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ON MARKOV-SWITCHING ARMA
PROCESSES —STATIONARITY,
EXISTENCE OF MOMENTS, AND
GEOMETRIC ERGODICITY

ROBERT STELZER
Technische Universitdat Miinchen

The probabilistic properties of R4 -valued Markov-switching autoregressive moving
average (ARMA) processes with a general state space parameter chain are analyzed.
Stationarity and ergodicity conditions are given, and an easy-to-check general suffi-
cient stationarity condition based on a tailor-made norm is introduced. Moreover, it
is shown that causality of all individual regimes is neither a necessary nor a sufficient
criterion for strict negativity of the associated Lyapunov exponent.

Finiteness of moments is also considered and geometric ergodicity and strong
mixing are proven. The easily verifiable sufficient stationarity condition is extended
to ensure these properties.

1. INTRODUCTION

To model time series that exhibit structural breaks but behave locally linear, a vast
number of modifications of the classical autoregressive moving average (ARMA)
model (see, e.g., Brockwell and Davis, 1991) using time-dependent ARMA
coefficients have been introduced, including Markov-switching ARMA (MS-
ARMA) processes, where the ARMA coefficients are allowed to change over
time according to a Markov chain. In this paper we extend the well-known MS-
ARMA processes with the ARMA parameters being a Markov chain with finitely
many states (cf., e.g., Francq and Zakoian, 2001; Yao, 2001) by allowing for an
arbitrary (i.e., possibly uncountable) state space of the parameter process, study
various probabilistic properties, and introduce a new feasible criterion for these
properties to hold.

Since the seminal paper by Hamilton (1989) MS-ARMA models have been
used actively in econometrics to model various time series (see, e.g., Hamilton,
1990; Krolzig, 1997; Hamilton and Raj, 2002; and the references therein).
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44 ROBERT STELZER

Moreover, they have also been used extensively in electrical engineering (see
Tugnait, 1982; Doucet, Logothetis, and Krishnamurthy, 2000; and references
therein). In all applications so far the Markov parameter chain has had only finitely
many states, and only the theoretical statistical paper by Douc, Moulines, and
Rydén (2004) has allowed for infinitely many. However, it may often be advanta-
geous to use an MS-ARMA model with an uncountable state space of the ARMA
coefficients where the Markovian structure is described by only a few parameters
instead of a model with a discrete but large state space. One natural model, for ex-
ample, is an MS-ARMA process where the ARMA coefficients are chosen from
a distribution centered around the old coefficients (see Examples 5.1 and 5.2 later
in this paper for concrete univariate MS-AR(1) processes of this type). Thus the
comprehensive probabilistic study of MS-ARMA processes with a general state
space presented in the following discussion provides the basis for interesting new
specifications of MS-ARMA processes in applications. Moreover, it should be
noted that our general model includes random coefficient ARMA models and that
the effects of a heavy-tailed noise in MS-ARMA models of this form are studied
in Stelzer (2008).

The outline of this paper is as follows. We start in Section 2 by defining MS-
ARMA processes with a general state space parameter chain and consider through-
out vector-valued processes. Here we mainly discuss the literature on the finite
state space case and the extension to infinite (noncountable) state spaces. In partic-
ular, we show that the sufficient stationarity and ergodicity criteria from the finite
state space case extend to our general model. In Section 3 we analyze the relation
between causality of the individual regimes (the possible ARMA coefficient sets)
and the stationarity of the MS-ARMA process. Furthermore, we establish as our
main result a feasible sufficient stationarity condition, which is based on a general
result on the norm of matrices of a special structure. The existence of moments is
discussed in Section 4, and finally we establish V-uniform ergodicity and thereby
geometric ergodicity and strong mixing in Section 5.

2. THE MARKOV-SWITCHING ARMA MODEL

In defining MS-ARMA processes, one starts from a (multivariate) ARMA
equation (see, e.g., Brockwell and Davis, 1991) with drift and allows for random
coefficients that are modeled as a Markov chain. We denote the real d x d (m x n)
matrices by My(R) (M, ,(R)). Moreover, “stationarity” always means strict
stationarity.

DEFINITION 2.1 (MS-ARMA(p, g) process). Let p,q € No, p+¢q > 1 and
A=, 2, @Prpyen o, Opr, Oy, ..., Oyy) ez, be a stationary and ergodic Markov
chain with some (measurable) subset S of R? x My (R)'TP+4 gs state space. More-
over, let € = (€;)e7, be an independent and identically distributed (i.i.d.) sequence
of R?-valued random variables independent of A and set Z; := ;¢; € R%.
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ON MARKOV-SWITCHING ARMA PROCESSES 45

A stationary process (X{)iez, in R4 s called an MS-ARMA(p, g, A, €) process

if it satisfies

Xe =0y Xp—1 = —Ope Xy p =1 + Z; + OuZi—1+---+ ®qtzt—q 2.1)
for all t € Z. Equation (2.1) is referred to as the MS-ARMA (p,q, A, €)
equation.

Furthermore, a stationary process (X;)ez is said to be an MS-ARMA(p, q)
process if it is an MS-ARMA(p, q, A, €) process for some A and € satisfying the
preceding conditions.

Remark 2.1.

(a) The elements of S are called regimes, extending the notion from the finite
state space literature. The state space S is assumed to be equipped with
a metric inherited from some norm on R? x M, (R)'*P+4 and the Borel
o-algebra S.

