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Introduction

In this paper we investigate separation properties in the dual Ĝ of a connected,
simply connected, nilpotent Lie groupG. Following [4, 19], we are particularly inter-
ested in the question of when the group G is quasi-standard, in which case the group
C∗-algebra C∗(G) may be represented as a continuous bundle of C∗-algebras over
a locally compact, Hausdorff, space such that the fibres are primitive throughout a
dense subset. The same question for other classes of locally compact groups has been
considered previously in [1, 5, 18]. Fundamental to the study of quasi-standardness
is the relation of inseparability in Ĝ: π ∼ σ in Ĝ if π and σ cannot be separated by
disjoint open subsets of Ĝ. Thus we have been led naturally to consider also the set
sep (Ĝ) of separated points in Ĝ (a point in a topological space is separated if it can
be separated by disjoint open subsets from each point that is not in its closure).

It was shown in [4, theorem] that the C∗-algebra of a nilpotent Lie group G
with centre Z is quasi-standard if the maximal orbit dimension in g∗ is equal to the
dimension of z⊥, and that the converse holds in the two-step case. This is applied
in Section 2 to show that the universal, simply connected, two-step nilpotent Lie
group Wn is quasi-standard if and only if n is even (Theorem 2·4). It is also shown
that in the two-step case (or more generally in cases where every generic Kirillov
orbit is flat) sep (Ĝ) consists precisely of those irreducible representations for which
the associated orbit in g∗ has maximal dimension (Theorem 2·2). This leads to a
description of sep (Ŵn) in terms of the rank of a skew-symmetric matrix associated
with an element of w∗n (Corollary 2·5). The relation ∼ is considered in further detail
for the universal groups Wn in Theorem 2·7 and Corollary 2·8. In particular, ∼ is an
equivalence relation on Ŵn for all n > 2.

In Section 3 we extend from [4, 7] the study of the ‘threadlike’ nilpotent Lie groups
GN (N > 3). The groupGN is (N−1)-step nilpotent andG3 is the classical Heisenberg
group. In fact, we are able to work in the more general context of nilpotent Lie groups
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270 R. J. Archbold and others
of the form G = R nRd (see [6]). We show in Theorem 3·1 that such groups fail to
be quasi-standard except in the special case of a direct product of G3 with an abelian
group. Our analysis shows in particular that, for N > 5, C∗(GN ) contains a Glimm
ideal that is not primal, thereby confirming a view taken in [4] (which dealt with
the case N = 5). Theorem 3·1 is applied to six-dimensional groups in Section 4.

The cortex of a locally compact groupG is the closed subset cor (G) of Ĝ consisting
of those elements which cannot be separated by disjoint open sets from the trivial
representation 1G. It is related to the cohomology of G in unitary representation
spaces [25]. For some groups, for example those with Kazhdan’s property (T ), cor (G)
is just {1G}. Moreover, for connected Lie groups, Sund [24] has recently given a
characterization of those for which cor (G) = {1G}. On the other hand, for groups
outside this class the structure of the cortex may be rather complicated [6, 7]. In
particular, for the groups GN the cortex is quite large and has been determined
in terms of g∗N by Boidol, Ludwig and Müller [7]. Further detailed analysis of the
convergence of orbits, extending methods of [7], leads to a description of sep (Ĝ)
for the semi-direct products described above (Theorem 3·6). Corollary 3·7 shows, in
particular, that ĜN = cor (GN )x sep (ĜN ) if and only if N is odd. The relation ∼ on
ĜN is completely determined in terms of elements of g∗N in Theorem 3·9. In contrast
to the situation for the groupsWn, it follows that∼ fails to be an equivalence relation
on ĜN precisely when N is a multiple of 4 exceeding 4 (Corollary 3·10).

Simply connected, nilpotent Lie groups of dimension no greater than six have been
classified (see [20] and the references therein). The Heisenberg group G3 is quasi-
standard [4, 19] butG4 is not [4]. Of the six five-dimensional groups in [20], three are
quasi-standard and three are not [4]. Turning to dimension six, a straightforward
check of the data in [20] shows that the maximal orbit dimension is equal to the
dimension of z⊥ in precisely the following cases:

G6,16, G6,17, G6,19, G6,20, G6,21, G6,22, G6,23, G6,24.

By the theorem from [4] described above, all of these groups are quasi-standard.
Surprisingly, we have found that there are six more quasi-standard groups amongst
the twenty four in [20], thereby refuting the conjecture in [4] that the dimension
condition is necessary forG to be quasi-standard. We list these six groups in Section 4
and give full details of the proof in the case of G6,4, which is isomorphic to the (three-
step nilpotent) group of real 4 × 4 upper triangular matrices. The group G6,4 is the
unique counterexample to the conjecture which is minimal with respect to both the
step of nilpotency and the dimension of the group. The remaining ten groups are
not quasi-standard, but in only three cases does C∗(G) contain a non-primal Glimm
ideal: G6,10 (= G6), G6,15 (= W3) and G6,18. Like G6, G6,18 has the form RnR5 and so
is covered by the results of Section 3.

1. Preliminaries

Let A be a C∗-algebra and let Id (A) be the set of all closed (two-sided) ideals of
A. An ideal I in Id (A) is called primal [3] if whenever J1, J2, . . . , Jn ∈ Id (A), n ∈ N,
are such that J1J2 . . . Jn = {0} then Jk ⊆ I for at least one k. We shall require the
following basic result, which shows that primality is closely related to the possible
failure of the Hausdorff property in Prim (A).
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On the topology of the dual of a nilpotent Lie group 271
Lemma 1·1 (3, Proposition 3·2). Let A be a C∗-algebra and I a proper closed ideal

of A. The following conditions are equivalent.
(i) The ideal I is primal.
(ii) Whenever n > 1 and U1, U2, . . . , Un are open subsets of Prim (A) such that

Ui w Prim (A/I) is non-empty (1 6 i 6 n) then
⋂n
i=1 Ui is non-empty.

(iii) There is a net in Prim (A) which converges to every point of Prim (A/I).

As observed in [3], Prim (A) and Prim (A/I) may be replaced by Â and Â/I in
Lemma 1·1. Also, as noted in [2, 4·6], the net in (iii) above may be chosen to lie in
any prescribed dense subset of Prim (A). Furthermore, the next result shows that
the net may be taken to be a sequence if A is a separable C∗-algebra.

Lemma 1·2. Let A be a separable C∗-algebra, let S be a dense subset of Prim (A) and
let J be a proper primal ideal of A. Then there is a sequence in S which converges to
every member of Prim (A/J).

Proof. Since A/J is a separable C∗-algebra, Prim (A/J) has a countable dense
subset {Qn: n > 1}. For n > 1, let (U(k,n))k>1 be a decreasing base of open neigh-
bourhoods of Qn in Prim (A). Since J is primal, for each k > 1 the open set

Vk ÷ U(k,1) w U(k,2) w . . . w U(k,k)

is non-empty by Lemma 1·1. Hence there exists Pk ∈ Vk w S (k > 1). Then, for
each n > 1, Pk → Qn as k → ∞. Since the set of limits is closed, the sequence (Pk)
converges to every member of Prim (A/J). q

If the variable integer n ∈ N in the definition of a primal ideal is replaced by a
fixed integer n > 2, we obtain the notion of an n-primal ideal. This turns out to be
relevant for the study of the universal 2-step nilpotent Lie groups Wn in Section 2.
Also, 2-primal and 3-primal ideals arise naturally in [17, 22, 23]. For each n > 2,
there is an example of a C∗-algebra An with In ∈ Id (An) such that In is n-primal
but not (n+1)-primal [3, p. 59]. The following result, which will be used in Section 2,
shows that a proper closed ideal I of a C∗-algebra A is n-primal if and only if A has
the property (I, n) of [17].

Lemma 1·3. Suppose that I is a proper closed ideal of a C∗-algebra A and that n > 2.
The following conditions are equivalent.

(i) The ideal I is n-primal.
(ii) The ideal

⋂n
i=1 Pi is primal in A whenever P1, P2, . . . , Pn are primitive ideals of

A containing I.

Proof. (i)⇒(ii). Suppose that P1, P2, . . . , Pn are primitive ideals of A containing
I and that Q ÷

⋂n
i=1 Pi is not primal. Since S ÷ {P1, P2, . . . , Pn} is dense in

Prim (A/Q), it follows from Lemma 1·1 that there does not exist a net in Prim (A)
that is convergent to every member of S. Hence there exist open neighbourhoods Ui
of Pi (1 6 i 6 n) with empty intersection. Let Ji ∈ Id (A) be the ideal such that
Prim (Ji) = Ui. Then J1J2 . . . Jn = {0} and each Ji is not contained in I, and so I is
not n-primal.

