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Abstract

Given a uniformly bounded representation of a locally compact group, we con-
sider the closed circled convex hull K of the orbit of a vector. We call K a simple
motion system (SMS) and endow its linear hull with the Minkowski functional of
K. The representation theory on these ‘SMS-spaces’ is discussed, in particular for
Cy-representations, for irreducible representations of connected groups and for inte-
grable representations. As an application we give a criterion for the decomposibility
of representations.

1. Introduction

We describe the behaviour of a vector x under the action of a uniformly bounded
representation m of a locally compact group in terms of an associated Banach-space,
the ‘SMS-space’ to m and z. This is done in a geometric way.

We consider the closed circled convex hull K of the orbit of  which we call the
simple motion system (SMS) and endow its linear hull with the Minkowski functional
of K. Obviously this space is invariant under G however the restriction of 7 is not
usually strongly continuous with respect to this Minkowski-norm.

In Section 2 we present this construction and discuss the representation theory on
general SMS-spaces. Section 3 is devoted to the study of Cy-representations. Here the
SMS-space and the space of strongly continuous vectors are revealed as the orbits of
x under the measure algebra M(G) and the group algebra L!(G), respectively.

Sections 4 and 5 are concerned with certain canonical SMS-spaces associated to
irreducible GCR-representations of connected groups and to integrable representa-
tions of unimodular groups, respectively.

Finally Section 6 generalizes the concept of SMS-spaces. We show that the SMS-
spaces associated with unitary representations are dual spaces. Furthermore the
theory applies to certain subspaces of the Fourier—Stieltjes algebra. Using a theo-
rem of Taylor, we give a criterion for the decomposibility of a representation into
irreducible ones.
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134 MAarTHIAS MAYER AND CHRISTIAN SALLER
2. Simple motion systems associated to group representations
Throughout this paper let G be a locally compact second countable topological

group and (m, %) be a uniformly bounded, strongly continuous representation of G
on a Banach space #,. In addition we assume (7, %) to be cyclic.

Definition 2-1. Let x € %, be a cyclic vector with respect to (m,4,). We call the
closed circled convex hull of the orbit of x

K = cl(ccon(G)x)

the simple motion system associated to 7 and z.
The dense subspace

E=SMS(m,z)=span K =R". K
of 4, endowed with the Minkowski functional of K
1ylle = px(y) =inf{A e R" |y € \. K}
is called the SMS-space associated to m and z, the vector z its starting vector.

Example 2-2.
(i) Let Az be the regular representation of the integers on ¢*(Z) and consider the
starting vector x == ¢,. We find

cco Az (Z)x = {Z Aidi[n €N, Z il < 1}7

i=—n i=—n

hence the unit ball £'(Z)<; of £'(Z) is densely contained in the simple motion
system K = cl(cco (Az(Z)y)). Since the inclusion ¢: £'(Z) — (*(Z) is weak-*
weak continuous, £'(Z)<, is weakly-compact, whence it is norm-closed in *(Z).
This yields K = ¢"(Z)<; and SMS (7, ) = ('(Z).

(ii) Now consider the regular representation (Ag, L*(R)) of the reals. A function
x € L2(R) is cyclic if and only if its Plancherel-transform vanishes at most on
a null set. We will see in the next section that

K = {uxa|pe MR}
E =SMS (Ag,z) ~ M(R) (isometrically isomorphic).

Prorositiox 2:3. With the notations of Definition 2-1 and M = sup s ||7(g)[| we
have

(i) The Minkowski functional px defines a norm on E = SMS (7, x).

(ii) The unit ball E<y of E coincides with the simple motion system K.

(iii) The embedding v: E — B, has norm less or equal M ||x|| 4. .
In particular the transposed embedding 1': B, — E' has norm less or equal
Mjz| .-

(iv) The normed space (E, ||.||g) is complete.

