
TLP 10 (4–6): 691–707, 2010. C© Cambridge University Press 2010

doi:10.1017/S1471068410000360

691

Applying Prolog to develop distributed systems

NUNO P. LOPES

INESC-ID, Instituto Superior Técnico – Technical University of Lisbon, Portugal

JUAN A. NAVARRO, ANDREY RYBALCHENKO

Technische Universität München, Munich, Germany

and ATUL SINGH

NEC Research Labs, Princeton, NJ, USA

submitted 7 February 2010; revised 11 April 2010; accepted 18 May 2010

Abstract

Development of distributed systems is a difficult task. Declarative programming techniques

hold a promising potential for effectively supporting programmer in this challenge. While

Datalog-based languages have been actively explored for programming distributed systems,

Prolog received relatively little attention in this application area so far. In this paper we

present a Prolog-based programming system, called DAHL, for the declarative development

of distributed systems. DAHL extends Prolog with an event-driven control mechanism and

built-in networking procedures. Our experimental evaluation using a distributed hash-table

data structure, a protocol for achieving Byzantine fault tolerance, and a distributed software

model checker—all implemented in DAHL—indicates the viability of the approach.

KEYWORDS: distributed systems, logic programming, Prolog

1 Introduction

Declarative Networking is a promising direction in the quest for distributed

programming systems that meet the challenges of building reliable and efficient

distributed applications (Loo et al. 2005). As the name suggests, Declarative

Networking advocates a high-level programming paradigm where the programmer

specifies what has to be computed and communicated over the network, and

then the compiler translates the specification into executable code. Its main

applications are various network protocols, including sensor networks (Chu et al.

2007), fault tolerance protocols (Singh et al. 2008; Alvaro et al. 2010), distributed

hash tables (Loo et al. 2005), and data replication systems (Belaramani et al. 2008).

Current implementations of Declarative Networking adapt Datalog for the

domain of networking applications. The resulting programming languages have

a bottom-up evaluation semantics where the evaluation of (Datalog) clauses causes

the execution of corresponding networking actions. Since Datalog is a not a general

purpose programming language, its adaptation for Declarative Networking required

a reformulation of the language to allow the developer some control over the flow of

execution, to make available expressive data types, and to maintain a mutable state.

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

692 N. Lopes et al.

Programmers often include C/C++ fragments on ordinary occasions (Singh et al.

2008), while research efforts are invested to better couple the required additional

features with the Datalog evaluation model (Mao 2010; Alvaro et al. 2009).

In this paper we explore the applicability of Prolog as a basis for Declarative

Networking. In contrast to Datalog, Prolog is a general purpose programming

language. Since Prolog is considered to be a practical tool for programming in

logic, its adaptation to distributed programming can focus only on the networked

communication aspects. In the process, we put Prolog into an event-driven execution

environment, where each node interprets messages received from the network as

queries on its own local database, and provide a collection of procedures for

communication via message passing. As a result, we obtain an extension of Prolog

that can be applied for distributed programming. Its implementation, called DAHL
1, consists of a bytecode compiler and a runtime environment. DAHL builds upon

an existing Prolog infrastructure (The Intelligent Systems Laboratory 2009) and a

networking library (Mathewson and Provos 2009).

We evaluate DAHL on a range of distributed applications including the Chord

distributed hash table (Stoica et al. 2001), the Byzantine fault tolerance protocol

Zyzzyva (Kotla et al. 2007), and a distributed software model checker (Lopes and

Rybalchenko 2010). DAHL implementations are comparable to existing Declarative

Networking approaches in terms of succinctness, and do not require any C/C++

workarounds. Moreover, we also show that DAHL’s performance is competitive

with C++ runtimes produced with Mace, a tool that supports the development of

robust distributed systems (Killian et al. 2007), while significantly reducing code size.

In this paper we present the following contributions:

• We demonstrate that Prolog is a suitable basis for the design of a

programming language for Declarative Networking. Our approach exploits

Prolog’s strengths to provide general purpose programming features, while

retaining its conceptual ties with the declarative paradigm.

• We provide an efficient and robust programming system for DAHL that

includes a compiler and a runtime environment.

• We demonstrate the practicality of DAHL via an experimental evaluation on

a range of distributed applications.

We organize the paper in the following way: In Section 2, we introduce DAHL

using a simple spanning-tree protocol as example. The programmer interface that

allows the development of distributed applications is described in Section 3. We

present implementation details of DAHL in Section 4, and evaluation results in

Section 5. We also give a review of the related work in Section 6, and then conclude

in Section 7.

2 DAHL by example

In this section, we illustrate DAHL by using an example program that implements

a simple protocol for constructing a spanning-tree overlay in a computer network.

1 Available at: http://www7.in.tum.de/tools/dahl/

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

Applying Prolog to develop distributed systems 693

:- event span_tree/2.

span_tree(Root, Parent) :-

\+ tree(Root, _),

assert(tree(Root, Parent)),

this_node(ThisAddr),

sendall(

Node,

neighbor(Node),

span_tree(Root, ThisAddr)

).

