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We present a practical algorithm for generating random regular graphs. For all d growing

as a small power of n, the d-regular graphs on n vertices are generated approximately

uniformly at random, in the sense that all d-regular graphs on n vertices have in the limit

the same probability as n→∞. The expected runtime for these ds is O(nd2).

1. Introduction

There are various algorithms known for generating graphs with n vertices of given

degrees uniformly at random. Unfortunately, none of them is of practical use for all

degree sequences, even for those with all degrees equal. In this paper we examine an

algorithm which, although it does not generate uniformly at random, is provably close

to a uniform generator when the degrees are relatively small. Moreover, it is easy to

implement and quite fast in practice.

The most interesting case is the regular one, when all degrees are equal to d = d(n), say.

Moreover, methods for the regular case of this problem usually extend to arbitrary degree

sequences, although the analysis can become more complicated and it may be necessary to

impose restrictions on the variation in the degrees (such as is analysed by Jerrum, McKay

and Sinclair [4]). The first algorithm for generating d-regular graphs uniformly at random

was implicit in the paper of Bollobás [2] and also in the approaches to counting regular

graphs by Bender and Canfield [1] and in [13] (see also [14] for explicit algorithms). The
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378 A. Steger and N. C. Wormald

configuration or pairing model of random d-regular graphs is as follows. Start with nd

points (nd even) in n groups, and choose a random pairing of the points. Then create

a graph with an edge from i to j if there is a pair containing points in the ith and jth

groups. If no duplicated edge or loop (i.e., a pair of points in the same group) occurs,

the resulting d-regular graphs occur uniformly at random. For graphs on n vertices this

takes expected time of the order of nde(d2−1)/4 per graph, at least for d up to n1/3, so is

not polynomial time unless d = O(
√

log n). In [9] a polynomial expected time uniform

generation algorithm was given for d = O(n1/3), but the expected running time per graph

is O(n2d4). This is rather complicated to implement. Also, it applies to arbitrary degree

sequences. Another algorithm was given specifically for regular graphs which reduces the

time to O(nd3), however this is prohibitively difficult to implement, and again it only

applies for d = O(n1/3).

The need for generating such graphs can also be met by simpler algorithms which do not

generate the graphs uniformly at random. For example, Tinhofer [12] gives one. However,

these algorithms are not easy to analyse, and the resulting probability distribution can be

virtually unknown. As discussed in [12], one can achieve uniformity by an accept/reject

procedure, but the inherent difficulties in analysis mean that no such algorithms are yet

known which are of practical use for uniform generation.

On the other hand, Jerrum and Sinclair [5] provided an approximately uniform gen-

eration algorithm, which runs in time polynomial in n and 1/ε, where all graphs have

probabilities varying by a factor of at most 1 + ε. They do not precisely analyse the

running time of their algorithm, nor do they claim that their algorithm is of practical use.

There are two ways to describe the algorithm in the present paper. It can be regarded

as a modification of the pairing algorithm described above. First, we define two points to

be suitable if they lie in different groups and no currently existing pair contains points in

the same two groups. Our algorithm is the following.

Algorithm 1.

(1) Start with nd points {1, 2, . . . , nd} (nd even) in n groups. Put U = {1, 2, . . . , nd}. (U

denotes the set of unpaired points.)

(2) Repeat the following until no suitable pair can be found. Choose two random points

i and j in U, and, if they are suitable, pair i with j and delete i and j from U.

(3) Create a graph G with edge from vertex r to vertex s if and only if there is a pair

containing points in the rth and sth groups. If G is d-regular, output it, otherwise

return to step (1).

However, the algorithm actually arose from extensions of the algorithm examined in

[11]. There, one begins with n vertices and continually selects a random edge to add,

subject to keeping all vertices of degree at most d (and no multiple edges). It was shown

in [11] that, for fixed d and dn even, this almost surely produces a d-regular graph

(as n → ∞). In [6] this process is modified by selecting the edges non-uniformly. One

interesting choice of the non-uniformity studied there gives the following algorithm.
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Generating Random Regular Graphs Quickly 379

Algorithm 2.

(1) Start with a graph G with n vertices {1, 2, . . . , n} and no edges.

(2) Repeat the following until the set S is empty. Let S denote the set of pairs of vertices

of G which are non-adjacent and which both have degree at most d − 1. Choose a

random pair {u, v} in S with probability proportional to (d− d(u))(d− d(v)) where d

denotes the degree in G. Add the edge {u, v} to G.

(3) If G is d-regular, output it, otherwise return to step (1).

Note that the probabilities of edges in Algorithm 2 are exactly the probabilities of points

being chosen between the corresponding groups in Algorithm 1, so the two algorithms

are equivalent.

Our results in Section 2 show that Algorithm 2 generates graphs with nearly uniform

probability distribution, in the sense that, as n→∞, provided d does not grow too quickly

with n, the probabilities of all graphs are asymptotically equal. For larger d, but still not

very large, we show the algorithm generates d-regular graphs with a distribution which is

close to uniform, in the sense that the probability of any event is different from that in

the uniform space by o(1). In Section 4 we show that the expected time for step (2) of

Algorithm 1 is O(nd2 + d4) for all d. Moreover, the probability that it produces a regular

graph (which is then accepted at step (3)) is 1− o(1) for d = o((n/(log n)3)
1
11 ), and so the

number of repetitions of step (2) required is O(1) for such d. In fact, it is quite possibly

bounded for all d 6 n/2.

1.1. Notation and preliminary results

We use log x to denote the natural logarithm, and assume d > 2 throughout the paper.

By R(n, d) we denote the set of all labelled d-regular graphs on n vertices.

We can view step (2) of Algorithm 2 as the random selection of a sequence x1, . . . , xk
of edges on n vertices. We call such a sequence a path because it is a possible path for the

course of the algorithm. For each path P, we can consider the probability that one run

of step (2) of Algorithm 2 produces P. This induces a probability space whose elements

are paths, which we call the A-model. Exactly the same space is produced by Algorithm 1.

Note that the edges in such a path determine a maximal graph with no vertices of degree

greater than d.