(b) “Ergodic” is to be understood in its general measure theoretic meaning,
namely, that the back-shift invariant o -algebra over the sequence space is
trivial; see, e.g., Ash and Gardner (1975) and the comprehensive mono-
graph by Krengel (1985).

(c) The preceding definition extends the one from the case with only finitely
many regimes (see, e.g., Francq and Zakoian, 2001). It includes random
coefficient autoregressions (i.e., autoregressive [AR] processes with i.i.d.
random coefficients) as analyzed, e.g., in Nicholls and Quinn (1982),
Feigin and Tweedie (1985), and Kluppelberg and Pergamenchtchikov
(2004).

(d) Sometimes it may be of interest to consider a setup with the dimensions
of X and € being different. To this end one can simply take € to be an R*-
valued sequence and X to be My  (R)-valued. All results of this paper ex-
cept Proposition 5.2 extend immediately to this setup. Yet, Proposition 5.2
also remains valid when assuming k > d and that X, is always of full rank.

Given some i.i.d. noise (¢;) and parameter chain (A;), the natural question
arising is whether there exists a stationary and ergodic solution (X;) to (2.1).
In what follows, the zeros denote zeros in M,, ,(R) or R? with the appropriate
dimensions m, n, and d being obvious from the context.

PROPOSITION 2.1 (State space representation). Define

T T T T T T d
X =\ x1.oxl.zn 2 )T eRIPHD,
=", ..0oT, 2T ol,...,o0hTem R), 2.2
r=(Z; p ) d(p+q),d(R) (2.2)
p—1 g—1
m; = (#;F’OT, . '-JOT)T e RYUPTD), Ci=m; + e,
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Dy o Dty Ppy 0 .. -0
Iy 0o .o 0 I; 0 -0
D, = . . . EMdp(R), J= . . Equ(R),
0o . " : 0 - 0---:
0 0 Iy 0 0---0 1; O

(OITREE ®(q—l)t ®qt

0 - .- 0 ®, 0,
0; = 0 € Map,dq (R), A= ( J) € Md(p+q)(R)'
0 - .- 0
2.3)
Then (2.1) has a stationary and ergodic solution if and only if
X[ = AlXt—l + C[ (2.4)

has one.

Proof. We obviously have that any stationary solution of (2.1) leads via (2.2) to
one of (2.4) and, vice versa, that the first d components of a stationary solution of
(2.4) are one for (2.1). That an ergodic solution of (2.4) gives an ergodic solution
of (2.1) and vice versa follows from standard ergodicity theory (see, e.g., Brandt,
Franken, and Lisek, 1990, Lem. A.1.2.7). u

Remark 2.2.

(a) To avoid degeneracies in the state space representation, we presume with-
out loss of generality that p > 1 from now on. In the case of a purely auto-
regressive MS-ARMA equation, i.e., ¢ = 0, it is implicitly understood that
Jrand O, vanish, X, = (X[, X[ ... xT )T, 5 =T, 07,...,0NT,
and A; = ®@,.

(b) This proposition shows also that any d-dimensional MS-ARMA(p, q)
process can be represented as a d(p + ¢ )-dimensional MS-AR(1) process.

Regarding notation, ||-|| will denote any norm on R4(P+9) and also the

induced operator norm and — convergence in distribution. If k = 0, the product
A;A;_1---A; k4 is understood to be identical to the identity 1;(,44) on RA(p+a),
a convention to be used throughout for products of this structure.

THEOREM 2.1.

(i) (Stationary solution) Equation (2.4) and the MS-ARMA(p,q, A, ¢€)
equation (2.1) have a unique stationary and ergodic solution if
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ON MARKOV-SWITCHING ARMA PROCESSES 47

E(log* |Agll) and E(log* ||Coll) are finite and the Lyapunov exponent
y =infien, {E(log(|AoA_1...A_;|1))/(t + 1)} is strictly negative. The
unique stationary solution X = (Xy);ez of (2.4) is given by

o0
X; = Z AA .. -At—k+lCt—k> (2.5)
k=0

and this series converges absolutely almost surely (a.s.).

(ii) (Convergence to the stationary solution) Let Vo be an arbitrary R4(P+a)-
valued random variable defined on the same probability space as
(Ar, €)iez and define (V;);en recursively via (2.4) (or let Vo, ..., V_p11,
Zo,...,Z—q+1 be arbitrary R -valued random variables and define

(Vi)ien via (2.1), V; := (Vi ..., Viep+1:Zts .-, Zt—q+l)T)~
G
Then || X; — V¢|| 3 0ast — oo and, in particular, V; 2) Xpast — oo.

Proof. (¢;);cz is i.i.d. and thereby mixing. As, moreover, (A;);cz is ergodic,
Brandt et al. (1990, Thm. A.1.2.6) implies that the joint random sequence (A, €) =
(A¢,€)rez is stationary and ergodic, which in turn gives that the transformed
sequence (A;, C;),c7 is stationary and ergodic (Brandt et al., 1990, Lem. A.1.2.7).
Hence, we obtain (i) from the multidimensional extension of Theorem 1 of Brandt
(1986) by Bougerol and Picard (1992, Thm. 1.1). Part (ii) is now also immediate
from Brandt (1986, Thm. 1). n

For a finite state space of A, Theorem 2.1 (i) has been given in Francq and
Zakoian (2001) together with a proof along the same lines. The results in (ii) will
later be extended to geometric ergodicity of (X;, A;), but this requires consider-
ably more involved conditions.

