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Spectral eddy viscosity of stratified turbulence
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The spectral eddy viscosity (SEV) concept is a handy tool for the derivation of large-
eddy simulation (LES) turbulence models and for the evaluation of their performance
in predicting the spectral energy transfer. We compute this quantity by filtering and
truncating fully resolved turbulence data from direct numerical simulations (DNS)
of neutrally and stably stratified homogeneous turbulence. The results qualitatively
confirm the plateau–cusp shape, which is often assumed to be universal, but show
a strong dependence on the test filter size. Increasing stable stratification not only
breaks the isotropy of the SEV but also modifies its basic shape, which poses a
great challenge for implicit and explicit LES methods. We find indications that for
stably stratified turbulence it is necessary to use different subgrid-scale (SGS) models
for the horizontal and vertical velocity components. Our data disprove models that
assume a constant positive effective turbulent Prandtl number.

Key words: homogeneous turbulence, stratified turbulence, turbulence modelling

1. Introduction

In large-eddy simulation (LES) the unresolved part of the turbulent velocity field is
modelled by a subgrid-scale (SGS) model. This SGS turbulence model is supposed to
modify the flow energy balance in the same way as the small-scale structures of fully
resolved turbulence would do. Most SGS models are, at least to some extent, based
on an eddy viscosity hypothesis. This means that the SGS model dissipates turbulence
energy, especially at the smallest resolved scales, but also on larger scales. Heisenberg
(1948) introduced the concept of modelling nonlinear interactions in turbulence by a
scale-dependent spectral eddy viscosity (SEV). The underlying theory has since been
refined by Kraichnan (1976) and others. Although impractical in real-space-based
numerical simulations, the SEV as a function of wavenumber can be used to verify
the correct behaviour of SGS models in a set-up of homogeneous (but not necessarily
isotropic) turbulence.
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Algebraic expressions for the SEV have been derived based on the eddy-damped
quasi-normal Markovian (EDQNM) theory (Orszag 1970) for isotropic turbulence. A
different approach was pursued by Domaradzki et al. (1987), who computed the SEV
from direct numerical simulations (DNS) of fully resolved turbulence by truncating
the results in spectral space. They found some agreement with the theoretical results
of Kraichnan (1976), but also differences due to the finite inertial range in their
simulations. Despite these discrepancies, the behaviour of isotropic turbulence is quite
well understood. On the other hand, corresponding numerical studies for anisotropic
turbulence are still rare.

Semi-analytical expressions for the eddy-viscosity and eddy-diffusivity spectra
for stratified turbulence are given by Godeferd & Cambon (1994), Staquet &
Godeferd (1998) and Godeferd & Staquet (2003) in the framework of the EDQNM
approximation. Another form was obtained by Sukoriansky, Galperin & Staroselsky
(2005) and Galperin & Sukoriansky (2010) through quasi-normal scale elimination
(QNSE). These theoretical results show that turbulence anisotropy can significantly
affect SGS energy dissipation in flows dominated by stable stratification, solid body
rotation or shear.

In validating an SGS model for stably stratified flows, we have generated an
extensive database of DNS results for homogeneous stratified turbulence. The
simulations cover a wide range of Froude numbers from the neutrally stratified to the
strongly stratified regime (Remmler & Hickel 2012, 2013). We now analyse these
results with respect to the anisotropic, i.e. direction-dependent, SEV. To achieve this,
we follow Domaradzki et al. (1987) and filter the DNS results to coarser resolutions
in several steps and compute the SGS stress necessary to obtain the same large-scale
result on the coarse grid as on the full DNS grid. Similar studies were presented by
Kitsios, Frederiksen & Zidikheri (2012, 2013) for the quasi-geostrophic equations and
by Khani & Waite (2013) for the Boussinesq equations using one-dimensional SEV
spectra based on grid truncation in the horizontal or vertical direction.

In the following section, we will briefly outline the governing equations, review the
concept of SEV and diffusivity and comment on our flow solver. A short overview
of the computational set-up follows. The results section presents results for isotropic
turbulence in comparison to the work of Kraichnan (1976) and Domaradzki et al.
(1987) as well as SEV data in a two-dimensional spectral space for stably stratified
homogeneous turbulence. Furthermore, we use these newly obtained reference data
to evaluate the performance of different existing LES methods. One model follows
the implicit LES paradigm, i.e. the discretisation scheme and the SGS model are
merged. The other models combine an explicit approximation of the SGS tensor with
a non-dissipative central discretisation.

