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1. Core-collapse supernovae

1.1. Introduction

Supernovae are tremendous explosions of massive stars at the end of their lives. These
violent events expel stellar material into space and thus contribute significantly to
the cosmic cycle of matter by enriching the interstellar medium with heavy elements.
Already in ancient history, astronomers observed supernovae with the naked eye owing
to their extraordinary brightness. They are among the most luminous events in the
universe and can outshine their host galaxies for weeks.

There are two fundamentally different physical processes that are termed“supernova”:
thermonuclear explosions of white dwarfs and core collapses of massive stars. In this
work, we will discuss the latter being referred to as “core-collapse supernovae”. Besides
their high luminosities, hundred times more energy is carried away by vast numbers
of neutrinos playing a key role in the explosion mechanism (Colgate & White, 1966).
Core-collapse supernovae are birthplaces of neutron stars and black holes, which are
unique laboratories for studying matter under extreme conditions (Baade & Zwicky,
1934).

Understanding the explosion mechanism of core-collapse supernovae is indispensable
for obtaining answers to several key questions. Under which conditions are heavy
elements produced during the explosion and what amounts are ejected into space?
What are the properties of the compact objects left behind? What is the relation
between the properties of the progenitor stars and the supernova remnants?

Although light curves and spectra of the electromagnetic radiation are nowadays
routinely measured, the explosion mechanism itself occurring within the first second
after core collapse can hardly be studied based on these data. Instead, measuring
the temporal evolution of the neutrino emission and the gravitational wave signal will
allow for looking deep into the center of the stellar core and deducing details of the
explosion mechanism. Unfortunately, only a few core-collapse supernovae per century
occur close enough in order to be measurable in this way by detectors on Earth (Reed,
2005). The last neutrino signal was determined in 1987 for a supernova in the Large
Magellanic Cloud (SN 1987A) demonstrating that neutrinos indeed play a key role
during the explosion (e.g., Panagia, 2013). A gravitational wave signal from a core-
collapse supernova has not been detected yet (see Abbott et al., 2016, for a recent
attempt).

In order to validate theoretical models of core-collapse supernovae and to study the
explosion process systematically in detail, numerical simulations are indispensable. In
this work, we will present simulations in three dimensions, i.e. without symmetry con-
straints, performed with state-of-the-art neutrino treatment. These are the first simu-
lations of their kind yielding successful explosions.

The common paradigm of the explosion mechanism will be described below, compiled
from review articles by Bethe (1990), Janka (2012), Janka et al. (2012), Burrows (2013),
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1. Core-collapse supernovae

Foglizzo et al. (2015), and Janka et al. (2016). We will then motivate and explain the
aim of this work.

1.2. From core collapse to shock stagnation

During their evolution, stars synthesize chemical elements in nuclear fusion reactions.
The raw material for each burning stage is provided by the “ashes” of the previous
fusion process. An onion-shell structure is thus established in the stellar interior with
subsequently heavier nuclei towards the center. Massive stars heavier than about nine
times the mass of the sun form an iron core surrounded by shells consisting of silicon,
oxygen, neon, carbon, helium, and hydrogen. Nuclear fusion of iron-group elements
does not release further energy, because these nuclei are most tightly bound. Silicon
shell burning gradually increases the iron core mass, whose inwards gravitational pull is
stabilized by the degeneracy pressure of the electrons. At this stage, the iron core resem-
bles a white dwarf, which becomes gravitationally unstable beyond its Chandrasekhar
mass limit. Two processes trigger and accelerate the collapse of the iron core by re-
ducing the effective adiabatic index below 4/3. On the one hand, rising temperatures
enhance photo-dissociation of iron-group nuclei into alpha particles and free nucleons,
which consumes thermal energy. On the other hand, electron captures on heavy nuclei
become more frequent as the density increases, so that energy and lepton number are
carried away by escaping neutrinos. During core collapse, neutrinos become trapped
above a density of 1012 g cm−3, because their diffusion timescale starts exceeding the
free-fall timescale. The inner core continues collapsing adiabatically and homologously,
while the outer core proceeds its supersonic infall.

Repulsive nuclear forces lead to an abrupt stiffening of the equation of state at a
density of ∼2.7 × 1014 g cm−3. The collapse comes to a stop, however, the inner core
overshoots the new equilibrium due to its high inertia and it rebounds. Sound waves are
unleashed, which steepen into a shock when they reach the supersonically infalling outer
core. As the shock propagates outwards, it looses energy, because heavy nuclei falling
through the shock are dissociated into free nucleons. This consumes about 8.8 MeV
per nucleon or 1.7 × 1052 ergM�

−1. When the shock passes a density of 1011 g cm−3,
neutrinos previously trapped behind the shock can suddenly escape and carry away
energy in the neutrino burst. After a few milliseconds, the shock stalls due to these
energy losses at a radius between 100 and 200 km and becomes an accretion shock with
post-shock velocities pointing inwards. Material accreted through the shock slowly
settles onto the hot “proto-neutron star” (PNS) born in the center. The layer between
the shock and the PNS surface is in quasi-hydrostatic equilibrium (Janka, 2001). As
the PNS cools by neutrino losses on timescales of seconds, it slowly contracts and the
shock gradually retreats inwards.

1.3. Shock revival by neutrino heating

In order to successfully disrupt the star, a mechanism is required that deposits enough
energy behind the stalled shock to revive it. Several processes were proposed, but
many of them can be invalidated (see compilation in Janka, 2012). The most promising
candidate is the “delayed neutrino-driven explosion mechanism” introduced by Bethe &
Wilson (1985) based on the idea of Colgate & White (1966). In these pioneering works,
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1.4. Breaking of spherical symmetry

Proto-neutron 
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Cooling layer

Gain layer
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Convection

Fig. 1.1.: Sketch of the stalled-
shock phase

it was noticed that the gravitational binding en-
ergy released when the core collapses from a few
thousand kilometers to several tens of kilometers
is converted into internal energy providing a large
reservoir for powering the explosion. Neutrinos be-
ing created in the PNS slowly diffuse through its
interior to the neutrinosphere from where they can
stream out nearly freely. They carry away energy
and lepton number and deposit a small fraction of
their energy between the neutrinosphere and the
shock surface mainly by the charged-current reac-
tions

νe + n→ e− + p and

ν̄e + p→ e+ + n.

The specific value of the heating due to neutrino absorption declines as r−2, while
cooling by neutrino emission due to the inverse reactions falls off steeply with r−6

(Janka, 2001). Consequently, neutrino heating balances neutrino cooling at a certain
radius. Below this so-called“gain radius”, a layer of net neutrino cooling exists (“cooling
layer”) with the inner boundary approximately being located at the neutrinosphere. The
region of net neutrino heating between the gain radius and the shock is called “gain
layer” (see Fig. 1.1). Successful revival of the stalled shock can only be achieved if the
energy deposition in the gain layer is sufficiently large to overcome the ram pressure
maintained by the infalling stellar shells.

1.4. Breaking of spherical symmetry

The simple spherically symmetric picture described above does not hold in reality. Sev-
eral hydrodynamic instabilities exist that can lead to strong deformations and violent
non-radial fluid motions.

There is overwhelming evidence from observations that core-collapse supernovae ex-
plode asymmetrically (Wang & Wheeler, 2008). During the explosion of SN 1987A,
material was distributed highly aspherically and metal-rich clumps were mixed into the
hydrogen envelope of the star (Hillebrandt & Höflich, 1989; Arnett et al., 1989; Maeda
et al., 2008). It was shown in numerical models that this was caused by large-scale
anisotropies at the onset of explosion (Kifonidis et al., 2003; Kifonidis et al., 2006;
Hammer et al., 2010; Wongwathanarat et al., 2013; Utrobin et al., 2015). Also obser-
vations of the supernova remnant “Cassiopeia A” proved the asphericity shortly after
core bounce. From measurements of the 44Ti distribution, it could be inferred that
low-mode convective motions occurred during shock revival (Grefenstette et al., 2014).

Neutron stars were observed travelling with several hundred kilometers per second
through space (Hobbs et al., 2005). These high “kick” velocities can be explained by
large-scale deformations in the early phase of the supernova explosion (Scheck et al.,
2006; Wongwathanarat et al., 2010b, 2013).

Non-radial fluid motions behind the stalled shock are not only byproducts of the ex-
plosion but important ingredients for successful shock revival. Especially the gain layer
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1. Core-collapse supernovae

is not a calm region but convectively unstable. Neutrino heating is strongest slightly
above the gain radius and weaker further out, which creates a negative entropy gradi-
ent (Bethe, 1990). Buoyant Rayleigh-Taylor mushrooms emerge and rise towards the
shock. Convective overturn transports low-entropy material down to the gain radius
and prevents freshly heated gas from being advected into the cooling layer. The dwell
time of fluid elements in the gain layer is thus considerably longer than in spherical
symmetry. Additionally, the shock is pushed outwards by high-entropy bubbles, which
prolongs the time accreted matter is exposed to neutrino heating. The favorable effects
of this neutrino-driven post-shock convection for shock revival were discussed in nu-
merous studies (Herant et al., 1994; Burrows et al., 1995; Janka & Müller, 1996; Fryer
& Warren, 2002, 2004; Foglizzo et al., 2006; Marek & Janka, 2009; Müller et al., 2012a;
Murphy et al., 2013).

Another process that triggers large-scale asymmetries is the“standing accretion-shock
instability” (SASI; Blondin et al., 2003). It manifests itself as a low-mode oscillation
of the shock surface and is understood as an advective-acoustic cycle (Foglizzo, 2002;
Guilet & Foglizzo, 2012). Entropy and vorticity perturbations are accreted from the
shock towards the PNS. In the deceleration region above the PNS surface, pressure
waves are created, which propagate outwards and perturb the surface of the accretion
shock, thus establishing a feedback cycle. The SASI enhances the energy deposition
in the gain layer, because the shock is regularly pushed to larger radii and secondary
convection is triggered by violent shear flows (Scheck et al., 2008; Marek & Janka, 2009;
Müller et al., 2012b,a; Hanke et al., 2013). Besides a “sloshing” mode where the shock
oscillates from one side to the other, also a spiral mode can develop, which additionally
stores kinetic energy in its rotational motion (Blondin & Mezzacappa, 2007; Yamasaki
& Foglizzo, 2008; Iwakami et al., 2008, 2009; Fernández, 2010, 2015; Kazeroni et al.,
2016).

1.5. Simulations

With the help of core-collapse supernova simulations, the explosion mechanism can
be studied in detail, despite lacking measurements of neutrino signals or gravitational
waves from a galactic event. Numerical models have to include an accurate description
of the hydrodynamics, an energy-dependent multi-flavor neutrino transport scheme
(see Mezzacappa et al., 2004, for an overview), and state-of-the-art neutrino-matter
interactions (e.g., Buras et al., 2006b). Due to the complexity of the involved physical
processes, these simulations were restricted to spherical symmetry (one dimension, 1D)
and axial symmetry (two dimensions, 2D) in the past. Only in recent years, growing
computational power allows for modeling supernovae in three dimensions (3D) without
symmetry constraints.

Core-collapse supernovae do not explode in spherical symmetry, because crucial hy-
drodynamic instabilities are neglected by this symmetry assumption. This was as-
certained in state-of-the-art 1D simulations, which did not yield explosions for stars
heavier than about ten solar masses (Burrows et al., 1995; Rampp, 2000; Mezzacappa
et al., 2001; Liebendörfer et al., 2001; Sumiyoshi et al., 2005). The neutrino energy
deposition in the gain layer turned out to be too low to overcome the ram pressure of
the accreted material. Only very light progenitors can explode in spherically symmetric
models, because their outer shells are dilute and the ram pressure onto the shock is
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1.5. Simulations

therefore particularly low (Kitaura et al., 2006).

Simulations in axial symmetry with sophisticated neutrino transport can nowadays
be performed routinely. Meanwhile, a large set of successfully exploding 2D simulations
exists (Buras et al., 2006a,b; Bruenn et al., 2009; Marek & Janka, 2009; Suwa et al.,
2010; Müller et al., 2012a,b; Bruenn et al., 2013; O’Connor & Couch, 2015; Nakamura
et al., 2015; Suwa et al., 2016; Bruenn et al., 2016; Summa et al., 2016). These models
differ in their physical and numerical input, but they have an important conclusion
in common. Non-radial flows in the gain layer strongly support the neutrino heating
process to finally revive the shock, which confirms the concept of the neutrino-driven
mechanism. Nevertheless, the artificial symmetry constraint in 2D implies several draw-
backs. All fluid structures are elongated into toroidal shapes, which suppresses some
hydrodynamic instabilities like the SASI spiral mode. Furthermore, explosions in 2D
occur predominantly along the polar directions (e.g., O’Connor & Couch, 2015; Bruenn
et al., 2016; Summa et al., 2016), because the fluid cannot cross the axis for numerical
reasons and is therefore channeled into radial motions. Another serious problem of 2D
modeling is the unphysical behavior of turbulent processes. The fluid in the gain layer
has very high Reynolds numbers and is therefore clearly turbulent (Abdikamalov et al.,
2015). Following the theory of Kolmogorov (1941), this implies that kinetic energy is
usually transported from the largest scales progressively to smaller scales, until it is
dissipated into internal energy. However, this “forward cascade” does not hold in 2D,
where kinetic energy is artificially accumulated at large scales (Kraichnan, 1967; Frisch
& Sulem, 1984; Boffetta & Musacchio, 2010).

Hence, 3D simulations without symmetry restrictions are needed to explore details
of the explosion mechanism. Studies in 2D should be regarded as an intermediate
step, before large sets of 3D simulations with state-of-the-art neutrino treatment can
be computationally afforded. Hereby, it is important to remain at the same level of
sophistication as in latest 2D studies. Since the first 3D core-collapse supernova sim-
ulations of Fryer & Warren (2002, 2004), 3D modeling was always at the limits of
what is feasible on supercomputers. The numerical setups of these early works were
simplified accordingly, with a plain neutrino transport neglecting any energy depen-
dence. More recently, explosions in 3D simulations were obtained by groups using
parametrized neutrino heating (Couch, 2013; Couch & O’Connor, 2014; Abdikamalov
et al., 2015) and neutrino transport schemes that employ simplifying assumptions for
the neutrino flux density and the neutrino pressure (Takiwaki et al., 2012, 2014; Lentz
et al., 2015; Müller, 2015). The Garching group applied a more sophisticated transport
solver, which evolves the neutrino flux density and consistently computes higher-order
terms – such as the neutrino pressure – using the solution of the underlying Boltzmann
equation. They did not obtain explosions in 3D for progenitors of 11.2, 20, and 27M�,
while the corresponding 2D models exploded successfully (Hanke et al., 2013; Tamborra
et al., 2013; Hanke, 2014; Tamborra et al., 2014a,b).

Simulations of core-collapse supernovae that are dedicated to studying the explosion
mechanism in 3D should include the most precise neutrino transport treatment, the
most accurate neutrino interaction rates, and the highest grid resolution feasible us-
ing currently available computational resources. In this context, supernova modelers
concern themselves with several key questions. (A) Is it possible to obtain energetic
explosions in 3D, even though shock revival seems to be delayed in 3D and explosion
energies of many 2D models are low compared to observations? (B) Are the marginal
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1. Core-collapse supernovae

failures of 3D simulations in comparison to their successful 2D counterparts a hint
towards missing physics in the current models? (C) How does the lack in numerical
resolution of current 3D simulations influence the effects of non-radial fluid flows and
turbulence in the gain layer?

1.6. Subject of this thesis

In this thesis, we will address these three questions by performing core-collapse su-
pernova simulations in 3D with our elaborate neutrino-hydrodynamics code Vertex-
Prometheus (see description in Chapt. 2). The explosions presented in this work
are the first successfully exploding 3D models obtained with our simulation tool and
therefore important achievements taken by themselves.
(A) As long as large sets of state-of-the-art 3D simulations are computationally not

feasible, 2D simulations are still indispensable to systematically investigate the explo-
sion mechanism of core-collapse supernovae. It is therefore particularly important to
understand how findings gained in 2D are related to 3D. It was discovered in numerous
studies that the different directions of the turbulent energy cascade seem to artificially
favor explosions in 2D and delay shock revival in 3D (Hanke et al., 2013; Couch, 2013;
Couch & O’Connor, 2014; Takiwaki et al., 2012, 2014; Lentz et al., 2015). However, the
differences between 2D and 3D after the onset of explosion were not investigated before.
It is not at all certain that 3D explosions must be weaker than their corresponding 2D
counterparts. In Chapt. 4, we will indeed demonstrate that the explosion of a 9.6M�
star is more powerful in 3D due to turbulent effects in the gain layer, which affect the
efficiency of neutrino cooling. We will argue that involving the third dimension is not
generally disadvantageous for developing energetic explosions.
(B) Sophisticated 3D simulations do not explode robustly yet, which suggests that

certain physical ingredients are potentially missing in current supernova models. In
Chapt. 5, we will show that a previously failed 3D simulation of a 20M� star com-
puted with Vertex-Prometheus can be turned into a successfully exploding model
by modifying the neutrino opacities in the range of current uncertainties. Experi-
mentally and theoretically motivated strange-quark contributions to the nucleon spin
change the opacities for neutrino-nucleon scattering at a level of 10%. It will be shown
that neutrino heating is enhanced if this strangeness correction is applied. We will
conclude that this opacity modification can be considered as a template for other neu-
trino interaction uncertainties and that the previously failed 3D models of the Garching
group were fairly close to the explosion threshold.
(C) Core-collapse supernova simulations in 3D exhaust the resources available on

current supercomputers. Hence, the accuracy of their numerical discretization is rather
limited if the level of sophistication in the neutrino treatment is high. Especially
the behavior of turbulent processes depends on the spatial resolution of the compu-
tational grid. In order to use a higher grid resolution compared to previous Vertex-
Prometheus models, we will feature a new mesh refinement technique in Chapt. 3,
whose low numerical overhead in combination with the axis-free Yin-Yang grid allows
for efficiently modeling core-collapse supernovae. We will present a high-resolution 3D
simulation computed with this refined grid in Chapt. 6 and compare it to a less resolved
3D case. A novel approach for measuring the numerical viscosity from the turbulent
energy spectrum will be introduced and applied to both 3D models.
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2. Vertex-Prometheus

The core-collapse supernova simulations presented in this thesis were performed with
the Vertex-Prometheus code that combines stellar matter hydrodynamics and neu-
trino radiation transport. In this chapter, we will present the fundamental equations
for both parts of the code and explain how these are numerically implemented.
Vertex-Prometheus has been developed by Rampp & Janka (2002) for spheri-

cally symmetric (one-dimensional, 1D) problems and extended to axisymmetric (two-
dimensional, 2D) models by Buras et al. (2006b). Recently, Hanke (2014) has upgraded
the code to fully three-dimensional (3D) setups. Further details about the underlying
equations and the numerical treatment can be found in Rampp (2000). The equations
and methods described in this chapter are taken from the aforementioned works if not
otherwise referenced.

2.1. Hydrodynamics

Matter in the interior of a massive star can be described by the compressible Euler
equations for an ideal, inviscid fluid because viscosity and heat conduction by physical
effects are negligible (Müller, 1998). The set of equations for mass, momentum, and
energy conservation reads

∂ρ

∂t
+∇ · (ρ~v) = 0, (2.1a)

∂ρ~v

∂t
+∇ · (ρ~v ⊗ ~v) +∇P = −ρ∇Φ + ~QM, (2.1b)

∂ρε

∂t
+∇ · ((ρε+ P )~v) = −ρ~v · ∇Φ +QE + ~v · ~QM, (2.1c)

where the primitive variables ρ, ~v, and ε are the baryon density, the velocity, and the
total specific energy, respectively. ε is the sum of the specific internal energy e and the
specific kinetic energy, i.e. ε = e+ 1

2 |~v|
2. ~QM and QE denote source terms for momentum

and energy exchange, respectively, due to neutrino interactions. The calculation of the
gravitational potential Φ is explained in Sect. 2.4.1. The pressure P is given by the
equation of state (see Sect. 2.2).

Stellar matter has a certain chemical composition. It consists of nucleons and various
nuclei, whose mass fractions Xi are defined as

Xi = Ai
ni
nB

, (2.2)

where Ai is the atomic number and ni the number density of the nuclear species i. nB

denotes the baryon number density. In order to follow the advection of the different
nuclear species, additional conservation equations are solved,

∂ρXi

∂t
+∇ · (ρXi~v) = QNi . (2.3)
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2. Vertex-Prometheus

The source terms QNi account for changes due to nuclear reactions. If nuclear sta-
tistical equilibrium (NSE) holds, the composition can be determined from the current
thermodynamic state (see Sect. 2.2 for details).

Another conservation equation has to be solved for the electron fraction Ye being
defined as

Ye =
ne− − ne+

nB
. (2.4)

This advection equation reads

∂ρYe
∂t

+∇ · (ρYe~v) = QN. (2.5)

Changes in the net electron number density are given by the source term QN, which is
a result of the neutrino transport calculation.

2.2. Equation of state

The pressure in Eqs. (2.1) is a function of the current thermodynamic state, i.e. P =
P (ρ, e, Ye, Xi). This functional dependence – the equation of state (EOS) – has to be
computed in the whole range of conditions relevant for a core-collapse supernova, i.e.
105 g cm−3 . ρ . 3.4 × 1014 g cm−3. Therefore, the EOS is divided into a low-density
and a high-density regime. These are separated by a threshold density ρEOS.

Below ρEOS, a low-density EOS is applied, which describes nucleons and nuclei as
classical Boltzmann gases, electrons and positrons as (non-)degenerate Fermi gases, and
also includes photons (Janka, 1999).

Nuclear statistical equilibrium (NSE) is assumed above a certain threshold temper-
ature TNSE. Below that limit, nuclear burning, dissociation, and recombination are
modeled in an approximate fashion (see Rampp & Janka, 2002, Appendix B.2), where
the essential reactions happen instantaneously and determine the source terms QNi in
Eq. (2.3). Above TNSE, NSE can be assumed and the chemical composition becomes a
function of the thermodynamic variables, i.e. Xi = Xi(ρ, e, Ye).

The equation of state for dense matter is poorly known. Fortunately, ever tighter
constraints from measurements of neutron star properties reduce the number of suitable
EOS models (see, e.g., Fischer et al., 2014; Lattimer & Prakash, 2016). In this work, we
use the high-density EOS of Lattimer & Swesty (1991) with a nuclear incompressibility
parameter of 220 MeV (referred to as LS220) above ρEOS. It is based on the compressible
liquid drop model taking nucleons, α particles, and one representative heavy nucleus
into account. NSE is assumed above a temperature of 0.5 MeV. This EOS is compatible
with astronomical measurements and has been heavily applied in previous core-collapse
supernova simulations (e.g., Hanke et al., 2013; Tamborra et al., 2014a; Lentz et al.,
2015; Abdikamalov et al., 2015; Müller, 2015; Roberts et al., 2016; Summa et al., 2016).

2.3. Neutrino transport

Neutrinos cannot be regarded as another fluid component of the stellar matter because
their mean free path is large compared to the typical dimensions of the system in the
region where they interact with the stellar matter. Consequently, they are treated as
radiation and assumed to be massless particles. This is justified because the neutrino
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2.3. Neutrino transport

rest masses are very small compared to their energies in the core-collapse supernova
context (cf. Olive & Particle Data Group, 2014).

A statistical ensemble of particles is represented by the particle distribution function
f(~r, ~p, t), which essentially gives the number of particles in the phase-space volume
d3~r d3~p at the position ~r with momentum ~p at the time t. Commonly, the specific
intensity I is considered instead, such that

I(~r, n̂, ε, t) n̂ · r̂ dεdAdΩ dt (2.6)

is the amount of energy in the energy interval [ε, ε+dε] transported through the surface
element dA with its normal r̂ = ~r/|~r| in the direction n̂ into the solid angle dΩ during
the time dt. There is a simple relation between I and f ,

I =
ε3

h3c2
f, (2.7)

where c is the speed of light and h is Planck’s constant.

The evolution of the specific intensity is described by the Boltzmann equation,

1

c

∂I
∂t

+ n̂ · ∇I = C[I] . (2.8)

The source term appearing on the right-hand side of Eq. (2.8) is the so-called collision
integral, which describes emission, scattering, and absorption of neutrinos. Due to its
dependency on integrals of the specific intensity, Eq. (2.8) becomes an integro-partial
differential equation. Solving such an equation is very difficult from a numerical point of
view. Especially the direct solution can only be gained with great computational effort.
Therefore, a different solution strategy has to be considered, namely the expansion
of Eq. (2.8) into angular moments, (4π)−1

∫
dΩ, (4π)−1

∫
dΩ n̂, etc. At this stage,

the obtained infinite set of moment equations is equivalent to the original Boltzmann
equation. However, because every moment depends on ever higher moments, the system
has to be truncated and closed at a certain level. In the Vertex-Prometheus code,
a two-moment closure is applied, which is gained by the so-called variable Eddington
factor technique (see explanation below).

The complexity of the transport problem is further reduced by assuming that the
specific intensity is axisymmetric around the radial direction and the flux is thus purely
radial, i.e. I = I(~r, µ, ε, t), where µ := r̂·n̂. With this assumption, the angular moments
simplify according to

∫
dΩ = 2π

∫ 1
−1 dµ, and the first moments of the specific intensity

13



2. Vertex-Prometheus

can be defined as

J(~r, ε, t) ..=
1

2

1∫

−1

dµ I(~r, µ, ε, t), (2.9a)

H(~r, ε, t) ..=
1

2

1∫

−1

dµµ I(~r, µ, ε, t), (2.9b)

K(~r, ε, t) ..=
1

2

1∫

−1

dµµ2 I(~r, µ, ε, t), (2.9c)

L(~r, ε, t) ..=
1

2

1∫

−1

dµµ3 I(~r, µ, ε, t). (2.9d)

...

Besides the reduction of the computational effort, the expansion into angular mo-
ments has also a physical motivation. The directional dependence of the specific in-
tensity is not relevant. Only integrals over the angles are important for the interaction
of the radiation field with the fluid. The first two moments, J and H, can directly be
interpreted as neutrino energy density and neutrino energy flux, respectively.

As already mentioned, the moment equations are closed with a variable Eddington
factor method. The Eddington factors fK = K/J and fL = L/J are determined from
the solution of a simplified Boltzmann equation in an iterative procedure. Estimates for
J and H are used to compute the right-hand side of the simplified equation, which can
then be solved. With the new Eddington factors, updated estimates for the moments
can be calculated from the moment equations. This procedure is repeated until fK and
fL are converged.

Finally, the source terms for the hydrodynamic equations can be determined. Al-
though the neutrino flux is assumed to have only a radial component, non-radial ad-
vection of neutrinos and non-radial neutrino pressure gradients have to be considered
in the optically thick region (Buras et al., 2006b; Hanke, 2014). Therefore, the angular
components of the momentum source term ~QM do not vanish. The source terms for
Eqs. (2.1) and Eq. (2.5) are given by

QE = −
∞∫

0

dε

∫
dΩC[I] , (2.10a)

~QM = −1

c

∞∫

0

dε

∫
dΩ n̂ C[I] , (2.10b)

QN = −mB

∞∫

0

dε ε−1

∫
dΩC[I] , (2.10c)

where mB is the baryon mass.
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2.4. Numerical implementation

Two important diagnostic quantities are often used to characterize the neutrino ra-
diation field, the mean energy 〈ε〉 and the luminosity L (not to be confused with the
third angular moment, Eq. (2.9d)). These two quantities are defined as

〈ε〉 (r, t) =

∫
dΩ
∫∞

0 dε J(~r, ε, t)∫
dΩ
∫∞

0 dε ε−1 J(~r, ε, t)
(2.11)

and

L(r, t) = r2

∫
dΩ

∞∫

0

dεH(~r, ε, t) (2.12)

at a certain radial distance r and time t.

2.4. Numerical implementation

The equations of radiation hydrodynamics are solved in an operator-split procedure in
Vertex-Prometheus. For instance, a conservation equation of the form

∂ρX
∂t

+∇ · (ρX~v) = QX (2.13)

is split into two equations,
∂ρX
∂t

+∇ · (ρX~v) = 0 (2.14)

and
ρX∆t = QX , (2.15)

where X is a placeholder for a primitive variable and ∆t denotes the length of the
timestep. In this example, Eq. (2.14) is solved by the hydrodynamics module. The
source termQX is computed in the neutrino transport part and finally applied according
to Eq. (2.15).