Remark 2.3. Let (A;);cz be any stationary and ergodic random sequence in
M4 (R) and y =inf;en,{E(log||AgA_1...A_||)/(t 4 1)} its Lyapunov exponent.
Then y is independent of the algebra norm. Consequently, one can work with
some algebra norm that makes it rather straightforward to show y < 0. Observe
also that E(log [|Ag||) < 0 suffices to ensure y < 0.

Although in our case matrices of the structure of A, are of norm greater than
or equal to one in all usual matrix norms, the latter is used in the next section to
obtain a feasible condition.

A classical result from Furstenberg and Kesten (1960, Thm. 1) states that the
infimum can be replaced by a limit, i.e.,

. 1
Y= nlggo mE(IOg lAoA—1...A—yl). (2.6)

Actually it is only the AR part ®@, of the matrix A, that determines the Lyapunov
exponent. Francq and Zakoian (2001, p. 343) showed this for a finite state space
Markov parameter chain, but their proof is also valid in our general case.
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48 ROBERT STELZER

PROPOSITION 2.2. Let | - || denote arbitrary algebra norms on My(p+q)(R)
and Mgp(R) and E(logt |Agll) < oo; then § := infen,{E(log(||@o®— ...
@)/ + D}

“Causality” is an important concept in the analysis of ARMA processes. The
following definition gives an appropriate extension to MS-ARMA processes.

DEFINITION 2.2 (Causality). An MS-ARMA(p,q,A,€) process (Xi)iez
is said to be causal if there is some measurable function f such that X; =
f(A,A—y..., €,6—1,...)VL EZ.

Remark 2.4.

(a) The unique stationary solution to an MS-ARMA equation constructed in
Theorem 2.1 is causal.

(b) If A is an i.i.d. sequence, the results of Bougerol and Picard (1992) show
under technical conditions that the strict negativity of the Lyapunov
coefficient is also necessary for the existence of a causal solution to an
MS-ARMA equation. See also Goldie and Maller (2000) for a general
discussion of the one-dimensional case.

3. GLOBAL AND LOCAL STATIONARITY

The preceding discussion has shown that it is important to find criteria ensuring
strict negativity of the Lyapunov exponent that can be easily used in practice. In
this section we discuss the relation to causality in the sense of Brockwell and
Davis (1991, Def. 3.1.3, p. 468) of the individual regimes.

DEFINITION 3.1. An MS-ARMA process is called locally stationary if a.s. all
the eigenvalues of @ are strictly less than one in modulus, and it is said to be
globally stationary if the Lyapunov exponent y is strictly negative.

We use the term local stationarity, extending a notion introduced in Francq
and Zakoian (2001) regarding L2-stationarity. Note, however, that this term is
also used in a very different sense in the literature.

Intuitively local stationarity means that, whenever we fix the ARMA coeffi-
cients to one set of possible values (the same one for all times!), we obtain a
causal ARMA process.

By Theorem 2.1 and Remark 2.4 (a) global stationarity implies that the MS-
ARMA process is causal, provided the logarithmic moment conditions are
satisfied. Before giving a theorem on simultaneous local and global stationarity,
we show that the relation between local and global stationarity is highly non-
trivial, as in general neither of the two is sufficient or necessary for the other.
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ON MARKOV-SWITCHING ARMA PROCESSES 49

PROPOSITION 3.1 (MS-ARMAC(1, q)). Let a one-dimensional MS-ARMA
(1,q) process be given and assume that E(log™ ||Ag)) is finite. Then local sta-
tionarity is a sufficient condition for global stationarity.

Proof. For s € S let ®g(s) = ®y|Ag = s. Local stationarity gives [@g(s)| < 1
a.s., and thus y =y = E(log|®y]) < 0. u

In view of Remark 2.2 (b) and the upcoming Example 3.2 it is clear that
extending the result to d > 1 is not possible.

Example 3.1 (Nonnecessity of local stationarity)

Consider an MS-ARMA (1, g) process in one dimension and let A; have two
states A, A@ and stationary distribution (M, 7@). Then E(log|®g]) <0
translates into n(1)10g|<l>(1)| +z@ logl(D(z)l < 0, where @) and ®®@ are the

two possible values for ®,. This is equivalent to @17 < @@ |77 From

the last equation it is immediate to see that |®1)| can be arbitrarily large provided
that |®®)| is close enough to zero. So, local stationarity is not necessary for global
stationarity.

For a similar example but with an uncountable state space see Example 5.2,
which follows.
Example 3.2 (Nonsufficiency of local stationarity)

Take a stationary and ergodic Markov chain A with two states and transition
matrix

P = (Pu P12> '

P21 P22
Further, let the regimes A" and A® be given by the two equations
X, =0"x, 1 +0"X, 14+¢ and X, =0PX,_ +e,

where CDEI) = %, CDS) = —%, and (DEZ) = —%. So, the possible states of A; are

O_ (37 @_ (30
AW =[5 10 d A = 5 .
(i) me a=(50)
: 1y 9 3V 3 2)y 1

As one obtains p(AM) = |(15) £ ()il = Jig < land p(A®) = 1 for the
spectral radii, both regimes correspond to causal AR processes.