2. Computational methods

2.1. Boussinesq equations
The flows to be investigated are characterised by a stable background stratification, so
the density is not constant. However, the density differences are small and the flow
velocities are much smaller than the speed of sound, which justifies the Boussinesq
approximation. The non-dimensional Boussinesq equations for a stably stratified fluid
in Cartesian coordinates read

∇ · u = 0, (2.1a)

∂tu+∇ · (uu) = −∇p− ρ

Fr2
0

êz + 1
Re0
∇2u+ F, (2.1b)
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Spectral eddy viscosity of stratified turbulence

∂tρ +∇ · (ρu) = u · êz + 1
Pr Re0

∇2ρ, (2.1c)

where the velocities are made non-dimensional by a reference velocity U , all spatial
coordinates by the length scale L , pressure by ρU 2, time by L /U and density
fluctuation ρ = ρ∗ − ρ (ρ∗ is the local absolute density, ρ is the background density)
by the background density gradient L |dρ/dz|. The vertical unit vector is êz and F
denotes a large-scale forcing, see (3.1). The non-dimensional flow parameters are

Fr0 = U

NL
, Re0 = U L

ν
, Pr= ν

D
, (2.2a–c)

where ν is the kinematic viscosity, N =√−g/ρ dρ/dz is the Brunt–Väisälä frequency
and D is the thermal diffusivity of the fluid. We chose a Prandtl number of Pr= 0.7,
corresponding to typical values in the atmosphere.

The local dissipation rates εk and εp of kinetic energy Ek = (1/2)
∑

iuiui and
available potential energy Ep = (1/2)ρ2/Fr2

0 can be computed directly from the
velocity and density field,

εk = u ·∇2u
Re0

, εp = ρ∇2ρ

Pr Re0 Fr2
0

. (2.3a,b)

With the spatial mean values of kinetic energy 〈Ek〉 and kinetic energy dissipation
〈εk〉, we define the local Froude and Reynolds number as well as the buoyancy
Reynolds number R, (Brethouwer et al. 2007)

Fr= Fr0L

U

〈εk〉
〈Ek〉 , Re= Re0

U L

〈Ek〉2
〈εk〉 , R = Re Fr2, (2.4a–c)

which are used to characterise the flow regime. The overturning wavenumber
(Dougherty 1961; Ozmidov 1965)

kO = N3/2

ε
1/2
k

(2.5)

approximately separates small scales which are practically isotropic and large scales
which are affected by buoyancy.

2.2. Spectral eddy viscosity
The momentum equation for incompressible homogeneous turbulence in spectral space
reads (

∂t + νk2
)

ûi(k)= Ŝi(k)− i
∑

j,q

kqPij(k)
∑

m

ûj(m)ûq(k−m), (2.6)

where Pij(k)= δij− kikj/k2 is the projection tensor onto a divergence-free velocity field,
δij is the Kronecker symbol, k2=|k|2= k2

1 + k2
2 + k2

3 is the wavenumber and Ŝi contains
all forces on the fluid. The kinetic energy of a single mode k is

ei(k)= 1
2 ûi(k)û?i (k), (2.7)

where (·)? denotes the complex conjugate. Implicit summation over repeated indices
does not apply throughout this paper. If required, summation is directly indicated. We
refer to e(k) =∑i ei(k) as the total kinetic energy and to eh(k) = e1(k) + e2(k) and
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ev(k)= e3(k) as the horizontal and vertical kinetic energy, respectively (assuming for
simplicity that the vertical direction coincides with the x3 direction).

The temporal evolution of ei(k) is governed by(
∂t + 2νk2

)
ei(k)−Re

{
Ŝiû?i (k)

}
= Ti(k), (2.8)

with the transfer term

Ti(k)=
∑

j,q

kqPij(k)Im

{∑
m

û?i (k)ûj(m)ûq(k−m)

}
. (2.9)

If the numerical discretisation acts as a perfect low-pass filter, only wavenumbers |k|<
kc are resolved and we can split the transfer term T(k) into

T(k)=
∑

i

Ti(k)= T−(k, kc)+ T+(k, kc); |k|< kc, (2.10)

where T−(k, kc) involves only interactions of wavenumbers |k| < kc, |m|< kc,
|k−m|< kc and is thus resolved by the numerical grid. The SGS transfer T+(k, kc)
represents all unresolved interactions and has to be modelled in an LES.