Fig. 1. DAHL program to compute a spanning-tree overlay.

Tree-based overlay networks have received significant attention from the academic

community (Jannotti et al. 2000; Banerjee et al. 2002; Castro et al. 2003; Chu et al.

2004) and have also seen successful commercial deployment (Li et al. 2007). In these

tree overlays, after some network node has been selected to be the root node, we

require that each other node is able to forward messages to the root node. After the

spanning-tree overlay is constructed, each node can send a message to the root by

either using a direct link, if available, or relying on the ability of some neighbor to

forward messages to the root. If a node is not connected to the root via a sequence

of links then the node cannot send any messages to the root.

The overlay is constructed by propagating among the network nodes the

information on how to forward to the root node. This information is given by

the address of the next node towards the root. We assume that initially each

node stores the addresses of its immediate neighbors in the (local) database. This

information is loaded at startup by each node (e.g., at the command line or from a

configuration file) into the neighbor(Node) table.

A node can directly access its neighbors by sending messages over the corres-

ponding network links. At the initial step of the overlay construction, the designated

root node, say Root, is triggered by sending it a message span tree(Root,Root).

Then, the root node sends span tree(Root,Root) to each neighbor node. At a

neighbor, say Node, this message leads to the addition of the fact tree(Root,Root)

to the database, thus, recording the possibility of reaching the tree root in a single

step. Furthermore, Nodepropagates this information to its neighbors by sending

a message span tree(Root,Node). Upon reception, each Node’s neighbor adds

tree(Root,Node) to its database and continues the propagation.

Our implementation of the spanning-tree protocol relies on a combination of

Prolog with networking and distribution-specific extensions to achieve the goal, see

Figure 1. When the initial message span tree(Root,Root) arrives at Root, it is

interpreted as a Prolog query. The query execution is carried out by the corresponding

procedure span tree/2, which is authorized to execute queries that arrive from the

network due to the declaration event span tree/2. The procedure span tree/2

uses standard Prolog predicates as well as our extensions. First, span tree/2 checks

if the information how to reach the root node is already available. If it is the

case, the execution of the procedure fails, and since the initiating query was issued

by the network, DAHL ignores the failure and continues with the next message

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

694 N. Lopes et al.

as soon as it arrives. Otherwise, a fact recording the root’s reachability is added

to the database. We propagate the corresponding information to the neighbors,

whose addresses are stored by each node as facts neighbor/1 in the database.

The message that is sent to each neighbor contains the sender address, which is

required for the overlay construction. We obtain this address by using a DAHL built-

in predicate this node/1. The communication with the neighbors is implemented

using a DAHL built-in procedure sendall/3, which is inspired by the “all solutions”

predicates provided by Prolog, e.g., findall/3 or setof/3. For each address that can

be bound to Node by evaluating neighbor(Node), the execution of sendall sends

a message span tree(Root,ThisAddr), i.e., the message is sent to all neighbors.

In summary, our example shows that we can apply Prolog for developing

distributed protocols by putting it into an event-driven execution environment and by

extending the standard library with networking-specific built-in procedures. A more

complex example is shown in Figure 6, which is an excerpt of our implementation

of the Zyzzyva Byzantine fault tolerant protocol. In the rest of the paper, we briefly

introduce the extensions and describe their interplay with Prolog for implementing

a distributed hash-table data structure, a protocol achieving the Byzantine fault

tolerance, and a distributed version of a software model-checking algorithm.

3 Programming interface for distributed applications

We now present the interface for developers to implement distributed applications.

The interface consists of an event driven control and a set of primitives to send

messages over the network. Our implementation of this interface is described later

in Section 4.

Messages and event handlers Nodes communicate by exchanging messages

represented by Prolog terms. When a message is received by a node, it triggers

the evaluation of the matching event handler. An event handler corresponds to a

Prolog predicate definition and its evaluation is done as a Prolog query.

The declaration

:- event PredSpec, ..., PredSpec.

turns each predicate specified by PredSpec into an event handler for messages that

match its specification. A predicate specification is an expression of the form p/n

where p is a predicate name and n its arity. For example,

:- event q/2.

q(X, Y) :- Body.

declares the q/2 predicate as the event handler for messages of the form q(X, Y).

In other words, the event declaration allows the evaluation of a predicate to be

triggered when a matching message is received from the network.

In a running application, a node waits until a message is received from the

network. When a message is received, and if the corresponding predicate is declared

as an event, Prolog’s standard evaluation strategy is used to compute the first

solution to the message as if it was posed as a query. As the query is evaluated, the

event handler can modify the local state of the node, e.g., with assert/retract, or

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

Applying Prolog to develop distributed systems 695

produce messages to send to other nodes. The solution to this query, or the failure to

find a solution, is discarded, but the side effects of the evaluation are not. Messages

that are not declared as events are also discarded. Event handlers triggered by

different messages are evaluated atomically in sequence, i.e., the evaluation of a new

message does not start until the evaluation of the previous one has finished. Atomic

evaluation avoids concurrency issues that could arise when processing multiple

messages at once.