The crucial observation is that R := AVA®@ and T := A@AD both have
spectral radius % > 1. Fixing pj2 and p»; to the value one, we obtain an ergodic

and periodic Markov chain A, which has stationary distribution (z ", 7 @) =
(0.5,0.5). Observe that aperiodicity is not required for ergodicity in our sense,
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50 ROBERT STELZER

as any stationary, irreducible, and positive recurrent countable state space Markov
chain is ergodic in our sense (see Ash and Gardner, 1975, Sect. 3.5). Let us further
assume temporarily that the noise € is not random at all, but ¢; = 1 for all times.
So C; = (1,0)T. One readily calculates for n € N

(5 s
R"Cy = 0) and  AORCo=[ ° ( 2(3) .
)

Thus, both R"Cy and A® R"Cy diverge to infinity in norm for n — oo, and hence
it is straightforward to see that the series Xo = Y72 A/A_1...A_;41C_ is
almost surely divergent. Therefore, Theorem 2.1 implies that the Lyapunov co-
efficient associated with the chosen parameter chain A cannot be strictly negative.
This shows that causality of all regimes does not ensure global stationarity.

Regarding L’-stationarity similar results have been given in Francq and
Zakotan (2001). Actually, Example 3.2 is a deeper analysis of their Example 5.

The following general result on sets of matrices of the special structure of A, or
@, provides the necessary insight to obtain a condition ensuring local and global
stationarity.

THEOREM 3.1. Let d,p € N, q € Ny, and A C My(p+q)(R) be a set of
matrices such that for each A € A there are matrices A1(A), ..., A,(A), Bi(A),
..., B4(A) € My(R) such that

AI(A) Ap—l(A) Ap(A) Bl(A) Bq—l(A) Bq(A)

I; 0. .- 0 0o .- 0
0o . 0 0
A— 0o -0 I 0 0
0 0 0 0
0 0 I; 0 0
o .- 0 0 -0 I 0
Assume, moreover, that there is a norm | - |la on R and ¢ < 1 such that

sup X7 1Ai(A)llg < ¢ and sup 3]_, [ Bi(A)lla < oo hold for the induced
AeA AeA
operator norm.

Then there is a norm | - || on RYP+9 and ¢’ < 1 such that supseq Al < ¢ in

the induced operator norm. Especially, || xox1...x¢|| < (c’)k+1 for any k € N and
sequence (xp)neN, With elements in A.
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Proof. Choose ¢y, ...,cp € Rsuchthat  =c¢y > ¢ > -+ > ¢, > c. Then

. i 14i (A)lla < sup i 1Ai(Mlla _ <

AcAi—| Ci AcAi—| Cp Cp

< 1.

Next choose M € (c¢/cp, 1) and ¢ € R such that

. i [14i (A)lla + sup i 1 Bi (A)lla <M <1
AeA =1 Cp AcA =1 ¢
and cpy1,...,¢ptq € R with cpy1 > --- > cpyy > €. Define a norm | - || on
R4(P+4) py

T T.T T\T
||()C1 s---,xp,)ﬁ ,---,)’q) ”

=max{ci||x1lla,..->cpllxplla, cprillyillas - s Cprqllygllat

For any (xIr,...,x;,yIr,...,y;r)T e R4UP+9) and A € A we have

T T,T T\T
HA(xl e X Vs Vg ) H

P T

q
Y AT+ Y B () x0Ty

i=1 i=1

)4 q
c2 c
=max < || Y, Ai(A)xi + Y, Bi(A)y; ,C*Clllxllld,---,c Lo illxp=illas
i=1 i=1 4 1 p—1

c c

pt+2 rtq

0, cprillyillas oo ———Cprg-1llyg—1lla
Cp+l1 Cptg—1

p q
<max{ || Y Ai(A)x;i+ Y, Bi(A)yi|| ,
i=l1 i=l d

Ck T T T T\T
max - ||(x1,---;xp,)’1,---;yq) ”
2<k<p+q.k#Fp+1 ( Ck—1

and, moreover,
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P P
< D MMAA)llalixilla+ Y, I1Bi(A)llallyilla
i=1

i=1

S (2 ||A,~(§)||d i Il B; (A)ud)

i=l Ci i=1 Cp+i

q
i+ Y, Bi(A)y
i=1 J

T T.,T T\T
xH(xl s Xy V] sees Yy ) H

From this one deduces

Ai(A
sup |A]] < max q sup z M
AcA|= Cp

+ sup i | Bi (A)lla max { Ck }
AeAD c T 2sks<prqh#p+l | ck—

Ck
< max< M, max —_— =c <1,
2<k<p+q.k#p+1 | Ck—1

which concludes the proof. u

Note that ¢ can also taken to be zero in Theorem 3.1. Then the second condition
SUP4e A Ziq: 1 1Bi(A)|lg < oo vanishes, and matrices with the structure of @, are
analyzed.

This immediately leads to a feasible condition for the strict negativity of the
Lyapunov exponent.

COROLLARY 3.1. Consider an MS-ARMA(p,q,A,€) equation with
E(log™ ||Agll) < oo and assume that there is a norm |-||q on RY and ¢ < 1 such
that 2{7:1 |®@iolla < ¢ a.s. Then the MS-ARMA process is globally and locally
stationary.

