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The equations of motion of an ideal incompressible liquid drop trapped between two parallel plates
under the influence of surface tension and adhesion forces are studied. A main result of this paper is the
proof that the equations of motion can be written in Hamiltonian form

Fd ¯²F,H ´ for all F `$.

Here $ denotes a class of real-valued functions on the phase space . of the system and the Hamiltonian
H `$ is the energy function of the system. This allows the derivation of an equation for the (dynamic)
contact angle, in which the free fluid surface meets the plates. The behaviour of the dynamic contact angle is a
point of great controversy in the capillarity literature and the derivation confirms one of the existing models.
In the second part of the paper, which can be read independently, existence and stability questions for rigidly
rotating drops are dealt with. The existence of solutions to the equations of motion that describe
rotationally symmetric drops which rotate rigidly between the plates with constant angular velocity is
proved. These solutions can be regarded as relative equilibria of a mechanical system with symmetry. Using
ideas of the energy-momentum method of Lewis, Marsden and Simo, a stability criterion for this kind of
motion is provided. To derive this criterion, the second derivative of the so-called augmented energy
functional at the relative equilibrium in directions which are transversal to the group orbit of this equilibrium
is studied. The stability criterion is applied to rigidly rotating drops of cylindrical shape. These represent
solutions to the equations of motion in the case that no adhesion forces act along the plates. The result
extends previous work of Vogel and Lewis.

1. Introduction

This paper is about the application of Hamiltonian mechanics to capillarity

theory. We study the dynamics of an ideal incompressible fluid drop trapped between

two parallel flat plates under the influence of surface tension and adhesion forces. The

influence of gravity is neglected. Surface tension acts on the free boundary of the

drop, and the adhesion forces act at the contact surfaces between the drop and the

plates.

The free boundary of the drop meets each plate in a certain angle, called the

contact angle. In the static case the value of the contact angle has been derived by

C. F. Gauss using variational principles (compare Finn [6]). The value of the contact

angle of a drop in motion, the so-called dynamic contact angle, is still a point of

controversy in capillarity theory (compare Hocking [8]). The Hamiltonian model for

the drop dynamics which we introduce in this paper allows us to deduce an equation

for the dynamic contact angle which turns out to be the equation satisfied by the static

contact angle. In Hocking [8] one finds further arguments that this is the correct

equation for modelling the dynamic contact angle.
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In our Hamiltonian model we describe the state of the drop by giving its free

boundary Σ and a spatial velocity field � :DΣ MNR$, where DΣ is the region bounded

by Σ and the plates, that is, the region occupied by the drop. The collection of pairs

(Σ, �) is denoted by .. We show that the equations of motion of the drop have a

Hamiltonian structure, that is, that they can be written in Poisson bracket form

Fd ¯²F,H ´ for all F `$.

Here $ denotes a certain class of functions .MNR, called the class of admissible

functions. The Poisson bracket ²[, [´, which will be developed later, associates to two

functions F
"
,F

#
`$ another function ²F

"
,F

#
´ :.MNR. The function H `$ is the

Hamiltonian of our problem. As a Hamiltonian we choose the total energy function

H(Σ, �)¯
1

2&
DΣ

s�s#dVτ&
Σ

dA®3
"

i=!

σ
i&

Σ
i

dA.

The first term on the right-hand side is the kinetic energy of the drop (here we assume

that the drop has constant density ρ3 1). The second term is the surface energy,

where τ is the constant of surface tension. The third term corresponds to the adhesion

forces, where Σ
i
is the contact surface between the drop and the ith plate, and σ

i
}τ

is the relative adhesion coefficient at this plate. For an introduction to the physics

of surfaces compare Landau and Lifshitz [13, §60].

Hamiltonian formulations of fluid dynamical problems play an important role in

hydrodynamic stability and bifurcation theory (compare Holm, Marsden, Ratiu and

Weinstein [9]). Arnold [2] showed that the equations of motion of an ideal

incompressible fluid filling a fixed domain can be put into Hamiltonian form. Lewis,

Marsden, Montgomery and Ratiu [15] analysed the case of a free fluid drop moving

under the influence of self-gravitation and surface tension. They show that the

equations of motion are Hamiltonian and derive (nonlinear) stability results using

techniques of Hamiltonian mechanics.

Another important feature of Hamiltonian mechanics is that it allows one to

derive equations of motion for physical systems, which have properties corresponding

to observations of real-world phenomena. A particularly striking example is the

derivation of a certain shallow water equation which has ‘peaked’ soliton solutions

by Camassa and Holm [4]. As mentioned above, in the present paper the Hamiltonian

formulation allows us to derive an equation for the dynamic contact angle of a

moving drop.

Kro$ ner [11] studies the flow of a viscous fluid with a free surface along a contact

surface and derives an existence result for the corresponding system of partial

differential equations. The results cited in Kro$ ner’s paper suggest that the usual no-

slip boundary condition for viscous fluid is not the correct one for this problem.

In the present paper we are not concerned with the general existence theory for the

partial differential equations describing the flow of our Hamiltonian system. Because

of this we do not investigate the question of which function spaces one should choose

in the Hamiltonian formulation to guarantee the existence of a solution to the

equations of motion.

To derive our Poisson bracket, we use the idea of Lewis et al. [15] to pass from

a modified canonical bracket in body representation to a noncanonical bracket in

spatial representation via a Marsden–Weinstein reduction. Because we have to deal

not only with free boundaries but also with contact surfaces, further modifications of

the canonical bracket are necessary. This is important to assure that the natural

http:/www.cambridge.org/core/terms. http://content-service:5050/content/id/urn:cambridge.org:id:article:S0024610799007152/resource/name/S0024610799007152a.pdf
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 16 Sep 2016 at 05:35:38, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://content-service:5050/content/id/urn:cambridge.org:id:article:S0024610799007152/resource/name/S0024610799007152a.pdf
http:/www.cambridge.org/core


744 - 

candidate for the Hamiltonian, the total energy function, is contained in the class of

functions $, for which the Poisson bracket is defined. The choice of this class of

functions and the definition of functional derivatives is very subtle and there is no

simple recipe describing how to choose these objects in our infinite-dimensional

system with its free boundaries and contact surfaces. The ideas developed in this

paper should be useful in the Hamiltonian analysis of other systems of continuum

mechanics with free boundaries and contact surfaces.

Hamiltonian systems with free boundaries are also subjects of research from a

more theoretical point of view. Soloviev [21] derives criteria under which the Poisson

bracket in systems with free boundaries satisfies Jacobi’s identity.

In the second part of the paper, which can be read independently, we show the

existence of rotationally symmetric solutions to our equations of motion and study

their stability. The symmetry is with respect to rotations about an axis perpendicular

to the plates. We prove that for every positive constant V and sufficiently small ω

there exist solutions of the equations of motion representing drops with volume!V

that rotate rigidly with constant angular velocity ω between the two plates.

We investigate the stability of these rotating drops using the energy-momentum

method of Lewis, Marsden and Simo [16]. In the last section we explain some of the

key ideas of this method in our context. We make use of the fact that rigidly rotating

drops are critical points of an augmented energy functional Vω, which is defined on

the configuration space of our system. To determine stability, we look at the second

derivative of the augmented energy functional at these critical points. (Observe that

one can only expect definiteness of the second variation transversal to group orbits

of the rotation group, which acts on configuration space as described above and in

a canonical way also on phase space.)