We need to compare this with the pairing model, which can be defined similarly to

Algorithm 1, but with step (2) accepting two points i and j even when they are not

suitable. By the U-model we mean the probability space of paths induced by one run of

step (2) in this modified algorithm. (Actually, pairs of points are chosen in step (2), and the

corresponding edges should be determined by the mechanism in step (3) of Algorithm 1,

at which stage loops and multiple edges may be formed.) Note that in practice one could

restart the algorithm as soon as unsuitable points were found, but for reasons of taste in

this analysis we permit step (2) to run its course in the modified algorithm until all points

are paired.

Let G be a d-regular graph. By Paths(G) we denote the set of all orderings of the set of
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380 A. Steger and N. C. Wormald

edges of G; that is, ‘paths’ whose edges are precisely the edges of G. Then

|Paths(G)| = (
1
2
nd
)
!.

For a path P ∈ Paths(G) we use

PA[P] resp. PU[P]

to denote the probability of P in the A-model resp. in the U-model. Note that in the

U-model all paths P ∈ Paths(G) have, in fact, the same probability, namely,

PU[P] =
2
nd
2 · (d!)n
(nd)!

.

On the other hand, denote the subgraph of G consisting of the first m edges of P by

Gm(P). If a path P ∈ Paths(G) has edges x1, . . . , xdn/2 where edge xi joins vertices ui and

vi, then

PA[P] =

nd/2−1∏
m=0

(d− dm(ui))(d− dm(vi))∑
(d− dm(u))(d− dm(v))

(1.1)

where the sum in the denominator is over all u 6= v ∈ V (G) such that {u, v} /∈ E(Gm),

and dm denotes the degree in Gm. For comparison, in the pairing model for generating

regular graphs uniformly, after m pairs have been added there are nd − 2m unmatched

points remaining. Also, the number of pairs corresponding to a valid edge {u, v} is

(d− dm(u))(d− dm(v)). Hence, the probability in the U-model can be written as

PU[P] =

nd/2−1∏
m=0

(d− dm(ui))(d− dm(vi))(
nd−2m

2

) . (1.2)

For a subgraph H of G we denote by ∆(H) the difference in the normalizing denomi-

nators in (1.1) and (1.2) for the factors due to Gm = H . That is, we let

∆(H) = ∆(1)(H) + ∆(2)(H),

where

∆(1)(H) :=
∑
v∈V (G)

(
d− dH (v)

2

)
(1.3)

and

∆(2)(H) :=
∑

{u,v}∈E(H)

(d− dH (u))(d− dH (v)). (1.4)

For brevity we use ∆m(P) for ∆(Gm(P)). Observe from (1.1) and (1.2) and by considering

the number of acceptable pairs of points in step (2) of Algorithm 1 that

PA[P]

PU[P]
=

nd
2 −1∏
m=0

(
nd−2m

2

)(
nd−2m

2

)− ∆m(P)
. (1.5)

We will find it useful to know the value of PU[G] approximately. The following estimate

of the size of |R(n, d)| was found first in the special case of bounded d by Bender and

Canfield [1]. Bollobás [2] proved it for all d 6
√

2 log n− 1 by considering the probability
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Generating Random Regular Graphs Quickly 381

of obtaining no loops or multiple edges in the pairing model. Then McKay analysed the

same model for substantially larger d.

Theorem 1.1 (McKay [8]). Assume d = o(n1/3). Then

|R(n, d)| = (1 + o(1)) · e− 1
4 (d2−1) · (nd)!

( nd
2

)! · 2 nd
2 · (d!)n .

Correction terms are required if the upper bound on d is relaxed further – see McKay

and Wormald [10] for the formula when d = o(
√
n).

The formula above was obtained by estimating the probability in the configuration

model of having no loops or multiple edges, so although it is working back-to-front we

can deduce the following.

Corollary 1.1. Assume d = o(n1/3). Then

PU[G] = (1 + o(1)) · e− 1
4 (d2−1)/|R(n, d)|.

Proof. We just observe that

PU[G] =
∑

P∈Paths(G)

PU[P]

and

PU[P] = 2
nd
2 (d!)n/(nd)! for all paths P ∈ Paths(G).

2. Main results

Our first result shows that the probabilities of all graphs generated by Algorithm 1 are

asymptotically equal, provided d grows slowly enough with n.

Theorem 2.1. Assume that d = O(n
1
28 ). Then there exists a function f(n, d) = o(1) such

that all d-regular graphs G satisfy∣∣∣∣PA[G]− 1

|R(n, d)|
∣∣∣∣ < f(n, d)

|R(n, d)| .

Our proof actually yields the same result for a slightly larger d. But we believe it is true

even for much more quickly growing d.

The next result is useful if Algorithm 1 is to be used for estimating probabilities by

simulation. The conclusion of this theorem is equivalent to the assertion that the total

variation distance between the distribution of graphs given by Algorithm 1, and the

uniform distribution, goes to 0 as n→∞.

Theorem 2.2. Assume that d = o((n/(log n)3)
1
11 ). Then there exists a function f(n, d) = o(1)

and a subset X ⊆ R(n, d) such that

PA[G] = (1 + O(f(n, d))) · 1

|R(n, d)| , for all graphs G ∈ X,
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382 A. Steger and N. C. Wormald

and

|X| = (1− f(n, d)) · |R(n, d)|.

Observe that Theorem 2.2 implies that one can experimentally determine the probability

of an event E defined on the set of d-regular graphs by simulation using Algorithm 1. We

formulate this in a slightly more general setting.

Corollary 2.1. Assume that d = o((n/(log n)3)
1
11 ) and let X be a bounded function of graphs

defined on the sets R(n, d) for all n and d. Then∑
G∈R(n,d)

X(G) · PU[G] − ∑
G∈R(n,d)

X(G) · PA[G] = o(1).

That is, one can compute the expectation to within o(1) error by simulation using Algorithm 1.

For practical use of the algorithm it is comforting to know the following.

Theorem 2.3. Assume that d = o((n/(log n)3)
1
11 ). Then the probability that step (2) of

Algorithm 1 produces a regular graph is asymptotic to 1 as n→∞.

This result is in a similar direction to the main theorem of [11], which was only proved

for bounded d, the process in that paper being rather different.