(ii)⇒(i). Suppose that J1J2 . . . Jn = {0} in Id (A) and that each Ji is not contained
in I. Then, for 1 6 i 6 n, there exists Pi ∈ Prim (A) such that I ⊆ Pi and Ji; Pi.
Hence Ji;

⋂n
j=1 Pj (1 6 i 6 n) and so

⋂n
j=1 Pj is not primal. q
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272 R. J. Archbold and others
For elements x and y in a topological space X, we write x ∼ y if x and y cannot

be separated by disjoint open subsets of X, and we write x ≈ y if f (x) = f (y) for
all bounded, continuous functions f on X. Then ∼ is reflexive and symmetric but
not necessarily transitive, whereas the weaker relation ≈ is always an equivalence
relation. A C∗-algebra A is said to be quasi-standard [5] if ∼ is an open equivalence
relation on Prim (A). This condition is a natural substitute for the stronger condition
that Prim (A) should be Hausdorff. Since the topology on the spectrum Â is induced
from that on Prim (A) by the kernel map, routine arguments of general topology
show that A is quasi-standard if and only if ∼ is an open equivalence relation on Â.
This is particularly transparent in the case of a C∗-algebra of type I (such as the C∗-
algebra of a nilpotent Lie group) since Â and Prim (A) are homeomorphic in this case.

The Glimm ideal space Glimm (A) ofA arises from the complete regularization [11]
of the primitive ideal space Prim (A). Denoting by [P ] the ≈-class of P in Prim (A),
there is a bijection between the quotient space Prim (A)/ ≈ and the space of so-
called Glimm ideals, given by [P ] → k([P ]) =

⋂{Q : Q ∈ [P ]}. The canonical
mapping ΦA: Prim (A) → Glimm (A), given by ΦA(P ) = k([P ]), defines the quotient
topology τq on Glimm (A). The C∗-algebra A is quasi-standard if and only if every
Glimm ideal is minimal primal and ΦA is an open map [5, theorem 3·3].

Let G be a simply connected (and connected) nilpotent Lie group with Lie algebra
g. Kirillov’s theory gives a bijection between Ĝ and g∗/Ad∗, the orbit space of the
coadjoint representation of G on the dual vector space g∗. Indeed, each f ∈ g∗ gives
rise to an irreducible representation πf of G, and πf is unitarily equivalent to πg
(g ∈ g∗) if and only if g ∈ Ad∗(G)f (see, for example, [10]). The Kirillov correspon-
dence is a homeomorphism provided that g∗/Ad∗ carries the quotient topology [8].
If f, fn ∈ g∗ (n > 1) we shall say that the sequence (fn) is orbit-convergent to
f (fn

orb−→f ) if there exists a sequence (xn) in G such that Ad∗(xn)fn → f . Singleton
subsets of Ĝ are closed, since coadjoint orbits in g∗ are closed, so π ∈ Ĝ is a separated
point if and only if it can be separated by disjoint open sets from every other point
of Ĝ.

It is shown in [14, proposition 3] that sep (Ĝ) contains a dense open subset of Ĝ.
Indeed, generic functionals in g∗ give rise to such a subset (see Proposition 1·4). The
proof of Proposition 1·4 uses Ad∗(G)-invariant polynomials and so one might imagine
that they could be used to determine sep (Ĝ) completely. However, these polynomials
are difficult to find (see, for example [9, 13]). Furthermore, Theorem 3·9(i) together
with the data from [9] shows that Ĝ7 contains distinct separated points which cannot
be distinguished by Ad∗(G7)-invariant polynomials on g∗7 .

Proposition 1·4. Let G be a connected, simply connected, nilpotent Lie group, and
let {X1, . . . , Xn} be a strong Malcev basis for g. Suppose that f ∈ g∗ is generic for the
dual basis. Then πf is a separated point of Ĝ and ker πf is a Glimm ideal.

Proof. Suppose that g ∈ g∗ and that πg�πf in Ĝ. We have to show that πf and πg
can be separated by a continuous function on Ĝ. If g is generic for the dual basis then
the proof of [10, 4·6·4] shows that f and g can be separated by an Ad∗(G)-invariant
polynomial on g∗, whereas if g is not generic then f and g are separated by the
Ad∗(G)-invariant Pfaffian associated with the basis {X1, . . . , Xn} (see [21, p. 275]).
In either case, the Ad∗(G)-invariant function induces a suitable continuous function
on Ĝ. q
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On the topology of the dual of a nilpotent Lie group 273
In the 2-step case, if f ∈ g∗ has maximal orbit dimension then it can easily be

shown that there exists a strong Malcev basis for g such that f is generic for the
dual basis. Thus, by Proposition 1·4, πf is a separated point of Ĝ. We shall show in
Theorem 2·2 that in fact, in this case, the separated points of Ĝ correspond exactly
to orbits of maximal dimension.

If the step of nilpotency is greater than two then not all orbits of maximal dimen-
sion need give separated points of Ĝ. This is illustrated by the groups GN , (N > 4),
see Section 3. Inspection of the nilpotent Lie groups of dimension six or less suggests,
however, that separated points of Ĝ might necessarily have orbits in g∗ of maximal
dimension.

2. The 2-step nilpotent case

Before specializing to the 2-step nilpotent case, we shall begin in a more general
setting.

Proposition 2·1. Let G be a connected, simply connected, nilpotent Lie group and
suppose that there exists a strong Malcev basis of g such that every generic point in g∗

(with respect to the dual basis) has a flat orbit of dimension d. Let J be any minimal
primal ideal of C∗(G). Let S = {f ∈ g∗: ker πf ⊇ J}, and let f ∈ S. Then there exists
a subspace V of z⊥ of dimension d such that

S = f + V.

Proof. Let q: g∗ → Ĝ be the open, continuous map f → πf , f ∈ g∗, and let U be
the set of generic points in g∗. By Lemma 1·2, there exists a sequence (πk) in q(U )
such that

πk → π for all π ∈ (C∗(G)/J)∧.

Let f ∈ S. Then πk → πf . Since q is open, by replacing (πk) by a subsequence, we
may obtain a sequence (fk) in U such that fk → f as k →∞ and πfk = πk.

For each k > 1 there exists a subspace Vk of dimension d such that Vk ⊆ z⊥ and

Ad∗(G)fk = fk + Vk.

Suppose thatN = dim g∗ and identify g∗ with RN by taking coordinates with respect
to the given dual basis in g∗. Using the dot product on RN , we obtain a real inner
product on g∗. For each k > 1 let {ξ1,k, . . . , ξd,k} be an orthonormal basis for Vk. By
passing to successive subsequences we may suppose that

ξi,k → ξi (1 6 i 6 d)

as k → ∞. Then {ξ1, . . . , ξd} is an orthonormal set in g∗, so V ÷ span {ξ1, . . . , ξd}
has dimension d. Clearly V ⊆ z⊥.

Let

g = f +
d∑
i=1

λiξi ∈ f + V.

Then fk +
∑d

i=1 λiξi,k → g as k → ∞. Thus πk = πfk → πg. But πk → π for all
π ∈ (C∗(G)/J)∧ and J is minimal primal, so g ∈ S. Thus f + V ⊆ S.
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274 R. J. Archbold and others
Conversely, suppose that f0 ∈ S. Then πk → πf0 . Passing to a further subsequence,

we may assume that there exists vk ∈ Vk such that fk + vk → f0. Hence vk → f − f0.
Let vk =

∑d
i=1 µi,kξi,k. Since (vk) is convergent in g∗, (‖vk‖) is bounded (where ‖ · ‖

denotes the norm arising from the inner product), so there existsK such that |µi,k| 6
K for all i, k. Thus there is a subsequence (vkr ) and v ∈ V such that vkr → v as
r →∞. Hence f − f0 = v, and f0 ∈ f + V . Thus S = f + V as required. q

Note that V is actually independent of f , for if S = f ′ + V ′, where f ′ ∈ S and V ′

is a subspace of g∗, then V = V ′.

Theorem 2·2. Let G be a connected, simply connected, nilpotent Lie group and sup-
pose that there is a strong Malcev basis of g such that every generic point in g∗ has a flat
orbit. Then every orbit of maximal dimension is flat, and π ∈ sep (Ĝ) if and only if the
orbit corresponding to π has maximal dimension. In particular, if G is a 2-step nilpotent
Lie group then π ∈ sep (Ĝ) if and only if the orbit corresponding to π has maximal
dimension.

Proof. Let U be the set of generic points and let d be the dimension of the orbits
of generic points. Let f ∈ g∗ and suppose that dim Ad∗(G)f = d. Let J be a minimal
primal ideal contained in ker πf , and let S = {g ∈ g∗: ker πg ⊇ J}. By Proposition 2·1
there exists a subspace V of g∗ of dimension d such that S = f+V . Hence Ad∗(G)f ⊆
f+V . Since Ad∗(G)f is a closed manifold of dimension d, and f+V is a d-dimensional
affine space, Ad∗(G)f = f + V . Since Ad∗(G)f = S, ker πf is equal to the minimal
primal ideal J , so ker πf is a separated point of Prim (C∗(G)) [2, 4·5]. Thus πf ∈
sep (Ĝ).

Conversely, suppose that π ∈ sep (Ĝ). Let f ∈ q−1(π). Then ker πf is a minimal
primal ideal of C∗(G). Hence there exists a d-dimensional subspace W of g∗ such
that

f +W = {f ′ ∈ g∗: ker πf ′ ⊇ ker πf} = Ad∗(G)f.