As an application, we study the stability of a cylindrical drop with base radius d

and height h which rotates rigidly with constant angular velocity ω between the

plates. This is a solution to our equations in the absence of adhesion forces, that is,

in the case σ
!
,σ

"
¯ 0. We show that this motion is stable if both

h#

π#d #


ω#h#d

π#τ
! 1

and
3τ

d $

"ω#

hold. Here τ is, as explained above, the constant of surface tension. This extends a

stability result of Vogel [22], who considers the static case of a trapped drop at rest

between two plates. Notice that, unlike the static situation, one cannot restrict oneself

to the study of symmetric perturbations of the drop shape in the case of a rotating

drop. Our stability criterion also extends that of Lewis [14], who studies 2-

dimensional circular drops.

This paper is structured as follows. In Section 2 we describe the geometry of the

problem. The Eulerian configuration and phase space are introduced. We introduce

also the Lagrangian phase space with its canonical Poisson structure. In Section 3, we

discuss the equations of motion of the drop. In Section 4, Poisson structures are

defined on Eulerian and Lagrangian phase space. The Hamiltonian structure of the

equations of motion is then exhibited in Section 5. The existence theorem stated

above is proved in Section 6. Also in Section 6 we discuss the stability of rigidly

rotating drops.
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2. The geometry of the problem

We consider a drop of an ideal incompressible fluid trapped between two parallel

flat plates denoted P
!
and P

"
(compare Figure 1). Let h denote the distance between

the plates.

Choose in R$ a Cartesian coordinate system such that plate P
"

lies in the (x, y)-

plane and P
!

lies in the plane z¯ h.

D∑

∑0 P0c0

∑1 P1c1

∑

F 1. The drop profile.

There are two ways to describe the instantaneous position of the drop, the

Lagrangian description and the Eulerian description. We first introduce the

Lagrangian or material description.

We choose as a reference configuration the cylinder

DB ²(x, y, z) `R$ rx#y#! 1, 0! z! h´.

The Lagrangian configuration space # is the set of all volume-preserving

embeddings η of the reference configuration D into the region between the two plates,

such that the contact surface of D with the plate P
i
, that is, ¦(D)fP

i
, is mapped into

P
i
, i¯ 0, 1. We do not model motions in which the drop loses contact with the plates.

It is not clear to us at the moment how to define a Hamiltonian structure in that

situation. The assumption that the drop does stay in contact with the plates seems to

be physically reasonable if the main forces acting on the drop are surface tension and

adhesion forces and the effect of gravity is small compared with them.

Let Σ denote the closure of that part of ¦(η(D)) which does not touch the plates.

We call Σ the free boundary of η(D). Instead of η(D) we also write DΣ. Let c
i
,

i¯ 0, 1, denote the contact curve of Σ and the plate P
i
and let Σ

i
denote the contact

surface of DΣ and P
i
. Thus, for i¯ 0, 1 the curve c

i
is the boundary of Σ

i
in P

i
.

Although we have not introduced a manifold structure on #, there is still a notion

of tangent bundle of # using tangents to curves in #. For η `# we introduce a formal

tangent space

Tη #¯²µ :DMNR$ rdiv(µa η−")¯ 0 and

©ηaµ(x), (0, 0, 1)Tª¯ 0 for x `Σ
i
, i¯ 0, 1´.

Here ©[, [ª is the usual inner product in R$. One arrives at this definition in the

following way.

Let IMN#, λPN cλ, c
!
¯ η, be a motion of the drop, that is, a one-parameter

family of functions embedding the reference configuration D into R$. We assume that
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the map (x, λ)PN cλ(x) is sufficiently smooth, so that our calculations make sense.

One gets the tangent vector µ :DMNR$ represented by the curve c : IMN# by

taking the derivative with respect to λ at λ¯ 0:

µ(d )B
d

dλ)λ=! cλ(d ).

If x¯ η(d ), then µ(d ) is the fluid velocity at the spatial point x at ‘ time’ λ¯ 0. Thus,

putting

µλ B
d

dσ)σ=λ

cσ

(x, λ)PNµλ a c−"
λ (x) :̄ �(x, λ)

can be interpreted as the spatial velocity field of the motion λPN cλ. Because the

maps cλ are volume preserving, we have

divµa η−"¯ 0.

From the definition of # and the fact that

¦(cλ(D))¯ cλ(¦(D))

it follows that ©µa η−"(x), (0, 0, 1)Tª¯ 0 for x `Σ
i
, i¯ 0, 1.

The elements of the Eulerian configuration space - are those two-dimensional

submanifolds of R$ which arise as free boundaries for some η(D), η `#. We might

describe an element of - intrinsically as a two-dimensional submanifold Σ of R$ with

boundary where the boundary consists of two components c
!
, c

"
each one isomorphic

to S ". The intersection of the two-dimensional manifold Σ with the plate P
i
should be

the component c
i
of the boundary, i¯ 0, 1. Furthermore, the volume enclosed by Σ

and the two plates has to be equal to the volume of the reference configuration D.

Note that the conditions on the boundary of Σ reflect the fact that we do not study

motions in which the drop loses contact with the plates.

For Σ `- we introduce the formal tangent space

TΣ -¯²κ :ΣMNR$r&
Σ

©κ, nªds¯ 0 and

©κ, (0, 0, 1)Tª¯ 0 on c
i
, i¯ 0, 1´.

Here n :ΣMNR$ denotes a vector field of outer unit normal vectors to the surface Σ.

To motivate this definition, choose a curve tPN η
t
in #, such that Σ is the free

boundary of η
!

:̄ η. Then

κB
d

dt)
t=!

η
t
a η−"

satisfies !Σ©κ, nªds¯ 0 and ©κ, (0, 0, 1)Tª¯ 0 on c
i
for i¯ 0, 1, because elements of

# are volume preserving and preserve contact surfaces with the plates.

Let ' denote the group of volume-preserving automorphisms of the reference

configuration D. The group ' acts on # on the right. By definition of the Eulerian

configuration space - and the Lagrangian configuration space #, one has a natural

bijection
-F#}'.

The phase space in the Lagrangian description is the tangent bundle

T#¯²(η,µ) r η `#,µ `Tη # ´.
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For Σ `- let VΣ be the vector space of all functions � :DΣ MNR$ such that

div �¯ 0 (2.1)

and
©�, (0, 0, 1)Tª¯ 0 on Σ

!
eΣ

"
. (2.2)

The phase space in the Eulerian description is

.¯²(Σ, �) rΣ `- and � `VΣ´.

We may interpret � `VΣ as a spatial velocity field on DΣ. The connection between T#
and . is given by the map

π. :T#MN.

(η,µ)PN (Ση,µa η−")

where Ση denotes the free boundary of η(D). The action of ' on # induces an action

of ' on T# via
Φ :'¬T#MNT#

(g, (η,µ))PN (ηa g,µa g).

It is easy to check that there is a canonical bijective map between T#}' and . :

.FT#}'.

3. The equations of motion

The equations of motion for the drop are

¦�

¦t
(�[~) �¯®~p (3.1)

div �¯ 0 (3.2)

©�, (0, 0, 1)Tª¯ 0 on Σ
!
eΣ

"
(3.3)

©Σ0 , nª¯©�, nª (3.4)

p¯ τκ on Σ/ (3.5)

cos γ
i
¯

σ
i

τ
on c

i
, i¯ 0, 1 (3.6)

where τ is the constant of surface tension and κ is the mean curvature function of the

free surface Σ of the drop.

Physical reasoning shows that τ has to be positive (compare [Landau and Lifshitz

[12, §139]).

