side hops we also use an approach based on the morphology of the signal
produced by accelerometers. Figure 6.5 a) shows the linear acceleration on the y-
axis for seven side hops. In order to eliminate noise in the signal, we apply several
iterations of a low-pass filter until the signal’s standard deviation becomes smaller
than a specific threshold. We call this threshold low-pass filter threshold. We found
the optimal low-pass filter threshold to vary depending on the algorithm used for
counting the number of hops. We tested the RC low-pass filter with a time constant
c = 0.25 and a weighted moving average filter with coefficients [1/4, 1/2, 1/4]. After
filtering the signal, we use a peak detection algorithm to count the high and low peaks
in the signal. A naive peak detection algorithm counts also local maxima as hops in the
signal, resulting in more side hops being counted. To overcome this issue, we analyze
the surroundings of a peak. If the peak is larger enough than its surroundings, it
is counted as a hop. We call this factor peak threshold. We found that the peak
threshold leading to most accurate results depends on the filtering algorithm used.
Figure 6.5 b) shows the same hops after applying three iterations of the RC filter and
running the peak detection algorithm.

(a) (b)

Figure 6.5: Linear acceleration of seven side hops. raw (a) and filtered (b).

Use Case 5: Running in Eights

KneeHapp determines whether patients are standing or running by comparing the
standard deviation of the magnitude of the linear acceleration vectors of the upper
IMU with a specific threshold. We use windows of 50 samples with a sampling rate
of 100 Hz and an overlapping factor of 50%. This solution removes the requirement
for additional devices and humans who measure the time. Furthermore, this use
case removes external factors that affect the measured performance and makes the
measured performance dependent solely on patient actions.

92



6.1. APPLICATION 1: KNEEHAPP BANDAGE

6.1.3 Implementation with TangoHapps

In this section we describe how the KneeHapp Bandage can be implemented with
TangoHapps. The KneeHapp Bandage has only one IMU on the upper leg and one on
the lower leg. TangoHapps supports the MPU 6050 IMU, which fuses accelerometer
and gyroscope signals in order to deliver linear acceleration along 3 axes and Yaw,
Pitch, Roll (YPR) rotation values. The circuit design of the KneeHapp Bandage
requires of two microcontrollers with integrated Bluetooth Low Energy module and
two MPU 6050 units.

Figure 6.6: KneeHapp’s Range of Motion use case implemented with TangoHapps.

Use Case 1: Range of Motion

A TangoHapp’s application that computes the range of motion would require the
following Application Objects:

• Three Subtraction Arithmetic Operators. We name the Subtraction operators:
“Upper Sensor Subtraction”, “Lower Sensor Subtraction” and “Sensor Subtrac-
tion”.

• Two Number variables. We name the Number Variables: “Upper Sensor Num-
ber ” and “Lower Sensor Number ”.

93



CHAPTER 6. APPLICATIONS

• A Button UI Widget. We name the Button “Calibrate Button”.

• A Label UI Widget.

Furthermore, the application should define the following Invocations between objects:

1. The Calibrate Button’s buttonPressed() Event triggers the Variable’s setValue()
Method passing the upper MPU 6050 ’s Yaw Variable as a parameter.

2. The Calibrate Button’s buttonPressed() Event triggers the Variable’s setValue()
Method passing the lower MPU 6050 ’s Yaw Variable as a parameter.

3. The upper MPU 6050 yawChanged() Event triggers the Upper Sensor Subtrac-
tion’s setOperand1() Method passing the measured yaw as a parameter.

4. The lower MPU 6050 yawChanged() Event triggers the Lower Sensor Subtrac-
tion’s setOperand1() Method passing the measured yaw as a parameter.

5. The Upper Sensor Number ’s valueChanged() Event triggers the Upper Sensor
Subtraction’s setOperand2() Method passing the value stored in the variable of
the subtraction as a parameter.

6. The Lower Sensor Number ’s valueChanged() Event triggers the Lower Sensor
Subtraction’s setOperand2() Method passing the value stored in the variable of
the subtraction as a parameter.

7. The Upper Sensor Subtraction’s computed() Event triggers the Sensor Subtrac-
tion’s setOperand1() Method passing the result of the subtraction as a parame-
ter.

8. The Lower Sensor Subtraction’s computed() Event triggers the Sensor Subtrac-
tion’s setOperand2() Method passing the result of the subtraction as a parame-
ter.

9. The Sensor Subtraction’s computed() Event triggers the Label ’s setText() Method
passing the result of the subtraction as a parameter.

In order to do the sensor calibration, patients should extend their leg on a flat surface
and press the Calibrate Button. When the user presses the Calibrate Button, the
application stores the current Yaw value of upper and lower IMUs into the Upper
Sensor Number and Lower Sensor Number variables. After the initial calibration
phase, the values stored in both variables are used as a reference to compute how
much the IMUs have offset from their initial position. Therefore, the current Yaw
values of upper and lower IMUs are subtracted from the values stored in the variables.
Finally, in order to measure the angle of flexion of the leg, the application computes
the difference of upper and lower yaw offsets and displays it through a Label. A
sample application that computes the range of motion of a patient’s knee is displayed
in Figure 6.6.

94



6.1. APPLICATION 1: KNEEHAPP BANDAGE

Use Case 2: One-Leg Squat

An application that computes the angle of flexion and medial collapse of the leg during
a squat can be created in TangoHapps with the same functionality used in Use Case 1:
Range of Motion to compute an angle using two IMUs. However, in order to compute
the degree of the medial collapse, the MPU 6050 ’s Pitch rotation component should
be used. Furthermore, the application should indicate to users when the desired angle
of flexion during a squat has been reached. The functionality to determine whether an
angle is bigger than a threshold can be realized with the Bigger Comparison Operator.
The Bigger Comparison Operator ’s setOperand1() and setOperand2() Methods should
be invoked with the angle and with a Variable containing the threshold. Next, the
Bigger Comparison Operator ’s conditionIsTrue() event should invoke the Sound ’s
play() Method. This functionality is used to inform the user about a specific squat
angle being reached and about a medial collapse bigger than four degrees. A simple
modification to the above function to use the value provided by a Slider UI Widget
in the comparison, would enable users to configure the angle for receiving sound
notifications at runtime. A screenshot of an Interactex Designer application that
implements this functionality is shown in Figure 6.7.

Figure 6.7: KneeHapp’s functionality to produce auditive feedback when the user’s
knee deviates more than 4 degrees during a One-Leg Squat.

The application should also display live feedback about the shaking of his/her
leg. This can be achieved with the Monitor Application Object. The upper IMU’s
xChanged() Event should trigger the Monitor’s addValue1() object. This causes every
linear acceleration value along the x-axis to be added to a line chart rendered by the
Monitor Application Object.

The degree of shaking of the leg can be computed using the Deviation Extractor
Application Object and displayed on a Label. This functionality can be achieved with
a Window Function, a Deviation Extractor Function and a Label UI Widget and the
following Invocations:

95



CHAPTER 6. APPLICATIONS

1. The upper MPU 6050 ’s xChanged() Event triggers the Window ’s addValue()
Method passing in the linear acceleration along the x-axis.

2. The Window ’s filled() Event triggers the Deviation Extractor ’s addValue()
Method passing in the buffered acceleration values.

3. The Deviation Extractor ’s featureExtracted() Event triggers the Label ’s set-
Text() Method passing in the computed deviation.

A sample application that supports the squat exercises is displayed in Figure 6.8.

Figure 6.8: KneeHapp’s One-Leg Squat use case implemented with TangoHapps.

96



6.1. APPLICATION 1: KNEEHAPP BANDAGE

Use Case 3: One-Leg Hop

The algorithm to compute hop durations can be implemented in TangoHapps using
the following Application Objects:

1. A Window.

2. Two Peak Detectors. We name them Lower and Upper Peak Detector.

3. A Subtraction Arithmetic Operator.

4. A Multiplication Arithmetic Operator.

5. A Variable.

6. Two Buttons. We name them “Start” and “Stop” Buttons.

Furthermore, the following Invocations should be defined:

1. The Start Button’s buttonDown() Event triggers the upper MPU 6050 ’s start()
Method.

2. The Stop Button’s buttonDown() Event triggers the MPU 6050’s stop() Method.

3. The MPU 6050 ’s yChanged() Event triggers the Window ’s addValue() Method
passing in the linear acceleration along the y-axis.

4. The Stop Button’s buttonDown() Event triggers the Lower PeakDetector’s com-
pute() Method passing in the array of linear acceleration values stored in the
data property of the Window.

5. The Lower PeakDetector ’s indexExtracted() Event triggers the Upper PeakDe-
tector’s setRangeStart() Method.

6. The Stop Button should also set the values of the Lower Peak Detector in a
similar way as in step 4. For this purpose, the Stop Button’s buttonDown()
Event triggers the Upper PeakDetector ’s compute() Method passing in the array
of linear acceleration values stored in the data property of the Window.

7. The Lower PeakDetector’s indexExtracted() Event triggers the Subtraction’s se-
tOperand1() Method passing in the index of the peak detected.

8. The Upper PeakDetector’s indexExtracted() Event triggers the Subtraction’s se-
tOperand2() Method passing in the index of the peak detected.

9. The Subtraction’s computed Event triggers the Multiplication’s setOperand1()
Method passing in the result of the subtraction.

10. The Number ’s valueChanged() Event triggers the Multiplication’s setOperand2()
Method passing in the the fixed value of 1.36.

11. The Multiplication Arithmetic Operator ’s computed() Event triggers the Label ’s
setText() Method passing in the result of the multiplication.

97



CHAPTER 6. APPLICATIONS

Figure 6.9: KneeHapp’s One-Leg Hop use case implemented with TangoHapps.

The Invocations described above are necessary to create an application that esti-
mates the duration of a hop as described in Section 6.1.2. A screenshot of an appli-
cation containing every object and Invocation mentioned so far is displayed in Figure
6.9. It should be noted that the Invocations between the Start and Stop Buttons and
the upper MPU 6050 are not displayed in Figure 6.9 for clarity purposes. The Start
and Stop Buttons are controlled by users and cause the upper MPU 6050 to start
and stop recording values. The Window ’s size Variable is set to a very large num-
ber so that the Window has enough buffer space to store the accelerometer samples
produced during the hop. The Stop Button first causes the Window to stop storing
values and then triggers the execution of the algorithm that uses the data in the
Window to estimate the duration of the hop. The Upper Peak Detector is configured
to detect high peaks and the Lower Peak Detector is configured to detect low peaks
over their upper peak Variables. Since the data passed to both Peak Detectors is the
accelerometer signal of an entire hop, the Upper Peak Detector will detect the highest
and the second Lower Peak Detector the lowest peak in the signal. An additional
optimization is done by setting the Lower Peak ’s starting range index to the Upper
Peak ’s index. This reduces the number of computations in the algorithm by limiting
the search range of the lowest peak. The Subtraction Operator is used to measure the
index difference between the peaks detected. Because accelerometer The time differ-
ence between The final hop duration in seconds is computed by scaling the difference

98



6.1. APPLICATION 1: KNEEHAPP BANDAGE

indexes. For this purpose, the result of the subtraction is multiplied by the constant
1.36 by using the Multiplication Operator.

Use Case 4: Side Hops

An algorithm to count the number of side hops based on an accelerometer signal can
be implemented with a TextIT plugin. The plugin identifies and returns the number
of peaks in an array of input values. The algorithm iterates over every sample in
the input signal. Once an upper peak is detected, the algorithm starts looking for
lower peaks. Once a lower peak is detected, the algorithm starts looking for upper
peaks again. This process repeats. A counter is increased every time an upper peak
is detected. The function receives an additional parameter called “delta”. The delta
parameter is a threshold for peaks to be counted. This threshold is necessary to avoid
local maxima in the signal. The pseudo-code contained in the TextIT plugin is shown
in Section A.5.3 in the Appendix.

An Interactex application that uses the TextIT plugin to count peaks requires
additionally the usage of the Low-Pass Filter, and a Number Variable where the delta
parameter needed by the TextIT plugin is stored. The Low-Pass Filter receives the
signal directly from the upper IMU and filters it. The filtered signal is passed over
to the TextIT plugin. The Low-Pass Filter ’s filtering factor and delta parameter are
configurable by developers. We configure the Low-Pass Filter ’s factor Variable to 0.5
and delta parameter to 60. The UI is controlled in a similar way as the One-Leg Hop
application described earlier in this chapter. The Start and Stop buttons cause the
upper IMU to start and stop receiving data. The result returned by the TextIT plugin
is displayed in a label in the smartphone. A screenshot of an Interactex application
that computes the side hops is shown in Figure 6.10. The TextIT plugin has been
renamed to “sideHops”.

99



CHAPTER 6. APPLICATIONS

Figure 6.10: KneeHapp’s Side Hops use case implemented with TangoHapps.

100



6.1. APPLICATION 1: KNEEHAPP BANDAGE

Use Case 5: Running in Eights

An application that starts and stops a timer when it detects the user has started /
stopped running can be implemented with TangoHapps using the Activity Classifier
and Timer Application Objects. The Activity Classifier requires an array of filtered
linear acceleration data. The application should define the following Invocations in
order to classify user activity based on linear acceleration:

1. The MPU 6050 ’s yChanged() Event invokes the Window ’s addValue() Method
passing in the linear acceleration along the y-axis as a parameter.

2. The Window ’s filled() Event invokes the Low-Pass Filter ’s addValues() Method
passing in the array of buffered linear acceleration samples.

3. The Low-Pass Filter ’s filtered() Event invokes the Activity Classifier ’s classi-
fySamples() Method passing in the filtered array of linear acceleration samples.

We set the Window ’s size Variable to 50 and the overlapping Variable to 0.5. The
Activity Classifier will emit the running() Event after the patient started running and
the notMoving() Event after the patient stopped running. In order to measure the
duration of the run, these Events are used to start and stop a Timer. We call this
Timer “Running Timer ”. The Timer in TangoHapps emits an Event after the time
specified by developers has elapsed. In this application, the timer should be stopped
when the user stopped running. This can be achieved by setting the Timer ’s time
Variable to a high value (to ensure it will not finish before the patient completed the
run) and by defining two Invocations. First, the Activity Classifier ’s running() Event
invokes the Timer ’s start() Method. Second, the Activity Classifier ’s notMoving()
Event invokes the Timer ’s stop() Method.

Finally, the Running Timer ’s elapsed time can be displayed on a Label on the
smartphone. In order to continuously update the Label as the time passes, a second
Timer that will trigger the Label updates should be used. We call the second Timer
“Update Timer ”. The Update Timer is started and stopped by the same Events as the
Running Timer. A Timer in TangoHapps can be configured to trigger periodically
by setting its repeat Variable to true. We set the Update Timer ’s repeat Variable
to true and frequency Variable to 0.05 seconds so that the Label is updated every
0.05 seconds. Next, we define an Invocation between the Update Timer ’s triggered()
Event and the Label ’s setText() Method passing in the Running Timer ’s time elapsed
variable as a parameter.

101



CHAPTER 6. APPLICATIONS

6.2 Application 2: Custodian Jacket

Siemens is a multinational company with more than 340.000 employees worldwide.
In order to store employees’ data and provide services needed for the functioning
of the company, Siemens built a supercomputer center in the south of Munich. The
supercomputer center contains 154 racks that store over 1230 servers. Some of the data
and services stored in the supercomputer center are highly critical to the organization.
Siemens might suffer major losses if a service became unavailable for a few hours
or if employees data was lost. Furthermore, some maintenance operations done at
the supercomputer center might be dangerous, such as dealing with high voltages.
Therefore, the main goals of this project were to prevent costly human mistakes
and to increase technician’s safety while performing maintenance activities in the
supercomputer center.

6.2.1 Problem

In order to gain understanding into the application domain, we conducted several in-
terviews with security managers at Siemens during a period of 14 months of time. We
identified three main problems, which we address as “use cases” in the next sections.

Error prevention

Racks contain up to 46 “height units”. A height unit is a slot where a server can be
inserted. A server might occupy one or several height units. A height unit has a
standard height of approximately 4.5 cm. Racks have a label attached next to each
height unit with a numeric identifier. In order to identify a server, technicians find
in their worksheets the height unit where the server is installed. Technicians operate
servers from the front and backside. Labels might not be visible on the backside of
the rack due to the presence of cables, as shown in Figure 6.11 b). Technicians have
pulled a working server by mistake in the past, causing a large amount of losses to
the organization.

In order to help technicians identify servers that need to be replaced or repaired,
Siemens considered installing an LED for each height unit in a rack. The LED would
be remotely controlled and be turned on to indicate a faulty server. However, this
approach would require the installation and maintenance of more than 6000 LEDs.
Instead, Siemens is more interested in a solution with less maintenance costs.

Technician’s Safety

In order to repair the faulty servers as fast as possible, a pool of technicians is ready
to access the supercomputer room at any day and any time of the week (even at
3 am on a Sunday). At specific times of the day, technicians are likely to have to
enter the supercomputer center alone. In order to perform a maintenance operation,
technicians perform hazardous operations such as dealing with high voltages, lifting

102



6.2. APPLICATION 2: CUSTODIAN JACKET

heavy equipment, climbing ladders and crunching into tight spaces. The closest person
that can assist technicians in case of an accident is the gatekeeper, who sits in a
different building. Siemens is interested in a solution to monitor and assist technicians
in case of accidents.

Emergency Situation

Siemens installed speakers inside the supercomputer center in order to notify techni-
cians about emergency situations such as the presence of fire in the building. Each
rack in the supercomputer center is equipped with fans on both the front and back side
in order to keep a constant air flow that cools the servers’ temperature down. These
fans produce a considerable amount of background noise. Therefore, the volume of
the speakers had to be loud enough so that it would be heard from different positions
within the supercomputer center. Siemens had to remove the speakers after realizing
that the vibrations produced by the speakers damaged the nearby hard drives.

6.2.2 Custodian Jacket

The Custodian Jacket is a smart jacket worn by technicians during maintenance ac-
tivities in a supercomputer center. The main purpose of the Custodian Jacket is to
reduce the chances of human mistakes, which might cause high losses to the company
and to increase technician’s safety while operating in the supercomputer center. We
have developed four versions of the Custodian Jacket. The first version was developed
in a 2-week summer school by a group of 16 students and was based on the .NET
Gadgeteer hardware family. The other three versions of the Custodian Jacket were
developed in collaboration between the TUM and Siemens during a one-year project
involving three doctoral students and five managers at Siemens. These later versions
were based on the Arduino microcontroller family. An image of the last version of the
Custodian Jacket is shown in Figure 6.11 a).

In this chapter, we focus on the last version of the Custodian Jacket (version 4).
The last version of the Custodian Jacket has two 6-axis Accelerometer and Gyroscope
IMU on the chest and sleeve, a proximity sensor on the sleeve and capacitive textile
sensors on the shoulders and chest. The textile sensor on the shoulders are used to
detect whether a technician is wearing the jacket. The textile sensor on the chest is
used as a button. Furthermore, the jacket provides visual, haptic and auditive output
to users with an LED and vibration motor on the wrist and a buzzer at the chest.
Hardware devices are connected with conductive thread to custom made BLE-Lilypad
attached to the chest. The BLE-Lilypad communicates over BLE with a smartphone.
In the rest of the section, we describe three use cases that address the three problems
we identified in the previous section.

Use Case 1: Error prevention

The Custodian Jacket has an ultrasonic proximity sensor attached to the sleeve. This
sensor measures the distance between the user’s sleeve and the ground. By comparing

103



CHAPTER 6. APPLICATIONS

(a) (b)

Figure 6.11: a) Custodian Jacket - fourth version. b) Backside of a rack in a super-
computer center. Some height unit labels are hidden by cables.

the distance to the ground, the jacket is able to know what server the user’s arm is in
front of. Technicians swipe their arms from top to bottom of a rack passing through
every server. The jacket produces a light outputs to indicate whether the current
server should be repaired or not.

The ultrasonic proximity sensor emits an ultrasonic beam and measures the time it
takes the beam to return to the sensor. In order to measure the distance to the ground
accurately, the sensor should be placed straight such that the beam forms a 90 degree
angle with ground. The Custodian Jacket uses a 6-axis accelerometer and gyroscope
in order to detect whether the proximity sensor points straight to the ground. An
additional LED on the sleeve gives technicians feedback about the proper orientation
of thee proximity sensor. A green LED indicates that the proximity readings are valid
and that the technician’s hand is in front of the server that needs to be repaired. A
blue LED indicates the proximity readings are valid the technician’s hand is not in
front of a server that needs to be manipulated. A red LED indicates that the sensor
is not pointing straight down, hence proximity readings are not valid. Figure 6.11
displays a technician swiping through servers on a rack to locate a specific server.