DAHL provides the send/2 and sendall/3 built-in predicates to send messages

over the network. The predicate

send(Address, Message)

sends Message to the node at Address. Evaluation of the predicate succeeds as soon

as the underlying transport protocol reports the message as sent, and evaluation

of the rest of the query continues. If an error occurs (e.g., Address is unreachable),

the predicate fails and backtracks, e.g., to find an alternate destination. This is the

default behavior and can be configured to throw exceptions or ignore errors instead.

Low level details, such as opening and closing network connections, are abstracted

away and handled automatically by the DAHL runtime. If needed, developers can

also access low level primitives to open/close connections themselves.

Multiple messages can be sent using

sendall(Address, Generator, Message)

which, for every solution of Generator, sends a Message to Address. A developer can

use this predicate to broadcast a message to all neighbors of a node. For example,

sendall(N, neighbor(N), ping)

sends a ping message to every node N which is a solution to neighbor(N). Moreover,

both the Address and the Message of the sendall operation can be determined by

the Generator. For example,

sendall(N, (task(T), assign(T, N)), solve(T)).

distributes a number of tasks among a set of nodes.

Low level implementations can optimize for particular usages of sendall.

As an example, when Message does not depend on Generator, a network-level

multicast/broadcast protocol can be used to provide a more efficient operation.

Another feature provided by the DAHL interface is that of alarms. Alarms are

used by nodes to cause the evaluation of a local event handler at a specified time in

the future. Similar to events, the declaration

:- alarm PredSpec, ..., PredSpec.

turns each predicate specified by PredSpec into an alarm handler. The predicate

alarm(Message, MSecs)

succeeds after setting up a reminder to insert Message in the local queue after

MSecs have elapsed. The alarm/2 predicate can also be used to trigger event

handlers declared with the event directive; but a predicate declared as alarm will

never respond to messages from the network (e.g., produced with send or sendall).

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

696 N. Lopes et al.

Authentication When running a distributed protocol over an untrusted network, it

is often required for messages to be signed in order to authenticate their origin.

DAHL’s interface allows an application to be easily augmented with authentication

by replacing send/2 with the predicate

send_signed(Address, Message)

that attaches authentication metadata to the Message sent to Address. Similarly, the

sendall_signed/3 predicate, analogous to sendall/3, is provided.

On the receiving end, the predicates

signed_by(Address, Signature)

signed_by(Address)

signed

check on demand whether the incoming message (and whose event handler is being

evaluated) was properly signed. Additionally, if present, Address is unified with the

address of the sender and Signature with the signature metadata. If the message was

not signed, or had an invalid signature, these predicates fail.

Since cryptographic operations are often computing intensive, these predicates

allow the programmer to schedule the validation of signatures at an appropriate

time in the evaluation of an event handler. For example,

request(Req) :- valid(Req), signed_by(Addr), ...

checks the validity of a request before performing a, possibly more expensive,

validation of the signature. This strategy is applied in the definition of request/1

in our implementation of Zyzzyva (Figure 6).

Authenticity in DAHL is based on OpenSSL’s implementation of HMAC for

signing messages and MD5 for computing message digests. Alternative crypto-

algorithms can be selected and accessed through the same high-level interface.

4 Implementation

The software architecture of DAHL is shown in Figure 2. It consists of a DAHL

compiler (based on SICStus Prolog compiler from The Intelligent Systems Laborat-

ory 2009), a high-performance event dispatching library (libevent from Mathewson

and Provos 2009), the OpenSSL library to provide the cryptographic primitives in

the language, the DAHL runtime, and DAHL applications. We use the off-the-shelf

SICStus Prolog compiler to quickly build the DAHL system and utilize its

industrial-strength performance and robustness for achieving high performance. We

do not describe the details of how we interfaced libevent and OpenSSL since they are

standard, instead we describe in detail the novel aspects of DAHL: how the runtime

works, some optimizations that were implemented, and the networking aspects.

Runtime DAHL’s runtime consists of a library written in Prolog (with around 460

lines of code), which implements the built-in predicates, and a networking back-end

written in C (around 450 lines). It is the networking back-end that interfaces with

both libevent and OpenSSL. This back-end interfaces with Prolog through stubs

generated automatically by the SICStus Prolog compiler.

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

Applying Prolog to develop distributed systems 697

Fig. 2. The DAHL software stack.

Fig. 3. Internals of DAHL runtime shown by tracing the flow of message processing.

DAHL programs are interpreted directly by the SICStus Prolog compiler, but

under the DAHL runtime control. The main program in execution is a loop that

is part of the runtime, and a DAHL program’s code is only called when an

appropriate event arrives from the network, or when a timer is triggered. Those

events are processed by libevent.