3. Proof

3.1. Outline

Fix a d-regular graph G on n vertices. In the U-model PU[P] is constant for all paths

P ∈ Paths(G). This is obviously not true in the A-model. Here the probability PA[P]

depends strongly on the order of the edges. We can, however, estimate an expected or

average probability by considering a path chosen uniformly at random from all possible

paths. For now just assume that av(G) denotes such an estimate. In Section 3.3 we will

assign a particular value to av(G).

Our proof strategy is as follows. We partition the set Paths(G) into suitable subsets

Paths(G) =M1(G) ∪M2(G) ∪Av(G)

such that

(i) the sets Mi(G), which contain in some sense ‘misbehaving’ paths, are ‘small’, and

(ii) paths in Av(G) have a probability which is roughly equal to av(G).

We now make these ideas precise.

Lemma 3.1. Let d = d(n) and let g(n, d) be a positive function with g(n, d) → ∞. Assume

there exists a positive function av(G) such that for all d-regular graphs G there is a partition

of the set Paths(G) as above such that:

PA[P] 6 eg(n,d) · av(G), for all P ∈ Paths(G), (3.1)
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|Mk(G)| = o(e−g(n,d)) · |Paths(G)|, (3.2)

and

E(PA[P]) = (1 + o(1)) · av(G) (3.3)

for P chosen uniformly at random from Av(G). Then

PA[G] = (1 + o(1)) · av(G) · |Paths(G)|. (3.4)

Proof. PA[G] =
∑

P∈Paths(G)

PA[P]

=
∑

P∈M1(G)∪M2(G)

PA[P] +
∑

P∈Av(G)

PA[P]

= o(|Paths(G)|) · av(G) + (1 + o(1)) · av(G) · |Av(G)|
= (1 + o(1)) · av(G) · |Paths(G)|.

As we know that |Paths(G)| =
(
nd
2

)
!, Theorems 2.1 and 2.2 will follow easily from

Lemma 3.1 if we can show that av(G) is independent of the graph G and has the correct

order of magnitude. This we will show in Section 3.3.

Throughout the remaining part of this section we assume that G is an arbitrary, but

fixed d-regular graph.

3.2. Some useful lemmas

In this section we collect some helpful lemmas and facts that will eventually enable us to

bound the ratio given in (1.5) for a randomly chosen path P ∈ Paths(G).

Lemma 3.2. Let H be a subgraph of G and let m = |E(H)|. Then

∆(1)(H) 6
1

2
(d− 1)(nd− 2m).

Proof. By Jensen’s inequality the sum in (1.3) is bounded from above by nd−2m
d
· (d

2

)
.

Lemma 3.3. Let H be a subgraph of G and let m = |E(H)|. Then

∆(2)(H) 6
1

2
(d− 1)2(nd− 2m).

Proof. ∑
{u,v}∈E(H)

(d− dH (u)) · (d− dH (v)) =
1

2

∑
x

∑
u:{x,u}∈E(G)\E(H)

∑
v∈ΓH (u)

dG\H (v).

Observe that dG\H (v) 6 d− 1 for all v ∈ ΓH (u) and that there at most d− 1 such vs.

Corollary 3.1. All paths P in Paths(G) satisfy

∆m(P) 6
1

2
d2(nd− 2m), for all 0 6 m 6 1

2
nd.
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384 A. Steger and N. C. Wormald

The following tail bound on the sum of independent random variables is due to

Hoeffding [3].

Hoeffding’s inequality. Let X1, . . . , Xn be independent random variables with 0 6 Xi 6 1

for all 1 6 i 6 n, and let X =
∑n

i=1 Xi, p = 1
n
EX and q = 1− p. Then, for 0 6 t < q,

P
[
X − pn > tn] 6 (( p

p+ t

)p+t(
q

q − t
)q−t)n

.

A corollary of this will turn out to be very useful.

Corollary 3.2. Let X1, . . . , Xn be independent variables with 0 6 Xi 6 1 for all 1 6 i 6 n,
and let X :=

∑n
i=1 Xi. Then

P
[
X > (1 + δ)EX

]
6

(
eδ

(1 + δ)1+δ

)EX

6

{
e− 1

4 δ
2EX, if δ 6 4

5
,

e− 1
4 δEX, otherwise,

and

P
[
X < (1− δ)EX

]
6 e−

1
2 δ

2EX.

Proof. The first factor in Hoeffding’s inequality can be written as (1 + δ)−(1+δ)p and the

second as (1+(δp)/(1−p−δp))1−p−δp < eδp. From here, the first inequality can be verified

by comparing logarithms (noting that we can assume t 6 q because X 6 n always). The

second is by McDiarmid [7, (5.6)], which he attributes in the binomial case to Angluin

and Valiant.

In fact by [7, (5.5)], it is possible to improve the factor 1/4 in the exponent in the case

δ 6 4/5 to 1/3, but we do not need this.

3.3. Average paths

Our aim in this section is to estimate ∆m(P) for a (uniformly) randomly chosen path

P ∈ Paths(G). Observe that this just corresponds to the value of ∆m(H) for a random

subgraph H of G with m edges. To simplify calculations, however, we don’t choose m edges

randomly from G, but instead choose edges with probability p = p(m) = 2m
nd

. We denote

such a random subgraph by RGp. Note that we are not claiming that the expectation

of ∆m, which we are about to calculate, is the same for both models. In the following

we simply calculate that expectation with respect to the model where the edges of G

are chosen with probability p = p(m). Later we draw conclusions about ∆m(P) from this

calculation.

To simplify notation we abbreviate in the rest of the paper E∆(RGp) where p = 2m
nd

by

µm. Similarly, we let µ(i)
m := E∆(i)(RGp) for p = 2m

nd
and i = 1, 2.

Lemma 3.4. µ(1)
m =

1

2
(nd− 2m)2 · d− 1

nd
.
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Proof. For every path of length 2 in G we introduce a 0/1 variable Xi which is equal to

1 if and only if both edges of the path do not belong to RGp. As EXi = (1− p)2 and there

are n · (d
2

)
such paths, we have

µ(1)
m = E

∑
i Xi = n · (d

2

) · (1− p)2 = n · (d
2

) · (1− 2m
nd

)2 = 1
2
(nd− 2m)2 d−1

nd
.