Use Case 2: Technician’s Safety

The Custodian Jacket monitors technician’s physical activity in order to determine
whether a technician might need assistance. The IMU on the torso is used to determine
whether he/she is walking, standing, running or lying down on the ground. If the

104



6.2. APPLICATION 2: CUSTODIAN JACKET

technician is found to be lying down on the ground for more than 20 seconds, the jacket
sends an emergency signal to the gatekeeper. In order to avoid sending emergency
signals when the user has taken off the jacket, the application determines whether the
user is wearing the jacket with the capacitive sensor on the shoulder.

The activity recognition is done based on the linear acceleration, which is delivered
by the IMU attached to the Custodian Jacket’s torso. The linear acceleration is
sampled with a frequency of 100 Hz. Then, the linear acceleration along the y-axis
is buffered in windows of 50 samples with an overlapping factor of 50%. We apply
a low-pass filter and extract the signal deviation. We determine whether the user is
standing, walking, or running based on the signal deviation. The linear acceleration
along all the y-axis recorded while the user was standing a) and walking b) are shown
in Figure 6.12. The distribution of the different activities in a 3D space is shown in
Figure 6.13.

(a) (b)

Figure 6.12: Linear acceleration along y-axis while user is standing (a) and walking
(b).

Use Case 3: Emergency Situation

The Custodian Jacket is equipped with a speaker and a vibration motor in order to
propagate emergency events to the technician. Emergency events are sent out by
the gatekeeper and have to be acknowledged by technicians by holding a capacitive
button on their chest for three seconds. Furthermore, technicians can request for
assistance by pressing the capacitive button on their chest, also for three seconds. In
that case, an emergency signal is sent to the gatekeeper as described in “Use Case 2:
Technician’s Safety”.

105



CHAPTER 6. APPLICATIONS

Figure 6.13: Classification of physical activities based on IMU data. Axes correspond
to the deviation of the linear acceleration along the x, y and z-axes.

6.2.3 Implementation with TangoHapps

In this section, we describe in detail how the three use cases of the Custodian Jacket
are implemented with TangoHapps. The Custodian Jacket can be designed using a
Proximity sensor, a Three-Color LED, two MPU 6050 IMUs and a Textile Sensor .

Use Case 1: Error prevention

An Interactex application that provides visual output to users based on proximity
sensor and IMU readings can be realized with the following Application Objects:

1. Three Bigger Comparison Operators.

2. Three Smaller Comparison Operator.

3. Three AND Logical Operators.

4. Three Number variables. We name them “Tolerance”, “255” and “0”.

5. A Slider UI Widget.

We will describe how this application can be developed with TangoHapps in three
steps. First, we create an interface for users of the Custodian Jacket to set the height
unit they are looking for over their smartphones. The height unit is set over a slider. In

106



6.2. APPLICATION 2: CUSTODIAN JACKET

order for the application to compare the proximity values delivered by the proximity
sensor to the height unit input by the users, the application should calculate the
distance between the height unit to the ground. This is achieved by first multiplying
the number of the height unit by 4.5 cm and then adding a distance of 3.0 cm which
is the distance to the ground of the first height unit in the rack.

Second, we develop a function that checks whether the value we calculated in the
first step is within a range. This is needed in order to detect whether the user’s arm
is in front of a specific server. This function can be created as follows:

1. We store the middle value of the range in a Variable Application Object. We
call this Variable: MidValue.

2. We store a constant in another Tolerance Variable. This function will check for
values in the range: [MidValue - Tolerance ... MidValue + Tolerance]. MidValue
and Tolerance are configurable by developers according to specific applications.

3. We use the Addition and Subtraction operators to compute the lower and up-
per limits of the range. We set the MidValue variable as first operand and
Tolerance variable as second operand using the operators’ setOperand1() and
setOperand2() Methods.

4. We use the BiggerEqual Comparison Operator to compare the reading from the
Proximity sensor to the lower limit of the range. The Subtraction Arithmetic
Operator ’s computed() Event provides the range’s upper limit.

5. Similarly, we use the SmallerEqual Comparison Operator to compare the prox-
imity to the upper limit of the range.

6. We use the AND Logical Operator to ensure that comparisons from steps 4.
and 5. are true. We use its Methods setOperand1() and setOperand2() to the
SmallerEqual and BiggerEqual operators’ conditionChanged() Event.

7. The AND operator will emit the conditionIsTrue() Event when the value is
within the specified range and the conditionIsFalse() will be triggered when the
value is not in the range.

Because height units have a height of 4.5 cm, a tolerance of 2.25 cm would lead to a
range that covers the entire height unit. The same function can be applied to check
whether the IMU on the sleeve is oriented properly. An IMU that is held parallel
to the ground would shield a yaw and pitch of 0 degrees. Therefore, the MidValue
Variable would be set to 0 and the Tolerance Variable to 2. Figure 6.14 a) displays
the implementation of the function to check whether a value is within a range in
Interactex Designer.

Third, we provide feedback to users by setting the Three-Color LED’s color to
either red, green or blue depending on the results of the different comparisons. The
Three-Color LED offers Methods to set its red, blue and green components indepen-
dently. We define three Invocations between the AND operator’s conditionIsTrue()
and conditionIsFalse() Events and the Three-Color LED ’s setRed(), setGreen() and

107



CHAPTER 6. APPLICATIONS

setBlue() Methods. Each Invocation passes the value Variable of the “0” or “255”
Variable as a parameter according to the RGB color coding of the color we need in
each case. Figure 6.14 b) displays the implementation of this function in Interactex
Designer.

(a) (b)

Figure 6.14: TangoHapps implementations of: a) Function that checks whether the
proximity measured by a Proximity Sensor is in the range 35±2cm. b) Function that
sets the color of the RGB LED to red.

Finally, we aggregate the results of all three range comparisons (proximity, yaw
and pitch) using the AND Logical Operator and set the Three-Color LED’s color
accordingly. If the yaw or pitch are not in the [-2 ... 2] range, then the proximity
sensor is not properly aligned. In this case, we set the LED’s color to red. If the yaw
and pitch are properly aligned and the proximity measured by the proximity sensor
is in the range we defined, then the user’s hand is in front of the server he is looking
for. In this case, we set the LED’s color to green. If the yaw and pitch are properly
aligned but the proximity range comparison returns false, then the user’s arm is not
in front of the server he/she is looking for. In this case we set the LED’s color to blue.
A schematic of this algorithm is shown in Figure 6.15.

108



6.2. APPLICATION 2: CUSTODIAN JACKET

A
 range

comparison
 range

comparison

range
comparison

display

display
N

display

AND
 operator

AND
 operator

result re
su

lt

result

false

true

fa
lse

true

Figure 6.15: Sketch of a TangoHapps implementation of the Custodian’s Error Pre-
vention use case.

109



CHAPTER 6. APPLICATIONS

Use Case 2: Technician’s Safety

We demonstrate an Interactex application that monitors technician’s physical activity
in three steps. First, the application should detect whether the user is wearing the
jacket. This is done with the capacitive textile sensor sewed to the jacket at the
shoulder delivers high analog values when the user’s skin is nearby. We determine
whether the technician is wearing the jacket by comparing the value delivered by
the Textile Sensor with a certain threshold. We chose a threshold of 12.00 based on
the analog values measured by the last version of the Custodian Jacket when being
worn over a T-shirt and a pullover. The threshold can be tuned by developers to suit
different capacitive textile sensors. The comparison with a threshold is done by the
Bigger Comparison Operator. The Bigger Comparison Operator invokes the MPU
6050 IMU to start and stop receiving linear acceleration values.

Second, it uses an IMU and the Activity Classifier to determine user activity and
a the Contact Book to make emergency calls in case the user is detected to be inert
for a certain period of time. The linear acceleration along the y-axis measured by the
MPU 6050 IMU is passed over to the Window Application Object to buffer the linear
acceleration values. In order to achieve this, the MPU 6050 ’s yChanged() Event is
connected to the Window ’s addValue() Method passing in a linear acceleration sample
as a parameter. The Window’s size and overlapping Variables are configured over the
Configuration View to gather 50 linear acceleration samples and to overlap 50% of
the samples with the last set of buffered values. The Window ’s filled() Event invokes
the Low-Pass Filter ’s addValues() Method passing in the buffered samples. The Low-
Pass Filter factor Variable is set to 0.5 over the Configuration View. This implies
that the signal’s standard deviation will be smaller or equal than half of the original
signal’s standard deviation. The Low-Pass Filter ’s filteredValues() Event invokes the
Activity Classifier ’s classifySamples() passing in the array of filtered samples. So far,
the application is able to classify user activity.

In the third and last step, the Activity Classifier ’s output should be used to trigger
an emergency signal. In order to avoid false positives, the Custodian Jacket triggers
an emergency signal if the user has not moved for 20 seconds. The Timer Application
Object can be used in order to make the application count for 20 seconds when the user
is found to be inert. The Activity Classifier ’s notMoving() Event invokes the Timer ’s
start() Method. The Activity Classifier ’s walking(), running() and climbing() Events
invoke the Timer ’s stop() Method to cause the Timer to stop counting time after the
user moved in any way. The Timer’ s frequency Variable is configured to trigger after
20 seconds. Finally, the Timer ’s triggered() Event should invoke the Contact Book ’s
makeEmergencyCall() Method. Figure 6.16 displays the implementation of this use
case in TangoHapps.

110



6.2. APPLICATION 2: CUSTODIAN JACKET

Figure 6.16: Custodian’s Technician’s Safety use case implemented with TangoHapps.

111



CHAPTER 6. APPLICATIONS

Use Case 3: Emergency Situation

We describe the implementation of an application in TangoHapps that produces
sounds and vibrations when an emergency signal is received. This application simu-
lates emergency signals with a button on the smartphone. The real application would
receive emergency signals remotely over Wi-Fi.

This application relies on a function to detect whether a textile button is be-
ing pressed for more than three seconds. Two Invocations are needed in order to
make sound and vibrations to start and stop playing. First, an Invocation between
the smartphone’s Button’s buttonPressed() and the Buzzer and Vibration Board ’s
turnOn() Methods should be defined. Second, the Timer ’s triggered() Event should
invoke the Buzzer and Vibration Board ’s turnOff() Method. This causes the Timer to
turn off the Buzzer and Vibration Board. The Timer’s frequency Variable is config-
ured to trigger three seconds after it has been started. The Timer is started whenever
the textile button is detected to be pressed. In order to detect whether the button has
been pressed, we compare whether the capacitance measured by the Textile Sensor
is bigger than a threshold. We chose a threshold of 97.00 based on the analog values
measured by the textile fabric we used on the last version of the Custodian Jacket. An
additional Invocation between the Bigger Comparison Operator ’s conditionIsFalse()
Event and the Timer ’s stop() Method stops the timer whenever the user has released
the textile button. The Timer, when stopped, resets its counter so that users have to
start pressing the textile button for three consecutive seconds. The implementation
of this use case is shown in Figure 6.17. In order to additionally emit emergency
calls when the textile button has been pressed for three consecutive seconds, an ad-
ditional Invocation between the Timer ’s triggered() Event and the Contact Book ’s
makeEmergencyCall() Method should be defined.

112



6.2. APPLICATION 2: CUSTODIAN JACKET

Figure 6.17: Custodian’s Emergency Situation use case implemented with Tango-
Happs.

113



CHAPTER 6. APPLICATIONS

114



Chapter 7

Evaluation

New toolkits and development environments are often validated with the breath of
coverage of applications they support and by their ability to simplify the development
[7, 8, 37, 60, 61]. The breath of coverage of TangoHapps is demonstrated by the use
cases we described in Section 6. In this section, we present the results of two user
studies with the goal to assess TangoHapps’ ability to simplify the development of
smart textiles. The first user study was conducted with novice users and the second
one with professional smart textile developers. Both user groups had none or limited
background experience in electronics and programming.

7.1 User Study 1: Novice Users

To assess the ease of use of Interactex, we conducted a study in a middle-school
classroom with 18 teenagers (7 female, 11 male, 14 and 15 years old). None of the
participants had experience in programming or electronics. Participants were divided
in six teams of three members per team. Each team received an Arduino UNO Kit
containing vibration motors, buzzers, LEDs, light and temperature sensors to test
their applications and a ”cheat sheet” with circuit layout diagrams describing how
electronic devices should be connected to the Arduino UNO microcontroller. The
study lasted two days; four hours each day. During the first day, we taught participants
the basics for creating a circuit layout and programming using the Arduino IDE.
During the second day, we provided an introduction to Interactex that lasted one hour.
We showed participants different Application Objects, created Invocations between
them and demonstrated how to create a circuit layout and deploy the application
to the smartphone. We then gave participants an iPad and iPhone with Interactex
already installed and asked them to solve the following three warm-up tasks:

1. Turn on and off an LED using a switch on the smartphone

2. Iterate the music playing in the smartphone using a physical push button

3. Make a call to any number when the temperature decreases over certain thresh-
old.

115



CHAPTER 7. EVALUATION

Finally, participants were given 45 minutes to develop their own application using
Interactex.

7.1.1 Results

Participants solved warm-up tasks 1. and 2. without our support in less than ten min-
utes each. In order to solve these tasks, participants had to understand Interactex ’s
workflow and event-function coupling. Warm-up task 3. required the usage of the
Comparator object to compare the value measured by the temperature sensor to the
value contained within a Variable object. Most participants attached the temperature
sensor to the Comparator and forgot to specify the Variable it should be compared to.
This highlighted a potential improvement to Interactex ’s visual programming mode to
make events and methods of objects visible in the canvas as done in other flow-based
programming environments. However, every team was able to finish this task after
we showed them how the Comparator object works in a separate application.

Participants developed the following applications of their own:

1. A jacket with 12 integrated LEDs that the wearer can turn on and off from two
buttons on a smartphone. LEDs turn on in a sequential fashion.

2. A jacket with a button that plays and stops playing the music on the smart-
phone. The volume of the music changes according to the light intensity sensed
by a light sensor.

3. A T-Shirt that adapts an LED’s intensity according to the light’s intensity in
the room.

4. A T-Shirt that measures the user’s body temperature and displays it on a smart-
phone.

5. A T-Shirt that plays beep sounds. The frequency of the tone can be controlled
over a slider on the smartphone.

6. A jacket to help find victims of an avalanche. The jacket produces sound and
vibration while a button on the jacket is being pressed or while the light’s
intensity is smaller than a threshold.

These applications would require extensive expertise to develop without Interactex
(e.g. data transmission, synchronization and smartphone app development). The
reason why most teams chose a T-Shirt for their applications is that the default
textile in Interactex is a T-Shirt. The T-Shirt can be replaced by another image
stored in the iPad after adding the object to the canvas. Figure 7.1 a) shows three
female participants developing an electronic circuit during the study, Figure 7.2 a)
shows Application 1. consisting of 12 LEDs connected to the Arduino UNO and b)
displays the paper prototype developed by the same team.

116



7.2. USER STUDY 2: PROFESSIONAL SMART TEXTILE DEVELOPERS

(a) (b)

Figure 7.1: a) Three female subjects develop an electronic circuit with Interactex
Designer. b) Application 1 consisting of 12 LEDs.

7.2 User Study 2: Professional Smart Textile Devel-
opers

In our second study, we conducted interviews with eight professional smart textile
developers (2 male, 6 female, 23 - 35 years old) with varying backgrounds: textile
design (5), interaction design (2) and computer science (1).

The study was conducted in five steps:

1. To enable participants to test their applications on an actual textile, we devel-
oped a textile testbed. The textile testbed is shown in Figure 7.2 b). Interactex
Firmware was uploaded into the testbed prior to this study.

2. We started every interview by explaining our intentions to participants empha-
sizing our desire to assess Interactex ’s suitability for rapid prototyping of smart
textiles including positive and negative aspects. We then demonstrated the us-
age of the IDE with an application that turns on and off an LED in the textile
testbed using two buttons on the smartphone’s UI.

3. Participants had to develop any application while thinking aloud for around 20
minutes.

4. We conducted a semi-structured interview to gain insight into participant’s im-
pression about Interactex and to identify missing functionality. We recorded
and transcribed participant’s think aloud protocols and interview answers for
post-analysis.

117



CHAPTER 7. EVALUATION

5. Participants filled a questionnaire that inquired about their professional prac-
tices regarding smart textile development and general impression about Inter-
actex.

7.2.1 Study Results

When asked about their general impression about Interactex, every participant made
at least one comment praising it. P3: ”Good to know that this is available in the App
Store!”, P4: ”even though I know how to program, I could use it and welcome that
you don’t need to program”, P6: ”I love it!”. The design of the environment was one
of the most liked features. P4: ”the simplicity is the beauty of it”, P7: ”good! nice
graphic interface” - right after showing Interactex Designer to him for the first time.
Participants also praised the easiness to deploy applications to the smart textile. P6:
”the workflow was perfect and easy to understand”. The ability to use a smartphone
to read sensor data and manipulate output devices on the testbed was perceived as
one of the most convincing and impressive features. P3: ”Really nice that iPhone and
hardware are programmed directly and visually in the iPad environment”. P5: ”... it
is convenient that a phone manages the interaction with the hardware”.

From the feedback provided by participants, we extracted a total of 85 feature
requests. Five participants requested support for new sensors, output devices and
microcontrollers. Wishes included pressure sensors, servo motors and hardware com-
ponents from other hardware brands (e.g. Sparkfun. Adafruit). Participants also
questioned the lack of support for custom-made textile sensors, although these sen-
sors correspond in their functionality to elements supported in Interactex (e.g. Switch
and Textile sensor). Two participants additionally pointed out the idea to have the
iPad communicate directly with the smart textile.

When asked about what they did not like about Interactex, participants mentioned
different usability flaws. The usability flaw most mentioned (by five participants) was
the lack of immediate information to users about the which Invocations where de-
fined in the project coupling. P4 explained it as: ”though in the properties of the
components things are marked in blue when selected [...] there is nothing to say if
one connection is this event or this method” - referring to a coupling as ”connection”.
Other usability flaws mentioned were the lack of a way to scale the textile indepen-
dently from electronic devices attached to it and the lack of a clear indication whether
a event-function coupling defined is valid. Questionnaire results The results from the
questionnaire revealed that every participant had only basic programming knowledge
with the exception of P2, who was a professional software developer. Participants
mentioned Arduino IDE and Processing as their usual programming environments
and P2 additionally mentioned Android Studio. Furthermore, every participant re-
ported being used to dealing with code editors and not with visual programming
environments.

The questionnaire also contained two questions in a 5-point Likert scale. The
overall suitability of Interactex for rapid prototyping of smart textiles was rated by
participants as: Very good (3), Good (3), Satisfactory (2), Sufficient (0) and Poor

118



7.2. USER STUDY 2: PROFESSIONAL SMART TEXTILE DEVELOPERS

(a) (b)

Figure 7.2: a) A paper prototype of a jacket developed during the Study 1. b)
Textile testbed containing two accelerometers, a push button, switch, light sensor,
buzzer, vibration motor and a three-color LED. Every electronic device is connected
with conductive fabric to a custom-made Arduino Lilypad with an integrated BLE
module (in the center).

(0). The overall positive ratings are consistent with participants’ reactions during the
interviews. The Satisfactory ratings were given by P2 and P8. P2 had extensive ex-
perience in programming and electronics and considered Interactex to be less suitable
for herself. This is in agreement with Interactex ’s target user group of individuals
with little experience in programming. P8’s rating was related to her thought that
the visual programming abstractions offered in Interactex would be too difficult for
inexperienced developers. While our findings from the study with novice users show
that Interactex ’s visual programming abstractions can be grasped by users who had
never programmed before, we agree with P8 in that the realization of more complex
applications might require a longer learning phase than the average 20 minutes partic-
ipants took for this study. Other participants perceived the difficulty to use Interactex
to be normal or easy. Difficulty ratings were: Very easy (0), Easy (2), Normal (5),
Difficult (1) and Very difficult (0).

119



CHAPTER 7. EVALUATION

120



Chapter 8

Conclusions and Future Work

Several solutions have been introduced in the research community that greatly sim-
plify the amount of effort and knowledge required to create physical electronic devices.
For example, hardware toolkits provide hardware components that can be plug and
played in order to create a functional electronic device within minutes. Thanks to
these solutions, hardware devices are today being built by hobbyists who have no
previous background in electrical engineering. On the other hand, tools that simplify
development of software for smart textiles are either limited to rapid prototyping sce-
narios or require experience in programming. In this dissertation, we have made three
main contributions. First, we have presented a comprehensive literature review of the
field of smart textiles, including definitions, their evolution from the so-called wearable
computers and technologies currently being used to create them. We have also listed
and categorized tools that support the development of smart textiles, wearable com-
puters and physical devices and summarized their common features. Furthermore,
this dissertation has contributed to the body of knowledge in the field of smart tex-
tile development by eliciting generic requirements for an IDE for smart textiles. We
elicited these requirements based on an exhaustive literature review that is summa-
rized in Chapter 2 and a four year collaboration with professional textile designers.
We have described the research process we followed to iteratively and incrementally
explore the requirements needed to create a development environment for smart tex-
tiles. The requirements we elicited and research process we described can be reused
in the development of further development tools for smart textiles.

