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Abstract. Dispersion relation for the low-frequency magnetic electron-drift vortex
(MEDV) mode in an inhomogeneous dense quantum plasma has been derived.
New class of purely growing instabilities are found to exist on a time scale of
the order of ion plasma period. We found that the MEDV mode become unstable
when the propagation direction is perpendicular to the equilibrium density gradients.
We believe that the present investigation would be useful to understand the wave
phenomena and in the study of magnetic field generation in laser-produced plasmas
as well as in dense space plasmas, where quantum effects are expected to play a
dominant role.

1. Introduction
The field of quantum plasmas has generated a lot of interest in the plasma physics
community owing to its wide range of applicability. Numerous investigations have
been carried out in dense astrophysical environments [1, 2] in dusty plasmas [3, 4]
(such as white dwarfs and neutron stars), in microelectronic devices [5], in intense
laser-beam-produced plasmas [6], in nonlinear optics [7, 8], etc. to understand the
quantum effects on the behavior of linear and nonlinear wave propagation in
these systems. The quantum plasmas are characterized by high densities and low
temperatures in sharp contrast to the low density and high temperatures that
constitute the classical plasmas. When the plasma is cooled to extremely low
temperatures, the de-Broglie wavelength of the charge carriers becomes comparable
to the dimension of the system under consideration. In such a situation, the plasma
behaves like a Fermi gas and quantum mechanical effects are expected to play a
significant role in the behavior of charged particles [9–13].

The approaches that are frequently employed for quantum plasmas are the
Schrödinger-Poisson, the Wigner-Poisson, and the Dirac–Maxwell which describe
the statistical and hydrodynamic behavior of the plasma particles at quantum scales.
These models are the quantum analogues of fluid and kinetic models of the classical
plasma physics. Manfredi [14] wrote a review article on the Schrodinger–Poisson
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368 I. Naeem et al.

and the Wigner–Poisson models in a collisionless quantum plasma and introduced
the rudimentary ideas in this regard. The quantum hydrodynamic model (QHD)
is an extension of the classical fluid model in a plasma. The basic set of QHD
equations describe the momentum and energy transport of the charged species. The
departure from the classical model lies in the fact that an additional term, the so
called ‘Bohm potential’, is introduced in the equation of motion of the charged
particles. In the limit that the quantum effects go to zero, the classical fluid equation
of motion is retrieved in accordance with the correspondence principle.

The QHD model has also been employed to study the propagation of linear
and nonlinear waves in inhomogeneous quantum plasmas. Taibany and Wadati
[11] studied the dynamics of nonlinear quantum dust acoustic wave in a non-
uniform quantum dusty plasma and found that the formation of solitons showed
a dependence on a critical value of plasma parameters unlike a homogeneous
plasma. Shukla and Stenflo [15] found new drift modes in non-uniform quantum
magnetoplasmas and observed that the electron-drift wave frequency got significantly
modified by the electron Bohm potential term. Haque and Saleem [16] proposed that
monopolar and dipolar quantum vortices could appear in uniform dense plasmas.
Recently, Masood et al. [17] investigated the linear and nonlinear properties of
ion-acoustic waves in an inhomogeneous and dissipative quantum magnetoplasma
with sheared ion flows parallel to the ambient magnetic field. It was shown that the
shear flow parallel to the magnetic field could drive the quantum ion-acoustic wave
unstable. Stationary solutions of the nonlinear equations that govern the quantum
ion-acoustic waves were also obtained. It was found that electrostatic monopolar,
dipolar, and vortex street type solutions can appear in such a plasma. It was observed
that the inclusion of the quantum statistical and Bohm potential terms significantly
modified the scalelengths of these structures. Furthermore, it was shown that vortices
form on a very short scalelength i.e. of the order of ion Larmor radius ρi in quantum
magnetoplasmas. Quite recently, Shukla and Eliasson [18] discussed in great detail
nonlinear electrostatic electron-ion plasma waves, novel aspects of three-dimensional
electron fluid turbulence and nonlinear coupled intense electromagnetic waves and
localized plasma wave structures in dense quantum plasma system.