Lemma 3.5. µ(2)
m = (nd− 2m)2 · m(d− 1)2

n2d2
.

Proof. For every (ordered) tuple (x, u, v, y) such that {x, u}, {u, v}, and {v, y} are edges

of G we introduce a 0/1 variable Yi which is equal to one if and only if the edge {u, v}
belongs to RGp and both edges {x, u} and {v, y} do not belong to RGp.

As EYi = p(1− p)2 and there are nd(d− 1)2 such tuples, we have

2µ(2)
m = E

∑
i Yi = nd(d− 1)2 · p(1− p)2 = nd(d− 1)2 · 2m

nd
(1− 2m

nd
)2.

Corollary 3.3. µm =
1

2
(nd− 2m)2 ·

(
d− 1

nd
+

2(d− 1)2m

n2d2

)
.

After these preliminaries we are now in a position to define av(G) precisely, the

probability of an ‘average’ path in the A-model. Namely, we assume that the value ∆m

occurring in the denominators of the edge probabilities of the path is exactly equal to

µm. To make the formula slightly nicer, we define it in terms of the probability of a

path in the U-model, which we know is independent of the graph G and the actual path

P ∈ Paths(G):

av(G) := PU[P] ·
nd
2 −1∏
m=0

(
nd−2m

2

)(
nd−2m

2

)− µm . (3.5)

Lemma 3.6. The value av(G) is independent of the graph G and, if d = o(n1/3), then

av(G) = (1 + o(1)) · e 1
4 (d2−1) · PU[P] = (1 + o(1)) · e 1

4 (d2−1) · PU[G]

|Paths(G)| .

Proof. The independence of av(G) from G follows immediately from the fact that the

values µm are independent of G.

av(G)

PU[P]
=

nd
2 −1∏
m=0

(
1 +

µm(
nd−2m

2

)− µm
)

=

nd
2 −1∏
m=0

(
1 +

(
d− 1

nd
+

2(d− 1)2m

n2d2

)/(
1− 1

nd− 2m
− O

(
d

n

)))

= exp

 nd
2 −1∑
m=0

log

(
1 +

(
d− 1

nd
+

2(d− 1)2m

n2d2

)/(
1− 1

nd− 2m
− O

(
d

n

))) .

As log(1 + x) = x − O(x2) for all x 6 1, we can bound the sum for all d = o(n1/3) as
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follows:
nd
2 −1∑
m=0

log

(
1 +

(
d− 1

nd
+

2(d− 1)2m

n2d2

)/(
1− 1

nd− 2m
− O

(
d

n

)))

=

nd
2 −1∑
m=0

log

(
1 +

d− 1

nd
+

2(d− 1)2m

n2d2
+ O

(
d

n
·
(

1

nd− 2m
+
d

n

)))

=

nd
2 −1∑
m=0

(
d− 1

nd
+

2(d− 1)2m

n2d2
+ O

(
d2

n2
+

d

n(nd− 2m)

))
=

1

2
(d− 1) +

(d− 1)2

n2d2

(
nd

2
− 1

)
nd

2
+ O

(
nd · d2

n2
+
d

n
log(nd)

)
=

1

2
(d− 1) +

1

4
(d− 1)2 + o(1)

=
1

4
(d2 − 1) + o(1).

3.4. The misbehaving sets

In this section we define the sets of ‘misbehaving’ paths. They will be characterized

in terms of the deviation of their value ∆m(P) from µm. Recall that we defined µm to

represent, in a somewhat vague sense, the value of ∆m(P) for a random path in Paths(G).

So we expect that ‘most’ paths have values ∆m(P) which are ‘close’ to µm. In this section

we will quantify this. Let

M1(G) := set of all paths P ∈ Paths(G) such that

|µ(1)
m − ∆(1)

m (P)| > max

{
d4

√
24µ(1)

m · log n , 24d5 log n

}
for some 0 6 m 6 1

2
nd− 1,

M2(G) := set of all paths P ∈ Paths(G) such that

|µ(2)
m − ∆(2)

m (P)| > max

{
d5

√
24µ(2)

m · log n , 24d6 log n

}
for some 0 6 m 6 1

2
nd− 1, and

Lemma 3.7. For n sufficiently large,

|M1(G)| 6 e−5d2 log n · |Paths(G)|.

Proof. We consider an arbitrary but fixed 0 6 m 6 1
2
nd − 1. Clearly, it suffices to show

that for this m we have

P

[
|∆(1)
m (P)− µ(1)

m | > max

{
d4

√
24µ(1)

m · log n , 24d5 log n

}]
6 e−5d2 log n/(nd). (3.6)

If we choose a path P ∈ Paths(G) randomly, then Gm(P) corresponds to a random

subgraph of G with m edges. That is, if we denote with RGm the random subgraph of G
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with m edges, we observe that (3.6) is equivalent to

P

[
|∆(1)(RGm)− µ(1)

m | > max

{
d4

√
24µ(1)

m · log n , 24d5 log n

}]
6 e−5d2 log n/(nd).

Instead of the random graph RGm we will work with the random subgraph RGp of G

with edge probability p = 2m
nd

. Observe that in this model every subgraph of G with m

edges is equally likely and

P
[|E(RGp)| = m

]
=

( 1
2
nd

m

)
· pm · (1− p) 1

2 nd−m > e− log n.

(For m and 1
2
nd − m tending to infinity the inequality follows easily from Stirling’s

formula, for the remaining ms observe first that it suffices to consider the ‘small’ ms, then

use
( 1

2 nd
m

)
> ( nd

2m
)m and the fact that (1− 2m

nd
) > e−2 log n for m small enough.)

Hence, it suffices to show

P

[
|∆(1)(RGp)− µ(1)

m | > max

{
d4

√
24µ(1)

m · log n , 24d5 log n

}]
6 e−5d2 log n−log n/(nd).

This we will now do.

Observe that (by Brooks’ theorem, for example) we can colour the vertices of G with

d+ 1 colours in such a way that no two vertices with the same colour are adjacent.