Proof. Apply Theorem 3.1 on the subset A = {® : Zf’zl |Piollg < c} of the

state space of @ to obtain an operator norm || - || that ensures ||®| < ¢’ a.s. for
some ¢’ < 1. This ensures E(log |®@g]|) < 0 and so implies the preceding claim
immediately. u

Remark 3.1. For d = 1 the condition on Zp 1 1@;0lla corresponds to the gen-
eral stationarity condition for threshold AR (TAR) models (i.e., a piecewise AR
model where the parameter set is chosen dependent on the current value of the
process) as given in An and Huang (1996). Actually, using the basic setup of An
and Huang (1996) one can immediately give a direct proof of the TAR station-
arity condition using only our Theorem 3.1 and Tweedie’s drift criterion (cf. An
and Huang, 1996, Lem. 2.2). This illustrates that Theorem 3.1 can be applied to
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various piecewise ARMA processes, as no particular features of MS-ARMA are
needed.

4. EXISTENCE OF MOMENTS

In this section we give sufficient conditions for the finiteness of moments of MS-
ARMA processes using the following notion of r-times integrability for multi-
variate random variables.

DEFINITION 4.1. Denote by Ly with r € (0,00] the usual space of r-times
integrable real-valued random variables and let || - || be a norm on R? (or My (R)).
Then Ly, (or L?\/Id(R)) is defined as the space of all R- (or My(R)-) valued
random variables X with || X|| € Ly. For short we often omit the space subscript
and write L".

Moreover, || - || : L" — Ra', X — E(|X|"HY" defines (up to almost sure
identity) a norm on L for r > 1 and dyr(-,") : L" x L" — R(‘)", X, Y) >
E(IX =Y|") a metricon L" for0 <r < 1.

The L spaces are independent of the norm | - || used on R? (or My(R)).
However, different norms | - || on R (or M4 (R)) lead to different norms |- || .- and
metrics dyr (-, ). Yet, because of the equivalence of all norms on R? (or My @®R))
it is immediate to see that for different norms || - || the induced norms and metrics
on L" are equivalent. This implies that the results of this section do not depend on
the norm used.

All results from the well-known theory of the L, spaces extend immediately
to the multidimensional L" spaces.

THEOREM 4.1. Assume that E(log™ ||Agl|), E(og™ |Coll) < 0o and y < 0. If,
moreover, for some r € [1, 0]

o0
lAOA_1 - Ay 1Cillrr 4.1)
k=0

or for some r € (0, 1)

o0

Y E(IlAcA—; - A1 C—i]") 4.2)
k=0

converges, then the unique stationary solution X; of the MS-ARMA equation (2.1)
given in Theorem 2.1 (i) and its state space representation X, are in L". Moreover,
the series (2.5) defining X; converges in L.

Proof. We assume that r = 0 without loss of generality. For r € [1;00] L” is a
Banach space, and thus the absolute convergence in (4.1) implies the convergence
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of the series (2.5) in L" and that X; € L”. Using the norm || (xy, x2, ... ,x,-)T||oo =
max{|xi], |x2], ..., |xi|} on R¢P+9) and RY, this immediately gives X, € L” for
the MS-ARMA process.

For r € (0, 1) we observe that L" is a complete metric space and for m,n € N,
m>n,

m n
dpr (2 Ao...A;r1Ci, Y Ao.. .A_k+1C_k>
k=0 k=0

m m

=dpr| Y Ao...A11Ci,0) < Y E(lAo... Akt 1Cll").
k=n+1 k=n+1

Therefore, (4.2) implies that (3} Ao¢...A—+1C—¢),, .y is a Cauchy sequence

in L" and thus convergent. Now proceed as in the case r € [1, co]. u

Remark 4.1.
(a) Using the root criterion, we have that (4.1) or (4.2) holds if

limsup [|AgA_;... A 1Ccll})* <1 or
k— 00

limsupE (J[AoA_ ... A1 C—i]) /¥ < 1.
k—o00

(b) It is immediate that Theorem 4.1 remains valid when replacing the MS-
ARMA equation with a multivariate stochastic difference equation X; =
A/ X;—1 + C; with arbitrary stationary and ergodic input (A,,C;) and
referring to the results of Brandt (1986) and Bougerol and Picard (1992)
instead of Theorem 2.1. Then it is the multidimensional extension of the
results of Karlsen (1990).

The following proposition gives a decomposition of the preceding conditions
into an asymptotic condition for the sequence A; and an integrability condition
on C;.

PROPOSITION 4.1. Let r € (0, 00) and assume that there exist u,v € [1,00]
with 1/u+1/o =1 such that Ag...A_y4+1 € L™ Vk e Nand Cy € L". If either

limsup E(AoA— ... A |I™) V5 <1 4.3)

k— o0

for0 <u <ooor

. 1/k

lim [[AoA_1...A_iq1ll/~ <1 4.4)
k— 00
foru=o00, theny <0and (4.1)forr > 1or(4.2) for 0 <r <1 holds.
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Proof. From the standard result on the limit of subadditive sequences (see,
e.g., Hille and Phillips, 1957, Lem. 4.7.1) it can be straightforwardly deduced
that limg_se0 ||Ag.. . A_kt1 ||1L/o].f exists and equals infien||[Ag...A_ft1 IIZJCC,
if Ag € L™.

The inequality y < 0 is obvious for u = oo using (4.4) and otherwise follows
from Jensen’s inequality and (4.3).

Finally, (4.1) for r > 1 and (4.2) for 0 <r < 1 are established by using Remark
4.1 (a), applying Holder’s inequality, and observing that klggo E(|C% DV =1
(unless C; =0 a.s.). n

For r € [1,00) it is immediate that limsup,_, . E(|Ao... At V% < 1 is
equivalent to limsupk_mo||A0...A_k+1||}‘/, <1

COROLLARY 4.1. If Ag € L™, limg 500 [Ag... A_gs1ll}o < 1, and Cy €
L", r € (0, 00], then the MS-ARMA process X; and its state space representation
X;arein L".