Proof. (1)—(iii) are immediate, since K is closed, circled convex and bounded. To

prove (iv) consider a Cauchy sequence {y, }neny With respect to ||.[|g. Then {y, }nen
is a Cauchy sequence with respect to ||.]|%,. by (iii), hence has a limit y in %, with
respect to ||.]|%,. But the Cauchy-property with respect to ||.| g assures that for

€ > 0 and a large enough number N € N
Ym € Yo +te. K VYm,n > N.
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Simple motion systems and Banach spaces 135

Since K is closed in 4, this yields y € y, + €. K, hence y € F and y,, — y with
respect to ||.||g. O

Thus the representation (7, 4, ) associates to the starting vector x a dense subspace
E in %, carrying a Banach-norm which is finer than the original one. Obviously K
is G-invariant and G acts on E via 7(g) = 7(g)| .

THEOREM 2-4. We keep the notation of Definition 2-1. Then G acts on E by isometries.
In fact, the unit ball K is invariant under the simple motions, that is

m(p). K € K forpe M(G)g;.
In particular the representation

7 M(G) — BL(E), i w(w)l,
18 norm-decreasing.

Proof. Clearly, G acts by isometries. As to the remainder of the theorem, assume
the statement not to be true. Then there exist y € K and p € M(G)<; with m(p)y ¢ K.
But K is circled convex and closed in 4, whence the Hahn—Banach theorem forces
a A€ # with

IAK) <1VEEK but [Am(p)y)| > 1.

This implies

< (] = | [ Nrla) dnto)

) du(g
< /G ()| dlul(g) < /G diullg) < 1,

a contradiction. [

Observe that it is not a priori clear that m(u) is an element of E, which would
simplify the proof above.
Our next aim is to describe the space

E:={y € E| g~ #(g)y is continuous}
of the strongly continuous vectors for # (which is closed by boundedness of 7).

ProrosiTioN 2-5. Forall i € M(G) the integrated representation 7 (1) of | i coincides
with (W) 5

Proof. For A € 4 C E' and y € E we have

NEw) = [ Arowiduia) = [ Nrlgdutg) = Mntuan)
This shows the claim, since %/ separates the points in £ C #,. [

If E, I is a dual pair of vector spaces, we denote by o(E, F') and 7(E, I') the weak
and the Mackey topology on E, respectively.

THEOREM 2-6. We keep the notation of Definition 2-1. Then the space
E={yc E|g~ 7(g)y is continuous}
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136 MaTTHIAS MAYER AND CHRISTIAN SALLER

of the strongly continuous vectors coincides with
©(LY(G)). E.
Thus 7 is strongly continuous on a 7(E, B.)-dense, norm closed, subspace of E.

Proof. By Theorem 2-4 we have a continuous representation of M(G) on E, and
furthermore the regular representation of G on L'(G) is strongly continuous. Thus
7 is strongly continuous on w(L'(G)). E.

On the other hand the factorization theorem (e.g. [7, 11-10], ) together with Propo-
sition 2-5 shows

E=#LYG)).E=nLYG)).E C n(LY(G)).E,

which settles the first part of the theorem.

As to the Mackey-density, observe that w(L'(G))FE is dense in %, with respect to
the norm topology, hence o (%, #.)-dense in #,. Therefore it is o(E, #,)-dense in
E, thus 7(E, 4. )-dense in E, by convexity. []

Note that the continuity properties on the SMS-space correspond to the continuity
properties of the regular representation Ag of G on M(G): the space of strongly
continuous vectors of A\g is exactly L'(G) = A\g(L'(G)). M(G).

Thus in Example 2-2(ii) the representation 7 is not strongly continuous on the
whole SMS-space.

3. SMS-spaces associated to Cy-representations

In this section, we present a rather satisfactory description of SMS-spaces associ-
ated to an important class of representations, the Cj-representations.

Definition 3-1. A cyclic uniformly bounded representation (mw, 4,) on a Banach
space %, is called a Cy-representation, if there exists a cyclic vector © € %, such
that the matrix coefficients

Ux2(9) = AT (9)T)

belong to the space Cy(G) of functions vanishing at infinity for all continuous linear
functionals A € #/.. This implies immediately that for all A € #, z € %, the matrix
coefficient vy , is in Cy(G). If (7, # ;) is a unitary representation on a Hilbert space
A, this is equivalent to the fact that, for some cyclic vector x € H# ., the positive
definite function

Uz 2(9) = (x, 7(g)x)
vanishes at infinity.

Example 3-2.

(i) The regular representation is a Cj-representation (cf. [9, 3-7]). In particular,
the Duflo-Moore theorem (|8]) implies that square-integrable and integrable
representations are Cy-representations.