We handle each colour class separately. Let Xi denote the number of tuples (x, u, y)

such that x 6= y, {x, u} and {u, y} belong to E(G) \E(RGp) and u belongs to the ith colour

class. Let X =
∑d+1

i=1 Xi. Then EX is equal to 2∆(1)(RGp) and we therefore have to show

that

P

[
|X − EX| > max

{
2d4

√
24µ(1)

m · log n , 48d5 log n

}]
6 e−5d2 log n−log n/(nd).

Clearly, it suffices to show that, for all 1 6 i 6 d+ 1,

P
[
|Xi − EXi| > max

{
d3
√

24EX · log n , 24d4 log n
}]
6 2e−6d2 log n.

Let ni be the number of vertices in the ith colour class. As Xi can be written as the

sum of ni independent variables with values in the interval [0, d(d− 1)], we may apply the

Hoeffding bounds for the random variables Yi := Xi/d
2 and Y := X/d2.

First we handle those ms for which EY > 24d2 log n. Here we apply Corollary 3.2 with

δ = d
√

24EY · log n/EYi:

P
[
Yi > EYi + d

√
24EY · log n

]
= P

[
Yi > (1 + δ)EYi

]
6

{
e− 1

4 ·24d2EY log n/EYi 6 e−6d2 log n, if δ 6 4
5
,

e− 1
4 ·d
√

24EY ·log n 6 e−6d2 log n, otherwise,

and

P
[
Yi 6 EYi − d

√
24EY · log n

]
= P

[
Yi 6 (1− δ)EYi

]
6

{
e− 1

2 ·24d2EY log n/EYi 6 e−12d2 log n, if EYi > d
√

24EY · log n,

0, otherwise.

http:/www.cambridge.org/core/terms. http://content-service:5050/content/id/urn:cambridge.org:id:article:S0963548399003867/resource/name/S0963548399003867a.pdf
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 15 Sep 2016 at 11:03:53, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://content-service:5050/content/id/urn:cambridge.org:id:article:S0963548399003867/resource/name/S0963548399003867a.pdf
http:/www.cambridge.org/core


388 A. Steger and N. C. Wormald

For ms such that EY 6 24d2 log n we just apply the first of the inequalities in Corol-

lary 3.2 with δ = 24d2 log n/EYi > 1 to deduce

P
[|Yi − EYi| > 24d2 log n

]
= P

[
Yi > EYi + 24d2 log n

]
= P

[
Yi > (1 + δ)EYi

]
6 e−6d2 log n.

Lemma 3.8. |M2(G)| 6 e−5d2 log n · |Paths(G)|.

Proof. Proceeding as in the proof of Lemma 3.7 we first observe that it suffices to show

that

P

[
|∆(2)(RGp)− E∆(2)

m | > max

{
d5

√
24E∆(2)

m · log n, 24d6 log n

}]
6 e−5d2 log n−2 log n/(nd).

Observe that we can colour the edges of G with 2d(d − 1) + 1 colours in such a way

that any two edges of the same colour are not connected by an edge in G, that is, every

colour class is the edge set of an induced matching in G. To see this, consider the graph

where every edge of G corresponds to a vertex and every such vertex is connected to all

vertices corresponding to edges which have to be coloured differently. As the maximum

degree of this graph is 2d(d− 1), the claim follows from Brooks’ theorem.

With this fact in hand we can now again proceed similarly to the proof of Lemma 3.7.

Let Xi denote the number of tuples (x, u, v, y) such that {x, u} and {v, y} belong to

E(G) \ E(RGp), while {u, v} belongs to the ith colour class of G and to RGp. Let X =∑2(d−1)2+1
i=1 Xi. Then EX is equal to 2∆(2)(RGp) and it therefore suffices to show that, for

all 1 6 i 6 2(d− 1)2 + 1,

P
[
|Xi − EXi| > max

{
d3
√

24EX · log n , 24d4 log n
}]
6 2e−6d2 log n.

By the choice of the colouring we again have that each Xi is the sum of independent

variables with values in the interval [0, (d − 1)2]. An application of Corollary 3.2 similar

to the one in the proof of Lemma 3.7 thus concludes the proof of Lemma 3.8.

3.5. Proof of the main theorems

Our aim in this section is to verify the remaining hypotheses of Lemma 3.1, with

‘misbehaving’ sets Mi(G) defined as in the previous section. We start with some auxiliary

lemmas.

Lemma 3.9. Let ξ = ξ(n, d) be an arbitrary function such that ξ > d2 + 1. For all paths

P ∈ Paths(G):

1
2 nd−1∏

m= 1
2 nd−ξ

(
nd−2m

2

)− µm(
nd−2m

2

)− ∆m(P)
6 ed

2 log(4ξd4).
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Proof. Observe first that(
nd−2m

2

)− µm(
nd−2m

2

)− ∆m(P)
6

(
nd− 2m

2

)
− µm 6

(
2d2

2

)
, for all 1

2
nd− d2 6 m 6 1

2
nd− 1.

Using Corollary 3.1 twice we furthermore observe that

∆m(P)(
nd−2m

2

)− ∆m(P)
6

∆m(P)
1
4
(nd− 2m)2

6
2d2

nd− 2m
, for all 1

2
nd− ξ 6 m 6 1

2
nd− (d2 + 1).

Hence,

1
2 nd−1∏

m= 1
2 nd−ξ

(
nd−2m

2

)− µm(
nd−2m

2

)− ∆m(P)
6

(
2d2

2

)d2

·
1
2 nd−d2−1∏
m= 1

2 nd−ξ

(
1 +

∆m(P)(
nd−2m

2

)− ∆m(P)

)

6 (2d4)d
2 · exp

 1
2 nd−d2−1∑
m= 1

2 nd−ξ

∆m(P)(
nd−2m

2

)− ∆m(P)


6 exp(d2 log(2d4)) · exp

 ξ∑
i=d2+1

d2

i


6 exp(d2 log(2d4) + d2 log(ξ + 1)).

Corollary 3.4. Assume that d = o(n1/3). Then

PA[P] 6 e4d2 log n · av(G), for all paths P ∈ Paths(G).

Proof. The expression in Lemma 3.9 for ξ = 1
2
nd is

PA[P]

av(G)
6 exp(d2 log(2nd5)).