Second, we have described the models, design decisions, architecture and internal
structure of TangoHapps. TangoHapps supports the design, implementation, testing
and debugging of smart textiles, including placement of electronics, circuit layout and
application development. The high-level abstractions available in TangoHapps lower
the entrance barrier to smart textile development. TangoHapps’ visual programming
semantics span across smartphone and smart textile enabling users to take advan-
tage of capabilities present in both devices without writing source code. In order to
facilitate other researchers and professionals in the prototyping and further develop-
ment of smart textiles, we made TangoHapps publicly available. Its source code is

121



CHAPTER 8. CONCLUSIONS AND FUTURE WORK

available in GitHub1 and its executable can be downloaded from Apple’s AppStore23.
Furthermore, we have presented exhaustive documentation of the IDE, which should
facilitate its usage and further development. In particular, a detailed description of
every Application Object supported in TangoHapps is available in the Appendix. We
also created a platform for smart textile developers to share their Interactex projects
4 with other users. The platform also provides step-by-step tutorials on the usage of
Interactex.

Third, we demonstrated that TangoHapps has a high-ceiling and a low-entrance
barrier. We demonstrated the high-ceiling of the IDE with two use cases from dif-
ferent application domains: rehabilitation and blue-collar working. Furthermore, we
addressed the low-entrance barrier of TangoHapps with two user studies. The first
user study was conducted with middle school students who had never programmed
or worked with electronic circuits before. The second user study was conducted with
experienced smart textile developers who tested TangoHapps and gave us their in-
sight as end users of the IDE. Both user studies provide evidence that TangoHapps
enables users with no experience in programming or electronics to develop applica-
tions for smart textiles within minutes. Parts of the contributions presented in this
dissertation have been published in [42, 43, 41, 44, 46, 45].

8.1 Future Work

Before we are able to see people walking around the streets wearing smart garments,
challenges such as washability, robustness and social acceptance must be overcome.
Washability refers to the ability of a textile to resist washing without deteriorating.
The strain (and surprisingly not the water, heat or detergent) a smart textile is ex-
posed to during a washing cycle can damage its electronic devices and connections.
During normal usage, textiles are also exposed to high degrees of bending and strain.
A study done by the ETH Zurich revealed that the upper back of a T-Shirt, for in-
stance, is subject to an elongation as high as 20% of its normal size [76]. Additionally,
the integration of electronics into garments raises safety concerns and is perceived as
socially awkward by some audiences (e.g. elderly) [18].

A long term vision of TangoHapps is that the users of a smart textile also develop
their own smart textiles. Users could design and develop the applications for their
own smart garments using TangoHapps and snap or sew the electronic devices to
the textile. TangoHapps currently supports multiple applications on the same smart
garment. Hence, users can already switch their smart garment application by simply
selecting a different application in their smartphones.

Furthermore, an online store could offer applications for smart textiles, in a similar
way to how Apple’s AppStore offers applications for mobile devices. We refer to the
term “Happ” as an application for a smart textile, analogously to the term “App”.

1https://github.com/ls1intum/Interactex
2https://itunes.apple.com/us/app/interactex-designer/id973912620?mt=8
3https://itunes.apple.com/us/app/interactex-client/id1031238223?mt=8
4http://www.interactex.de/

122



8.1. FUTURE WORK

Users could develop applications using TangoHapps and then upload their executable
and textile assembly instructions to the TangoHapps HappStore for other users to
download them.

123



CHAPTER 8. CONCLUSIONS AND FUTURE WORK

124



Appendix A

Application Objects

A.1 Events Methods and Variables

In this section we list every Application Object ’s Methods, Events and Variables.

125



APPENDIX A. APPLICATION OBJECTS
Im

a
g
e

N
a
m

e
D

e
sc

ri
p
ti
o
n

E
v
e
n
ts

M
e
th

o
d
s

V
a
ri

a
b
le

s

B
u
tt

on
T
ri
gg

er
s

ev
en

ts
w

h
en

p
re

ss
ed

an
d

w
h
en

re
le

as
ed

.

bu
tt
on

P
re

ss
ed

()
,

bu
tt
on

R
el
ea

se
d(

)
-

pr
es

se
d

:

B
oo

le
an

L
ab

el
D

is
p
la

ys
te

xt
an

d
nu

m
b
er

s.
-

se
tT

ex
t(

S
tr

in
g)

,
ap

pe
n
dT

ex
t(

S
tr

in
g)

te
xt

:
S
tr

in
g

S
w

it
ch

T
ri
gg

er
s

ev
en

ts
w

h
en

sw
it
ch

ed
on

or
off

.
sw

it
ch

ed
O

n
()

,
sw

it
ch

ed
O

ff
()

,
on

C
ha

n
ge

d(
B
oo

le
an

)
-

on
:

B
oo

le
an

S
li
d
er

U
se

d
to

se
le

ct
a

va
lu

e
fr

om
a

ra
n
ge

of
va

lu
es

.
T
ri
gg

er
s

ev
en

ts
w

h
en

it
s

h
an

d
le

is
m

ov
ed

by

th
e

u
se

r.

va
lu

eC
ha

n
ge

d(
N

um
be

r)
-

va
lu

e
:

N
um

be
r

T
ou

ch
p
ad

T
ri
gg

er
s

ev
en

ts
w

h
en

th
e

u
se

r
p
er

fo
rm

s
th

e
fo

ll
ow

in
g

m
u
lt
i-
to

u
ch

ge
st

u
re

s
on

it
:

ta
p,

do
ub

le
ta

p,
lo

n
g

ta
p,

pi
n
ch

an
d

pa
n
.

pa
n
n
ed

X
(N

um
be

r)
,

pa
n
n
ed

Y
(N

um
be

r)
,

ta
pp

ed
()

,

do
ub

le
T
ap

pe
d(

),
pi

n
ch

ed
(N

um
be

r)

-
-

M
u
si

c
P

la
ye

r

A
cc

es
se

s
m

ob
il
e

d
ev

ic
e’

s
m

u
si

c
li
b
ra

ry
,
off

er
s

fu
n
ct

io
n
al

it
y

to
it
er

at
e

th
ro

u
gh

th
e

m
u
si

c
li
st

,

p
la

y
so

n
gs

an
d

d
is

p
la

ys
m

u
si

c
in

fo
rm

at
io

n
.

st
ar

te
d(

),
st

op
pe

d(
)

pl
ay

()
,
pa

us
e(

),
n
ex

t(
),

pr
ev

io
us

()
,

se
tV

ol
um

e(
N

um
be

r)

vo
lu

m
e

:
N

um
be

r

C
on

ta
ct

B
oo

k

A
cc

es
se

s
u
se

r’
s

co
nt

ac
ts

an
d

off
er

s

fu
n
ct

io
n
al

it
y

to
it
er

at
e

th
ro

u
gh

co
nt

ac
ts

an
d

m
ak

e
ca

ll
s.

-
ca

ll
()

,
pr

ev
io

us
()

,

n
ex

t(
)

-

Im
ag

e
V

ie
w

D
is

p
la

ys
an

im
ag

e.
-

-
-

M
on

it
or

D
is

p
la

ys
va

lu
es

ov
er

ti
m

e
(e

.g
.

se
n
so

r
re

ad
in

gs
).

-
ad

dV
al

ue
1(

N
um

be
r)

,
ad

dV
al

ue
2(

N
um

be
r)

-

T
ab

le
A

.1
:

U
I

W
id

ge
ts

su
pp

or
te

d
by

T
an

go
H

ap
ps

.

126



A.1. EVENTS METHODS AND VARIABLES

Im
a
g
e

N
a
m

e
D

e
sc

ri
p
ti
o
n

E
v
e
n
ts

M
e
th

o
d
s

V
a
ri

a
b
le

s

B
u
tt

on
A

b
u
tt

on
th

at
ca

n
b
e

p
re

ss
ed

.
T
ri
gg

er
s

ev
en

ts
w

h
en

p
re

ss
ed

an
d

w
h
en

re
le

as
ed

.

bu
tt
on

P
re

ss
ed

()
,

bu
tt
on

R
el
ea

se
d(

)
-

pr
es

se
d

:
B
oo

le
an

S
w

it
ch

A
n

on
/o

ff
sw

it
ch

.
T
ri
gg

er
s

ev
en

ts
w

h
en

sw
it
ch

ed
on

or
off

.

sw
it
ch

ed
O

n
()

,
sw

it
ch

ed
O

ff
()

,
sw

it
ch

C
ha

n
ge

d(
B
oo

le
an

)
-

-

L
ig

ht
S
en

so
r

M
ea

su
re

s
li
gh

t
in

te
n
si

ty
.

va
lu

eC
ha

n
ge

d(
N

um
be

r)
st

ar
t(

),
st

op
()

li
gh

tI
n
te

n
si

ty
:

N
um

be
r

T
em

p
er

at
u
re

S
en

so
r

M
ea

su
re

s
te

m
p
er

at
u
re

.
va

lu
eC

ha
n
ge

d(
N

um
be

r)
st

ar
t(

),
st

op
()

te
m

pe
ra

tu
re

:
N

um
be

r

A
cc

el
er

om
et

er
M

ea
su

re
s

ac
ce

le
ra

ti
on

fo
rc

es
in

a
3D

sp
ac

e.
xC

ha
n
ge

d(
N

um
be

r)
,

yC
ha

n
ge

d(
N

um
be

r)
,

zC
ha

n
ge

d(
N

um
be

r)

st
ar

t(
),

st
op

()

x
:

N
um

be
r,

y
:

N
um

be
r,

z
:

N
um

be
r

L
S
M

C
om

p
as

s
M

ea
su

re
s

ac
ce

le
ra

ti
on

fo
rc

es
an

d
d
ir
ec

ti
on

of
m

ag
n
et

ic
fi
el

d
s

in
a

3D
sp

ac
e.

va
lu

eC
ha

n
ge

d(
O

bj
ec

t)
,

he
ad

in
gC

ha
n
ge

d(
N

um
be

r)
st

ar
t(

),
st

op
()

ac
ce

le
ra

ti
on

:
O

bj
ec

t,
he

ad
in

g
:

N
um

be
r

M
P

U
60

50
M

ea
su

re
s

ac
ce

le
ra

ti
on

ac
ce

le
ra

ti
on

fo
rc

es
an

d
it
s

or
ie

nt
at

io
n

in
a

3D
sp

ac
e.

ac
ce

le
ra

ti
on

C
ha

n
ge

d(
O

bj
ec

t)
,

or
ie

n
ta

ti
on

C
ha

n
ge

d(
O

bj
ec

t)
,

ya
w
C

ha
n
ge

d(
N

um
be

r)
,

pi
tc

hC
ha

n
ge

d(
N

um
be

r)
,

ro
ll
C

ha
n
ge

d(
N

um
be

r)
,

xC
ha

n
ge

d(
N

um
be

r)
,

yC
ha

n
ge

d(
N

um
be

r)
,

zC
ha

n
ge

d(
N

um
be

r)

st
ar

t(
),

st
op

()
ac

ce
le
ra

ti
on

:
O

bj
ec

t,
or

ie
n
ta

ti
on

:
O

bj
ec

t

T
ex

ti
le

S
en

so
r

R
ep

re
se

nt
s

an
an

al
og

te
xt

il
e

se
n
so

r.
va

lu
eC

ha
n
ge

d(
N

um
be

r)
st

ar
t(

),

st
op

()
va

lu
e

:
N

um
be

r

P
ro

xi
m

it
y

S
en

so
r

M
ea

su
re

s
th

e
d
is

ta
n
ce

to
an

y
ob

je
ct

w
it
h
in

a
ra

n
ge

of
u
p

to
10

m
et

er
s.

pr
ox

im
it
yC

ha
n
ge

d(
N

um
be

r)
st

ar
t(

),

st
op

()
pr

ox
im

it
y

:
N

um
be

r

T
ab

le
A

.2
:

S
en

so
rs

su
pp

or
te

d
by

T
an

go
H

ap
ps

.

127



APPENDIX A. APPLICATION OBJECTS

Im
a
g
e

N
a
m

e
D

e
sc

ri
p
ti
o
n

E
v
e
n
ts

M
e
th

o
d
s

V
a
ri

a
b
le

s

L
E

D
A

L
ig

ht
E

m
it
ti
n
g

D
io

d
e

(L
E

D
).

C
an

b
e

tu
rn

ed
on

or
off

an
d

it
s

in
te

n
si

ty
ca

n
b
e

se
t.

tu
rn

ed
O

n
()

,
tu

rn
ed

O
ff
()

tu
rn

O
n
()

,
tu

rn
O

ff
()

,
se

tI
te

n
si

ty
()

on
:

B
oo

le
an

,

in
te

n
si

ty
:

N
um

be
r

B
u
zz

er
A

n
el

em
en

t
th

at
p
ro

d
u
ce

s
a

so
u
n
d

fr
eq

u
en

cy
.

It
ca

n
b
e

tu
rn

ed
on

,
tu

rn
ed

off

an
d

it
s

so
u
n
d

fr
eq

u
en

cy
ca

n
b
e

se
t.

-
tu

rn
O

n
()

,
tu

rn
O

ff
()

,
se

tF
re

-

qu
en

cy
(N

um
be

r)

fr
eq

ue
n
cy

:
N

um
be

r

T
h
re

e-
C

ol
or

L
E

D
A

n
L
E

D
th

at
em

it
s

li
gh

t
in

m
u
lt
ip

le
co

lo
rs

.
-

tu
rn

O
n
()

,
tu

rn
O

ff
()

,

se
tR

ed
(N

um
be

r)
,

se
tG

re
en

(N
um

be
r)

,
se

tB
lu

e(
N

um
be

r)

-

V
ib

ra
ti
on

B
oa

rd

P
ro

d
u
ce

s
vi

b
ra

ti
on

s.
It

ca
n

b
e

tu
rn

ed
on

,

off
an

d
it
s

vi
b
ra

ti
on

fr
eq

u
en

cy
ca

n
b
e

se
t.

-
tu

rn
O

n
()

,
tu

rn
O

ff
()

,
se

tF
re

-

qu
en

cy
(N

um
be

r)

fr
eq

ue
n
cy

:

N
um

be
r

T
ex

ti
le

Sp
ea

ke
r

R
ep

re
se

nt
s

a
ra

di
o

m
od

ul
e.

on
C

ha
n
ge

d(
B
oo

le
an

)

tu
rn

O
n
()

,
tu

rn
O

ff
()

,
se

tF
re

-
qu

en
cy

(N
um

be
r)

,

se
tV

ol
um

e(
N

um
be

r)

T
ab

le
A

.3
:

O
ut

pu
t
D

ev
ic

es
su

pp
or

te
d

by
T
an

go
H

ap
ps

.

128



A.1. EVENTS METHODS AND VARIABLES

Im
a
g
e

N
a
m

e
D

e
sc

ri
p
ti
o
n

E
v
e
n
ts

M
e
th

o
d
s

V
a
ri

a
b
le

s

L
il
yp

ad
O

ffi
ci

al
L
il
yp

ad
A

rd
u
in

o
M

ai
n

B
oa

rd
.

-
-

-

L
il
yp

ad
S
im

p
le

O
ffi

ci
al

L
il
yp

ad
A

rd
u
in

o
S
im

p
le

.
H

as
le

ss
p
in

s
th

an
th

e
L
il
yp

ad
A

rd
u
in

o
M

ai
n

B
oa

rd
.

-
-

-

B
L
E

-
L
il
yp

ad
L
il
yp

ad
A

rd
u
in

o
M

ai
n

B
oa

rd
w

it
h

an
in

te
gr

at
ed

B
lu

et
oo

th
L
ow

E
n
er

gy
m

od
u
le

.
-

-
-

T
ab

le
A

.4
:

M
ic

ro
co

n
tr
ol

le
rs

su
pp

or
te

d
by

T
an

go
H

ap
ps

.

Im
a
g
e

N
a
m

e
D

e
sc

ri
p
ti
o
n

E
v
e
n
ts

M
e
th

o
d
s

V
a
ri

a
b
le

s

B
oo

le
an

S
to

re
s

a
B

oo
le

an
va

lu
e.

va
lu

eC
ha

n
ge

d(
B
oo

le
an

)
se

tV
al

ue
(B

oo
le
an

)
va

lu
e

:
B
oo

le
an

N
u
m

b
er

S
to

re
s

a
nu

m
b
er

.
va

lu
eC

ha
n
ge

d(
N

um
be

r)
se

tV
al

ue
(N

um
be

r)
va

lu
e

:

N
um

be
r

S
tr

in
g

S
to

re
s

a
S
tr

in
g.

va
lu

eC
ha

n
ge

d(
S
tr

in
g)

se
tV

al
ue

(S
tr

in
g)

va
lu

e
:

S
tr

in
g

T
ab

le
A

.5
:

V
ar

ia
bl

es
su

pp
or

te
d

by
T
an

go
H

ap
ps

.

129



APPENDIX A. APPLICATION OBJECTS
Im

a
g
e

N
a
m

e
D

e
sc

ri
p
ti
o
n

E
v
e
n
ts

M
e
th

o
d
s

V
a
ri

a
b
le

s

B
ig

ge
r

E
m

it
s

th
e

co
n
di

ti
on

Is
T
ru

e(
)

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

E
ve

n
ts

w
it
h

a
B
oo

le
an

V
ar

ia
bl
e

se
t

to
tr

ue
if

th
e

fi
st

in
p
u
t

va
ri
ab

le
is

b
ig

g
e
r

th
an

th
e

se
co

n
d

in
p
u
t

V
ar

ia
bl
e.

O
th

er
w

is
e

em
it
s

co
n
di

ti
on

Is
F
al

se
()

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

w
it
h

a
b
oo

le
an

V
ar

ia
bl
e

se
t

to
fa

ls
e.

co
n
di

ti
on

Is
T
ru

e(
),

co
n
di

ti
on

Is
F
al

se
()

,

co
n
di

ti
on

-
C

ha
n
ge

d(
B
oo

le
an

)

se
tV

al
ue

1(
N

um
be

r)
,

se
tV

al
ue

2(
N

um
be

r)

is
T
ru

e
:

B
oo

le
an

B
ig

ge
rE

qu
al

E
m

it
s

th
e

co
n
di

ti
on

Is
T
ru

e(
)

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

E
ve

n
ts

w
it
h

a
B
oo

le
an

V
ar

ia
bl
e

se
t

to
tr

ue
if

th
e

fi
st

in
p
u
t

va
ri
ab

le
is

b
ig

g
e
r

o
r

e
q
u
a
l

th
an

th
e

se
co

n
d

in
p
u
t

V
ar

ia
bl
e.

O
th

er
w

is
e

em
it
s

co
n
di

ti
on

Is
F
al

se
()

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

w
it
h

a
b
oo

le
an

V
ar

ia
bl
e

se
t

to
fa

ls
e.

co
n
di

ti
on

Is
T
ru

e(
),

co
n
di

ti
on

Is
F
al

se
()

,

co
n
di

ti
on

-
C

ha
n
ge

d(
B
oo

le
an

)

se
tV

al
ue

1(
N

um
be

r)
,

se
tV

al
ue

2(
N

um
be

r)

is
T
ru

e
:

B
oo

le
an

S
m

al
le

r

E
m

it
s

th
e

co
n
di

ti
on

Is
T
ru

e(
)

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

E
ve

n
ts

w
it
h

a
B
oo

le
an

V
ar

ia
bl
e

se
t

to
tr

ue
if

th
e

fi
st

in
p
u
t

va
ri
ab

le
is

sm
a
ll
e
r

th
an

th
e

se
co

n
d

in
p
u
t

V
ar

ia
bl
e.

O
th

er
w

is
e

em
it
s

co
n
di

ti
on

Is
F
al

se
()

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

w
it
h

a
b
oo

le
an

V
ar

ia
bl
e

se
t

to
fa

ls
e.

co
n
di

ti
on

Is
T
ru

e(
),

co
n
di

ti
on

Is
F
al

se
()

,

co
n
di

ti
on

-
C

ha
n
ge

d(
B
oo

le
an

)

se
tV

al
ue

1(
N

um
be

r)
,

se
tV

al
ue

2(
N

um
be

r)

is
T
ru

e
:

B
oo

le
an

S
m

al
le

rE
qu

al

E
m

it
s

th
e

co
n
di

ti
on

Is
T
ru

e(
)

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

E
ve

n
ts

w
it
h

a
B
oo

le
an

V
ar

ia
bl
e

se
t

to
tr

ue
if

th
e

fi
st

in
p
u
t

va
ri
ab

le
is

sm
a
ll
e
r

o
r

e
q
u
a
l

th
an

th
e

se
co

n
d

in
p
u
t

V
ar

ia
bl
e.