Equations (3.1) and (3.2) are the well-known Euler equations for the spatial

velocity field of an ideal incompressible fluid. We assume for simplicity that the

density of the drop is equal to 1. Equation (3.3) is the usual tangential (slip) boundary

condition for the Euler equations. We study only motions in which the drop does not

separate from the plates. Equation (3.4) is a kinematic boundary condition describing

the fact that the free boundary of the drop is moving with the fluid. The dot denotes

differentiation with respect to the time parameter t.

In equation (3.6), c
i
denotes, as explained above, the boundary of Σ

i
in P

i
; n

i
(x)

is the outer unit normal of Σ
i
at x ` c

i
and w

i
(x) is the outer conormal on Σ at x ` c

i
.

This means that w
i
(x) `T

x
Σ, ©w

i
(x), tª¯ 0 for t `T

x
c
i
XR$. Furthermore, w

i
(x) has
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D∑

P0γ0

P1

∑

γ1

F 2. The contact angles between drop and plates.

length 1 and points outwards of Σ (compare Simon [20] for the definition of conormal

vectors). Also γ
i
(x) denotes the angle between n

i
(x) and w

i
(x) (compare Figure 2) ; σ

"
}τ

is the relative adhesion coefficient (compare Finn [6]).

Note that (3.6) is just the classic contact angle condition for a static drop, which

has been derived by Gauss with the help of variational principles (compare Finn [6]).

To our knowledge there is no generally accepted model for the dynamic contact angle

yet. We regard it as a rather striking result that the Hamiltonian formulation of the

problem, given in Section 5 below, allows us to derive equation (3.6) for the dynamic

contact angles. Hocking [8] arrives by a different kind of reasoning at this result. In

his paper and in the references therein one finds a thorough discussion of rival

contact angle models.

4. Poisson structures and reduction

We now show that equations (3.1)–(3.6) are Hamiltonian.

Let &. denote the set of real-valued functions on .. We will find

(1) $X&. ;

(2) ²[, [). :$¬$MN&. ;

(3) H `$ ;

such that equations (3.1)–(3.6) can be written in the form

Fd ¯²F,H ´. for all F `$.

We call $ the set of admissible functions ; ²[, [´. is the Poisson bracket and H is the

Hamiltonian for our system. Similarly to Lewis et al. [15], we get ²[, [´. by applying

a Marsden–Weinstein reduction to an appropriate modification of the canonical

Poisson bracket on T#. Our situation differs from that considered by Lewis et al.

because the free surface of our drop is not a closed surface. This affects the definition

of our functional derivatives. Unlike the situation for a free drop we have to deal with

functions which are integrals over the contact surfaces between the drop and the

plates. The modified Poisson bracket will be defined for functions F,G :.MNR

possessing functional derivatives defined as follows.

Let F :T#MNR, c : IMN# be a curve with c
!
¯: η and

d

dt)
t=!

c
t
¯: δη.

Let DΣ B η(D).
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D 4.1. F has functional derivatives with respect to η in (η,µ) `T# if

there exist functions
δF

δη
(η,µ) :DΣ MNR$

δ «F
δη

(η,µ) :ΣMNR$

δ
i
F

δη
(η,µ) : c

i
MNR$ i¯ 0, 1

such that

d

dt)
t=!

F(c
t
,µ)¯&

DΣ

-δF

δη
(η,µ), δηa η−". dV&

Σ
-δ «F

δη
(η,µ), δηa η−". dA

3
"

i=!

&
ci

-δ
i
F

δη
(η,µ), δηa η−". ds.

D 4.2. F has a functional derivative with respect to µ in (η,µ) `T# if

there exists a function
δF

δµ
(η,µ) :DΣ MNR$

with

div 0δF

δµ
(η,µ)1¯ 0 (4.1)

and

-δF

δµ
(η,µ) (x), (0, 0, 1)T.¯ 0 for x `Σ

i
, i ` 0, 1 (4.2)

such that for every curve d : IMNTη # with d(0)¯µ and

d

dt)
t=!

d
t
¯: δµ

we have
d

dt)
t=!

F(η, d
t
)¯&

DΣ

-δF

δµ
(η,µ), δµa η−". dV.

Let & denote the set of functions F :T#MNR which possess functional

derivatives with respect to η and µ at every point (η,µ) `T#.

We now define a Poisson bracket on T#, a map

²[, [´
T# :&¬&MN ² f :T#MNR´

which maps a pair (F,H ) to ²F,H ´
T#. We also write just ²F,H ´ instead of ²F,H ´

T#.

D 4.3. We define the Poisson bracket ²F,H ´ :T#MNR of two

functions F,H `& by

²F,H ´ (η,µ)B&
DΣ

9-δF

δη
,
δH

δµ.®-δH

δη
,
δF

δµ.: dV&
Σ
9-δ «F

δη
,
δH

δµ.®-δ «H
δη

,
δF

δµ.: dA

3
"

i=!

&
ci

9-δ
i
F

δη
,
δH

δµ.®-δ
i
H

δη
,
δF

δµ.: ds.
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Here functional derivatives are taken at the point (η,µ) `T#.

R 4.1. The functional derivative with respect to µ is uniquely determined:

let a, b :DΣ MNR$ be functional derivatives with respect to µ of F :T#MNR at

(η,µ) `T#. Consider the curve d : tMNµt(a®b) a η. By definition we have

0¯&
DΣ

-a,
d

dt)
t=!

d
t
a η−". dV®&

DΣ

-b,
d

dt)
t=!

d
t
a η−". dV

¯&
DΣ

©a®b, a®bª dV

and so a¯ b.

R 4.2. Let F,H `&. By definition (δF}δµ) (η,µ) a η `Tη #. If there are

curves tPN c
t
, c

!
¯ η and tPN e

t
, e

!
¯ η, such that

d

dt)
t=!

c
t
¯

δF

δµ
(η,µ) a η

d

dt)
t=!

e
t
¯

δH

δµ
(η,µ) a η,

then we have

²F,H ´
(η,µ)

¯
d

dt)
t=!

F(e
t
,µ)®

d

dt)
t=!

H(c
t
,µ). (4.3)

Thus, if we can find representing curves for every element of Tη #, the Poisson bracket

is well defined by (4.3) and Remark 4.1.

Formula (4.3) can be used to define the Poisson bracket of functions F,H :

T#MNR, which possess functional derivatives with respect to µ, but not necessarily

with respect to η.

R 4.3. A computation shows that if F,H `& and g `', then FaΦ
g
,

H aΦ
g
`& and

²F,H ´ aΦ
g
¯²FaΦ

g
,H aΦ

g
´.

Thus, each of the maps Φ
g
is Poisson.

We now use a Poisson reduction to get a Poisson bracket on .¯T#}'.

Let F,H :.MNR be two functions such that their pullbacks to T#, Fa BFaπ.,

Ha BH aπ., possess functional derivatives with respect to η and µ.

D 4.4. We define the Poisson bracket ²F,H ´. :.MNR of F and H by

²F,H ´. π.(η,µ)B ²Fa ,Ha ´
T#(η,µ)

for η,µ `T#.

By Remark 4.3, ²F,H ´. is well defined. We also write just ²F,H´ instead

of ²F,H´..

We want to specify a class $ of functions F :.MNR such that the pullbacks

Faπ. :T#MNR are in &. These will be functions which possess functional

derivatives with respect to Σ and �. Let Σ `-. Let tMN c
t
be a curve in - with

c
!
¯Σ and

δΣB
d

dt)
t=!

c
t
.
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We consider δΣ as a map ΣMNR$.