Lemma 3.10. All paths P ∈ Av(G) satisfy

|∆m(P)− µm|(
nd−2m

2

)− ∆m(P)
6

200d11/2
√

log n√
n · (nd− 2m)

+
200d6 log n

(nd− 2m)2
, for all m 6 1

2
nd− (d2 + 1).

Proof. First we observe that Corollary 3.1 implies that(
nd− 2m

2

)
− ∆m(P) >

1

4
(nd− 2m)2, for all m 6 1

2
nd− (d2 + 1).

Consider an arbitrary path P ∈ Av(G). From the definition of M1(G) and Lemma 3.4

we know that

|∆(1)
m (P)− µ(1)

m | 6
{

24d5 log n, if µ(1)
m 6 24d2 log n,

24d4(nd− 2m)
√

log n/n, otherwise.
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Similarly, the definition of M2(G) and Lemma 3.5 imply

|∆(2)
m (P)− µ(2)

m | 6
{

24d6 log n, if µ(2)
m 6 24d2 log n,

24d5(nd− 2m)
√
m log n/n, otherwise.

Hence,

|∆m(P)− µm|(
nd−2m

2

)− ∆m(P)
6
|∆(1)
m (P)− µ(1)

m |+ |∆(2)
m (P)− µ(2)

m |
1
4
(nd− 2m)2

6 4 ·
(

(24 + 24)d6 log n

(nd− 2m)2
+

24d4
√

log n√
n(nd− 2m)

+
24d5
√
m log n

n(nd− 2m)

)
6

192d6 log n

(nd− 2m)2
+

192d11/2
√

log n√
n · (nd− 2m)

.

Corollary 3.5. Assume that d = o(n1/3) and let ξ = ξ(n, d) be an arbitrary function such

that ξ � d4
√

log n. All paths P ∈ Av(G) satisfy

1
2 nd−ξ∏
m=0

(
nd−2m

2

)− µm(
nd−2m

2

)− ∆m(P)
= exp

(
O
(
d6
(√

log n/nd+ ξ−1
)

log n
))
.

Proof. Let P be an arbitrary path in Av(G). Using Lemma 3.10 we deduce

1
2 nd−ξ∏
m=0

(
nd−2m

2

)− µm(
nd−2m

2

)− ∆m(P)
=

1
2 nd−ξ∏
m=0

(
1 +

∆m(P)− µm(
nd−2m

2

)− ∆m(P)

)

6

1
2 nd−ξ∏
m=0

(
1 +

|∆m(P)− µm|(
nd−2m

2

)− ∆m(P)

)

6 exp

 1
2 nd−ξ∑
m=0

|∆m(P)− µm|(
nd−2m

2

)− ∆m(P)


6 exp

O
 1

2 nd∑
i=ξ

(
d11/2
√

log n√
n · i +

d6 log n

i2

)
6 exp

(
O
(
d6
(√

log n/nd+ ξ−1
)

log n
))
.

For the proof of the lower bound observe first that the assumption on ξ together with
Lemma 3.10 implies that, for sufficiently large n, all m 6 1

2
nd− ξ satisfy

|∆m(P)− µm|(
nd−2m

2

)− ∆m(P)
6

1

2
.

Using the fact that 1− x > e−2x for all x 6 1
2

we deduce that

1 +
∆m(P)− µm(

nd−2m
2

)− ∆m(P)
> 1− |∆m(P)− µm|(

nd−2m
2

)− ∆m(P)
> exp

(
− 2|∆m(P)− µm|(

nd−2m
2

)− ∆m(P)

)
,

from which the desired inequality follows in the same way as above.
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Lemma 3.11. Assume that d = o(n1/3). Then, for all 1 6 ξ 6 1
2
nd,

e−
5dξ
n 6

1
2 nd−1∏

m= 1
2 nd−ξ

(
1− µm(

nd−2m
2

)− µm
)
6

1
2 nd−1∏

m= 1
2 nd−ξ

(
1− µm(

nd−2m
2

)) 6 e− ξ
2n .

Proof. From Corollary 3.3 we deduce that

1

2n

(
nd− 2m

2

)
6 µm 6

2d

n
·
(
nd− 2m

2

)
, for all 0 6 m 6 1

2
nd− 1.

Using that e−2x 6 1−x 6 e−x for all x 6 1
2

(which is most easily verified by differentiation),

we therefore conclude
1
2 nd−1∏

m= 1
2 nd−ξ

(
1− µm(

nd−2m
2

)) 6 1
2 nd−1∏

m= 1
2 nd−ξ

(
1− 1

2n

)
6 e−

ξ
2n ,

and
1
2 nd−1∏

m= 1
2 nd−ξ

(
1− µm(

nd−2m
2

)− µm
)
>

1
2 nd−1∏

m= 1
2 nd−ξ

(
1−

2d
n

1− 2d
n

)
> e−

4dξ
n−2d > e−

5dξ
n .

Corollary 3.6. Assume that d = o(n1/3). Then

PA[P] > e
−O
(
d2·
√

(d7(log n)3)/n
)
· av(G)

for all paths P ∈ Av(G).

Proof. Let P be an arbitrary path in Av(G) and let ξ =
√
nd5 log n. Observe that for

m > 1
2
nd− ξ we trivially have

1 +
∆m(P)− µm(

nd−2m
2

)− ∆m(P)
>

1, if ∆m(P) > µm,

1− µm

(nd−2m
2 )−µm , otherwise.

Thus, using Corollary 3.5 and 3.11 we deduce

PA[P]

av(G)
=

1
2 nd−1∏
m=0

(
1 +

∆m(P)− µm(
nd−2m

2

)− ∆m(P)

)

>

 1
2 nd−ξ∏
m=0

(
nd−2m

2

)− µm(
nd−2m

2

)− ∆m(P)

 ·
 1

2 nd−1∏
m= 1

2 nd−ξ

(
1− µm(

nd−2m
2

)− µm
)

> exp

(
−O

(√
d11(log n)3

n
+
d6 log n

ξ
+
dξ

n

))

> exp

(
−O

(
d2 ·

√
d7(log n)3

n

))
.
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Lemma 3.12. Assume that d = O(n
1
28 ) and ξ 6 d6(log n)2. Then, for a path P selected

uniformly at random from Av(G), the expected value of

1
2 nd−1∏

m= 1
2 nd−ξ

(
nd−2m

2

)− µm(
nd−2m

2

)− ∆m(P)
(3.7)

is asymptotic to 1 as n→∞.