O
th

er
w

is
e

em
it
s

co
n
di

ti
on

Is
F
al

se
()

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

w
it
h

a
b
oo

le
an

V
ar

ia
bl
e

se
t

to
fa

ls
e.

co
n
di

ti
on

Is
T
ru

e(
),

co
n
di

ti
on

Is
F
al

se
()

,

co
n
di

ti
on

-
C

ha
n
ge

d(
B
oo

le
an

)

se
tV

al
ue

1(
N

um
be

r)
,

se
tV

al
ue

2(
N

um
be

r)

is
T
ru

e
:

B
oo

le
an

T
ab

le
A

.6
:

C
om

pa
ri

so
n

O
pe

ra
to

rs
su

pp
or

te
d

by
T
an

go
H

ap
ps

.

130



A.1. EVENTS METHODS AND VARIABLES

Im
a
g
e

N
a
m

e
D

e
sc

ri
p
ti
o
n

E
v
e
n
ts

M
e
th

o
d
s

V
a
ri

a
b
le

s

E
qu

al

E
m

it
s

th
e

co
n
di

ti
on

Is
T
ru

e(
)

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

E
ve

n
ts

w
it
h

a
B
oo

le
an

V
ar

ia
bl
e

se
t

to
tr

ue
if

th
e

fi
st

in
p
u
t

va
ri
ab

le
is

e
q
u
a
l
to

th
e

se
co

n
d

in
p
u
t

V
ar

ia
bl
e.

O
th

er
w

is
e

em
it
s

co
n
di

ti
on

Is
F
al

se
()

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

w
it
h

a
b
oo

le
an

V
ar

ia
bl
e

se
t

to
fa

ls
e.

co
n
di

ti
on

Is
T
ru

e(
),

co
n
di

ti
on

Is
F
al

se
()

,

co
n
di

ti
on

-
C

ha
n
ge

d(
B
oo

le
an

)

se
tV

al
ue

1(
N

um
be

r)
,

se
tV

al
ue

2(
N

um
be

r)

is
T
ru

e
:

B
oo

le
an

N
ot

E
qu

al

E
m

it
s

th
e

co
n
di

ti
on

Is
T
ru

e(
)

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

E
ve

n
ts

w
it
h

a
B
oo

le
an

V
ar

ia
bl
e

se
t

to
tr

ue
if

th
e

fi
st

in
p
u
t

va
ri
ab

le
is

n
o
t

e
q
u
a
l
to

th
e

se
co

n
d

in
p
u
t

V
ar

ia
bl
e.

O
th

er
w

is
e

em
it
s

co
n
di

ti
on

Is
F
al

se
()

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

w
it
h

a
b
oo

le
an

V
ar

ia
bl
e

se
t

to
fa

ls
e.

co
n
di

ti
on

Is
T
ru

e(
),

co
n
di

ti
on

Is
F
al

se
()

,

co
n
di

ti
on

-
C

ha
n
ge

d(
B
oo

le
an

)

se
tV

al
ue

1(
N

um
be

r)
,

se
tV

al
ue

2(
N

um
be

r)

is
T
ru

e
:

B
oo

le
an

A
n
d

E
m

it
s

th
e

co
n
di

ti
on

Is
T
ru

e(
)

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

E
ve

n
ts

w
it
h

a
B
oo

le
an

V
ar

ia
bl
e

se
t

to
tr

ue
if

b
o
th

b
o
o
le

a
n

in
p
u
t

v
a
ri

a
b
le

s
a
re

tr
u
e
.

O
th

er
w

is
e

em
it
s

co
n
di

ti
on

Is
F
al

se
()

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

w
it
h

a
b
oo

le
an

V
ar

ia
bl
e

se
t

to
fa

ls
e.

co
n
di

ti
on

Is
T
ru

e(
),

co
n
di

ti
on

Is
F
al

se
()

,
co

n
di

ti
on

-

C
ha

n
ge

d(
B
oo

le
an

)

se
tV

al
ue

1(
B
oo

le
an

),
se

tV
al

ue
2(

B
oo

le
an

)
is

T
ru

e
:

B
oo

le
an

O
r

E
m

it
s

th
e

co
n
di

ti
on

Is
T
ru

e(
)

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

E
ve

n
ts

w
it
h

a
B
oo

le
an

V
ar

ia
bl
e

se
t

to
tr

ue
if

e
it
h
e
r

b
o
o
le

a
n

in
p
u
t

v
a
ri

a
b
le

is
tr

u
e
.

O
th

er
w

is
e

em
it
s

co
n
di

ti
on

Is
F
al

se
()

an
d

co
n
di

ti
on

C
ha

n
ge

d(
)

w
it
h

a
b
oo

le
an

V
ar

ia
bl
e

se
t

to
fa

ls
e.

co
n
di

ti
on

Is
T
ru

e(
),

co
n
di

ti
on

Is
F
al

se
()

,
co

n
di

ti
on

-
C

ha
n
ge

d(
B
oo

le
an

)

se
tV

al
ue

1(
B
oo

le
an

),
se

tV
al

ue
2(

B
oo

le
an

)
is

T
ru

e
:

B
oo

le
an

T
ab

le
A

.7
:

L
og

ic
al

O
pe

ra
to

rs
su

pp
or

te
d

by
T
an

go
H

ap
ps

.

131



APPENDIX A. APPLICATION OBJECTS

Im
a
g
e

N
a
m

e
D

e
sc

ri
p
ti
o
n

E
v
e
n
ts

M
e
th

o
d
s

V
a
ri

a
b
le

s

A
d
d
it
io

n
A

d
d
s

tw
o

nu
m

b
er

s.
co

m
pu

te
d(

N
um

be
r)

se
tO

pe
ra

n
d1

(N
um

be
r)

,
se

tO
pe

ra
n
d2

(N
um

be
r)

,
co

m
pu

te
()

re
su

lt
:

N
um

be
r

S
u
b
tr

ac
ti
on

S
u
b
tr

ac
ts

op
er

an
d2

fr
om

op
er

an
d1

.
co

m
pu

te
d(

N
um

be
r)

se
tO

pe
ra

n
d1

(N
um

be
r)

,

se
tO

pe
ra

n
d2

(N
um

be
r)

,
co

m
pu

te
()

re
su

lt
:

N
um

be
r

M
u
lt
ip

li
ca

ti
on

M
u
lt
ip

li
es

tw
o

nu
m

b
er

s
co

m
pu

te
d(

N
um

be
r)

se
tO

pe
ra

n
d1

(N
um

be
r)

,
se

tO
pe

ra
n
d2

(N
um

be
r)

,
co

m
pu

te
()

re
su

lt
:

N
um

be
r

D
iv

is
io

n
D

iv
id

es
op

er
an

d1
by

op
er

an
d2

.
co

m
pu

te
d(

N
um

be
r)

se
tO

pe
ra

n
d1

(N
um

be
r)

,
se

tO
pe

ra
n
d2

(N
um

be
r)

,

co
m

pu
te

()

re
su

lt
:

N
um

be
r

M
od

u
lo

C
al

cu
la

te
s

th
e

re
si

d
u
al

of
th

e
d
iv

is
io

n
b
et

w
ee

n
op

er
an

d1
an

d
op

er
an

d2
.

co
m

pu
te

d(
N

um
be

r)
se

tO
pe

ra
n
d1

(N
um

be
r)

,
se

tO
pe

ra
n
d2

(N
um

be
r)

,
co

m
pu

te
()

re
su

lt
:

N
um

be
r

T
ab

le
A

.8
:

A
ri

th
m

et
ic

O
pe

ra
to

rs
su

pp
or

te
d

by
T
an

go
H

ap
ps

.

132



A.1. EVENTS METHODS AND VARIABLES

Im
a
g
e

N
a
m

e
D

e
sc

ri
p
ti
o
n

E
v
e
n
ts

M
e
th

o
d
s

V
a
ri

a
b
le

s

W
in

do
w

T
ak

es
si

gn
al

va
lu

es
as

in
pu

t,
an

d
re

tu
rn

s
ch

un
ks

of
th

e
sa

m
e

si
gn

al
s,

w
hi

ch
m

ig
ht

ov
er

la
p.

fi
ll
ed

(O
bj

ec
t)

ad
dV

al
ue

(N
um

be
r)

da
ta

:
O

bj
ec

t

L
ow

-P
as

s
F
il
te

r
L
ow

-p
as

se
s

a
si

gn
al

.
fi
lt
er

ed
V
al

ue
s(

O
bj

ec
t)

ad
dV

al
ue

(N
um

be
r)

,
ad

dV
al

ue
s(

O
bj

ec
t)

,

re
m

ov
eA

ll
V
al

ue
s(

)

-

H
ig

h
-P

as
s

F
il
te

r
H

ig
h
-p

as
se

s
a

si
gn

al
.

fi
lt
er

ed
V
al

ue
s(

O
bj

ec
t)

ad
dV

al
ue

(N
um

be
r)

,

ad
dV

al
ue

s(
O

bj
ec

t)
,

re
m

ov
eA

ll
V
al

ue
s(

)
-

M
ea

n

E
xt

ra
ct

or
C

al
cu

la
te

s
th

e
m

ea
n

of
a

se
t

of
va

lu
es

.
fe
at

ur
eE

xt
ra

ct
ed

(N
um

be
r)

ad
dV

al
ue

(N
um

be
r)

,
ad

dV
al

ue
s(

O
bj

ec
t)

,

re
m

ov
eA

ll
V
al

ue
s(

),
co

m
pu

te
()

-

D
ev

ia
ti
on

E
xt

ra
ct

or
C

al
cu

la
te

s
th

e
d
ev

ia
ti
on

of
a

se
t

of
va

lu
es

.
fe
at

ur
eE

xt
ra

ct
ed

(N
um

be
r)

ad
dV

al
ue

(N
um

be
r)

,
ad

dV
al

ue
s(

O
bj

ec
t)

,
re

m
ov

eA
ll
V
al

ue
s(

),

co
m

pu
te

()

-

P
ea

k

D
et

ec
to

r

C
al

cu
la

te
s

th
e

p
ea

k
in

a
se

t
of

va
lu

es
an

d
p
ro

vi
d
es

th
e

p
ea

k’
s

va
lu

e
an

d
in

d
ex

in
an

ev
en

t.
It

off
er

s
m

et
h
od

s
to

se
t

th
e

ra
n
ge

in
a

se
t

of
sa

m
p
le

s
w

h
er

e
th

e
p
ea

k
sh

ou
ld

b
e

se
ar

ch
ed

.

fe
at

ur
eE

xt
ra

ct
ed

(N
um

be
r)

,

in
de

xE
xt

ra
ct

ed
(N

um
be

r)

ad
dV

al
ue

(N
um

be
r)

,
re

m
ov

eA
ll
V
al

ue
s(

),
co

m
pu

te
()

,

se
tR

an
ge

S
-

ta
rt

(N
um

be
r)

,
se

-

tR
an

ge
E
n
d(

N
um

be
r)

-

A
ct

iv
it
y

C
la

ss
ifi

er

C
la

ss
ifi

es
u
se

r
m

ot
io

n
b
as

ed
on

ac
ce

le
ro

m
et

er
in

p
u
t.

A
ct

iv
it
ie

s
su

p
p
or

te
d

ar
e:

’w
al

ki
n
g’

,
’r
u
n
n
in

g’
,
’c

li
m

b
in

g’
an

d
’n

ot
m

ov
in

g’
.

w
al

ki
n
g(

),
ru

n
n
in

g(
),

cl
im

bi
n
g(

),
n
ot

M
ov

in
g(

)
cl
as

si
fy

S
am

pl
es

(O
bj

ec
t)

-

P
os

tu
re

C
la

ss
ifi

er

C
la

ss
ifi

es
u
se

r
p
os

tu
re

s
b
as

ed
on

IM
U

in
p
u
t.

S
u
p
p
or

te
d

p
os

tu
re

s
ar

e:
’s

ta
n
d
in

g’
,
’l
yi

n
g

d
ow

n
on

st
om

ac
h
’
an

d
’l
yi

n
g

d
ow

n
on

b
ac

k’
.

st
an

di
n
g(

),
ly

in
gD

ow
n
()

,

ly
in

gU
p(

)
cl
as

si
fy

S
am

pl
es

(O
bj

ec
t)

-

T
ab

le
A

.9
:

Si
gn

al
pr

oc
es

si
ng

an
d

cl
as

si
fic

at
io

n
F
un

ct
io

n
s

su
pp

or
te

d
by

T
an

go
H

ap
ps

.

133



APPENDIX A. APPLICATION OBJECTS

Im
a
g
e

N
a
m

e
D

e
sc

ri
p
ti
o
n

E
v
e
n
ts

M
e
th

o
d
s

V
a
ri

a
b
le

s

T
im

er

G
en

er
at

es
an

ev
en

t
af

te
r

x
ti
m

e.
It

’s
tr

ig
ge

r
ti
m

e
an

d
w

h
et

h
er

it
sh

ou
ld

tr
ig

ge
r

on
ce

or
m

an
y

ti
m

es
ca

n
b
e

co
n
fi
gu

re
d

ov
er

th
e

C
on

fi
gu

ra
ti
on

V
ie

w
in

th
e

P
al

et
te

.

tr
ig

ge
re

d(
)

st
ar

t(
),

st
op

()
-

S
ou

n
d

R
ep

re
se

nt
s

a
so

u
n
d
.

It
off

er
s

a
si

n
gl

e
m

et
h
od

to
p
la

y
it
.

-
pl

ay
()

-

R
ec

or
d
er

P
ro

vi
d
es

a
w

ay
to

st
or

e
a

se
t

of
va

lu
es

(e
.g

.
fr

om
a

se
n
so

r)
an

d
to

fe
ed

a
se

t
of

va
lu

es
in

to
ot

h
er

ob
je

ct
s.

st
ar

tR
ec

or
di

n
g(

),
st

op
R
ec

or
di

n
g(

)

st
ar

tR
ec

or
di

n
g(

),
st

op
R
ec

or
di

n
g(

),
ad

dV
al

ue
(N

um
be

r)
-

M
ap

p
er

S
ca

le
s

va
lu

es
.

T
h
is

is
u
se

fu
l
to

m
ak

e
va

lu
es

fi
t

to
th

e
ra

n
ge

re
qu

ir
ed

by
ot

h
er

ob
je

ct
s.

F
or

ex
am

p
le

,
th

e
S
li
de

r
U

I
w

id
ge

t
p
ro

d
u
ce

s
by

d
ef

au
lt

va
lu

es
in

th
e

ra
n
ge

[0
25

5]
an

d
th

e

B
uz

ze
r

h
ar

d
w

ar
e

el
em

en
t

re
qu

ir
es

a
fr

eq
u
en

cy
in

th
e

ra
n
ge

[0
20

00
0]

.
T

h
e

M
ap

pe
r

w
ou

ld
ta

ke
th

e
S
li
de

r’
s

in
p
u
t

ra
n
ge

[M
in

1
M

ax
1]

an
d

sc
al

e
it

li
n
ea

rl
y

to
th

e
B
uz

ze
r’

s
ou

tp
u
t

ra
n
ge

[M
in

2
M

ax
2]

.
G

en
er

at
es

an
ev

en
t

w
h
en

ev
er

th
e

va
lu

e
ch

an
ge

s.

va
lu

eC
ha

n
ge

d(
N

um
be

r)

se
tM

in
1(

N
um

be
r)

,
se

tM
ax

1(
N

um
be

r)
,

se
tM

in
2(

N
um

be
r)

,
se

tM
ax

2(
N

um
be

r)
,

se
tV

al
ue

(N
um

be
r)

va
lu

e
:

N
um

be
r

T
ab

le
A

.1
0:

U
ti

lit
y

pr
og

ra
m

m
in

g
el

em
en

ts
su

pp
or

te
d

by
T
an

go
H

ap
ps

.

134



A.2. PALETTE OBJECTS

A.2 Palette Objects

Figures A.1 and A.2 display every object available in Interactex Designer.

A.3 Variables

In addition to the Variables that we listed in Section A.1, Application Objects expose
Variables that are used by developers to change the Application Object ’s default con-
figuration. These Variables are displayed over the Configuration View in the Palette.
It should be noted that Variables of a superclass are shared among all its subclasses
and that Microcontrollers, Arithmetic Operators and Logical Operators have no Vari-
ables. Figure A.3 in the Appendix displays the Variables of a Label and Timer objects.

135



APPENDIX A. APPLICATION OBJECTS

Figure A.1: Palette Objects for instantiating Smart Textiles, Electronic Devices (e.g.
Hardware Devices and Microcontrollers) and UI Widgets available in Interactex De-
signer.

136



A.3. VARIABLES

Figure A.2: Palette Objects for instantiating Signal Processing Functions, Variables
and Operators available in Interactex Designer.

137



APPENDIX A. APPLICATION OBJECTS

C
la

ss
V
a
ri

a
b
le

s

U
I

W
id

ge
t

•
W

id
th

.
U

se
d

to
se

t
th

e
w

id
th

of
th

e
U

I
W

id
ge

t.

•
H

ei
gh

t.
Se

ts
th

e
he

ig
ht

of
th

e
U

I
W

id
ge

t.

•
C

ol
or

.
Se

ts
th

e
ba

ck
gr

ou
nd

co
lo

r
of

th
e

w
id

ge
t.

N
ot

ev
er

y
U

I
W

id
ge

t
ha

s
a

ba
ck

gr
ou

nd
co

lo
r.

C
ha

ng
es

to
th

is
V
ar

ia
bl

e
w

ill
be

eff
ec

ti
ve

on
th

e
w

id
ge

ts
th

at
ha

ve
a

ba
ck

gr
ou

nd
co

lo
r.

B
u
tt

on
T

it
le

.
T

he
te

xt
on

th
e

B
ut

to
n
.

L
ab

el
T
ex

t.
T

he
te

xt
on

th
e

L
ab

el
.

S
w

it
ch

O
n

at
st

ar
t.

W
he

th
er

th
e

S
w
it
ch

sh
ou

ld
be

tu
rn

ed
on

at
th

e
be

gi
nn

in
g

of
th

e
ap

pl
ic

at
io

n.

S
li
d
er

•
V
al

ue
.

T
he

va
lu

e
th

at
sh

ou
ld

be
as

si
gn

ed
to

th
e

S
li
de

r
in

it
ia

lly
.

•
M

in
.

T
he

m
in

im
um

al
lo

w
ed

va
lu

e.

•
M

ax
.

T
he

m
ax

im
um

al
lo

w
ed

va
lu

e.

T
ou

ch
p
ad

•
X

-M
ul

ti
pl

ie
r.

C
on

st
an

t
us

ed
to

sc
al

e
th

e
di

sp
la

ce
m

en
t

va
lu

es
al

on
g

th
e

x-
ax

is
de

liv
er

ed
by

th
e

T
ou

ch
pa

d.

•
Y

-M
ul

ti
pl

ie
r.

C
on

st
an

t
us

ed
to

sc
al

e
th

e
di

sp
la

ce
m

en
t

va
lu

es
al

on
g

th
e

y-
ax

is
de

liv
er

ed
by

th
e

T
ou

ch
pa

d.

T
ab

le
A

.1
1:

V
ar

ia
bl

es
of

U
I

W
id

ge
ts

(P
ar

t
1/

2)
.

138



A.3. VARIABLES

C
la

ss
V
a
ri

a
b
le

s

M
u
si

c
P

la
ye

r

•
P
la

y
bu

tt
on

.
W

he
th

er
th

e
M

us
ic

P
la

ye
r

sh
ou

ld
sh

ow
th

e
pl

ay
bu

tt
on

.

•
N

ex
t
bu

tt
on

.
W

he
th

er
th

e
M

us
ic

P
la

ye
r

sh
ou

ld
sh

ow
a

bu
tt

on
to

pl
ay

ne
xt

so
ng

in
th

e
pl

ay
lis

t.

•
P
re

vi
ou

s
bu

tt
on

.
W

he
th

er
th

e
M

us
ic

P
la

ye
r

sh
ou

ld
sh

ow
a

bu
tt

on
to

pl
ay

pr
ev

io
us

so
ng

in
th

e
pl

ay
lis

t.