(ii) If G is a semisimple connected Lie group with finite centre, every strongly
continuous unitary representation on a Hilbert space (m,#,) is a Cjy-
representation, provided that the restriction 7| of 7 to every simple non-
compact component S < G does not contain the trivial representation of S.
This is due to Howe and Moore ([12]).
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Simple motion systems and Banach spaces 137

(ii1) A faithful irreducible representation of a minimal analytic group, i.e. a con-
nected Lie group with compact centre and a closed adjoint group, has Cjy-
coefficients (cf. [15]). Similar statements are valid for connected so called
totally minimal groups ([16])

We now calculate the SMS-space associated to a Cy-representation.
THEOREM 3-3. Let (7, %) be a Cy-representation with cyclic vector x. Then
K =cl(ccom(G)x) = n(M(G)<y)z.
In particular, SMS (7, x) is the orbit of x under the action of M(G).

Proof. We know from Theorem 2-4 that m(M(G)<)z C K. To show the other in-
clusion, take y € cl (ccom(G)x) and a sequence {z }reny C ccom(G)z converging to y.

Thus
Nk Nk
T = Z cixm(gix)xr  with ng € N gy € G, Z leie] < 1.
i=1 i=1

Hence with gy =>""" ¢k, € M(G)<; we have
T = m(pg)x.

Now, since G is separable, the unit ball M(G)«, is weak-* sequentially compact, hence
we may assume that {py}ren converges to a p € M(G)<; in the weak-* topology.
Together with the Cy-property of m, this implies for A € %,

A(y) = Jim Aag) = lim A(m(ju)2)

= lim [ A(m(g)z)dur(g) = A (p)z).
—oo Jao

An application of the Hahn-Banach theorem finishes the proof. []
To identify the Banach space structure of (F, .|| g) observe the following:

Lemma 3:4. Let E,F be Banach-spaces and T: E — F a continuous linear onto
mapping. Then the factor space E | ker T endowed with the quotient norm is isometrically
1somorphic to F if and only if T'(E<,) = F¢,.

Proof. Standard.

THEOREM 3-5. Let (m,%;) be a Cy-representation and x a cyclic vector for m and
E =SMS (7, z). Define F () ={vy o | X € B} C Co(G) and its polar I = F ,(m)° in
M(G). Then

I={peMG): n(n)z =0}
and I is a weak-x-closed left ideal in M(G). We have the following isometric isomorphisms:

isometrically isometrically

M(G)/I

’

T o(m)
Vi

MG)/I>pu+1 v~ w(px el
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138 MaTTHIAS MAYER AND CHRISTIAN SALLER

and
M(G)/I 3 p+ T s (vn > pl(vns) = Ar(R)2)) € F o,
respectively. Furthermore, for X € B.. C E' (c¢f. Proposition 2-3) one has

Al = floxlloo-

Proof. We have

peZamy = 0= [ondute) = Nrlwa) YA€ 2,

= w(pu)z =0.

Therefore, as a polar, I is weak-*-closed while by the second description it is a left
ideal.

Now by Theorem 3-3 and the previous lemma the first isomorphism follows. The
second one is due to general functional analysis.

Finally, for A € %, Theorem 3-3 implies:

Al = sup [A@)| = sup [ Am(w)z)| = sup  [u(orz)] = [orzllo O
yEE@ MEM(G)g] MEM(G}gI

The next theorem identifies the space of the strongly continuous vectors in E as

the L'(G)-orbit of the starting vector x.

ThEOREM 3-6. In the situation of Theorem 3-3 the space E of %-strongly continuous
vectors in E coincides with the L'(G)-orbit of x.

Proof. By Theorems 2-6 and 3-3 one has
E=r(LYG)E = n(LNG)r(M(G))z = 7(L"(G) * M(G))z = n(L"(G))z.
CoroLLARY 3:7. The starting vector x is a strongly continuous vector for i in its own
SMS-space E = SMS (7, x) if and only if there is f € LYG) with n(f)x = z. In this
case, 7 is strongly continuous on E and
E = n(L"G))x.
Example 3-8.
(i) Consider the regular representation (Ag, L*(R)) of the reals and a cyclic vector
x € LA(R), so that the Plancherel-transform 2 of x satisfies £(¢) & 0 a.e. Then
for p € M(R) :  Ag(p)xr = p*x2 = 0 if and only if the Fourier—Stieltjes
transform i = 0, thus I = {0}. Therefore we find

isometrically

E =SMS (\,z) — M(R).