In the following two sections, the numerical implementation of the two Vertex-
Prometheus modules is presented.

2.4.1. Hydrodynamics

The hydrodynamics module of Vertex-Prometheus is based on the well-known
Prometheus code (Fryxell et al., 1989), which is a Newtonian finite-volume solver
for the conservation equations (2.1), (2.3), and (2.5). Prometheus solves hydrody-
namic problems on orthogonal grids in spherical symmetry (1D), axial symmetry (2D),
or full three dimensions (3D) with high numerical accuracy. It uses the piecewise
parabolic method (PPM; Colella & Woodward, 1984), which is third-order accurate in
space and second-order in time, for reconstruction. An exact Riemann solver calcu-
lates one-dimensional Riemann problems (“sweeps”) that are extracted from the multi-
dimensional equations by Strang splitting (Strang, 1968). In the vicinity of strong
shocks, the HLLE solver (Einfeldt, 1988) is used to avoid odd-even decoupling (Quirk,
1994). Boundary conditions for the Riemann solvers are provided by appropriately
filled ghost cells. The consistent multi-fluid advection method (CMA; Plewa & Müller,
1999) is applied to ensure accurate advection of the 25 different nuclear species included
in our models.
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2. Vertex-Prometheus

The hydrodynamics in Vertex-Prometheus is treated in a purely Newtonian de-
scription, however, the gravitational potential includes general-relativistic effects. It is
deduced from the Tolman-Oppenheimer-Volkoff (TOV) equation as described by Marek
et al. (2006, Case A). The gravitational potential is dominated by the density distri-
bution of the proto-neutron star, which hardly deviates from spherical symmetry. All
simulations in this work are therefore performed with a spherically symmetric potential
based on angle-averaged quantities.

Different computational meshes are available in the 2D and 3D setups of Vertex-
Prometheus. These grids are described in detail in Chapter 3 as being one of the
important aspects of this thesis.

The timestep of Prometheus is constrained by the Courant-Friedrichs-Lewy (CFL;
Courant et al., 1928) criterion, which is restrictive for small grid cells, high velocities,
and high speeds of sound.

The core collapse is always computed in spherical symmetry with a pseudo-Lagrangian
radial grid. At core bounce, 400 logarithmically distributed radial zones are set up. The
radial grid is fixed but gradually refined during the simulation to ensure sufficiently high
resolution of the cooling region and the proto-neutron star surface. For 2D or 3D sim-
ulations, breaking of spherical symmetry is achieved by 0.1% density perturbations at
10 ms after core bounce in the whole computational domain.

During collapse, the EOS threshold density ρEOS (see Sect. 2.2) is set to values
between 3 × 107 g cm−3 and 3 × 108 g cm−3. The exact value will be mentioned in
the corresponding introductory sections of the following chapters. After core bounce,
ρEOS = 1011 g cm−3 for all models.

There are two different treatments for the NSE threshold temperature TNSE. It is
either set to a constant value of 0.5 MeV, or it is set to 0.5 MeV for infalling matter and
to 0.343 MeV for neutrino-heated high-entropy matter. Again, which of these cases is
applied for the simulations in this thesis will be mentioned in the following chapters.

2.4.2. Neutrino transport

The neutrino transport solver Vertex computes spherical radiation transport prob-
lems with the variable Eddington factor method (see Sect. 2.3 for details). This is
done for each angular bin, i.e. for each radial ray, in an implicit way. In the optically
thick regime above a density of 1012 g cm−3, non-radial neutrino advection and contri-
butions from non-radial neutrino pressure gradients are taken into account in order to
avoid unphysical convection in the proto-neutron star (Buras et al., 2006b). The whole
treatment is referred to as “ray-by-ray plus”.
Vertex computes transport solutions for three neutrino species, νe, ν̄e, and νx =
{νµ, ν̄µ, ντ , ν̄τ}. The heavy-lepton neutrinos are combined into a single representative
type νx because they only participate in neutral-current processes and are treated
equally. Consequently, the source terms QE and ~QM for Eqs. (2.1) must be summed
over all neutrino species, QE =

∑
ν QE(ν) and ~QM =

∑
ν
~QM(ν), respectively. The

right-hand side of Eq. (2.5) is QN = QN(νe)−QN(ν̄e).
The transport part of Vertex-Prometheus is fully energy dependent and operates

on energy bins. In this work, we employ 12 logarithmically spaced bins from 0 to
380 MeV. Energy bin coupling is taken into account.

For numerical stability, the moment equations are transformed into and solved in
the fluid’s comoving frame up to O(v/c). Thus, additional terms appear in Eq. (2.8)
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2.5. Neutrino interactions

accounting, among others, for redshift and time dilatation effects.
Due to the time-implicit solution strategy of the neutrino transport calculation, its

timestep is larger than the hydrodynamic timestep. Several Prometheus substeps are
therefore computed during one Vertex step. This is beneficial since the wall clock time
for gaining the transport solution is much longer than for solving the hydrodynamic
equations.

2.5. Neutrino interactions

A variety of neutrino-matter and neutrino-neutrino interactions is included in Vertex-
Prometheus. In Tab. 2.1, a compilation of these reactions is given together with
corresponding references to the literature. Details about the numerical implementation
can be found in Rampp & Janka (2002), Buras et al. (2003), and Buras et al. (2006b,
esp. Appendix A).

Reaction References

ν e± 
 ν e± Mezzacappa & Bruenn (1993a); Cernohorsky (1994)
ν A 
 ν A Horowitz (1997); Bruenn & Mezzacappa (1997)
ν N 
 ν N Burrows & Sawyer (1998)
νe n 
 e− p Burrows & Sawyer (1999)
ν̄e p 
 e+ n Burrows & Sawyer (1999)
νeA

′ 
 e−A Bruenn (1985); Mezzacappa & Bruenn (1993b)
ν ν̄ 
 e− e+ Bruenn (1985); Pons et al. (1998)

ν ν̄ N N 
 N N Hannestad & Raffelt (1998)
νµ,τ ν̄µ,τ 
 νe ν̄e Buras et al. (2003)
νµ,τ νe 
 νµ,τ νe Buras et al. (2003)
ν̄µ,τ ν̄e 
 ν̄µ,τ ν̄e Buras et al. (2003)

Tab. 2.1.: Neutrino interactions included in the Vertex-Prometheus code. ν is a
placeholder for any neutrino or antineutrino. A and N denote nuclei and
nucleons, respectively.
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3. Computational grids

In order to solve equations numerically, the involved quantities must be discretized
on a computational grid. It should always be chosen appropriately in order to, for
example, conserve symmetries of the investigated physical problem or express equations
in a simple way. In this work, we model core-collapse supernovae which are spherical
events to first order, although multi-dimensional effects are essential for the explosion
mechanism and can lead to strong deformation (see the following chapters for examples).
Therefore, it is convenient to use spherical grids that are able to preserve spherical
symmetry accurately. Several computational meshes exist fulfilling this requirement
(e.g., Ronchi et al., 1996; Kageyama & Sato, 2004; Calhoun et al., 2008; Reisswig et al.,
2013). Two different spherical grids are available in the Vertex-Prometheus code
and will be described in detail in this chapter: the common spherical polar grid and
the Yin-Yang grid. Moreover, a new mesh refinement technique will be explained in
which the angular grid resolution can be varied in different radial intervals.

The Prometheus code (Fryxell et al., 1989) is used with the well-known spherical
polar coordinates (r, θ, φ) in Vertex-Prometheus. This tuple is reduced to (r, θ) and
(r) for axisymmetric (2D) and spherically symmetric (1D) models, respectively. In this
chapter, we are only considering three-dimensional (3D) models covering the full 4π
sphere, although many explanations given below are also applicable to 2D models.

3.1. Spherical polar grid

3.1.1. Overview

The spherical mesh configuration with r ∈ [0, Rmax], θ ∈ [0, π], and φ ∈ [0, 2π] is
referred to as the spherical polar grid in this work. Its radial zones are distributed
logarithmically up to a maximum radius Rmax of usually 109 cm. At the outer edge
of the grid an inflow boundary condition is applied with a constant mass inflow rate.
The angular zones are spaced equidistantly with reflecting boundaries in θ direction
and periodic boundaries in φ direction. This computational mesh has been successfully
used in numerous 3D core-collapse supernova simulations with Vertex-Prometheus
(Hanke et al., 2012, 2013; Tamborra et al., 2014a; Melson et al., 2015a).

For a given radius, two grid singularities exist at the poles of the spherical polar
grid (where θ = 0 and θ = π). Meridians (i.e. lines of constant φ) converge towards
the poles and cause the grid cells lying on a spherical shell to become narrower and
eventually wedge-shaped directly at the polar axis. Two drawbacks emerging from this
behavior are explained in the following paragraphs.

Timestep constraints. As already described in Sect. 2.4.1, the hydrodynamic time-
step is constrained by the Courant-Friedrichs-Lewy (CFL) condition, which scales with
the grid cell size. Usually, the narrowest cells determine the timestep, at least if the
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3. Computational grids

velocities are not extraordinarily high elsewhere. In our case, the smallest cells are
located at the polar regions for a given constant radius.

Axis artifacts. In 3D core-collapse supernova simulations, it has been observed that
shortly after core bounce buoyant Rayleigh-Taylor mushrooms first rise at the poles be-
fore they are distributed stochastically across the sphere (e.g., Wongwathanarat et al.,
2010a; Müller, 2015). Generally, neutrino-heated high-entropy bubbles only rise if buoy-
ancy overcomes drag forces. The latter contain contributions from the implicit viscosity
of the numerical scheme. This “numerical viscosity” (e.g., Müller, 1998) will be further
addressed in Chapt. 6. In short, a higher grid resolution, i.e. smaller grid cells, reduce
the numerical viscosity and allow buoyant bubbles to rise faster along the axis. Al-
though the described issue becomes subsidiary for the dynamics of the model as soon
as convection has fully developed, the polar singularities remain potential sources for
numerical artifacts.

To sum up, we observe that the small cells near the axis, on the one hand, strongly
constrain the timestep of our hydrodynamic scheme and, on the other hand, lead to a
reduced numerical viscosity that possibly causes axis artifacts. Consequently, it would
be beneficial to have a spherical grid whose cells are equal in size across the angular
domain. In Sect. 3.2, we present such a computational mesh – the Yin-Yang grid –
which mitigates the problems of the conventional spherical polar grid and is therefore
perfectly suited for replacing the latter.

3.1.2. Implementation

Before explaining the Yin-Yang grid in the next section, we will depict the numerical
implementation of the spherical polar grid here.

The implementation of the spherical polar grid in the Vertex-Prometheus code is
based on directional Strang splitting as mentioned in Sect. 2.4.1. Boundary conditions
for the extracted one-dimensional Riemann sweeps are supplied by appending ghost
cells to their ends. These additional cells are filled with the required primitive variables
before the Riemann problems are solved. On shared-memory architectures, this pro-
cedure is straightforward. However, difficulties arise on distributed-memory systems,
where the data for the ghost cells has to be communicated explicitly. Technically, the
domain decomposition is done in the angular domain, such that every compute node
consisting typically of 16 compute cores hosts a certain part of the angular grid and full
radial sweeps. No communication is therefore necessary in the radial direction, which
is beneficial for the non-local ray-by-ray neutrino transport. Communication is only
required for θ and φ sweeps and for neutrino advection terms and neutrino pressure
gradients in the optically thick regime (cf. Sect. 2.4.2). Generally, every neutrino trans-
port ray is assigned to one compute core. This setup ensures Vertex-Prometheus’s
excellent computational efficiency (Marek et al., 2014) and linear scaling behavior (see
Fig. 3.5).

For a given radius, the timestep is constrained by the cells at the poles as described
above. Furthermore, the grid cell sizes converge towards the origin, which is another
grid singularity. Hence, a strategy to allow for longer hydrodynamic timesteps in 3D
simulations with the spherical polar grid is to treat the innermost core with a radius of
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10 km in spherical symmetry (1D). This is justified because this region is convectively
stable and non-radial fluid velocity components are negligible. Riemann problems in
the angular directions can be ignored and the timestep is therefore only constrained by
the radial extent of the zones. Ghost cells at the outer boundary of this 1D core are
provided by angular averages of the innermost zones of the 3D region. At the interface
between these two domains, an algorithm ensures that conservation laws are exactly
fulfilled. This procedure is described in detail in Sect. 3.3.2.

3.2. Yin-Yang grid

The Yin-Yang grid is a composite of two geometrically identical grid patches (called
Yin and Yang) which together form a spherical grid. Its construction was introduced
by Kageyama & Sato (2004) and first applied to geophysical problems. We will briefly
summarize the properties of this grid, give the necessary coordinate transformations,
and explain the implementation into the Vertex-Prometheus code.

3.2.1. Definition and transformations

Both grid patches of the Yin-Yang grid are low-latitude subsets of the spherical polar
grid and therefore locally described by spherical polar coordinates (r, θY, φY), where
the subscript “Y” is a placeholder for “Yin” and “Yang”. The angular coordinates are
defined in the intervals

θY ∈
[
π

4
,
3π

4

]
, (3.1a)

φY ∈
[
−3π

4
,
3π

4

]
. (3.1b)

Yin and Yang have identical local coordinates but are rotated against each other and
overlapped such that the whole sphere is covered (see Fig. 3.1 for a three-dimensional
visualization). Kageyama & Sato (2004) presented the following transformations based
on a global Cartesian coordinate system. For the Yin grid part, they defined



x
y
z


 =



r sin θYin cosφYin

r sin θYin sinφYin

r cos θYin


 . (3.2)

After the rotation matrix 

−1 0 0
0 0 1
0 1 0


 (3.3)

is applied, the transformation for the Yang part reads



x
y
z


 =



−r sin θYang cosφYang

r cos θYang

r sin θYang sinφYang


 . (3.4)

Note that the radial axes are equal in both grid parts and therefore not distinguished.
The two equations (3.2) and (3.4) can be combined into a single transformation for the
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Fig. 3.1.: Visualization of the Yin-Yang grid cell edges for a given constant radius and
an angular grid resolution of 4◦.

Yin and Yang angular coordinates,

θYang = arccos (sin θYin sinφYin) , (3.5a)

φYang = arctan

(
− cos θYin

sin θYin cosφYin

)
, (3.5b)

where the appropriate inverse transformation is obtained by interchanging the sub-
scripts “Yin” and “Yang”.

The transformation for vector components is



vr

vθ
vφ




Yang

=




1 0 0
0 − sinφYin sinφYang − cosφYin(sin θYang)−1

0 cosφYin(sin θYang)−1 − sinφYin sinφYang





vr

vθ
vφ




Yin

. (3.6)

Here, the inverse transformation can again be gained by interchanging the subscripts.

3.2.2. Advantages over the spherical polar grid

The most prominent advantage of the Yin-Yang grid construction is that the polar
regions of the spherical polar grid are excised. Problems in connection with the grid
singularities at the axis as described in Sect. 3.1 are circumvented. Additionally, the
cell sizes at constant radius are fairly equal throughout the grid patches. To be more
specific, the cell area

dA = r2 sin θY dθY dφY (3.7)

only varies marginally in the interval defined in Eq. (3.1a) for a constant radius r. As
a consequence, the CFL timestep on the Yin-Yang grid is longer than on the spherical
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polar grid for a given radius and a given angular resolution of the coarsest cells. How-
ever, instead of taking the advantage of a larger timestep, the radius of the spherically
symmetric inner core is reduced from 10 km to about 1.6 km (cf. Sect. 3.1.2) so that the
timestep remains similar to the spherical polar grid case. Reducing the size of the core
is required for long-term simulations in which the bottom of the convectively unstable
layer in the proto-neutron star interior can shrink to a radius of 10 km or less. Since the
calculation of a hydrodynamic step is computationally cheap compared to a neutrino
transport step, no notable overhead occurs by this practice.

Furthermore, the usage of the Yin-Yang grid in a numerical scheme that has been
developed for spherical coordinates is only slightly more difficult. The fact that Yin
and Yang are locally spherical grids allows for applying the same equations as for the
conventional spherical polar grid. Only a small computational overhead has to be taken
into account, which will be described in the following sections.

3.2.3. Surface integrals

Integrals over the whole computational domain of the Yin-Yang grid (e.g. for deter-
mining the spherically symmetric gravitational potential) are not trivial. From the
construction of the grid with its overlapping region, it is obvious that a surface integral
over the whole sphere is not just the sum of both grid patches because

3π
4∫

π
4

sin θY dθY

3π
4∫

− 3π
4

dφY ≈ 2.12π > 2π, (3.8)

where the integration boundaries are defined in Eqs. (3.1). Instead, a “surface weight”
w(θY, φY) has to be defined such that

SY
..=

3π
4∫

π
4

sin θY dθY

3π
4∫

− 3π
4

dφYw(θY, φY), (3.9)

where “Y” is again a placeholder for “Yin” and “Yang”, and

SYin + SYang
!

= 4π. (3.10)

The algorithm for determining the weight function w(θY, φY) was introduced by Peng
et al. (2006). For cells located completely inside the Yin-Yang overlap, the weight is
set to 0.5, whereas cells entirely outside are weighted with 1. For the remaining cases,
the fraction of the cell area lying inside the overlap region is integrated numerically.

3.2.4. Implementation for the hydrodynamics

The Yin-Yang grid implementation into the hydrodynamics module of the Vertex-
Prometheus code was done by Melson (2013) for shared-memory systems. It was
guided by the work of Wongwathanarat et al. (2010a), who implemented the grid into a
different Prometheus-based supernova code. In this section, we will briefly summarize
how the hydrodynamics is treated on the Yin-Yang grid. Our extension of this grid for
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−3π
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Fig. 3.2.: Angular grid of one Yin-Yang patch with local coordinates θY and φY. The
overlap with the other grid part (white cells at the edges of the plot) and
its ghost cells (gray-shaded cells) can be seen. A seam of four ghost cells is
necessary in Vertex-Prometheus. Note the non-trivial distorted shape
of the ghost zones.

the neutrino transport solver and the implementation for distributed-memory systems
will be outlined in the following two sections.

As Yin and Yang are locally described by spherical coordinates, the solution pro-
cedure of the hydrodynamic equations is identical to the case of the spherical polar
grid. It is especially noteworthy that both grid patches can be treated equally and the
directional Strang splitting is done independently of each other. Because Yin and Yang
share the same radial axis, no special procedure is required for the radial sweep.

Usually, a seam of “buffer cells” is added to the four edges of the Yin and Yang
angular domains (visible in Fig. 3.1). These additional cells ensure that the sphere is
covered completely despite possible numerical inaccuracies of the grid cell positions.

The only link between Yin and Yang in the hydrodynamics part of the Vertex-
Prometheus code is realized by exchanging data for the ghost cells of the θY and φY

sweeps. These cells are visualized in Fig. 3.2 as gray-shaded areas. At the beginning
of a hydrodynamic timestep, the ghost cell centers are expressed in coordinates of the
corresponding other grid patch using Eqs. (3.5). The grid cells hosting the required
data are determined and interpolation weights are computed. All required conserved
quantities are then interpolated bilinearly onto the centers of the ghost cells. After
that, the momentum components are transformed applying the vector transformation
as in Eq. (3.6).

Unlike Wongwathanarat et al. (2010a), who filled the ghost zones for every sweep
separately, we update the ghost cell values only at the beginning of a hydrodynamic
step. The ghost zones are part of the computational domain in our implementation
and their quantities are consistently evolved in the three directional sweeps. It turned
out that this procedure enhances numerical stability, which is plausible, because a
consistent hydrodynamic state is reached only after all sweeps have been solved.
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3.2. Yin-Yang grid

3.2.5. Implementation for the neutrino transport

The ray-by-ray plus strategy of the Vertex-Prometheus code only requires addi-
tional Yin-Yang overhead for the non-radial neutrino advection terms and the non-
radial neutrino pressure gradients. Similarly to the ghost cells above, the required
quantities for the angular neutrino transport terms for one Yin-Yang grid part are in-
terpolated from the other patch. The neutrino transport solution itself is computed on
radial rays and therefore no additional special treatment is needed.

3.2.6. Implementation for distributed-memory systems

Exchanging ghost cell values for the Yin-Yang grid is especially complicated on distri-
buted-memory architectures. As already mentioned in Sect. 3.1.2, the domain decom-
position is done in the angular directions, which is the best strategy for the ray-by-ray
neutrino transport. Besides the usual next-neighbor communication for nodes stor-
ing angular domain subsets from the interior of the Yin and Yang grids, additional
data exchange is necessary for nodes at the edges of both grid parts. Obviously, fill-
ing the ghost cells requires a point-to-point communication procedure because of the
non-trivial arrangement of these cells (cf. Fig. 3.2). For every ghost zone, it has to be
determined which node hosts the data needed for the interpolation and to which node
the interpolated quantities have to be sent.

Despite this communication overhead of the Yin-Yang grid, its scaling behavior in
our implementation is excellent as illustrated in Fig. 3.5. This is related to the fact that
– given a certain problem size – the number of point-to-point communication operations
for an individual node decreases with increasing number of compute cores, i.e. smaller
individual angular domain chunks.

3.2.7. Conserved quantities

Although the Yin-Yang grid has several advantages over the spherical polar grid, there
exists a drawback that is caused by its composite character. Because the values for the
ghost cells are interpolated from the respective other grid patch, physically conserved
quantities, like the total mass or the total energy, are not automatically numerically
conserved. Prometheus is in principle able to exactly conserve these quantities, but
only for coherent grid configurations, i.e. for the spherical polar grid or the Yin-Yang
grid parts individually. Numerical inaccuracies, however, occur at the edges of Yin and
Yang due to the ghost cell interpolation procedure.

Increasing the grid resolution helps enhancing the accuracy, but comes with the price
of a higher computational cost. Using a higher-order interpolation for the ghost cells
shows only a minor improvement and potentially introduces further errors. Both ideas
can therefore not easily be realized. Alternatively, Peng et al. (2006) described an
algorithm that is theoretically able to exactly conserve all quantities. It compares the
Riemann fluxes across the grid edges in θY and φY directions with fluxes deduced from
the underlying grid part at the same spatial position. Both fluxes should be equal and
hence differences result in updates of conserved variables in the cells at the grid edge.
Unfortunately, this algorithm turns out to be numerically unstable and can therefore
not be applied.

But even without further modifications, the conservation laws in our simulations are
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Fig. 3.3.: Example of a setup with the static mesh refinement (SMR) in two dimen-
sions. The angular resolution increases to a factor of 6 from the center to
the outer edge of the grid. The ghost cells for the green-shaded radial sweep
between r1 and r2 are illustrated as green hatched areas.

violated only by about 10−3 over several hundred milliseconds. In the case of typical
rotating models, which have large continuous fluxes across the Yin-Yang boundaries, an
accuracy of at worst several 10−3 is maintained (Summa, 2016). Nevertheless, we will
describe a procedure in the remaining sections of this chapter that allows for increasing
the angular resolution and therefore also the accuracy to which conservation laws are
fulfilled.

3.3. Static angular mesh refinement

Both the spherical polar grid and the Yin-Yang grid have a common disadvantage. The
surface element dA = r2 sin θY dθ dφ is proportional to the radius squared. For a given
constant angular resolution, the effective size of the grid cells grows with increasing
radius. Here, we present a new static mesh refinement (SMR) technique, which com-
pensates for the diverging structure of these spherical grids. The physical motivation
for increasing the effective resolution will be addressed in Chapt. 6, where we will ap-
ply the new grid to a three-dimensional core-collapse supernova simulation including
neutrino transport.

The SMR setup allows us to define certain radial intervals with different angular
resolution. An example for such a setup is given in Fig. 3.3 in two dimensions for coor-
dinates (r, θ). Although this was chosen for the sake of simplicity here, the discussion is
completely analogue for the 3D case. Let us define the angular resolution for r < r1 as
ψ. Then, the resolution between r1 and r2 is 2ψ, and further refined to 6ψ for r > r2.

Generally, arbitrary integer refinement steps and an arbitrary number of concentric
layers can be chosen in our implementation. Note that the inner spherically symmetric
volume, which is used to allow for larger hydrodynamic timesteps (cf. Sect. 3.1.2), can be
understood as a special case with the lowest possible angular resolution corresponding
to the whole sphere.
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3.3. Static angular mesh refinement

3.3.1. Treatment of the hydrodynamics

Generally, the SMR procedure only affects the radial direction. The computations of
θ and φ sweeps remain unchanged. Besides the spherical polar grid, using the Yin-
Yang grid is thus also possible and only requires a slight modification. As the angular
resolution changes in the computational domain, the Yin-Yang ghost cell positions are
different for each refinement layer, which has to be considered when data is exchanged
between both grid patches.

Radial sweeps are computed separately for every layer. For an example, consider the
green filled grid cells in Fig. 3.3, for which the radial sweep should be calculated. Let us
assume that one ghost cell is needed below and one above this sweep, depicted as green
hatched areas. For the lower end, the ghost cell data can directly be taken from cell
A. This is because finite-volume methods generally assume that values in a cell always
represent averages. For the upper end of the sweep, we need to average over cells B,
C, and D to get the required data. Generally, averaging is required for the ghost cells
located at the finer neighboring layer. This is the reason why only integer refinement
steps are allowed in the SMR construction. Otherwise, computing the averages would
be difficult and introduce additional interpolation errors.

3.3.2. Flux correction

If we naively used the averaged ghost cell data from the finer layer at the outer end
of a radial sweep, numerical inaccuracies would occur resulting in the violation of con-
servation laws. In order to ensure exact conservation of the conserved quantities from
Eqs. (2.1), (2.3), and (2.5), a “flux correction” algorithm is applied acting on the outer-
most cell of each refinement region. We will explain this procedure with the aid of Fig.
3.3. Note that the flux correction is also done for the spherically symmetric innermost
volume, which has been introduced to mitigate the timestep constraints at the grid
origin.

In our example illustrated in Fig. 3.3, the flux correction considers the interface
between the cell E and the cells B, C, and D at r2. After all radial sweeps are calculated,
the quantity X – a placeholder for a conserved quantities in our hydrodynamic scheme
– should be exactly conserved. The considered interface at r2 is part of four different
radial sweeps: the sweep between r1 and r2 containing the cell E, and the three sweeps
beyond r2 containing the cells B, C, and D. In the following, we discuss the different
Riemann fluxes of X at the interfaces between these four cells and their corresponding
ghost zones. Let FE be the flux density of X at the upper edge of the cell E. Likewise,
FB, FC, and FD, denote the flux densities at the lower boundaries of the cells B, C, and
D, respectively. All these fluxes are evaluated at the interface r2 with positive values
corresponding to the radially outflowing direction. The areas of the cell interfaces are
labeled AE, AB, AC, and AD. Theoretically, it should hold

FEAE
!

= FBAB + FCAC + FDAD. (3.11)

This is, however, not guaranteed numerically. In order to cure this problem, the value
of X in the cell E is updated to

Xnew = X + ∆t
FEAE −FBAB −FCAC −FDAD

VE
, (3.12)
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where ∆t is the timestep length and VE the volume of the cell E. In this way, differences
of Riemann fluxes are converted into updates of conserved quantities. This is done for
all variables at all interfaces between layers of different angular resolution to ensure
that conservation laws are fulfilled numerically.

3.3.3. Treatment of the neutrino transport

The implementation of the neutrino transport requires some modifications if the SMR
procedure is used. Generally, the computational grids, on which the hydrodynamics
and the radiation transport are computed, have to be identical in the regime where
neutrinos are tightly coupled to the stellar matter. Otherwise, the source terms given by
the transport solution are not well-balanced with the internal energy density of the fluid,
such that deviations from thermodynamic equilibrium would arise (Rampp & Janka,
2002). These, in turn, would cause numerical oscillations harming the simulation.

In the context of the SMR grid, the coarsest angular grid of the innermost multi-
dimensional refinement layer must coincide with the transport angular grid. For exam-
ple, the complete wedge shown in Fig. 3.3 would be one transport ray with the first
refinement step at r1 being in a region where the neutrino opacity is already sufficiently
low and neutrinos are not expected to reach equilibrium with the fluid. For r > r1, the
input for the neutrino transport solver is obtained by angular averages of the hydrody-
namic quantities, similar to the filling procedure of the ghost cells of different angular
resolution patches. The computed source terms for the hydrodynamic equations are
finally applied to all cells in the particular transport ray.