Proof. Let p1 denote this expected value. We compute with a path P selected uniformly

at random from Paths(G), and let p0 denote the expected value of (3.7) for such P. Later

we deduce what we need about p1 in the restricted space. Note that p0 is determined by

the last ξ edges in the ordering of the edges of G corresponding to P, which form a

random ordered ξ-subset S = S(P) of the edges of G. Let S denote the probability space

of these subsets, determined by all P ∈ Paths(G). Let r(S) denote the number of edges in

S which have distance at most 2 from a later edge in S (where by distance at most 2 we

mean that one vertex of the new edge and one vertex of a later edge in S are at distance

2). Let Rr denote the set of S for which r(S) = r. Then, for S ∈ S,

P(S ∈ Rr) 6

(
ξ

r

)(
2d3ξ

1
2
nd− ξ

)r

=

(
O
(
d2ξ2

n

))r
. (3.8)

Consider an arbitrary path P and assume that S = S(P) ∈ Rr . We first aim at proving an

upper bound on ∆m(P) for all m > 1
2
nd− ξ. In order to do so we imagine the sequential

generation of S starting with the last edge. Let Hk denote the subgraph of G where the

last k edges of S are removed from G. Observe that, trivially, ∆(H0) = 0. Now consider

what happens if we change from Hk−1 to Hk , that is, if we remove the kth edge. An

important observation is that in fact ∆(Hk) = ∆(Hk−1) if the kth edge has distance at least

2 from all previously removed edges. That is, in this respect we only have to consider the

edges that have distance at most 1 from some later edge. In order to obtain the type of

bounds we need, we will, however, instead consider all edges which have distance at most

2 from a previously removed edge separately. Consider the ith such edge, say edge {u, v},
and assume it is the kth edge in total. We want an upper bound for ∆(Hk)−∆(Hk−1). One

easily checks that ∆(1)(Hk)− ∆(1)(Hk−1) 6 i and we claim that ∆(2)(Hk)− ∆(2)(Hk−1) 6 4i.

To see this observe that by removing edge {u, v} only the summands corresponding to

edge {u, v} itself and those of the adjacent edges can contribute. Edge {u, v} contributes a

negative term, so we don’t have to worry about it. On the other hand, an edge adjacent

to {u, v}, say {u, w}, adds to the difference exactly the degree of w in G−Hk−1. That is,

∆(2)(Hk)− ∆(2)(Hk−1) 6
∑

x∈NHk−1
(u)

dG−Hk−1
(x) +

∑
y∈NHk−1

(v)

dG−Hk−1
(y).

Observe that any two edges in G−Hk−1 that contribute to the sum for u are at distance 2

from each other, and there are at most i such edges. Each such edge can count up to two

times for u (once at each of its ends) and up to two times for w. This shows the desired
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bound of 4i. Summarizing, we have for all 1 6 k 6 ξ

∆(Hk) 6 ∆(Hξ) 6
r∑
i=1

5i 6 5

(
r + 1

2

)
,

implying that 5
(
r+1

2

)
is also an upper bound on ∆m(P) for m > 1

2
nd − ξ. Also note that

∆m(P) <
(

2t
2

)
for nd− 2m = 2t. Hence, for S(P) ∈ Rr ,

1
2 nd−1∏

m= 1
2 nd−ξ

(
nd−2m

2

)(
nd−2m

2

)− ∆m(P)
6

(
t0∏
t=1

(
2t

2

))( ξ∏
t=t0+1

(
2t
2

)(
2t
2

)− 5
(
r+1

2

))

=
(O(r2)

)t0
exp

(
ξ∑

t=t0+1

O
(
r2

t2

))
=

(O(r2)
)t0

(3.9)

provided t0 is chosen such that t0 = O(r) and
(

2t0
2

)
> 5(1 + ε)

(
r+1

2

)
for some ε > 0.

Recalling Lemma 3.11, that is,

e−
2dξ
n−d 6

1
2 nd−1∏

m= 1
2 nd−ξ

(
nd−2m

2

)− µm(
nd−2m

2

) 6 e−
ξ
2n , (3.10)

we see that p0 > 1− o(1), and, by (3.8) and (3.9) with t0 = 28
25
r >

√
5

2
r,

p0 6 1 +

ξ∑
r=1

(
O
(
r56/25d2ξ2

n

))r
= 1 + o(1) (3.11)

since r 6 ξ.

This was all for P selected uniformly at random from Paths(G); note that (3.10)

similarly implies p1 > 1− o(1). Furthermore, since (3.7) is always positive, we have

p1 6
p0

1− P(M1(G) ∪M2(G))
6 1 + o(1)

by Lemmas 3.7 and 3.8 and (3.11).

Proof of Theorem 2.1. Using (1.5) and the definition (3.5) of av(G), we obtain for a path

P chosen uniformly at random from Av(G)

E(PA[P]) =
1

Av(G)
· ∑
P∈Av(G)

PA[P]

=
av(G)

Av(G)
· ∑
P∈Av(G)

1
2 nd−1∏
m=0

(
nd−2m

2

)− µm(
nd−2m

2

)− ∆m(P)
.

From Corollary 3.5 and Lemma 3.12 using ξ = d6(log n)2 we obtain (3.3). Hence, from

http:/www.cambridge.org/core/terms. http://content-service:5050/content/id/urn:cambridge.org:id:article:S0963548399003867/resource/name/S0963548399003867a.pdf
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 15 Sep 2016 at 11:03:53, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://content-service:5050/content/id/urn:cambridge.org:id:article:S0963548399003867/resource/name/S0963548399003867a.pdf
http:/www.cambridge.org/core


394 A. Steger and N. C. Wormald

Lemmas 3.7 and 3.8 and Corollary 3.4, we deduce from Lemma 3.1 and Lemma 3.6

PA[G] = (1 + o(1)) · av(G) · |Paths(G)|
= (1 + o(1)) · e 1

4 (d2−1) · PU[G].