- isometrically
—— LYR).

In particular the starting vector z is not strongly continuous in its SMS-space.
(i) Now consider the representation of (i) as a representation of the discretisized
group Ry. The SMS-space remains of course unchanged, hence

SMS (Ag, 7) = 1(M(R))x 2 7(£'(R))x = 7(M(Ry))x.
Thus Theorem 3-3 fails if the Cy-property is not satisfied.
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Simple motion systems and Banach spaces 139
(ii1) Let (7, 4,) be an infinite dimensional cyclic representation of a compact group
G with cyclic vector x. Then z is not strongly continuous in E = SMS (7, x).
As to the proof, assume z to be strongly continuous. Since the circled convex
hull of a compact set is totally bounded by Mazur’s theorem (|3, VI-4-8]),

K = cls (cco 7 (G)x, || || 5)
is compact. As the topology on E is finer than that on %, we have
K C K = Eq,
On the other hand Proposition 2-5 and Theorem 3-3 imply:
K =1(M(G)<)z = 7(M(G)<()z C K.

Hence the closed unit ball of E would be compact, forcing E to be finite
dimensional. But this is a contradiction to x being cyclic for 7.

(iv) If (m,%,) is an irreducible Cj-representation and if x € %, such that the
SMS-space E = SMS (7, ) is minimal with respect to inclusion among SMS-
subspaces, then 7 is strongly continuous on E. Take 0 #+ y € E: then, by
Theorem 3-6, y = 7(f)z for a suitable f € L'(G). Since y € F, the minimality
of E implies that £ = SMS (7, y) = 7(M(G))y. Thus there is a p € M(G) with
m(1)y = x, whence one has x = w(u)m(f)r = 7(u * flz. But px f € LYG)
and Corollary 3-7 shows the claim. (Note that irreducibility of 7 is needed
to assure that the vector y used in the proof is cyclic, so that SMS(m,y) is
well-defined.)

(v) On the other hand, if (7w, %) is a Cy-representation and x € %, is a cyclic
vector such that £ = SMS (7, z) is maximal with respect to inclusion among
SMS-subspaces, then again 7 is strongly continuous on E. In fact, by the
factorization theorem, there are y € %, and f € L'(G) with z = 7(f)y,
therefore y is cyclic for m and z € SMS (7, y), so the maximality of E implies
SMS (7,y) = E = 7(M(G))z and again we see x € 7(L'(G))z. Combined with
(i) this shows that for every cyclic f € L*(R) there is a sequence f,, € L*(R)
such that

T(M(R)f G 7M(R)fi E TOUR)) ...

(In other words, there is a strictly increasing sequence of subspaces of L*(R)
that are in a natural way algebraically isomorphic to M(R).)

4. SMS-spaces of irreducible GCR-representations
In this Section we are concerned with SMS-spaces associated to irreducible unitary
GCR-representations. The significant fact here is the existence of a unique minimal
SMS-space. The most important tool is the following result which is an easy gener-
alization of a very deep one, due to Poguntke [17].

THEOREM 4-1. Let (w, ) be an irreducible unitary representation of a connected
locally compact group G. Furthermore let (w, # ) be GCR, i.e. the operation of the C*-
algebra contains a compact operator. Then there exists f € LY(G) such that ©(f) is a
nontrivial finite dimensional operator.
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140 MaTTHIAS MAYER AND CHRISTIAN SALLER

Proof. The result in [17] shows the statement in the Lie case. Now let G be an
arbitrary connected locally compact group. There exists a net {K,}, of compact
normal subgroups K, < G such that G is the projective limit of the Lie groups
G/K,. By [2, lemma 2] there is an oy with K, C kern for all @ > ay. In particu-
lar for such an « the canonical representation 7’ of G/K, with 7 := 7’ o p,, (where
Do denotes the canonical projection) is irreducible and Poguntke’s result guaran-
tees an f € LY(G/K,) such that 7/(f) is a nontrivial finite dimensional operator.
Now the canonical onto homomorphism o : L'(G) — LY(G/K,) fulfills 7 = 7’ o 0.
Hence there exists ¢ € L'(G) satisfying n(g) = 7'(0(g)) = 7'(f) and shows the
statement. []