The final statement of the theorem follows from the fact that if G is 2-step nilpotent
then all orbits in g∗ are flat.

Remark. Suppose that G satisfies the hypotheses of Theorem 2·2. The set M of
points in g∗ whose orbits have maximal dimension is an open subset, so q(M ) is
an open subset of Ĝ consisting of closed, separated points. The argument of [12,
proposition 7] shows that each π ∈ q(M ) can be separated by continuous functions
from every other point in Ĝ. Thus if f ∈M , ker πf is a Glimm ideal.

For n > 2, we now consider the simply connected, two-step nilpotent Lie group
Wn, with Lie algebra wn which has the basis

{X1, . . . , Xn} x {Yi,j: 1 6 i < j 6 n}
with non-zero products [Xi, Xj] = Yi,j . These algebras are universal in the sense
that any 2-step nilpotent Lie algebra is the Lie-homomorphic image of some wn. In
Nielsen’s notation [20], W2 = G3 (the 3-dimensional Heisenberg group) and W3 =
G6,15. The centre zn of wn is given by

zn = span {Yi,j: 1 6 i < j 6 n},
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On the topology of the dual of a nilpotent Lie group 275
and

z⊥n = span {X∗1 , . . . , X∗n}
with dimension n. Since the maximal orbit dimension dn in w∗n is even, we see that
dn 6 n− 1 when n is odd and dn 6 n when n is even.

We recall from [4, theorem], that the C∗-algebra of a two-step nilpotent Lie group
G with centre Z is quasi-standard if and only if the maximal orbit dimension in g∗

is equal to the dimension of z⊥. It follows at once that C∗(Wn) is not quasi-standard
if n is odd. We shall show that equality holds in the two inequalities above for dn,
and hence that C∗(Wn) is quasi-standard if n is even.

Lemma 2·3. With the notation above, let

f =
n∑
i=1

αiX
∗
i +

∑
16r<s6n

βrsY
∗
rs ∈ w∗n

and let B be the skew-symmetric n×n matrix with entries brs = −βrs for 1 6 r < s 6 n.
Then Ad∗(Wn)f = f+TB(Rn) where TB is the linear mapping from Rn to z⊥n with matrix
B relative to the standard basis in Rn and the basis {X∗1 , . . . , X∗n} in z⊥n .

Proof. The coadjoint orbit of f is given by

Ad∗(Wn)f = {f ◦ exp(ad (−X)): X ∈ w}
= f + Vf ,

where

Vf = {f ◦ adX: X ∈ w}

=

{
n∑
i=1

tif ◦ ad (Xi): t1, . . . , tn ∈ R

}
.

Since

Y ∗rs ◦ ad (Xi) = δirX
∗
s − δisX∗r ,

we have that
n∑
i=1

tif ◦ ad (Xi) =
∑

16r<s6n
βrs(trX∗s − tsX∗r ).

Let T: Rn → z⊥ be the linear mapping defined by

T (t1, . . . , tn) =
∑

16r<s6n
βrs(trX∗s − tsX∗r )

Then T has matrix B and so TB(Rn) = T (Rn) = Vf , as required.

Theorem 2·4. With the notation above, dn = n if n is even, and dn = n − 1 if n is
odd. In particular, C∗(Wn) is quasi-standard if and only if n is even.

Proof. Let
f =

∑
16r<s6n

Y ∗rs,

and denote byBn the associated matrixB of Lemma 2·3. ThenBn is skew-symmetric
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276 R. J. Archbold and others
and has (r, s)-entry equal to −1 for 1 6 r < s 6 n. Let Dn = det(Bn). Since Bn is
skew-symmetric, Dn = 0 when n is odd. For n even (n > 4), we may subtract the
second column from the first and expand by the new first column to obtain that
Dn = Dn−2 because Dn−1 = 0. Thus Dn = D2 = 1 and rank (Bn) = n when n is even.
When n is odd, Bn has Bn−1 as a leading submatrix and so rank (Bn) = n− 1. Since

dim(Ad∗(Wn)f ) = dim(Vf ) = rank (Bn),

we have n 6 dn 6 n when n is even, and n − 1 6 dn 6 n − 1 when n is odd. As
discussed above, it now follows from [4, theorem] that C∗(Wn) is quasi-standard if
and only if n is even.

Corollary 2·5. Let n > 2 and let f ∈ w∗n have the associated skew symmetric matrix
B as in Lemma 2·3. If n is even then πf ∈ sep (Ŵn) if and only if rank (B) = n, and if
n is odd then πf ∈ sep (Ŵn) if and only if rank (B) = n− 1.

Proof. By Theorem 2·2 and Lemma 2·3, πf ∈ sep (Ŵn) if and only if

dn = dim(Ad∗(Wn)f ) = rank (B).

The values of dn are given by Theorem 2·4. q

When n is even, it follows from the quasi-standardness of C∗(Wn) that every
Glimm ideal is primal. On the other hand, when n is odd the only Glimm ideals
which are primal are those which are primitive. This is an immediate consequence of
Theorem 2·7(iii) below.

In the next lemma, we shall use the notation of Lemma 2·3 and its proof.

Lemma 2·6. Let n be an odd integer (> 3), and let f ∈ w∗n have associated matrix
B. Suppose that rank (B) < n − 1 and that S is any (n − 1)-dimensional subspace of
z⊥n containing the subspace Vf = TB(Rn). Then there is a sequence (fk) in w∗n such that
πfk → π(f+g) for all g ∈ S.

Proof. We define a real inner product on z⊥n by〈
n∑
i=1

aiX
∗
i ,

n∑
i=1

biX
∗
i

〉
=

n∑
i=1

aibi.

Let S0 be the orthogonal complement of Vf in S. Since dim(S0) is even, there exists
a skew-symmetric n× n matrix C = (crs) such that TC(Rn) = S0. For k > 1, let

fk = f − 1
k

∑
16r<s6n

crsY
∗
rs ∈ w∗n.

Then, by Lemma 2·3,

Ad∗(Wn)fk = fk + T(B+ 1
kC)(R

n)

= fk + TB(Rn) + TC(Rn)

= fk + S,

where the second equality holds because B and 1
k
C are skew-symmetric and Vf is

orthogonal to S0.
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For g ∈ S, we have fk + g → f + g and hence

πfk = π(fk+g) → π(f+g).

Theorem 2·7. Let n be an odd integer (> 3), let f ∈ w∗n and suppose that

df÷ dim(Ad∗(Wn)f ) < n− 1.

(i) Let g ∈ w∗n. Then

g ∈ f + z⊥n ⇐⇒ πg ∼ πf ⇐⇒ πg ≈ πf .
(ii) There is a bijection Ψf , from the set of (n− 1)-dimensional subspaces of z⊥n that

contain Vf to the set of minimal primal ideals of C∗(Wn) that are contained in
ker πf , given by

Ψf (S) =
⋂
{ker π(f+g): g ∈ S}.

(iii) The unique Glimm ideal Jf of C∗(Wn) that is contained in ker πf is (n − df )-
primal but not (n + 1 − df )-primal. In particular, the Glimm ideal contained in
ker 1Wn

is n-primal but not (n + 1)-primal.

Proof. (i) Suppose that g ∈ f+z⊥n . Then there exists an (n−1)-dimensional subspace
S of z⊥n containing both Vf and g − f . By Lemma 2·6, πf ∼ πg.

Suppose next that g ^ f + z⊥n . Then r(πf ) � r(πg), where r is the (continuous)
map from Ŵn to Ẑn obtained via restriction. These distinct elements of Ẑn may be
separated by a bounded, continuous function g on Ẑn. Then g ◦ r separates πf and
πg. Since ∼ is a stronger relation than ≈, the proof of (i) is now complete.

(ii) Let S be an (n− 1)-dimensional subspace of z⊥n containing Vf . By Lemma 2·6
and [3; p. 60], Ψf (S) is a primal ideal of C∗(Wn). It then follows from the general
form of minimal primal ideals in the C∗-algebra of a two-step nilpotent Lie group
(Proposition 2·1), that Ψf (S) is minimal primal and that Ψ is bijective.

(iii) Let k = n − df and let P1, . . . , Pk be primitive ideals of C∗(Wn) containing
Jf . For 1 6 i 6 k, there exist gi ∈ w∗n such that Pi = ker πgi . Since πgi ≈ πf , it
follows from (i) that gi − f ∈ z⊥n for 1 6 i 6 k. Hence Vg1 = Vf and there is an
(n − 1)-dimensional subspace S of z⊥n containing Vg1 and also {gi − g1: 2 6 i 6 k}.
By (ii), Ψg1 (S) is a (minimal) primal ideal of C∗(Wn) and is contained in each Pi
(1 6 i 6 k). Hence

⋂k
i=1 Pi is primal, so Jf is k-primal by Lemma 1·3.

Suppose that Jf is (n + 1 − df )-primal and let {f1, . . . , fk} be a basis for the
orthogonal complement of Vf in z⊥n . For 1 6 i 6 k, let Qi = ker π(fi+f ). By (i), each
Qi ⊇ Jf and so (

⋂k
i=1 Qi) w ker πf is primal by Lemma 1·3 and therefore contains a

minimal primal ideal I. By Proposition 2·1, there is an (n−1)-dimensional subspace
T of z⊥n such that

f + T = {g ∈ w∗n: ker πg ⊇ I}.
Hence T contains Vf and {f1, . . . , fk}, a contradiction.