•
V
ol

um
e

vi
ew

.
W

he
th

er
th

e
M

us
ic

P
la

ye
r

sh
ou

ld
sh

ow
th

e
vo

lu
m

e
sl

id
er

.

•
V

is
ib

le
.

W
he

th
er

th
e

M
us

ic
P
la

ye
r

sh
ou

ld
be

vi
si

bl
e

in
th

e
m

ob
ile

de
vi

ce
’s

in
te

rf
ac

e.

C
on

ta
ct

B
oo

k

•
C

al
l
bu

tt
on

.
W

he
th

er
th

e
C

on
ta

ct
B
oo

k
sh

ou
ld

sh
ow

th
e

ca
ll

bu
tt

on
.

•
N

ex
t
bu

tt
on

.W
he

th
er

th
e

C
on

ta
ct

B
oo

k
sh

ou
ld

sh
ow

a
bu

tt
on

to
it

er
at

e
to

th
e

ne
xt

co
nt

ac
t.

•
P
re

vi
ou

s
bu

tt
on

.W
he

th
er

th
e

C
on

ta
ct

B
oo

k
sh

ou
ld

sh
ow

a
bu

tt
on

to
it

er
at

e
to

th
e

pr
ev

io
us

co
nt

ac
t.

Im
ag

e
V

ie
w

Im
ag

e.
O

pe
ns

a
po

p-
up

fo
r

se
le

ct
io

n
of

th
e

im
ag

e
am

on
g

th
e

us
er

’s
m

ob
ile

ph
on

e
im

ag
e

al
bu

m
s.

M
on

it
or

•
X

-A
xi

s.
W

he
th

er
th

e
M

on
it

or
sh

ou
ld

di
sp

la
y

th
e

ho
ri

zo
nt

al
ax

is
.

•
Y

-A
xi

s.
W

he
th

er
th

e
M

on
it

or
sh

ou
ld

di
sp

la
y

th
e

ve
rt

ic
al

ax
is
.

T
ab

le
A

.1
2:

V
ar

ia
bl

es
of

U
I

W
id

ge
ts

(P
ar

t
2/

2)
.

139



APPENDIX A. APPLICATION OBJECTS
C

la
ss

V
a
ri

a
b
le

s

H
ar

dw
ar

e
D

ev
ic

e

•
N

am
e.

E
na

bl
es

de
ve

lo
pe

rs
to

pr
ov

id
e

a
na

m
e

to
th

e
H

ar
dw

ar
e

D
ev

ic
e

to
id

en
ti

fy
it

m
or

e
ea

si
ly

du
ri

ng
de

ve
lo

pm
en

t.
T

he
na

m
e

w
ill

be
di

sp
la

ye
d

in
a

la
be

lb
el

ow
th

e
E
di

ta
bl

e
O

bj
ec

t’
s

im
ag

e
in

th
e

ca
nv

as
.

•
A

ut
or

ou
te

.
If

th
er

e
is

a
si
ng

le
M

ic
ro

co
n
tr
ol

le
r

ad
de

d
to

th
e

ca
nv

as
,
th

is
bu

tt
on

ca
us

es
th

e
H

ar
dw

ar
e

D
ev

ic
e

to
be

w
ir

ed
to

an
y

co
m

pa
ti

bl
e

av
ai

la
bl

e
pi

ns
of

th
e

M
ic

ro
co

n
tr
ol

le
r.

B
u
tt

on
E

xp
os

es
no

V
ar

ia
bl

es
.

S
w

it
ch

E
xp

os
es

no
V
ar

ia
bl

es
.

L
ig

ht
S
en

so
r

E
xp

os
es

no
V
ar

ia
bl

es
.

T
em

p
er

at
u
re

S
en

so
r

E
xp

os
es

no
V
ar

ia
bl

es
.

A
cc

el
er

om
et

er
E

xp
os

es
no

V
ar

ia
bl

es
.

L
S
M

C
om

p
as

s
E

xp
os

es
no

V
ar

ia
bl

es
.

M
P

U
60

50
E

xp
os

es
no

V
ar

ia
bl

es
.

P
ot

en
ti
om

et
er

•
N

ot
if
y

st
ra

te
gy

.
D

et
er

m
in

es
ho

w
th

e
P
ot

en
ti

om
et

er
no

ti
fie

s
ot

he
r

O
b
je

ct
s

ab
ou

t
ne

w
va

lu
es

be
in

g
av

ai
la

bl
e.

C
an

be
se

t
to

ei
th

er
A

lw
ay

s
-

w
hi

ch
ca

us
es

th
e

P
ot

en
ti
om

et
er

to
al

w
ay

s
em

it
ev

en
ts

w
he

n
ne

w
va

lu
es

ar
e

av
ai

la
bl

e
-,

in
R
an

ge
-

w
hi

ch
ca

us
es

th
e

P
ot

en
ti
om

et
er

to
em

it
ev

en
ts

on
ly

w
he

n
th

e
va

lu
es

lie
be

tw
ee

n
a

sp
ec

ifi
c

ra
ng

e
-

an
d

O
n
ce

-
w

hi
ch

ca
us

es
th

e
P
ot

en
ti
om

et
er

to
em

it
an

ev
en

t
w

he
n

th
e

va
lu

e
en

te
rs

a
sp

ec
ifi

ed
ra

ng
e.

•
M

in
n
ot

if
y

va
lu

e.
T

he
m

in
im

um
va

lu
e

in
th

e
ra

ng
e

us
ed

by
th

e
no

ti
fic

at
io

n
st

ra
te

gi
es

in
R
an

ge
an

d
O

n
ce

.

•
M

ax
n
ot

if
y

va
lu

e.
T

he
m

ax
im

um
va

lu
e

in
th

e
ra

ng
e

us
ed

by
th

e
no

ti
fic

at
io

n
st

ra
te

gi
es

in
R
an

ge
an

d
O

n
ce

.

P
ro

xi
m

it
y

Se
ns

or

T
ab

le
A

.1
3:

V
ar

ia
bl

es
of

H
ar

dw
ar

e
D

ev
ic

es
(P

ar
t

1/
2)

.

140



A.3. VARIABLES

C
la

ss
V
a
ri

a
b
le

s

L
E

D
•

In
te

n
si

ty
.

T
he

in
it

ia
l
in

te
ns

it
y

of
th

e
L
E
D

.

•
O

n
at

st
ar

t.
W

he
th

er
th

e
L
E
D

sh
ou

ld
be

tu
rn

ed
w

he
n

th
e

ap
pl

ic
at

io
n

st
ar

ts
.

B
u
zz

er
•

F
re

qu
en

cy
.

T
he

in
it

ia
l
fr

eq
ue

nc
y

of
th

e
B
uz

ze
r.

•
O

n
at

st
ar

t.
W

he
th

er
th

e
B
uz

ze
r

sh
ou

ld
be

tu
rn

ed
w

he
n

th
e

ap
pl

ic
at

io
n

st
ar

ts
.

T
h
re

e-
C

ol
or

L
E

D

•
R
ed

.
T

he
T

hr
ee

-C
ol

or
L
E
D

s
in

it
ia

l
re

d
co

m
po

ne
nt

in
te

ns
it
y.

•
G

re
en

.
T

he
T

hr
ee

-C
ol

or
L
E
D

s
in

it
ia

l
gr

ee
n

co
m

po
ne

nt
in

te
ns

it
y.

•
B
lu

e.
T

he
T

hr
ee

-C
ol

or
L
E
D

s
in

it
ia

l
bl

ue
co

m
po

ne
nt

in
te

ns
it
y.

V
ib

ra
ti
on

B
oa

rd
F
re

qu
en

cy
.

T
he

V
ib

ra
ti
on

B
oa

rd
’s

in
it

ia
l
fr

eq
ue

nc
y.

T
ab

le
A

.1
4:

V
ar

ia
bl

es
of

H
ar

dw
ar

e
D

ev
ic

es
(P

ar
t

2/
2)

.

141



APPENDIX A. APPLICATION OBJECTS

C
la

ss
V
a
ri

a
b
le

s

N
um

be
r

V
al

ue
.

T
ex

t
bo

x
to

in
pu

t
th

e
N

um
be

r’
s

in
it

ia
l
va

lu
e.

B
oo

le
an

V
al

ue
.

Sw
it

ch
to

in
pu

t
th

e
B
oo

le
an

’s
in

it
ia

l
va

lu
e.

St
ri

ng
V
al

ue
.

T
ex

t
bo

x
to

in
pu

t
th

e
S
tr

in
g
’s

in
it

ia
l
va

lu
e.

W
in

do
w

•
S
iz

e.
T

he
am

ou
nt

of
sa

m
pl

es
th

e
W

in
do

w
sh

ou
ld

bu
ffe

r.

•
O

ve
rl
ap

pi
n
g.

T
he

am
ou

nt
of

sa
m

pl
es

in
th

e
cu

rr
en

t
bu

ffe
r

th
at

w
er

e
al

so
pr

es
en

t
in

th
e

pr
ev

io
us

bu
ffe

r.

L
ow

-P
as

s
F
il
te

r
F
ac

to
r.

Se
ts

th
e

in
te

ns
it
y

of
th

e
F
il
te

r.
A

fa
ct

or
of

0
le

av
es

th
e

si
gn

al
un

m
od

ifi
ed

.
T

he
bi

gg
er

th
e

fa
ct

or
,

th
e

sm
oo

th
er

th
e

si
gn

al
be

co
m

es
.

H
ig

h
-P

as
s

F
il
te

r
T

he
H

ig
h-

P
as

s
F
il
te

r
ha

s
th

e
sa

m
e

V
ar

ia
bl

es
as

th
e

L
ow

-P
as

s
F
il
te

r.
M

ea
n

E
xt

ra
ct

or
E

xp
os

es
no

V
ar

ia
bl

es
.

D
ev

ia
ti
on

E
xt

ra
ct

or
E

xp
os

es
no

V
ar

ia
bl

es
.

P
ea

k
D

et
ec

to
r

•
M

in
.

Se
ts

th
e

m
in

im
um

va
lu

e
of

th
e

ra
ng

e
in

w
hi

ch
pe

ak
s

ar
e

se
ar

ch
ed

fo
r.

•
M

ax
.

Se
ts

th
e

m
ax

im
um

va
lu

e
of

th
e

ra
ng

e
in

w
hi

ch
pe

ak
s

ar
e

se
ar

ch
ed

fo
r.

•
U

pp
er

pe
ak

.
D

efi
ne

s
w

he
th

er
th

e
P
ea

k
D

et
ec

to
r

sh
ou

ld
se

ar
ch

fo
r

up
pe

r
or

lo
w

er
pe

ak
s.

A
ct

iv
it
y

C
la

ss
ifi

er
E

xp
os

es
no

V
ar

ia
bl

es
.

P
os

tu
re

C
la

ss
ifi

er
E

xp
os

es
no

V
ar

ia
bl

es
.

T
ab

le
A

.1
5:

V
ar

ia
bl

es
of

P
ro

gr
am

m
in

g
O

bj
ec

ts
(P

ar
t

1/
2)

.

142



A.3. VARIABLES

C
la

ss
V
a
ri

a
b
le

s

T
im

er

•
F
re

qu
en

cy
.

T
he

tr
ig

ge
r

fr
eq

ue
nc

y
of

th
e

T
im

er
in

se
co

nd
s.

•
T

im
e

E
la

ps
ed

.
T

he
am

ou
nt

of
se

co
nd

s
si

nc
e

th
e

ti
m

er
ha

s
be

en
st

at
ed

(0
if

th
e

ti
m

er
ha

s
no

t
be

en
st

ar
te

d)
.

•
R
ep

ea
ts

.
W

he
th

er
th

e
T

im
er

sh
ou

ld
tr

ig
ge

r
on

ce
or

in
de

fin
it

el
y

un
ti

l
st

op
pe

d.

S
ou

n
d

S
ou

n
d.

O
pe

ns
a

po
pu

p
fo

r
se

le
ct

io
n

of
a

so
un

d
fil

e.
R

ec
or

d
er

E
xp

os
es

no
V
ar

ia
bl

es
.

M
ap

p
er

•
In

pu
t
M

in
.

D
efi

ne
s

th
e

m
in

im
um

va
lu

e
of

th
e

in
pu

t
ra

ng
e.

•
In

pu
t
M

ax
.

D
efi

ne
s

th
e

m
ax

im
um

va
lu

e
of

th
e

in
pu

t
ra

ng
e.

•
O

ut
pu

t
M

in
.

D
efi

ne
s

th
e

m
in

im
um

va
lu

e
of

th
e

in
pu

t
ra

ng
e.

•
O

ut
pu

t
M

ax
.

D
efi

ne
s

th
e

m
ax

im
um

va
lu

e
of

th
e

in
pu

t
ra

ng
e.

B
as

ed
on

th
es

e
fo

ur
V
ar

ia
bl

es
,
th

e
M

ap
pe

r
de

fin
es

a
lin

ea
r

fu
nc

ti
on

w
hi

ch
it

us
es

to
sc

al
e

va
lu

es
in

th
e

in
pu

t
ra

ng
e

to
va

lu
es

in
th

e
ou

tp
ut

ra
ng

e.

T
ab

le
A

.1
6:

V
ar

ia
bl

es
of

P
ro

gr
am

m
in

g
O

bj
ec

ts
(P

ar
t

2/
2)

.

143



APPENDIX A. APPLICATION OBJECTS

A.4 Simulation Objects

Simulation Objects provide an interface for users to modify the state of Application
Objects and display runtime information useful for debugging purposes. Tables A.17,
A.18 and A.19 list what each Simulation Object subclass displays and how it reacts
to user input. It should be noted that UI Widgets Simulation Objects behave in an
identical way as the UI Widget.

144



A.4. SIMULATION OBJECTS

Figure A.3: Configuration View of a Label and Timer.

145



APPENDIX A. APPLICATION OBJECTS

S
im

u
la

ti
o
n

O
b
je

c
t

In
p
u
t

O
u
tp

u
t

B
u
tt

on
F
in

ge
r

to
uc

he
s

on
th

e
B
ut

to
n

S
im

ul
at

io
n

O
bj

ec
t

ca
us

e
th

e
B
ut

to
n

to
be

pr
es

se
d/

re
le

as
ed

.
P

re
ss

in
g

an
d

re
le

as
in

g
th

e
bu

tt
on

pr
od

uc
e

a
so

un
d

eff
ec

t.

S
w

it
ch

T
ap

s
on

th
e

S
w
it
ch

S
im

ul
at

io
n

O
bj

ec
t

ca
us

e
th

e
S
w
it
ch

to
be

tu
rn

ed
on

/o
ff.

•
P

re
ss

in
g

an
d

re
le

as
in

g
th

e
bu

tt
on

pr
od

uc
e

a
so

un
d

eff
ec

t.

•
A

di
ffe

re
nt

im
ag

e
is

sh
ow

n
di

sp
la

yi
ng

th
e

sw
it

ch
tu

rn
ed

on
or

off
.

L
ig

ht
S
en

so
r

F
in

ge
r

to
uc

he
s

on
th

e
L
ig

ht
S
en

so
r

S
im

ul
at

io
n

O
bj

ec
t

ca
us

e
th

e
lig

ht
in

te
ns

it
y

m
ea

su
re

d
by

th
e

L
ig

ht
S
en

so
r

to
in

cr
ea

se
.

T
he

te
m

pe
ra

tu
re

st
ar

ts
de

cr
ea

si
ng

au
to

m
at

ic
al

ly
w

he
n

th
e

us
er

is
no

t
to

uc
hi

ng
th

e
L
ig

ht
S
en

so
r

S
im

ul
at

io
n

O
bj

ec
t.

•
A

sp
ri

te
of

a
lig

ht
be

am
tu

rn
s

br
ig

ht
er

or
da

rk
er

de
pe

nd
in

g
on

th
e

si
m

ul
at

ed
lig

ht
in

te
ns

it
y.

•
A

la
be

l
is

sh
ow

n
be

lo
w

th
e

el
em

en
t

co
nt

ai
ni

ng
th

e
cu

rr
en

t
lig

ht
in

te
ns

it
y

va
lu

e.

T
em

p
er

at
u
re

S
en

so
r

C
lo

ck
w

is
e

ro
ta

ti
on

ge
st

ur
es

ar
ou

nd
th

e
T
em

pe
ra

tu
re

S
en

so
r

S
im

ul
at

io
n

O
bj

ec
t

ca
us

e
th

e
te

m
pe

ra
tu

re
m

ea
su

re
d

by
th

e
ob

je
ct

to
in

cr
ea

se
.

C
ou

nt
er

-c
lo

ck
w

is
e

ro
ta

ti
on

ge
st

ur
es

ca
us

e
th

e
si

m
ul

at
ed

te
m

pe
ra

tu
re

to
de

cr
ea

se
.

•
A

n
im

ag
e

of
th

e
th

er
m

om
et

er
w

it
h

a
m

ov
in

g
ar

ro
w

sp
ri

te
in

di
ca

te
cu

rr
en

t
si

m
ul

at
ed

te
m

pe
ra

tu
re

.

•
A

la
be

l
is

sh
ow

n
be

lo
w

th
e

el
em

en
t

co
nt

ai
ni

ng
th

e
cu

rr
en

t
te

m
pe

ra
tu

re
va

lu
e.

T
ab

le
A

.1
7:

Su
bc

la
ss

es
of

S
en

so
r

S
im

ul
at

io
n

O
bj

ec
t.

146



A.4. SIMULATION OBJECTS

S
im

u
la

ti
o
n

O
b
je

c
t

In
p
u
t

O
u
tp

u
t

A
cc

el
er

om
et

er
T

he
A
cc

el
er

om
et

er
S
im

ul
at

io
n

O
bj

ec
t

re
ac

ts
to

th
e

ac
ce

le
ra

ti
on

m
ea

su
re

d
by

th
e

ac
ce

le
ro

m
et

er
in

te
gr

at
ed

in
th

e
ta

bl
et

de
vi

ce
.

A
ba

ll
is

sh
ow

n
ar

ou
nd

a
ci

rc
le

fr
am

e
th

at
m

ov
es

in
th

e
di

re
ct

io
n

of
th

e
ac

ce
le

ra
ti

on
.

L
S
M

C
om

p
as

s

T
he

L
S
M

C
om

pa
ss

S
im

ul
at

io
n

O
bj

ec
t

re
ac

ts
to

th
e

ac
ce

le
ra

ti
on

an
d

co
m

pa
ss

he
ad

in
g

m
ea

su
re

d
by

th
e

ac
ce

le
ro

m
et

er
an

d
m

ag
ne

to
m

et
er

in
te

gr
at

ed
in

th
e

ta
bl

et
de

vi
ce

.

D
is

pl
ay

s
th

e
sa

m
e

ou
tp

ut
as

th
e

A
cc

el
er

om
et

er
an

d
an

ad
di

ti
on

al
ri

ng
re

pr
es

en
ti

ng
an

an
al

og
co

m
pa

ss
la

be
lle

d
w

it
h

fo
ur

co
or

di
na

te
s

(N
or

th
,
So

ut
h,

W
es

t,
E

as
t)

th
at

ro
ta

te
s

to
m

at
ch

th
e

co
or

di
na

te
s

as
th

e
us

er
ro

ta
te

s
th

e
ta

bl
et

.

M
P

U
60

50

T
he

M
P
U

60
50

S
im

ul
at

io
n

O
bj

ec
t

re
ac

ts
to

th
e

ac
ce

le
ra

ti
on

an
d

ro
ta

ti
on

m
ea

su
re

d
by

th
e

ac
ce

le
ro

m
et

er
an

d
gy

ro
sc

op
e

in
te

gr
at

ed
in

th
e

ta
bl

et
de

vi
ce

.

D
is

pl
ay

s
th

e
sa

m
e

ou
tp

ut
as

th
e

A
cc

el
er

om
et

er
.

P
ot

en
ti
om

et
er

T
he

P
ot

en
ti
om

et
er

S
im

ul
at

io
n

O
bj

ec
t

off
er

s
a

kn
ob

w
hi

ch
us

er
s

ca
n

dr
ag

to
si

m
ul

at
e

di
ffe

re
nt

va
lu

es
.

•
T

he
P
ot

en
ti
om

et
er

’s
si

m
ul

at
ed

va
lu

e
ca

n
be

re
ad

im
pl

ic
it

ly
fr

om
th

e
po

si
ti

on
of

th
e

kn
ob

.

•
A

dd
it

io
na

lly
,
as

w
it

h
th

e
L
ig

ht
S
en

so
r

an
d

T
em

pe
ra

tu
re

S
en

so
r,

a
la

be
l
is

sh
ow

n
be

lo
w

th
e

el
em

en
t

co
nt

ai
ni

ng
th

e
cu

rr
en

t
te

m
pe

ra
tu

re
va

lu
e.