Our interest on L!'-functions that operate as finite rank operators is based on the

following fact:

ProrosiTioN 4-2. Let (7, ) be an irreducible representation of a locally compact
group and assume that

J.={f € LYG) | n(f) has finite rank}
is not the kernel of . Then
Hn =span{n(flx |z € H,, f € J:}

is a dense subspace and Hg, = w(J)x for all v € H .. In particular, L'(G) acts
algebraically irreducibly on H g,. Furthermore S g, s the only subspace of H . with the
latter property.

Proof. The proof is based on that of theorem 2 in [6]. It is worked out in [14].

Remark 4-3. If G is unimodular, the vectors in g, are the best integrable vectors
in the following sense. If there exists a nontrivial coefficient function v, , € L?(G),
p > 1, then for all u,w in #g, we have

Uy € LP(G).
Indeed, take z,y € # ;. \ {0} with v, , € L?(G) and u, w € #,. By the above, there
are integrable functions f, and f,, with
m(fu)xr=u and w(fu)y = w.

Thus we find

Vuw = Un(fu)em(fu)y = Ju * Voy * fu,

where f(g) = f(g~"). Now the usual convolution formulas (e.g. [11, 2-39]) show
Uy, € LP(G).

THEOREM 4-4. Keep the assumptions and notations of Proposition 4-2. Then
(i) For all x € A\ {0} the space H g, is contained in the strongly continuous part
of SMS (7, z) and the restriction of 7 to the closure of H g, is irreducible.
(ii) For every y € A, the SMS-space SMS (m,y) coincides with S, and all the
SMS-norms are equivalent.
In particular H gy, is the only minimal SMS-space.
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Simple motion systems and Banach spaces 141

Proof.
(i) By Theorem 2-6, £ D 7(L'(G))E D n(Jy)x = #gy. The second statement is a
consequence of the fact that w(L'(G)).y contains #y, for all y € #,.
(ii) This is a consequence of the algebraic irreducibility of #4, under L!(G). The
second assertion is trivial.

Remark 4-5.

(i) If the ideal J, is dense in L'(G), the representation % is irreducible on the
continuous part of every SMS-space. Indeed, for x € 4, \ {0}, the strongly
continuous part of E := SMS (r, z) is £ = 7(L'(G))E, by Theorem 2-6. Thus
the density of .J; and the strong continuity show that #4, is dense in £ and
Theorem 4-4(i) is applicable. It is known that J, is dense in L'(G) if G is a
connected Lie group which is nilpotent (cf. |6, theorem 2]) or semisimple (cf.
Remark 4-5(ii)). But for the affine group J, is not dense ([13, theorem 6]).
More generally J, is not dense in L'(G) if the representation is not CCR.

(i) Let K < G be a compact subgroup and let (mw, # ;) be a K-finite represen-
tation, i.e. the isotypic components of the K-irreducible subrepresentations
are all finite dimensional. This is the case for irreducible representations of
connected semisimple groups and for the euclidean motion groups (cf. [19,
chapter 4-5-2]) if K is a maximal compact subgroup. Now, for all irreducible
subrepresentations o < 7|, the orthogonal projection onto its (by assump-
tion finite dimensional) isotypic component is given by (1/d,)7(X,), where X,
is the character of o. Thus m(f *X,) has finite rank for all f € L'(G). In par-
ticular, the space of K-finite vectors with respect to 7 is contained in #’s,. By
the Peter—Weyl theorem, the unique minimal SMS-space is the closure of the
K -finite vectors with respect to the SMS-topology associated to any nonzero
K -finite vector.

(iii) Observe that in the Lie case S, contains a dense set of C'™-vectors (cf.
Theorem 4-1). But in general not all vectors in #y, are differentiable. Thus a
G-orbit of a vector does not span #y,, in general.

5. SMS-spaces associated to integrable representations

As in the last Section we reveal a canonical SMS-space associated to an irreducible
representation (m, # ), now described by a growth condition on the matrix coeffi-
clents.