3.3.4. Taylor-Sedov test

In order to demonstrate the capabilities of the SMR grid construction, we present
simulations of a three-dimensional hydrodynamic test problem, a so-called Taylor-Sedov
blast wave. A spherical shock wave is unleashed by a certain amount of energy in a
small volume. It propagates into a low-pressure environment and expands in a self-
similar manner. The analytical solution of the problem can be calculated for any point
in time (Sedov, 1959; Landau & Lifshitz, 1987).

We conducted two simulations on the Yin-Yang grid with and without the SMR
modification. Both setups have an equidistant radial grid of 500 zones with an outer
grid boundary Rmax of 5 × 107 cm. The angular grid configurations are listed in Tab.
3.1.

Setup Angular resolution

Yin-Yang 1.8◦ for 0 ≤ r ≤ Rmax

Yin-Yang with SMR 1.8◦ for 0 ≤ r < 5× 106 cm
0.9◦ for 5× 106 cm ≤ r < 107 cm
0.45◦ for 107 cm ≤ r ≤ Rmax

Tab. 3.1.: Setups for the Taylor-Sedov blast wave test. The outer radius of the grid is
Rmax = 5× 107 cm.
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Fig. 3.4.: Taylor-Sedov test on the Yin-Yang grid, with and without the SMR, at
t = 3.5 s. The pressure distribution in the plane z = 0 is color-coded.
Black lines indicate the grid edges of Yin and Yang , so that the Yin-Yang
overlap region is enclosed by them. Gray circles mark the boundary between
different refinement layers of the SMR setup (cf. Tab. 3.1).

We initialize an off-center Taylor-Sedov explosion around the point


x0

y0

z0


 =



−8× 106 cm
2× 106 cm

0


 . (3.13)

The analytical solution of the blast wave with an initial energy input of 2 × 1034 erg
is interpolated onto the grid at t = 0.2 s after ignition. At this time, the radius of the
spherical shock is about 2.5× 106 cm. It propagates into surrounding matter that has
a density of 10 g cm−3 and a pressure of 107 erg cm−3. An analytical ideal gas equation
of state is used with an adiabatic index of 1.4. Gravity is switched off in the test runs.
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Fig. 3.5.: Strong scaling of the Vertex-Prometheus code on the SuperMUC system
(LRZ, Garching). The speedup, i.e. the wall-clock time per step normalized
to a reference value, is shown as a function of the number of compute cores.
Note that the problem size is kept constant and the size of the angular
domain subsets on one node therefore decrease with increasing number of
cores. Blue and red lines show the behavior of the code with the spheri-
cal polar grid and the Yin-Yang grid with enabled static mesh refinement
(SMR), respectively. Black dashed lines depict a theoretically ideal scaling.
The data was obtained during SuperMUC’s Extreme Scaling Workshop 2016
and resulted in awarding us the Extreme Scaling Award 2016.

In Fig. 3.4, the pressure distribution in the plane z = 0 is shown for both test models
at 3.5 s after ignition. First, it can be seen that the shocks remain spherical when they
pass the Yin-Yang grid edges indicated by black lines. Numerical artifacts due to the
interpolation procedure for the ghost cells are not visible. The same is true for the SMR
case, where the shock wave has to pass Yin-Yang boundaries and interfaces between
different resolution layers. Especially the passage from a region of higher angular grid
resolution into a layer of lower resolution does not trigger numerical problems. Slight
deformations of the shock waves appear near the grid origin, which is related to the
reflecting boundary condition there and the distorted shape of the cells in its vicinity.

Second and most importantly, the higher angular resolution of the SMR scheme
maintains a sharper discontinuity of the shock as expected. Especially comparing the
layers of 2◦ and 0.5◦ resolution reveals the enhanced sharpness of the blast wave.

In this simple 3D test, we have shown that the SMR implementation does not trig-
ger numerical artifacts at the propagating shock. Note that if this example included
neutrino transport, the number of transport rays would be the same in both test simu-
lations. Since the wall-clock time is dominated by the neutrino transport, the computa-
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tional cost of both simulations would be fairly equal. This was exactly the motivation
for implementing the static angular mesh refinement.

3.4. Code scaling

An important aspect of Vertex-Prometheus’s code performance is its excellent
strong scaling. For a given problem size, the number of compute cores is varied and
the time needed for a single timestep is measured. Ideally, the number of cores should
be inversely proportional to the wall-clock time per step.

In Fig. 3.5, we show the strong scaling of our latest code version with physical and
numerical settings that would be similarly used in production for both the standard
spherical polar grid and the Yin-Yang grid. In the latter case, we have also enabled the
static mesh refinement procedure with an angular resolution of 0.3◦ at the finest level.
Vertex-Prometheus scales almost linearly up to 147,456 cores on the SuperMUC
system (LRZ, Garching) without indications for an upper limit, where the scaling breaks
down. This remarkable result demonstrates that we will be able to use future high-
performance computers efficiently on hundreds of thousands of cores.
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4. Explosion of a 9.6M� star

Modeling core-collapse supernovae with sophisticated neutrino transport has reached
the third spatial dimension only in recent years thanks to growing computational power.
First insights into the explosion mechanism could be obtained in self-consistent three-
dimensional (3D) simulations and it turned out that there are fundamental differences
to previous axisymmetric (2D) models being related to the imposed symmetry con-
straint of the latter. Besides numerical deficiencies at the axis, fluid structures are
artificially elongated into toroidal shapes in axisymmetry. Hence, hydrodynamic in-
stabilities being important for shock revival behave differently in 2D and 3D. Studies
in 2D have become routine these days, but the lessons learned from these investiga-
tions cannot be easily extrapolated to 3D. By comparing 2D with 3D, two important
questions arise concerning the onset of explosion:

1. Do 3D models explode more readily and earlier than their 2D counterparts?

2. Do 2D and 3D simulations behave differently after the onset of explosion?

The first question has been discussed in the literature in great detail. Results from
parametric simulations by Nordhaus et al. (2010) claimed that the critical luminos-
ity – i.e. the neutrino luminosity required to revive the shock assuming steady-state
conditions (Burrows & Goshy, 1993) – is lower in 2D compared to spherically symmet-
ric (1D) models and even further reduced in 3D. Similarly, Burrows et al. (2012) and
Dolence et al. (2013) found earlier explosions in 3D despite less power in large-scale
fluid motions. Other works, however, contradicted these findings. Hanke et al. (2012)
observed that 2D and 3D models require similar neutrino luminosities and that 3D re-
sults approach the 1D case for sufficiently high angular resolution. These authors also
noticed that large-scale motions of the flow drive shock expansion. Couch (2013) found
later explosions in 3D and emphasized that the largest buoyant plumes with a large
volume-to-surface ratio push the shock outwards. All these works were performed with
a simple neutrino light bulb scheme. Nevertheless, the findings of the latter studies
already emphasize the role of large-scale fluid structures for the explosion mechanism.

An important difference between 2D and 3D models is turbulent energy transport.
Usually, kinetic energy is injected at some large scale and transported down the inertial
range to the dissipation range, where it is dissipated into internal energy (Landau
& Lifshitz, 1987). This forward energy cascade holds in 3D, whereas the artificially
imposed symmetry in 2D leads to an inverse energy transport accumulating power at
large scales (Kraichnan, 1967; Frisch & Sulem, 1984; Boffetta & Musacchio, 2010). The
importance of the different behavior of the turbulent energy cascade in 2D and 3D was
discussed by various parametric studies (e.g., Hanke et al., 2012; Couch, 2013). With
their neutrino leakage scheme, Couch & O’Connor (2014) stressed that explosions are
artificially favored in 2D, since kinetic energy is stored at large scales. Takiwaki et al.
(2012, 2014) also obtained later explosions in 3D with the isotropic diffusion source
approximation, a purely Newtonian treatment of the hydrodynamics, and a somewhat
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outdated equation of state. Likewise, Lentz et al. (2015) obtained later explosions in
3D with a flux-limited diffusion scheme and noticed that many small buoyant plumes
develop in 3D compared to a few large ones in 2D. From a more general point of view,
Couch & Ott (2015) argued that overestimated turbulence in 2D brings a model closer
to the explosion threshold compared to 3D.

Nearly all of the latest works agree that the different directions of the turbulent
energy cascade seem to artificially enhance explosions in 2D and delay shock revival in
3D. However, the second question – how 2D and 3D models behave after the onset of
explosion – was not addressed so far. It is not at all clear that 3D simulations should
develop weaker explosions compared to 2D if shock revival is initiated simultaneously
in both cases. In this chapter, we will investigate this issue and present the very
first successfully exploding 3D core-collapse supernova simulation performed with the
Vertex-Prometheus code. Together with a corresponding 2D model exploding at the
same time, we will have the unique possibility to directly compare the fluid dynamics
during the explosion. It will be shown that the influence of the turbulent cascade
boosts the 3D model to a 10% higher explosion energy. The results of this chapter were
partially published in Melson et al. (2015b).

First, we will describe the progenitor star and the numerical setup. Then, the char-
acteristics and dynamics of the explosion will be explained in detail, especially why the
explosion is more energetic in 3D. Finally, additional interesting observations concern-
ing the lepton-number emission will be discussed.

4.1. Progenitor

The initial model used for this study is a zero-metallicity iron-core star with a zero-age
main sequence (ZAMS) mass of 9.6M�. It is referred to as “z9.6” in the literature
and was provided by Heger (2012). Details about the stellar evolution calculation for
this stellar model can be found in Heger & Woosley (2010). Woosley & Heger (2015)
presented an extensive discussion about stars in the appropriate mass range, although
not explicitly for metal-free stars.

A 2D core-collapse supernova simulation with this progenitor was performed by
Müller et al. (2013), who determined the gravitational wave signal during the explo-
sion. Sukhbold et al. (2016) argued that the z9.6 star behaves similarly to their lightest
solar-metallicity star of 9.0M� and can therefore be discussed in the context of a Crab
supernova progenitor.

In Fig. 4.1, several profiles of the 9.6M� model are shown as functions of radius
and enclosed mass. The most abundant species of different shells are marked with blue
labels. The iron core with a mass of 1.30M� is surrounded by a thin shell consisting
mainly of silicon and oxygen. A steep density gradient outside of this layer separates it
from the dilute outer stellar shells. To be more precise, the compactness parameter ξ2.5

(O’Connor & Ott, 2011) of the progenitor is 7.65× 10−5 and thus orders of magnitude
lower than typical values for heavier stars (cf. Ertl et al., 2016). Due to this density
configuration, the mass-accretion rate on the stalled supernova shock and hence the ram
pressure caused by infalling material are expected to drop quickly to a very low value,
which is a common phenomenon of low-mass progenitors. Explosions can therefore be
achieved quite easily even in spherically symmetric core-collapse supernova simulations.
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Fig. 4.1.: Profiles of the density ρ, the entropy per baryon s, the temperature T , and
the electron fraction Ye of the 9.6M� progenitor as functions of radius r (left
panels) and enclosed mass m (right panels). Blue vertical lines indicate shell
interfaces and blue labels show the most abundant species in these shells.

4.2. Numerical setup

We have simulated the 9.6M� progenitor in spherical symmetry (one dimension, 1D),
axial symmetry (two dimensions, 2D), and full three dimensions (3D). All details about
the general numerical setup can be found in Sect. 2.4. Particularly, the 3D simulation
was performed on the axis-free Yin-Yang grid. The angular resolution of the 2D and
3D models was set to 2◦, with the innermost 1.6 km treated in spherical symmetry.

Except for dimensionality, all models discussed in this chapter were run with identical
physical and numerical settings.

We used the LS220 high-density equation of state (cf. Sect. 2.2). The threshold
density ρEOS between the high-density and low-density EOS was set to 6× 107 g cm−3

during collapse and to 1011 g cm−3 afterwards. NSE was considered above a temperature
of 0.5 MeV.

The radial grid was gradually refined during the simulations in order to sufficiently
resolve the cooling region and the proto-neutron star surface. Note that this was done
similarly in 1D, 2D, and 3D, so that the radial axes are identical in all models for a
given point in time ensuring comparability of the results.
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depict the lower and upper limits of the explosion energy (see text and Eq.
(4.3)).

4.3. Results

4.3.1. Overview

As already mentioned above, the structure of the progenitor facilitates an explosion
in all cases, i.e. in 1D, 2D, and 3D1. The angle-averaged shock radii 〈Rsh〉 in Fig. 4.2
clearly demonstrate the success of all models. Generally, angle-averaged quantities in

1Movies of the 3D model can be found at http://www.mpa-garching.mpg.de/ccsnarchive/movies/.
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4.3. Results

this work are defined as

〈X 〉 ..=

∫
dΩX∫
dΩ

, (4.1)

where the integrals in the 3D Yin-Yang case have to be computed applying the proce-
dure mentioned in Sect. 3.2.3. As usual, all time axes are normalized to the bounce time,
which is given by the time when the entropy per baryon exceeds a value of 3.2 kB/by
at the newly-formed shock wave.

Usually, the supernova shock stagnates at a radius between 100 and 200 km, typically
followed by a phase of shock retreat, before it is possibly revived by neutrino heating.
In the models discussed here, however, the stagnation phase is only very short due to
the low ram pressure of the infalling material. Neutrino heating is strong enough to
continuously drive the shock outwards. In this context, both multi-dimensional models
explode directly and nearly at the same time, whereas the 1D explosion is weaker and
more delayed. If we define the explosion time as the time when the average shock
radius reaches 400 km, the 2D and 3D models explode at 138 and 134 ms, respectively.
This gives us the unique opportunity to directly compare the explosion dynamics of
both multi-dimensional models and deduce differences caused by the dimensionality.
Interestingly, for example, the shock expansion in 3D is faster than in 2D. At 400 ms
after core bounce, the shock expansion rate is ∼2.8 × 109 cm s−1 in 3D and ∼2.5 ×
109 cm s−1 in 2D. At the end of the 3D simulation, i.e. at 450 ms, the shock has reached
an averaged radius of about 7600 km. The minimum and maximum shock radii at this
time are 7200 and 8200 km, respectively, representing only a slight deformation from a
spherical shape.

The intermediate shock delay and following re-acceleration in 1D at 250 ms coincides
with a rapid drop of the mass-accretion rate. This demonstrates that the 1D model is
only marginally above the explosion threshold and that both multi-dimensional models
explode more robustly. Although even the 1D model explodes, hydrodynamic insta-
bilities play an important role during the explosions of the 2D and 3D models. Their
different behavior is the essential point in our discussion here.

Our obtained value for the explosion times in 2D and 3D are compatible with other
simulations of the same progenitor reported in the literature. Müller et al. (2013)
found an explosion at 125 ms after bounce in a general-relativistic 2D simulation. The
parametric 1D model with simpler neutrino transport by Sukhbold et al. (2016) explodes
at ∼125 ms measured when the shock reaches 500 km. This agreement is not surprising,
because the onset of explosion mostly depends on the progenitor structure in case of
this specific star.

An important quantity for characterizing a core-collapse supernova is its explosion
energy. From our first-principle simulations, it is not possible to deduce its final value,
because we cannot follow the evolution long enough due to constrained computational
resources. A common quantity considered instead is the so-called diagnostic energy
Eexpl, which is defined as the total energy of all unbound material in the post-shock
layer,

Eexpl =

∫

r<Rsh

dV Θ(ε) ρε. (4.2)

Here, ε denotes the total specific energy. Θ(ε) is the Heaviside step function only
selecting fluid elements with positive total energy. The integral is computed in the
layer behind the angle-dependent shock radius.
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We investigate two different cases for ε,

ε = e+
1

2
|~v|2 + Φ +

{
0 Case min,(
eFe

bind − ecurr
bind

)
Case 56Fe,

(4.3)

where ecurr
bind represents the specific binding energy given the current chemical composi-

tion and eFe
bind the specific binding energy assuming a complete recombination into 56Fe.

Φ denotes the Newtonian gravitational potential. As explained by Scheck et al. (2006,
Appendix C), two major sources contribute to the explosion energy: recombination of
matter into iron-group nuclei and the neutrino-driven wind. Neutrino heating provides
only enough energy to marginally unbind the material. The temperature in unbound
fluid elements decreases as they propagate outwards and nucleons can recombine into
heavier nuclei. Therefore, the additional term of the second case in Eq. (4.3) accounts
for the binding energy that is released if all nucleons recombine into iron. Because
iron-group nuclei are the most tightly bound nuclei, our two cases give a lower and
upper limit of the diagnostic explosion energy for a given point in time.

In Fig. 4.2, the two cases of the diagnostic explosion energy are shown. It can be
clearly seen that the energy is higher and grows faster in 3D compared to 2D. The
growth rate at 130 ms is about 5× 1050 erg s−1 in 2D versus more than 6× 1050 erg s−1

in 3D. The difference of the explosion energies between 2D and 3D saturates already at
200 ms. After that, the neutrino-driven wind leads to a continuous increase of the energy
impeding an estimate of the saturated value. However, it is obvious that the value of
the explosion energy at 450 ms is larger in 3D with (0.80 . . . 1.11)×1050 erg compared to
(0.69 . . . 0.98)× 1050 erg in 2D. The material ahead of the shock is only loosely bound
with a binding energy of about −8.8 × 1047 erg and will therefore not considerably
influence the energy budget. The 2D-3D difference of the explosion energies is in the
range (1.0 . . . 1.3)×1049 erg for the two cases defined in Eq. (4.3). Correspondingly, the
diagnostic explosion energy in 3D is about 10% higher than in 2D. This can only be
justified by the different dimensionality, because the explosions set in at the same time
in 2D and 3D and the physical setups of both models are identical. We will explain the
reason for the more energetic explosion in 3D later in this chapter.

The lower limit of Eexpl in 1D becomes positive only after 300 ms. Its value at
450 ms is (0.17 . . . 0.28)× 1050 erg, which demonstrates again that the explosion of the
spherically symmetric model is very weak.

The global fluid structures of the 2D and 3D models can be seen in Fig. 4.3. At
∼ 70 ms after core bounce, convection in the gain layer develops due to a negative
entropy gradient created by neutrino heating. Large Rayleigh-Taylor mushrooms rise
towards the shock leading to a slight shock surface deformation. The layer directly
behind the shock remains laminar and is pushed ahead of the buoyant bubbles by
PdV work. Convective activity is also visible in the top row of Fig. 4.4, where high-
entropy bubbles are visualized by iso-entropy surfaces. In the early phase, the size of
the mushrooms is similar in 2D and 3D. However, the 2D flow pattern starts to differ
from the 3D case shortly after 100 ms, because the 3D flow cascades to smaller scales
due to turbulent activity. This can be seen in Fig. 4.3 at 200 ms, where larger-scale fluid
structures survive in 2D, whereas fragmentation of high-entropy bubbles commences in
3D. Turbulent cascading is also apparent in the middle and bottom rows of Fig. 4.4,
where the mushrooms are fragmented into finer patterns already at 200 ms. After the
onset of explosion, convection freezes out and the ejecta expand in a self-similar way.
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Fig. 4.3.: Color-coded entropy per baryon s in the plane y = 0 at 100, 150, 200, and
300 ms after bounce. For each given point in time, the 2D and 3D models
are shown in the left and right sub-panels, respectively. Note the different
color and length scales.

We will extend the discussion on turbulent effects in a more quantitative manner later
in this chapter.

The shock remains nearly spherical in 2D and 3D without indications for the standing
accretion-shock instability (SASI; Blondin et al., 2003). Its growth rate depends on the
time needed for accreting matter from the shock to the coupling region of the advective-
acoustic cycle in the vicinity of the neutron star surface. For long advection times, the
SASI growth rate is low (Scheck et al., 2008). In our 3D model, it takes about 100 ms
to transport material entering the gain layer at 50 ms post bounce from the shock to
the proto-neutron star surface. Due to this long time, the SASI growth is suppressed
and it cannot develop.
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4. Explosion of a 9.6M� star

Fig. 4.4.: Volume-rendering of the 3D model at six different times. Surfaces of constant
entropy per baryon are shown together with the color-coded radial velocity
in units of 109 cm s−1. The neutron star surface at a density of 1011 g cm−3

is visible as a light blue sphere in the center. Greenish circular lines indicate
the shock positions. Yardsticks demonstrate the dimensions of the exploding
model. (Visualization: E. Erastova & M. Rampp)
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Fig. 4.5.: Mass-accretion rates Ṁ measured at a radius of 400 km, timescale ratios
τadv/τheat of advection and heating timescales, baryonic masses MPNS of the
proto-neutron star, and its radii RPNS as functions of post-bounce time tpb.
Note the different time axes in the left and right columns.

As already mentioned above, the mass-accretion rate drops quickly as a function of
time for the 9.6M� progenitor. It is defined as

Ṁ = −r2

∫
dΩ ρvr (4.4)

and measured at a radius of 400 km. Since vr < 0 for infalling matter, Ṁ > 0. In Fig.
4.5, we show the mass-accretion rates for the 1D, 2D, and 3D models. As expected, Ṁ
is equal in all cases, because it is determined by the density profile of the progenitor.
The sign of Ṁ changes when the shock reaches a radius of 400 km, due to the fact that
it is measured at this distance.

There is a lot of effort in the core-collapse supernova community to find a criterion
with which the success of an explosion can be predicted (O’Connor & Ott, 2011; Pejcha
& Thompson, 2012; Murphy & Dolence, 2015; Müller & Janka, 2015; Ertl et al., 2016).
The idea is that the explosion characteristics can be estimated either at core bounce or
directly from the progenitor structure. Instead, we consider a much simpler relation,
which sufficiently well determines how close a model is to explosion for our purposes:
the well-known ratio of advection and heating timescales (see, e.g., Janka, 2012). We
define the advection timescale similar to Murphy & Burrows (2008) as

τadv =
Mgain

Ṁ
, (4.5)
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where Mgain denotes the gain layer mass,

Mgain =

∫

Rgain<r<Rsh

dV ρ. (4.6)

It gives an estimate of the time matter spends in the gain layer and is exposed to
neutrino heating (Buras et al., 2006a). The heating timescale is given by

τheat = −Egain

Q̇gain

, (4.7)

with the total energy of the gain layer

Egain =

∫

Rgain<r<Rsh

dV ρε (4.8)

and the heating rate

Q̇gain =

∫

Rgain<r<Rsh

dV ρq̇. (4.9)

Here, ε is the total specific energy as defined in Eq. (4.3, Case min). q̇ is the specific
net heating rate. τheat measures the time needed to deposit enough energy to unbind
the gain layer. If the timescale ratio τadv/τheat exceeds unity, a model is expected to
be close to a successful explosion. This threshold should not be considered exact, but
it roughly estimates whether neutrino heating can overcome the ram pressure of the
infalling material. For the 3D model, the ratio reaches unity at 82 ms, which is about
50 ms before the explosion sets in. Together with its fast growth, the timescale ratio
can be used as an indicator for the success of our models prior to explosion.

In the right column of Fig. 4.5, we present properties of the proto-neutron star (PNS).
Its final baryonic mass is determined by the amount of accreted stellar material and
depends on the dimensionality of the model. For example, at 450 ms post bounce,
MPNS ≈ 1.350M� in 3D, whereas MPNS ≈ 1.358M� in 2D. The accretion of mass
ceases earlier in the 3D case compared to the 2D model. This is nicely visible in Fig.
4.6, where the mass-infall rate of downflows being defined as

Ṁvr<0 = r2

∫
dΩ Θ(−vr) ρvr (4.10)

is plotted as a function of radius for different times. Already at 150 ms, a gap opens
in the mass-infall rate both in 2D and 3D, which means that there is no accretion in a
certain radial interval. According to Marek & Janka (2009), mass accretion stops when
the angle-averaged radial velocity behind the shock exceeds the local escape velocity,

vesc =

√
2G 〈Msh〉
〈Rsh〉

, (4.11)

where G is the gravitational constant and 〈Msh〉 the mass enclosed by the shock (com-
puted from angle-averaged profiles). At ∼ 200 ms, the post-shock velocity becomes
greater than vesc in our 3D model. For later times, the gap in Ṁvr<0 widens with the
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Fig. 4.6.: Mass-infall rates of downflows in 2D (upper panel) and 3D (lower panel) for
different times (see Eq. (4.10) for the definition). The angle-averaged gain
radii 〈Rgain〉 for these times are marked by vertical dashed lines.

absolute value in 3D being below the 2D case. Hence, the higher mass-infall rate in
2D causes the proto-neutron star to become heavier. In order to compare the obtained
proto-neutron star mass with astronomical measurements, we have to convert the bary-
onic mass into the gravitational mass. Lattimer & Prakash (2001) give a formula which
allows us to estimate the final gravitational mass of the neutron star Mg

PNS. It reads

MPNS −Mg
PNS

Mg
PNS

=
0.6β

1− 0.5β
, (4.12)

where

β =
GMg

PNS

Rcoldc2
, (4.13)

with the gravitational constant G and the speed of light c. Inserting a baryonic mass
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Fig. 4.7.: Luminosities Lν and mean energies 〈εν〉 for the involved neutrino species (νe,
ν̄e, and νx) as functions of time. See Eqs. (2.12) and (2.11), respectively,
for their definition. These quantities are measured at a distance of 400 km
from the center. The small bumps in the mean energies are triggered when
the shock reaches this distance. Note that the lines lie nearly on top of each
other.

of 1.35M� and estimating a radius of 12 km for the cold neutron star Rcold, we get a
final gravitational mass of 1.23M� for the 3D model. Kiziltan et al. (2013) presented
a compilation of neutron star mass measurements and an estimate of the mass distri-
bution. Our value is very close to the peak value of their mass distribution for double
neutron star systems, which is at 1.33M�. It is also well compatible with individual
mass determinations mentioned in their work.

The radii of the proto-neutron stars are equal in 2D and 3D with 29 km at 450 ms. In
1D, however, it is smaller – 26 km – because PNS convection cannot be modeled self-
consistently in spherical symmetry. Convection in the PNS enhances energy transport
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and thus gives additional pressure support. The PNS radii are therefore larger in
multi-dimensional simulations.

We show the neutrino luminosities and mean energies in Fig. 4.7. Both quantities
are essentially equal in 2D and 3D for all neutrino species. A typical drop in the
luminosities is usually observed when the mass-accretion rate decreases at composition
interfaces. However, the accretion luminosity is generally very low in these models due
to the low density of infalling shells. Therefore, the total luminosities do not show
strong variations but evolve smoothly. The difference in the explosion energies between
2D and 3D cannot be attributed to a different neutrino energy deposition in the gain
layer, since the luminosities and the mean energies are equal in both cases.

4.3.2. Differences between 2D and 3D

In this section, we will describe in detail why the explosion is more energetic in 3D
compared to the 2D model. The fact that both simulations show successful explosions
at the same time allows us to directly compare the fluid structures and properties.

As already mentioned in the introduction of this chapter, the turbulent energy cas-
cade works differently in 2D and 3D. Large structures fragment to smaller scales in
3D, whereas the opposite is true in 2D. This effect is reflected in Fig. 4.8, where we
show the angle-averaged non-radial velocity of the two models. Beginning at ∼100 ms,
red areas behind the shock indicate large non-radial velocities. However, it is obvious
that the patterns are different in the two simulations. While the distribution is much
smoother in the 3D case, the 2D model exhibits patches with high extrema. The sta-
tistical variance is lower in 3D and the angle-averaged distribution is smoothed out,
because the turbulent structures are smaller. In contrast to this, the fluctuations of the
angle-averaged non-radial velocities are more violent in 2D, due to the fact that the
fluid structures are larger.

There are mass shells that settle down onto the proto-neutron star surface and are
expelled a few 100 ms later. This is evidence for the neutrino-driven wind in which
neutrinos deposit enough energy to unbind material long after the onset of explosion.
The diagnostic explosion energy meanwhile grows continuously (cf. Fig. 4.2).

The 3D mass shells show a peculiar behavior after 300 ms post bounce. Because the
spacing between the outermost mass coordinates is only 10−3M�, even small variations
of the density structure are noticeable in Fig. 4.8 as spikes in the solid black lines. Due
to the violation of conservation laws on the order of 10−3 on the Yin-Yang grid (cf.
Sect. 3.2.7), the mass coordinates are not as smooth as in the 2D simulation. These
small variations, however, do not influence the explosion dynamics of the 3D model.