D 4.5. F :.MNR has a functional derivative with respect to Σ at

(Σ, �) `., if there exist functions

δF

δΣ
(Σ, �) :ΣMNR

δ
i
F

δΣ
(Σ, �) : c

i
MNR, i¯ 0, 1

such that

d

dt)
t=!

F(Σ
t
, �)¯&

Σ

δF

δΣ
(Σ, �)©δΣ, nª dA3

"

i=!

&
ci

δ
i
F

δΣ
(Σ, �)©δΣ, n

i
ª ds.

As above, n denotes an outer unit normal vector field on Σ and n
i
, i¯ 0, 1, is an

outer unit normal vector field to c
i
regarded as a submanifold of P

i
. Let VΣ denote the

space of vector fields � :DΣ MNR$ satisfying

div �¯ 0 (4.4)

and

©�, (0, 0, 1)Tª¯ 0 on Σ
!
eΣ

"
. (4.5)

Let tMN �
t
be a curve in VΣ and

δ�B
d

dt)
t=!

�
t
.

D 4.6. F :.MNR has a functional derivative with respect to � at

(Σ, �) `. if there exists a vector field

δF

δ�
(Σ, �) `VΣ

such that

d

dt)
t=!

F(Σ, �
t
)¯&

DΣ

-δF

δ�
(Σ, �), δ�. dV.

D 4.7. Let $ denote the set of functions F :.MNR that possess

functional derivatives with respect to Σ and to � at every (Σ, �) `..

C 4.1. If F `$, then Fa BFaπ. `&, where π. :T#MN. denotes the

canonical projection.

Proof. Let (η,µ) `T# and (Σ, �)¯π.(η,µ). Let tPN c
t
, c

!
¯ η and

δη¯
d

dt)
t=!

c
t
.

An application of the chain rule gives

Dη Fa (η,µ)¯DΣ F(Σ, �) (DΣ(η,µ) δη)D
v
F(Σ, �) (D�(η,µ) δη).
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We have

DΣ(η,µ) δη¯
d

dt)
t=!

c
t
a η−"

¯ δηa η−". (4.6)

Because of �(c
t
,µ) (x)¯µa c−"

t
(x) we have

(D�(η,µ) δη) (x)¯®(δηa η−"[~) �(x). (4.7)

Thus,

Dη Faδη¯DΣ F(Σ, �) δηa η−"®D
v
F(Σ, �) (~�(δηa η−")). (4.8)

Now F `$, so F possesses functional derivatives with respect to Σ and to �. Then (4.8)

becomes

Dη Faδη¯&
Σ

δF

δΣ
(Σ, �)©n, δηa η−"ª dA

3
"

i=!

&
ci

δ
i
F

δΣ
(Σ, �)©n

i
, δηa η−"ª ds

®&
DΣ

-δF

δ�
(Σ, �), (~�(δηa η−")). dV. (4.9)

Equation (4.9) shows that Fa has a functional derivative with respect to η :

δFa

δη
(η,µ)¯®(~�)T

δF

δ�

δ «Fa

δη
(η,µ)¯

δF

δΣ
(Σ, �) n

δ
i
Fa

δη
(η,µ)¯

δ
i
F

δΣ
(Σ, �) n

i
.

One easily shows that Fa also has a functional derivative with respect to µ, given by

δFa

δµ
(η,µ)¯

δF

δ�
(Σ, �).

Thus, Fa `&. *

For functions F,H `$, the Poisson bracket ²F,H ´ can be written explicitly. We

have

²F,H ´ (Σ, �)¯&
DΣ

®0-δF

δ�
,~�

δH

δ�.®-δH

δ�
,~�

δF

δ�.1 dV

&
Σ
0δF

δΣ-
δH

d�
, n.®

δH

δΣ -
δF

δ�
, n.1 dA (4.10)

3
"

i=!

&
ci

0δi
F

δΣ -
δH

δ�
, n

i.®
δ
i
H

δΣ -
δF

δ�
, n

i.1 ds.
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Here the functional derivatives on the right-hand side of (4.10) are evaluated at (Σ, �).

Putting ωB~¬�, a simple calculation shows that

²F,H ´¯&
DΣ

-ω,
δF

δ�
¬

δH

δ�. dV

&
Σ
0δF

δΣ-
δH

δ�
, n.®

δH

δΣ -
δF

δ�
, n.1 dA

3
"

i=!

&
ci

0δi
F

δΣ -
δH

δ�
, n

i.®
δ
i
H

δΣ -
δF

δ�
, n

i.1 ds. (4.11)

5. Equi�alence of the classical and the Hamiltonian formulation

of the equations of motion

We will show that a curve tPN (Σ
t
, �

t
) `. satisfies the equations (3.1)–(3.6) if

and only if

d

dt
F(Σ

t
, �

t
)¯²F,H ´ (Σ

t
, �

t
) (5.1)

for all F `$. We abbreviate (5.1) as

Fd ¯²F,H ´. (5.2)

Here

H¯
1

2&
DΣ

s�s#dVτ&
Σ

dA®3
"

i=!

σ
i&

Σ
i

dA
i

(5.3)

is the total energy function of the system. It is easy to show that H `$ and

δH

δΣ
(Σ, �)¯ ("

#
s�s#τκ) (5.4)

δ
i
H

δΣ
(Σ, �)¯ (τ cos γ

i
®σ

i
), i¯ 0, 1 (5.5)

δH

δ�
(Σ, �)¯ �. (5.6)

To derive (5.5), we use the transport theorem for shells of [19, Chapter 2] and the

divergence theorem on the manifold Σ with boundary c
!
ec

"
. Remember that κ

denotes the mean curvature function of Σ. Applying this in equation (4.11), we get

²F,H ´¯&
DΣ

-ω,
δF

δ�
¬�. dV&

Σ

δF

δΣ
(Σ, �)©�, nª dA

®&
Σ

["
#
s�s#τκ]-δF

δ�
(Σ, �), n. dA3

"

i=!

&
ci

δ
i
F

δΣ
(Σ, �)©�, n

i
ª ds

®3
"

i=!

&
ci

²τ cos γ
i
®σ

i
]-δF

δ�
(Σ, �), n

i. ds. (5.7)
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First we show that a solution tPN (Σ
t
, �

t
) `. of equations (3.1)–(3.6) also solves

Hamilton’s equations (5.1). With the help of the divergence theorem and equations

(3.5) and (3.6) one gets

²F,H ´¯&
DΣ

-�
t
¬ω

t
®"

#
~s�s#®~p,

δF

δ�
(Σ

t
, �

t
). dV

&
Σ

δF

δΣ
(Σ

t
, �

t
)©�

t
, n

t
ª dA3

"

i=!

&
ci

δ
i
F

δΣ
(Σ

t
, �

t
)©�

t
, n

it
ª ds.

Making use of equation (3.4) and the identity

®(w[~)w¯w¬(~¬w)®"

#
~sws# (5.8)

for a vector field w :DΣ MNR$, one has

²F,H ´¯&
DΣ

-®(�
t
[~)�

t
®~p,

δF

δ�
(Σ

t
, �

t
). dV

&
Σ

δF

δΣ
(Σ

t
, �

t
)©Σ0 , nª dA3

"

i=!

&
ci

δ
i
F

δΣ
(Σ

t
, �

t
)©Σ0 , n

i
ª ds.

Equation (3.1) then yields

²F,H ´¯&
DΣ

-δF

δ�
(Σ, �), �d. dV&

Σ

δF

δΣ
©Σ0 , nª dA3

"

i=!