Corollary 2·8. Let n > 2 and suppose that f, g ∈ w∗n.
(i) πf ∼ πg ⇐⇒ πf ≈ πg.
(ii) g ∈ z⊥n ⇐⇒ πg ∈ cor (Wn)⇐⇒ πg ≈ 1Wn

.
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Proof. (i) Suppose first that n is odd. If df = n − 1 then ker πf is a Glimm ideal,

by the remark following Theorem 2·2, and so

πf ∼ πg ⇐⇒ πf = πg ⇐⇒ πf ≈ πg.
On the other hand, if df < n− 1 then we may apply Theorem 2·7(i).

If n is even then C∗(Wn) is quasi-standard (Theorem 2·4) and so ∼ coincides with
≈ [5, proposition 3·2].

(ii) If n is odd, the result follows from Theorem 2·7(i) by putting f = 0.
Now suppose that n is even. Then dn = n = dim(z⊥n ) (Theorem 2·4) and so the

following general arguments apply. There is a dense (open) subset U of w∗n such that
Ad∗(Wn)f = f + z⊥n for all f ∈ U . Suppose that g ∈ z⊥n and let (fk) be a sequence
in U such that fk → 0 and hence πfk → 1Wn

. Then πfk = π(fk+g) → πg and so
πg ∈ cor (Wn).

Conversely, suppose that πg ∈ cor (Wn). Then there exist a sequence (fk) in U and
a sequence (gk) in z⊥n such that fk → 0 and fk + gk → g. Hence

g = lim gk ∈ z⊥n .

Since ∼ coincides with ≈, as observed in the proof of (i), the proof of (ii) is now
complete.

Remarks. It follows from Corollary 2·8(i) that ∼ is an equivalence relation on Ŵn.
It is not the case, however, that∼ is an equivalence relation for all 2-step nilpotent Lie
groups: counterexamples in dimensions 7 and 8 are given in [16] and [6] respectively.

The arguments used in the proof of Corollary 2·8(ii) for the case of even n can be
easily extended to show that, for f, g ∈ w∗n, πf ∼ πg if and only if f − g ∈ z⊥n , and
hence that ∼ is an open equivalence relation. This method applies to any nilpotent
Lie group G with centre Z for which the maximal orbit dimension in g∗ is equal to
dim(z⊥), and so provides an alternative proof of [4, theorem (i)].

3. Nilpotent Lie groups of the form RnRd

In this section we investigate those nilpotent Lie groups G which are semi-direct
products of R with Rd, G = R nRd. We determine the separated points of Ĝ, and
answer the question of when every Glimm ideal of C∗(G) is primal.

These groups are precisely the groupsG = exp g, where g is a nilpotent Lie algebra
which can be written as a semi-direct product of some one-dimensional subalgebra
and an abelian ideal. This class of Lie algebras contains the so-called threadlike or
filiform Lie algebras, defined as follows.

For N > 3, let gN be the N -dimensional nilpotent Lie algebra with basis
X1, . . . , XN and non-trivial Lie brackets

[XN , XN−1] = XN−2, . . . , [XN , X2] = X1;

then gN is (N −1)-step nilpotent and a semi-direct product of RXN with the abelian
ideal

∑N−1
j=1 RXj . For f =

∑N−1
j=1 ξjX

∗
j ∈ g∗N , the coadjoint action is given by

Ad∗(exp(−tXN ))f =
N−1∑
j=1

pj(ξ, t)X∗j ,
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On the topology of the dual of a nilpotent Lie group 279
where pj(ξ, t) is a polynomial in t given by

pj(ξ, t) =
j−1∑
k=0

tk

k!
ξj−k.

Moreover, if ξj� 0 for at least one j 6 N − 2, then Ad∗(G)f is of dimension two and
Ad∗(G)f = Ad∗(G)f + RX∗N .

Let GN = exp gN . These groups GN are the building blocks for general nilpotent
groups of the form G = R nRd, in the following way. There is a real d × d matrix
A such that the action of R on Rd is given by (t, x)→ exp(tA)x, x ∈ Rd, t ∈ R. By
changing the basis of Rd if necessary we can assume that exp(tA) is in real Jordan
canonical form. Then, sinceG is nilpotent, exp(tA) is block diagonal, with each block
B an upper triangular matrix, with entries bi,j = t(j−i)/(j − i)! for 1 6 i 6 j 6 k,
where k is the size of the blockB. Thus Rd decomposes into a direct product of vector
subgroups V1, . . . , Vr, which are normal in G, such that either Vj is one-dimensional
or RnVj is isomorphic to GNj for some Nj > 3. Equivalently, the Lie algebra g of G
is a semi-direct product g = RXna, where the abelian ideal decomposes into a direct
sum of ideals a1, . . . , ar of g such that either dim aj = 1 or RX n aj is isomorphic to
gNj .

The cortex of GN has been described in [7], and it was noticed in [6] that this
description generalizes to groups of the form RnRd. Thus, let g = RXn(a1⊕· · ·⊕ar)
as above. We can then assume that RX n aj = gNj for 1 6 j 6 s and dim aj = 1 for
s < j 6 r. Then

g = (RX n (a1 + · · · + as))⊕ b,

where b is abelian. Let {Xj,1, . . . , Xj,Nj−1} be a basis of aj such that [X,Xj,k] = Xj,k−1

for Nj − 1 > k > 2 and 1 6 j 6 s. Let

f = αX∗ +
s∑
j=1

(
Nj−1∑
k=1

ξj,kX
∗
j,k

)
+ g (g ∈ b∗)

be an arbitrary element of g∗. Then πf belongs to cor (G) if and only if g = 0 and
ξj,k = 0 for all k 6 [Nj/2], 1 6 j 6 s.

Theorem 3·1. Let G be a non-abelian nilpotent group of the form RnRd. Then the
following conditions are equivalent:

(i) every Glimm ideal of C∗(G) is primal;
(ii) either G = G4 ×A or G = G3 ×A, where A is abelian.

In addition, C∗(G) is quasi-standard if and only if G = G3 ×A.

Proof. Notice first that if G = G3 × A, where A is abelian, then C∗(G) is quasi-
standard. Indeed, C∗(G3) is quasi-standard and hence so is C∗(G3 × A) =
C∗(G3) ⊗ C∗(A) [17, corollary 2·5]. Next, by [4, lemma 4], every Glimm ideal in
C∗(G4) is primal, and hence so is every Glimm ideal in C∗(G4 × A), by [17,
theorems 2·3 and 1·1]. Towards a contradiction, suppose that C∗(G4 × A) is quasi-
standard. Then ∼ is an open equivalence relation on Prim (C∗(G4 × A)). Since
Prim (C∗(G4 ×A)) is homeomorphic to the product space Â×Prim (C∗(G4)), and Â
is a locally compact, Hausdorff space, ∼ must be an open equivalence relation on
Prim (C∗(G4)). Thus C∗(G4) is quasi-standard, contradicting [4, lemma 4].
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Thus it remains to show that (i) implies (ii). For this, let I be the closed two-sided

ideal of C∗(G) given by

I =
⋂
{ker πf: πf ∈ cor (G)}.

Then I contains the unique Glimm ideal J contained in ker 1G. By hypothesis J is
primal, and hence so is I. Retaining the previous notation, let

g = (RX n (a1 ⊕ · · · ⊕ as))⊕ b,

where b is abelian and RX n aj = gNj , Nj > 3. We have to show that s = 1, and
N1 = 3 or N1 = 4. Of course, we can assume that N÷N1 > N2 > . . . > Ns. Towards
a contradiction, suppose that either N1 > 5 or s > 2. The strategy for the proof
consists of obtaining a lower estimate for the number of intersections with a grid in
R2 of a projected coadjoint orbit from g∗. A version of the pigeonhole principle then
leads to a polynomial having more zeros than its degree permits.

Writing elements f of g∗ as

f = αX∗ +
s∑
j=1

(
Nj−1∑
k=1

ξj,kX
∗
j,k

)
+ g,

where g ∈ b∗, we now define, for 1 6 i, l 6 2N−4, an open subset Vi,l of g∗ as follows.
If N > 5, let

Vi,l = {f ∈ g∗: ξ1,N−1 ∈ (2i− 2, 2i) and ξ1,N−2 ∈ (2l − 2, 2l)},
and if 4 > N , N2 > 3, put

Vi,l = {f ∈ g∗: ξ1,N−1 ∈ (2i− 2, 2i) and ξ2,N2−1 ∈ (2l − 2, 2l)}.
Let q: g∗ → Ĝ be the canonical map given by q(f ) = πf . Since q is open, q(Vi,l) is an
open subset of Ĝ. Moreover, by the description of cor (G),

q(Vi,l) w (C∗(G)/I)∧ ⊇ q(Vi,l) w cor (G)�6

for each (i, l). Since I is primal, it follows from Lemma 1·1 that

V ÷
2N−4⋂
i,l=1

q(Vi,l)

is a non-empty subset of Ĝ.
LetU = {f ∈ g∗: ξj,1� 0 for 1 6 j 6 s}. SinceU is dense in g∗ and q is a continuous

surjection, there exists f ∈ U such that πf ∈ V . Thus, for 1 6 i, l 6 2N − 4, there
exist vi,l ∈ Vi,l such that vi,l ∈ Ad∗(G)f .