We assume G to be unimodular but not necessarily connected and fix a Haar-
measure tg on G.

Definition 5-1. A unitary irreducible representation (m, # ;) is integrable if there
exists a vector  # 0 in A, with v, , € LY(G). Any such x is called an integrable
vector.

By Example 3-2(i), integrable representations are Cy-representations. We sum-
marize some facts about integrable representations. Proofs and further results are
contained in [5, sections 14-3, 14-4], for instance. Let d, be the formal dimension of
7. We have the following orthogonality relations (with respect to the inner products
of 12(G) and A ., respectively):

() (Ve Vary) = (1/dr) (@, 2" )Y y):
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(1) gy * Vs = (1/dn) (@', Y) Vg

(i) Uy g * Vpp = Uy if ||2]] = Vdr.
Furthermore in case ||z| = v/d. the right-convolution in L*(G) with the positive
definite function v, , is the orthogonal projection onto the space

H ={vp.|he A}

and the wavelet-transform #; 3 h — v, defines a unitary intertwining opera-
tor between m and the restriction of the regular representation to #". We need the
following easy observation:

PROPOSITION 5-2. Let Ty, xo € H \ {0} with vy, o, € LYG), i = 1,2. Then
(LY Gz = {y| vy, € LY(G)} = {2]vs. € LYG)} = 7(LN(G))22.

Proof. This is easily seen by [10, lemma 4-2]. [

This yields immediately

COROLLARY 5-3. Let S be an integrable representation of the unimodular group G.
Then
(i) For all integrable x € A, \ {0} the SMS-spaces coincide and have equivalent
SMS-norms.
(ii) The SMS-space of the integrable vectors Ei, is a minimal SMS-space. The canon-

ical mapping
LYG)/I> f+1 = m(f)z, (v+0)

is norm-decreasing, where I = {f € L'Y(G)|n(f)x = 0}. The representation on
By vs strongly continuous.

(i) If, in addition, G is connected, Epy is the unique minimal SMS-space and is
contained in all SMS-spaces. In particular, for every y € A . exists an f € L'(G)
such that w(f)y is integrable.

Proof.
(i) Is obvious by the above.
(i) We assume without loss of generality ||z| = v/d,. Thus we have

E =SMS (7, z) = n(M(G))x = 7(M(G) * vy .)r C 7(L'(G))z.

The minimality follows from Proposition 5-2. Let I == {u € M(G), 7(n)x = 0}.
Then

|7 (f)xllsms (re) = I + I lme) < £+ 1.

(iii) Now assume G to be connected. Since (7, # ) is integrable, 7(f) is a Hilbert—
Schmidt operator for every f € LY(G) N 1L2(G) (cf. [5, 14-4-3]). Therefore 7 is
GCR and Theorem 4-4 shows that F;,; coincides with #g,. [

For noncompact groups it is not possible that all matrix coefficients are integrable
(see for instance [4, p. 233]). In particular the canonical subspace E;, is always a
proper subspace.
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6. SMS-type spaces

In Theorem 3-5 we saw that the SMS-space E associated with a Cj-representation
(7, B,) is the dual of a Banach space, namely of the closure of %, with respect to the
norm of E’. This result remains true in a more general functional analytic setting
that is introduced below. These generalized SMS-spaces provide more information
for rather general representations.

Moreover this theory applies to the concept of Fourier—Stieltjes algebras and
Arsac-spaces. This yields, for instance, a necessary and sufficient criterium for a
unitary representation on a separable Hilbert space to split into irreducible ones.

Definition 6-1. Let E and B be Banach spaces and t: E — B be a one-to-one
continuous mapping with dense image such that

t(E«y) is closed in B. (%)

Then E is called an SMS-space in B. Very often we identify E with its dense image
in B.

Definition 6-1 gives a natural generalization of the objects of our first five sections.
To find new examples we need the following

ProrosiTioN 6-2. Let E, B be Banach spaces and v: E — B be continuous, one-to-
one with dense image.
(i) If E is in addition the dual space of a Banach space 'E and *: B' — FE’ is the
transposed mapping, then E is an SMS-space in B, provided that

Lt(B/) g /E g El,

where we identify 'E with the corresponding subspace of the bidual E'.