To discuss the influence of turbulent effects more quantitatively, we integrate the
non-radial kinetic energy over the gain layer and hereby define the turbulent kinetic
energy as

Egain
kin,θ,φ =

∫

Rgain<r<Rsh

dV
1

2
ρ
(
v2
θ + v2

φ

)
. (4.14)

Accordingly, the same quantity can be calculated in the cooling layer,

Ecool
kin,θ,φ =

∫

Rτ=3<r<Rgain

dV
1

2
ρ
(
v2
θ + v2

φ

)
. (4.15)
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Fig. 4.8.: Mass shells of the 2D and 3D models, i.e. radii vs. time for given enclosed
masses, with angle-averaged non-radial velocities as color coding. Black
lines follow certain mass coordinates. The enclosed masses for the dashed
black lines are labeled in the legend of the plot. The spacing of the solid
black lines are different in certain intervals – 0.01, 0.1, 0.01, and 0.001M�
from inside outwards – separated by the three dashed lines. Solid red lines
show the angle-averaged shock radii. The multi-dimensional simulations
were mapped from a 1D model at 10 ms after bounce marked by vertical
dotted lines. In the 2D case, vφ ≡ 0.

Although the cooling layer is bounded by the gain radius at the outer end, its inner
boundary is somewhat arbitrary. In this chapter, we set the inner radius to Rτ=3 being
the point where the angle-averaged optical depth of electron neutrinos is equal to 3.

It can be clearly seen in Fig. 4.9 that there is a pronounced difference between the
gain and the cooling layers with respect to the turbulent kinetic energies. The time
dependence in 3D is smoother because of the smaller turbulent structures that reduce
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Fig. 4.9.: Turbulent kinetic energies in the gain and the cooling layer, respectively, as
defined in Eqs. (4.14) and (4.15).

the statistical variance. Contrarily, the 2D value shows a noisier behavior with strong
peaks. In the time interval between 100 and 200 ms, in which the difference in the
explosion energy between 2D and 3D builds up, the turbulent kinetic energy in the
gain layer is lower in 3D, in contrast to the cooling layer where it is higher. The
turbulent pressure, which is computed from the Reynolds stress tensor and suggested
to contribute to the pressure balance at the shock (Murphy et al., 2013; Couch & Ott,
2015), is therefore lower in 3D and cannot be used to explain the faster shock expansion
and the more energetic explosion.

Generally, stellar matter is advected through the gain layer into the cooling layer.
Since Egain

kin,θ,φ of the 2D model is greater than in the 3D case and vice versa for Ecool
kin,θ,φ

in the time interval between 100 and 200 ms, there must be some mechanism that
dissipates kinetic energy in 2D more efficiently than in 3D. The described discrepancy
can otherwise not arise. We will show and explain below that dissipation of downdrafts
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Fig. 4.10.: Angle-averaged radial velocities of downflows in 2D and 3D (see Eq. (4.16)
for the definition of the averaging procedure). Solid black lines indicate
the angle-averaged gain radii, whereas dashed lines show the positions of
Rτ=3 being defined as the radius where the angle-averaged optical depth
of electron neutrinos is equal to 3. The cooling layers are situated between
these lines.

penetrating into the cooling layer is indeed more efficient in 2D.

To investigate the damping of the turbulent kinetic energy further, we introduce a
new averaging procedure,

〈X 〉vr<0
..=

∫
dΩ Θ(−vr)X∫
dΩ Θ(−vr)

, (4.16)

being the angle average over downflows. Only grid cells with velocities pointing inwards
are considered for the average.

In Fig. 4.10, we show the quantity 〈vr〉vr<0, which is the angle-averaged radial velocity
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Fig. 4.11.: Color-coded radial velocities in the plane y = 0 in 2D and 3D at 160 ms
(left column) and 180 ms (right column). The gain radii are indicated by
black circles. The bottom row is a close-up of the top row with a different
color scale.

of downflows. Dark blue regions in the upper left corners of both panels indicate the
pre-shock region. White areas depict domains without downdrafts. The flow pattern
in the gain layer looks differently in 2D and 3D. As already demonstrated in Fig. 4.8,
we observe again that the angle-averaged distribution is smoother and more coherent
in 3D due to the presence of smaller-scale turbulent structures. In 2D, the extrema of
〈vr〉vr<0 are higher and the patterns change rapidly. Particularly, the inner boundaries
of the downflows show a distinct behavior. In 2D, the flow penetrates deeper into the
cooling layer, which is enclosed by solid and dashed lines. When mass accretion has
ceased after 200 ms post bounce (cf. Fig. 4.6), the downflows do not reach the cooling
layer anymore.
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Fig. 4.12.: Angle-averaged radial velocities of downflows 〈vr〉vr<0, mass-infall rates of

downflows Ṁvr<0, and downflow filling factors αvr<0 in 2D and 3D. See Eqs.
(4.16), (4.10), and (4.17), respectively, for their definitions. The quantities
are averaged over the time interval 100 ms ≤ tpb ≤ 200 ms. Vertical dotted
lines depict the angle-averaged gain radii in 2D (thin dotted line) and 3D
(thick dotted line), averaged over the same time interval.

These findings can be affirmed by examining the structures of the downflows in Fig.
4.11. Blue funnels represent fluid motions with negative radial velocities. At a first
glance, the number of downflows in 3D is larger than in 2D, where in the latter case
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one prominent funnel exists near the equator. This is in accordance with the discussion
above regarding the fragmentation of fluid structures to smaller scales in 3D. In the
bottom row of Fig. 4.11, we show the detailed fluid motion at the gain radius with the
same color coding but different color scale. It can be clearly seen that the downflows
advance deeper into the cooling layer in 2D and that the stellar matter remains more
calmly at the gain radius in 3D. Downflows in 2D reach not only deeper layers but also
higher absolute radial velocities before entering the cooling layer, illustrated by darker
blue colors. Note that the region at a radius of ∼20 km with strong activity depicts
convection inside the proto-neutron star.

As usually observed in 2D simulations and also in Fig. 4.11, downdrafts exist at the
symmetry axis, which is a consequence of the reflecting boundaries in θ direction. The
fluid cannot cross the axis and is thus channeled into radial motions there.

Our observations concerning the structures of the downdrafts can be consolidated
even further. In Fig. 4.12, we show various quantities being averaged over the crucial
time interval between 100 and 200 ms, in which the 2D-3D difference in the explosion
energies builds up. Note that we do not introduce a special notation for the time
averages for the sake of simplicity.

The angle-averaged velocity of downflows 〈vr〉vr<0 has already been shown time-
dependently in Fig. 4.10. After averaging over time, it can be seen that its absolute
value is larger in 2D in the gain layer and especially at the gain radius, marked by
vertical dotted lines. Interestingly, the gradient of 〈vr〉vr<0 in the vicinity of the gain
radius is much steeper in the 2D case. Hence, the downflows seem to be decelerated
more abruptly and kinetic energy is dissipated more violently in 2D.

Besides the higher absolute radial velocity, the 2D downflows also carry more mass,
which is visible by a lower (negative) mass-infall rate. The fact that more mass is
transported into the cooling layer in 2D has already been shown in Fig. 4.6 and is in
line with our observation of a heavier proto-neutron star in this case.

For studying the angular size of the downflows, we introduce the “downflow filling
factor”

αvr<0
..=

∫
dΩ Θ(−vr)∫

dΩ
, (4.17)

which is shown in the bottom row of Fig. 4.12. In the gain layer, the time average of
αvr<0 is larger in 2D compared to 3D, which means than the downflows occupy more
space. This seems to contradict what we have observed in Fig. 4.11. Although the
number of downflows is lower in 2D, their integrated angular size is larger, because
they have the shape of toroidal sheets in axial symmetry instead of funnels in a full 3D
model. In the cooling layer, the relation of the downflow filling factors in 2D and 3D
inverses. Stronger deceleration in 2D obviously reduces the space filled by downdrafts
more quickly.

More mass is transported into the cooling layer in 2D with higher velocities, but then
decelerated more rapidly below the gain radius. The dissipation of kinetic energy is
thus more violent in 2D. Sound waves steepen into shocks as downflows penetrate into
the cooling region. We show these deceleration shocks in Fig. 4.13, where the relative
density variation is color-coded. The density contrast in the 2D simulation is much
more pronounced at the upper edge of the cooling layer. Strong shocks are visible
in 2D, whereas the 3D model remains more calm. We have therefore identified the
mechanism with which kinetic energy is dissipated more efficiently in 2D compared to
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Fig. 4.13.: Density contrast in 2D and 3D at the same times and in the same orienta-
tion as Fig. 4.11. Again, the gain radii are marked by black circles.

the 3D case.
The enhanced dissipation of kinetic energy into internal energy in 2D must result in

a higher temperature in the cooling layer compared to 3D. In Fig. 4.14, we demonstrate
that this is indeed the case. The difference of the angle-averaged temperatures 〈T3D〉−
〈T2D〉 in the cooling layers is negative and the material is obviously hotter in the 2D
case there. Although the temperature difference of ∼5×108 K is small compared to the
absolute value of several 1010 K, the effect on the neutrino emission rates is distinct.
They depend strongly on the temperature, i.e. e± captures and e+e− pair annihilation
scale with T 6 and T 9, respectively (e.g., Bethe & Wilson, 1985). Consequently, the
angle-averaged net heating rate 〈q̇〉 shown in Fig. 4.14 is more negative in the cooling
layer in 2D corresponding to a 30% higher specific cooling rate compared to 3D. On the
contrary, the heating rates are fairly equal in both models, because the temperature is
only marginally higher in the gain layer in 3D.

The effect of enhanced neutrino cooling in 2D can also be seen in Fig. 4.15, where
we show the total heating and cooling rates as functions of time. The latter is given by

Q̇cool =

∫

Rτ=3<r<Rgain

dV ρq̇. (4.18)

In the crucial time interval between 100 and 200 ms, the absolute value of the cooling
rate is higher in 2D, whereas no difference between 2D and 3D is present for the
heating rates. This is in line with our analysis of the specific net heating rate q̇ above.
Even though this finding is only slightly visible in the instantaneous values, the time-
integrated heating and cooling rates in Fig. 4.15 doubtlessly demonstrate that the 2D
model cools more efficiently than its 3D counterpart during the considered time interval,
while the heating is effectively equal. To be more specific, the absolute value of the
time-integrated cooling rate is about 2% lower in 3D at 450 ms, which corresponds to
a difference of about 4× 1049 erg. At the same time, the deposited energy by neutrino
heating in the gain layer is only 0.4% or ∼2× 1048 erg higher in 3D.
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Fig. 4.14.: Difference of 3D and 2D values of the angle-averaged temperature 〈T 〉 (up-
per panel) and angle-averaged net specific heating rates 〈q̇〉 (lower panel)
as functions of radius. The quantities are averaged over the time inter-
val 100 ms ≤ tpb ≤ 200 ms. Vertical dotted lines depict the angle-averaged
gain radii in 2D (thin dotted line) and 3D (thick dotted line), time-averaged
over the same interval.

The gain radius Rgain marks the point where the net heating rate is zero, i.e. where
neutrino heating balances neutrino cooling. We have explained above that the absolute
value of the cooling rate in 2D is higher than in 3D and that the heating rates are
essentially equal in both cases. It directly follows that the angle-averaged gain radius
is larger in 2D, which can be seen in Fig. 4.16. At 200 ms after bounce, for example,
〈Rgain〉 is at 58.9 km in 2D and 53.7 km in 3D.

Also in Fig. 4.16, the 2D and 3D values of the lower bounds of the cooling layers,
Rτ=3, are presented. These are equal in both simulations, which implies a higher mass
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the left and right panels, respectively.

in the cooling layer,

Mcool =

∫

Rτ=3<r<Rgain

dV ρ, (4.19)

in 2D. Most important, however, is the gain layer mass, which is significantly larger in
3D. It can be seen in Fig. 4.16 that the difference in Mgain of 1.2× 10−3M� builds up
between 100 and 200 ms and remains nearly constant afterwards. This difference in the
gain layer mass is exactly the reason for the higher explosion energy in 3D, because the
energy being released when free nucleons recombine into alpha particles and further into
heavy nuclei can easily account for the explosion energy difference. Assuming a binding
energy of 7 MeV/nucleon for alpha particles and 8.8 MeV/nucleon for iron-group nuclei,
the recombination of 1.2× 10−3M� of free nucleons yields between 1.6× 1049 erg and
2.0 × 1049 erg. From Fig. 4.2, we have concluded that the diagnostic explosion energy
(assuming a recombination into 56Fe) is about 1.3 × 1049 erg higher in the 3D case.
From this it follows that we can explain the higher explosion energy in 3D by a higher
recombination energy of the more massive gain layer compared to 2D.

In this section, we have discussed differences between 2D and 3D that appear subtle
but are relevant to understand the behavior of the diagnostic quantities in both cases.
We have compiled a complex causal chain that culminates in a higher explosion energy
in 3D. The underlying process is the fundamentally distinct behavior of the turbulent
energy cascade in 2D compared to the more realistic 3D case. We will summarize our
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findings later and also compare them to other results reported in the literature.

Seen individually, neither the properties nor the outflow dynamics of the 3D explosion
itself are particularly spectacular. The shock remains relatively spherical due to the
absence of a stagnation phase and SASI sloshing or spiral modes. Nevertheless, an
interesting result can be derived in terms of another instability that yields a dipolar
emission of the lepton-number flux and was previously found in other non-exploding
3D models. We will show and discuss the occurrence of this phenomenon in our 3D
simulation in the next section.

4.3.3. Lepton-number emission dipole

Recently, Tamborra et al. (2014a) have reported on a new phenomenon, which was
found in all three-dimensional simulations performed with the Vertex-Prometheus
code. Between 100 and 200 ms after bounce, a strong dipole of the lepton-number flux
density emerges, i.e. the number flux density of νe is maximal in a certain direction,
while the maximum of the ν̄e number flux density is at the opposite side. Remarkably,
the dipole remains quite stable for hundreds of milliseconds both in amplitude and
direction. It drifts only slowly compared to typical timescales of convection or the SASI.
Tamborra et al. (2014a) therefore termed it “Lepton-number emission self-sustained
asymmetry” or “LESA” in short.

Although a thorough mathematical analysis or isolated toy model simulation of this
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instability is not yet available, Tamborra et al. (2014a) with additions of Janka et al.
(2016) presented a possible explanation for the feedback cycle. Convection in the proto-
neutron star is enhanced in one hemisphere possibly due to the interplay of stabilizing
and destabilizing terms in the Ledoux criterion. Material with high electron fraction
from the proto-neutron star interior is thus accumulated on one side below the neu-
trinosphere. The number flux density of electron neutrinos is therefore higher in this
direction. Because electron antineutrinos have a greater mean energy than electron
neutrinos, neutrino heating is stronger in the hemisphere of higher ν̄e flux. This pushes
the shock to larger radii leading to a deflection of the accretion flow to the hemisphere of
higher Ye, where fresh material is deposited. In this way, a feedback cycle is established
that can persist for hundreds of milliseconds.

There is an ongoing debate whether the LESA phenomenon is a numerical artifact
of current 3D simulations. It has been observed by groups working with other simu-
lation codes (see discussion in Janka et al., 2016), so that it is certainly not related
to the Vertex-Prometheus code itself. However, all these codes use the ray-by-ray
approximation for neutrino transport and – although being unlikely – it can therefore
currently not be excluded that LESA is an artifact of this scheme.

If the LESA asymmetry existed in nature, it would have important implications
(see Janka et al., 2016). First, observations of the supernova neutrino signal would
depend on the viewing angle (Tamborra et al., 2014b). Second, the conditions for
nucleosynthesis would depend on the direction, because the LESA dipole would leave
its imprint on the Ye distribution of the ejecta. Third, the asymmetric neutrino emission
would cause a proto-neutron star kick of considerable value (Geßner, 2014).

In this section, we show the LESA in our three-dimensional simulation of the 9.6M�
progenitor. With this model, we can provide two important observations that support
the current explanation of the phenomenon. One the one hand, we see a strong LESA
dipole in our axis-free Yin-Yang setup, which underlines that the asymmetry is not
related to the numerical grid and especially not to the axis of the spherical polar grid
previously used by Tamborra et al. (2014a). On the other hand, we observe that the
dipole decays into a quadrupole at about 370 ms most likely due to the cessation of
matter accretion onto the proto-neutron star.

For our discussion, we decompose the lepton-number flux density Fνe − Fν̄e into
spherical harmonics. Fνe and Fν̄e denote the individual radial number flux densities of
νe and ν̄e, respectively. The real spherical harmonics are defined as

Y m
` (θ, φ) =





√
2Nm

` Pm` (cos θ) cos(mφ) m > 0

N0
` P

0
` (cos θ) m = 0√

2N
|m|
` P

|m|
` (cos θ) sin(|m|φ) m < 0

(4.20)

with normalization factors

Nm
` =

√
2`+ 1

4π

(`−m)!

(`+m)!
(4.21)

and associated Legendre polynomials Pm` (cos θ). The coefficients for the multipole
analysis are

cm` =

√
4π

2`+ 1

∫
dΩ r2 [Fνe(θ, φ)− Fν̄e(θ, φ)]Y m

` (θ, φ). (4.22)
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Fig. 4.17.: Multipole moments of the lepton-number flux density of the 3D model as
defined in Eq. (4.24).

In our chosen normalization, the reconstruction reads

Fνe(θ, φ)− Fν̄e(θ, φ) =
1

r2

∞∑

`=0

√
2`+ 1

4π

∑̀

m=−`
cm` Y

m
` (θ, φ). (4.23)

From the coefficients cm` , the multipole moments can be calculated according to

A` =

√√√√ ∑̀

m=−`

(
cm`
)2
. (4.24)

In Fig. 4.17, we present the first five multipole moments A` of the lepton-number
flux density. It can be clearly seen that a strong dipole component grows exponentially
until 130 ms, decreases gradually after the maximum is reached at 146 ms, until it finally
decays at 370 ms. At this time, the quadrupole moment increases significantly and the
octupole moment follows this trend. The decay of the LESA dipole correlates with the
time when accretion flows do not reach the proto-neutron star anymore (cf. Fig. 4.6).
This indicates that accretion of matter plays an important role in the feedback cycle
stabilizing the dipolar asymmetry.

In order to compare with the results of Tamborra et al. (2014a) also quantitatively,
we show the monopole and the dipole in the upper row of Fig. 4.18 in the same way
as their Fig. 3. Tamborra et al. (2014a) have chosen a different normalization of the
dipole component so that their notation translates as AMonopole = A0 and ADipole =
3A1. When the monopole and dipole terms become equal in their definition, the flux
maximum in dipole direction reaches twice the angular average and vanishes in the
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Fig. 4.18.: Monopole and dipole amplitudes of the lepton-number flux density Fνe−Fν̄e
(upper left panel) and the neutrino-energy flux density Fe (lower left panel)
together with the angles of their dipole directions (right panels). The
normalization of the multipoles and their illustration is similar to Tamborra
et al. (2014a, Fig. 3). Note that the amplitudes shown here are related to
the values in Fig. 4.17 as AMonopole = A0 and ADipole = 3A1.

opposite direction. In our model, the lepton-number dipole exceeds the monopole from
the time of dipole maximum to the end of the simulation. Its direction remains relatively
stable beginning at 150 ms until the dipole decays.

In Fig. 4.18, the monopole and dipole of the neutrino-energy flux density being defined
as

Fe = Fe(νe) + Fe(ν̄e) + 4Fe(νx). (4.25)

are also shown. The individual terms denote the energy flux densities of the three
neutrino species νe, ν̄e, and νx = {νµ, ν̄µ, ντ , ν̄τ}. These can be calculated similarly to
Eq. (2.12) but without the angle integral as

Fe(ν) ≡ Fe(~r, ν, t) =

∞∫

0

dεH(~r, ε, ν, t). (4.26)

Obviously, the amplitude of the neutrino-energy dipole is much smaller than the lepton-
number dipole. This is in line with observations of Tamborra et al. (2014a), who saw
that the directional variations of the neutrino-energy flux density are at a level of a few
percent.
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Fig. 4.19.: Aitoff projection of the lepton-number flux density at a fixed radius of
400 km for different times. In each map, the quantity is divided by its an-
gular average, i.e. (Fνe − Fν̄e) / 〈Fνe − Fν̄e〉, and displayed in all directions
(4π). Black dots mark the angular positions of the dipoles. The orien-
tation of the coordinate axes in this specific visualization is presented in
Appendix A.

The lepton-number and neutrino-energy dipole vectors are parallel but have a dif-
ferent orientation. Deep in the gravitational potential well, the density and pressure
distributions of the proto-neutron star are spherical. This can only be achieved if the
asymmetry of the electron fraction Ye is compensated by an appropriate temperature
distribution (Janka et al., 2016). In the direction of higher ν̄e number flux density,
i.e. where Ye is lower, the temperature must be higher so that the neutrino-energy flux
density is larger in this hemisphere. Consequently, the lepton-number dipole is opposite
to the neutrino-energy dipole.

The directional distribution of the lepton-number and neutrino-energy flux densities
can be seen in Figs. 4.19 and 4.20, respectively. Starting from many small patterns at
100 ms, a distinct lepton-number dipole emerges already at 150 ms. Its direction drifts
only slowly for about 200 ms and its shape remains stable (cf. Fig. 4.18). At 400 ms
after bounce, the dipole is no longer evident and a quadrupolar distribution is visible.
Comparing these observations with the neutrino-energy flux density clearly shows that
both quantities behave inversely. Maxima of the lepton-number flux density match
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Fig. 4.20.: Same as Fig. 4.19, but for the normalized neutrino-energy flux density
Fe/ 〈Fe〉.

minima of the neutrino-energy flux density and vice versa.

Not only the distribution of the discussed quantities can be deduced from Figs. 4.19
and 4.20, but also their value ranges. While the neutrino-energy flux density varies at
a level of a few percent, the maxima of the lepton-number flux density can be more
than a factor of six larger than the angular averages during the dipole phase.

The temporal evolution of radial profiles of the lepton-number flux is shown in Fig.
4.21. For each point in time, the dipole direction is determined and a local spherical
coordinate system is set up with the dipole vector pointing towards the “north pole”.
We can then integrate the lepton-number flux density in the “northern” hemisphere, i.e.
in the hemisphere of higher νe flux, and in the “southern” hemisphere, where the ν̄e flux
is larger. Fig. 4.21 is therefore similar to Fig. 9 of Tamborra et al. (2014a). Both the
formation of the dipole from 50 ms to 100 ms and the successive decay after 350 ms are
clearly visible. At 150 ms, i.e. around dipole maximum, the hemispheric lepton-number
flux of enhanced νe emission is a factor of 3.9 higher than in the opposite hemisphere.

As already mentioned by Tamborra et al. (2014a), the hemispheric difference builds
up mainly in the mantle of the proto-neutron star, i.e. below the proto-neutron star
surface, which we have illustrated with vertical dotted lines. In our model, the hemi-
spheric fluxes start to deviate from each other at a radius of about 10 km and change
sign again slightly below 20 km. This indicates that a complicated mechanism deep in

60



4.3. Results

−1

0

1

2

3 50 ms 100 ms 150 ms

−1

0

1

2

3

∫ 2
π

dΩ
r2

(F
ν
e
−
F
ν̄
e
)[

10
5
6

s−
1
]

200 ms 250 ms 300 ms

0.0 0.2 0.4 0.6 0.8 1.0
r [107 cm]

−1

0

1

2

3 350 ms

0.0 0.2 0.4 0.6 0.8 1.0
r [107 cm]

400 ms

0.0 0.2 0.4 0.6 0.8 1.0
r [107 cm]

450 ms

Fig. 4.21.: Radial profiles of the hemispheric lepton-number fluxes in the direction of
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ted lines indicate the proto-neutron star radii defined by a density of
1011 g cm−3. This figure is similar to Tamborra et al. (2014a, Fig. 9).

the proto-neutron star interior is responsible for the growth and stability of the LESA
dipole.

Although the phenomenon is not yet completely understood, progress is being made
towards a thorough understanding of the LESA (Stockinger, 2015). However, further
studies are required that focus on the analytical foundations of the instability or on the
question whether the LESA occurs in simulations that do not rely on the ray-by-ray
approximation of neutrino transport.
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4.4. Summary and discussion

We performed spherically symmetric (1D), axisymmetric (2D), and full 3D core-collapse
supernova simulations of a zero-metallicity 9.6M� iron-core progenitor with our elabo-
rate neutrino-hydrodynamics code Vertex-Prometheus. Successful explosions were
obtained in all three cases due to the density structure of this specific stellar model.
Shock runaway occurred at the same time in 2D and 3D, which offered the unique
opportunity to directly compare the fluid dynamics after the onset of explosion.

The diagnostic explosion energy rises to an about 10% higher value in 3D compared
to the 2D model in the time interval between 100 and 200 ms after core bounce. This is
because turbulent kinetic energy cascades in different directions in 2D and 3D. The fluid
fragments to smaller scales and becomes more coherent in 3D, whereas larger structures
survive in 2D. More material being accreted from the shock to the proto-neutron star
is therefore kept in the gain layer in 3D and the mass-infall rate at the gain radius is
lower. Downflows penetrate not as deep into the cooling layer as in 2D and exhibit
lower velocities. The dissipation of their kinetic energy in deceleration shocks is thus
weaker in 3D resulting in a lower temperature in the cooling layer compared to 2D.
Neutrino cooling strongly depends on the temperature and is therefore less efficient in
3D, while the neutrino energy deposition in the gain layer is equal in 2D and 3D. Since
the gain radius marks the position where heating balances cooling, it is shifted inwards
in 3D and the mass in the gain layer is larger. Recombination of free nucleons of this
mass difference into alpha particles and heavy nuclei releases enough energy to account
for the higher explosion energy in 3D.

The recently discovered lepton-number emission self-sustained asymmetry (LESA;
Tamborra et al., 2014a) was also found in our 3D simulation on the Yin-Yang grid,
which demonstrates that the instability is certainly not related to the preferred direction
of the spherical polar grid axis. Furthermore, we observed the decay of the LESA dipole
and rise of higher-order modes, because the feedback cycle breaks due to ceased matter
accretion.

For the first time, we have investigated the different behavior of 2D and 3D models
after the onset of explosion in first-principle simulations with sophisticated neutrino
transport. Turbulent cascading to smaller scales in 3D leads to a more energetic ex-
plosion. Since both models explode easily and basically at the same time, we cannot
contribute to the question why 3D models usually tend to explode later and less readily,
which is likewise attributed to the different behavior of turbulence between 2D and 3D
in the literature (e.g., Hanke et al., 2012; Couch, 2013; Couch & O’Connor, 2014; Couch
& Ott, 2015; Lentz et al., 2015).

Similarly, a higher explosion energy in 3D was also reported by Müller (2015) for a
heavier 11.2M� progenitor. His 3D explosion is more energetic than its 2D counterpart
in general-relativistic simulations with a simplified neutrino transport treatment. The
reason for this difference is somewhat in line with our findings. The interfaces between
downflows and outflows become turbulent in 3D due to the Kelvin-Helmholtz instabil-
ity, whereas they remain laminar in 2D. Hence, energy is exchanged more efficiently
between accretion funnels and neutrino-heated material. Downflows penetrating into
the cooling layer therefore have lower velocities in 3D. Their kinetic energy is dissipated
by excitation of g-modes that remove energy from the vicinity of the gain radius. This
process is more efficient in 2D, so that matter is bound more tightly at the gain radius
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compared to the 3D case. The consequent higher mass outflow rate in 3D leads to
a more robust increase of the diagnostic explosion energy and a slower growth of the
proto-neutron star mass.

The results presented in this chapter therefore seem to hold for other progenitors
than our chosen 9.6M� model and are possibly a generic feature of three-dimensional
turbulence. Core-collapse supernova explosions in 3D might be delayed compared to 2D,
but do not necessarily exhibit lower explosion energies. This is particularly important,
because the explosion energy observed in 2D simulations is often considerably lower
than the canonical value of 1051 erg (Marek & Janka, 2009; Suwa et al., 2010; Müller
et al., 2012a,b; Bruenn et al., 2013; Nakamura et al., 2015; Suwa et al., 2016). The
common argumentation that the forward turbulent cascade to smaller scales in 3D is
disadvantageous for the explosion is not a universally valid statement.