Now define a projection P: g∗ → R2 by

P (f ) = (ξ1,N−1, ξ1,N−2) if N > 5

and

P (f ) = (ξ1,N−1, ξ2,N2−1) if 4 > N > N2 > 3.

Set ui,l = P (vi,l) and

Ui,l = (2i− 2, 2i)× (2l − 2, 2l) ⊆ R2, (1 6 i, l 6 2N − 4).
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From the form of the coadjoint orbits in g∗, it follows that

P (Ad∗(G)f ) = {(Q1(t), Q2(t): t ∈ R},
where Q1 and Q2 are non-constant polynomials of degree not greater than N − 2.
So for 1 6 i, l 6 2N − 4, there exist ti,l ∈ R such that

ui,l = (Q1(ti,l), Q2(ti,l)) ∈ Ui,l.
For (i, l) � (i′, l′) we have ui,l � ui′,l′ (since Ui,l and Ui′,l′ are disjoint) and hence
ti,l� ti′,l′ . Suppose that the ti,l are relabelled in increasing order:

t1 < t2 < . . . < tM

where M = (2N − 4)2.
Now, in R2, with coordinates (x, y), let Lm be the line x = 2m and Mm be the line

y = 2m, (1 6 m 6 2N − 5). Then for 1 6 n 6 M − 1, the points (Q1(tn), Q2(tn))
and (Q1(tn+1), Q2(tn+1)) are separated by at least one of the 4N − 10 grid lines and
so there exists sn ∈ (tn, tn+1) such that

Pn÷ (Q1(sn), Q2(sn)) ∈
(

2N−5⋃
m=1

Lm

)
x

(
2N−5⋃
m=1

Mm

)
.

We claim that there existsm ∈ {1, . . . , 2N−5} such that either card {n: Pn ∈ Lm} >
N − 1 or card {n: Pn ∈ Mm} > N − 1. For otherwise, bearing in mind that a point
Pn might lie on more than one of the grid lines, we would have

M − 1 6
2N−5∑
m=1

card {n: Pn ∈ Lm} +
2N−5∑
m=1

card {n: Pn ∈Mm}

6 2(2N − 5)(N − 2)

and hence 2N − 3 6 2(N − 2). From the claim, it now follows that either Q1 or Q2

takes the value 2m for at leastN−1 distinct values of its argument, contradicting the
fact that bothQ1 andQ2 are non-constant and of degree not greater thanN−2. q

For the next two lemmas let g be of the form g = RX n (a⊕ b), where a and b are
abelian ideals of g such that RX n a = gN for some N > 3. Let {X1, . . . , XN−1} be
a basis of a such that [X,Xj] = Xj−1 for 2 6 j 6 N − 1. For convenience we shall
write XN in place of X.

Lemma 3·2. Let f =
∑N

j=1 ξjX
∗
j + f ′ and g =

∑N
j=1 ηjX

∗
j + g′ be elements of g∗, where

f ′, g′ ∈ b∗. Suppose that for some k 6 [N/2] we have ξj = ηj = 0 for j < k, and ξ2
k� η2

k.
Then πf and πg can be separated by a continuous function on Ĝ.

Proof. Let P : g∗ → g∗N denote the projection with kernel equal to b∗ = g⊥N . Then
for h ∈ g∗N , h′ ∈ b∗, and t ∈ R,

P (Ad∗(exp tXN )(h + h′)) = P (Ad∗(exp tXN )h + Ad∗(exp tXN )h′)

= Ad∗(exp tXN )h

since gN is an ideal of g. Let φ be an Ad∗(GN )-invariant, continuous function on g∗N .
Since Ad∗(GN )h = Ad∗(GN )h+ RX∗N for all h in a dense subset of g∗N , it follows that
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φ(h + sX∗N ) = φ(h) for all h ∈ g∗N and all s ∈ R. Hence, for all h ∈ g∗N , h′ ∈ b∗ and
s, t ∈ R, we have

(φ ◦ P )(Ad∗(exp tXN )(h + h′) + sX∗N ) = φ(Ad∗(exp tXN )(h) + sX∗N )

= φ(h)

= (φ ◦ P )(h + h′).

Since Ad∗(G)(h+ h′) ⊆ Ad∗(exp RXN )(h+ h′) + RX∗N , φ ◦P is an Ad∗(G)-invariant,
continuous function on g∗.

Now take

φ(t1, t2, . . . , tN ) = t2k + 2
k−1∑
j=1

(−1)jtk−jtk+j ,

which is an Ad∗(GN )-invariant polynomial on RN = g∗N [7, lemma 1]. By hypothesis,
φ ◦ P (f )�φ ◦ P (g) and hence the associated continuous function on Ĝ separates πf
and πg. q

We now introduce, for non-negative integers k and l with k 6 l, the (l − k + 1)×
(l−k+1) matrixA(k, l) whose (i, j)th entry is 1/(i+j+k−2)!. Let ∆(k, l) = det A(k, l).
For l > k, ∆(k, l) satisfies the recurrence formula

∆(k, l) = (−1)l−k
(l − k)!
l!

∆(k + 2, l + 1).

This can easily be verified by successively subtracting the appropriate multiple of
row j−1 from row j, for l−k+1 > j > 2, thus clearing positions (l−k+1, 1), . . . , (2, 1)
in A(k, l). This formula shows, in particular, that ∆(k, l)� 0.

Lemma 3·3. Let f =
∑N

j=1 ξjX
∗
j + f ′ ∈ g∗, with f ′ ∈ b∗, and suppose that ξk� 0 for

some k with 2k 6 N − 1. Then πf is a separated point of Ĝ.

Proof. Let k be minimal such that ξk� 0, and let g =
∑N

j=1 ηjX
∗
j + g′ ∈ g∗, with

g′ ∈ b∗. By Lemma 3·2, πf and πg can be separated by a continuous function on Ĝ
whenever ηj � 0 for some j < k. Suppose, therefore, that ηj = 0 for all j < k, and
that πf and πg cannot be separated by open subsets of Ĝ. Then there exist sequences
(ξj,n)n ⊆ R, (1 6 j 6 N ), (tn) ⊆ R, and (f ′n)n ⊆ b∗ such that

fn÷
N∑
j=1

ξj,nX
∗
j + f ′n → f

and Ad∗(exp (−tnXN ))fn → g. Thus ξj,n → ξj , (1 6 j 6 N ), and f ′n → f ′ as n→∞.
Using the first displayed equation in the proof of Lemma 3·2, we get that

Ad∗(exp (−tnXN ))

(
N∑
j=1

ξj,nX
∗
j

)
→

N∑
j=1

ηjX
∗
j (∗)

and hence that Ad∗(exp (−tnXn))f ′n → g′. We now assume first that |tn| → ∞ and
show that this leads to a contradiction. Using (∗) for ηj (k+1 6 j 6 2k) and recalling
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that ξj,n → ξj (k + 1 6 j 6 2k), we obtain

tkn
k!
ξ1,n + . . . + tnξk,n → ηk+1 − ξk+1 (A1)

...
...

t2k−1
n

(2k − 1)!
ξ1,n + · · · + tkn

k!
ξk,n + · · · + tnξ2k−1,n → η2k − ξ2k. (Ak)

Let α1, . . . , αk ∈ R be arbitrary. Then, after multiplying (Aj) by αjt1−jn for 1 6 j 6 k
and summing up, we obtain (since |tn| → ∞)

k∑
j=1

αj

(
k∑
l=1

tln
(j + l − 1)!

ξk+1−l,n

)
→ α1ηk+1 −

(
k∑
j=1

αj
(j − 1)!

)
ξk+1.

Thus the sequence (sn), with

sn =
k∑
l=1

tlnξk+1−l,n

(
k∑
j=1

αj
1

(j + l − 1)!

)
,

converges. Now, since ∆(1, k)� 0, there are unique α1, . . . , αk such that

k∑
j=1

αj
1

(j + l − 1)!
=
{

1 for l = 1
0 for l = 2, . . . , k.

With this choice of α1, . . . , αk, it follows that sn = tnξk,n. Since |tn| → ∞, we have
ξk = limn→∞ ξk,n = 0, a contradiction.

Thus, passing to a subsequence if necessary, we can assume that tn → t for some
t ∈ R. Then, from ξl,n → ξl for 1 6 l 6 N , we conclude that

ηj = lim
n→∞

pj

(
N∑
l=1

ξl,nX
∗
l , tn

)
= pj

(
N∑
l=1

ξlX
∗
l , t

)
for 1 6 j 6 N − 1. Moreover, since f ′n → f ′,

g′ = lim
n→∞

Ad∗(exp (−tnXN ))f ′n = Ad∗(exp (−tXN ))f ′.