We can model the average SGS transfer by using the SEV hypothesis

νt(k, kc)=
〈
T+(k, kc)

〉
s

2k2 〈e(k)〉s
or νt(k′, kc)=

〈
T+(k, kc)

〉
c

2k2 〈e(k)〉c
. (2.11a,b)

The average 〈· · ·〉s is taken over time and on thin spherical shells with radius |k| for
isotropic turbulence, which reduces the wavenumber space to one dimension k. For
flows with spectra symmetric about the kz-axis, such as rotating or stratified turbulence,
we average 〈· · ·〉c over thin cylindrical shells with radius kh = |kh| =

√
k2

x + k2
y . The

result is defined in a two-dimensional wavenumber space k′ = (kh, kz). We compute
the SEV for the horizontal and vertical kinetic energy by

νt,h = 1
4k2

[〈
T+1
〉

〈e1〉 +
〈
T+2
〉

〈e2〉

]
; νt,v =

〈
T+3
〉

2k2 〈e3〉 . (2.12a,b)

For isotropic turbulence the SEV is generally normalised by the cutoff wavenumber
and the kinetic energy at this wavenumber

ν+t (k/kc)= νt(k, kc)

√
kc

E(kc)
, (2.13)

where the integral kinetic energy is E(k)= 4πk2〈e(k)〉. This is only a useful definition
if the energy spectrum is known (e.g. E(k)= CKε

2/3k−5/3) at the cutoff wavenumber.
Otherwise, it is helpful to use the original formulation of Kraichnan (1976),

ν∗t (k/kc)= νt(k, kc)ε
−1/3
k k4/3

c . (2.14)

For isotropic turbulence with an infinite inertial range, ν+t and ν∗t are simply related
by ν∗t =

√
CKν

+
t , where CK is the Kolmogorov constant. An algebraic model equation

for ν+t (k/kc) in isotropic turbulence is given by Chollet (1984).
As we have a fully resolved simulation of homogeneous turbulence, we can extract

the full transfer term T(k). By filtering the solution to a coarser test grid, we find the
resolved term T−(k, kc) for the test grid resolution and then compute the SGS transfer
T+(k, kc) from (2.10).
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We can derive an expression for the spectral eddy diffusivity (SED) of any
conserved scalar, such as the density fluctuation

Dt(k′, kc)=
〈
T+p (k, kc)

〉
c

2k2
〈
ep(k)

〉
c

, (2.15)

where T+p is the SGS transfer term in the density equation and

ep(k)= 1
2 ρ̂(k)ρ̂

?(k) (2.16)

is the spectral potential energy density. We normalise the SED by

D∗t (k/kc)=Dt(k, kc)ε
−1/3
k k4/3

c (2.17)

using the kinetic energy dissipation rate εk as for the SEV. This normalisation follows
from the common belief that the eddy diffusivity can roughly be modelled with a
turbulent Prandtl number, which is backed by spectral turbulence theory for high
Reynolds numbers and Prandtl numbers of order unity (see equation (23) in Hickel,
Adams & Mansour 2007).

We define the effective turbulent Prandtl number for a certain cutoff wavenumber
kc in the spectral space,

Prt(k, kc)= νt(k, kc)

Dt(k, kc)
. (2.18)

2.3. Flow solver
With our flow solver INCA, the Boussinesq equations are discretised by a fractional-
step method on a staggered Cartesian mesh. For time advancement the explicit
third-order Runge–Kutta scheme of Shu (1988) is used. The time step is dynamically
adapted to satisfy a Courant–Friedrichs–Lewy condition (including the limits for
advective, diffusive and buoyancy terms) with CFL 6 1.0. The Poisson equation for
the pressure is solved at every Runge–Kutta substep.

2.4. Spatial discretisation and SGS models
The spatial discretisation is based on a finite-volume method. We use a non-dissipative
central-difference scheme with second-order accuracy for the diffusive terms and the
pressure Poisson solver. The discretisation of the advective terms depends on the
application. For the DNS we use a non-dissipative fourth-order central difference
scheme (CDS4).

For LES on much coarser grids a turbulence SGS model is required. In the present
study we tested four different SGS models. The first model is the Adaptive Local
Deconvolution Method (ALDM). It is an implicit SGS model, i.e. the numerical
discretisation of the advective terms acts as a sink of energy by providing a suitable
amount of numerical dissipation. This is achieved by a reconstruction of the unfiltered
solution through an approximate deconvolution and a regularisation based on a tailored
numerical flux function. ALDM was developed by Hickel, Adams & Domaradzki
(2006) and Hickel et al. (2007) and successfully applied to stably stratified turbulent
flows by Remmler & Hickel (2012, 2013).