T
ab

le
A

.1
8:

Su
bc

la
ss

es
of

S
en

so
r

S
im

ul
at

io
n

O
bj

ec
t.

147



APPENDIX A. APPLICATION OBJECTS

S
im

u
la

ti
o
n

O
b
je

c
t

In
p
u
t

O
u
tp

u
t

L
E

D
A

si
ng

le
ta

p
ge

st
ur

e
on

th
e

L
E
D

S
im

ul
at

io
n

O
bj

ec
t

tu
rn

s
th

e
L
E
D

on
/o

ff.

D
is

pl
ay

s
a

sp
ri

te
of

a
lig

ht
be

am
w

hi
ch

ge
ts

br
ig

ht
er

or
da

rk
er

de
pe

nd
in

g
on

th
e

in
te

ns
it
y

of
th

e
L
E

D
.

T
he

sp
ri

te
is

hi
dd

en
if

th
e

L
E

D
is

tu
rn

ed
off

.

B
u
zz

er
A

si
ng

le
ta

p
ge

st
ur

e
on

th
e

B
uz

ze
r

S
im

ul
at

io
n

O
bj

ec
t

tu
rn

s
it

on
/o

ff.

•
T

he
B
uz

ze
r

S
im

ul
at

io
n

O
bj

ec
t

pl
ay

s
a

sh
ak

in
g

an
im

at
io

n
w

he
n

it
is

tu
rn

ed
on

.

•
A

so
un

d
at

th
e

sa
m

e
fr

eq
ue

nc
y

as
th

e
B
uz

ze
r

is
pl

ay
ed

.

T
h
re

e-
C

ol
or

L
E

D
A

si
ng

le
ta

p
ge

st
ur

e
on

th
e

T
hr

ee
-C

ol
or

L
E
D

S
im

ul
at

io
n

O
bj

ec
t

tu
rn

s
it

on
/o

ff.

D
is

pl
ay

s
a

sp
ri

te
of

a
lig

ht
be

am
th

at
ch

an
ge

s
co

lo
r

de
pe

nd
in

g
on

th
e

cu
rr

en
t

si
m

ul
at

ed
co

lo
r

co
nfi

gu
ra

ti
on

of
th

e
T

hr
ee

-C
ol

or
L
E
D

S
im

ul
at

io
n

O
bj

ec
t.

T
he

sp
ri

te
is

hi
dd

en
if

th
e

L
E

D
is

tu
rn

ed
off

.

V
ib

ra
ti
on

B
oa

rd
A

si
ng

le
ta

p
ge

st
ur

e
on

th
e

V
ib

ra
ti
on

B
oa

rd
S
im

ul
at

io
n

O
bj

ec
t

tu
rn

s
it

on
/o

ff.
T

he
V

ib
ra

ti
on

B
oa

rd
pl

ay
s

a
sh

ak
in

g
an

im
at

io
n

w
he

n
it

is
tu

rn
ed

on
.

T
ab

le
A

.1
9:

Su
bc

la
ss

es
of

O
ut

pu
t
D

ev
ic

e
S
im

ul
at

io
n

O
bj

ec
t.

148



A.4. SIMULATION OBJECTS

C
la

ss
In

p
u
t

O
u
tp

u
t

N
um

be
r

A
cc

ep
ts

no
us

er
in

pu
t.

D
is

pl
ay

s
a

la
be

l
w

it
h

th
e

cu
rr

en
tl

y
st

or
ed

va
lu

e.
B

oo
le

an
A

cc
ep

ts
no

us
er

in
pu

t.
D

is
pl

ay
s

a
la

be
l
w

it
h

th
e

cu
rr

en
tl

y
st

or
ed

va
lu

e.
St

ri
ng

A
cc

ep
ts

no
us

er
in

pu
t.

D
is

pl
ay

s
a

la
be

l
w

it
h

th
e

cu
rr

en
tl

y
st

or
ed

va
lu

e.
W

in
do

w
A

cc
ep

ts
no

us
er

in
pu

t.
D

is
pl

ay
s

no
ou

tp
ut

.
L
ow

-P
as

s
F
il
te

r
A

cc
ep

ts
no

us
er

in
pu

t.
D

is
pl

ay
s

no
ou

tp
ut

.
H

ig
h
-P

as
s

F
il
te

r
A

cc
ep

ts
no

us
er

in
pu

t.
D

is
pl

ay
s

no
ou

tp
ut

.
M

ea
n

E
xt

ra
ct

or
A

cc
ep

ts
no

us
er

in
pu

t.
D

is
pl

ay
s

a
la

be
l
w

it
h

th
e

cu
rr

en
t

m
ea

n.
D

ev
ia

ti
on

E
xt

ra
ct

or
A

cc
ep

ts
no

us
er

in
pu

t.
D

is
pl

ay
s

a
la

be
l
w

it
h

th
e

cu
rr

en
t

de
vi

at
io

n.

P
ea

k
D

et
ec

to
r

A
cc

ep
ts

no
us

er
in

pu
t.

D
is

pl
ay

s
no

ou
tp

ut
.

A
ct

iv
it
y

C
la

ss
ifi

er
A

cc
ep

ts
no

us
er

in
pu

t.
D

is
pl

ay
s

an
an

im
at

io
n

of
a

pe
rs

on
w

al
ki

ng
,
ru

nn
in

g,
st

an
di

ng
or

cl
im

bi
ng

.

P
os

tu
re

C
la

ss
ifi

er
A

cc
ep

ts
no

us
er

in
pu

t.
D

is
pl

ay
s

an
im

ag
e

of
a

pe
rs

on
st

an
di

ng
,
ly

in
g

do
w

n
on

st
om

ac
h

or
ly

in
g

do
w

n
on

th
e

ba
ck

.

T
ab

le
A

.2
0:

Su
bc

la
ss

es
of

P
ro

gr
am

m
in

g
S
im

ul
at

io
n

O
bj

ec
ts

.

C
la

ss
In

p
u
t

O
u
tp

u
t

T
im

er
A

si
ng

le
ta

p
on

th
e

T
im

er
S
im

ul
at

io
n

O
bj

ec
t

ca
us

es
th

e
T

im
er

co
un

td
ow

n
to

re
se

t.
D

is
pl

ay
s

a
la

be
l
w

it
h

th
e

cu
rr

en
t

co
un

td
ow

n
ti

m
e.

S
ou

n
d

A
cc

ep
ts

no
us

er
in

pu
t.

T
he

so
un

d
is

pl
ay

ed
.

R
ec

or
d
er

A
cc

ep
ts

no
us

er
in

pu
t.

T
he

re
co

rd
er

’s
im

ag
e

ch
an

ge
s

to
in

di
ca

te
w

he
th

er
it

is
re

co
rd

in
g

or
no

t.
M

ap
p
er

A
cc

ep
ts

no
us

er
in

pu
t.

D
is

pl
ay

s
no

ou
tp

ut
.

T
ab

le
A

.2
1:

Su
bc

la
ss

es
of

P
ro

gr
am

m
in

g
S
im

ul
at

io
n

O
bj

ec
ts

.

149



APPENDIX A. APPLICATION OBJECTS

A.5 TextIT Objects

In this section we describe every TextIT object. Control Objects are shown in Tables
A.22 and A.23. Visualization Objects are shown in Tables A.24, A.25, A.26 and A.27.

150



A.5. TEXTIT OBJECTS

Im
a
g
e

N
a
m

e
D

es
cr

ip
ti

o
n

S
ta

rt
B
lo

ck
C

lic
ki

ng
th

e
P
la

y
bu

tt
on

ca
us

es
a

“s
ta

rt
”

m
es

sa
ge

to
be

se
nt

to
th

e
co

nn
ec

te
d

ob
je

ct

D
at

a
S
ou

rc
e

C
lic

ki
ng

on
th

e
E
di

t
bu

tt
on

op
en

s
a

fil
e

se
le

ct
io

n
w

in
do

w
to

ch
oo

se
th

e
da

ta
fil

e
fr

om
th

e
fil

es
ys

te
m

.

C
on

di
ti
on

al
E
le

m
en

t
C

lic
ki

ng
on

th
e

E
di

t
bu

tt
on

le
ad

s
to

a
co

de
ed

it
in

g
w

in
do

w
.

T
ab

le
A

.2
2:

T
ex

tI
T

’s
C

on
tr
ol

O
bj

ec
ts

.

151



APPENDIX A. APPLICATION OBJECTS

Im
a
g
e

N
a
m

e
D

es
cr

ip
ti

o
n

It
er

at
or

R
ec

ei
ve

s
in

pu
t

da
ta

on
“i
np

ut
”

po
rt

.
E

ve
nt

s
tr

ig
ge

re
d

on
th

e
“n

ex
t”

po
rt

ca
us

e
th

e
It

er
at

or
to

pr
oc

es
s

th
e

ne
xt

el
em

en
t

in
th

e
in

pu
t

ar
ra

y.

D
el

ay
er

In
th

is
ca

se
,
th

e
D

el
ay

er
w

ill
tr

ig
ge

r
a

si
gn

al
ev

er
y

50
m

ill
is

ec
on

ds
.

L
ib

ra
ry

M
an

ag
er

C
lic

ki
ng

on
th

e
E
di

t
bu

tt
on

le
ad

s
to

a
fil

e
se

le
ct

io
n

w
in

do
w

to
ch

oo
se

th
e

da
ta

fil
e

fr
om

th
e

fil
es

ys
te

m
.

T
ab

le
A

.2
3:

T
ex

tI
T

’s
It

er
at

or
,
D

el
ay

er
an

d
L
ib

ra
ry

M
an

ag
er

C
on

tr
ol

O
bj

ec
ts

.

152



A.5. TEXTIT OBJECTS

Im
a
g
e

N
a
m

e
D

es
cr

ip
ti

o
n

L
ab

el
T

he
L
ab

el
di

sp
la

ys
th

e
va

lu
e

pr
ov

id
ed

th
ro

ug
h

it
s

in
pu

t
po

rt
.

L
in

e
C

ha
rt

T
he

L
in

e
C

ha
rt

di
sp

la
ys

a
se

ri
es

of
va

lu
es

as
lin

es
or

ba
rs

.
L
in

e
se

ri
es

ca
n

be
de

fin
ed

fr
om

th
e

el
em

en
t’

s
E
di

t
W

in
do

w
.

V
al

ue
s

pr
ov

id
ed

th
ro

ug
h

th
e

in
pu

t
po

rt
ha

ve
to

m
at

ch
th

e
am

ou
nt

of
lin

e
se

ri
es

de
fin

ed
.

T
he

L
in

e
C

ha
rt

ha
s

ad
di

ti
on

al
bu

tt
on

s
to

sh
ow

/
hi

de
th

e
se

ri
es

,
sa

ve
a

sc
re

en
sh

ot
of

th
e

ch
ar

t
an

d
to

sw
it

ch
be

tw
ee

n
lin

e
or

ba
r

vi
su

al
iz

at
io

n
st

yl
es

.

P
ie

C
ha

rt

T
he

P
ie

C
ha

rt
di

sp
la

ys
va

lu
es

as
a

pi
e

ch
ar

t.
Fe

at
ur

es
si

m
ila

r
co

nfi
gu

ra
bl

e
fu

nc
ti

on
al

it
y

as
th

e
L
in

e
C

ha
rt

to
sh

ow
/

hi
de

th
e

se
ri

es
,
sa

ve
th

e
ch

ar
t’

s
cu

rr
en

t
st

at
e

in
a

sc
re

en
sh

ot
,
an

d
to

sw
it

ch
be

tw
ee

n
pi

e
an

d
fu

nn
el

ch
ar

t
vi

su
al

iz
at

io
n

st
yl

es
.

T
ab

le
A

.2
4:

T
ex

tI
T

’s
L
ab

el
,
L
in

e
C

ha
rt

an
d

P
ie

C
ha

rt
V

is
ua

li
za

ti
on

O
bj

ec
ts

.

153



APPENDIX A. APPLICATION OBJECTS

Im
a
g
e

N
a
m

e
D

es
cr

ip
ti

o
n

S
ca

tt
er

C
ha

rt

D
is

pl
ay

s
po

in
ts

in
a

2D
C

ar
te

si
an

co
or

di
na

te
sy

st
em

.
V

al
ue

s
of

ev
er

y
po

in
t

ca
n

be
se

en
w

he
n

ho
ve

ri
ng

th
e

m
ou

se
ov

er
it

.
Se

ri
es

an
d

ax
is

la
be

ls
ca

n
be

co
nfi

gu
re

d
ov

er
th

e
E
di

t
W

in
do

w
.

G
au

ge
C

ha
rt

T
he

G
au

ge
C

ha
rt

is
si

m
ila

r
to

a
la

be
l
in

th
at

it
di

sp
la

ys
a

si
ng

le
va

lu
e.

H
ow

ev
er

,
th

e
G

au
ge

C
ha

rt
di

sp
la

ys
va

lu
es

by
an

im
at

in
g

a
ne

ed
le

m
ov

in
g

cl
oc

kw
is

e.

T
ab

le
A

.2
5:

T
ex

tI
T

’s
S
ca

tt
er

C
ha

rt
an

d
G

au
ge

C
ha

rt
V

is
ua

li
za

ti
on

O
bj

ec
ts

.

154



A.5. TEXTIT OBJECTS

Im
a
g
e

N
a
m

e
D

es
cr

ip
ti

o
n

3D
V

ie
w
er

T
he

3D
V

ie
w
er

re
nd

er
s

a
3D

sc
en

e
co

nt
ai

ni
ng

an
ob

je
ct

ro
ta

te
d

ac
co

rd
in

g
to

th
e

qu
at

er
ni

on
pr

ov
id

ed
th

ro
ug

h
it

s
in

pu
t

po
rt

.
If

fe
d

w
it

h
se

ri
es

of
qu

at
er

ni
on

s,
it

w
ill

an
im

at
e

th
e

ro
ta

ti
on

of
th

e
3D

ob
je

ct
.

JS
O

N
V

ie
w
er

T
he

JS
O

N
V

ie
w

er
di

sp
la

ys
a

JS
O

N
fil

e
in

a
fo

rm
at

te
d

m
an

ne
r.

T
he

JS
O

N
V

ie
w
er

do
es

no
t

en
ab

le
ed

it
in

g
th

e
JS

O
N

fil
es

.

T
ab

le
A

.2
6:

T
ex

tI
T

’s
3D

V
ie

w
er

an
d

JS
O

N
V

ie
w
er

V
is

ua
li
za

ti
on

O
bj

ec
ts

.

155



APPENDIX A. APPLICATION OBJECTS

Im
a
g
e

N
a
m

e
D

es
cr

ip
ti

o
n

T
ab

le
V

ie
w
er

T
he

T
ab

le
V

ie
w
er

is
si

m
ila

r
to

th
e

JS
O

N
V

ie
w
er

.
T

he
T
ab

le
V

ie
w
er

di
sp

la
ys

a
di

ct
io

na
ry

pr
ov

id
ed

th
ro

ug
h

it
s

in
pu

t
po

rt
as

a
ta

bl
e.

V
id

eo
P
la

ye
r

A
s

it
s

na
m

e
in

di
ca

te
s,

th
e

V
id

eo
P
la

ye
r

pl
ay

s
vi

de
o

fil
es

.
V

id
eo

fil
es

ar
e

ad
de

d
ov

er
th

e
E
di

t
W

in
do

w
.

V
ol

um
e

an
d

sc
re

en
m

od
e

(i
.e

.
no

rm
al

,
fu

ll
sc

re
en

)
ar

e
co

nfi
gu

ra
bl

e.

T
ab

le
A

.2
7:

T
ex

tI
T

’s
T
ab

le
V

ie
w
er

an
d

V
id

eo
P
la

ye
r

V
is

ua
li
za

ti
on

O
bj

ec
ts

.

156



A.5. TEXTIT OBJECTS

A.5.1 Code Editor

A TextIT object with particular importance is the Code Editor. The Code Editor ’s
Edit Window is divided in left and right frames. Developers write JavaScript source
code on the left and visualize execution results on the right side. Syntax errors and
compile warnings (e.g. unused Variables) are displayed next to the source code line.
When the source code in the Code Editor is executed, the Code Editor creates its
output ports dynamically. A screenshot of the Code Editor is shown in Figure A.4.

157



APPENDIX A. APPLICATION OBJECTS

F
ig

ur
e

A
.4

:
T
ex

tI
T

’s
C

od
e

E
di

to
r.

T
he

w
in

do
w

is
di

vi
de

d
in

tw
o

vi
ew

s.
C

od
e

is
sh

ow
n

at
th

e
le

ft
an

d
ex

ec
ut

io
n

re
su

lt
s

ar
e

sh
ow

n
on

th
e

ri
gh

t
vi

ew
.

C
om

pi
le

w
ar

ni
ng

s
ar

e
sh

ow
n

as
ex

cl
am

at
io

n
m

ar
ks

an
d

er
ro

rs
ar

e
sh

ow
n

as
re

d
cr

os
se

s
on

th
e

le
ft

m
ar

gi
n.

158



A.5. TEXTIT OBJECTS

A.5.2 Line Chart Displaying Jogging Signal

Figure A.5 displays a TextIT project that displays linear acceleration data recorded
while a user was jogging. When the Data Loader ’s output port is connected to the
Line Chart ’s data port, the Line Chart renders the signal in a line chart plot.

Figure A.5: Jogging signal displayed by a Line Chart View in TextIT.

A.5.3 TextIT Plugin for Counting Peaks in a Signal

This section presents the pseudo-code used to count the number of peaks in a signal.
This pseudo-code is used by the KneeHapp bandage to count the number of side hops
a patient performs in a specified period of time. Section 6.1.3 describes the use case
and the usage of this pseudo-code in more detail.