It should be noted that our grid resolution is not sufficient to resolve the turbulent
energy cascade completely (see Chapt. 6). Nevertheless, increasing the resolution might
even amplify the 2D-3D difference. Since kinetic energy is accumulated at large scales
in 2D, it is probably not affected much when the resolution is increased, in contrast to
the 3D case where the fluid will most likely fragment to smaller scales. Future studies
with higher grid resolution are necessary to judge whether our findings remain valid.
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Core-collapse supernova simulations in three dimensions (3D) do not explode robustly
yet with state-of-the-art neutrino transport. Explosions are obtained later and less
readily compared to their axisymmetric (2D) counterparts for progenitor stars of more
than about 10M�. This was reported for both parametric studies (Hanke et al., 2012;
Couch, 2013; Couch & O’Connor, 2014; Couch & Ott, 2015) and for models with neu-
trino transport based on various levels of sophistication (Takiwaki et al., 2012, 2014;
Lentz et al., 2015). As already discussed in the previous chapter, there is consensus in
the community that due to the different behavior of the turbulent energy cascade in 2D
and 3D, the fluid fragments to small scales in 3D, whereas larger structures remain in
2D. This effect artificially facilitates explosions in 2D and hinders shock revival in 3D.
In simulations of the Garching group incorporating sophisticated neutrino transport,
3D models even failed completely, while 2D models exploded successfully for progeni-
tors of 11.2, 20, and 27M� (Hanke et al., 2013; Tamborra et al., 2013; Hanke, 2014;
Tamborra et al., 2014a,b). Only for a low-mass progenitor of 9.6M�, a successful 3D
explosion was obtained (see Chapt. 4).

We have already argued that 2D models behave artificially in several aspects. On
the one hand, turbulence does not fragment the fluid to smaller scales, but accumulates
power at large scales. On the other hand, the symmetry constraint does not reflect the
shape of the fluid structures correctly and suppresses some hydrodynamic instabilities
completely such as the spiral SASI mode. Lastly, numerical artifacts occur at the axis
causing explosions to occur predominantly along the polar directions. It can therefore
not be assumed that 2D simulations cover all processes in a core-collapse supernova
correctly. A comparison between 2D and 3D is not able to give the answer why state-
of-the-art 3D models of more than 10M� fail to explode. Instead, it is important to
study what ingredients are potentially missing for obtaining robust explosions in 3D.

Some aspects are not considered in current 3D simulations but are suggested to be
important for the explosion mechanism. For example, convective perturbations in the
progenitor star – especially of the Si and Si+O layers – prior to core collapse could
trigger hydrodynamic instabilities in the gain layer early after bounce and therefore en-
hance neutrino heating conditions (Arnett & Meakin, 2011; Couch & Ott, 2013; Müller
& Janka, 2015; Couch et al., 2015; Müller et al., 2016). Due to computational con-
straints of stellar evolution, progenitor models are currently provided to us in spherical
symmetry, so that multi-dimensional processes are included only in a parametrized
way in these setups. Symmetry breaking is achieved by perturbing the fluid after core
bounce with relatively low amplitudes. Convection in the gain layer thus requires more
time to develop than if perturbations were advected with the infalling stellar shells.

However, in this chapter, we will focus on another deficiency of 3D modeling. There
are uncertainties in the neutrino opacities having an impact on neutrino heating and
cooling conditions. Modifying them could influence the dynamics in core-collapse su-
pernova simulations and affect their readiness for explosion. Here, we will consider
experimentally and theoretically motivated strange-quark contributions to the nucleon
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Fig. 5.1.: Profiles of the density ρ, the entropy per baryon s, the temperature T , and
the electron fraction Ye of the 20M� progenitor as functions of radius r (left
panels) and enclosed mass m (right panels). Blue vertical lines indicate the
Si/Si+O shell interface.

spin, which influence the opacities for neutrino-nucleon scattering. We will demonstrate
that a previously failed 3D explosion of a 20M� star can be turned into a successful
one by modifying the neutrino opacities for neutral-current scattering at a level of 10%.
The results discussed in this chapter were partially published in Melson et al. (2015a).

First, we will present the progenitor model used for our study. Then, we will explain
the strange-quark correction and describe the numerical setup of our simulations. Fi-
nally, the results will be discussed in detail. Note that the definitions of most of the
quantities mentioned in this discussion can be found in the previous chapter.

5.1. Progenitor

The initial model for the simulations presented in this chapter is the 20M� star of
Woosley & Heger (2007). It is a non-rotating progenitor of solar metallicity with a
pre-collapse compactness parameter ξ2.5 (O’Connor & Ott, 2011) of 0.29.

In Fig. 5.1, we show various progenitor profiles as functions of radius and enclosed
mass. A crucial point in the profiles is the Si/Si+O shell interface marked by vertical
blue lines. It is characterized by a sharp density decline from 4.5×106 to 2.6×106 g cm−3
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and is located where the entropy exceeds 4 kB per baryon. When it falls through the
shock, the mass-accretion rate drops and the ram pressure of the infalling shells is
reduced quickly. Shock runaway is commonly initiated only after that time in core-
collapse supernova simulations. We will see that also in the models presented here,
explosions set in only after the Si/Si+O interface has fallen through the shock.

5.2. Strangeness correction

Strange quarks are expected to be present in the quark sea of the nucleon, thus con-
tributing to the nucleon spin. They influence elastic neutrino-nucleon scattering pro-
cesses without affecting charged-current reactions. In this section, we will estimate the
influence on the neutrino opacities for the three neutrino species νe, ν̄e, and νx included
in Vertex-Prometheus.

For iso-energetic neutrino-nucleon scattering, the lowest order transport cross section
reads (Horowitz, 2002)

σt
0 =

2G2
Fε

2

3π

(
c2

v + 5c2
a

)
, (5.1)

where GF is Fermi’s constant and ε is the neutrino energy. cv and ca are the vector and
the axial-vector coupling constant, respectively. The latter are given by

cv =

{
1
2 − 2 sin2 θW ν p→ ν p

−1
2 ν n→ ν n,

(5.2a)

ca =

{
1
2ga ν p→ ν p

−1
2ga ν n→ ν n,

(5.2b)

for neutrino-proton scattering (ν p→ ν p) and neutrino-neutron scattering (ν n→ ν n),
with sin2 θW ≈ 0.2325 and ga ≈ 1.26 (Olive & Particle Data Group, 2014).

Only the axial-vector component is modified by strange-quark contributions accord-
ing to

ca =

{
1
2 (ga − gs

a) ν p→ ν p
1
2 (−ga − gs

a) ν n→ ν n
(5.3)

(Horowitz, 2002; Hobbs et al., 2016). We can thus write Eq. (5.1) as

σt
0 =

G2
Fε

2

6π

{
5 (ga − gs

a)2 ν p→ ν p

1 + 5 (−ga − gs
a)2 ν n→ ν n,

(5.4)

where we have assumed sin2 θW = 0.25 for simplicity. Since the strangeness correc-
tion gs

a is negative, the cross section increases for neutrino-proton scattering, while it
decreases for neutrino-neutron scattering.

The opacity for neutrino-nucleon scattering can be written as

κsc = m−1
B

(
Yp σ

t
0(ν p→ ν p) + Yn σ

t
0(ν n→ ν n)

)
(5.5a)

=
G2

Fε
2

6πmB

(
5
(
g2

a + (gs
a)2
)

+ 10 ga g
s
a (1− 2Ye) + 1− Ye

)
, (5.5b)

where mB denotes the baryon mass. The proton and neutron fractions are approxi-
mated by Yp = Ye and Yn = 1 − Ye, respectively, since post-shock material consists
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Fig. 5.2.: Neutrino opacity ratios Sν as defined in Eqs. (5.8). The opacities for gs
a =

−0.2 are divided by the unchanged values (gs
a = 0). Left panel: Ratios

Sνe , Sν̄e , and Sνx as functions of Ye. Right panel: Color-coded quantity Sνx
calculated for the angle-averaged Ye distribution of the model 3Ds (cf. Sect.
5.3). Dashed lines mark radii of constant density with values of 1013 g cm−3,
1012 g cm−3, and 1011 g cm−3 from inside outwards. The angle-averaged gain
radius is indicated by a dotted line. tpb denotes the time after core bounce.

almost entirely of free nucleons. For heavy-lepton neutrinos νx = {νµ, ν̄µ, ντ , ν̄τ}, the
opacity is dominated by κsc. Other scattering reactions can be neglected, because their
cross sections are much smaller (Janka, 2001). For electron neutrinos and electron an-
tineutrinos, however, we need to take charged-current reactions into account. The most
important process in this case is absorption on free nucleons, whose zeroth-order cross
section is given by

σ0 =
G2

Fε
2

π

(
1 + 3g2

a

)
(5.6)

(Horowitz, 2002). This yields the opacity

κabs =
G2

Fε
2

πmB

(
1 + 3g2

a

)
{

(1− Ye) νe n→ e− p

Ye ν̄e p→ e+ n
(5.7)

for absorption on neutrons and protons, respectively. The corresponding effective opac-
ities for electron (anti)neutrinos can be calculated by combining charged-current ab-
sorption and neutral-current scattering opacities according to κeff =

√
κabs(κabs + κsc)

(Rybicki & Lightman, 2004).
In order to quantitatively estimate how the strange-quark correction affects the neu-

trino opacities, we compute the ratios

Sνe
..=

κeff(gs
a 6= 0)

κeff(gs
a = 0)

for νe, Sν̄e
..=

κeff(gs
a 6= 0)

κeff(gs
a = 0)

for ν̄e, Sνx
..=

κsc(g
s
a 6= 0)

κsc(gs
a = 0)

for νx,

(5.8)
following the idea of Horowitz (2002). Obviously, the opacity modifications enabled
by the strangeness correction depend on Ye. In Fig. 5.2, we show this dependence of
the quantities Sν – the ratios of the modified opacities to the original ones – for the
three neutrino species. In all three cases, the numerator is calculated for gs

a = −0.2,
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which is the value applied in this work (see discussion below). It can be seen that
the opacities are reduced for neutron-rich matter, because the neutrino-nucleon cross
section decreases in this regime. In the case of heavy-lepton neutrinos, a reduction of
more than 20% is possible for very low Ye. Since charged-current reactions are not
influenced by the strangeness correction, the effective opacities of electron neutrinos
and electron antineutrinos are only moderately changed. A reduction of ∼ 3% and
∼10% is possible for νe and ν̄e, respectively.

In the right panel of the same Fig. 5.2, the reduction of the neutral-current opacity
κsc is shown color-coded in a radius-time diagram. The ratio Sνx from Eqs. (5.8) was
evaluated for the angle-averaged Ye distribution of our 3D model with gs

a = −0.2 (model
3Ds, see Sect. 5.3). Lines of constant density are also depicted in Fig. 5.2 in order to
estimate the location of the neutrinosphere of νx, which is approximately situated where
ρ = (1 . . . 4) × 1011 g cm−3. The neutral-current opacity is reduced by & 20% below
the proto-neutron star radius being located at ρ = 1011 g cm−3, while Sνx increases
steeply further out. This clearly demonstrates that the strange-quark correction affects
the neutrino opacities of all species almost exclusively below the proto-neutron star
surface. After about 200 ms post bounce, there is especially no change at the gain
radius, which was incorrectly claimed by Hobbs et al. (2016).

The calculations of the opacity reductions are based on zeroth-order cross sections
and only the dominant neutrino reactions. Hence, the numbers given above should
not be considered exact, however, they provide good estimates for the effect of the
strange-quark correction.

We will demonstrate later in this chapter that the neutrino luminosities and the
mean energies of all species are considerably enhanced due to the reduction of the
neutrino-nucleon scattering opacity. Although the largest opacity modification is seen
for heavy-lepton neutrinos, electron (anti)neutrinos are also affected significantly, be-
cause the proto-neutron star loses energy on a shorter timescale and therefore contracts
faster. This shifts the neutrinospheres of all species to smaller radii and thus to higher
temperatures.

For the models discussed in this work, we assume a strangeness correction of gs
a =

−0.2. However, latest measurements of the strange-quark contribution by spin-polarized
deep inelastic scattering reactions of electrons off nucleons revealed a value of gs

a =
−0.084 ± 0.042 (Hobbs et al., 2016, and references therein). Our choice seems to be
somewhat extreme, but the aim of this study is to likewise cover other uncertainties in
the neutrino opacities. For example, correlations in low-density nucleon matter reduce
the cross sections both for neutrino-proton and neutrino-neutron scattering, which has
similar consequences for the opacities as the strange-quark correction (Horowitz, 2016).
With our value of gs

a = −0.2, we therefore probe whether currently unconsidered mod-
ifications of the neutrino opacities may provide the missing ingredient for a successful
explosion in 3D.

5.3. Numerical setup

We performed simulations in axial symmetry (2D) and full three dimensions (3D) of a
20M� progenitor with and without the strange-quark correction. All details about the
general numerical setup can be found in Sect. 2.4. The 3D simulations in this chapter
were run with the standard spherical polar grid and an innermost spherically symmetric
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volume of 10 km. The angular resolution of the 2D and 3D models was set to 2◦. As in
all Vertex-Prometheus simulations, the radial grid was gradually refined to ensure
a sufficiently high resolution of the cooling region and the proto-neutron star surface.

The 2D and 3D models with enabled strangeness correction of gs
a = −0.2 are labeled

as 2Ds and 3Ds, respectively. The simulations with the standard neutrino opacities are
referred to as 2Dn and 3Dn. The model 3Dn was already partially discussed in Tamborra
et al. (2013), Hanke (2014), and Tamborra et al. (2014a,b), but not in comparison with
the exploding model 3Ds.

The threshold density ρEOS between the LS220 high-density equation of state and
the low-density regime during core collapse was erroneously set to 3×108 g cm−3 in the
simulation 3Dn, while a lower but comparable value was chosen for the three remaining
models. We will argue later in this chapter that this modification does not compromise
the comparison between the models 3Dn and 3Ds. After core bounce, ρEOS was set to
1011 g cm−3 in all cases. NSE was assumed above a temperature of 0.5 MeV.

5.4. Results

5.4.1. Overview

We begin this section with an overview of the explosion characteristics and will later
discuss how the strangeness correction influences the neutrino properties and provide
more favorable heating conditions.

The most important result of our investigation is the successful explosion of the model
3Ds, while its comparison run 3Dn fails2. This is directly evident from Fig. 5.3, where
the angle-averaged shock radii of the two cases are shown together with the correspond-
ing 2D simulations. Until ∼150 ms after bounce, the shock radii of all models are nearly
equal and show the expected behavior of initial propagation out to about 150 km and
following retreat. The 3D models evolve similarly until 300 ms with strong presence
of the standing accretion-shock instability (SASI; Blondin et al., 2003) indicated by
periodic variations of 〈Rsh〉. The average shock radius of the model 3Dn declines to
79 km at 425 ms, which doubtlessly indicates a failed explosion in this simulation. On
the contrary, the shock of the 3D model including strange-quark contributions (3Ds) is
revived and propagates outwards with a velocity of about 7000 km s−1 to 970 km until
527 ms after core bounce.

As described above, there is a clear trend for 2D models to explode earlier than their
3D counterparts, because kinetic energy is artificially accumulated at large scales (see
introduction of Chapt. 4). An earlier explosion is also observed in 2D for the simulations
with enabled strangeness correction. In the model 2Ds, the shock reaches a radius of
400 km about 130 ms earlier than in the corresponding 3D model 3Ds. For the models
with the standard neutrino opacity set, no explosion was obtained in the 3D case, while
the associated 2D model explodes successfully.

In both 2D simulations, violent SASI sloshing along the symmetry axes push the
shock surfaces into elongated, prolate shapes. Shock revival occurs about 30 ms earlier
in the model 2Dn compared to 2Ds. The explosions proceed into the polar directions
in both cases with strong equatorial downflows.

2Movies of both 3D simulations can be found at http://www.mpa-garching.mpg.de/ccsnarchive/

movies/.
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Fig. 5.3.: Angle-averaged shock radii 〈Rsh〉 and diagnostic explosion energies Eexpl

as functions of post-bounce time tpb. Thin and thick solid lines depict
models without and with strange-quark contributions, respectively. Semi-
transparent and gray lines represent 2D models. Blue and red lines mark
the lower and upper limits, respectively, of the explosion energies (see text).

The diagnostic explosion energy Eexpl, i.e. the total energy of all unbound post-shock
material, is presented in the lower panel of Fig. 5.3. For each model, we show the upper
and lower bounds of this quantity assuming the current chemical composition and a
complete recombination into 56Fe, respectively (cf. Eq. (4.3) and explanation thereto).
For the exploding model 3Ds, the lower and upper bounds of Eexpl rise to values of
(0.9 . . . 2.0)×1050 erg with growth rates of (1.0 . . . 1.2)×1051 erg s−1. The steep increase
of the diagnostic explosion energy is caused by a massive outflow of neutrino-heated
matter that is fed by accreted stellar shells. For a quantitative analysis, Fig. 5.4 shows
the mass fluxes of infalling and outflowing material measured at the angle-averaged
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gain radius 〈Rgain〉 and being defined as

Ṁvr<0 = 〈Rgain〉2
∫

dΩ Θ(−vr) ρvr (5.9a)

Ṁvr>0 = 〈Rgain〉2
∫

dΩ Θ(vr) ρvr (5.9b)

with the Heaviside step function Θ(x). The absolute value of the infall rate decreases
slowly, while the outflow rate remains relatively constant at a level of 0.1M� s−1. This
outflowing material consists initially of free nucleons but recombines into alpha parti-
cles and heavy nuclei as the temperature decreases behind the expanding shock. The
released binding energy contributes considerably to the explosion energy Eexpl (Scheck
et al., 2006). According to Müller (2015), about 6 MeV per nucleon can be provided by
recombination. The author explained that this value is lower than the typical release
of 7 MeV per nucleon for recombination into alpha particles, because energy is lost by
turbulent diffusion at the interfaces between outflows and downdrafts. We can thus
estimate the growth of Eexpl for our exploding 3D model as

Ėexpl =
6 MeV

mB
Ṁvr>0 ≈ 1.2× 1051

(
Ṁvr>0

0.1M� s−1

)
erg s−1. (5.10)

This value is equal to the measured growth rate of the model 3Ds.
At the end of the 3Ds simulation, we are not yet able to judge the final saturated

explosion energy due to its steep increase. Besides the energy behind the shock, also the
binding energy of the overlying stellar shells has to be considered in the total energy
budget. In Fig. 5.5, the binding energy of all material ahead of the shock front is
depicted for the exploding 3D model. It is calculated up to the outer radius of the
progenitor star at 7.4× 1013 cm according to

Eout =

∫

r>Rsh

dV ρε, (5.11)

where ε is the total specific energy as defined in Eq. (4.3, Case min). As the shock
propagates outwards and passes the overlying stellar shells, the absolute value of the
binding energy Eout decreases. At the end of the simulation, the binding energy of the
pre-shock layer is about −5.8× 1050 erg. Consequently, the total energy budget is still
negative, i.e. Eexpl + Eout ≈ −3.8 × 1050 erg (assuming a complete recombination into
56Fe behind the shock). As we have shown above, the continuous mass outflow leads to
a steep increase of the explosion energy, so that the energy budget will become positive
in a few hundred milliseconds.

An overview of the 3D models can be gained from Fig. 5.6, where the angle-averaged
entropy per baryon is shown color-coded in a Kippenhahn diagram. Besides the different
shock trajectories, both models differ by their values of the post-shock entropy. Matter
behind the shock in the model 3Ds has a higher entropy compared to the model 3Dn.
This is evident already before 300 ms after bounce, i.e. before the shock radii of both
models start to diverge. Neutrino heating is found to be stronger in the model with
enabled strangeness correction, as we will demonstrate below.

An important aspect of shock revival is the Si/Si+O interface that is closely related
to a rapid decline of the mass accretion rate (cf. Fig. 5.1). It is visible as a distinct blue
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Fig. 5.6.: Mass shells of the models 3Dn and 3Ds, i.e. radii vs. time for given enclosed
masses, with angle-averaged entropy as color coding. Black lines follow
certain mass coordinates. Dashed black lines mark 0.1M� of enclosed mass.
The spacing of the innermost 10 solid black lines is 0.01M�. All remaining
lines are spaced by 0.1M�. Solid red lines show the angle-averaged shock
radii. The multi-dimensional simulations were mapped from a 1D model at
10 ms after bounce marked by vertical dotted lines.

color contrast in Fig. 5.6 and arrives at 245 ms and 230 ms in the models 3Dn and 3Ds,
respectively. Only in the 3D simulation with strangeness correction, enhanced neutrino
heating is strong enough to revive the shock after that time. The other 3D model shows
a short period of shock enlargement with following retreat.

The reason for the different arrival times of the Si/Si+O interface in both 3D models is
the aforementioned different setting of the threshold density between the high- and low-
density equations of state ρEOS during collapse. The supersonic infall is very sensitive to
slight variations of the progenitor profiles that are caused by changes in ρEOS. Because
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Fig. 5.7.: Mass-accretion rates Ṁ measured at 400 km and baryonic masses of the
proto-neutron stars MPNS as functions of time for the model 3Dn (thin lines)
and the model 3Ds (thick lines).

the accretion of the Si/Si+O interface coincides with a rapid decline of the mass-
accretion rate Ṁ , the different arrival times of the interface are also evident in the
left panel of Fig. 5.7. Subsequently, after 260 ms post bounce, the mass-accretion rates
become equal in the models 3Dn and 3Ds with a value of ∼ 0.37M� s−1. Also the
baryonic masses of the proto-neutron stars MPNS, which are determined by the amount
of accreted matter, are equal in both cases with 1.88M� at 425 ms demonstrating that
the time shift in Ṁ does not influence the total amount of accreted material. Since the
3D models diverge in their evolutions only after 300 ms and therefore much later than
the arrival times of the Si/Si+O shell interface, a negative influence of the different
values for ρEOS is excluded. A similar observation was made by Summa et al. (2016),
who studied different settings for ρEOS before bounce and did not find a major impact
on the post-bounce dynamics.

In Fig. 5.8, we present cross-sectional cuts through both 3D models for different
points in time. This visualization with the color-coded entropy per baryon allows for a
direct comparison between the models 3Dn and 3Ds, especially before their evolutions
diverge. The 3D model without strange-quark contributions develops a SASI sloshing
mode at about 170 ms, which shortly afterwards transitions into a spiral mode (Blondin
& Mezzacappa, 2007). Its plane is nearly parallel to the plane depicted in Fig. 5.8 and
the triple point is therefore nicely visible there. At ∼300 ms, SASI activity ceases and
convection becomes dominant.

The model 3Ds starts developing a SASI sloshing mode earlier at about 150 ms as
we will show later in this chapter. It persists for ∼70 ms and changes into a spiral
mode, which however is not as pronounced as in the simulation 3Dn. Until 280 ms post
bounce, the SASI weakens and strong convection emerges.

In both simulations, additional mixing occurs in SASI phases due to Rayleigh-Taylor
and Kelvin-Helmholtz instabilities (cf. Guilet et al., 2010). Indications for these insta-
bilities are visible at 240 ms in Fig. 5.8 as the shock of the model 3Ds sloshes from one
side to the other.

By comparing the fluid patterns of the two 3D simulations at 300 ms, it cannot be
judged, which model will explode and which will fail. The only obvious difference is the
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Fig. 5.8.: Color-coded entropy per baryon of the models 3Dn (left panels) and 3Ds
(right panels) for six different times after core bounce. The entropy distribu-
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two different times corresponding to the end of the two simulations.
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Fig. 5.9.: Volume-rendering of the model 3Ds at four different post-bounce times. Sur-
faces of high entropy are shown with color coding in units of kB per baryon.
The semi-transparent bluish shock surfaces are clearly visible. The direction
of the observer is indicated by tripods and kept constant. Yardsticks demon-
strate the dimensions of the exploding model. An interactive 3D rendering is
available at http://iopscience.iop.org/2041-8205/808/2/L42/media.
(Visualization: A. Döring)

post-shock entropy being higher in the model involving strangeness. This was already
observed in the Kippenhahn diagram Fig. 5.6. It is particularly interesting that the
evolution up to 300 ms is very similar in both cases. At the end of the simulation, the
exploding model 3Ds becomes highly anisotropic with strong downdrafts and numerous
small-scale high-entropy bubbles. This observation is in line with our analysis of mass-
infall and mass-outflow rates. As we have shown above, ongoing mass accretion feeds
massive outflows that give rise to a steeply increasing diagnostic explosion energy.

The three-dimensional shape of the model 3Ds is illustrated by Figs. 5.9 and 5.10.
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Fig. 5.10.: Same as Fig. 5.9, but at later times.

We have selected the same points in time as in Fig. 5.8 in order to display all phases of
the evolution: the SASI sloshing period until ∼220 ms, the weak SASI spiral mode until
280 ms, and the phase of strong neutrino-induced convection afterwards. Towards the
end of the simulation, the expanding high-entropy mushrooms become more ragged.
They change their shape dramatically as the massive outflow from inside pushes them
outwards. The shock surface propagates out to a distance of ∼1000 km at the end of
the simulation and becomes highly deformed.

5.4.2. Effects of the strangeness correction

In Sect. 5.2, we have explained the influence of the strange-quark contributions on the
neutrino opacities for electron neutrinos νe, electron antineutrinos ν̄e, and heavy-lepton
neutrinos νx. Since the strangeness correction only changes the neutral-current scat-
tering opacities, the largest reduction of the effective opacity was deduced for νx. The
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Fig. 5.11.: Neutrino luminosities Lν and neutrino mean energies 〈εν〉 of the three
neutrino species νe, ν̄e, and νx for the model 3Dn (thin lines) and the
model 3Ds (thick lines). Both quantities are measured at a distance of
400 km from the center.

other neutrino species also participate in charged-current processes and are therefore
less affected. In this section, we will show the consequences of the strange-quark correc-
tion on the neutrino luminosities and the mean energies in our 3D models and discuss
how neutrino heating is enhanced.

The time dependence of the luminosities and the mean energies is shown in Fig.
5.11 for the two 3D models. The luminosities of all neutrino species are increased in
the model 3Ds by 10–13% for νe and ν̄e and up to 26% for νx. Interestingly, these
relative differences build up already early and reach their maximum at about 100 ms
after bounce. A resulting enhanced neutrino heating is therefore expected to occur also
at that time.

After ∼150 ms post bounce, convection in the post-shock layer and the SASI leave
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Fig. 5.12.: Proto-neutron star radii RPNS and angle-averaged gain radii 〈Rgain〉 as
functions of time for both 3D models. RPNS is defined where ρ =
1011 g cm−3.

their imprint on the luminosities of electron (anti)neutrinos. Parts of their luminosities
are provided by neutrino emission from accreted matter. This accretion luminosity
declines, when the Si/Si+O shell interface arrives (see Fig. 5.7). After that, the rela-
tive differences between 3Dn and 3Ds decrease and eventually change sign at ∼300 ms
because the non-exploding model 3Dn continues accreting matter at a higher rate com-
pared to the case 3Ds.

Also the mean energies are higher in the model 3Ds compared to 3Dn (see Fig.
5.11). The largest increase occurs for heavy-lepton neutrinos, whose mean energy is
persistently 0.8–1 MeV higher in the time interval between 50 ms and 250 ms. The
differences in the mean energies of electron (anti)neutrinos grow more slowly between
50 ms and 150 ms to 0.6 MeV. Subsequently, they remain at least 0.3 MeV higher than
in the model 3Dn until 350 ms.

Strange-quark contributions enhance the neutrino luminosities and the mean energies
of all species considerably, although the effective opacities of electron (anti)neutrinos are
only minorly reduced. However, due to the reduction of the neutral-current opacities,
more energy is carried away from layers below the proto-neutron star (PNS) surface
due to a higher emission of heavy-lepton neutrinos. This leads to an accelerated cooling
and thus faster contraction of the PNS, as shown in Fig. 5.12. The neutrinospheres of
all species are therefore shifted inwards to higher temperatures, such that the neutrinos
leave the PNS with higher mean energies. This effect is visible in the continuous growth
of the mean energy differences of electron (anti)neutrinos. Shortly after bounce, these
differences between 3Dn and 3Ds are small, because the PNS radii are still equal, but
they grow with time as the PNS radii diverge.