It is well known that a non-uniform unmagnetized electron plasma with stationary
ion background supports the magnetic electron-drift vortex (MEDV) mode [19–23].
The mode is flute-like, purely magnetic, and having frequency (proportional to
vte/Lne, where vte is the electron thermal velocity and Lne = ne0/ |∇ne0| is the
electron density scalelength) [24]. Physically, the generation of magnetic filed can
be correlated with the electric force which is balanced with the electron pressure
gradient force. In a non-uniform plasma, the curl of electric field is related with time
varying magnetic filed whose strength can be of the order of megagauss, when the
equilibrium density and temperature gradients are non-parallel. In a dense quantum
plasma, the kinetic pressure is effectively replaced with Fermi pressure alongwith
small correction term known as Bohm potential term, and as a result, the physical
mechanism for the generation of MEDV mode in quantum plasma remains the same
(i.e. the first order baroclinic type effect). The only difference is that the electron
temperature perturbations is now replaced with a Fermi temperature perturbation.
Since Fermi temperature is a function of density of plasma and consequently, in
a quantum plasma, the baroclinic term appears in the form of ∇ne0 × ∇ne1. This
mode is closely related to several well-known dissipative instabilities in collisional
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plasmas. The MEDV mode is shown to have a frequency identical to that of
the magnetic electron-drift waves first studied by Chamberlain [26] with regard
to the ionospheric plasmas. MEDV modes are, however, different in the sense
that the perturbation magnetic field is polarized along the external field, thus
causing magnetic compression [27]. In this paper, we derive the nonlinear equations
governing the space–time evolution of MEDV mode in an inhomogeneous quantum
plasma. New dispersion relation has been derived for the low-frequency MEDV
mode in a non-uniform quantum plasma. Several interesting limiting cases are
also discussed. It is found that the modes become unstable when the propagation
direction is perpendicular to the equilibrium density gradients. The results of our
investigation should be useful to understand wave phenomena in dense space and
laboratory plasmas, where quantum effects are expected to play an important role.

2. Mathematical formulation
We consider a non-uniform dense quantum plasma whose constituents are the
electrons and ions in the presence of electromagnetic disturbances. We consider a
model in which electric field is along x- and y-axis, the equilibrium density of ion
and electron density gradients are along the x-axis and the perturbations are along
y-axis. The magnetic field B is of the form ẑB1, where ẑ is the unit vector along the
z-axis.

The dynamics of the model is governed by the continuity equation

∂tnj + ∇ ·
(
njvj

)
= 0. (2.1)

The equation of motion is given by

mjnj0
(
∂t + vj · ∇

)
vj = qjnj0E − ∇

(
2TFjnj1

)
+ nj0FQj , (2.2)

where nj , vj , and mj are the number density, the fluid velocity, and the mass of jth
species (j equals e for the electrons and i for the ions), qe = −e, qi = e, where e is
the magnitude of the electron charge, TFj is the Fermi temperature where

TFj =
�2

2mj

(3π2)2/3
(
nj0

)2/3
.

Here we assume that the plasma particles for a three-dimensional zero-temperature
Fermi gas obey the following pressure law:

pj =
1

3

mv2
Fj

n2
j0

n3
j1,

where vFj =
√

2TFj/mj is the Fermi speed, and TFj is the Fermi temperature
expressed in the energy units. Here FQj is the quantum force

FQj =
�2

4mjnj0
∇∇2nj1.

The electric and magnetic fields E and B are governed by the Faraday’s law

∇ × E = −1

c
∂tB (2.3)
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and the Ampere’s law is

∇ × B =
4πe

c
(ni0vi − ne0ve) , (2.4)

where the displacement current is ignored because we are dealing with electromag-
netic waves, the phase velocity of which is much smaller than the speed of light c.
The governing equation is closed with the help of Poisson’s law,

∇ · E = 4πe (ni − ne) . (2.5)

The equilibrium electron number density is denoted by n0(n0 = ni0 = ne0), where the
equilibrium drifts are taken zero for both ions and electrons (vi0 = ve0 = 0). Since
we consider a plasma in which there are no background fields, i.e. B0 and E0 are
taken to be zero, and there are no equilibrium drifts. Furthermore, in equilibrium,
electron equation of motion (2.2) dictates that quantum Bohm potential term would
balance the Fermi pressure for dense quantum plasmas. The perturbation magnetic
field is assumed to have a form ẑB1, where ẑ is the unit vector along the z-axis. Let
us suppose that B1 is proportional to exp(iky − iωt), where k is the wave number
pointing in the y direction and ω is the wave frequency.