Combining these facts gives

g − ηNX∗N =
N−1∑
j=1

ηjX
∗
j + g′

= Ad∗(exp(−tXN ))f − ξNX∗N .
On the other hand, since ξk� 0 and k 6 N − 2,

Ad∗(G)f = Ad∗(G)f + RX∗N .

This proves that g ∈ Ad∗(G)f , and hence that πf = πg, as required.

Lemma 3·4. Let N = 2m and let f =
∑N−1

j=m ξjX
∗
j and g =

∑N−1
j=m ηjX

∗
j be

elements of g∗N satisfying ξm = (−1)m−1ηm. Then there exist sequences (ξj,n)n∈N in R,
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284 R. J. Archbold and others
(1 6 j 6 N − 1), such that with

fn =
N−1∑
j=1

ξj,nX
∗
j ∈ g∗N , (n ∈ N),

we have in g∗N
fn → f and Ad∗(exp (−nXN ))fn → g.

Proof. For n ∈ N and j = m + 1, . . . , N − 1, put ξj,n = ξj . Now, for fixed n ∈ N
consider the following m×m system of linear equations in variables x1, . . . , xm:

1
0!
xm +

n

1!
xm−1 + · · · + nm−1

(m− 1)!
x1 = ηm (A0)

...
...

1
(m− 1)!

xm +
n

m!
xm−1 + · · · + nm−1

(2m− 2)!
x1 =

1
nm−1

(
ηN−1 −

m−2∑
k=0

nk

k!
ξN−1−k

)
.

(Am−1)

Since ∆(0,m − 1) � 0, there is a unique solution for xm, nxm−1, . . . , n
m−1x1, and

hence for xm, . . . , x1, which we denote ξm,n, . . . , ξ1,n. Let

fn =
N−1∑
j=1

ξj,nX
∗
j ∈ g∗N , (n ∈ N).

We are going to show that fn → f and Ad∗(exp(−nXN ))fn → g in g∗N . To this end,
we first notice that by the choice of ξk,n, 1 6 k 6 N − 1, for each 0 6 j 6 m− 1, we
can rewrite equation (Aj) as

ηm+j =
nm−1+j

(m− 1 + j)!
ξ1,n + · · · + nj

j!
ξm,n + · · · + ξm+j,n. (Bj)

That is ηm+j = pm+j(fn, n), the coefficient of X∗m+j in Ad∗(exp(−nXN ))fn.
We next prove that ξm,n → ξm as n → ∞. Obviously, in equations (A1) to

(Am−1), the righthand side converges to zero as n→∞. Therefore, for any choice of
α0, . . . , αm−1 ∈ R,

m−1∑
k=0

nkξm−k,n

(
m−1∑
j=0

αj
1

(j + k)!

)
=
m−1∑
j=0

αj

(
m−1∑
k=0

nk

(j + k)!
ξm−k,n

)
→ α0ηm.

Now, take α0, . . . , αm−1 to be the solutions of the system

m−1∑
j=0

xj
1

(j + k)!
=
{

1 if k = 0
0 for k = 1, . . . ,m− 1.

Then, from Cramer’s Rule and since ∆(0,m − 1) = (−1)m−1∆(2,m), it follows that
α0 = (−1)m−1. Thus

ξm,n → (−1)m−1ηm = ξm.
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On the topology of the dual of a nilpotent Lie group 285
It remains to show that ξj,n → 0 and

pj(fn, n) =
j−1∑
k=0

nk

k!
ξj−k,n → 0

for every 1 6 j 6 m − 1. Of course, it suffices to verify that nk−1ξm−k,n → 0
for k = 1, . . . ,m − 1. Since (ξm,n)n converges, dividing equation (Bj) by nj+1, for
1 6 j 6 m− 1, yields

1
2!
ξm−1,n + · · · + nm−2

m!
ξ1,n → 0

...

1
m!
ξm−1,n + · · · + nm−2

(2m− 2)!
ξ1,n → 0

(as n→∞). Let A ∈M (m− 1,R) denote the matrix whose (i, j)th entry is 1/(i+ j)!
and let yn = (ξm−1,n, . . . , n

m−2ξ1,n) ∈ Rm−1. Then Aytn → 0 and hence, since A =
A(2,m) is invertible, ytn = A−1(Aytn) → 0. This shows that nk−1ξm−k,n → 0 for
k = 1, . . . ,m− 1, as required.

Lemma 3·5. LetN = 2m+1 (m > 2) and let f =
∑2m

j=m+1 ξjX
∗
j and g =

∑2m
j=m+1 ηjX

∗
j

be elements of g∗N . Then there exist sequences (ξj,n)n in R (1 6 j 6 2m) such that in g∗N

fn =
2m∑
j=1

ξj,nX
∗
j → f and Ad∗(exp (−nXN ))fn → g.

Proof. The proof is somewhat similar to that of Lemma 3·4. For n ∈ N and
j = m + 1, . . . , 2m, put ξj,n = ξj . For fixed n ∈ N consider the following m × m
system of linear equations in variables y1, . . . , ym:

n

1!
ym + · · · + nm

m!
y1 = ηm+1 − ξm+1 (A1)

...
...

n

m!
ym + · · · + nm

(2m− 1)!
y1 =

1
nm−1

(
η2m −

m−1∑
k=0

nk

k!
ξ2m−k

)
. (Am)

Since ∆(1,m)� 0 there is a unique solution for ym, . . . , y1 which we shall denote by
ξm,n, . . . , ξ1,n. Hence, by construction, ηj is the jth component of Ad∗(exp(−nXN ))fn
for m + 1 6 j 6 2m.

It remains to show that ξj,n → 0 and

pj(fn, n) =
j−1∑
k=0

nk

k!
ξj−k,n → 0

as n→∞ for j = 1, . . . ,m. For this, it suffices to show that nkξm−k,n → 0 as n→∞
for k = 0, . . . ,m−1. This is done by multiplying each of the equations (A1), . . . , (Am)
by 1/n, and then arguing as in the last part of the proof of Lemma 3·4, using A(1,m)
instead of A(2,m). q
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Let G be a locally compact group which is a direct product G = A×H of closed

subgroupsA andH, withA abelian. Then the mapping (α, π)→ απ, where απ(a, x) =
α(a)π(x) for a ∈ A and x ∈ H, is a homeomorphism between Â × Ĥ and Ĝ. In
particular, απ is a separated point of Ĝ if and only if π is a separated point of Ĥ. For
simplicity we can therefore reduce to the case where G has no abelian direct factor.

Theorem 3·6. Let G be a simply connected, nilpotent Lie group having no abelian
direct factor, and of the form RnRd. Write its Lie algebra g as

g = RX n (a1 ⊕ · · · ⊕ ar),

where, for k = 1, . . . , r, ak is an abelian ideal of g of dimension dk, and RXnak = gdk+1.
Let {X,Xdk,k, . . . , X1,k} denote the usual basis of gdk+1, and let

f = αX∗ +
r∑
k=1

(
dk∑
j=1

ξj,kX
∗
j,k

)

be an arbitrary element of g∗. Then πf is a separated point of Ĝ if and only if ξj,k� 0
for some pair (j, k) such that j 6 [dk/2].

Proof. Put Nk = dk + 1, 1 6 k 6 r, and suppose first that ξj,k� 0 for some pair
(j, k) such that j 6 [dk/2]. Then g = RX n (ak + b), where b is the direct sum of all
al, l� k, and

f = αX∗ +
dk∑
i=1

ξi,kX
∗
i,k + f ′,

where f ′ ∈ b∗. Since 2j 6 2[dk/2] 6 Nk − 1, Lemma 3·3 now shows that πf is a
separated point of Ĝ.

Conversely, suppose that ξj,k = 0 whenever j 6 [dk/2]. We have to produce some
g ∈ g∗ such that g ^ Ad∗(G)f and πf and πg cannot be separated by open subsets
of Ĝ. Of course, we can assume that πf does not belong to the cortex of G. By the
description of cor (G), this implies that there exists k such that Nk is even, Nk = 2mk

say, and ξmk,k� 0. After renumbering, if necessary, we can assume that N1 is even,
N1 = 2m1, and ξm1,1� 0. We can also assume that α = 0. Indeed, since N1 − 2 > m1

and ξm1,1� 0, it follows that Ad∗(G)f = Ad∗(G)f + RX∗.
For k = 1, . . . , r, let Nk = 2mk if Nk is even and Nk = 2mk + 1 if Nk is odd; put

fk =
∑dk

j=mk
ξj,kX

∗
j,k. We are going to define gk ∈ (RX n ak)∗ such that fk and gk

satisfy the hypotheses of Lemma 3·4 (if Nk is even) or Lemma 3·5 (if Nk is odd) and
such that g1 ^ Ad∗(G)f1.

We first define g1. Put ηm1,1 = (−1)m1−1ξm1,1. If m1 is even, let ηj,1 = 0 for all
j�m1. If m1 is odd (so that ηm1,1 = ξm1,1), there exist ηm1+1,1, . . . , ηd1,1 such that

g1 = ξm1,1X
∗
m1,1 +

d1∑
j=m1+1

ηj,1X
∗
j,1

does not belong to the Ad∗(G)-orbit of f1. In fact, since m1 is odd, m1 > 3 and
hence d1 −m1 > 2. On the other hand, Ad∗(G)f1 = Ad∗(G)f1 + RX∗ and the orbit
dimension is only two.
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On the topology of the dual of a nilpotent Lie group 287
For 2 6 k 6 r with Nk even, we let

gk = (−1)mk−1ξmk,kX
∗
mk,k

.