Alternatively, an explicit SGS model can be applied on top of the non-dissipative
central discretisation scheme. We use the Smagorinsky (1963) model with a fixed
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No. Re Fr R Reλ ηkmax kO

1 20 800 ∞ ∞ 372 0.95 0.0
2 23 150 0.089 184.0 393 0.97 6.4
3 28 250 0.025 17.2 434 0.83 38.4
4 33 480 0.008 2.1 472 0.71 192.0

TABLE 1. List of the presented DNS ordered by the strength of the stable stratification.
No. 1 is neutrally stratified, No. 4 is strongly stratified.

model coefficient of CS = 0.18 (‘standard Smagorinsky model’, SSM) or a dynamic
version of this model (‘dynamic Smagorinsky model’, DSM) based on the dynamic
procedure proposed by Germano et al. (1991) and improved by Lilly (1992). The
dynamic procedure is used to compute the Smagorinsky model coefficient based on
test filtering the numerical solution assuming scale similarity between the smallest
resolved scales and the largest unresolved scales. The test filter size is twice the
grid size. For numerical stability reasons the computed model coefficient is usually
averaged in homogeneous directions. Since we investigate a flow field that is
homogeneous in all three directions, the method reduces to the computation of a
spatially constant but temporally varying model coefficient. We also investigated the
case without spatial averaging; this is denoted ‘DSM2’ in § 4. In order to prevent
numerical instability, the Smagorinsky model coefficient is clipped if negative values
are computed. The turbulent Prandtl number is assumed to be Prt = 0.4 for both the
SSM and the DSM.

3. Numerical set-up

We simulated homogeneous stratified turbulence in a triply periodic box with side
length L = 2π and a resolution of 5123 cells. A fluctuating large-scale horizontal
volume force is applied to the fluid, which injects a constant forcing power into the
domain. The time- and space-dependent forcing term reads (Aspden et al. 2008)

F(x, t)=
2∑

i,j=1

ai,j cos(2πkix+ pi,j) cos(2πkjy+ qi,j). (3.1)

The random amplitudes ai,j and phases pi,j and qi,j are recomputed at every time step.
After an initial transient phase, the turbulence kinetic energy remains at a constant
level, as soon as the forcing power P = 1/(2π) is balanced by the mean molecular
dissipation εk + εp. A more detailed description of the simulations is provided by
Remmler & Hickel (2013). We sampled the SEV and SED in time intervals 1T =
5L /U sufficiently large to ensure decorrelated velocity and density fields. With an
average computational time step of 1t = 1.6 × 10−3L /U we needed ∼3125 time
steps for each sample. To limit computational costs, we restricted ourselves to 20
samples per simulation. All figures presented below are averages of these samples.

A list of the simulations can be found in table 1, where we provide the
non-dimensional parameters for each case as well as the Reynolds number based
on the Taylor microscale (see, e.g. Pope 2000), computed using the kinetic energy
Ek and kinetic energy dissipation εk,

Reλ = Ek

√
20Re0

3UL εk
. (3.2)
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FIGURE 1. Integrated spectra of neutrally stratified turbulence DNS (5123 cells).
(a) Horizontal and vertical kinetic energy spectra. The vertical lines indicate cutoff
wavenumbers for SEV computation. (b) SEV at different test grid levels. The EDQNM
prediction (Kraichnan 1976) is also shown for comparison.

The product of the Kolmogorov length η and the maximum resolved wavenumber kmax

is ηkmax ≈ 1, which indicates sufficient resolution of the smallest scales of turbulence.
The Ozmidov wavenumber kO indicates the smallest scales of motion that are

affected by buoyancy. For case No. 2 only the largest scales are affected by buoyancy;
in case No. 4 almost the complete spectrum is influenced by buoyancy forces. (It
should be noted that the grid cutoff wavenumber is kc = 256.)

4. Results and discussion

4.1. Neutrally stratified turbulence
For neutrally stratified turbulence we can compare our results directly with the
EDQNM prediction. The spectra of horizontal and vertical kinetic energy shown
in figure 1(a) confirm that the turbulence is fully isotropic for wavenumbers k > 5.
In figure 1(b) we show the results of spherically averaged SEV for five different
coarse test grids together with the algebraic law of Kraichnan. It turns out that in our
simulations the values of ν+t are similar to the theoretical ones and the plateau–cusp
shape of the curve is reproduced. However, the cusp is sharper than in the theoretical
curve and its maximum value increases with the test grid resolution. Moreover, the
plateau at low wavenumbers is tilted, its level rises with decreasing test grid resolution
and it saturates for the test grid with 643 cells and the coarser grids.