Suppose that the phase velocity of the mode is much larger than the ion Fermi
velocity or the ions are consider to be cold as compare to the electrons and ignoring
the quantum force in (2.2). The ion equation of motion can be written as

∂tvi1 =
eE1

mi

. (2.6)

Similarly, from the electron equation of motion, we get

∂tve1 =
eE1

me

+
∇ (2TFene1)

n0me

+
FQe

me

. (2.7)

Subtracting (2.6) and (2.7), we get

∂t (vi1 − ve1) = eE1

(
1

me

+
1

mi

)
+

∇ (2TFene1)

n0me

+
FQe

me

.

Using the Ampere’s law,

vi1 − ve1 =
c

4πen0
∇ × B1

Substituting (vi1 − ve1) in (2.7) and taking curl, we get

c

4πe
∂t∇ ×

(
∇ × B1

n0

)
=

e

me

∇ × E1 − 2TFe

∇n0 × ∇ne1
n2

0me

+
∇ × FQe

me

. (2.8)

Here we have used the limit mi�me:

− ∂

∂t

(
∇n0

n2
0

× (∇ × B1)

)
− 1

n0

∂

∂t
∇2

⊥B1 = −4πe2

c2me

(
∂B1

∂t

)

− (8πeTFe)

c

∇n0 × ∇ne1
n2

0me

− πe�2∇n0 × (∇∇2ne1)

cm2
en

2
0

,

∂t

(
∇2

⊥ −
ω2

pe

c2

)
B1 =

(8πeTFe)

c

∇n0 × ∇ne1
n0me

+
πe�2∇n0 ×

(
∇∇2ne1

)
cm2

en0
,
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where ω2
pe = 4πe2n0/me is the electron plasma frequency

(λ2
e∇2

⊥ − 1)∂tB1 = 2cTFe

∇n0 × ∇ne1
en2

0

+
c�2∇n0 × (∇∇2ne1)

4emen
2
0

, (2.9)

where λe = c/ωpe is the electron skin depth, and defines 1/Lne ≡ |∇n0| /n0. Applying
Fourier transform to (2.9), we get

ω
(
1 + k2λ2

e

)
B1 =

2kc

en0Lne

(
TFe − k2�2

8me

)
ne1. (2.10)

In order to find ne1, we use continuity equation

∂tne1 + ∇ · (n0ve1) = 0. (2.11)

From the Ampere’s law, we may write ve1 = vi1 −
(
c/4πen0

)
∇ × B, therefore (2.11)

can be written as

∂tne1 + ∇ ·
[
n0vi − c

4πe
∇ × B

]
= 0,

and its Fourier transform gives

−iωne1 + n0∇ · vi1 + vi1 · ∇n0 = 0. (2.12)

Inserting the value vi1 from (2.6) after its Fourier transform in (2.12) , we get

iωne1 +
n0e

iωmi

(
∇ · E1 + E1 · ∇n0

n0

)
= 0. (2.13)

In order to find ∇ · E1, we use Poisson’s equation. In Poisson’s equation to find ne1
and ni1we use continuity and equation of motion of electron and ion.

men0∂tve1 = −en0E1−∇ (2TFene1) + n0FQe1

Taking divergence of above equation, we get

∇· (ve1n0) = −ie
∇· (n0E1)

meω
− i∇ · ∇ (2TFene1)

meω
+

i∇·
(
n0FQe1

)
meω

. (2.14)

Inserting (2.14) in the continuity equation of electron

∂tne1 + ∇ · (n0ve1) = 0,

and after Fourier transform, we get

ne1 =
−en0

me

(
ω2 − v2

Fk
2 − �2k4/4m2

e

) (
∇ · E1 + E1 · ∇n0

n0

)
, (2.15)

where vF ≡ (2TFe/me)
1/2 is the Fermi electron thermal velocity. Similarly, ni1 can be

calculated from the continuity and momentum equation,

ni1 =
en0

miω2

(
∇ · E1 + E1 · ∇n0

n0

)
. (2.16)

Inserting the values of (2.15) and (2.16) in (2.5), we get

∇ · E1 =

[
4πn0e

2

miω2
+

4πn0e
2

me(ω2 − v2
Fk

2 − �2k4/4m2
e)