Finally, if Nk is odd, recall that ξj,k = 0 for all 1 6 j 6 mk and put

gk = (−1)mk−1ξmk+1,kX
∗
mk+1,k.

It is now clear that Lemmas 3·4 and 3·5 apply, whenever Nk is even or odd, respec-
tively. Thus there exist sequences (ξj,k,n)n in R, (1 6 k 6 r, 1 6 j 6 dj), such that
with

fk,n =
dj∑
j=1

ξj,k,nX
∗
j,k ∈ (RX n ak)∗ = g∗Nk

we have fk,n → fk and Ad∗(exp(−nX))fk,n → gk in g∗Nk . Let fn =
∑r

k=1 fk,n ∈ g∗.
Then fn → f and Ad∗(exp(−nX))fn → g in g∗, where g =

∑r
k=1 gk. Since g ^

Ad∗(G)f , this finishes the proof of the theorem. q

The following corollary is an immediate consequence of Theorem 3·6 and the de-
scription of the cortex.

Corollary 3·7. Let G be as in Theorem 3·6. Then the following conditions are
equivalent:

(i) Ĝ = cor (G) x sep (Ĝ);
(ii) dk is even for every k = 1, . . . , r.

In particular, ĜN = cor (GN ) x sep (ĜN ) if and only if N is odd.

Lemma 3·8. Suppose that N is even and let m = N/2. Let f =
∑N

j=m ξjX
∗
j and

g =
∑N

j=m ηjX
∗
j be elements of g∗N . Then πf ∼ πg in ĜN if and only if either πf = πg

or ξm = (−1)m−1ηm.

Proof. Suppose that πf ∼ πg. Then there are real sequences (ξj,n)n (1 6 j 6 N−1)
and (tn)n such that ξj,n → ξj and

j−1∑
k=0

1
k!
tkn ξj−k,n → ηj (Aj)

as n → ∞. Suppose first of all that |tn| 
 ∞. By passing to a subsequence we can
assume that tn → t for some t ∈ R. Then it follows from (Aj) that

ηj =
j−1∑
k=0

1
k!
tkξj−k (1 6 j 6 N − 1);

whence g ∈ Ad∗(GN )f + RX∗N . Either

Ad∗(GN )f = Ad∗(GN )f + RX∗N ,

in which case πg = πf , or else ξm = ηm = 0.
Suppose, now, that |tn| → ∞. Multiplying (Aj) by tm−jn , 1 6 j 6 N − 1, we obtain

that
1
0!
ξm,n +

tn
1!
ξm−1,n + · · · + tm−1

n

(m− 1)!
ξ1,n → ηm
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288 R. J. Archbold and others
1
1!
ξm,n +

tn
2!
ξm−1,n + · · · + tm−1

n

m!
ξ1,n → 0

...

1
(m− 1)!

ξm,n +
tn
m!
ξm−1,n + · · · + tm−1

n

(2m− 2)!
ξ1,n → 0.

As in the proof of Lemma 3·4, let α0 = (−1)m−1, α1, . . . , αm−1 be the real numbers
such that

m−1∑
i=0

αi
1

(i + j)!
=
{

1 if j = 0
0 for j = 1, . . . ,m− 1.

Then
m−1∑
i=0

αi

(
m−1∑
j=0

tjn
(i + j)!

ξm−j,n

)
=
m−1∑
j=0

tjnξm−j,n

(
m−1∑
i=0

αi
1

(i + j)!

)
= ξm,n

and so, taking limits, ξm = α0ηm = (−1)m−1ηm.
Conversely, suppose that ξm = (−1)m−1ηm. By Lemma 3·4 there is a sequence (fn)

in g∗N such that

fn → f − ξNX∗N and Ad∗(exp(−nXN ))fn → g − ηNX∗N .
Then fn + ξNX

∗
N → f and

Ad∗(exp(−nXN ))(fn + ξNX
∗
N )→ g + (ξN − ηN )X∗N .

Let V = {X1, X2, . . . , XN−2}⊥ ⊆ g∗N . Suppose that fn ^ V frequently. Then, by
passing to a subsequence, we may assume that

Ad∗(GN )(fn + ξNX
∗
N ) = Ad∗(GN )(fn + ξNX

∗
N ) + RX∗N .

Hence fn + ξNX
∗
N

orb−→g and so πf ∼ πg.
Suppose, on the other hand, that fn ∈ V eventually. Then Ad∗(GN )fn = {fn}

eventually and so

f − ξNX∗N = g − ηNX∗N ∈ V.
Thus πf ∼ πg since πf and πg cannot be separated in a closed subset of ĜN homeo-
morphic to Ĝ3. q

By combining the results of this section, we can now give a complete description
of the relation ∼ on ĜN (N > 3) in terms of functionals in g∗N . We note that the
cases (i), (ii), and (iii) below are exhaustive but that (ii) and (iii) are not mutually
exclusive.

Theorem 3·9. Let N > 3 and let f =
∑N

j=1 ξjX
∗
j ∈ g∗N .

(i) πf is a separated point of ĜN if and only if ξj� 0 for some j 6 [(N − 1)/2].
(ii) Suppose that N is even, m = N/2 and ξ1 = . . . = ξm−1 = 0. Then

{π ∈ ĜN: π ∼ πf} =

{
πg: g =

N∑
j=m

ηjX
∗
j and ηm = (−1)m−1ξm

}
.
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On the topology of the dual of a nilpotent Lie group 289
(iii) Suppose that ξ1 = · · · = ξ[N/2] = 0, i.e. πf ∈ cor (GN ). Then

{π ∈ ĜN: π ∼ πf} = cor (GN ).

Proof. (i) This is a special case of Theorem 3·6.
(ii) This follows from (i) and Lemma 3·8.
(iii) In view of (i) and Lemma 3·8, we can reduce to the case where N is odd. Let

m = (N − 1)/2 and let g =
∑N

j=m+1 ηjX
∗
j . We have to show that πf ∼ πg.

By Lemma 3·5 there is a sequence (fn)n in g∗N such that fn → f − ξNX∗N and
Ad∗(exp(−nXN ))fn → g − ηNX

∗
N . An argument similar to that in the proof of

Lemma 3·8 shows that πf ∼ πg, as required.

Corollary 3·10. Let N > 3. The relation ∼ fails to be an equivalence relation on
ĜN if and only if N > 4 and N ≡ 0 (mod 4).

Proof. If N > 4 and N ≡ 0 (mod 4) then it follows from Theorem 3·9 (ii) that ∼
is intransitive on ĜN . For the other values of N , it follows from Theorem 3·9 that
∼ is transitive. q

Theorem 3·9 (i) shows that

sep (Ĝ7) =

{
πf: f =

7∑
j=1

ξjX
∗
j , ξj� 0 for some j ∈ {1, 2, 3}

}
,

a dense open subset of Ĝ7. Thus the argument of [12, proposition 7] shows that each
π ∈ sep (Ĝ7) can be separated by continuous functions from every other point in
Ĝ7. Let a � 0, f = aX∗3 , and g = −f . Then, although we have just seen that πf
and πg can be separated by a continuous function, the data from [9] shows that no
Ad∗(G7)-invariant polynomial can distinguish f and g.

4. Six-dimensional nilpotent Lie groups

In [4] it was remarked that the theorem of [4] and the behaviour of all the five-
dimensional cases (see [4, section 4]) lead to the conjecture that for G a simply
connected, nilpotent Lie group, C∗(G) is quasi-standard (if and) only if the maximal
coadjoint orbit dimension in g∗ equals the dimension of z⊥.

Now, up to topological isomorphism, there are exactly 24 simply connected, nilpot-
ent Lie groups of dimension six (excluding those that are direct products of lower
dimensional groups). Surprisingly, it turns out that 14 of them have quasi-standard
C∗-algebras (see below), and 6 of these, namely G6,4, G6,7, G6,8, G6,12, G6,13, and
G6,14, are quasi-standard even though the maximal orbit dimension is strictly less
than dim z⊥. We present here the proof for G6,4, firstly because G6,4 is the only
3-step nilpotent counterexample of dimension six to the above conjecture, and sec-
ondly because G6,4 is isomorphic to the familiar group of real 4× 4 upper triangular
matrices.

Proposition 4·1. C∗(G6,4) is quasi-standard.