The faster contraction of the PNS in the model 3Ds leads to a faster recession of
the angle-averaged gain radius as shown in Fig. 5.12. This is because the cooling layer
is approximately in hydrostatic equilibrium (Janka, 2001). Additionally, the enhanced
neutrino energy input in the gain layer, which we will discuss below, implies an inward
shift of the gain radius, since this is the location where neutrino heating balances
neutrino cooling.

For the purpose of further estimating where the differences in the neutrino signals
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Fig. 5.13.: Radial profiles of the neutrino luminosities Lν and the neutrino mean en-
ergies 〈εν〉 of the two 3D models at 100 ms (left column) and 300 ms (right
column). The radial axes are normalized so that rnorm = 0 corresponds
to the surface of the proto-neutron star and rnorm = 1 marks the angle-
averaged shock radius (see Eq. (5.12) for the definition of rnorm).

emerge, we show radial profiles of the luminosities and the mean energies in Fig. 5.13.
In order to compensate for the different PNS radii in the 3D models, we have normalized
the radial axes such that

rnorm(r) ..=
r −RPNS

〈Rsh〉 −RPNS
(5.12)

with the proto-neutron star radius RPNS being defined where ρ = 1011 g cm−3. The
normalized radius rnorm varies from 0 at the PNS surface to 1 at the angle-averaged
shock radius.

The difference of the luminosities of heavy-lepton neutrinos builds up below the PNS
radius, i.e. where rnorm < 0. Further out, they have a constant offset, which is in
line with our finding that the opacity of νx is basically not reduced by strange-quark
contributions outside of the PNS (cf. Fig. 5.2, right panel). For electron neutrinos and
electron antineutrinos, the differences of the luminosities do not grow as steeply as for
heavy-lepton neutrinos, because the opacity reductions for νe and ν̄e as functions of Ye
are shallower than for νx (see Fig. 5.2, left panel).

The radial profiles of the mean energies of all neutrino species reveal that the differ-
ences between the two 3D models occur below the PNS surface and remain constant
outside. The enhancement of the mean energies is caused by higher temperatures at
rnorm ≤ 0 due to the faster contraction of the PNS in the case 3Ds.
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Fig. 5.14.: Total heating and cooling rates, Q̇gain and Q̇cool, of the 3D models. The
instantaneous and time-integrated values are shown in the left and right
panels, respectively.

As the luminosities and the mean energies of electron (anti)neutrinos are enhanced,
the neutrino energy deposition in the gain layer is increased. This can be seen in
the upper row of Fig. 5.14, where the instantaneous and time-integrated values of the
heating rates Q̇gain are shown. It is obvious that the heating rate is considerably higher
in the model 3Ds compared to the case 3Dn. At 90 ms post bounce, the difference
reaches its maximum of about 3 × 1051 erg s−1, which coincides with the maximum
luminosity differences in Fig. 5.11. The time-integrated value of Q̇gain, i.e. the total
energy deposited in the gain layer, is about 25–30% higher in the simulation including
strange quarks.

Also the amount of neutrino cooling is increased in the model 3Ds, however, only by
a few percent in the time-integrated value. Unlike in the previous chapter, we define
the bottom of the cooling layer to be the proto-neutron star surface, so that

Q̇cool =

∫

RPNS<r<Rgain

dV ρq̇, (5.13)

where q̇ is the specific net heating rate. Because the luminosities of electron neutrinos
and electron antineutrinos have steeper gradients in 3Ds compared to 3Dn at the bottom
of the cooling layer (see Fig. 5.13), more energy is carried away from this region. After
the arrival of the Si/Si+O interface, the cooling rates become similar in both 3D models.

As we have shown above, the luminosity differences between 3Ds and 3Dn are maximal
at about 90 ms. The total luminosity Lνe + Lν̄e + 4Lνx is about 6× 1052 erg s−1 higher
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Fig. 5.15.: Advection timescales τadv, heating timescales τheat, and their ratios as func-
tions of time for both 3D models.

at that time in the model with strange-quark contributions. However, the absolute
value of the cooling rate Q̇cool is only ∼7× 1051 erg s−1 larger. Obviously, the increased
neutrino energy loss comes almost completely from below the PNS surface and only a
small fraction is added in the cooling layer.

It is noteworthy that the temporal evolutions of the shock radii of both 3D models is
very similar until 300 ms, while the neutrino energy deposition is higher already much
earlier. As we have shown in Fig. 5.6, the post-shock entropy is larger in the simulation
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3Ds due to enhanced neutrino heating. However, the shock is pushed out only after the
ram pressure of the infalling shells drop due to the declining mass-accretion rate at the
Si/Si+O interface.

The information on the neutrino energy deposition can be summarized in Fig. 5.15,
where we show the advection and heating timescales. In the model 3Ds, the heating
timescale τheat – the time needed to deposit enough energy for unbinding the gain
layer – is continuously shorter, because the heating rate is higher. The advection
timescales τadv are very similar in both 3D models until 300 ms, because the mass
accretion rates are equal and fluid elements need the same time to cross the gain layers.
Consequently, the timescale ratio τadv/τheat is higher in the 3Ds model. It reaches unity
at 280 ms, while the model 3Dn only rises to a value of 0.88 at 310 ms and declines
afterwards. Hence, the threshold value of unity is a good indicator for obtaining a
successful explosion in the 3D simulations discussed here.

To sum up, strange-quark contributions decrease the opacities for neutral-current
neutrino-nucleon scattering in the region below the proto-neutron star surface. Since
electron neutrinos and electron antineutrinos also participate in charged-current re-
actions, their effective opacities are less influenced. However, the consequent higher
energy loss by the emission of heavy-lepton neutrinos leads to a faster contraction of
the proto-neutron star. Hence, the neutrinospheres of all species are shifted inwards to
higher temperatures, so that their luminosities and mean energies are increased con-
siderably. More energy is therefore deposited in the gain layer amplifying buoyancy
and convection and thus providing more favorable heating conditions for a successful
explosion in the case 3Ds.

In our discussion, we have not mentioned the corresponding 2D models. However,
since the increase of the neutrino luminosities and the mean energies due to strange-
quark contributions is established below the proto-neutron star surface, effects of the
different dimensionality are subdominant. The discussion presented above is therefore
effectively analogous for the 2D simulations.

5.4.3. SASI and convection

In Sect. 5.4.1, we have already mentioned the occurrence of the SASI in our models.
However, in this section, we will analyze the strengths and directions of the shock oscil-
lations more quantitatively by decomposing the shock surface into spherical harmonics.
Let the real spherical harmonics be defined as

Y m
` (θ, φ) =





√
2Nm

` Pm` (cos θ) cos(mφ) m > 0

N0
` P

0
` (cos θ) m = 0√

2N
|m|
` P

|m|
` (cos θ) sin(|m|φ) m < 0

(5.14)

with normalization factors

Nm
` =

√
2`+ 1

4π

(`−m)!

(`+m)!
(5.15)

and associated Legendre polynomials Pm` (cos θ). The coefficients for the decomposition
are then given by

am` =
(−1)m√

4π(2`+ 1)

∫
dΩRsh(θ, φ)Y m

` (θ, φ). (5.16)
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This normalization is chosen such that

a−1
1 = 〈ysh〉 , a0

1 = 〈zsh〉 , a1
1 = 〈xsh〉 , (5.17)

where e.g. 〈xsh〉 is the angle-averaged x-coordinate of the shock surface. The angle-
averaged shock radius can simply be reconstructed by

a0
0 = 〈Rsh〉 . (5.18)

In the two upper panels of Fig. 5.16, we present the coefficients am1 normalized to the
angle-averaged shock radii a0

0 for all three Cartesian directions. Gray-shaded areas in
the background show the SASI dipole amplitude

A1 =
1

a0
0

√√√√
1∑

m=−1

(am1 )2. (5.19)

Both 3D simulations are SASI-dominated until ∼300 ms post bounce. Whether a slosh-
ing or a spiral mode is present can be deduced from the shape of the SASI amplitude
A1. In a sloshing mode, the shock surface periodically transitions into a more spherical
shape, before the next SASI cycle starts. The dipole component is reduced strongly in
this phase, which is represented by a deep minimum in A1. A spiral mode keeps the
strength of the dipole rather constant, so that A1 does not show deep minima in this
case.

From these considerations and with the aid of 3D movies3, we observe a strong spiral
mode in the model 3Dn from about 190 ms to 300 ms after bounce with a short sloshing
phase before. The model 3Ds develops a sloshing mode between 150 ms and 220 ms
with a weak spiral after that persisting until ∼280 ms.

The SASI growth rate depends on the time needed for transporting matter from
the shock to the coupling region of the advective-acoustic cycle being located between
the proto-neutron star surface and the gain radius (Scheck et al., 2008). This time
is not equal to the advection timescale defined in Eq. (4.5) and plotted in Fig. 5.15,
because the latter measures the time infalling matter is exposed to neutrino heating
in the gain layer. However, both are closely related to each other – short advection
timescales imply short SASI cycle durations and thus high growth rates. For example,
the advection time from the angle-averaged shock radius to the neutron star radius at
200 ms post bounce is 12 ms in the model 3Ds , while τadv ≈ 6 ms. Indeed, the strongest
SASI growth in both 3D simulations occurs between 150 ms and 200 ms, which coincides
with very low values of τadv (see Fig. 5.15). At around 300 ms, i.e. shortly before the
3Ds model explodes, the SASI activity ceases in both cases as the advection timescales
grow.

Hanke et al. (2013) observed that the transition of SASI sloshing modes into spiral
modes is favored by small shock radii. We can confirm this impression with our models.
The spiral mode in the simulation 3Dn converts from the previous sloshing at about
190 ms, which coincides with a minimum of the shock radius (cf. Fig. 5.3). In the case
3Ds, the transition occurs at 220 ms, which is the time when the angle-averaged shock
radius reaches its smallest value.

3Movies of the models 3Dn and 3Ds can be found at http://www.mpa-garching.mpg.de/ccsnarchive/
movies/.
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Fig. 5.16.: Coefficients am` of the spherical harmonics shock decomposition for ` = 1
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and A1 (cf. Eq. (5.19))

We also present the SASI amplitudes of our 2D models in the lower panel of Fig. 5.16.
Due to the axisymmetry in these cases, the dipole is always aligned with the z-axis, i.e.
a−1

1 ≡ 0 ≡ a1
1. In the 2D model with the standard neutrino opacity set (2Dn), SASI
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Fig. 5.17.: Aitoff projections of the SASI dipole directions for the two 3D models.
Every point marks a certain point in time with colors referring to the post-
bounce time tpb. The diameters of the circles correlate with the dipole
amplitudes. Dashed black lines show the orientation of the plane used for
the visualization in Fig. 5.8.

sloshing starts at around 160 ms and lasts for ∼100 ms, before shock runaway sets in.
The SASI phase in the model 2Ds is shorter and persists from 140 ms to 200 ms post
bounce.

Estimating the actual direction of the SASI dipole in 3D from Fig. 5.16 is difficult.
We therefore show the dipole directions in Fig. 5.17 in an Aitoff projection for the
models 3Dn and 3Ds. The reader is referred to Appendix A for an overview of the
positions of the Cartesian axes in these maps. Every point in Fig. 5.17 corresponds
to a certain time after bounce and its size scales with the dipole strength. The spiral
mode of the model 3Dn is visible as a chain-like distribution of greenish markers in the
upper panel. Its spiral motion lies in a plane that is relatively constant with time and
close to the plane displayed in Fig. 5.8. The latter is indicated by dashed lines in Fig.
5.17.

The sloshing mode in the simulation 3Ds is visible through blueish markers near
the poles. The subsequent spiral phase in this model is represented by greenish dots
propagating from the lower left part through the upper region to the right. Towards
the end of the simulation after 350 ms, the amplitude of the shock surface dipole is
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still noticeable and drifts slowly, which demonstrates that the explosion proceeds very
aspherically in this case.

At the end of the SASI episodes, convection in the gain layer becomes the dominant
mixing process in our 2D and 3D models. Only in the model 3Dn, buoyancy is evident
before the SASI sloshing starts. In order to characterize the linear growth phase of
neutrino-driven convection, Foglizzo et al. (2006) introduced the parameter χ, which
can be understood as a measure of the time convective perturbations need to grow
compared to the time for advecting them out of the gain layer. Large heating rates
and long advection timescales favor convective growth and increase χ (Fernández et al.,
2014). In our notation, this parameter reads

χ =

max(Rsh)∫

〈Rgain〉
dr

ImωBV

|〈vr〉|
, (5.20)

where ωBV is the (complex) Brunt-Väisälä frequency characterizing convective insta-
bility. The integral runs from the angle-averaged gain radius to the maximum angle-
dependent shock radius. Unlike Müller et al. (2012a) who set the upper bound of the
integral to the angle-averaged shock radius, we choose the maximum here in order to
cover the gain layer completely.

The Brunt-Väisälä frequency is given by

ω2
BV = −CLed

〈ρ〉
∂Φ

∂r
(5.21)

with the gravitational potential Φ and the Ledoux parameter

CLed =
d〈ρ〉
dr
− 1

〈cs〉2
d〈P 〉
dr

. (5.22)

The derivation of this formula can be found in Hüdepohl (2014, Appendix B). P denotes
the pressure and cs is the sound speed. Positive values of CLed indicate instability
against perturbations. Only fluid elements with local convective instability are taken
into account in the calculation of χ. Since this implies ω2

BV < 0, the imaginary part of
this frequency is considered in Eq. (5.20).

Foglizzo et al. (2006) proposed a threshold value of 3 above which convection grows
in the linear regime. In this case, perturbations are not transported out of the gain
layer by the accretion flow and their amplitude can rise. However, this value should not
be understood as a sharp demarcation of stable and unstable configurations. Especially
for large density perturbations, convection can develop in the non-linear regime even if
χ < 3 (Foglizzo et al., 2006).

In Fig. 5.18, we present the parameter χ for the simulations discussed in this chapter.
The value of 3 is exceeded at about 180–190 ms in the 3D models, while it is reached
about 15 ms earlier in the 2D cases. However, except for the model 3Dn, no convective
activity is evident before SASI oscillations commence. This underlines that the pa-
rameter χ is not applicable during violent SASI phases, because perturbations induced
by the SASI are large enough to reach the non-linear regime of convective growth (cf.
Summa et al., 2016). Interestingly, convection in the simulation 3Dn emerges shortly
after 110 ms post bounce, when the value of χ is less than 2 and therefore well below
its threshold. We can thus conclude that the parameter χ cannot be conclusively used
to estimate the occurrence of convection in our simulations.
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5.5. Summary and discussion

We conducted core-collapse supernova simulations of a 20M� star in axisymmetry
(2D) and full three dimensions (3D) with our neutrino-hydrodynamics code Vertex-
Prometheus. Since supernova models do not yet explode robustly in 3D, we inves-
tigated how uncertainties in the neutrino interaction rates influence the outcome of
3D simulations. Vertex-Prometheus already includes the most sophisticated set of
neutrino interactions applied in core-collapse supernova models, however, strange-quark
contributions to the nucleon spin reducing the opacities of neutrino-nucleon scattering
were considered here for the first time in multi-dimensional simulations. The 3D model
with a strangeness correction of gs

a = −0.2 exploded successfully, while a comparison
run with standard neutrino opacities failed. Both 2D models developed explosions, but
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strangeness effects favor an earlier shock runaway. In all exploding models, shock re-
vival by neutrino heating occurred after the Si/Si+O shell interface had fallen through
the shock due to the rapid decline of the ram pressure maintained by infalling stellar
material.

The reduction of the neutral-current opacity due to the strangeness correction can
exceed 20% below the proto-neutron star surface, while almost no modification occurs
above. Energy is therefore carried away from the proto-neutron star more efficiently,
mainly by the enhanced emission of heavy-lepton neutrinos that participate only in
neutral-current reactions. The consequent faster contraction of the proto-neutron star
shifts the neutrinospheres of all species inwards to higher temperatures. The luminosi-
ties and the mean energies of electron neutrinos and electron antineutrinos are thus
enhanced considerably, although their effective opacities are only marginally reduced
by the strangeness correction. Hence, the neutrino energy deposition in the gain layer
is increased providing more favorable conditions for a successful explosion. A similar
effect was found for “softer” high-density equations of state that favor a faster contrac-
tion of the proto-neutron star and thus also enhance neutrino heating in the gain layer
(Marek & Janka, 2009; Suwa et al., 2013).

Strong SASI sloshing and spiral phases characterize the evolutions of both 3D mod-
els, until neutrino-driven convection becomes dominant after ∼300 ms post bounce.
Even though the 3D model without strangeness effects develops a violent SASI spiral
phase, no explosion is obtained, which is somewhat in conflict with findings of Fer-
nández (2015). This author argued that explosions could be obtained easier if a SASI
spiral mode is present, because more kinetic energy is stored in the gain layer due to
large non-radial velocities. His analysis is based on parametric models that mimic the
shock stagnation phase under the assumptions of a constant mass-accretion rate and a
constant proto-neutron star radius. In our non-exploding 3D model, neutrino heating
is too weak to overcome the ram pressure of infalling material despite the SASI spiral
mode.

Burrows et al. (2012) discussed that an “up-and-down” sloshing motion of the SASI
cannot occur in 3D and that spiral modes should always be dominant. We do not agree
with these authors. In our analysis, we have shown that the sloshing mode in the 3D
model with enabled strangeness correction is strong and its direction remains fairly
constant for about 70 ms.

The strangeness correction was already studied in spherically symmetric simulations
by Liebendörfer et al. (2002) with a value of gs

a = −0.19 (see also Langanke & Mart́ınez-
Pinedo, 2003). These authors also chose a progenitor star of 20M�, but taken from
Nomoto & Hashimoto (1988) and therefore different from ours. They showed that the
shock propagates out to a radius of about 180 km with enabled strangeness correction
before it retreats again. Although no explosion was found, the shock reaches an about
15 km larger radius compared to the reference model with their standard neutrino
opacity set, because more energy is deposited in the gain layer.

Strange-quark contributions to the nucleon spin are motivated from theory and ex-
periments. Recent measurements of deep inelastic scattering reactions of electrons off
nucleons yielded a compiled value of gs

a = −0.084± 0.042 (Hobbs et al., 2016, and ref-
erences therein). In this context, our choice seems to be somewhat extreme, however,
other neutrino opacity uncertainties exist that likewise diminish neutral-current opaci-
ties and are also covered by our value for gs

a. For example, correlations in low-density
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nucleon matter reduce the cross sections of neutrino-nucleon scattering in a similar way
as the strangeness correction (Horowitz, 2016).

We demonstrated that reducing the neutrino-nucleon scattering opacity at a level of
10% can turn a failed 3D simulation into a successfully exploding one. This suggests
that previously failed 3D models of the Garching group (see Hanke et al., 2013; Tam-
borra et al., 2013; Hanke, 2014; Tamborra et al., 2014a,b) were already relatively close
to the explosion threshold. In case of the 11.2M� model discussed in Hanke (2014),
for example, this is especially visible in the temporal evolution of the ratio of advection
and heating timescales. The 3D value rises above 1.1 very early and is even greater
than in 2D for about 150 ms, but the 3D model eventually fails while the 2D model
explodes.

We do not claim that the strangeness correction is the missing ingredient for robustly
exploding core-collapse supernova simulations in 3D. Our study rather foregrounds
the need for the exact knowledge of all neutrino interaction rates in order to reduce
uncertainties in this sector. Of course, this also includes the strange-quark contribution
itself, whose theoretically and experimentally determined values show some discrepancy
(see Hobbs et al., 2016).

The robustness of our 3D explosion has to be examined in a setup with higher angular
grid resolution. More turbulent kinetic energy is then enabled at small scales, which is
potentially harmful for shock revival (e.g., Hanke et al., 2012; Couch, 2013; Couch &
O’Connor, 2014). We will focus on this issue in the next chapter.

Since previously failed 3D models were possibly close to explosion, other favorable
effects could also make the difference between success and failure. For example, con-
vective perturbations in the progenitor star accelerate the growth of hydrodynamic
instabilities in the gain layer and could therefore provide more favorable explosion con-
ditions early after bouce (Arnett & Meakin, 2011; Couch & Ott, 2013; Müller & Janka,
2015; Couch et al., 2015). However, self-consistent 3D simulations of supernova progen-
itors are still in their infancy and applicable initial setups for core-collapse supernova
models do not exist yet.
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For any grid-based numerical simulation of a physical system, the question arises which
spatial resolution is needed in order to model all relevant processes sufficiently well.
Resolution studies until convergence for core-collapse supernova simulations with so-
phisticated neutrino transport are desired, but currently not feasible in three dimensions
(3D) due to their high computational cost.

The fluid in the core-collapse supernova scenario can be described without explicitly
including viscous effects, because the kinematic viscosity is very low and orders of mag-
nitude smaller than the “numerical viscosity” being implicitly inherent to the numerical
scheme (e.g., Müller, 1998). For a given hydrodynamical solver, reducing this numer-
ical viscosity can be achieved by increasing the spatial grid resolution. As argued by
Couch (2013), true convergence of core-collapse supernova simulations is expected to
occur if the effective Reynolds number that depends on the numerical viscosity becomes
comparable to the physical Reynolds number. This is far from being achievable in 3D
simulations and also not required. Instead, we need to understand, how the models
behave on better resolved computational grids and to what extent latest results of 3D
studies are reliable.

The physical Reynolds number in the gain layer can reach values as high as 1017

(Abdikamalov et al., 2015), which is clearly in the turbulent regime. This has important
implications on the distribution of kinetic energy across various scales. In the common
picture of turbulence, kinetic energy being injected at some large scale is transported
down the inertial range to smaller scales, until it is dissipated into internal energy
when viscous effects become relevant (Kolmogorov, 1941; Landau & Lifshitz, 1987).
This turbulent transport is caused by parasitic Kelvin-Helmholtz and Rayleigh-Taylor
instabilities that extract power from large scales. According to Kolmogorov’s theory for
a steady-state and isotropic turbulent flow, the kinetic energy spectrum has a distinct
shape in the inertial range. It is still under debate whether this classical turbulence
theory is applicable in the supernova context. While Radice et al. (2016) found that
the energy cascade is well described by Kolmogorov’s theory, Couch & Ott (2015)
argued that turbulence in the gain layer is neither steady-state nor isotropic due to the
background accretion flow, strong gradients, and the time-dependence of the accretion
rate. The argumentation of Radice et al. (2016) is based on a parametrized simulation
with a high angular resolution of 0.09◦. This result is, however, not conclusive, because
the simulation was mapped from a coarser grid and only evolved for 60 ms.

In the ideal picture, kinetic energy is cascaded down the inertial range without losses
and viscosity only affects the dissipation range at the smallest scales (Landau & Lifshitz,
1987). Since an increasing grid resolution reduces the numerical viscosity, details of
the turbulent cascade depend on the choice of the computational grid. Abdikamalov
et al. (2015) found that the inertial range of the turbulent cascade is dominated by
the numerical viscosity and the slope of the spectrum is shallower than the expected
ideal scaling. In their 3D adaptive-mesh-refinement simulations, they observed the
so-called “bottleneck”, which is understood as an artificial pile-up of kinetic energy
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towards small scales being caused by viscous effects. Also Radice et al. (2015, 2016)
found a significant influence of the viscosity on the inertial range. Only for a very high
grid resolution, a Kolmogorov scaling was recovered in their parametric simulations.
Later, Roberts et al. (2016) backpedaled that a low grid resolution does not necessarily
imply an accumulation of kinetic energy at large scales. A final conclusion about the
dependence of the energy spectrum on the resolution can thus not be drawn from these
studies.

The described forward direction of the turbulent energy cascade only holds in three di-
mensions (3D). In axisymmetric (two-dimensional, 2D) models, however, kinetic energy
is artificially accumulated at large scales and only enstrophy – the squared vorticity – is
transported to smaller scales leading to a steeper decline of the spectrum (Kraichnan,
1967; Frisch & Sulem, 1984; Boffetta & Musacchio, 2010). This different behavior of the
turbulent kinetic energy in 2D and 3D has important consequences on the conditions
for shock revival and the dynamics during the explosion (cf. Chapt. 4). Large-scale fluid
structures in the gain layer are beneficial for shock revival, because a large volume-to-
surface ratio allows buoyancy to overcome drag forces (Hanke et al., 2012; Couch, 2013;
Lentz et al., 2015; Roberts et al., 2016). In 3D simulations, explosions usually occur
later for higher grid resolutions (Hanke et al., 2012; Couch & O’Connor, 2014; Takiwaki
et al., 2014; Abdikamalov et al., 2015; Roberts et al., 2016). This is often attributed to
the amount of kinetic energy at large scales, although a thorough understanding is still
lacking. From the 3D simulations of Radice et al. (2016), for example, a clear resolution
dependence of the diagnostic quantities – such as the shock radius – cannot be deduced.
In 2D, the picture is even more controversial, because some modelers reported earlier
explosions in simulations with higher grid resolution (e.g., Hanke et al., 2012; Summa
et al., 2016), but others found later explosions (e.g., Couch, 2013).

Besides the kinetic energy cascade, turbulence also provides an effective pressure
being a component of the Reynolds stress tensor. This turbulent pressure possibly
contributes significantly to the pressure balance at the shock (Couch & Ott, 2015;
Abdikamalov et al., 2015; Radice et al., 2016; Roberts et al., 2016). Some of these
authors reported an increasing contribution of the turbulent pressure with enhanced
resolution, while others did not find a clear trend.

At this stage, several questions remain open. How does the turbulent energy cascade
behaves when the grid resolution is altered? Can we expect the scaling relations from
classical turbulence theory to be valid in the core-collapse supernova context? What
are the consequences of a high grid resolution for hydrodynamic instabilities in the gain
layer and the revival of the stalled shock in 3D? In this chapter, we will try to address
these questions by comparing 2D and 3D models with different grid resolutions but
equal physical settings. In order to enhance the angular resolution without additional
computational cost, we have implemented a static mesh refinement (SMR) technique
that allows for choosing different angular grid spacings in certain radial intervals. The
angular resolution can subsequently be increased from inside outwards in order to com-
pensate for the diverging structure of the spherical grid. Details about the numerical
implementation of the SMR procedure can be found in Sect. 3.3.

We will explain the physical and numerical settings in the next section, followed
by a detailed discussion on the differences between the models with varying angular
resolution. At the end of the chapter, we will estimate the numerical viscosities and
the effective Reynolds numbers of our 3D simulations.
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Fig. 6.1.: Angular grid configuration of the model 3Ds.SMR. Thin and thick solid lines
depict the angle-averaged gain and shock radius, respectively. Gray-shaded
areas indicate the variations of the shock surface with its minimum and
maximum extent. Red lines mark the boundaries of the refinement layers.
Note that the third layer was added at 70 ms post bounce.

6.1. Physical and numerical setup

We have simulated the post-bounce phase of the 20M� star of Woosley & Heger (2007)
in axial symmetry (2D) and full three dimensions (3D) with different angular grid
spacing, but similar physical settings including the strangeness correction of gs

a = −0.2
(cf. Sect. 5.2). All details about the general numerical setup can be found in Sect. 2.4.

The 3D model with our default grid resolution is referred to as 3Ds and was already
discussed in detail in Chapt. 5. It was computed on the standard spherical polar grid
with an angular grid spacing of 2◦ in the entire computational domain, except for the
innermost 10 km. This central region was treated in spherical symmetry to avoid severe
timestep constraints at the grid origin.

For our high-resolution 3D model 3Ds.SMR, we employed the newly-developed“static
mesh refinement”(SMR; see Sect. 3.3) on the Yin-Yang grid with three concentric layers
of varying angular resolution (see Fig. 6.1). The innermost spherically symmetric core
of 1.6 km radius4 is surrounded by a region with a grid spacing of 2◦. Slightly above the
angle-averaged gain radius, the grid was further refined to 1◦. An additional refinement
layer of 0.5◦ was added at 70 ms post bounce outside a radius of 160 km. Extending the
region of 1◦ resolution to a smaller radius and at the same time maintaining the neutrino
transport resolution of 2◦ would be desirable but turns out to be unstable. If the

4We have checked that the proto-neutron star is not influenced, when the size of the inner spherically
symmetric core is reduced from 10 km to 1.6 km.
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computational grid of the transport solver did not coincide with the hydrodynamic mesh
in a region of high neutrino optical depth, harmful oscillations around thermodynamic
equilibrium would arise (Rampp & Janka, 2002). Numerical inaccuracies would occur
when quantities are interpolated from the transport grid to the hydrodynamic grid and
vice versa. Consequently, the refinement step from 2◦ to 1◦ is located at a radius where
the neutrino optical depth is sufficiently low, i.e. around 0.1 to 0.15.