Figure 3 shows the execution flow for processing a message that arrives from the

network (steps 1–4), and for a message that is sent from an application (steps 5–6)

in more detail. When a message arrives from the network, the operating system

dispatches it to libevent (step 1), which queues the message. Then, when the DAHL

runtime asks for the next message, libevent picks one arbitrarily and delivers it to the

DAHL network back-end (step 2). The DAHL network back-end then deserializes

the message and calls the runtime dispatcher (in Prolog) through a stub (step 3).

Finally, the dispatcher calls the corresponding event handler of the application (step

4). When a DAHL application sends a message, the message is first handed over to

the DAHL runtime through a stub (step 5). The runtime then serializes the message

and delegates the network transmission to the operating system (step 6).

Optimizations We implemented several optimizations in the DAHL runtime to

improve its performance. Here, we present these optimizations in detail. The

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

698 N. Lopes et al.

deserialization of network messages was a CPU-intensive operation since the SICStus

Prolog compiler implements this operation in Prolog through a complex process

chain. Since each message sent was serialized to a single atom, it led to an explosion

in memory usage because the SICStus Prolog compiler aggressively caches all

atoms. We therefore implemented our own custom deserialization in C to improve

the performance. This resulted in a performance improvement of the deserialization

function of about 70%.

As described before, the main loop is implemented in Prolog, and it calls a

function in C that “produces” events through libevent, which are then dispatched

from within the Prolog environment. The loop is implemented as a Prolog rule that

first calls the external C function, and then fails and backtracks to the beginning

of the rule in order to iterate. This provides an important advantage, which is

that every event/alarm handler is executed in a “clean” environment, as all the

garbage possibly left by a previous handler is discarded. Moreover, it improves the

performance of the garbage collector (GC), as the SICStus Prolog compiler will

delete most of such garbage when backtracking as an optimization, reducing the

overhead of the GC. Our tests show that without this environment cleanup, the

overhead of the GC would be noticeable (from 8% to 45%).

Network Support Currently all the network messages are sent using the TCP protocol,

which requires establishing a connection before the first contact. The DAHL

runtime automatically establishes these connections when needed, and caches them

indefinitely for future contacts. It is straightforward to replace TCP with UDP,

though the application needs to have mechanisms to handle message loss.

5 Evaluation

In this section, we present an evaluation of DAHL in terms of run-time performance,

language expressiveness, and succinctness of programs. Implementations of

networking protocols, like Chord (Stoica et al. 2001) and Zyzzyva (Kotla et al. 2007),

as well as CPU-bound applications like D’ARMC (Lopes and Rybalchenko 2010)

demonstrate the applicability of DAHL in the development of real-life and complex

systems. We compare the results with alternative implementations of these protocols

in P2 (Loo et al. 2006), the original implementation of Declarative Networking, and

Mace (Killian et al. 2007), an extension of C++ with networking capabilities and a

state-machine specification language.

5.1 Raw performance

To evaluate the performance of the DAHL runtime, we performed a test to compare

the performance of P2, Mace, C, and DAHL. We performed a simple network

ping-pong experiment. One of the machines (called a client) sends a small 20-byte

‘ping’ message to the other machine (called a server) which immediately responds

with a small 20-byte ‘pong’ message. We used as many client machines as needed to

saturate the server in order to measure its raw throughput. The measurement of the

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

Applying Prolog to develop distributed systems 699

Table 1. Comparing raw network performance of P2, DAHL, Mace, Mace compiled

with ‘-O2’ optimizations, and plain C as the maximum number of pings responded by

the server in a second

P2 DAHL Mace Mace (w/ -O2) C

230 14,000 14,221 21,937 142,800

number of requests served per second was done at the server. The machines were

connected by a gigabit switch with a round trip latency of 0.09 ms, and both the

network and the machines were unloaded. The results are presented in Table 1.

First, we note that the DAHL runtime outperforms P2’s performance. We believe

that the reason behind P2’s poor performance is that the runtime of P2 is not yet

optimized while DAHL uses the SICStus 4 compiler that has been already optimized.

Second, DAHL is as fast as Mace. However, given that Mace is a restricted form

of C++, it can exploit powerful C++ optimizing compilers. For example, with

the ‘-O2’ set of optimizations of gcc 4.1, Mace’s performance improves by 60%.

As an upper bound on the performance, we also present the performance of a C

implementation and note that all the systems that strive to improve the analysis

capability—by providing higher level programming abstractions which are also more

amenable to static analysis and program verification techniques—are an order of

magnitude slower.

5.2 Chord

In this subsection, we evaluate the performance of an implementation of Chord

(a distributed hash table) in DAHL. Our implementation of Chord implements all

features detailed in the original paper (Stoica et al. 2001). To compare with the P2

Chord implementation, we obtained the latest release of P2.2 Unfortunately, we were

unable to get P2 Chord running in our local setup. We therefore cite results from

their paper (Loo et al. 2005).