(i) If E and B are dual spaces of Banach spaces 'E and 'B, respectively, then E is
an SMS-space in B if the mapping v is continuous with respect to the weak-*
topologres.

Proof.

(1) éhe unit ball E¢; is compact with respect to o(E, " (B’)) since it is o(E, E)-
compact by the Banach-Alaoglu theorem. Now ¢ is o(E,(B’)) — o(B, B')-
continuous, forcing ((E<,) to be (B, B’)-closed. In particular ¢(E<;) is norm
closed, proving the claim.

(ii) Is an immediate consequence of the Banach-Alaoglu theorem.

Example 6-3.
(i) In case 1 < r < p < oo the sequence-space £" is an SMS-space in ¢¥ with

respect to the canonical injection.

(i1) Let (X, u) be a probability space. Then for 1 < r < p < oo the Lebesgue-
space LP(X) is an SMS-space in L"(X).

(iii) Let H be a Hilbert space and L'(H), L*(H), # (H) be the spaces of trace-class
operators, Hilbert—Schmidt operators and compact operators, respectively.
We have L'(H) C 1(H) C #°(H) C BL(H) and

L*(H) = LX(H), x(H) =L"(H).

This reveals L'(H) as an SMS-space in L*(H) and as an SMS-space in 4 (H)
and L*(H) as an SMS-space in A4 (H).
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If we strengthen the condition (%) to
1(E«y) is weakly-compact in B, (k)
we find the following striking theorem:

THEOREM 6-4. Let E be a SMS-space in the Banach space B satisfying the weak-
compaciness hypothesis (xx). Then (E, ||.||g) is isometrically isomorphic to the dual

(B - er)
via the canonical mapping
Ese— (A= Ae)).

More precisely: E is (canonically isometrically isomorphic to) the dual space of B’ en-
dowed with the norm inherited from E' (cf. Proposition 2-3).

Proof.

(1) Let M equal {f € E”: f(A) =0 forall A € B C E'}, let ®: E — E" be the
canonical embedding and let 7y : B — E” /M be the canonical projection.
Consider the mapping ) = mpy o ®: E — E"/M.

(@) 1 is one-to-one. If 1 (x) = 0 then ®(z) € M, thus 0 = ®(z)(\) = A(z) for all

A € B, hence x = 0.

(b) % is onto. Consider the following topological spaces.

e F endowed with o(E, B’) (which is possible, since i": B’ — E’ is one-to-
one);

e " with o(E"”, B’) (this is possible, since i': B® — E’ C E" is one-to-
one);

e E"/M with o(E" /M, B’) (which is possible for the following reasons: as
M C ker()\) forall A € B’ C E' C E", the mapping \: = + M — ()
is well-defined for all A € B’. Also, the mapping B’ 3 X\ +— X\ € (E"/M)*
is one-to-one. For if A = 0 one has A\(z + M) = 0 for all z € E”, hence
A(z) = 0 for all z € E”, especially for all z € F; as E is dense in B, it
follows that A = 0.)

Now, observe that:

e (FE,0(E, B')) is Hausdorff as B’ separates points of E C B;

e (F"/M,o(E"/M,B")) is Hausdorff. Assume that for x + M € E"/M,
Az + M) =0forall A\ € B'. Then z(A\) = 0 for all A € B’, hence z € M
and x + M = Og /5 therefore B’ separates points of E” /M

e &: (E 0(F,B")) — (E",0(E", B")) is clearly continuous;

e my: (B, 0(E", B") — (E"/M,o(E"/M,B') is continuous, as
o(E" /M, B’) is just the final topology on E”/M with respect to mys
if E” is endowed with o(E", B’).

Since E¢q is (B, B’)-compact, it follows that it is o(E, B’)-compact and

Y(E<i) = w0 D(Egy) is o(E" /M, B')-compact, in particular closed. On

the other hand, ®(E¢,) is o(E"”, E')-dense in EZ,, so by B’ C E' it is also

o(E", B')-dense in EZ,. As 7y is continuous and onto, (Eg;) =m0 ®(Egy)

is o(E" /M, B')-dense in my(EZ;). By closedness of ¢(E¢;) with respect
to o(E"/M, B'), it follows that my(EZ,) C 9 (FEgi), and hence E”/M =
mp(E") C ¢ (E). Thus ¢ is onto.
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(2) By (1) we have a mapping £ — E”/M that is one-to-one and onto. By the
definiton of M and a well-known theorem in functional analysis, it follows
that

E" /M = (B, |.|e)"
Hence the mapping

k(B || [|g) = (B, ||

g);  K(e)(A) = Ae) = 1" (A)(e)

is one-to-one and onto.