Proof. Let G = G6,4. For the basis of g given in [20], the set of generic points in
g∗ is U = {ξ ∈ g∗: ξ1� 0} (where we identify g∗ with R6 by taking coordinates with
respect to the dual basis). The following polynomials on g∗ are Ad∗(G)-invariant:

Q1(ξ) = ξ1, Q2(ξ) = ξ1ξ6 + ξ2ξ3.

http:/www.cambridge.org/core/terms. http://content-service:5050/content/id/urn:cambridge.org:id:article:S0305004198003053/resource/name/S0305004198003053a.pdf
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 21 Sep 2016 at 11:28:31, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://content-service:5050/content/id/urn:cambridge.org:id:article:S0305004198003053/resource/name/S0305004198003053a.pdf
http:/www.cambridge.org/core


290 R. J. Archbold and others
We show first of all that {ker q(ξ): ξ ∈ U} is a set of Glimm ideals in Prim (C∗(G)).
We could use Proposition 1·4, but the following short argument is more elementary.
Let ξ ∈ U and η ∈ g∗ and suppose that ker q(ξ) ≈ ker q(η). Then η1 = Q1(η) =
Q1(ξ) = ξ1 � 0 and so, without changing q(ξ) and q(η), we may assume that ξ =
(ξ1, 0, 0, 0, 0, ξ6) and η = (η1, 0, 0, 0, 0, η6). Since Q2(ξ) = Q2(η) we obtain that ξ6 = η6

and hence that ker q(ξ) = ker q(η).
For r ∈ R let Sr = {ξ ∈ g∗ : ξ1 = 0, ξ2ξ3 = r}. Let ξ ∈ Sr and suppose that

((ξ1,n, 0, 0, 0, 0, ξ6,n))n>1 is a sequence in U which is orbit-convergent to ξ (since U is
dense in g∗ and 2−5 are jump indices, such a sequence always exists). By [20, p. 32]
there exist real sequences (si,n)n>1 (1 6 i 6 4) such that si,n → ξi+1 (1 6 i 6 4) and

− 1
ξ1,n

s1,ns2,n + ξ6,n → ξ6.

Since ξ1,n → 0, we get that ξ1,nξ6,n → lim s1,ns2,n = ξ2ξ3 = r. Let η ∈ Sr be arbitrary.
We shall show that

(ξ1,n, 0, 0, 0, 0, ξ6,n) orb−→η. (1)

For this, we seek real sequences (ti,n)n>1 (1 6 i 6 4) such that ti,n → ηi+1 (1 6 i 6 4)
and

− 1
ξ1,n

t1,nt2,n + ξ6,n → η6.

Put t3,n = η4 and t4,n = η5 for all n > 1.

Case η2� 0.
Put t1,n = η2 and t2,n = (ξ1,n/η2)(ξ6,n − η6). Then t2,n → r/η2 = η3 as required.

Case η2 = 0, η3� 0.
Put t2,n = η3 and t1,n = (ξ1,n/η3)(ξ6,n − η6). Then t1,n → r/η3 = 0 as required.

Case η2 = η3 = 0.
Let λn = ξ1,n(ξ6,n − η6). Then λn → 0 as n→∞. Put t1,n = |λn| 12 and

t2,n =
{

0 if λn = 0
λn/t1,n if λn� 0.

Then t1,nt2,n = λn, t1,n → 0 = η2 and t2,n → 0 = η3. This establishes (1). It follows
that, for each r ∈ R,

Jr =
⋂
{ker q(ξ): ξ ∈ Sr}

is a primal ideal of C∗(G). On the other hand, if η ∈ g∗ and ker q(η) ≈ ker q(ξ) for
some (and hence all) ξ ∈ Sr then η ∈ Sr by the Ad∗(G)-invariance of Q1 and Q2.
Thus Jr is a minimal primal Glimm ideal (and in particular q(S0) = cor (G)).

So far we have established that

Glimm (C∗(G)) = {ker q(ξ): ξ ∈ U} x {Jr: r ∈ R},
and that each Glimm ideal is primal. We now show that the quotient map

Φ: Ĝ→ Glimm (C∗(G))

is open. Let V be an open subset of Ĝ and suppose that Φ−1(Φ(V )) is not open. Then
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there exists π ∈ Φ−1(Φ(V )) and a sequence (πn) in Ĝ \Φ−1(Φ(V )) such that πn → π.
Observe that π cannot be generic, so there exists r ∈ R and ξ, η ∈ Sr such that
π = q(ξ), q(η) ∈ V and Φ(π) = Φ(q(η)). By passing to a subsequence we may assume
that one or other of the following Cases 1 and 2 holds.

Case 1. πn ∈ q(U ) for all n.
Since q is open, we may assume by passing to a further subsequence if necessary

that there exist ξ(n) = (ξ1,n, 0, 0, 0, 0, ξ6,n) ∈ U (n > 1) such that ξ(n) orb−→ξ and πn =
q(ξ(n)). Then, by (1), ξ(n) orb−→η and so πn → q(η) ∈ V . Thus πn ∈ V eventually, which
is a contradiction.

Case 2. For each n, there exists rn ∈ R \ {r} such that πn ∈ q(Srn).
Whatever the value of r, we may assume by passing to a subsequence if necessary

that rn� 0 for all n. Denoting by Q̃2 the continuous function on Ĝ induced by Q2,
we have

rn = Q̃2(πn)→ Q̃2(π) = r.

We seek η(n) = (0, η2,n, η3,n, 0, η5,n, 0) ∈ Srn such that

η(n) orb−→η. (2)

We therefore require η(n) and real sequences (s1,n)n>1, (s2,n)n>1 such that

η2,nη3,n = rn, η2,n → η2, η3,n → η3, (3)

s1,n → η4, s2,n → η6 (4)

and
η3,n

η2,n
s1,n + η5,n → η5. (5)

Since rn → r = η2η3, we may satisfy (3) as follows.

Case η2� 0.
Put η2,n = η2 and η3,n = rn/η2.

Case η2 = 0, η3� 0.
Put η3,n = η3 and η2,n = rn/η3.

Case η2 = η3 = 0.
Put η2,n = |rn| 12 and η3,n = rn/η2,n.
For (4) put s1,n = η4 and s2,n = η6 for all n, and for (5) put

η5,n = η5 − η3,n

η2,n
η4 (n > 1).

This establishes (2).
Hence q(η(n))→ q(η) ∈ V , so q(η(n)) ∈ V eventually. But

Φ(q(η(n))) = Jrn = Φ(πn),

so πn ∈ Φ−1(Φ(V )) eventually. This is a contradiction.
Thus Φ is open, so C∗(G6,4) is quasi-standard. q
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The arguments for G6,8 and G6,12 are broadly similar, whilst those for G = G6,7,

G6,13, and G6,14 utilize the presence of a family of non-generic linear functionals with
flat orbits of maximal dimension in order to show that Ĝ = sep (Ĝ) x cor (G) before
showing that the canonical mapping from Ĝ to Glimm (C∗(G)) is open. For G = G6,k

(k = 1, 2, 3, 5, 6, 9, 11), arguments somewhat similar to those for Proposition 4·1,
using invariant polynomials and carefully chosen sequences from the generic subset
of g∗, show that every Glimm ideal of C∗(G) is minimal primal. However, in each
case the canonical mapping from Prim (C∗(G)) to Glimm (C∗(G)) fails to be open (as
happens for G4 [4; Lemma 4]) and so G is not quasi-standard. This may be shown by
constructing a null sequence in the generic subset of g∗ that is not orbit-convergent
to some η such that πη ∈ cor (G).

The remaining three cases are G6,10(= G6), G6,15(= W3) and G6,18. By Theorem 3·1,
C∗(G6) contains a Glimm ideal that is not primal and by Theorem 2·7 C∗(W3) con-
tains a Glimm ideal that is not 4-primal and hence not primal. We show next that
C∗(G6,18) also contains a Glimm ideal that is not primal.

Let G = G6,18 and let {X1, . . . , X6} be the basis of g given in [20]. Then
g = RX n (a1 + a2), where X = X6, a1 = span {X2, X4, X5}, a2 = span {X1, X3},
RXna1 = g4 and RXna2 = g3. By Theorem 3·1,C∗(G) contains a non-primal Glimm
ideal. In fact it is possible to use arguments specific to this case to show that the
Glimm ideal contained in ker 1G is 3-primal but not 4-primal. The fact that the
corresponding Glimm ideal in C∗(W3) is also 3-primal but not 4-primal appears to
be entirely coincidental.

Summary

Up to topological isomorphism there are 24 simply connected nilpotent Lie groups
of dimension six (excluding those which are direct products of lower dimensional
groups).

(i) C∗(G6,k) is quasi-standard in 14 cases,

k = 4, 7, 8, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24.

(ii) C∗(G6,k) is not quasi-standard, but every Glimm ideal is primal, in 7 cases,

k = 1, 2, 3, 5, 6, 9, 11.

(iii) C∗(G6,k) has a Glimm ideal which is not primal if k = 10, 15, 18.

Acknowledgements. We are grateful to Nik Weaver who, following a talk by the
first-named author at the 1996 GPOTS conference at Arizona State University,
raised the question of the quasi-standardness of the groups Wn .
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[12] C. Delaroche. Sur les centres des C∗-algèbres, II. Bull. Sc. Math. (2) 92 (1968), 111–128.
[13] J. Dixmier. Sur les représentations unitaires des groupes de Lie nilpotent, III. Canad. J. Math.

10 (1958), 321–348.
[14] J. Dixmier. Points séparés dans le spectre d’une C∗-algèbre. Acta Sci. Math. (Szeged) 22
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