159



APPENDIX A. APPLICATION OBJECTS

funct i on peakCount = countPeaks (v , d e l t a )
minValue = In f ;
maxValue = −I n f ;
minIdx = NaN;
maxIdx = NaN;
lookForMax = 1 ;

f o r i = 1 : l ength (v )
currentSample = v( i ) ;

i f currentSample > maxValue
maxValue = currentSample ;

maxIdx = i ;
end

i f currentSample < minValue
minValue = currentSample ;
minIdx = i ;

end

i f lookForMax
i f currentSample < maxValue − de l t a
peakCount ++
minValue = currentSample ;
minIdx = i ;
lookForMax = 0 ;

end
e l s e
i f currentSample > minValue + de l t a

maxValue = currentSample ;
maxIdx = i ;
lookForMax = 1 ;

end
end

end

160



List of Figures

1.1 a) In the summative research approach the artifacts produced by a
technology are assessed. b) In the formative research approach, the
artifacts produced by a technology are used to assess and improve the
technology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 a) Smart garments compared to other devices according to their in-
tegration with the human body, based on previous work from Steve
Mann [71]. b) Wearable devices represented as a taxonomy. . . . . . . . 8

2.2 The three generations of smart textiles. . . . . . . . . . . . . . . . . . 9
2.3 a) Qing Dynasty’s abacus ring. Image taken from http://www.chinaculture.org.

b) Eudaemonics’ shoe used to cheat at the casino. Image taken
from: http://eyetap.org/wearcam/eudaemonic/ with permission of
Steve Mann. c) Ivan Sutherland’s HMD [111]. Communications of
the ACM 2002, Vol. 11:2. Copyright c⃝2002 by ACM, Inc. Reprinted
with permission of ACM, Inc. . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 a) Steve Mann’s HMD [69]. Reprinted with permission of Steve Mann.
b) CMU’s VuMan 2 wearable computer [105]. Reprinted with permis-
sion of Daniel Siewiorek. c) Forms for wearability [35]. Reprinted with
permission of Francine Gemperle. . . . . . . . . . . . . . . . . . . . . . 10

2.5 a) Georgia Tech’s Wearable Motherboard (GTWM) [90]. Copyright
c⃝2002 by ACM, Inc. Reprinted with permission of ACM, Inc. b)
Musical Jacket [94]. Reprinted with permission of Maggie Orth. . . . . 13

2.6 Textile fabrication process. . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Different types of conductive yarns. (a) A copper foil wrapped around

a non-conductive yarn. Reprinted with permission of Maggie Orth
of International Fashion Machines. (b) A wire wrapped around non-
conductive fiber strands [109]. Licensed under Creative Commons BY
4.0. (c) Multifilament yarn coated with a metallic layer [109]. Licensed
under Creative Commons BY 4.0. . . . . . . . . . . . . . . . . . . . . . 15

2.8 Electronic devices attached to fabric. (a) Flexible electronic module
glued to the fabric and connected with embroidered conductive lines
developed by the Fraunhofer’s Institute for Reliability and Microinte-
gration [67]. (b) Microcontroller connected with conductive thread to
conductive snap buttons crimped. Developed in collaboration between
the Technische Universität München and the Universität der Künste
[43]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

161



LIST OF FIGURES

2.9 Model of a smart textile. . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.10 Taxonomy of textile sensors. . . . . . . . . . . . . . . . . . . . . . . . 18
2.11 Taxonomy of output devices. . . . . . . . . . . . . . . . . . . . . . . . 20
2.12 Textile output devices. a) Textile thermochromic display. Reprinted

with permission of Katharina Bredies. b) Textile thermochromic dis-
play. Reprinted with permission of Katharina Bredies. . . . . . . . . . . 21

2.13 Taxonomy of connections used in smart textiles. . . . . . . . . . . . . 22

3.1 Overview of TangoHapps. . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Model of a Smart Textile. . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Main abstractions of an Application in TangoHapps. . . . . . . . . . . 37
3.4 Model of the Editor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Model of the Simulator. . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.6 Model of the Deployer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 High-level design of TangoHapps. . . . . . . . . . . . . . . . . . . . . . 45
4.2 TangoHapps’s layered architecture. Software components on the Hard-

ware layer appear grayed out because they consist of libraries developed
by third-party developers reused within TangoHapps. . . . . . . . . . . 46

4.3 Deployment of software components in TangoHapps. . . . . . . . . . . 48
4.4 Main classes of the Running Engine software component. . . . . . . . 49
4.5 Taxonomy of Application Objects. . . . . . . . . . . . . . . . . . . . . 50
4.6 Main classes of the Plugin Interpreter component. . . . . . . . . . . . 55
4.7 Main classes of the Firmata Library component. The Virtual Commu-

nication Module belongs to the Simulator software component. . . . . 56
4.8 Overview of the Editor software component. . . . . . . . . . . . . . . 57
4.9 Main classes involved in the Palette. . . . . . . . . . . . . . . . . . . . 58
4.10 Main classes involved in the Toolbar. . . . . . . . . . . . . . . . . . . . 59
4.11 Main classes involved in the Canvas. . . . . . . . . . . . . . . . . . . . 60
4.12 Main classes involved in the Editor ’s functionality to create circuit

layouts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.13 Layout (a) and object diagram (b) of an electric circuit that consists

of a Button connected to an Arduino Lilypad. . . . . . . . . . . . . . . 62
4.14 Main classes in the Plugin Editor. . . . . . . . . . . . . . . . . . . . . 63
4.15 Main classes in the Simulator. . . . . . . . . . . . . . . . . . . . . . . 66
4.16 Usage of the Decorator pattern in the Simulator. . . . . . . . . . . . . 67
4.17 Main classes of the Deployer. . . . . . . . . . . . . . . . . . . . . . . . 68

5.1 Interactex Designer ’s Project Selection Screen. . . . . . . . . . . . . . 70
5.2 Interactex Designer UI overview. . . . . . . . . . . . . . . . . . . . . . 71
5.3 Invocations between Events of a Button and Methods of an LED. . . . 73
5.4 Circuit layout of the CTS-Gauntlet developed in Interactex Designer. 74
5.5 Simulation of different objects in Interactex Designer. . . . . . . . . . 75
5.6 Interactex Client ’s User Application Screen (a) and Default Application

Screen (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.7 Overview of TextIT ’s user interface. . . . . . . . . . . . . . . . . . . . 79
5.8 Visual components of a TextIT Object. . . . . . . . . . . . . . . . . . . 80

162



LIST OF FIGURES

5.9 WaveCap implemented in Interactex Designer. . . . . . . . . . . . . . 80
5.10 Development of an algorithm to detect jogging speed in TextIT. . . . . 82
5.11 TextIT code to estimate jogging speed for the WaveCap application. . 83
5.12 Usage of a TextIT plugin in Interactex Designer to control smart-

phone’s volume based on estimated jogging speed. . . . . . . . . . . . . 83
5.13 Circuit layout of WaveCap developed in Interactex Designer. Hardware

Devices from left to right: a Textile Sensor, a BLE-Lilypad and a Textile
Speaker (renamed to “Radio Speaker)”. . . . . . . . . . . . . . . . . . . 84

6.1 a) KneeHapp Bandage. b) KneeHapp sock. . . . . . . . . . . . . . . . . 88
6.2 a) KneeHapp coordinate system. b) Illustration of the medial collapse

during a squat. and how it affects the pitch. . . . . . . . . . . . . . . . 89
6.3 One-leg hop linear acceleration on y and z-axis raw (a) and filtered (b). 91
6.4 One-leg hop average pressure. . . . . . . . . . . . . . . . . . . . . . . . 91
6.5 Linear acceleration of seven side hops. raw (a) and filtered (b). . . . . . 92
6.6 KneeHapp’s Range of Motion use case implemented with TangoHapps. 93
6.7 KneeHapp’s functionality to produce auditive feedback when the user’s

knee deviates more than 4 degrees during a One-Leg Squat. . . . . . . . 95
6.8 KneeHapp’s One-Leg Squat use case implemented with TangoHapps. . . 96
6.9 KneeHapp’s One-Leg Hop use case implemented with TangoHapps. . . 98
6.10 KneeHapp’s Side Hops use case implemented with TangoHapps. . . . . 100
6.11 a) Custodian Jacket - fourth version. b) Backside of a rack in a super-

computer center. Some height unit labels are hidden by cables. . . . . . 104
6.12 Linear acceleration along y-axis while user is standing (a) and walking

(b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.13 Classification of physical activities based on IMU data. Axes corre-

spond to the deviation of the linear acceleration along the x, y and
z-axes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.14 TangoHapps implementations of: a) Function that checks whether the
proximity measured by a Proximity Sensor is in the range 35 ± 2cm.
b) Function that sets the color of the RGB LED to red. . . . . . . . . . 108

6.15 Sketch of a TangoHapps implementation of the Custodian’s Error Pre-
vention use case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.16 Custodian’s Technician’s Safety use case implemented with TangoHapps.111
6.17 Custodian’s Emergency Situation use case implemented with Tango-

Happs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1 a) Three female subjects develop an electronic circuit with Interactex
Designer. b) Application 1 consisting of 12 LEDs. . . . . . . . . . . . . 117

7.2 a) A paper prototype of a jacket developed during the Study 1. b)
Textile testbed containing two accelerometers, a push button, switch,
light sensor, buzzer, vibration motor and a three-color LED. Every
electronic device is connected with conductive fabric to a custom-made
Arduino Lilypad with an integrated BLE module (in the center). . . . . 119

163



LIST OF FIGURES

A.1 Palette Objects for instantiating Smart Textiles, Electronic Devices (e.g.
Hardware Devices and Microcontrollers) and UI Widgets available in
Interactex Designer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.2 Palette Objects for instantiating Signal Processing Functions, Variables
and Operators available in Interactex Designer. . . . . . . . . . . . . . 137

A.3 Configuration View of a Label and Timer. . . . . . . . . . . . . . . . . 145
A.4 TextIT ’s Code Editor. The window is divided in two views. Code

is shown at the left and execution results are shown on the right
view. Compile warnings are shown as exclamation marks and errors
are shown as red crosses on the left margin. . . . . . . . . . . . . . . . 158

A.5 Jogging signal displayed by a Line Chart View in TextIT. . . . . . . . 159

164



List of Tables

1.1 Smart textiles used to elicit the initial requirements of TangoHapps. . . 5

5.1 Toolbar Buttons in Interactex Designer. . . . . . . . . . . . . . . . . . . 72
5.2 Images of Hooks in Interactex Designer. Filled shapes indicate that a

parameter provided by an Event comply those expected by a Method.
Hollow shapes indicate that the Event does not provide a parameter of
the type expected by the Method. . . . . . . . . . . . . . . . . . . . . . 73

A.1 UI Widgets supported by TangoHapps. . . . . . . . . . . . . . . . . . . 126
A.2 Sensors supported by TangoHapps. . . . . . . . . . . . . . . . . . . . . 127
A.3 Output Devices supported by TangoHapps. . . . . . . . . . . . . . . . . 128
A.4 Microcontrollers supported by TangoHapps. . . . . . . . . . . . . . . . 129
A.5 Variables supported by TangoHapps. . . . . . . . . . . . . . . . . . . . 129
A.6 Comparison Operators supported by TangoHapps. . . . . . . . . . . . . 130
A.7 Logical Operators supported by TangoHapps. . . . . . . . . . . . . . . . 131
A.8 Arithmetic Operators supported by TangoHapps. . . . . . . . . . . . . 132
A.9 Signal processing and classification Functions supported by TangoHapps.133
A.10 Utility programming elements supported by TangoHapps. . . . . . . . . 134
A.11 Variables of UI Widgets (Part 1/2). . . . . . . . . . . . . . . . . . . . . 138
A.12 Variables of UI Widgets (Part 2/2). . . . . . . . . . . . . . . . . . . . . 139
A.13 Variables of Hardware Devices (Part 1/2). . . . . . . . . . . . . . . . . 140
A.14 Variables of Hardware Devices (Part 2/2). . . . . . . . . . . . . . . . . 141
A.15 Variables of Programming Objects (Part 1/2). . . . . . . . . . . . . . . 142
A.16 Variables of Programming Objects (Part 2/2). . . . . . . . . . . . . . . 143
A.17 Subclasses of Sensor Simulation Object. . . . . . . . . . . . . . . . . . . 146
A.18 Subclasses of Sensor Simulation Object. . . . . . . . . . . . . . . . . . . 147
A.19 Subclasses of Output Device Simulation Object. . . . . . . . . . . . . . 148
A.20 Subclasses of Programming Simulation Objects. . . . . . . . . . . . . . 149
A.21 Subclasses of Programming Simulation Objects. . . . . . . . . . . . . . 149
A.22 TextIT ’s Control Objects. . . . . . . . . . . . . . . . . . . . . . . . . . 151
A.23 TextIT ’s Iterator, Delayer and Library Manager Control Objects. . . . 152
A.24 TextIT ’s Label, Line Chart and Pie Chart Visualization Objects. . . . . 153
A.25 TextIT ’s Scatter Chart and Gauge Chart Visualization Objects. . . . . 154
A.26 TextIT ’s 3D Viewer and JSON Viewer Visualization Objects. . . . . . 155
A.27 TextIT ’s Table Viewer and Video Player Visualization Objects. . . . . 156

165



LIST OF TABLES

166



Bibliography

[1] S. C. Anand, J. F. Kennedy, M. Miraftab, and S. Rajendran. Medical textiles
and biomaterials for healthcare. Elsevier, 2005.

[2] S. Ananthanarayan, M. Sheh, A. Chien, H. Profita, and K. Siek. Pt Viz: To-
wards a Wearable Device for Visualizing Knee Rehabilitation Exercises. In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’13, pages 1247–1250, New York, NY, USA, 2013. ACM.

[3] F. Axisa, P. M. Schmitt, C. Gehin, G. Delhomme, E. McAdams, and A. Dittmar.
Flexible technologies and smart clothing for citizen medicine, home health-
care, and disease prevention. IEEE transactions on information technology in
biomedicine, 9(3):325–336, 2005.

[4] M. Ayoade and L. Baillie. A Novel Knee Rehabilitation System for the Home.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI ’14, pages 2521–2530, New York, NY, USA, 2014. ACM.

[5] R. T. Azuma and Others. A survey of augmented reality. Presence, 6(4):355–
385, 1997.

[6] S. K. Bahadir, V. Koncar, and F. Kalaoglu. Wearable obstacle detection system
fully integrated to textile structures for visually impaired people. Sensors and
Actuators A: Physical, 179:297–311, 2012.

[7] R. Ballagas, F. Memon, R. Reiners, and J. Borchers. iStuff mobile: rapidly
prototyping new mobile phone interfaces for ubiquitous computing. In Proceed-
ings of the SIGCHI conference on Human factors in computing systems, pages
1107–1116. ACM, 2007.

[8] R. Ballagas, M. Ringel, M. Stone, and J. Borchers. iStuff: a physical user
interface toolkit for ubiquitous computing environments. In Proceedings of the
SIGCHI conference on Human factors in computing systems, pages 537–544.
ACM, 2003.

[9] D. Bannach, P. Lukowicz, and O. Amft. Rapid prototyping of activity recogni-
tion applications. Pervasive Computing, IEEE, 7(2):22–31, 2008.

[10] W. Barfield and T. Caudell. Fundamentals of wearable computers and augmented
reality. CRC Press, 2001.

167



BIBLIOGRAPHY

[11] S. Bielska, M. Sibinski, and A. Lukasik. Polymer temperature sensor for tex-
tronic applications. Materials Science and Engineering: B, 165(1):50–52, 2009.

[12] F. Block, M. Haller, H. Gellersen, C. Gutwin, and M. Billinghurst. VoodooS-
ketch: extending interactive surfaces with adaptable interface palettes. In Pro-
ceedings of the 2nd international conference on Tangible and embedded interac-
tion, pages 55–58. ACM, 2008.

[13] S. Brady, D. Diamond, and K.-T. Lau. Inherently conducting polymer modi-
fied polyurethane smart foam for pressure sensing. Sensors and Actuators A:
Physical, 119(2):398–404, 2005.

[14] L. Buechley. A construction kit for electronic textiles. In 10th IEEE Interna-
tional Symposium on Wearable Computers, 2006, pages 83–90. IEEE, 2006.

[15] F. Carpi and D. De Rossi. Electroactive polymer-based devices for e-textiles
in biomedicine. IEEE Transactions on Information Technology in Biomedicine,
9(3):295–318, sep 2005.

[16] L. M. Castano and A. B. Flatau. Smart fabric sensors and e-textile technologies:
a review. Smart Materials and Structures, 23(5):53001, 2014.

[17] M.-H. Cheng, L.-C. Chen, Y.-C. Hung, and C. M. Yang. A real-time maximum-
likelihood heart-rate estimator for wearable textile sensors. In Engineering in
Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International
Conference of the IEEE, pages 254–257. IEEE, 2008.

[18] K. Cherenack and L. van Pieterson. Smart textiles: Challenges and opportuni-
ties. Journal of Applied Physics, 112(9):91301, 2012.

[19] S. Coyle, F. Benito-Lopez, T. Radu, K. Lau, and D. Diamond. Fibers and fabrics
for chemical and biological sensing. Research Journal of Textile and Apparel,
14(4):64–72, 2012.

[20] D. Curone, E. L. Secco, A. Tognetti, G. Loriga, G. Dudnik, M. Risatti,
R. Whyte, A. Bonfiglio, and G. Magenes. Smart Garments for Emergency Op-
erators: The ProeTEX Project. IEEE Transactions on Information Technology
in Biomedicine, 14(3):694–701, may 2010.

[21] S. Curry. An introduction to the Java Ring. Java Wrold, April, 1998.

[22] R. Daude and M. Weck. Mobile approach support system for future machine
tools. In First International Symposium on Wearable Computers, 1997. Digest
of Papers, pages 24–30, oct 1997.

[23] A. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu. a CAPpella: programming
by demonstration of context-aware applications. Proceedings of the SIGCHI
conference on Human factors in computing systems, 6(1):40, 2004.

168



BIBLIOGRAPHY

[24] A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu. a CAPpella: pro-
gramming by demonstration of context-aware applications. In Proceedings of
the SIGCHI conference on Human factors in computing systems, pages 33–40.
ACM, 2004.

[25] M. Di Rienzo, F. Rizzo, G. Parati, G. Brambilla, M. Ferratini, and P. Cas-
tiglioni. MagIC System: a New Textile-Based Wearable Device for Biological
Signal Monitoring. Applicability in Daily Life and Clinical Setting. Confer-
ence proceedings: Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, 7:7167–7169, 2005.

[26] B. Ding, M. Wang, J. Yu, and G. Sun. Gas sensors based on electrospun
nanofibers. Sensors, 9(3):1609–1624, 2009.

[27] P. Dragicevic and J.-D. Fekete. Support for input adaptability in the ICON
toolkit. In Proceedings of the 6th international conference on Multimodal inter-
faces, pages 212–219. ACM, 2004.

[28] P. Dragicevic and J.-D. Fekete. The input configurator toolkit: towards high
input adaptability in interactive applications. In Proceedings of the working
conference on Advanced visual interfaces, pages 244–247. ACM, 2004.

[29] B. Eskofier, M. Oleson, C. DiBenedetto, and J. Hornegger. Embedded surface
classification in digital sports. Pattern Recognition Letters, 30(16):1448–1456,
2009.

[30] J. Favre, R. Aissaoui, B. Jolles, J. de Guise, and K. Aminian. Functional
calibration procedure for 3D knee joint angle description using inertial sensors.
Journal of Biomechanics, 42(14):2330–2335, oct 2009.

[31] J. Favre, B. M. Jolles, R. Aissaoui, and K. Aminian. Ambulatory measurement
of 3D knee joint angle. Journal of biomechanics, 41(5):1029–1035, 2008.

[32] S. Feiner, B. MacIntyre, T. Hollerer, and A. Webster. A touring machine:
prototyping 3D mobile augmented reality systems for exploring the urban en-
vironment. In First International Symposium on Wearable Computers, 1997.
Digest of Papers, pages 74–81, oct 1997.

[33] F. H. Fu, C. H. Bennett, C. Lattermann, and C. B. Ma. Current trends in
anterior cruciate ligament reconstruction part 1: biology and biomechanics of
reconstruction. The American Journal of Sports Medicine, 27(6):821–830, 1999.

[34] E. Gamma. Design patterns: elements of reusable object-oriented software. Pear-
son Education India, 1995.

[35] F. Gemperle, C. Kasabach, J. Stivoric, M. Bauer, and R. Martin. Design for
wearability. In Second International Symposium on Wearable Computers, 1998.,
pages 116–122. IEEE, 1998.

169



BIBLIOGRAPHY

[36] G. Gioberto, C.-H. Min, C. Compton, and L. E. Dunne. Lower-limb Goniometry
Using Stitched Sensors: Effects of Manufacturing and Wear Variables. In Pro-
ceedings of the 2014 ACM International Symposium on Wearable Computers,
ISWC ’14, pages 131–132, New York, NY, USA, 2014. ACM.

[37] S. Greenberg and C. Fitchett. Phidgets: easy development of physical interfaces
through physical widgets. In Proceedings of the 14th annual ACM symposium
on User interface software and technology, pages 209–218. ACM, 2001.

[38] L. Y. Griffin, J. Agel, M. J. Albohm, E. A. Arendt, R. W. Dick, W. E. Garrett,
J. G. Garrick, T. E. Hewett, L. Huston, M. L. Ireland, and Others. Noncon-
tact anterior cruciate ligament injuries: risk factors and prevention strategies.
Journal of the American Academy of Orthopaedic Surgeons, 8(3):141–150, 2000.

[39] P. Grossman. The LifeShirt: a multi-function ambulatory system monitoring
health, disease, and medical intervention in the real world. Stud Health Technol
Inform, 108:133–141, 2004.

[40] J. Habetha. The MyHeart project-fighting cardiovascular diseases by prevention
and early diagnosis. In Proceedings of the IEEE Engineering in Medicine and
Biology Society, pages 6746–6749. Citeseer, 2006.

[41] J. Haladjian. TangoHapps: an integrated development environment for smart
garments. In Proceedings of the 2015 ACM International Joint Conference on
Pervasive and Ubiquitous Computing and Proceedings of the 2015 ACM Inter-
national Symposium on Wearable Computers, pages 471–476. ACM, 2015.

[42] J. Haladjian, K. Bredies, and B. Bruegge. Interactex: An integrated develop-
ment environment for smart textiles. In Proceedings of the 2016 ACM Interna-
tional Joint Conference on Pervasive and Ubiquitous Computing and Proceed-
ings of the 2016 ACM International Symposium on Wearable Computers. ACM,
2016.

[43] J. Haladjian, Z. Hodaie, H. Xu, M. Yigin, B. Bruegge, M. Fink, and J. Hoeher.
KneeHapp: a bandage for rehabilitation of knee injuries. In Proceedings of the
2015 ACM International Joint Conference on Pervasive and Ubiquitous Com-
puting and Proceedings of the 2015 ACM International Symposium on Wearable
Computers, pages 181–184. ACM, 2015.

[44] J. Haladjian, D. Ismailović, B. Köhler, and B. Bruegge. A quick prototyping
framework for adaptive serious games with 2D physics on mobile touch devices.
In IADIS Mobile Learning 2012 (ML 2012), Berlin, 2012.

[45] J. Haladjian, D. Richter, P. Muntean, D. Ismailović, and B. Brügge. A frame-
work for the creation of mobile educational games for dyslexic children. In ML
2013 - Mobile Learning, Lisbon, Portugal, mar 2013.