The simulation 3Ds.SMR as well as the 2D runs were performed with a new Vertex-
Prometheus code version5. It includes a novel NSE treatment, which assumes NSE
above a temperature of 0.5 MeV for infalling matter and above 0.343 MeV for neutrino-
heated high-entropy material. Recombination of free nucleons into nuclei is thus treated
more accurately compared to the previously applied global threshold of 0.5 MeV. The
density ρEOS between the LS220 high-density equation of state and the low-density
regime was set to 3.4× 107 g cm−3 during core collapse in all models.

Thanks to the SMR technique, the neutrino transport solver operates on the same
computational grid with identical angular resolution in both 3D simulations. Only
the evolution of the fluid in the model 3Ds.SMR is followed on a finer grid. The
computational demands of the 3D models are therefore nearly equal, because solving
hydrodynamic problems is computationally cheap and the SMR procedure adds only a
small numerical overhead.

In order to allow for detailed comparisons between both 3D runs, the initial density
perturbation patterns imposed at 10 ms post bounce were identical.

The physical and numerical settings of the model 3Ds.SMR were similarly used for
the 2D models. We performed 2D simulations without the SMR setup on angular grids
of 1◦ and 2◦ resolution, and simulations with an SMR grid configuration being equal
to the corresponding 3D case.

6.2. Results

6.2.1. Overview

As already discussed in detail in the previous chapter, the simulation 3Ds explodes
successfully with shock runaway unleashed between 350 and 400 ms. In the model
3Ds.SMR, which has been evolved until 383 ms post bounce, however, the situation is
not so clear. At the last data point of the still ongoing simulation, the angle-averaged
shock radius 〈Rsh〉 is 149 km (see Fig. 6.2) with minimum and maximum values of
117 km and 195 km, respectively. We are not yet able to judge whether the model
3Ds.SMR will explode given the temporal evolution of the shock.

Until ∼130 ms, the shock radii of both 3D models behave similarly with a local max-
imum at ∼80 ms post bounce, followed by a gradual retreat. In the model 3Ds.SMR,
the angle-averaged shock radius declines to its minimum at 200 ms, before the mass-
accretion rate drops as the Si/Si+O shell interface falls through the shock around
230 ms. The consequent rapid shock expansion occurs simultaneously in both 3D mod-
els, because the arrival time of the interface is not affected by the different grid reso-

5Besides performance improvements and minor changes, the HLLE fluxes of the mass fractions were
treated inconsistently in the old code version. Additionally, the charged-current neutrino absorption
rates were erroneously averaged over patches of four cells. In the new version, a sign error in the
weak magnetism correction leads to slight changes in the neutrino-nucleon scattering opacities for
electron neutrinos and electron antineutrinos, which we checked to be insignificant.
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Fig. 6.2.: Angle-averaged shock radii 〈Rsh〉 of the 3D models (upper panel) and the
2D models (lower panel) as functions of time after bounce tpb. Two sets of
2D simulations were performed with different initial random perturbations
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resolution of 1◦ and 2◦, respectively, in the entire computational domain.
Thick solid lines correspond to models with the SMR technique.

lution. Until 330 ms post bounce, the shock radius is larger in the high-resolution 3D
simulation.

The angle-averaged shock radii of the 2D models displayed in the lower panel of Fig.
6.2 demonstrate the large stochasticity of their temporal evolution. Models plotted
with the same line style were computed starting from different initial random pertur-
bations, but otherwise exactly equal configurations. Especially the shock radii of the
simulations with 1◦ angular resolution are several hundred kilometers apart from each
other at the same time after core bounce. Summa et al. (2016) similarly observed sig-
nificant differences caused by variations of the random seed perturbations due to the
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Fig. 6.3.: Advection timescales τadv, heating timescales τheat, and their ratios as func-
tions of time for both 3D models.

chaotic behavior of the flow in the post-shock layer. It is clear that from our set of 2D
simulations, we are not able to investigate effects caused by differences in the angular
grid spacing. A large set of 2D models would be required to estimate the statistical
variations, which is, however, beyond the scope of this work. In 3D, we can only com-
pare two single runs due to the high computational cost of these simulations. The 3D
models were computed with identical perturbation patterns at 10 ms post bounce and
therefore started from the same initial configuration.
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In Fig. 6.3, we present the advection and the heating timescales of the 3D models, as
well as their ratios (see Eqs. (4.5) and (4.7) for the definitions). The advection timescale
τadv = Mgain/Ṁ is a measure of the time matter is exposed to neutrino heating in
the gain layer (Buras et al., 2006a; Murphy & Burrows, 2008). The mass-accretion
rates Ṁ do not differ between both 3D models, because the small perturbations in the
supersonically infalling stellar shells cannot grow and the infall profiles therefore do
not depend on the grid resolution. Since also the angle-averaged gain radii are equal,
the gain layer masses Mgain are mainly determined by the shock radii. The advection
timescales in Fig. 6.3 thus follow the trends of the angle-averaged shock radii shown
in Fig. 6.2. Due to the larger shock radius in the simulation 3Ds.SMR between 220 ms
and 330 ms after bounce, the advection timescale is up to 50% longer compared to the
case 3Ds.

The heating timescales τheat of both 3D simulations are equal, i.e. the time needed
for unbinding the gain layer by neutrino heating is the same. This is an important
observation, because it demonstrates that the neutrino energy deposition in the gain
layer is not affected, when the grid resolution is refined by a factor of 2 to 4 there.

Combining both timescales as τadv/τheat is commonly used for determining how close
a model is to explosion. A value of unity of this timescale ratio is often considered as
a “threshold” for a successful explosion (cf. Sect. 4.3.1), although this number should
not be considered exact. In the model 3Ds.SMR, the ratio rises very steeply at ∼230 ms
coinciding with the arrival time of the Si/Si+O interface. τadv/τheat exceeds unity at
240 ms and slowly grows to about 1.3 within the following 140 ms. In the exploding
case 3Ds, the timescale ratio exceeds unity much later and grows quickly afterwards.
If solely the ratio τadv/τheat was used as an indicator for a successful explosion, shock
runaway would be expected at ∼260 ms in the model 3Ds.SMR. However, despite the
large timescale ratio and its very steep increase around 230 ms, the high-resolution
3D simulation does not yet show indications of a successful explosion. Obviously, the
diagnostic timescale ratio τadv/τheat fails to predict the success of shock revival in the
simulation 3Ds.SMR.

As already indicated by the heating timescales in Fig. 6.3, the energy deposition in
the gain layer is nearly equal in both 3D models. Although the total heating rates
Q̇gain shown in Fig. 6.4 differ in details, they exhibit the same overall trend. After
250 ms post bounce, the heating rate of the model 3Ds.SMR is slightly larger, but
grows similarly compared to the simulation 3Ds. The time-integrated heating rate, i.e.
the total deposited energy in the gain layer, is about 2% larger in the high-resolution
3D simulation at 380 ms. In Fig. 6.4, we also show the heating efficiency being defined
as

ηheat =
Q̇gain

Lνe + Lν̄e
, (6.1)

where Lνe and Lν̄e are the luminosities of electron neutrinos and electron antineutrinos,
respectively. Again, the overall temporal behavior of ηheat is equal in both 3D runs.
From the heating parameters displayed in Fig. 6.4, we can conclude that the efficiency
of neutrino heating does not depend on the chosen grid resolution outside of the gain
radius.

In Fig. 6.5, we present cross-sectional cuts through both 3D models displaying the
entropy per baryon at different times after core bounce. At a first glance, the high-
resolution simulation develops finer structures and more fragmented high-entropy bub-
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Fig. 6.4.: Total heating rates Q̇gain, total deposited energies in the gain layer
∫
Q̇gain dt,

and heating efficiencies ηheat as functions of time.

bles. The heads of the buoyant mushrooms are more ragged in the model 3Ds.SMR and
the fluid generally appears more turbulent. Radice et al. (2015) argued that the picture
of delimited high-entropy bubbles is an artifact occurring in low-resolution simulations.
We cannot confirm this observation with our model 3Ds.SMR, which approximately
corresponds to their “4x” case. The neutrino-heated bubbles are still distinct and simi-
lar in size compared to the model 3Ds, whose hydrodynamics was evolved on a coarser
grid.
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Fig. 6.5.: Color-coded entropy per baryon s of the models 3Ds (left panels) and
3Ds.SMR (right panels) for six different times after core bounce. The entropy
distribution is depicted in the plane z = 0.

The occurrence of the SASI can hardly be deduced from Fig. 6.5. We therefore show
the coefficients am1 of the spherical harmonics decomposition of the shock surface in
Fig. 6.6. The reader is referred to Sect. 5.4.3 for the corresponding defining equations.
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In the model 3Ds, SASI sloshing starts at 150 ms as persists for approximately 70 ms.
During the phase of strong oscillation, it is aligned with the z-axis, because this is
the preferred direction of the spherical polar grid. The sloshing motion turns into a
spiral phase continuing until ∼280 ms after bounce. The occurrence of the SASI is
completely different in the simulation 3Ds.SMR. On the Yin-Yang grid without any
preferred direction, a spiral mode develops, whose rotational motion lies approximately
in the plane z = 0. It starts already at 125 ms post bounce and decays at around
270 ms. The maximum amplitude of the spiral mode in the high-resolution simulation
3Ds.SMR is lower than the sloshing amplitude of the model 3Ds.

In Fig. 6.7, we present the turbulent kinetic energy, i.e. the non-radial kinetic energy
integrated over the gain layer. In the simulation 3Ds.SMR, it rises already early at
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Fig. 6.7.: Turbulent kinetic energies in the gain layer as defined in Eq. (4.14) for the
two 3D models.

∼ 125 ms due to the growth of the SASI spiral mode that exhibits large non-radial
velocities. The turbulent kinetic energy then remains at a low level, but increases
quickly 80 ms later and exceeds the value of the model 3Ds. Between 220 and 240 ms
after bounce, the non-radial kinetic energy in the gain layer is larger by more than a
factor of three in the high-resolution model because of the violent SASI spiral mode,
which persists until ∼280 ms post bounce. After 240 ms post bounce, Egain

kin,θ,φ remains
approximately twice as large as in the simulation 3Ds for about 60 ms.

Recently, Summa et al. (2016) and Janka et al. (2016) proposed a universal explosion
criterion for core-collapse supernovae. They extended the idea of the critical luminos-
ity condition introduced by Burrows & Goshy (1993), which describes the interplay
between neutrino heating and mass accretion in spherical symmetry. For a given value
of ṀMPNS, i.e. the product of the mass-accretion rate and the proto-neutron star mass,
a critical value of Lν 〈εν〉2 exists6, which is the product of the neutrino luminosity

Lν = Lνe + Lν̄e (6.2)

and the luminosity-weighted squared neutrino mean energy

〈εν〉2 =
Lνe 〈ενe〉2 + Lν̄e 〈εν̄e〉2

Lν
. (6.3)

Above this critical threshold, the shock is revived by neutrino heating and can overcome
the ram pressure maintained by accreted material. This simple picture, however, does

6As done by Janka et al. (2016), we replace the quantity
〈
E2
ν

〉
=

〈
ε3ν
〉
/ 〈εν〉 appearing in the derivation

of the condition by 〈εν〉2.
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Fig. 6.8.: Critical luminosity condition for various 2D and 3D models. Lines depict
the evolution tracks of the 2D models (gray lines) and the 3D simulations
(colored lines). Symbols of different shapes mark the points in time, when
the timescale ratios τadv/τheat reach unity. The thick dashed line is a least-
squares fit to a 2D subset of these critical points. The 3D models discussed
in this work are the simulations 3Dn from Chapt. 5, (green), 3Ds (orange),
3Ds.SMR (purple), and the 9.6M� model from Chapt. 4 (cyan). The re-
maining colored lines represent other 3D models (see Janka et al., 2016, Fig.
3). Running averages of 25 ms were applied to all values. (This figure was
kindly provided by A. Summa.)

not include multi-dimensional processes in the gain layer, which are favorable for shock
revival in 2D and 3D. Summa et al. (2016) and Janka et al. (2016) therefore took
additional terms into account, namely the time dependence of the gain radius, the
binding energy of the gain layer, and the turbulent pressure. In the plane spanned
by the corrected heating term (Lν 〈εν〉2)corr and the accretion term (ṀMPNS)3/5, the
models propagate on their evolution tracks from right to left (see Fig. 6.8). Remarkably,
the points in time, at which the timescale ratios τadv/τheat reach unity, lie on a straight
line. This is also true for the exploding model 3Ds. Non-exploding simulations do not
reach this line and their trajectories turn downwards. The high-resolution run 3Ds.SMR
is an outlier in this respect. Its ratio τadv/τheat exceeds unity at a point being located
well above the critical line. The criterion of Summa et al. (2016) and Janka et al. (2016)
clearly predicts an explosion in case of our high-resolution 3D model 3Ds.SMR.

Many diagnostic quantities of the high-resolution 3D model appear to be more fa-
vorable compared to the model computed on a coarser grid. The angle-averaged shock
radius is larger during long phases of the evolution, the time scale ratio exceeds unity
earlier and rises permanently, and the non-radial kinetic energy in the gain layer is sig-
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nificantly higher. At the same time, slightly more energy is deposited in the gain layer
by neutrino heating. Moreover, a strong SASI spiral mode is present that – according
to Fernández (2015) – is beneficial for shock revival, because it contains more kinetic
energy compared to a sloshing mode that was found in the simulation 3Ds. Also the
recently proposed criterion of Summa et al. (2016) and Janka et al. (2016) predicts an
explosion. Despite all these findings, the model 3Ds.SMR does not yet show indications
for shock revival. In the following section we will try to identify the reason for the
unusual behavior of the high-resolution 3D simulation.

6.2.2. Energy and momentum fluxes

In order to assess, why the model 3Ds.SMR has not yet exploded, we analyze the
enthalpy, kinetic energy, and momentum flux densities similarly to Meakin & Arnett
(2007) and Radice et al. (2016). The considered flux densities are decomposed into a
mean and a turbulent component,

FX = F̄X + F ′X , (6.4)

where X is a placeholder for the different types of fluxes that we will discuss below.
The individual terms of the latter equation read

FX = 〈X vr〉 , (6.5a)

F̄X = 〈X 〉 〈vr〉 , (6.5b)

F ′X = 〈X (vr − 〈vr〉)〉 . (6.5c)

In this section, averages are defined as

〈X 〉 ..=

∫
dΩ ρX∫
dΩ ρ

. (6.6)

We analyze the flux densities of the enthalpy, the kinetic energy, and the radial mo-
mentum, which are given by

X =





ρe+ P enthalpy “H”,
1
2ρ(v2

r + v2
θ + v2

φ) kinetic energy “K”,

ρvr radial momentum “S”.

(6.7)

For reference, we note that the component of the Reynolds stress tensor being referred
to as “turbulent pressure” in the literature (Couch & Ott, 2015; Abdikamalov et al.,
2015; Radice et al., 2016; Roberts et al., 2016) is related to the turbulent momentum
flux density according to

Rrr = r2F ′S. (6.8)

In Fig. 6.9, we present the quantities defined in the previous equations for the models
3Ds and 3Ds.SMR. They are measured at a constant radius of 100 km in order to avoid
including pre-shock material in the analysis and allow for a detailed comparison of both
3D simulations. The time axes in Fig. 6.9 start at 230 ms post bounce corresponding
to the arrival time of the Si/Si+O shell interface. This is the interesting phase, during
which the revival of the shock in the model 3Ds.SMR would have been expected.
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Fig. 6.9.: Enthalpy, kinetic energy (left column) and momentum (right column) flux
densities of the two 3D models measured at a radius of 100 km as functions
of post-bounce time. The mean, turbulent, and total flux densities are
presented in the upper, middle, and lower panels, respectively. Colors depict
different types of fluxes. The corresponding definitions can be found in Eqs.
(6.5) in combination with Eq. (6.7).

The mean and turbulent momentum flux densities are larger in the high-resolution
3D simulation during crucial phases of the displayed time interval. By comparing the
definition of the mean value F̄S with Eq. (4.4), it follows that

F̄S ≈ −
Ṁ

4πr2
〈vr〉 , (6.9)

i.e. F̄S is related to the mass-accretion rate Ṁ and the angle-averaged radial velocity.
Note that this relation is not exact, because we apply a density-weighted averaging
procedure in this section and Ṁ is measured at a radius of 400 km. The steep decline
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of F̄S before 250 ms post bounce can easily be explained by the rapid drop of Ṁ as
the Si/Si+O shell interface is accreted. Subsequently, the mean flux density remains
larger in the simulation 3Ds.SMR, because the absolute value of 〈vr〉 is higher in this
case. Also the turbulent momentum flux density F ′S being proportional to the turbulent
pressure Rrr is larger in the high-resolution model. As a consequence, the total flux
density FS, which is proportional to the angle-averaged radial kinetic energy, exceeds
the 3Ds value considerably until about 350 ms.

The total enthalpy flux densities are negative, because the accretion flow from the
shock surface to the gain radius dominates the dynamics. However, their turbulent
parts F ′H are greater than zero in both 3D models, i.e. the total downwards enthalpy
flux is weakened by turbulent effects. A clear trend between both 3D models does not
exist in terms of enthalpy transport.

The kinetic energy flux densities F̄K and F ′K are also negative due to the global
accretion flow. Interestingly, the transport of kinetic energy both in the mean flow and
by turbulent processes is enhanced in the model 3Ds.SMR compared to the model 3Ds.
For example, the absolute value of the turbulent component |F ′K| is about 80% larger in
the high-resolution simulation at 300 ms. At the same time, |F̄K| is enhanced by ∼30%.

In order to further investigate, why more kinetic energy is transported downwards in
the model 3Ds.SMR, we decompose the flux into an inflow and an outflow component,
i.e. we consider fluid elements with vr < 0 and vr > 0, respectively. The two terms are
defined as

Ėkin
vr>0

..= r2

∫
dΩ Θ(vr)

1

2
ρ
(
v2
r + v2

θ + v2
φ

)
vr, (6.10a)

Ėkin
vr<0

..= r2

∫
dΩ Θ(−vr)

1

2
ρ
(
v2
r + v2

θ + v2
φ

)
vr, (6.10b)

where Θ(x) is the Heaviside step function. The same decomposition is also applied to
the mass fluxes according to

Ṁvr>0
..= r2

∫
dΩ Θ(vr) ρvr, (6.11a)

Ṁvr<0
..= r2

∫
dΩ Θ(−vr) ρvr. (6.11b)

In Fig. 6.10, we show these components as functions of time at a fixed radius of 100 km.
Indeed, the absolute value of the downflow kinetic energy flux |Ėkin

vr<0| is much larger

in the model 3Ds.SMR, whereas the outflow components Ėkin
vr>0 are equal in both 3D

simulations. Also the mass flux of downflows Ṁvr<0 is enhanced in the high-resolution
run. For the mass fluxes of outflows Ṁvr>0, a clear trend between the 3D models is not
seen.

The angular size of the downflows can be deduced from the “downflow filling factor”
being defined as

αvr<0
..=

∫
dΩ Θ(−vr)∫

dΩ
. (6.12)

It is a measure of the surface fraction occupied by downflows. In both 3D models, αvr<0

is greater than 0.5. Until ∼300 ms post bounce, the downflows occupy more space in
the simulation 3Ds. After that, both models exhibit equal values of αvr<0.
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Fig. 6.10.: Mass fluxes of downflows and outflows, Ṁvr<0 and Ṁvr>0 (upper panel),
kinetic energy fluxes of downflows and outflows, Ėkin

vr<0 and Ėkin
vr>0 (middle

panel), and downflow filling factors αvr<0 (lower panel) for the two 3D
models measured as a radius of 100 km. Blue lines depict the absolute val-
ues for infalling material, while red lines represent the values for outflowing
fluid elements.

At this stage, our hypothesis is that the downflows in the high-resolution simulation
transport more mass and significantly more kinetic energy from the shock to the gain
radius. Although the turbulent kinetic energy in the gain layer is higher in the model
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3Ds.SMR (cf. Fig. 6.7), it is carried away from the shock more efficiently, which is unfa-
vorable for shock revival. The higher turbulent pressure is not able to compensate for
this effect. The occupied angular space of the downflows is smaller shortly after the ar-
rival time of the Si/Si+O interface and becomes equal to the case 3Ds afterwards. This
implies that the downflows are more compressed in the model 3Ds.SMR compared to
the case 3Ds, which is probably caused by a higher non-radial Reynolds stress provided
by the turbulent outflows.

Further analysis of this process is postponed to a future publication, once the high-
resolution model is sufficiently far evolved in time and a final outcome can be deduced.

6.2.3. Kinetic energy spectra

A fluid transitions from the laminar to the turbulent regime above a certain Reynolds
number Re. Turbulence is described phenomenologically and understood as a superpo-
sition of eddies of various scales (Landau & Lifshitz, 1987; Pope, 2000). In the common
picture sharpened by Kolmogorov (1941), kinetic energy is steadily injected at some
large scale L, which is similar to the size of the largest turbulent eddies. These ed-
dies break up into smaller structures and thus transport energy to successively smaller
scales. Eventually, below some small scale L, kinetic energy is dissipated into internal
energy by viscous effects.

Kolmogorov (1941) assumed that this turbulent energy cascade only depends on the
energy dissipation rate and the viscosity. In the inertial range roughly between L and L,
kinetic energy is carried to smaller scales without losses. From a self-similarity ansatz,
it follows that the kinetic energy spectrum E(k) – with k being the wave number – has
a universal shape of E(k) ∝ k−5/3 in the inertial range.7 These findings only hold if
the fluid structures are locally isotropic, i.e. large-scale anisotropies due to boundary
effects can be neglected for sufficiently small scales below L (Pope, 2000). It is not
clear, whether this assumption is valid during the shock stagnation phase, because the
accretion flow through the gain layer might add a preferred direction not only to the
largest turbulent eddies but also to smaller-scale structures (see, e.g., Couch & Ott,
2015).

Here, we assume that Kolmogorov’s theory of turbulence is applicable to the core-
collapse supernova scenario. In order to quantify the turbulent transport of energy
across various scales, the kinetic energy spectrum is calculated for both 3D models
at different times after core bounce. Since we are considering stellar cores, which
are spherical objects to first order, the kinetic energy is decomposed into spherical
harmonics instead of Cartesian wave numbers.

Let the complex spherical harmonics be defined as

Ỹ m
` (θ, φ) =





Nm
` Pm` (cos θ) eimφ m > 0

N0
` P

0
` (cos θ) m = 0

(−1)mN
|m|
` P

|m|
` (cos θ) eimφ m < 0

(6.13)

with normalization factors

Nm
` =

√
2`+ 1

4π

(`−m)!

(`+m)!
(6.14)

7To clarify the notation, we write Ek and E` instead of E(k) and E(`) from now on, because the
symbol E is also used for the total kinetic energy.
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and associated Legendre polynomials Pm` (cos θ). The decomposition of the non-radial
kinetic energy density at a given radius is then determined by

E` =
1

2

∑̀

m=−`

∣∣∣∣∣

∫
dΩ

√
ρ
(
v2
θ + v2

φ

)
Ỹ m
` (θ, φ)

∣∣∣∣∣

2

. (6.15)

This spectrum is normalized such that the total non-radial kinetic energy density on a
spherical shell is the sum over all components of the spectrum,

E ..=
1

2

∫
dΩ ρ

(
v2
θ + v2

φ

)
=

∞∑

`=0

E`. (6.16)

The decomposition applied here was similarly used in other works that analyzed the
turbulent cascade, for example, Hanke et al. (2012), Couch & O’Connor (2014), Hanke
(2014), and Abdikamalov et al. (2015).

For the discussion later in this chapter, we also define the spectrum of the specific
kinetic energy as

E` =
1

2

∑̀

m=−`

∣∣∣∣
∫

dΩ
√
v2
θ + v2

φ Ỹ
m
` (θ, φ)

∣∣∣∣
2

. (6.17)

Again, the sum over the coefficients gives the total non-radial specific kinetic energy on
a spherical shell,

1

2

∫
dΩ

(
v2
θ + v2

φ

)
=
∞∑

`=0

E`. (6.18)

In the following figures, we present energy spectra for the two 3D models 3Ds and
3Ds.SMR at certain times after core bounce. The spectra are measured at a radius R0

between the angle-averaged gain radius and the minimum shock radius, i.e.,

R0 =
〈Rgain〉+ min(Rsh)

2
. (6.19)

This choice assures that we do not include contributions from pre-shock material in our
analysis. In order to smooth the data, the energy spectra are averaged over R0 ± 5 km
and t ± 2.5 ms. To guarantee consistency, this averaging is also applied to the total
kinetic energy density E.

From the angular grid resolution α of the 3D models, we can calculate the maximum
multipole order `max roughly according to `max ≈ 180◦/α. In the SMR simulation
3Ds.SMR, α = 1◦ at the location where the spectrum is measured (cf. Fig. 6.1). How-
ever, for numerical reasons, we are not able to compute spherical harmonics for ` > 150.
Consequently,

`max =

{
90 for 3Ds,

150 for 3Ds.SMR.
(6.20)

In Fig. 6.11 and in the upper panels of Fig. 6.14, we show the turbulent energy spectra
as functions of ` for five different times after bounce. The largest scales contain most
of the total kinetic energy. Their temporal evolution should therefore be in line with
the behavior of the non-radial kinetic energy shown in Fig. 6.7. Although it seems that
this is not always the case, it should not be forgotten that the monopole term ` = 0,
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Fig. 6.11.: Kinetic energy spectra E` for both 3D models at five different times after
core bounce (see Eq. (6.15)).
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Fig. 6.12.: Same as Fig. 6.11, but normalized to the total kinetic energy density E
(see Eq. (6.16)).
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Fig. 6.13.: Same as Fig. 6.11, but multiplied with a factor `5/3.
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Fig. 6.14.: Kinetic energy spectra E` (upper panels), normalized spectra E`/E (middle
panels), and rescaled spectra E` `

5/3 (lower panels) for the model 3Ds (left
panels) and the model 3Ds.SMR (right panels) at five different times after
bounce.

which is the dominant part, is not shown in Figs. 6.11 and 6.14. Especially the SASI
spiral mode in the model 3Ds.SMR has a large monopolar contribution.

We can estimate the multipole order of the largest eddies `L from simple considera-
tions about their size. The largest possible extent of turbulent structures in the gain
layer is

L = 〈Rsh〉 − 〈Rgain〉 . (6.21)

As explained, for example, by Foglizzo et al. (2006), this can be translated into a
multipole order according to

`L =
πR0

L
. (6.22)

For both 3D models, we find that `L ≈ 3 between 250 to 380 ms after bounce. Indeed,
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the energy spectra peak at 2 . ` . 4 indicating that kinetic energy is injected in this
range.

From 230 to 300 ms post bounce, E` decreases drastically at large scales, i.e. at low
`, and increases at small scales. After 300 ms, the energy spectra remain relatively con-
stant. This behavior can be observed in both 3D models and is related to the temporal
evolution of the shock radii. Steady-state turbulence, which is a key assumption of Kol-
mogorov’s theory, seems to be established during phases of shock stagnation without
large oscillations caused by the SASI.

In order to further investigate how the spectra evolve with time, we normalize them
to the total kinetic energy density on the spherical shell located at the radius R0 (see
Fig. 6.12 and middle panels of Fig. 6.14). As already mentioned before, the amount
of kinetic energy at small scales grows in both 3D models until 300 ms after bounce.
While in the simulation 3Ds, the increase happens quickly between 250 and 300 ms,
kinetic energy is accumulated at small scales more continuously in the case 3Ds.SMR.