&
ci

δF

δ�
©Σ0 , n

i
ª ds

¯D
v
F(Σ, �) �d DΣ F(Σ, �)Σ0

¯Fd (Σ, �).

Thus (5.1) holds for every F `$ along solution curves of equations (3.1)–(3.6).

Now we want to show that a solution curve of Hamilton’s equations (5.1) also

solves equations (3.1)–(3.6). To do so, we first prove two lemmas which will be needed

later on.

L 5.1. There exist d `R+ and a family (p
r
)
r`(!,")

of functions p
r
:RMNR

such that
supp (p

r
)X [1®r, 1r] (5.9)

rp
r
r% 1 (5.10)

rp!
r
r% d (5.11)

p
r
(1)¯ 0 (5.12)

p!
r
(1)¯ 1. (5.13)

Proof. Define a bump function g `C¢

c
(R) by

g(t)¯

1

2
3

4

exp 0® 1

1®t#1 for rtr! 1

0 for rtr& 1.

Let

h(t)B
tg(t)

g(0)
.

It is easy to check that p
r
(t)B rh((t®1)}r) fulfils the requirements. *

We need Lemma 5.1 in the proof of Lemma 5.2.
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L 5.2. Let s[s denote the Euclidean norm on R$, with notations as in Section

3. Let i ` ²0, 1´ and p ` c
i
. Then in e�ery neighbourhood UXP

i
of p there exists a

neighbourhood VXU of p and a family of �ector fields

w
r
:R$MNR$, r ` (0, 1) (5.14)

and a K `R+, such that

supp (w
r
)XV¬[1®i®r, 1®ir] (5.15)

max
q`R$

sw
r
(q)s%K (5.16)

div (w
r
)¯ 0 (5.17)

©w
r
, (0, 0, 1)Tª¯ 0 on Σ

!
eΣ

"
(5.18)

©w
r
(p), n

i
(p)ª" 0 (5.19)

©w
r
, n

i
ª& 0 on c

i
. (5.20)

Proof. Without restriction of generality, we assume that the distance between

the two plates is equal to 1. We only prove the case i¯ 0; the case i¯ 1 is treated

in the same way. Let
n
!
(p)¯ (n

!"
(p), n

!#
(p), 0).

We assume that
n
!"

(p)" 0.

The other cases n
!"

! 0, n
!#

" 0 and n
!#

! 0 are treated similarly. As n
!
is continuous,

there exists l" 0 and an open ball B
l
(p)B ²q `P

!
r sq®ps! 1´ around p such that

B
l
(p)XU and n

!"
(q)" 0 for q ` c

!
fB

l
(p). Let VBB

l
(p). Let k `R+ such that

0!k! l. With the help of [1, Lemma 2.2.7] we choose a bump function h :R#MNR+

with h(q)¯ 1 for q `B
k
(p) and h(q)¯ 0 for q aB

l
(p). The proof of that lemma shows

that we may assume that h& 0. Define f :R$MNR+ by

f(x, y, z)¯ h(x, y)

so that supp ( f )XV¬R. We define w
r
:R$MNR$ by

w
r
(x, y, z)B 0 f (x, y, z)[p!

r
(z), 0,®

¦f

¦x
(x, y, z)[p

r
(z)1

where p
r
is as in Lemma 5.1 and the prime denotes the derivative with respect to z.

Equation (5.17) is obviously satisfied by w
r
. Because p

r
satisfies (5.9) and (5.12),

equation (5.18) holds. By (5.12) and (5.13) we have for q `Vfc
!
,

w
r
(q)¯ ( f(q), 0, 0)T (5.21)

and so ©w
r
(q), n

!
(q)ª¯ f(q)[n

!"
(q)& 0 for q `Vfc

!
and ©w

r
(p), n

!
(p)ª" 0 by the

choice of V and f. This shows that (5.19) and (5.20) hold. Equation (5.16) is satisfied

because of (5.10) and (5.11) and the fact that h has compact support. *

We have seen above that every ‘classical ’ solution of equations (3.1)–(3.6) satisfies

Hamilton’s equations (5.1). We now want to show that the converse is also true. To

do so, let
IMN., NPN (Σ

t
, �

t
)

be a solution to the equations (5.1). Let p : ²(x, t) `R% rx `DΣ
t

, t ` I ´MNR solve (for

fixed t)
∆p¯®div((�[~) �)

with
p¯ τκ on Σ

and
©~p, (0, 0, 1)Tª¯®©(�[~) �, (0, 0, 1)Tª on Σ

!
eΣ

"
. (5.22)
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Then

&
Σ

τκ-δF

δ�
, n. dA¯&

DΣ

div 0p δF

δ� 1 dV

¯&
DΣ

-~p,
δF

δ�. dV

for F `$. We apply this in (5.7) to get

²F,H ´¯&
DΣ

-�¬ω®~p,
δF

δ�. dV

&
Σ

δF

δΣ
©�, nª dA®&

Σ

1

2
s�s#-δF

δ�
, n. dA

3
"

i=!

&
ci

δ
i
F

δΣ
©�, n

i
ª ds®3

"

i=!

&
ci

[τ cos γ
i
®σ

i
]-δF

δ�
, n

i. ds.

A simple calculation yields

²F,H ´¯&
DΣ

-®(�[~) �®~p,
δF

δ�. dV

&
Σ

δF

δΣ
©�, nª dA3

"

i=!

&
ci

δ
i
F

δΣ
©�, n

i
ª ds

®3
"

i=!

&
ci

[τ cos γ
i
®σ

i
]-δF

δ�
, n

i. ds (5.23)

where we used the identity (5.8). Because F `$ we have

Fd ¯&
DΣ

-δF

δ�
, �d. dV&

Σ

δF

δΣ-
¦Σ

¦t
, n. dA3

"

i=!

&
ci

δ
i
F

δΣ -
¦Σ

¦t
, n

i. ds. (5.24)

Equations (5.23) and (5.24) show that Fd ¯²F,H ´ is equivalent to

0¯&
DΣ

-�d (�[~)�~p,
δF

δ�. dV&
Σ
-¦Σ

¦t
®�, n. δF

δΣ
ds

3
"

i=!

&
ci

-¦Σ

¦t
®�, n

i. δ
i
F

δΣ
ds

3
"

i=!

&
ci

[τ cos γ
i
®σ

i
]-δF

δ�
, n

i. ds. (5.25)

Choosing appropriate ‘ test functions ’ F `$ we show that (3.1)–(3.6) is fulfilled if

(5.25) holds for all F `$. We first consider test functions F :.MNR of the form

F(Σ, �)¯&
DΣ

f(x) dV.
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One checks that F `$ and that

δF

δΣ
¯ f

δ
i
F

δΣ
¯ 0, i¯ 0, 1

δF

δ�
¯ 0.

Choosing F¯!
DΣ

f dV in (5.25) leads to

&
Σ
9-¦Σ

¦t
, n.®©�, nª: f dA¯ 0.

Since f is arbitrary, it follows that

-¦Σ

¦t
, n.¯©�, nª (5.26)

on Σ. Thus, Fd ¯²F,H ´ for all F `$ is equivalent to

0¯&
DΣ

-�d (�[~) �~p,
δF

δ�. dV

3
"

i=!

&
ci

-¦Σ

¦t
®�, n

i. δ
i
F

δΣ
ds

3
"

i=!

&
ci

[τ cos γ
i
®σ

i
]-δF

δ�
, n

i. ds (5.27)

for all F `$.