[46] J. Haladjian, F. Ziegler, B. Simeonova, B. Köhler, P. Muntean, D. Ismailović,
and B. Brügge. A framework for game tuning. In GET 2012 - IADIS Game
and Entertainment Techonologies, Lisbon, Portugal, jul 2012.

170



BIBLIOGRAPHY

[47] H. Harms, O. Amft, D. Roggen, and G. Tröster. Rapid prototyping of smart
garments for activity-aware applications. Journal of Ambient Intelligence and
Smart Environments, 1(2):87–101, 2009.

[48] B. Hartmann, L. Abdulla, M. Mittal, and S. R. Klemmer. Authoring sensor-
based interactions by demonstration with direct manipulation and pattern
recognition. In Proceedings of the SIGCHI conference on Human factors in
computing systems, pages 145–154. ACM, 2007.

[49] B. Hartmann, S. R. Klemmer, and M. Bernstein. d. tools: Integrated prototyp-
ing for physical interaction design. IEEE Pervasive Computing, 2005.

[50] S. Hodges, N. Villar, N. Chen, T. Chugh, J. Qi, D. Nowacka, and Y. Kawahara.
Circuit stickers: Peel-and-stick construction of interactive electronic prototypes.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pages 1743–1746. ACM, 2014.

[51] T. Holleczek, A. Rüegg, H. Harms, and G. Tröster. Textile Pressure Sensors
for Sports Applications. In Proceedings of the 9th IEEE Conference on Sensors
(IEEE Sensors 2010), pages 732–737, nov 2010.

[52] C.-T. Huang, C.-L. Shen, C.-F. Tang, and S.-H. Chang. A wearable yarn-based
piezo-resistive sensor. Sensors and Actuators A: Physical, 141(2):396–403, 2008.

[53] Y. Huang and M. Eisenberg. Plushbot: an application for the design of pro-
grammable, interactive stuffed toys. In Proceedings of the fifth international
conference on Tangible, embedded, and embodied interaction, pages 257–260.
ACM, 2011.

[54] S. E. Hudson and J. Mankoff. Rapid construction of functioning physical in-
terfaces from cardboard, thumbtacks, tin foil and masking tape. In Proceedings
of the 19th annual ACM symposium on User interface software and technology,
pages 289–298. ACM, 2006.

[55] Z. Hui, T. X. Ming, Y. T. Xi, and L. X. Sheng. Pressure sensing fabric. In MRS
Proceedings, volume 920, pages 0920—-S05. Cambridge Univ Press, 2006.

[56] J. A. Jacko. Human computer interaction handbook: Fundamentals, evolving
technologies, and emerging applications. CRC press, 2012.

[57] A. R. Kahn, J. D. Hixson, J. E. Puffer, and E. E. Bakken. Three-Years’ Clinical
Experience with Radioisotope Powered Cardiac Pacemakers. IEEE Transactions
on Biomedical Engineering, BME-20(5):326–331, sep 1973.

[58] E.-S. Katterfeldt, N. Dittert, and H. Schelhowe. EduWear: smart textiles as
ways of relating computing technology to everyday life. In Proceedings of the
8th International Conference on Interaction Design and Children, pages 9–17.
ACM, 2009.

171



BIBLIOGRAPHY

[59] B. Kaufmann and L. Buechley. Amarino: a toolkit for the rapid prototyping
of mobile ubiquitous computing. In Proceedings of the 12th international con-
ference on Human computer interaction with mobile devices and services, pages
291–298. ACM, 2010.

[60] S. R. Klemmer, J. Li, J. Lin, and J. A. Landay. Papier-M{â}ch{é}: Toolkit
support for tangible interaction. In Proceedings of the 16th annual ACM sympo-
sium on user interface software and technology (UIST 2003), Vancouver, British
Columbia, Canada, 2003.

[61] S. R. Klemmer, J. Li, J. Lin, and J. A. Landay. Papier-Mache: toolkit support
for tangible input. In Proceedings of the SIGCHI conference on Human factors
in computing systems, pages 399–406. ACM, 2004.

[62] J. Krumm. Ubiquitous computing fundamentals. CRC Press, 2009.

[63] B. Larson, H. Elmqvist, L. Ryden, and H. Schüller. Lessons From the First
Patient with an Implanted Pacemaker:. Pacing and Clinical Electrophysiology,
26(1p1):114–124, 2003.

[64] J. C. Lee, D. Avrahami, S. E. Hudson, J. Forlizzi, P. H. Dietz, and D. Leigh. The
calder toolkit: wired and wireless components for rapidly prototyping interactive
devices. In Proceedings of the 5th conference on Designing interactive systems:
processes, practices, methods, and techniques, pages 167–175. ACM, 2004.

[65] Y. Li, J. I. Hong, and J. A. Landay. Topiary: a tool for prototyping location-
enhanced applications. In Proceedings of the 17th annual ACM symposium on
User interface software and technology, pages 217–226. ACM, 2004.

[66] Y. Li, M. Y. Leung, X. M. Tao, X. Y. Cheng, J. Tsang, and M. C. W. Yuen.
Polypyrrole-coated conductive fabrics as a candidate for strain sensors. Journal
of materials science, 40(15):4093–4095, 2005.

[67] T. Linz, C. Kallmayer, R. Aschenbrenner, and H. Reichl. Embroidering electri-
cal interconnects with conductive yarn for the integration of flexible electronic
modules into fabric. In null, pages 86–91. IEEE, 2005.

[68] S. Lysecky and F. Vahid. Enabling nonexpert construction of basic sensor-
based systems. ACM Transactions on Computer-Human Interaction (TOCHI),
16(1):1, 2009.

[69] S. Mann. An historical account of the ’WearComp’ and ’WearCam’ inventions
developed for applications in ’personal imaging’. In First International Sympo-
sium on Wearable Computers, 1997. Digest of Papers, pages 66–73, oct 1997.

[70] S. Mann. Wearable computing: a first step toward personal imaging. Computer,
30(2):25–32, feb 1997.

172



BIBLIOGRAPHY

[71] S. Mann. Can Humans Being Clerks make Clerks be Human? Exploring
the Fundamental Difference between UbiComp and WearComp. it-Information
Technology (vormals it+ ti) Methoden und innovative Anwendungen der Infor-
matik und Informationstechnik, 43(2/2001):97, 2001.

[72] N. Marquardt and S. Greenberg. Distributed physical interfaces with shared
phidgets. In Proceedings of the 1st international conference on Tangible and
embedded interaction, pages 13–20. ACM, 2007.

[73] T. Martin, M. Jones, J. Edmison, and R. Shenoy. Towards a design framework
for wearable electronic textiles. Seventh IEEE International Symposium on
Wearable Computers, 2003. Proceedings, 2003.

[74] C. Mattmann, O. Amft, H. Harms, G. Tröster, and F. Clemens. Recognizing
upper body postures using textile strain sensors. In 11th IEEE International
Symposium on Wearable Computers, 2007, pages 29–36. IEEE, 2007.

[75] C. Mattmann, T. Kirstein, and G. Tröster. A method to measure elongations of
clothing. In International Scientific Conference Ambience05, Tampere, Finland,
page 18, 2005.

[76] C. Mattmann and G. Troster. Design concept of clothing recognizing back
postures. In 3rd IEEE/EMBS International Summer School on Medical Devices
and Biosensors, 2006, pages 24–27. IEEE, 2006.

[77] M. Mauriello, M. Gubbels, and J. E. Froehlich. Social Fabric Fitness: The
Design and Evaluation of Wearable E-textile Displays to Support Group Run-
ning. In Proceedings of the 32Nd Annual ACM Conference on Human Factors
in Computing Systems, CHI ’14, pages 2833–2842, New York, NY, USA, 2014.
ACM.

[78] D. Meoli and T. May-Plumlee. Interactive electronic textile development: A
review of technologies. Journal of Textile and Apparel, Technology and Man-
agement, 2(2):1–12, 2002.

[79] J. Meyer, P. Lukowicz, and G. Tröster. Textile pressure sensor for muscle activity
and motion detection. In 10th IEEE International Symposium on Wearable
Computers, 2006, pages 69–72. IEEE, 2006.

[80] L. Morton, L. Baillie, and R. Ramirez-Iniguez. Pose calibrations for inertial
sensors in rehabilitation applications. In IEEE 9th International Conference on
Wireless and Mobile Computing, Networking and Communications (WiMob),
2013, pages 204–211, oct 2013.

[81] L. J. Najjar, J. C. Thompson, and J. J. Ockerman. A wearable computer for
quality assurance inspectors in a food processing plant. In First International
Symposium on Wearable Computers, 1997. Digest of Papers, pages 163–164, oct
1997.

173



BIBLIOGRAPHY

[82] Z. Nakad, M. T. Jones, and T. Martin. Communications in Electronic Textile
Systems. In Communications in Computing, pages 37–46, 2003.

[83] G. Ngai, S. C. F. Chan, W. W. Y. Lau, and J. C. Y. Cheung. A framework for
collaborative etextiles design - An introduction to co-etex. In Proceedings of the
2009 13th International Conference on Computer Supported Cooperative Work
in Design, CSCWD 2009, pages 191–196, 2009.

[84] G. Ngai, S. C. F. Chan, V. T. Y. Ng, J. C. Y. Cheung, S. S. S. Choy, W. W. Y.
Lau, and J. T. P. Tse. I*CATch: A Scalable Plug-n-play Wearable Computing
Framework for Novices and Children. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, CHI ’10, pages 443–452, New York,
NY, USA, 2010. ACM.

[85] M. Ockendon and R. Gilbert. Validation of a Novel Smartphone Accelerometer-
Based Knee Goniometer. Journal of Knee Surgery, 25(04):341–346, may 2012.

[86] J. J. Ockerman, L. J. Najjar, and J. C. Thompson. Wearable computers for
performance support: initial feasibility study. In First International Symposium
on Wearable Computers, 1997. Digest of Papers, pages 10–17, oct 1997.

[87] M. Pacelli, G. Loriga, N. Taccini, and R. Paradiso. Sensing Fabrics for Mon-
itoring Physiological and Biomechanical Variables: E-textile solutions. In 3rd
IEEE/EMBS International Summer School on Medical Devices and Biosensors,
2006, pages 1–4, 2006.

[88] J. A. Paradiso and E. Hu. Expressive footwear for computer-augmented dance
performance. In First International Symposium on Wearable Computers, 1997.
Digest of Papers, pages 165–166, oct 1997.

[89] R. Paradiso, G. Loriga, N. Taccini, A. Gemignani, and B. Ghelarducci.
WEALTHY-a wearable healthcare system: new frontier on e-textile. Journal of
Telecommunications and Information Technology, pages 105–113, 2005.

[90] S. P. S. Park, K. Mackenzie, and S. Jayaraman. The wearable motherboard: a
framework for personalized mobile information processing (PMIP). Proceedings
2002 Design Automation Conference (IEEE Cat. No.02CH37324), pages 170–
174, 2002.

[91] H. Perner-Wilson, L. Buechley, and M. Satomi. Handcrafting Textile Interfaces
from a Kit-of-no-parts. In Proceedings of the Fifth International Conference
on Tangible, Embedded, and Embodied Interaction, TEI ’11, pages 61–68, New
York, NY, USA, 2011. ACM.

[92] R. W. Picard and J. Healey. Affective wearables. In First International Sym-
posium on Wearable Computers, 1997. Digest of Papers, pages 90–97, oct 1997.

[93] E. R. Post and M. Orth. Smart fabric, or "wearable clothing". In First In-
ternational Symposium on Wearable Computers, 1997. Digest of Papers, pages
167–168, oct 1997.

174



BIBLIOGRAPHY

[94] E. R. Post, M. Orth, P. R. Russo, and N. Gershenfeld. E-broidery: Design and
fabrication of textile-based computing. IBM Systems journal, 39(3.4):840–860,
2000.

[95] R. Ramakers, K. Todi, and K. Luyten. PaperPulse: An Integrated Approach
for Embedding Electronics in Paper Designs. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems, pages 2457–2466.
ACM, 2015.

[96] A. Rathnayake and T. Dias. Yarns with embedded electronics. In Proceed-
ings of the 2015 ACM International Joint Conference on Pervasive and Ubiq-
uitous Computing and Proceedings of the 2015 ACM International Symposium
on Wearable Computers, pages 385–388. ACM, 2015.

[97] V. Savage, X. Zhang, and B. Hartmann. Midas: fabricating custom capacitive
touch sensors to prototype interactive objects. In Proceedings of the 25th annual
ACM symposium on User interface software and technology, pages 579–588.
ACM, 2012.

[98] S. Schneegass, M. Hassib, T. Birmili, and N. Henze. Towards a garment OS:
supporting application development for smart garments. In Proceedings of the
2014 ACM International Symposium on Wearable Computers: Adjunct Program,
pages 261–266. ACM, 2014.

[99] W. R. Sherman and A. B. Craig. Understanding virtual reality: Interface, ap-
plication, and design. Elsevier, 2002.

[100] Y. Shimokochi and S. J. Shultz. Mechanisms of noncontact anterior cruciate
ligament injury. Journal of athletic training, 43(4):396, 2008.

[101] M. Sibinski, M. Jakubowska, and M. Sloma. Flexible temperature sensors on
fibers. Sensors, 10(9):7934–7946, 2010.

[102] J. Siegel and M. Bauer. A field usability evaluation of a wearable system. In
First International Symposium on Wearable Computers, 1997. Digest of Papers,
pages 18–22, oct 1997.

[103] S. G. Slater. New technology sensor fabrics to monitor health data. Home
Health Care Management & Practice, 19(6):480–481, 2007.

[104] A. Smailagic. ISAAC: a voice activated speech response system for wearable
computers. In First International Symposium on Wearable Computers, 1997.
Digest of Papers, pages 183–184, oct 1997.

[105] A. Smailagic and D. P. Siewiorek. Matching interface design with user tasks.
Modalities of interaction with CMU wearable computers. Personal Communi-
cations, IEEE, 3(1):14–25, feb 1996.

175



BIBLIOGRAPHY

[106] M. B. Spitzer, N. M. Rensing, R. McClelland, and P. Aquilino. Eyeglass-based
systems for wearable computing. In First International Symposium on Wearable
Computers, 1997. Digest of Papers, pages 48–51, oct 1997.

[107] P. Stanley-Marbell, D. Marculescu, R. Marculescu, and P. K. Khosla. Modeling,
analysis, and self-management of electronic textiles. IEEE Transactions on
Computers, 52(8):996–1010, 2003.

[108] T. Starner, J. Weaver, and A. Pentland. A wearable computer based Ameri-
can sign language recognizer. In First International Symposium on Wearable
Computers, 1997. Digest of Papers, pages 130–137, oct 1997.

[109] M. Stoppa and A. Chiolerio. Wearable electronics and smart textiles: a critical
review. Sensors, 14(7):11957–11992, 2014.

[110] M. Sundholm, J. Cheng, B. Zhou, A. Sethi, and P. Lukowicz. Smart-mat: Rec-
ognizing and Counting Gym Exercises with Low-cost Resistive Pressure Sensing
Matrix. In Proceedings of the 2014 ACM International Joint Conference on Per-
vasive and Ubiquitous Computing, UbiComp ’14, pages 373–382, New York, NY,
USA, 2014. ACM.

[111] I. E. Sutherland. A Head-mounted Three Dimensional Display. In Proceedings
of the December 9-11, 1968, Fall Joint Computer Conference, Part I, AFIPS
’68 (Fall, part I), pages 757–764, New York, NY, USA, 1968. ACM.

[112] H. Z. Tan and A. Pentland. Tactual displays for wearable computing. In First
International Symposium on Wearable Computers, 1997. Digest of Papers, pages
84–89, oct 1997.

[113] X. M. Tao. Smart Fibres, Fabrics and Clothing: Fundamentals and Applications.
Woodhead Publishing Series in Textiles. Elsevier Science, 2001.

[114] B. Thomas, S. Tyerman, and K. Grimmer. Evaluation of three input mecha-
nisms for wearable computers. In First International Symposium on Wearable
Computers, 1997. Digest of Papers, pages 2–9, oct 1997.

[115] C. Thompson, J. J. Ockerman, L. J. Najjar, and E. Rogers. Factory automation
support technology (FAST): a new paradigm of continuous learning and support
using a wearable. In First International Symposium on Wearable Computers,
1997. Digest of Papers, pages 31–38, oct 1997.

[116] E. O. Thorp. The invention of the first wearable computer. In Second Interna-
tional Symposium on Wearable Computers, 1998. Digest of Papers, pages 4–8,
oct 1998.

[117] L. Van Langenhove and C. Hertleer. Smart clothing: a new life. International
journal of clothing science and technology, 16(1/2):63–72, 2004.

176



BIBLIOGRAPHY

[118] N. Villar, J. Scott, S. Hodges, K. Hammil, and C. Miller. .NET gadgeteer: a
platform for custom devices. In Pervasive Computing, pages 216–233. Springer,
2012.

[119] A. Wakita and Y. Anezaki. Intuino: an authoring tool for supporting the
prototyping of organic interfaces. In Proceedings of the 8th ACM Conference on
Designing Interactive Systems, pages 179–188. ACM, 2010.

[120] M. Weiser. The Computer for the 21st Century. SIGMOBILE Mob. Comput.
Commun. Rev., 3(3):3–11, jul 1999.

[121] Y.-L. Yang, M.-C. Chuang, S.-L. Lou, and J. Wang. Thick-film textile-based
amperometric sensors and biosensors. The Analyst, 135(6):1230–1234, 2010.

[122] S.-C. Yeh, S.-M. Chang, S.-Y. Chen, W.-Y. Hwang, T.-C. Huang, and T.-L. Tsai.
A lower limb fracture postoperative-guided interactive rehabilitation training
system and its effectiveness analysis. In 14th International Conference on e-
Health, Networking, Applications and Services (Healthcom), 2012 IEEE, pages
149–154, oct 2012.

[123] H. Zhang, X. Tao, T. Yu, and S. Wang. Conductive knitted fabric as large-strain
gauge under high temperature. Sensors and Actuators A: Physical, 126(1):129–
140, 2006.

[124] H. Zhang, L. Tian, L. Zhang, and G. Li. Using textile electrode EMG for pros-
thetic movement identification in transradial amputees. In IEEE International
Conference on Body Sensor Networks (BSN), 2013, pages 1–5, may 2013.

[125] C. Zysset, K. Cherenack, T. Kinkeldei, and G. Tröster. Weaving integrated
circuits into textiles. In 2010 International Symposium on Wearable Computers
(ISWC), pages 1–8. IEEE, 2010.

177


	Introduction
	Research Process
	Use Case Development
	Use Case Validation
	IDE Extension

	Outline

	Foundations
	History 
	Wearable Devices
	Smart Textiles

	Fabrication
	Anatomy
	Sensors
	Output Devices
	Connections

	Applications

	TangoHapps Framework
	Related Work
	Development Tools for Smart Textiles
	Development Tools for Physical Devices
	Hardware Construction Toolkits
	Circuit Layout Software
	Simulation Environments and Operating Systems

	Requirements
	Functional Requirements
	Non-Functional Requirements

	Analysis
	Model of Smart Textiles
	Model of an Application
	Model of the Editor
	Model of the Simulator
	Model of the Deployer


	TangoHapps Design
	Design Decisions
	High-Level Design
	Architecture
	Hardware/Software Mapping
	Running Engine
	Electronic Devices
	UI Widgets
	Programming Objects

	Plugin Interpreter
	Firmata Library
	Editor
	Palette
	Toolbar
	Canvas
	Circuit Layout

	Plugin Editor
	Simulator
	Deployer

	TangoHapps User Interface
	Interactex Designer
	Project Selection Screen
	Editor Screen
	Canvas
	Circuit Layout
	Simulator Screen

	Interactex Client
	Download Screen
	User Applications Screen
	Default Applications Screen
	Application Screen

	TextIT
	Usage Example
	Development of an Interactex Application
	Development of TextIT plugin


	 Applications
	Application 1: KneeHapp Bandage
	Problem
	KneeHapp Bandage
	Implementation with TangoHapps

	Application 2: Custodian Jacket
	Problem
	Custodian Jacket
	Implementation with TangoHapps


	Evaluation
	User Study 1: Novice Users
	Results

	User Study 2: Professional Smart Textile Developers
	Study Results


	Conclusions and Future Work
	Future Work

	Application Objects
	Events Methods and Variables
	Palette Objects
	Variables
	Simulation Objects
	TextIT Objects
	Code Editor
	 Line Chart Displaying Jogging Signal
	 TextIT Plugin for Counting Peaks in a Signal


	Bibliography