Setup We used ModelNet (Vahdat et al. 2002) to emulate a GT-ITM transit-stub

topology consisting of 100 to 500 stubs and ten transit nodes. The stub-transit links

had a latency of 2 ms and 10 Mbps of bandwidth, while transit-transit links had

a latency of 50 ms and 100 Mbps of bandwidth. We used 10 physical hosts, each

with dual-core AMD Opteron 2.6 GHz processor with 8GB of RAM, and running

Linux kernel version 2.6.24. We ran 10 to 50 virtual nodes on each physical node,

producing a population of 100 to 500 nodes. In each experiment, neither the CPU

nor the RAM were the bottleneck. This setup reproduces the topology used by the

P2 experiments in Loo et al. (2005), although they used Emulab White et al. (2002).

Static Membership Our first goal was to see if the DAHL implementation met the

high-level properties of Chord. We have first evaluated our implementation by

2 Version 3570 in https://svn.declarativity.net/p2/trunk.

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

700 N. Lopes et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

C
D

F
Latency (s)

100
500

Fig. 4. Chord: Lookup latency distribution.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 2 4 6 8 10 12 14

Fr
eq

ue
nc

y

Hop Count

100
500

Fig. 5. Chord: Hop count distribution.

performing 10,000 DHT ‘lookup’ requests generated from random nodes in the

network for a random set of keys. The lookups were generated after waiting for five

minutes after the last node joined in order to let the network stabilize.

In Figure 4, we present the cumulative distribution of latency incurred to receive

the response to the lookup requests with 100 and 500 nodes. The results are

comparable or better than the published results for P2 Chord (Loo et al. 2005).

In Figure 5, we present the frequency distribution of the number of hops taken

to complete the lookups. As expected, the maximum number of hops taken is under

the theoretical upperbound of �log N �.
Dynamic Membership Our implementation of Chord in DAHL also handles churn.

In this experiment, we used 500 nodes, each one maintaining four successors and

performing finger fixing every 10 seconds and successor stabilization every 5 seconds.

This configuration is similar to the setup of P2 Chord. We generated artificial churn

in our experiment by killing and joining nodes at random with different session

times by following the methodology presented in (Rhea et al. 2004).

We obtained lookup consistency of 96% for average session times of 60 minutes,

which is comparable with other implementations of Chord.

Summary Our results show that our implementation of Chord in DAHL covers

the major algorithmic aspects of the protocol and that its run-time performance is

competitive with P2 Chord.

5.3 Zyzzyva

In this subsection, we evaluate the implementation of Zyzzyva in DAHL. For

reference, and to give a flavor of the code written in DAHL, we include a

fragment of the implementation of its first phase in Figure 6. We present the

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

Applying Prolog to develop distributed systems 701

Fig. 6. Initial phase of Zyzzyva with batching optimization.

†count/2 is a non-standard Prolog extension that counts the number of solutions of a given goal.

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

702 N. Lopes et al.

Table 2. Zyzzyva: single phase and two phase performance for empty payload

DAHL Zyzzyva C++ Zyzzyva

Single phase 4.5 k req/s 40 k req/s

Second phase 2.5 k req/s 20 k req/s

peak throughput for the normal case, and the throughput after killing a backup

replica. The goal of our experiments is to show that our implementation covers a

significant part of Zyzzyva protocol and to show that its performance is reasonable.

We compare the performance of DAHL Zyzzyva with the publicly available

C++ implementation of Zyzzyva (available from http://cs.utexas.edu/~kotla/

RESEARCH/CODE/ZYZZYVA/).

Setup We use four physical machines as servers to tolerate one Byzantine faulty

server and vary the number of clients to measure the peak throughput. Both the

server and client machines have identical characteristics as previous experiment. The

clients send requests with an empty payload, the execution cost of each operation

at the servers is zero, and we measure the peak throughput sustained by the servers.

Implementation We use OpenSSL’s HMAC+MD5 cryptographic hash function in

DAHL to perform critical digest and signing operations. Our implementation uses

TCP as the transport protocol, we do not yet use network broadcast feature, and do

not implement batching. Our implementation takes checkpoint at the rate of every

128 requests, which is standard in existing implementations. We do not implement

state transfer mechanism to bring the slow replicas up-to-date.

First case performance In this experiment, we present the peak throughput of

Zyzzyva without failures where requests are completed in single phase. This result

serves to measure the baseline functionality of Zyzzyva. The results are presented

in Table 2. We observe that the performance of DAHL’s Zyzzyva is about 10

times slower than the C++ implementation. However, as Clement et al. (2009)

observe, the penalty of using DAHL over C++ will diminish as the application-

level overhead starts to dominate. For example, with an application that consumes

approximately 100 μs per operation, Zyzzyva will deliver throughput of 9 k req/s

while the implementation in DAHL will deliver approximately 3 k req/s, bringing

down the penalty to 3X.