Choosing test functions of the form F¯!Σ
i

f dA it is easy to see that

©(¦Σ}¦t)®�, n
i
ª¯ 0 for i¯ 0, 1. Thus Fd ¯²F,H ´ for all F `$ is equivalent to

0¯&
DΣ

-�d (�[~) �~p,
δF

δ�. dV

3
"

i=!

&
ci

[τ cos γ
i
®σ

i
]-δF

δ�
, n

i. ds (5.28)

for all F `$. Now we want to show that (5.28) implies equation (3.6) :

τ cos γ
i
(p)®σ

i
¯ 0 for p ` c

i
, i¯ 0, 1. (5.29)

We consider only the case i¯ 0, the case i¯ 1 being similar. Without restriction of

generality, we assume that the distance between the two plates is h¯ 1. Suppose there

is a p ` c
!

such that τ cos γ
!
(p)®σ

!
1 0. Because γ

!
is continuous, we then have

τ cos γ
!
®σ

!
1 0 in a neighbourhood U of p in c

!
. We choose vector fields w

r
, r ` (0, 1) as

in Lemma 5.2. Equation (5.20) shows that ©w
r
, n

!
ª does not change sign on c

!
.

Equation (5.19) says that ©w
r
(p), n

!
(p)ª" 0. Thus, taking ®w

r
instead of w

r
if

necessary, we get
[τ cos γ

!
®σ

!
]©w

r
, n

i
ª& 0 on c

!

and
[τ cos γ

!
(p)®σ

!
]©w

r
(p), n

i
(p)ª" 0.
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By equation (5.21), the left sides of the last two equations are independent of the index

r. Thus, C, defined by

CB&
c
!

[τ cos γ
!
®σ

!
]©w

r
, n

!
ª ds

is positive and independent of the index r. The Cauchy–Schwarz inequality and

equations (5.15) and (5.16) yield

lim
rMN

!

0 &
DΣ

©�d (�[~) �~p,w
r
ª dV1¯ 0

and so

lim
r!!

0 &
DΣ

©�d (�[~) �~p,w
r
ª dV3

"

i=!

&
ci

[τ cos γ
!
®σ

!
]©w

r
, n

i
ª ds1¯C" 0. (5.30)

Define test functions F
r
:.MNR by

F
r
(Σ, �)¯&

DΣ

©w
r
, �ª dV.

It is easy to show that F
r
`$. In fact, the functional derivatives are given by

δF
r

δΣ
¯©w

r
, �ª

δ
i
F
r

δΣ
¯ 0

δF
r

δ�
¯w

r
.

By equation (5.30) there exists an r ` (0, 1) such that

0 &
DΣ

-�d (�[~) �~p,
δF

r

δ�. dV3
"

i=!

&
ci

[τ cos γ
!
®σ

!
]-δF

r

δ�
, n

i1 ds1" 0

contradicting (5.28). Hence our assumption was wrong and τ cos γ
!
®σ

!
¯ 0 holds

along c
!
. Equations (5.28) and (5.29) imply that

&
DΣ

-�d (x, t)(�[~) �(x, t)~p(x, t),
δF

δ�
(x). dV¯ 0 (5.31)

for all t.

We now want to show that equation (5.31) implies equation (3.1) ; that is,

�d (x, t)(�[~) �(x, t)~p(x, t)¯ 0

for all x, t,x `DΣ
t

. Suppose there is a t such that

u :DΣ MNR$

xPN �d (x, t)(�[~) �(x, t)~p(x, t)

is not the zero function. Because div �¯ 0 and because of equation (5.22),

div u¯ 0.

Also, because of (2.2) and (5.22) we have ©u, (0, 0, 1)Tª¯ 0 on Σ
!
eΣ

"
. Now define

F :.MNR by
F(Σ, �)¯&

DΣ

©u, �ª dV.
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Then F `$ and

δF

δΣ
¯©u, �ª

δ
i
F

δΣ
¯ 0

δF

δ�
¯ u.

By assumption, u is not the zero function and so

&
DΣ

-�d (�[~) �~p,
δF

δ�. dV¯&
DΣ

©u, uª dV" 0.

This contradicts (5.31), so our assumption was wrong and equation (3.1) is also

satisfied by any solution of Hamilton’s equations (5.1). We have shown the following.

T 5.1. A cur�e tPN (Σ
t
, �

t
) `. satisfies equations (3.1)–(3.6) if and only

if it is a solution to Hamilton’s equations (5.1).

6. Existence and stability of solutions to the equations of motion

6.1. An existence result

In this section we prove an existence result for solutions to equations (3.1)–(3.6)

representing drops that rotate rigidly about the z-axis with constant angular velocity

ω. Thus, the velocity field is of the form

�(x)¯ (0, 0,ω)T¬x. (6.1)

We assume in this section that the free boundary of the drop can be described as the

graph of a real-valued function over the reference configuration D which was

introduced in Section 2. In the following we speak of the ‘drop f ’ for the drop with

profile f. The volume of the drop f is given by

Vol ( f )¯
1

2&
#
π

!

&h

!

f #dz dφ.

The free boundary Σ of the drop is the image of the map

[0, 2π]¬[0, h]MNR$

(φ, z)PN ( f(φ, z) cosφ, f(φ, z) sinφ, z)T. (6.2)

Thus, the state of the drop is fully determined by the function f and the number ω.

One easily checks that (Σ, �), where Σ is given by (6.2) and � is given by (6.1), is a

steady state solution of equations (3.1)–(3.6) if and only if there is a c `R such that

f : [0, 2π]¬[0, h]MNR+ solves the following boundary value problem:

τκ
f
®"

#
ω#f #¯ c (6.3)

cos γ
i
¯

σ
i

τ
on c

i
. (6.4)

Here κ
f
:ΣMNR denotes the mean curvature function of the surface parametrised by

the map (6.2). In fact, κ
f
(p) is the trace of the differential of the Gauss map at p `Σ.
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We will prove an existence result for rigidly rotating drops that are symmetric with

respect to rotations about the z-axis. In this case the function f does not depend on

the variable φ and we can consider it as a function on the interval [0, h]. The mean

curvature of the free surface represented by f is then given by

κ
f
( f(z) cosφ, f(z) sinφ, z)¯

1

f(z) (1f «#(z))"/#
®

f §
(1f «#(z))$/#

(6.5)

(compare do Carmo [5]). The condition cos γ
!
¯σ

!
}τ can be written in the form

f «(h)¯
σ
!

oτ#®σ#

!

:̄ ρ
!

(6.6)

and cos γ
"
¯σ

"
}τ is equivalent to

f «(0)¯®
σ
"

oτ#®σ#

"

:̄ ρ
"
. (6.7)

In the proof of our existence result we make use of the following property of the mean

curvature function.

D 6.1. For f :RMNR and r" 0 we define f
r
:RMNR by

f
r
(z)B rf 0zr1 .

R 6.1. Let f : [0, h]MNR+ and Σ
f
denote the surface that is generated by

rotating the graph of f about the z-axis. Let κ
f
denote the mean curvature function

of this surface. Then for p `Σ
f
and r" 0, equation (6.5) shows that

κ
fr

(rp)¯
1

r
κ
f
(p).

We prove the following existence result :

T 6.1. For e�ery V" 0 and for sufficiently small ω there exists a solution

f : [0, h]MNR to equations (6.3) and (6.4) such that Vol ( f )!V.

Proof. Consider first the case ω¯ 0. For a function f not depending on the

variable φ, equation (6.3) implies that the surface generated by rotating the graph of

f about the z-axis has constant mean curvature. By a theorem of Delaunay (compare

Loria [17, §212]) one can produce rotationally symmetric constant mean curvature

surfaces in the following way.