An important aspect of Kolmogorov’s theory of turbulence is the presence of a k−5/3

scaling in the inertial range of the energy spectrum. As we will show below, this
translates into an `−5/3 behavior in our decomposition. Hence, we rescale the spectra
as E` `

5/3 in Fig. 6.13 and in the lower panels of Fig. 6.14. The inertial range is then
visible as horizontal parts of the rescaled spectra.

Indeed, we can well identify the inertial range of the turbulent energy cascade in our
3D models. At 300 ms, for example, it spans an interval of 15 . ` . 40 in the model
3Ds and 25 . ` . 70 in the model 3Ds.SMR. In the high-resolution simulation, the
identification of the inertial range is easier, because the dissipation range at smaller
scales is nicely visible with its much steeper slope of `−7 for ` & 80. The dissipation
range in the model 3Ds is shallower with an `−3 behavior and starts at ` ≈ 40.

The value of `, above which kinetic energy is dissipated into internal energy, depends
on the grid resolution. In the high-resolution 3D model with a grid spacing of 1◦ in
the gain layer, it is approximately twice as large as in the simulation with an angular
resolution of 2◦. For both cases, dissipation sets in at a level of a few grid cells.
According to Porter et al. (1998) and Sytine et al. (2000), the piecewise parabolic
method (PPM; Colella & Woodward, 1984) that is applied in Vertex-Prometheus
dissipates kinetic energy below 2 to 12 grid cells, which is roughly consistent with our
estimate.

To sum up, there is evidence that Kolmogorov’s theory of steady-state isotropic
turbulence can be applied during phases of stock stagnation, in which the SASI does
not pump kinetic energy into the lowest modes ` . 2. In the high-resolution simulation,
we see a clear separation between the inertial range with its characteristic slope of −5/3
and the dissipation range with a steeper decay.

6.2.4. Numerical viscosity and effective Reynolds number

The kinematic viscosity in the gain layer is of the order of 0.1 cm2 s−1 and thus extremely
low (Abdikamalov et al., 2015). We do not include this viscosity explicitly in the
equations that are solved for describing the evolution of the fluid (cf. Sect. 2.1). This is
because the viscosity implicitly given by the numerical scheme is orders of magnitude
larger than the kinematic viscosity (see., e.g., Müller, 1998). Like in all other state-of-
the-art core-collapse supernova models, we rely on the implicit large eddy simulation
(ILES; Grinstein et al., 2007) paradigm. It assumes that dissipative effects at the

115



6. High-resolution 3D simulation

smallest scales are implicitly covered by the numerical viscosity. Instead of solving
filtered hydrodynamic equations and creating a sub-grid model for the dissipation of
kinetic energy (Boris et al., 1992), the ILES approach assumes that such a sub-grid
model is implicitly included at the level of the grid cell size.

Estimating the effective viscosity of a numerical scheme νN is difficult. It depends
not only on the algorithm itself, but also on its implementation. Even if the numer-
ical viscosity is known for one simulation code, it is not justified to assume an equal
viscosity for all codes that make use of the same algorithm for treating the hydrody-
namics. Consequently, the numerical viscosity and the effective Reynolds number must
be determined for every code separately in order to estimate the influence of dissipa-
tive effects. This can only be achieved by measuring characteristic quantities from the
output data.

In the following two sections, we will discuss two methods for determining the numer-
ical viscosity and the effective Reynolds number from properties of the kinetic energy
spectrum. Both approaches will be applied to our 3D simulations. The first procedure
was proposed by Abdikamalov et al. (2015), while the second method has been devel-
oped by us and is presented here for the first time. As in the previous section, the
energy spectra are averaged over 10 km and 5 ms, and measured at a radius R0 between
the angle-averaged gain radius and the minimum shock radius.

Based on the Taylor microscale

The method of Abdikamalov et al. (2015) is based on determining the so-called Taylor
microscale, which is given by (Frisch, 1995; Pope, 2000)

λ =

√
5E

Z
, (6.23)

where E is the total kinetic energy density of non-radial fluid motions,

E ≈
`max∑

`=0

E`, (6.24)

and Z is the enstrophy, which can be approximated by

Z =
1

R2
0

`max∑

`=0

`(`+ 1)E`. (6.25)

For the upper bound `max, Abdikamalov et al. (2015) picked a value of 120, while we
calculate it from the angular resolution of the model (see Eq. (6.20)).

The Taylor microscale λ has no direct physical interpretation. It is situated some-
where between the characteristic scale of the smallest eddies – the Kolmogorov scale –
and the size of the largest structures (Pope, 2000).

Abdikamalov et al. (2015) derived a relation for the effective Reynolds number,

Re = 5
L̃2

λ2
, (6.26)

which is, however, not consistent with the literature. Commonly, a factor of 10 (Pope,
2000; Schmidt, 2014) or even 15 (Tennekes & Lumley, 1972) instead of 5 is applied.
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3Ds 3Ds.SMR

tpb [ms] Re νN [1013 cm2 s−1] L̃ [km] Re νN [1013 cm2 s−1] L̃ [km]

230 49.2 50 71 61.4 58 63
250 45.6 79 82 60.3 50 57
300 49.8 42 54 56.4 39 45
350 49.9 47 57 57.7 33 39
380 48.7 57 59 59.3 35 41

Tab. 6.1.: Effective Reynolds numbers Re, numerical viscosities νN, and energy-
containing scales L̃ of the 3D models for different times after core bounce
computed using the method of Abdikamalov et al. (2015).

Nevertheless, in order to compare with the results of Abdikamalov et al. (2015), we also
use their factor 5 here. At the end of this section, we will further discuss this issue.

The size of the energy-containing eddies L̃ is calculated by Abdikamalov et al. (2015)
from the energy spectrum according to

L̃ = πR0

(
1 +

1

E

`max∑

`=0

`E`

)−1

. (6.27)

Finally, the numerical viscosity can be determined from the fundamental relation

νN =
v0L̃

Re
. (6.28)

The characteristic velocity of the largest eddies is deduced from the total kinetic energy
density by

E =
1

2
ρ0v

2
0. (6.29)

Note that also E, ρ0, and v0 are averaged over a radius interval of 10 km and a time
range of 5 ms.

In Tab. 6.1, we present the Reynolds numbers and numerical viscosities of both 3D
simulations calculated with the method of Abdikamalov et al. (2015). Our Reynolds
numbers are compatible with the values of their “ULR” and “LR” cases, which have an
angular resolution of 2.16◦ and 1.08◦, respectively. In the model 3Ds.SMR, Re is only
15–30% larger compared to the case 3Ds. This is unexpected, since an increase of the
angular resolution by a factor of two should enhance the Reynolds number by a similar
factor. Furthermore, also the absolute values of the Reynolds numbers seem to be too
low compared to other results discussed in the literature. Keil et al. (1996) estimated a
value of Re & 2000 for 2D simulations of 1.5◦ resolution performed with Prometheus
based on a systematic study of Porter & Woodward (1994).

The method of Abdikamalov et al. (2015) suffers from the uncertainty of Eq. (6.26).
Its application is debatable, because there might be a factor of 2 or even 3 missing.
This issue will be discussed later in this section.

For the mentioned reasons, we have developed a different procedure, which yields
more realistic values of the numerical viscosity and the effective Reynolds number.
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6. High-resolution 3D simulation

Based on the energy dissipation rate

Our method for measuring the numerical viscosity and the Reynolds number is based
on more fundamental properties of the turbulent energy cascade. In the inertial range,
the kinetic energy spectrum only depends on the energy dissipation rate ε and is given
by (Landau & Lifshitz, 1987; Pope, 2000)

Ek = C ε
2/3 k−

5/3. (6.30)

In order to be consistent with the literature, we employ the spectrum of the specific
kinetic energy as defined in Eq. (6.17) rather than of the kinetic energy density. The
factor C is a universal constant of C = 1.62 and independent of the Reynolds number
(Sreenivasan, 1995; Yeung & Zhou, 1997).

Since we decompose the spectrum by use of spherical harmonics, it must be written as
a function of the multipole order ` instead of the wave number k. This transformation
reads

k =

√
`(`+ 1)

R0
≈ `

R0
, (6.31)

where the latter approximation is valid for sufficiently high values of `. The energy
spectrum as a function of k,

Ek dk = C ε
2/3 k−

5/3 dk, (6.32)

can then be written as

E` d` = C ε
2/3R

5/3
0 `−

5/3 d`

R0
. (6.33)

From this relation, we obtain an equation for the energy dissipation rate,

ε(`) =

√
E3
` `

5

R2
0 C

3
, (6.34)

which allows for directly measuring its value from the spectrum. Together with the
specific enstrophy Z calculated according to

Z =
1

R2
0

`max∑

`=0

`(`+ 1) E`, (6.35)

we can determine the numerical viscosity from the equation (Tennekes & Lumley, 1972;
Pope, 2000)

νN =
ε

2Z . (6.36)

Note that the enstrophies defined in Eqs. (6.25) and (6.35) are connected to each other
by the relation Z ≈ ρ0Z, which becomes exact for `max −→∞.

In Fig. 6.15, we present ε as a function of ` for both 3D simulations. The maximum
value of the energy dissipation rate is much larger in the model 3Ds.SMR compared to
the case 3Ds. It is also shifted to smaller scales in the high-resolution run, because the
inertial range is moved to higher `.

The question arises, at which multipole order ` the energy dissipation rate should be
measured for our purposes. Given Eq. (6.36), the most conservative approach is taking
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Fig. 6.15.: Energy dissipation rates ε computed according to Eq. (6.34) for both 3D
models at different times after core bounce.
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6. High-resolution 3D simulation

3Ds 3Ds.SMR
tpb [ms] Re νN [1013 cm2 s−1] L [km] Re νN [1013 cm2 s−1] L [km]

230 443.5 2.5 32 1309.4 2.3 54
250 1024.2 3.0 71 1882.7 2.7 97
300 1084.4 3.4 94 1936.1 3.2 124
350 1219.7 4.2 119 1977.8 2.6 104
380 1776.5 4.6 171 1888.7 2.8 101

Tab. 6.2.: Effective Reynolds numbers Re, numerical viscosities νN, and energy-
containing scales L of the 3D models for different times after core bounce
computed with our new approach.

the peak value of ε, because we want to maximize the numerical viscosity, which is
known to be large.

Ultimately, we can calculate the effective Reynolds number as

Re =
v0L

νN
(6.37)

with v0 being the characteristic velocity of the largest eddies given by

v2
0 =

∫
dΩ

(
v2
θ + v2

φ

)
. (6.38)

In contrast to the previous method, L is assumed to be equal to the diameter of the
gain layer as already defined in Eq. (6.21).

The Reynolds numbers and numerical viscosities based on the measured energy dissi-
pation rates are shown in Tab. 6.2. With our method, we obtain values for Re that are
more consistent with other results for Prometheus documented in the literature (Keil
et al., 1996). In the high-resolution simulation, the Reynolds numbers reach values of
more than 1900 and are 60–85% larger than in the model with lower angular resolution.
Only at 380 ms, Re becomes very high in the exploding simulation 3Ds, because the size
of the gain layer grows as the shock propagates outwards and L is therefore boosted to
unrealistic values.

During the phase of shock stagnation and ceased SASI activity in the model 3Ds.SMR,
i.e. after 250 ms, both the Reynolds numbers and the numerical viscosities remain rel-
atively constant. This indicates that the turbulent cascade is in a steady-state regime
during this stage. We do not see evidence that the scaling relations of classical turbu-
lence theory might not be applicable there.

Comparison of the methods

The two approaches described above yield Reynolds numbers and numerical viscosities
that differ significantly. In order to analyze, why this is the case, we divide Eqs. (6.26)
and (6.28) by Eqs. (6.37) and (6.36), i.e. we divide the values calculated with the
method of Abdikamalov et al. (2015) by the values obtained with our procedure. The
ratio of the Reynolds numbers reads

RRe
..=

ReAbdikamalov

Reours =
εL̃2

v3
0L

(6.39)
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and the ratio of the numerical viscosities is given by

RνN
..=

νAbdikamalov
N

νours
N

=
v3

0

εL̃
. (6.40)

Ideally, both quantities – RRe and RνN – should be unity. Currently, the ratio RRe is too
low, while RνN is too large. As a consequence, ε and L̃ are probably underestimated,
whereas L and v0 are presumably overestimated.

The energy dissipation rate ε is directly measured from the energy spectrum according
to Eq. (6.34). The only term in Eq. (6.34) being not precisely known is the constant
C. However, it was determined to satisfying accuracy and even the largest possible
reduction of C within the error bars mentioned by Sreenivasan (1995) would enhance ε
by only 18%. For the proposed best value of C, we have measured the peak amplitude
of ε(`) to maximize the numerical viscosity. Hence, we conclude that a significant
underestimation of the energy dissipation rate is unlikely.

Concerning the length scales of the largest turbulent eddies, it could well be that
the value L̃ of Abdikamalov et al. (2015) is too low and our value of L is too large.
The calculated values of L are often more than a factor of two greater than L̃. The
true size of the largest eddies is probably between both scales. However, since the
ratios RRe and RνN depend more strongly on L̃ than on L, an underestimation of
L̃ in the approach of Abdikamalov et al. (2015) has a large influence on the results.
Unfortunately, the authors did not mention the origin of their Eqs. (29) and (30) for
calculating L̃, which we have cited in Eq. (6.27). Determining the length scale from
the spectral shape in this way is unreasonable, because the size of the largest eddies
should not depend on the grid resolution. As shown above, the energy injection scale
is equal in both 3D simulations providing further evidence that the energy-containing
eddies have a universal size independent of the grid spacing. Solely the extent of the
gain layer constraints the diameter of the largest turbulent structures, which is exactly
the motivation for our choice of L in Eq. (6.21).

Also an overestimation of the characteristic velocity v0 of the largest eddies could
contribute to the discrepancy of the two approaches. In both methods, v0 is calculated
employing Eq. (6.38). Even slightly exaggerated values would boost the ratios RRe and
RνN significantly. This could happen, for example, if the non-radial velocity components
vθ and vφ did not only describe perturbations around zero, but a global rotational
motion existed.

Besides these considerations of over- and underestimated terms, the Reynolds num-
bers calculated with the approach of Abdikamalov et al. (2015) are generally too low.
The factor 5 in Eq. (6.26) is questionable, because it is smaller than what is reported
in the literature. Tennekes & Lumley (1972) formulated Eq. (6.26) in a different way,

Re =
15

A

L̃2

λ2
, (6.41)

where A is an “undetermined constant” of order one. Pope (2000) and Schmidt (2014)
used A = 3/2, whereas Abdikamalov et al. (2015) and also Couch & Ott (2015) applied
A = 3. Obviously, there is some ambiguity about the value of this constant. The
Reynolds numbers of Abdikamalov et al. (2015) are thus presumably more than a
factor of two too small. This highlights an important aspect of turbulence theory.
Many equations are obtained from self-similarity considerations and therefore based
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6. High-resolution 3D simulation

only on proportionalities. Scaling factors are then derived from further assumptions or
they remain undetermined. Our approach for calculating the numerical viscosity relies
on the fundamental relations of Kolmogorov’s theory and avoids the usage of other
equations. Although our obtained values of the Reynolds numbers might be slightly
overestimated due to the dependency on v0 and L, we are confident that the measured
numerical viscosities are reliable.

6.3. Summary and discussion

We performed core-collapse supernova simulations of a 20M� star applying the Vertex-
Prometheus neutrino-hydrodynamics code in full three dimensions (3D) with the aim
of investigating effects caused by an increased grid resolution. Axisymmetric models
were also considered, but not pursued further because of the large stochastic scatter of
their shock radii. Our reference 3D model is the exploding simulation 3Ds discussed
in Chapt. 5, which was computed on the standard spherical polar grid with an angu-
lar resolution of 2◦ in the entire computational domain. For the high-resolution 3D
model 3Ds.SMR, we applied our newly-developed static mesh refinement technique on
the Yin-Yang grid, with an angular resolution of 2◦ below the gain radius. Slightly
above, the grid spacing was set to 1◦ and further refined to 0.5◦ outside of 160 km.

After the arrival of the Si/Si+O shell interface, the high-resolution 3D model exhibits
a larger angle-averaged shock radius, a higher turbulent kinetic energy in the gain layer,
and a larger turbulent pressure compared to the model 3Ds. The ratio of advection
and heating timescales exceeds unity earlier and rises continuously to a value of about
1.3. A strong SASI spiral mode is present, which – in contrast to the sloshing mode in
the simulation 3Ds – supplies a high non-radial kinetic energy. The energy deposition
in the gain layer by neutrino heating is slightly larger in the simulation 3Ds.SMR.

All these diagnostic quantities indicate that the simulation 3Ds.SMR should explode
earlier and more robustly than the model 3Ds. This is, however, not the case. Shock
revival has not occurred in the high-resolution simulation until 380 ms post bounce,
although the explosion of the model 3Ds is already on its way at that time. An en-
hanced transport of kinetic energy from the shock to the gain radius seems to be the
reason for the hindered shock revival in the case 3Ds.SMR, despite a higher turbulent
pressure. Couch & Ott (2015) claimed that such an additional pressure contribution is
beneficial for shock revival. Even though the shock radius is pushed to larger radii in
our high-resolution simulation, the enhanced Reynolds stress is not sufficient to trigger
an explosion.

The entropy distribution in the gain layer reveals finer structures in the case 3Ds.SMR,
because the kinetic energy cascade is extended to smaller scales. In this model, the iner-
tial range with the classical −5/3 scaling is clearly separated from the dissipation range.
Energy is injected at a multipole order ` ≈ 3 in both 3D models. Their energy spectra
remain relatively constant after 300 ms post bounce, which indicates that steady-state
turbulence is established in this phase. During periods of shock stagnation without
SASI oscillations, the classical turbulence theory based on Kolmogorov’s assumptions
seems to be applicable in our models. We thus do not agree with Couch & Ott (2015),
who argued that Kolmogorov’s theory might be generally inappropriate for describ-
ing turbulence during the stalled-shock phase because of the directed accretion flow
through the gain layer.
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6.3. Summary and discussion

For the first time, we measured the numerical viscosities and the effective Reynolds
numbers in 3D simulations performed with Vertex-Prometheus. We applied the
procedure of Abdikamalov et al. (2015) based on determining the Taylor microscale.
However, this method is questionable, because it yielded implausibly low Reynolds
numbers due to inconsistencies and uncertainties in their formulae. Consequently, we
developed a new approach based on the fundamental equations of turbulence theory. It
relies on measuring the energy dissipation rate from the kinetic energy spectrum and
directly relates this to the numerical viscosity. With the new method, we obtained
Reynolds numbers of & 1900 in the model 3Ds.SMR that are consistent with the lit-
erature. As expected, the high-resolution run exhibits higher Reynolds numbers and
lower numerical viscosities.

Our high-resolution 3D simulation has not exploded until 380 ms post bounce, while
the corresponding reference model computed on a coarser grid exploded successfully.
Although it might be that the temporal evolution of the simulation 3Ds.SMR is stochas-
tic and an explosion will commence soon, we assume that it will eventually fail. One
should, however, be cautious in interpreting this result as a trend that a high grid res-
olution impedes an explosion. A clear resolution dependence cannot be deduced from
two single 3D models, especially because the success of the high-resolution simulation
is still uncertain. In any case, further analysis is required in terms of the unfavorable
kinetic energy transport in the gain layer that seems to be the reason for the failure of
the model 3Ds.SMR.
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7. Conclusions

In this work, we presented the first successfully exploding three-dimensional (3D) core-
collapse supernova simulations performed with the elaborate neutrino-hydrodynamics
code Vertex-Prometheus. This is an important milestone of supernova modeling,
because it demonstrates that neutrino-driven explosions can be obtained in 3D with
sophisticated neutrino transport and state-of-the-art neutrino interactions. Successful
3D explosions were obtained before, however, with more simplified neutrino transport
schemes compared to ours (Takiwaki et al., 2012, 2014; Lentz et al., 2015; Müller, 2015).

On the basis of a zero-metallicity 9.6M� progenitor star, we demonstrated that ex-
plosions in 3D can become more energetic than their axisymmetric (2D) counterparts,
because the turbulent transport of kinetic energy is fundamentally different in 2D and
3D. Energy cascades to smaller scales in 3D, whereas it is accumulated at large scales in
2D. Turbulent energy transport to small scales in 3D can weaken downflows, which pen-
etrate into the cooling layer with lower velocities. The consequent reduced dissipation
of their kinetic energy diminishes the efficiency of neutrino cooling, which boosts the
explosion energy to a 10% higher value compared to the 2D case. This is particularly
important, because explosion energies obtained in 2D simulations are often at the lower
end of the observed value range (Marek & Janka, 2009; Suwa et al., 2010; Müller et al.,
2012a,b; Bruenn et al., 2013; Nakamura et al., 2015; Suwa et al., 2016). Nevertheless,
it must be noted that the final saturated explosion energies cannot be deduced from
self-consistent models at the moment, because it is computationally unaffordable to
evolve them for sufficiently long time – especially in 3D.

Preceding works argued that there is a tendency for 3D models to explode less readily
than their 2D counterparts, which was likewise attributed to the different characteris-
tics of the turbulent energy cascade in 2D and 3D (e.g., Hanke et al., 2012; Couch &
O’Connor, 2014; Takiwaki et al., 2014; Lentz et al., 2015). However, a general disadvan-
tage of the third spatial dimension for energetic core-collapse supernova explosions was
disproved with our study. A similar result was presented by Müller (2015), who also
found a higher explosion energy in 3D compared to 2D for an 11.2M� progenitor. This
demonstrates that our 3D model is not an isolated case with respect to its difference to
2D. The question whether heavier progenitor stars could also explode more energetically
in 3D can hardly be answered at this stage and requires further investigation.

Previously failed 3D simulations of Hanke et al. (2013), Tamborra et al. (2013), Hanke
(2014), and Tamborra et al. (2014a,b) performed with the Vertex-Prometheus code
were already close to the explosion threshold. We demonstrated this by including
theoretically and experimentally motivated strange-quark contributions to the nucleon
spin (Horowitz, 2002) in a non-exploding 3D model of a 20M� star, which then yielded a
successful explosion. The strangeness correction of the axial-vector coupling coefficient
reduces the neutrino-nucleon scattering opacities at a 10% level mainly below the proto-
neutron star surface. Besides the direct enhancement of the luminosities of electron
neutrinos and electron antineutrinos, there is a crucial indirect effect. A higher energy
loss by the emission of heavy-lepton neutrinos leads to a faster contraction of the proto-
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neutron star. The neutrinospheres of all species are therefore shifted inwards to higher
temperatures, so that their luminosities and mean energies are increased considerably.
This leads to an enhanced energy deposition in the gain layer by neutrino heating and
provides more favorable conditions for shock revival.

Hobbs et al. (2016) argued that our chosen value for the strangeness correction was
too extreme compared to measurements and theoretical predictions. However, other
effects exist that reduce the cross sections of neutrino-nucleon scattering in a similar way
as the strangeness correction, for example, correlations in low-density nucleon matter
(Horowitz, 2016). We did not claim that the strangeness correction is the missing
ingredient for robust 3D explosions and that strange-quark contributions have to be
included in future simulations. Instead, we emphasized that a profound knowledge of
the neutrino opacities is indispensable for accurately simulating neutrino-driven core-
collapse supernovae.

We took a first step towards high-resolution 3D simulations with our tool, Vertex-
Prometheus, by implementing a novel refinement procedure for the computational
grid. The first application of the new mesh did not give rise to shock revival until the
end of the still ongoing simulation, although the model on the coarser grid exploded
successfully and the important diagnostic quantities suggested a positive outcome. An
enhanced transport of kinetic energy away from the shock seems to be the reason for
the potential failure of the high-resolution model, assessed on the basis of the current
state of the simulation. We analyzed the turbulent energy spectrum and found indica-
tions from which we concluded that Kolmogorov’s theory of steady-state and isotropic
turbulence is applicable during the stalled-shock phase. Our findings are in contrast
to the discussion of Couch & Ott (2015), who speculated that the classical description
of turbulence might not be appropriate because of the directed accretion flow through
the gain layer and the time-dependence of the accretion rate.

It was found in numerous studies that explosions in 3D are delayed if the resolution
of the computational grid is increased (Hanke et al., 2012; Couch & O’Connor, 2014;
Takiwaki et al., 2014; Abdikamalov et al., 2015; Roberts et al., 2016). This was origi-
nally attributed to a trapping of kinetic energy at large scales occurring in less resolved
simulations (Abdikamalov et al., 2015; Radice et al., 2015, 2016). Later, this argu-
ment was retracted by Roberts et al. (2016), so that a thorough understanding is still
lacking. From the latter works, a clear resolution dependence of the diagnostic quan-
tities, such as the shock radius, cannot be deduced. Neither did we make a statement
about how the resolution influences the conditions for shock revival based on our two
3D models, because the statistical significance is too low and the final outcome of our
high-resolution 3D simulation is still uncertain. Nevertheless, it is clear that current
core-collapse supernova simulations are not converged in the sense that reducing the
grid spacing does not alter the results. That is why further resolution studies with
sophisticated neutrino transport are required.

In order to quantify the amount of numerical dissipation in Vertex-Prometheus,
we developed a method for determining the numerical viscosity based on measuring the
energy dissipation rate from the turbulent spectrum. Our calculated effective Reynolds
numbers are compatible with other results reported in the literature, but far from their
physical values being expected in the gain layer. This was also observed by Abdikamalov
et al. (2015), who used a different method for determining the Reynolds numbers that,
however, presumably underestimates their values. It is still under debate what spatial
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resolution is required in order to accurately model the core-collapse supernova explosion
mechanism and regard simulations as converged.

The ultimate goal of supernova modelers is to achieve robust explosions in 3D sim-
ulations with consistent values of all essential observables. With this work, we have
shown that explosions can indeed be achieved in 3D with sophisticated neutrino trans-
port and that their explosion energies are not necessarily below the values obtained in
2D simulations. A prerequisite for further progress is, however, that uncertainties in
current supernova models are eliminated – such as inaccuracies of neutrino opacities –
and that the numerical treatment is verified in resolution studies. Other ingredients for
core-collapse supernova simulations were not discussed in this work but also need to be
considered, for example, uncertainties in the high-density equation of state (see, e.g.,
Fischer et al., 2014; Lattimer & Prakash, 2016), effects of rotation (Iwakami et al., 2014;
Nakamura et al., 2014), and large-scale perturbations in the progenitor star before col-
lapse (Arnett & Meakin, 2011; Couch & Ott, 2013; Müller & Janka, 2015; Couch et al.,
2015). All in all, the first successful 3D explosions awaken the hope that a thorough
understanding of the neutrino-driven mechanism comes within reach.
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Appendix

A. Aitoff projection

x −x−x y−y

z

−z
Fig. A.1.: Positions of the coordinate axes x (red), y (green), and z (blue) in the

Aitoff projection. Unit vectors pointing towards and away from the reader
are marked by dots and crosses, respectively. The dotted mesh shows lines
of constant longitude and latitude, respectively.

For displaying all-sky maps in this work, we select the projection introduced by David
Aitoff. The orientation of the Cartesian coordinate axes is defined such that the point
(1, 0, 0) has the angular coordinates θ = π/2 and φ = 0. In Fig. A.1, the orientation
of the axes is shown in our chosen definition. The angular positions of the points
(1, 0, 0), (0, 1, 0), and (0, 0, 1) are marked by dots, whereas their negative counterparts
are depicted with crosses.

129



130



List of abbreviations

1D One-dimensional, i.e. spherically symmetric
2D Two-dimensional, i.e. axially symmetric
3D Three-dimensional
CFL Courant-Friedrichs-Lewy criterion (Courant et al., 1928)
EOS Equation of state
LESA Lepton-number emission self-sustained asymmetry

(Tamborra et al., 2014a)
LS220 High-density equation of state by Lattimer & Swesty (1991)

with a nuclear incompressibility parameter of 220 MeV
NSE Nuclear statistical equilibrium
PNS Proto-neutron star
SASI Standing accretion-shock instability (Blondin et al., 2003)
SMR Static mesh refinement (see Sect. 3.3)
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Simulationen überhaupt erst ermöglicht.
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hat stets reibungslos geklappt. Ganz besonders danke ich ihm für seine Geduld beim
Korrekturlesen etlicher Abschnitte dieser Arbeit.
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