Second phase performance In this experiment, we present the peak throughput of

Zyzzyva when upto F replicas are faulty and prevent requests from completing in

the single phase. This requires client to initiate the second phase, requiring more

computation and network resources at the replicas, resulting in lower performance

compared to the previous result based on single phase. Again, our results show that

DAHL implementation is slower compared to its counterpart in C++ owing to a

slower runtime.

Summary The primary goal of our evaluation was to check if our implementation is

comprehensive and faithful, and to evaluate its performance. Our results show that

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

Applying Prolog to develop distributed systems 703

 0

 5

 10

 15

 20

5 10 20 40
S

pe
ed

up

Number of nodes

median

Fig. 7. Median speedup of D’ARMC with varying number of nodes.

the current implementation covers a significant portion of the protocol features but

the performance is lower compared to C++ implementation.

5.4 D’ARMC

D’ARMC (Lopes and Rybalchenko 2010) is a distributed software model checker

that was implemented in DAHL. D’ARMC is a CPU-bound application, and

therefore shows that DAHL can be used to implement more applications than

mere network protocols. The median speedup achieved by D’ARMC in a set of

benchmarks is shown in Figure 7. The benchmarks consist in a set of automata-

theoretic models from the transportation domain and a standard hybrid-system

example.

As can be seen in Figure 7, D’ARMC shows a linear speedup with a varying

number of machines, and the efficiency is about 50%. A more extensive evaluation

can be found in (Lopes and Rybalchenko 2010).

5.5 Code size

Our implementations of both Chord and Zyzzyva are comparable in size to the

P2 implementations in terms of lines of code (LoC). For example, DAHL Chord is

implemented in 215 LoC while the P2 Chord is implemented in 211 LoC. These sizes

are an order of magnitude more succinct compared to a C/C++ implementation.

6 Related work

In the previous section we have already compared DAHL with two other related

systems that help the programmer to build distributed applications, P2 (Loo et al.

2006) and Mace (Killian et al. 2007). Both languages have been successfully used

for the implementation of important networked systems and protocols, and serve

as a research platform for the development of specialized variants—see http:

//declarativity.net for further pointers—as well as verification tools (Killian

et al. 2007; Yabandeh et al. 2010; Navarro and Rybalchenko 2009; Wang et al.

2009; Pérez et al. 2009).

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

704 N. Lopes et al.

Alternative approaches that attempt to extend Datalog for use in a distributed

environment, while trying to overcome the pitfalls of early Declarative Networking

implementations, are Meld (Ashley-Rollman et al. 2007; Ashley-Rollman et al. 2009),

WIND (Mao 2010) and Netlog (Grumbach and Wang 2010). A common feature of

these projects is that they all argue that a ‘pure’ Datalog based language is not appro-

priate for the development of stateful applications. The authors of Meld show that

a limited declarative language can be used to program behavior in ensembles; the

authors of WIND propose the use of syntactic ‘salt’ to discourage, but still allow, the

use of imperative features; while the authors of Netlog augment Datalog rules with

annotations to explicitly control whether tuples are stored or sent over the network.

In the broader picture of designing high-level languages for concurrent and

distributed programming, a prime example is Erlang (Armstrong et al. 1993). Erlang

is based on the functional programming paradigm and, similar to our approach,

incorporates distribution via explicit message passing between processes. A related

approach suggests using the Lua programming language to implement distributed

systems (Leonini et al. 2009).

Some projects also aim to exploit the use of functional programming languages

at lower layers of the network protocol deign. Foxnet, for example, implements the

standard TCP/IP networking protocol stack in ML (Biagioni et al. 2001); while

Melange provides a language to describe Internet packet protocols, and generates

fast code to parse/create these packets (Madhavapeddy et al. 2007). Similarly, the

KL1 logic based language has been used to model and exploit physical parallelism

in the PIM operating system (Bal 1993).

Previous work has also explored the use of Prolog to deal with concurrency and

parallelism, a comprehensive review is given by Gupta et al. (2001). Most of this

work, however, deals with the problem of using Prolog to paralellize an otherwise

sequential task. Recent advances in this direction are discussed by Casas et al. (2008).

Our work explores, instead, the use of Prolog as a general purpose programming

language to implement distributed applications.

7 Conclusion

From our experience with applying Prolog for distributed programming we draw

the following conclusions.

In combination with event-driven control and networked communication

primitives, Prolog offers a programming language that is sufficiently expressive and

well-suited for the implementation of distributed protocols. In our experiments, we

did not rely on any C/C++ extensions as there was no need to compensate absence

of certain programming constructs, as it is common for the P2 system for declarative

networking that is Datalog-based. Instead, we used the data type, control structures,

and the database facility provided by Prolog. By using Prolog as a basis we avoided

any major compiler/runtime/libraries implementation efforts, which often become

an obstacle when implementing a new programming language. By not starting from

scratch and relying on the existing Prolog infrastructure, we obtain a fully-featured

programming environment for distributed systems out of the box.