One rolls an ellipse without slipping along the z-axis. The trace of a focus of the

ellipse is described by a function zPN f(z). The theorem of Delaunay states that one

gets a constant mean curvature surface by rotating the graph of f about the z-axis.

Let a and b denote the major and the minor axis of the ellipse, respectively. Let e

denote its eccentricity and let s be the arc length parameter. By Loria [17, §212] one

has

f #¯ a#91®2e cos
s

a
e#: . (6.8)
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By differentiating both sides of (6.8) with respect to z, one gets the estimate

max
z`R

r f «(z)r&
e

2

(since f « is periodic, the maximum is defined). Choosing the eccentricity e of the ellipse

sufficiently large and by translating the ellipse along the z-axis, we may arrange things

so that
f «(z

"
)! ρ

!
! f «(z

!
)

for a pair of numbers z
!
" z

"
" h and

f «(0)¯ ρ
"
.

(The numbers ρ
!
and ρ

"
have been defined in (6.6) and (6.7).) Thus, with the help of

Delaunay’s construction, we can find a function f :RMNR, satisfying all of the

following conditions :
τκ

f
¯ c (6.9)

f «(0)¯ ρ
"

(6.10)

f «(z
!
)" ρ

!
(6.11)

f «(z
"
)! ρ

!
. (6.12)

For the functions f
r
, r" 0, defined with the help of f in Definition 6.1, the following

equations hold:

τκ
fr

¯
c

r

f !
r
(0)¯ ρ

"

f !
r
(rz

!
)" ρ

!
(6.13)

f !
r
(rz

"
)! ρ

!
. (6.14)

For r `R, r" 0, sufficiently small, we have

Vol ( f
r
r
[!,h]

)!V. (6.15)

Thus, by considering an appropriate f
r

instead of f we may assume that

Vol ( f r
[!,h]

)!V. Suppose that f : [0, h]MNR satisfies equation (6.3) for the parameter

values ωBω
!
, cB c

!
. Then it is easy to check that the functions

f
"
, f

#
,ω, c : [0, h]MNR

f
"
(z)B f(z)

f
#
(z)B f «(z)

ω(z)Bω
!

c(z)B c
!

satisfy the following first-order system of differential equations without parameters :

f !
"
¯ f

#

f !
#
¯ 0®c

τ
®

ω#

2τ
f #
"


1

f
"
o1f #

#

1 (1f #
#
)$/# (6.16)

ω«¯ 0

c«(0)¯ 0.
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If, on the other hand, zPN ( f
"
(z), f

#
(z),ω(z), c(z)) is a solution of (6.16), then

f(z)B f
"
(z) solves equation (6.3) for the parameters ωBω(0), cB c(0). For p¯

(z
!
, f

"!
, f

#!
,ω

!
, c

!
) `R& let I

p
`R denote the maximal interval in which a solution

zPN ( f
"
(z), f

#
(z),ω(z), c(z)) to equations (6.16) exists with initial values f

"
(z

!
)¯

f
"!

, f
#
(z

!
)¯ f

#!
, ω(z

!
)¯ω

!
, c(z

!
)¯ c

!
. Let

BB ²(z, p), z ` I
p
´

and let

Φ :BMNR%, Φ(z, z
!
, f

"!
, f

#!
,ω

!
, c

!
)¯ ( f

"
(z), f

#
(z),ω(z), c(z))

denote the general solution of the system (6.16). Let Φ
i
:BMNR denote the ith

component function, i¯ 1,…, 4.

It is well known that BXR' is an open set and that Φ :BMNR% is continuous.

We switch from the second-order equation with parameters (6.3) to the first-order

system (6.16) just to make use of these facts. Let f :RMNR satisfy (6.9)–(6.12) and

let AB f(0). We can rewrite (6.11) and (6.12) as

Φ
#
(z

!
, 0,A, ρ

"
, 0, c)" ρ

!

Φ
#
(z

"
, 0,A, ρ

"
, 0, c)! ρ

!
.

The function f
r
:RMNR defined with the help of f in Definition 6.1 is given by

f
r
(z)¯Φ0z, 0, rA, ρ

"
, 0,

c

r1 .
We consider r ` [h}z

!
, h}z

"
]. Equations (6.13) and (6.14) can be written as

Φ
#0h, 0,

h

z
!

A, ρ
"
, 0,

z
!

h
c1" ρ

!
(6.17)

Φ
#0h, 0,

h

z
"

A, ρ
"
, 0,

z
"

h
c1! ρ

!
. (6.18)

Since f
r
is defined on the whole of R, we have

(0h, 0,
h

z
A, ρ

"
, 0,

z

h
c1 , z ` [z

"
, z

!
]*XB.

Now, B is open, so there is an ε" 0, such that for rωr! ε

(0h, 0,
h

2
A, ρ

"
,ω,

z

h
c1 , z ` [z

"
, z

!
]*XB

holds. Since Φ :BMNR% is continuous and because of (6.15), (6.17) and (6.18) we can

choose ε such that for ω! ε we have

Φ
#0h, 0,

h

z
!

A, ρ
"
,ω,

z
!

h
c1" ρ

!

Φ
#0h, 0,

h

z
"

A, ρ
"
,ω,

z
"

h
c1! ρ

!

and

π&h

!

9Φ"0z, 0, rA, ρ
"
,ω,

c

r1:
#

dz!V for r ` 9hz
!

,
h

z
"

: . (6.19)
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By the mean value theorem, there is a zω ` [z
"
, z

!
] for every ω! ε such that

Φ
#0h, 0,

h

zω

A, ρ
"
,ω,

zω

h
c1¯ ρ

!
.

Thus, fω : [0, h]MNR, defined by

fω(z)BΦ
"0z, 0,

h

zω

A, ρ
"
,ω,

zω

h
c1

is a solution of the boundary value problem (6.3), (6.4). Because of (6.19), we also

have Vol ( fω)!V. *

6.2. Stability of rotating drops

The group S" acts from the right on the Lagrangian configuration space # by

rotation about the z-axis. This action can be lifted to Lagrangian phase space T#
and carries over to the Eulerian configuration space and phase space.

A solution ( f,ω) of the equations (6.3), (6.4) represents a relative equilibrium of

our system in the sense that its dynamic orbit is contained in its group orbit.

We now want to analyse the (orbital) stability of these relative equilibria with the

help of the energy-momentum method (compare Marsden [18]). In this stability

analysis we restrict ourselves to variations of the drop shape which can be described

as graphs of real-valued functions on the free boundary of a drop whose stability we

investigate. We neither require this drop to be rotationally symmetric nor do we

restrict ourselves to rotationally symmetric variations of the drop shape.

We now discuss the energy-momentum method in the context of our system. Let

I(Σ)¯&
DΣ

(x#y#) dV

denote the moment of inertia about the z-axis of the drop Σ `-. (Remember that the

drop has constant density 1.) Define the augmented potential Vω :-MNR by

Vω(Σ)¯V®"

#
I(Σ)ω#

where V denotes the potential energy of the drop as given in the introduction to this

paper, that is, V¯ τ!Σ dA®3"
i=!

σ
i
!Σ

i

dA. If f : [0, 2π]¬[0, h]MNR+ describes the free

boundary Σ as in (6.2), we also write V( f ) instead of V(Σ). A direct calculation yields

the following.

R 6.2. Let f : [0, 2π]¬[0, h]MNR be a solution to the equations (6.3),

(6.4). Let ² f
t
: [0, 2π]¬[0, h]MNR, t ` I ´ be a family of functions with f

!
¯ f ; then

d

dt)
t=!