Proof. For r = oo this is obvious from Theorem 4.1; otherwise it is a direct
consequence of Proposition 4.1. [ ]

The following result extends the feasible stationarity criterion of Section 3 to
a condition enabling one to deduce finiteness of the moments of the MS-ARMA
process from the moments of Cy.

THEOREM 4.2. Assume that there are a ¢ < 1, M € RT, and a norm |- ||4
on R? such that Ele [Diolla < ¢ and 2?:1 1®iolla < M a.s. Let, moreover,
E(log™ ||Coll) be finite.

(i) Then E(log™ ||Agll) < 0o, y < 0, and thus there is a unique stationary
and ergodic solution (X;)e7, to the MS-ARMA(p, q, A, €) equation (2.1)
given by Theorem 2.1 (i).

(it) If Co € L” for some r € (0,00], then the solution X, of the MS-ARMA
equation (2.1) and its state space representation X, are in L". Moreover,
the series defining X; (as given in Theorem 2.1 (i)) converges in L.

Proof. The conditions give Ag € L* and thereby E(log™ || Ag]|) < co. The in-
equality y < O follows from Corollary 3.1. Regarding (ii), it only remains to show
in view of Corollary 4.1 that limy 0 |Ag... At 11| < 1holds, but this is im-
mediate using Theorem 3.1 as in the proof of Corollary 3.1. u

5. GEOMETRIC ERGODICITY AND STRONG MIXING

It is immediate to see that the joint sequence (X;, A;) is a Markov chain. In
this section we analyze (V-uniform) geometric ergodicity and strong mixing of
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(X¢, As) and thereby of MS-ARMA processes. We start with recalling some
notions on Markov chains (for a comprehensive discussion, see Meyn and Tweedie,
1993).

Consider a Markov chain X = (X/);en with topological state space S equipped
with the Borel g -algebra S and denote by P" (-, -) with n € N its n-step transition
kernel. The chain X is said to be a weak Feller chain if E(g(X)|Xo=1y) is
continuous in y € § for all bounded and continuous g : § — R. If u is some
nondegenerate measure on (S,S) and u(A) > 0 implies ¥>°;, P"(x, A) > 0 for
all x € S and A € S, then X is called u-irreducible. Assume that V : § — R is
measurable and V(x) > 1 Vx € S. If there is a probability measure 7 on (S, S)
such that

|P" —z|lv := sup sup s §W(P" (x,dy) =7 (dy))] -
xeS geFy V(x)

where Fy :={f : S — R, measurable, | f(x)| < V(x)Vx € S}, then the Markov
chain X is said to be V-uniformly ergodic. Moreover, V-uniform ergodicity
implies geometric ergodicity.

A discrete time stationary stochastic process X = (X,),ez is called strongly
mixing if

0 asn — oo, (5.1)

o :=sup{I[P(ANB)— P(A)P(B)|: Ae F B e F[°} - 0

as [ — oo, where ]-'900 =0(..,X2,X_1,X0) and F> = o (X}, X141,
Xi42, ...). The values o; are called mixing coefficients. If there are constants
C e Rt and a € (0,1) such that o < Ca’, X is said to be strongly mixing with
geometric rate. Finally, it should be noted that many results regarding statistical
properties hold under strong mixing.

As it is most convenient when analyzing stationary MS-ARMA processes, we
have, apart from Theorem 2.1 (i), always considered processes starting in the
infinite past so far. The geometric ergodicity results of this section are useful both
when (X;, A,) is started in the infinite past and also at time zero with arbitrary
initial values (Xop, Ag).

The next theorem studies the V-uniform ergodicity of MS-ARMA processes.
Regarding the topological properties recall Remark 2.1 (a) and observe that it
means, in particular, that one cannot use the discrete metric/topology for a count-
able and nonfinite state space S of A, as this contradicts the required compactness.
On R4(P+4) % § the metric/topology is, of course, understood to be the product
metric/topology.

THEOREM 5.1.

(i) (Geometric ergodicity) Assume that (X;, A;) is a p-irreducible and ape-
riodic weak Feller chain, the support of u has nonempty interior, and the
state space S of A is compact. If, moreover, there are n € (0, 1] and ¢ < 1
such that
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E(JA1"Ag=0)<c VieS (5.2)

for some norm || - || on REP*D and e; € L', then (X, Ay) is V -uniformly
ergodic with V : R4P+0) x § — R given by (x, ) — 1+ ||x||".

(ii) (Infinite past, strong mixing) If (A;)se7, is additionally stationary and
ergodic, then E(log™ ||Agl|), E(log™t ||Coll) < oo, y < 0, and thus there
is a unique stationary and ergodic solution X = (X;);ez to the MS-
ARMA (p,q, A, €) equation (2.1) given by Theorem 2.1 (i). Moreover,
(Xy, Ay)iez, the state space representation X, and the MS-ARMA process
X itself are strongly mixing with geometric rate.

Proof.

(i) Let w denote a maximal irreducibility measure for (X;, A;) in the sense
of Meyn and Tweedie (1993, Prop. 4.2.2). Thus, u is especially absolutely
continuous with respect to , i.e., w (A) = 0 implies u«(A) = 0, and there-
fore suppy 2D suppu, which shows that the support of w has nonempty
interior.