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

Applying Prolog to develop distributed systems 705

References

Alvaro, P., Condie, T., Conway, N., Elmeleegy, K., Hellerstein, J. M. and Sears, R. C.

2009. BOOM: Data-Centric Programming in the Datacenter. Technical Report UCB/EECS-

2009-98, EECS Department, University of California, Berkeley.

Alvaro, P., Condie, T., Conway, N., Hellerstein, J. M. and Sears, R. 2010. I Do Declare:

Consensus in a Logic Language. ACM SIGOPS Operating Systems Review 43, 4, 25–30.

Armstrong, J., Virding, R., Wikström, C. and Williams, M. 1993. Concurrent Programming

in ERLANG. Prentice Hall.

Ashley-Rollman, M., Goldstein, S., Lee, P., Mowry, T. and Pillai, P. 2007. Meld: A

declarative approach to programming ensembles. In IEEE/RSJ International Conference

on Intelligent Robots and Systems. 2794–2800.

Ashley-Rollman, M. P., Lee, P., Goldstein, S. C., Pillai, P. and Campbell, J. D. 2009. A

language for large ensembles of independently executing nodes. In ICLP ’09: Proceedings

of the 25th International Conference on Logic Programming. Springer, Berlin, 265–280.

Bal, H. E. 1993. Evaluation of KL1 and the inference machine. Future Generation Computer

Systems 9, 2, 119–125.

Banerjee, S., Bhattacharjee, B. and Kommareddy, C. 2002. Scalable Application

Layer Multicast. In SIGCOMM ’02: Proceedings of the 2002 Conference on Applications,

Technologies, Architectures, and Protocols for Computer Communications. ACM, New York,

205–217.

Belaramani, N., Zheng, J., Nayate, A., Soulé, R., Dahlin, M. and Grimm, R. 2008.

PADRE: A policy architecture for building data REplication systems. Technical Report TR-

08-25, University of Texas, Austin.

Biagioni, E., Harper, R. and Lee, P. 2001. A network protocol stack in standard ML. Higher

Order Symbolic Computation 14, 4, 309–356.

Casas, A., Carro, M. and Hermenegildo, M. V. 2008. A high-level implementation of non-

deterministic, unrestricted, independent and-parallelism. In ICLP ’08: Proceedings of the

24th International Conference on Logic Programming. Springer, Berlin, 651–666.

Castro, M., Druschel, P., Kermarrec, A.-M., Nandi, A., Rowstron, A. and Singh, A.

2003. SplitStream: High-bandwidth multicast in cooperative environments. In SOSP ’03:

Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles. ACM, New

York, 298–313.

Chu, D., Popa, L., Tavakoli, A., Hellerstein, J. M., Levis, P., Shenker, S. and Stoica, I.

2007. The design and implementation of a declarative sensor network system. In SenSys

’07: Proceedings of the 5th International Conference on Embedded Networked Sensor Systems.

ACM, New York, 175–188.

Chu, Y.-h., Ganjam, A., Ng, T. S. E., Rao, S. G., Sripanidkulchai, K., Zhan, J. and Zhang,

H. 2004. Early experience with an internet broadcast system based on overlay multicast. In

ATEC ’04: Proceedings of the Annual Conference on USENIX Annual Technical Conference.

USENIX Association, Berkeley, CA, 12–12.

Clement, A., Wong, E., Alvisi, L., Dahlin, M., and Marchetti, M. 2009. Making

Byzantine fault tolerant systems tolerate byzantine faults. In NSDI’09: Proceedings of

the 6th USENIX Symposium on Networked Systems Design and Implementation. USENIX

Association, Berkeley, CA, 153–168.

Grumbach, S. and Wang, F. 2010. Netlog, a rule-based language for distributed programming.

In PADL’10: Proceedings of the Eleventh International Symposium on Practical Aspects of

Declarative Languages. Lecture Notes in Computer Science, vol. 5937. Springer, 88–103.

Gupta, G., Pontelli, E., Ali, K. A., Carlsson, M. and Hermenegildo, M. V. 2001. Parallel

execution of prolog programs: A survey. ACM Transactions on Programming Languages

and Systems 23, 4, 472–602.

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

706 N. Lopes et al.

Jannotti, J., Gifford, D. K., Johnson, K. L., Kaashoek, M. F. and O’Toole, Jr., J. W. 2000.

Overcast: Reliable Multicasting with an Overlay Network. In OSDI’00: Proceedings of

the 4th conference on Symposium on Operating System Design and Implementation. USENIX

Association, Berkeley, CA, 14–14.

Killian, C. E., Anderson, J. W., Braud, R., Jhala, R., and Vahdat, A. M. 2007. Mace:

Language support for building distributed systems. In PLDI ’07: Proceedings of the 2007

ACM SIGPLAN Conference on Programming Language Design and Implementation. ACM,

New York, 179–188.