Vω( ft)®cVol ( f
t
)¯ 0.

Thus, the drop f is a critical point of the functional Vω®cVol with respect to

arbitrary variations of the drop shape that can be represented as functions on the free

boundary of the reference cylinder. Let

F¯²g : [0, 2π]¬[0, h]MNR rVol (g)¯Vol ( f )´

denote the set of drops which have the same volume as the drop f. Since the function

Vol is constant on F, Remark 6.2 shows that
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d

dt)
t=!

Vω( ft)¯ 0

for every curve tPN f
t
, f

!
¯ f, in F. So f is a critical point of Vω with respect to

volume-preserving variations. We restrict ourselves in the following to this kind of

variation (note that these variations lie in a transversal subspace at f to the group

orbit through f ).

We analyse the stability of ( f,ω) by checking the second derivative of Vω at f for

positive definiteness. To get an idea about what positive definiteness tells us about

stability, observe that if Σ `- is a critical point of Vω, then ( f, �) `. with �(x)¯
(0, 0,ω)T¬x is a critical point of the function

Kω(Σ,w)Vω(Σ)

defined on phase space, where

Kω(Σ,w)¯
1

2&
DΣ

sw®(0, 0,ω)T¬xs#dV.

Now, Kω can be interpreted as the kinetic energy of the drop measured in a coordinate

system rotating with angular velocity ω about the z-axis. Also, KωVω can be

written as
KωVω ¯H®ωJ

where
J(Σ,w)¯&

DΣ

©x¬w, (0, 0, 1)Tª dV

denotes angular momentum about the z-axis (cf. Marsden [18]). Both H and J are

constants of motion for our system. If the second variation of Vω is positive definite

at the critical point Σ, then the second variation of the constant of motion H®ωJ

is positive definite at its critical point (Σ, �), �(x)¯ (0, 0,ω)T¬x. By definition, this

implies that (Σ, �) is a formally stable equilibrium of our system (cf. Lewis [14]). Note

that by a theorem of Dirichlet (cf. Marsden [18]) formally stable equilibria in finite-

dimensional systems are nonlinearly stable in the sense of Liapunov. Note also that

H and J are constant along group orbits under the S"-action.

To show that
d #

dt#)
t=!

Vω( ft)" 0

for every curve tPN f
t
in F, f

!
¯ f it suffices to prove that

d #

dt#)
t=!

Vω(gt
)®c[Vol (g

t
)" 0

for every curve tPN g
t
, g

t
: [0, 2π]¬[0, h]MNR, g

!
¯ f, satisfying the linearised

volume constraint

&#
π

!

&h

!

f
d

dt)
t=!

g
t
dz dφ¯ 0.

This suffices because the volume function Vol restricted to F is constant.

A long but completely straightforward calculation shows that

d #

dt#)
t=!

(Vω®c[Vol) (g
t
)¯&#

π

!

&h

!

Pk#
z
Qk#Rk#

φSk
z
kφ dz dφ

&#
π

!

(Tk#)
z=h

dφ®&#
π

!

(Tk#)
z=!

dφ
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where

k¯
d

dt)
t=!

g
t

the indices φ and z denote differentiation with respect to φ and z, and where

PB
τf #

of #φ(1f #
z
) f #
01®

f #f #
z

f #φ(1f #
z
) f #1 (6.20)

QB τ9 ( f #φ®f #) ( f #
z
1)

( f #φ(1f #
z
) f #)$/#

®f 0 f
z
f #φ

( f #φ(1f #
z
) f #)$/#1

z


1

f 0
fφ

of #φ1( f #
z
) f #
1

φ

f 0 fφ( f #z1)

( f #φ(1f #
z
) f #)$/#1φ

:®ω#f # (6.21)

RB
τ

of #φ(1f #
z
) f #
01®

f #φ
f #φ(1f #

z
) f #1 (6.22)

SB
τf #f

z
fφ

( f #φ(1f #
z
) f #)$/#

(6.23)

TB
τf f

z
f #φ

( f #φ(1f #
z
) f #)$/#

. (6.24)

We have proved the following theorem.

T 6.2. A solution ( f,ω) to (6.3), (6.4) is a formally stable relati�e

equilibrium if the quadratic form

β(k)B&#
π

!

&h

!

Pk#
z
Qk#Rk#

φSk
z
kφ dz dφ

&#
π

!

(Tk#)
z=h

dφ®&#
π

!

(Tk#)
z=!

dφ

is positi�e on

f v ¯ (k : [0, 2π]¬[0, h]MNR, &#
π

!

&h

!

fk dz dφ¯ 0, k1 0* .
In the special case of a rotationally symmetric equilibrium, one has fφ ¯ 0 and the

theorem specialises to the following.

T 6.3. A solution ( f,ω) to (6.3), (6.4) where fφ ¯ 0 is a formally stable

relati�e equilibrium if the quadratic form

β(k)B&#
π

!

&h

!

Pa (k
z
)#Qa k#Ra k#

φ dz dφ

is positi�e on

f v ¯ (k : [0, 2π]¬[0, h]MNR, &#
π

!

&h

!

fk dz dφ¯ 0, k1 0* .
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Here,

Pa B
τf

(1f #
z
)$/#

Qa B®
τ

fo1f #
z

®ω#f #

Ra B
τ

fo1f #
z

.

It is instructive to consider the case σ
!
¯σ

"
¯ 0, that is, no adhesion forces act at

the plates. Then every constant function f : [0, h]MNR, f(x)¯ d, is a solution to

the equations (6.3), (6.4) for arbitrary ω. These solutions represent cylinders rotating

about the z-axis with constant angular velocity ω. Denote the free boundary of our

cylinder by Z. The Hilbert space L
#
(Z) is the closure of the space generated by

functions of the form

h
kl
(φ, z)B cos (kφ®ψ) cos 0πl

h
z1 , ψ `R, k, l `Z.

(We suppress the dependence on ψ and γ in this notation.) For these functions

h
kl

:ZPNR, integration by parts yields

β(h
kl
)¯&#

π

!

&h

!

L(h
kl
) h

kl
dz dφ (6.25)

where

L(h
kl
)¯ 0τd 0πl

h 1
#

(k#®1)
τ

d
®ω#d #1 h

kl
. (6.26)

Putting k¯ 0, we see that β is positive definite on the subspace of f v of functions

which do not depend on the φ variable if

h#

π#d #


ω#h#d

π#τ
! 1. (6.27)

In the case ω¯ 0 this is just the criterion of Vogel [22] for stability with respect to

axisymmetric disturbances of cylindrical drops at rest.

To study positive-definiteness of β with respect to variations in f v, which do not

depend on the z variable, we have to evaluate L on the functions h
k!

. We choose k

different from zero, because we only consider volume-preserving variations. We also

exclude the case k¯ 1 which corresponds to translations of the drop (compare Lewis

[14]). The quadratic form β is positive definite with respect to variations of this

type if

3τ

d $

"ω#. (6.28)

This is just the stability criterion for a 2-dimensional circular drop of Lewis [14]. From

(6.26) one reads off that if (6.27) and (6.28) are satisfied, then β is also positive definite

with respect to nonsymmetric variations of the type h
kl

with l1 0.
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We conclude with the following theorem.

T 6.4. In the absence of adhesion forces, a cylindrical drop with radius d

rotating between two plates with constant angular �elocity ω is stable if both

h#

π#d #


ω#h#d

π#τ
! 1 (6.29)

and

3τ

d $

"ω# (6.30)

hold.
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