](
∇ · E1 + E1 · ∇n0

n0

)
,
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∇ · E1 =

[
ω2

pi

ω2
+

ω2
pe

(ω2 − v2
Fk

2 − �2k4/4m2
e)

] (
∇ · E1 + E1 · ∇n0

n0

)
,

where ωpe =
√

4πn0e2/me is the electron plasma frequency and ωpi =
√

4πn0e2/mi

is the ion plasma frequency:

∇ · E1 =
ω2

pi

(
ω2 − v2

Fk
2 − �2k4/4m2

e

)
+ ω2

peω
2[(

ω2 − v2
Fk

2 − �2k4/4m2
e

) (
ω2 − ω2

pi

)
− ω2ω2

pe

]E1 · ∇n0

n0
. (2.17)

Inserting the (2.17) in (2.12) , we get

ne1 =
en0

(
ω2 − v2

Fk
2 − �2k4/4m2

e

)
mi

{(
ω2 − v2

Fk
2 − �2k4/4m2

e

) (
ω2 − ω2

pi

)
− ω2ω2

pe

}E1 · ∇n0

n0
. (2.18)

Inserting the value of ne1 from (2.17) in (2.10) yields the following result:

ωB1

(
1 + k2λ2

e

) {(
ω2 − v2

Fk
2 − �2k4/4m2

e

) (
ω2 − ω2

pi

)
− ω2ω2

pe

}
=

(
2kcTFe

Lne

− k3c�2

4Lneme

)((
ω2 − v2

Fk
2 − �2k4/4m2

e

)
mi

)
E1x

∂xn0

n0
. (2.19)

Taking the Fourier transform of Faraday’s law, we have

E1x = (−ω/ck)B1. (2.20)

Inserting (2.20) in (2.19), we get(
1 + k2λ2

e

) {(
ω2 − v2

Fk
2 − �2k4/4m2

e

) (
ω2 − ω2

pi

)
− ω2ω2

pe

}
= L−2

ne

{(
ω2 − v2

Fk
2 − �2k4/4m2

e

) (
k2�2

4mime

− 2TFe

mi

)}
, (2.21)

where Lne = |∂xn0| / n0. Defining, λFe = vF/ωpe, vF =
(
2TFe/me

)1/2
, cFS =

√
2TFe/mi,

the Fermi electron wavelength, Fermi velocity and the quantum ion-acoustic speed,
respectively, in (2.21), we get(

1 + k2λ2
e

) {[
ω2 − v2

Fk
2
(
1 + k2λ2

q

)] (
ω2 − ω2

pi

)
− ω2ω2

pe

}
= − c2

FSL
−2
ne

(
1 − k2λ2

q

) [
ω2 − v2

Fk
2
(
1 + k2λ2

q

)]
, (2.22)

where λq = �/2 mevF . It is difficult to find analytical solution of the above dispersion
relation. We shall, therefore, present here several interesting limiting cases.

3. Limiting cases
Case 1:

Let us consider a wave whose wave frequency is much larger than the ion plasma
frequency ω�ωpi and the wave phase velocity is much smaller than the Fermi
electron thermal speed vF so for this case ω/k�vF . In this limit, the dispersion
relation (2.22) takes the following form:(

1 + k2λ2
e

) {[
v2
Fk

2
(
1 + k2λ2

q

)] (
ω2 − ω2

pi

)
+ ω2ω2

pe

}
= −c2

FSL
−2
ne v2

Fk
2
(
1 − k4λ4

q

)
.

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S0022377810000383
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 16 Sep 2016 at 05:34:30, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S0022377810000383
http:/www.cambridge.org/core


Magnetic electron-drift vortex modes in an inhomogeneous quantum plasma 373

If we assume that ω�ωpi, we get

ω2
(
1 + k2λ2

e

) {
v2
Fk

2
(
1 + k2λ2

q

)
+ ω2

pe

}
= −c2

FSL
−2
ne v2

Fk
2
(
1 − k4λ4

q

)
or

ω2 =
−c2

FSL
−2
ne v2

Fk
2
(
1 − k4λ4

q

)(
1 + k2λ2

e

) [
v2
Fk

2
(
1 + k2λ2

q

)
+ ω2

pe

] , (3.1)

which is dispersion relation of the coupled electron-drift mode with quantum ion-
acoustic and electron Fermi mode for dense quantum plasma. For k4λ4

q < 1 the
quantum MEDV mode becomes unstable for highly dense non-uniform plasma.
Which shows that electron quantum effects seem to play very important role for
long-wavelength perturbations (i.e. λ > λq , where λ is the perturbation wavelength)
on the growth of these modes. This mode disappears for uniform density case. As
discussed in the introduction section that in a classical electron-ion plasma with
fixed ions, MEDV mode has a frequency proportional to proportional to vte/Lne,
but in a dense quantum plasma, the electron thermal velocity is replaced with vF .
As a result, we obtain a new mode which is essentially coupled qunatum-acoustic
and electron-drift dispersive type mode. The dispersion comes from the quantum
wavelength correction term.