As 0 < 77 < 1, we have ||a+b|" < ||a||" + ||b]|" for all a, b € RIP+D),
Thus, for any x € R¥P+9 and 5 e S

E(V(Xy, A)[Xo=x, Ao =0) =E([[A1x + C;[|"+1]Xo = x, Ag = J)

<E(IA1I"TAo =) IxI"+EUCI"[Ao =0) + 1,

because A only depends on Ag. As S is compact and €; € L7 and is
independent of A, there is an M > 0 such that E(]|C;||"|Ag=0) <M —1
for all o € S. Hence, E(|| X |7+ 1|1Xo = x, Ag =) < c¢||x]||”+ M. Choose
7> 0with 1 —7 > ¢ and then set R = (M)/(1—7 —¢))"/" and C =
Bg(0) (the ball with radius R in R4(P+). For all x € C¢ = R¢P+a\C
we have (1 —7 —¢)||x||7 > M, and therefore

E(V(X1, ADIXo=x,Ag=0)
<clx|l"+ (A =7 =0o)lx|I" < (1 =7)V(x,0) (5.3)

for all (x,0) € C¢ x S. Setting K := C x S we obtain a compact set. Hence,
Meyn and Tweedie (1993, Prop. 6.2.8(ii)) ensures that K is a petite set (for
a definition, see Meyn and Tweedie, 1993, Sect. 5.5.2). Combining (5.3)
with the observation E(V(X()|Xg = x,A =9) < c|x||T+ M < (cM)/
(1—=7—c)+ M =:bforall x € C, we obtain E(V(X)|Xg=x,A =) <
(1=17)V(x,d)+ 1g(x,0)b. An application of Theorem 16.0.1 of Meyn
and Tweedie (1993) concludes the proof.

(i1) The compactness of S and €] € L" ensure the finiteness of E(||Cyl|”) and
thus E(log™ ||Col|). Likewise, (5.2) gives E(||A{]|7) < ¢, which implies
E(log® |Ag|l) <ocoand y < 0. So, there is a unique stationary and ergodic
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solution (X;);cz to the MS-ARMA(p, g, A, €) equation (2.1) given by
Theorem 2.1 (i). The strong mixing properties are implied by the
V-uniform ergodicity (see Meyn and Tweedie, 1993, Ch. 16) and the fact
that strong mixing of a joint random sequence (A;, C;);ez implies this
property for the individual sequences (A;);cz and (C;);ez, which is obvi-
ous from the definition. u

Remark 5.1.

(a) A straightforward sufficient condition for (5.2) is the existence of a norm
II-|l and ¢ < 1 such that ||A;]|| < ¢ for all possible states of Aj. Moreover,
Jensen’s inequality shows that E(||A{]|” |Ag =) < ¢ V 6 € S for some
y > 1 implies the validity of (5.2) for all # € (0, 1].

(b) Yao and Attali (2000) gave criteria for geometric ergodicity of nonlinear
Markov-switching autoregressions with finitely many regimes, which were
extended in Lee (2005).

Next we examine conditions for an MS-ARMA process to be weakly Fellerian.

PROPOSITION 5.1.

(i) Assume that there is some measurable function F such that A; =
F(A;—1,u;), where (u;) is an i.i.d. sequence assuming values in a mea-
surable space (G, G) and F(-,u) is continuous for any fixed u € G. Then
(X;, Ay) is a weak Feller chain.

(i) If (X;, A;) is weakly Fellerian, then (A;) is a weak Feller chain.

Proof.

(i) Because projections are continuous, there are functions Fa, Fin, Fx such
that At = FA(AI—17 Ml), m; = Fm(At—b ul)’ Zl = FZ (Al—ls I’tf)’ and FA7
Fm, Fy are continuous in A;_j. Thus, we obtain that

(Xs, Ar) = (Fa(Ar—1, u)Xi—1 + Fn(Ar—1,uy)

+Fs(Ar—1,up)er, F(A—1,u;))

is a continuous function of (X;—1, A;—1).
Let g : R4(P+49) x § — R be bounded and continuous and denote P (e, u)
the joint distribution of (e, u); then

E(gX1, ADIXo=x,A0=0)
_ / 2 (Fa(S,u)x + Fu (6, 1) + Fx (5, u)e, F(3,u)) dP (e, u)
RiIxG

is a continuous function of (x, d), as the continuity lemma from standard
integration theory (see, e.g., Bauer, 1992, Lem. 16.1) shows.

Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 15 Sep 2016 at 11:08:52, subject to the
Cambridge Core terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/50266466608090026


http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0266466608090026
http:/www.cambridge.org/core

ON MARKOV-SWITCHING ARMA PROCESSES 59

(ii) Letg: S — R be bounded and continuous. Define g : RY(P+9) x § 5 R by
g(x,0) = g(o). Then g is bounded and continuous and E(g(A)|Ag = 9)
=E(g(X1, A1)|Xo = x, Ag = 0) is continuous, because A only depends
on Ag and (X;, A;) is weakly Fellerian. Thus, A is a weak Feller
chain. |

Demanding the existence of such a function F is still a rather weak condition,
as many Markov chains are of this type (cf., e.g., Meyn and Tweedie, 1993, Sect.
2.2 and Ch. 7). Compared to the nonlinear state space models studied in Meyn
and Tweedie (1993) our assumptions are even weaker, because we do not impose
any differentiability restrictions on F.