As we know from Corollary 1.1 that PU[G] = (1 + o(1)) · e− 1
4 (d2−1)/|R(n, d)|, the theorem

follows. Note that the little oh terms do not depend on G.

Proof of Theorems 2.2 and 2.3. Combining Lemmas 3.7 and 3.8 and Corollary 3.6, we

deduce from Lemma 3.6 and Corollary 1.1 that for d = o((n/(log n)3)
1
11 )

PA[G] > (1 + o(1)) · av(G) · |Paths(G)|
= (1 + o(1)) · e 1

4 (d2−1) · PU[G]

= (1 + o(1)) · 1

|R(n, d)| .

As the sum
∑

PA[G] over all d-regular graphs G can be at most 1, we have that this sum

is asymptotic to 1, and the claims of Theorems 2.2 and 2.3 follow.

3.6. Concluding remarks

The following example shows that Theorem 2.1 is in some sense best possible. More

precisely, this example shows that the probability distributions of two d-regular graphs G

are not exactly equal.

Consider the following two 2-regular graphs on 6 vertices:

(a) C6, and

(b) two disjoint copies of a C3.

For each graph there are 6! = 720 different paths. With the help of a small computer

program one easily checks that

PA[C6] = 90455
8775000

while PA[2 C3s] = 232544
8775000

.

It is also possible to prove that infinitely many larger examples exist, by showing that

the primes occurring in the denominators of the probabilities for some graphs will not

occur in others. But it seems annoyingly difficult to show what we believe is true, that

graphs usually occur with different probabilities.

We also do not have good examples of d-regular graphs which are considerably more (or

less) likely than most of the d-regular graphs, which would limit the possible strengthenings

of Theorem 2.1. A good candidate for this might be the graph that consists of the union

of pairwise disjoint Kds.

4. Performance of the algorithm

Theorem 4.1. For all d = O(n1/2), step (2) of Algorithm 1 can be implemented so as to

require expected time O(nd2), and space O(nd).
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Proof. It can very easily be implemented in three phases. In phase 1, keep a list L of

all the points, as an array with those in U at the front, and the other points in pairs

afterwards, as well as another array I whose ith entry is the position in L of the point

i. Then two points i and j can be chosen randomly in U in constant time (assuming the

number of digits in n is not a problem, and assuming a perfect constant-time random

number generator). Moreover, they can be checked for suitability in time O(d), since all

d − 1 points in the same group can be found in L in time O(d) using I , and for each

such point, if it is in a pair, its mate is next to it (on a known side) in L. This process

is repeated until a suitable pair has been found. Then, if they are suitable, update L by

swapping the chosen points with the last two listed in U, (which are 2m+ 1 and 2m+ 2

from the end of L if m pairs have already been added) and update I for the (up to) four

points so moved. This takes constant time.

Hence, the running time of phase 1 is O(d) times the total number of points i and j

checked for suitability throughout this phase. Phase 1 stops when the number of points

in U first falls below 2d2.

Note that each point has at most (d − 1)2 other points in U with which it does not

make a suitable pair. Hence, in phase 1, when there are k > 2d2 points left in U, the

expected number of trials of two points before a suitable pair is found is at most 2. The

sum of this over d2 < k < nd is O(nd), giving the bound O(nd2) on the total time to reach

this stage.

On the other hand, when the number of points in U first falls below 2d2, phase 2 begins.

Instead of choosing a pair at random, choose a random pair of groups (i.e., vertices of

the graph G), say u and v, which do not yet have all points matched. If {u, v} is already

an edge of G, repeat this step. Then randomly choose a pair of points i and j in the

groups corresponding to u and v, respectively. If these points i and j are in U, they are

a randomly chosen suitable pair; if not, repeat the choice of u, v, i, j again. Phase 2 lasts

until the number of available groups drops below 2d. The list of available groups can

be maintained just like the list of available points, with negligible time required. Thus,

choosing an available pair of groups takes constant time. The probability that they form

a non-edge of G is at least 1/2 as there are at least 2d groups and each has an edge to at

most d− 1 others. Also, for each such u and v, the probability of finding a pair of points

in U is at least 1/d2, and so for the O(d2) pairs added this stage takes expected time O(d4).

When the number of available groups falls below 2d, phase 3 begins. Construct (in

time O(d2)) the graph induced by all vertices of G of degree less than d, and form its

complement H (on these same vertices). Then work as in phase 2, but instead of choosing

u and v at random from the vertices of H , choose an edge {u, v} of H uniformly at random

and accept it with probability xuv/d
2, where xuv denotes the product of the number of

suitable points in u times the number of suitable points in v. Given a list of edges of H ,

finding the next edge requires expected time at most O(d2). Note that H can be updated

in constant time each time an edge has been chosen, with the help of suitable data

structures. The algorithm stops when no more suitable points exist, that is, H has no

more edges. Hence phase 3 requires time O(d4). This establishes the time requirements;

the space requirements are several lists of the points (O(nd)) and the space required for H

(O(d2)).
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The theorem gives the running time for one trial of step (2): if the algorithm fails due

to no regular graph being produced, it has to start again. By Theorem 2.3 the probability

of failure of step (2) in this sense is o(1) for d = o((n/(log n)3)
1
11 , and so the expected

time for the algorithm to produce a regular graph is O(nd2)O(1) for such d. Moreover,

experiments with n ranging from 50 to 400 and d ranging from 0.05n to 0.5n strongly

suggest that the probability of succeeding on one trial is at least 0.3 for such n and d. (In

fact, it appears roughly equal to 1− 4d/(3n) up to d = 0.75n.) Thus, the algorithm seems

usable, expecting a bounded number of repetitions of step (2) per graph produced, for

all d up to n/2 (though for such d we do not know much about the resulting probability

distribution!) For larger d, one can of course generate the complementary graph. (Note

that for ds larger than
√
n the proof of Theorem 4.1 only gives a complexity of O(d4),

but this can be improved by the use of more clever data structures.) We stress that we

have no proof that asymptotically for, say, d ∼ n/2 the expected number of repetitions

required is bounded. In addition, we have reasons to believe that for d� n1/2 the resulting

probability distribution will no longer be approximately uniform. Clarifying these possible

extensions of Theorem 2.3 would be interesting.
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