(3) k is isometric: as E”/M =~ (B, |.||r/) is isometric, we have ||g| = [|¢| =
|mar 0 @ < ||mar]l [|@] < 1; whence for all e € E ||k(e)|| < |le]|g. On the
other hand, by definition, one has ||x(e)|| = sup{|A(e)|| || Az < 1, A € B'}.
Now take e € E with |le||g = 1, then te § E<, for every ¢ > 1, hence by the
Hahn-Banach theorem, for all ¢ > 1 exists A, € B’ with |[\(k)] < 1 for all
k € E<y, but |\(te)| > 1. Thus [|[M||zr < 1, but |k(e)(A)| = 1/t. Tt follows
that

lc(e)]| = sup |A(e)| = sup|ii(e)] = sup|1/t] =1 =|le|llg, as required.
1M <t t>1 t>1

Example 6-5.

(i) If (w,%,) is a uniformly bounded representation on a reflexive Banach space
with cyclic vector x, SMS (7, x) is an SMS-space in %, satisfying (¥x*), whence
it is a dual space. If (7, %,) is a Cy-representation the simple motion system
K is weakly compact, due to the fact that the mapping M(G) > p — w(p)z
is weak-* weak continuous. Furthermore, Theorem 3-5 shows that the space
whose dual is SMS (7, x2) by Theorem 6-4, coincides with that one we have
computed in Section 3.

(ii) More generally, in case that I is an SMS-space in a reflexive Banach space B,
Theorem 6-4 shows

E=B-le)"
In particular, if B is a Hilbert space, the density of E in B yields
E=B,-le) = (B le)

We conclude this paper with an application of our results to Fourier—Stieltjes
algebras. Let us recall at first some results concerning the Arsac-spaces associated
to a unitary representation (mw, # ).

Denote by W, the von Neumann algebra generated by the operators 7(g), g € G
and consider the predual W ., that is the dual of W, with respect to the ultraweak
topology o(BL(A# ), L (#,)). Then W, is canonically isomorphic to the quotient
of L'(A# ;) by the ultraweak polar W2 of W .

Taking account of the fact that L!(#,) is the projective tensor product of #
with its dual Hilbert space #, we see that the canonical mapping

,Uw;y = (T = <$,7T(T)?J>>, z,y € “%T(

extends to an isometric isomorphism between A, the closure of the space of matrix
coefficients with respect to the norm of the Fourier—Stieltjes algebra B(G), and the
predual W, (cf. [1, chapter 1]).
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THEOREM 6-6. Consider a unitary representation (w, A ) on a separable Hilbert space
H . Then  splits into irreducible subrepresentations if and only if W C LYA )
is closed in LY(A ) with respect to the Hilbert-Schmidt norm.

Proof.

‘<" Assume that the condition holds. Let ¢l (W) be the closure of W in L*(A#,,).
By assumption, Wo = L' ()Nl (W), thus we have a norm-decreasing one-to-one
mapping

AR = LA WS — LA L)/l (W2)), T+ WS T+ cl (W2).
Since L'(# )<, is weakly compact in L?(# ), we have
UL )/ (Wo)<t) = oL (A x)<i) + el (W)

is weakly compact and A is an SMS-space in L.?/(cl (W?)). Hence Theorem 6-4 shows
that A, is a dual space and by a theorem of Taylor 7 splits (cf. [18, theorem 3-5]).

‘=" We may assume 7 to be multiplicity free. Then

0
e~
0

with inequivalent, irreducible (and therefore disjoint) representations pj. This im-
plies
BL(A ,,) O
W, = BL(A ,,)

0

and the operators in W are those trace class operators on J#, with zeros on the
diagonal, that is the operators of the form

*
T =
%k

This space is closed in L'(A ;) with respect to the Hilbert—Schmidt norm.
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