Now we turn to studying u-irreducibility and aperiodicity. Denoting the Le-
besgue measure on R” by 1" the following proposition covers most cases of prac-
tical relevance.

PROPOSITION 5.2. Let P} denote the n-step transition kernel of the Markov
chain A and u A be a nondegenerate measure on (S, S) such that for any A € S
with ua(A) > Oandall x € S

o0
Y, Pi(x,A)>0 (5.4)
n=p+q

holds. Assume that €q has a strictly positive density with respect to 2% and, more-
over, that X; is invertible for all possible states of A;.

(i) Then (A;) is ua- and (X;, Ay) is 24P+D @ y p-irreducible.
(ii) If the support of ua has nonempty interior, then the same holds for
240+ @ i 4.
(iii) Assume that A is also aperiodic; then so is (X;, A;).

Proof. Condition (5.4) immediately implies that A is u s-irreducible. Inspect-
ing the iteration X; = A;X;_1 4+ C,, it is obvious that under the preceding assump-
tions X, 4+« can reach any set of positive Lebesgue measure for all k£ € No with
strictly positive probability regardless of the value (Xg, Ag) and the evolution of
the chain (A;), because €; has a strictly positive density and X; is invertible. Com-
bining this with the fact that for every set A with positive measure u 5 there is an
n > p+q such that P} (x, A) > 0, yields (i).

Part (ii) is now a trivial consequence of Part (i), because we are using the prod-
uct topology and suppA?(P*+9) = R4(P+4)  Furthermore, the preceding considera-
tions on the sets that X; can reach give immediately that (X;, A;) cannot exhibit
any cyclic behavior when A is aperiodic. This gives Part (iii). u

Finally we extend the feasible sufficient stationarity criterion of Corollary 3.1
to one ensuring (5.2). Again, this is an immediate consequence of Theorem 3.1.
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PROPOSITION 5.3. Assume that S is compact and that there is a norm || - |4
on R? and ¢ < 1 such that Zle |®;1llg < c for all possible states of A1, then

there is a norm || - || on RAYP+D and ¢ < 1 with |A;|| < ¢ for all possible states of
Ay. In particular, (5.2) is satisfied for all n € (0, 1].

Remark 5.2 (Finite state space). For Markov chains with finite state space the
usual construction (given, e.g., in Resnick, 1992, Sect. 2.1) automatically implies
weak Fellerianity via Proposition 5.1. However, as we may not use the discrete
metric, this does not extend to a nonfinite countable state space; then one has to
check the continuity at accumulation points of S in detail.

Likewise, we take the counting measure on S as u A in Proposition 5.2 in the
case of a finite state space of A, because this conforms with the standard no-
tion of irreducibility. The counting measure always has a nonempty interior of the
support. Moreover, elementary arguments show that irreducibility already implies
(5.4).

To conclude this paper let us give a concrete example of a Markov-switching
process with an uncountable state space for the parameter chain.

Example 5.1
Assume that a Markov-switching AR(1) process (X;) is given by

X =@ X¢—1 +¢, (5.5)

where the noise € is an i.i.d. sequence ¢; with a standard normal distribution and
the parameter chain @1, is given as follows.

Leta,b,cbesuchthat —1 <a <b < 1and ¢ > 0 and (u,) be an i.i.d. sequence
uniformly distributed on the interval [—1, 1]. Then the evolution of the AR coef-
ficient is given by @1, = max (min (®,_| +cu;,b) ,a); i.e., we choose the new
parameter uniformly from the neighborhood with radius ¢ of the old one but do
not allow it to leave the interval [a; b].

Using Corollary 3.1 it is clear that Theorem 2.1 implies the existence of a
unique stationary and ergodic solution to (5.5). Likewise, Theorem 4.2 gives that
X; has a finite moment of any order. Moreover, looking at the definition it is
immediate that (D) is aperiodic and irreducible with respect to the Lebesgue
measure restricted to [a, b] and that (5.4) is satisfied. Now that we have observed
this, Propositions 5.1-5.3 imply that Theorem 5.1 is also applicable and thus the
MS-ARMA process is geometrically ergodic/strong mixing.

The easiest way to see that the Markov parameter chain satisfies the condi-
tions needed is, of course, to use Corollary 3.1 or Proposition 5.3. But when these
are applicable there are no explosive regimes. However, in applications the pres-
ence of explosive regimes is often desirable. To show that models with explosive
regimes have some desirable probabilistic properties one can often simply use the
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general conditions we have given directly. Let us illustrate this with a concrete
variant of Example 5.1 that has explosive regimes.

Example 5.2

Let an MS-ARMA process be given by the setup of Example 5.1 with a = —1.2,
b= 1.2, and ¢ = 1.5. Then E(|(I)1,1| |(D1,() = 5) < E(|(D1,1|| (Dl,O = 1.2) for all
0 € [—1.2,1.2] is obvious, and one calculates E(|®1,1|| ®1,0=1.2)=0.5-1.2+
0.5 [155(x/1.5)dx = 0.825.

Hence, condition (5.2) is satisfied with # = 1, and this implies that we have
V-uniform ergodicity and strong mixing, because the other conditions of Theo-
rem 5.1(i) are fulfilled using the same arguments as for Example 5.1. This gives
immediately that the Markov parameter chain can be chosen to be stationary and
ergodic. If this is done, Theorem 5.1(ii) applies and, hence, shows that the MS-
ARMA process given by (5.5) is stationary and ergodic.
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