Killian, C. E., Anderson, J. W., Jhala, R. and Vahdat, A. 2007. Life, death, and the

critical transition: Finding liveness bugs in systems code. In NSDI’07: Proceedings of

the 4th USENIX Symposium on Networked Systems Design and Implementation. USENIX

Association, Berkeley, CA.

Kotla, R., Alvisi, L., Dahlin, M., Clement, A. and Wong, E. 2007. Zyzzyva: Speculative

Byzantine fault tolerance. ACM SIGOPS Operating Systems Review 41, 6, 45–58.

Leonini, L., Rivière, E. and Felber, P. 2009. SPLAY: Distributed systems evaluation made

simple. In NSDI’09: Proceedings of the 6th USENIX Symposium on Networked Systems

Design and Implementation. USENIX Association, Berkeley, CA, 185–198.

Li, B., Xie, S., Keung, G., Liu, J., Stoica, I., Zhang, H. and Zhang, X. 2007. An

empirical study of the Coolstreaming+ System. IEEE Journal on Selected Areas in

Communications 25, 9 (Dec.), 1627–1639.

Loo, B. T., Condie, T., Garofalakis, M., Gay, D. E., Hellerstein, J. M., Maniatis, P.,

Ramakrishnan, R., Roscoe, T. and Stoica, I. 2006. Declarative networking: Language,

execution and optimization. In SIGMOD ’06: Proceedings of the 2006 ACM SIGMOD

International Conference on Management of Data. ACM, New York, 97–108.

Loo, B. T., Condie, T., Hellerstein, J. M., Maniatis, P., Roscoe, T. and Stoica, I. 2005.

Implementing declarative overlays. ACM SIGOPS Operating Systems Review 39, 5, 75–90.

Lopes, N. P. and Rybalchenko, A. 2010. Distributed and predictable software model

checking. Draft manuscript .

Madhavapeddy, A., Ho, A., Deegan, T., Scott, D. and Sohan, R. 2007. Melange: Creating

a “Functional” Internet. In EuroSys ’07: Proceedings of the 2nd ACM SIGOPS/EuroSys

European Conference on Computer Systems. ACM, New York, 101–114.

Mao, Y. 2010. On the declarativity of declarative networking. ACM SIGOPS Operating Systems

Review 43, 4, 19–24.

Mathewson, N. and Provos, N. 2009. libevent Documentation. Release 1.4.9.

Navarro, J. A. and Rybalchenko, A. 2009. Operational Semantics for Declarative

Networking. In PADL ’09: Proceedings of the 11th International Symposium on Practical

Aspects of Declarative Languages. Springer, Berlin, 76–90.

Pérez, J. A., Rybalchenko, A. and Singh, A. 2009. Cardinality abstraction for declarative

networking applications. In CAV ’09: Proceedings of the 21st International Conference on

Computer Aided Verification. Springer, Berlin, 584–598.

Rhea, S., Geels, D., Roscoe, T. and Kubiatowicz, J. 2004. Handling churn in a DHT. In

ATEC ’04: Proceedings of the Annual Conference on USENIX Annual Technical Conference.

USENIX Association, Berkeley, CA, 10–10.

Singh, A., Das, T., Maniatis, P., Druschel, P., and Roscoe, T. 2008. BFT protocols under

fire. In NSDI’08: Proceedings of the 5th USENIX Symposium on Networked Systems Design

and Implementation. USENIX Association, Berkeley, CA, 189–204.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. 2001. Chord: A

scalable peer-to-peer lookup service for Internet applications. ACM SIGCOMM Computer

Communication Review 31, 4, 149–160.

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

Applying Prolog to develop distributed systems 707

The Intelligent Systems Laboratory. 2009. SICStus Prolog User’s Manual. Swedish Institute

of Computer Science. Release 4.0.5.

Vahdat, A., Yocum, K., Walsh, K., Mahadevan, P., Kostić, D., Chase, J. and Becker, D.

2002. Scalability and accuracy in a large-scale network emulator. ACM SIGOPS Operating

Systems Review 36, SI, 271–284.

Wang, A., Basu, P., Loo, B. T. and Sokolsky, O. 2009. Declarative network verification.

In PADL ’09: Proceedings of the 11th International Symposium on Practical Aspects of

Declarative Languages. Springer, Berlin, 61–75.

White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler, M.,

Barb, C. and Joglekar, A. 2002. An integrated experimental environment for distributed

systems and networks. ACM SIGOPS Operating Systems Review 36, SI, 255–270.

Yabandeh, M., Knežević, N., Kostić, D. and Kuncak, V. 2010. Predicting and

preventing inconsistencies in deployed distributed systems. ACM Transactions on Computer

Systems 28, 1, 1–49.

use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/S1471068410000360
Downloaded from http:/www.cambridge.org/core. Technical University of Munich University Library, on 20 Oct 2016 at 10:29:24, subject to the Cambridge Core terms of

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/S1471068410000360
http:/www.cambridge.org/core