Domaradzki et al. (1987) already observed a lower level of the SEV at low
wavenumbers compared with theory, when they analysed DNS of isotropic turbulence
at very low Reynolds number. Therefore the low-level plateau is probably due to the
high cutoff wavenumbers which are close to the dissipative range.

The dependence of the cusp maximum and sharpness on the test grid was also
observed and quantified by Kitsios et al. (2012). Our observations confirm their
findings.
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FIGURE 2. Two-dimensional SEV of neutrally stratified horizontally forced turbulence
(test grid with 643 cells). Horizontal (a) and vertical (b) kinetic energy.

In figure 2 we present the SEV in a two-dimensional spectral space. Averaging
was performed on circles with constant distance from the vertical axis. The analysis
was carried out separately for the horizontal and vertical kinetic energy components.
It turns out that, as expected, the horizontal eddy viscosity spectrum νt,h shows an
isotropic distribution. The SEV of the vertical kinetic energy component νt,v is not
isotropic, which is due to the anisotropic spectrum of any single-direction kinetic
energy in a divergence-free velocity field.

4.2. Stably stratified turbulence
We applied the same analysis to the simulations with stable stratification, see figure 3.
In this case, a third type of energy has to be considered, the available potential energy
and hence the SED Dt. In the following, it is sometimes helpful to discuss the results
not in Cartesian spectral coordinates but in terms of the absolute wavenumber k and
the angle φ, which has the range 06φ6π/2 for the horizontal and vertical directions,
respectively.

The cutoff wavenumber for the spectra presented in figure 3 is kc= 32. This means
that it is larger than the Ozmidov wavenumber kO in case No. 2, approximately equal
to kO in case No. 3 and significantly smaller than kO in case No. 4. As pointed out
by Khani & Waite (2013), this has a large influence on the SEV and SED spectra.

The SEV of the horizontal kinetic energy is still almost isotropic in case No. 2
with R = 184. At lower Froude numbers the cusp no longer appears in all directions,
but only at medium angles φ. At the lowest Froude number investigated, it almost
completely vanishes.

For the vertical kinetic energy, there is no visible difference between the neutral
and the weakly stratified case. With increasing stable stratification, the overall level
of νt,v decreases and a region with negative values appears. This could be explained
by an inverse energy cascade or by the effect of ‘pancake’ vortices elongated in the
horizontal direction and layered in the vertical direction. Remmler & Hickel (2013)
indeed observed a transport of vertical kinetic energy from small to larger vertical
scales in the case of strong stable stratification (cf. their figure 4b), which supports
this view.

The SED differs quite strongly from the SEV described above. In the weakly
stratified case, there is a clear plateau–cusp behaviour, but the plateau level depends
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FIGURE 3. SEV and diffusivity of stably stratified turbulence (test grid with 643 cells)
at different Froude numbers (corresponding to weak, medium and strong stratification).
Horizontal (a–c) and vertical (d–f ) kinetic energy as well as potential energy (g–i). (a,d,g)
R = 184, Fr= 0.089; (b,e,h) R = 17.2, Fr= 0.025; (c,f,i) R = 2.1, Fr= 0.008.

on the spectral direction. It strongly decreases when φ is increased. The cusp level,
in contrast, is almost unaffected by the spectral direction. It decreases only slightly at
φ≈π/2. Case No. 3 (R= 17.2) looks very similar, just the plateau level is decreased
and the drop of the cusp level at high φ is more pronounced than in the previous
case. For the strongest stratification, the picture changes significantly. There is a peak
at high horizontal wavenumbers and no plateau region as in the previous cases.

According to Galperin & Sukoriansky (2010), the horizontal viscosity and diffusivity
should grow in the case of increased stratification while the vertical counterparts
decrease. Our results confirm this for the vertical viscosity and diffusivity, but show
a different trend for the horizontal direction.

The effective turbulent Prandtl number (figure 4) is homogeneously distributed in
the spectrum in the case of weak stratification. In the horizontal direction there is a
plateau at Prt ≈ 0.35 and a cusp near the cutoff wavenumber with a maximum value
of Prt = 0.55. For the vertical direction Prt > 1. In the case of stronger stratification
the difference in the horizontal and vertical directions is increased, leading to a
large region with negative values in our most strongly stratified case. The growth of
the vertical turbulent Prandtl number with increasing stratification, at least for cases
Nos 2 and 3, is in agreement with the findings of Galperin & Sukoriansky (2010).
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FIGURE 4. Effective turbulent Prandtl number in stably stratified turbulence (test grid
with 643 cells) at different Froude numbers (corresponding to weak, medium and strong
stratification). (a) R=184, Fr=0.089; (b) R=17.2, Fr=0.025; (c) R=2.1, Fr=0.008.