Case 2:
Consider the case in which the wave frequency is very close to the ion plasma

frequency ω � ωpi and the wave phase velocity is much smaller than the Fermi
electron thermal speed vF so for this case

(
ω/k � vF

)
. In this limit, dispersion

relation (2.22) becomes(
1 + k2λ2

e

)
ω2ω2

pe = −c2
FSL

−2
ne v2

Fk
2
(
1 − k4λ4

q

)
,

ω2 = −
c2
FSL

−2
ne v2

Fk
2
(
1 − k4λ4

q

)
ω2

pe

(
1 + k2λ2

e

) ,

ω2 = −
c2
FSL

−2
ne v2

Fk
2
(
1 − k4λ4

q

)
ω2

pe

(
1 + k2λ2

e

) . (3.2)

For k4λ4
q < 1, the growth rate is given by the relation

γ � cFS

Lne

{
k2λ2

Fe

(
1 − k4λ4

q

)(
1 + k2λ2

e

) }1/2

. (3.3)

The normalized growth rate γ/ωpi has been plotted by varying the number density
from ne0 = 1026 cm−3 to 1025 cm−3 as a function of kLne and is shown in Fig. 1 by
choosing some typical parameters [28] of laser-based plasma compression scheme
for which ne0 = 1026 cm−3, ωpe = 5.64 × 1017 s−1, ωpi = 1.32 × 1016s−1, λFe =
2.95 × 10−9 cm, vF = 1.66 × 109 cm s−1, cFS = 3.88 × 107 cm s−1, Lne = 10−7 cm. It is
evident from the graph that for high-density quantum plasma case, the growth rate
is higher as compared to the low-density case.

Case 3:
Consider the case in which ω �ωpi and ω/k � vF . In this limit, the general

dispersion relation takes the following form:(
1 + k2λ2

e

) {
v2
Fk

2
(
1 + k2λ2

q

) (
ω2 − ω2

pi

)
+ ω2ω2

pe

}
= −c2

FSL
−2
ne v2

Fk
2
(
1 − k4λ4

q

)
(3.4)
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374 I. Naeem et al.

Figure 1. (Color online) Plot of normalized growth rate γ/ωpi as the function of kLn by
varying the number density ne0 = 1026 cm−3 (red curve), 0.5× 1026 cm−3 (green curve),
and 1025 cm−3 (blue curve) is shown in the figure by choosing some typical parameters of
laser-based plasma compression scheme.

or

ω2 = v2
Fk

2
(
1 + k2λ2

q

) [
me

mi

−
c2
FS

(
1 − k2λ2

q

)
L2
neω

2
pe

(
1 + k2λ2

e

)]
,

since mi �me, the above equation can be rewritten as

ω2 = −
λ2
Fek

2L−2
ne c

2
FS

(
1 − k4λ4

q

)(
1 + k2λ2

e

) , (3.5)

which predicts an instability for k4λ4
q < 1.

In summary, we derive a dispersion relation for the MEDV mode in an in-
homogeneous quantum plasma. New dispersion relation has been derived for the
low-frequency MEDV mode in a non-uniform quantum plasma. New class of purely
growing modes that occurs on the time scale of ion plasma period for dense
quantum plasma are identified. It is found that the modes become unstable when
the propagation direction is perpendicular to the equilibrium density gradients and
for k4λ4

q < 1. We expect that the present investigation would play an important
role in the study of magnetic field generation in dense plasma systems such as
prevalent in laser-produced plasma (ICF), where high-power laser interacts with
solid pellet material and produces inhomgeneous dense plasma [28]. Therefore, the
results of our present investigation should be useful to understand wave phenomena
in dense space and laboratory plasmas, where quantum effects are expected to play
an important role.
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