Based on the observed inhomogeneity of the effective turbulent Prandtl number in
spectral space we conclude that traditional SGS models assuming a constant positive
turbulent Prandtl number are certainly unsuitable for simulations of strongly stratified
turbulence.

4.3. Analysis of LES schemes
The reference data obtained from filtering the DNS can now be used to analyse LES
methods. We computed the effective SEV and SED in LES from an ensemble of
statistically independent snapshots of the flow field (see Hickel et al. 2006). The SEV
and SED are both affected by the numerical discretisation and the turbulence SGS
model. Both interfere with each other and cannot be judged independently, which
motivates the idea of implicit LES where the discretisation and the SGS model are
fully merged. Since quantitative comparison of two-dimensional plots as in figures 2
and 3 is difficult, we show the SEV and SED of different LES methods in figure 5
in a one-dimensional graph that is a cut through the spectral space at φ = π/4 (the
‘diagonal’ modes). As a test case we selected case No. 3 with a medium stable
stratification. The cutoff wavenumber kc = 16 is slightly smaller than the Ozmidov
wavenumber kO = 38.4, so the SGS turbulence is, to a certain degree, influenced by
buoyancy forces. Together with the EDQNM prediction and the DNS reference result,
we show the results obtained with the ALDM, pure CDS4 without an SGS model
and CDS4 with explicit models, namely SSM, DSM and DSM2.

It turns out that none of the tested methods are able to correctly reproduce all three
SEV and SED spectra at the same time. The ALDM does on average a good job,
which is remarkable since the method was optimised to reproduce the EDQNM curve
as closely as possible (Hickel et al. 2006). The averaged DSM gives good results for
the SEV of the horizontal kinetic energy and the SED of the available potential energy,
but fails for the SEV of the vertical kinetic energy. The SEV of the vertical kinetic
energy, on the other hand, is well predicted by the pure CDS4 discretisation without
a turbulence SGS model. The DSM2 model, which allows for local variations in the
model coefficient, does not improve the result over the averaged DSM, but rather
makes it worse.

5. Summary and conclusions

We have computed the SEV and diffusivity of homogeneous turbulence with and
without stable stratification. This was achieved by filtering fully resolved DNS results
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FIGURE 5. Diagonal SEV and SED of stably stratified turbulence at R = 17.2 (323 cells)
computed with different discretisation schemes and turbulence SGS models. (a) ν∗t,h;
(b) ν∗t,v; (c) D∗t .

and by computing the additional spectral energy flux that is necessary to obtain the
same total flux in the coarse-grained flow field as in the fully resolved case.

For neutrally stratified turbulence we found eddy viscosity spectra that are,
in general, similar to the EDQNM prediction of Kraichnan (1976) showing the
well-known plateau–cusp behaviour. However, the amplitude of the cusp at the cutoff
wavenumber depends on the test filter size, as described by Kitsios et al. (2012), and
at low wavenumbers we find a pronounced linear decrease of the SEV instead of a
flat plateau.

If the stable stratification is increased, the SEV and SED spectra become more and
more anisotropic. For the most stable case investigated, the spectral space topology
has completely changed. This illustrates that the characteristics of the flow change
significantly as soon as the buoyancy Reynolds number approaches R ≈ 1. Strong
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stratification leads to negative values of the effective turbulent Prandtl number at large
horizontal and small vertical wavenumbers. Such results contradict the widespread
assumption of a constant positive effective turbulent Prandtl number in SGS modelling.
The treatment of SGS stresses in such cases must generally be different from that in
fully turbulent flows with higher values of R.

We used the results from the filtered DNS to test the implicit SGS model ALDM
and a central discretisation scheme with and without the Smagorinsky model, either
in the standard form or in the dynamic form. We found that the ALDM, despite
being calibrated for the SEV from EDQNM theory, yields acceptable results for all
three forms of flow energy. The DSM does a good job except for the vertical kinetic
energy, which is best matched by the central discretisation without any SGS model.
These results suggest that a potentially better model could be obtained by applying the
DSM only to the horizontal velocity components and leaving the vertical momentum
equation unmodified.
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