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Variational inequalities play an important role in many applications and are an active research area.
Optimal a priori error estimates in the natural energy norm do exist, but only very few results are known
for different norms. Here, we consider as prototype a simple Signorini problem, and provide new optimal
order a priori error estimates for the trace and the flux on the Signorini boundary. The a priori analysis
is based on a continuous and a discrete Steklov–Poincaré operator, as well as on Aubin–Nitsche-type
duality arguments. Numerical results illustrate the convergence rates of the finite-element approach.
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1. Introduction

Signorini-type problems are nonlinear boundary value problems that can be regarded as a simpli-
fied scalar model of elastic contact problems which are of interest in many engineering applications;
see Laursen (2002) and Wriggers (2002). Signorini and contact problems share a similar formulation,
and their approximation remains a challenging task due to the nonlinear boundary condition. A priori
error estimates in the H1(Ω)-norm for such problems were investigated over many years; see Scarpini &
Vivaldi (1977), BenBelgacem & Renard (2003) for Signorini and BenBelgacem et al. (1999), Lhalouani
& Sassi (1999), Hild (2000) for contact problems. Optimal a priori error estimates for two body con-
tact problems in the H1(Ω)-norm were established in Hüeber & Wohlmuth (2005), and more recently
reconsidered in Hild & Renard (2012) and Drouet & Hild (2015). However, the optimal order a priori
analysis for different norms of interest is still missing.

In this work, we restrict ourselves to the Poisson equation with unilateral Signorini boundary con-
ditions, and provide optimal-order convergence rates in norms associated with the Signorini boundary
ΓS . More precisely, we consider a priori error estimates for the trace in the H1/2

00 (ΓS)-norm and for the
Lagrange multiplier, i.e., the flux, in the H−1/2(ΓS)-norm. As a corollary, we show improved a priori
estimates in the L2-norm for the primal variable on Ω and for the dual variable on ΓS . While conver-
gence rates for traces can often be established using estimates in the domain, these rates are typically
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not optimal. To the best of our knowledge, no optimal-order error estimates in different norms than
H1(Ω) have been proved so far. The order of the finite-element approximation in the L2(Ω)-norm is
firstly addressed in the early paper by Natterer (1976). However, the theoretical results are limited to
very special situations. A generalization can be found in Coorevits et al. (2001) and Suttmeier (2008),
but for a straightforward application to Signorini problems, the required dual regularity is lacking, so
we do not follow these ideas. Recently introduced techniques allow optimal estimates on interfaces
and boundaries for linear problems under moderately stronger regularity assumptions; see Apel et al.
(2012), Melenk & Wohlmuth (2012), Melenk et al. (2013), Waluga & Wohlmuth (2013), Apel et al.
(2015) and Larson & Massing (2014). These techniques can also be used to compensate a lack of regu-
larity in the dual problem; see Horger et al. (2013). A reformulation of the primal variational inequality
on the boundary, as applied in Spann (1993), Eck et al. (1999), Steinbach (2014), and a Strang lemma
for variational inequalities allow us to use these techniques for the nonlinear Signorini problem.

This article is structured as follows: in the next section we state the Signorini-type problem and its
discretization as a primal formulation. In Section 3, two reformulations which play an important part
in the analysis are briefly recalled; namely, a saddle point problem and a variational formulation of the
Schur complement. Since the Galerkin formulation of the continuous Schur complement differs from
the discrete Schur complement, a Strang lemma is applied in Section 4, and the error is related to the
difference of two Steklov–Poincaré operators. In Section 5, a rate for the primal error in the H1/2

00 (ΓS)-
norm is proved, based on anisotropic norms and dual problems with local data. As a corollary, improved
rates for the L2(Ω)-norm are shown. The results are extended in Section 6, where optimal rates for the
Lagrange multiplier in the natural H−1/2(ΓS) and also in the stronger L2(ΓS)-norm are derived. Finally
in Section 7, numerical results are presented which confirm the new theoretical a priori bounds and
illustrate some additional aspects.

2. Problem setting and main result

We consider the Poisson equation with Signorini-type boundary conditions. The partial differential
equation is defined in a domainΩ ⊂ R

d , d = 2, 3. We assumeΩ to be polyhedral, convex and bounded.
The boundary Γ := ∂Ω is divided into two disjoint open parts Γ = Γ̄D ∪ Γ̄S , such that ΓD has a positive
Lebesgue measure. For simplicity of notation, we assume ΓS to be one facet of the boundary Γ .
For f ∈ L2(Ω), g ∈ H1/2(ΓS), we consider Equations (2.1a) to (2.1c):

−Δu = f in Ω , (2.1a)

u = 0 on ΓD, (2.1b)

∂nu � 0, u � g, (u − g)∂nu = 0 on ΓS . (2.1c)

The problem can be regarded as a simplified contact problem where the constraints on ΓS play the role
of a nonpenetration condition.

We assume that g is positive in a neighbourhood of ∂ΓS and that the actual contact set
Γ act := {x ∈ ΓS : u(x)= g(x)} is a compact subset of ΓS .

Remark 2.1 In general, weak solutions of Dirichlet–Neumann problems with smooth data can be repre-
sented as a series of singular components and a smooth part. The first singular component has typically
a regularity of H3/2−ε(Ω). However, due to the sign-condition of the Signorini boundary, the regularity
is improved. As long as no jump of the outer unit normal is present at the boundary of Γ act ⊂ ΓS , the
stress intensity factor associated with the first singular component has to be zero. We are interested in
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the effects of the approximation caused by the Signorini boundary condition, so let us assume that these
singular parts do not appear at any other part of the boundary. Hence, we assume f to be sufficiently
smooth and the solution to be H5/2−ε(Ω)-regular; see Moussaoui & Khodja (1992).

2.1 Weak formulations

The nonlinear Signorini boundary condition yields a constrained minimization problem, e.g.,
Glowinski (1984) and Kinderlehrer & Stampacchia (2000). Let V := {v ∈ H1(Ω) : v|ΓD = 0} and denote
the trace space of V restricted to ΓS as W := H1/2

00 (ΓS). For simplicity of notation, we omit the
trace operator whenever there is no ambiguity. We define the convex set of admissible functions by
K := {v ∈ V : v|ΓS � g}, the bilinear form a(u, v) := ∫

Ω
∇uT∇v dx and the linear form f (v) := ∫

Ω
fv dx.

The weak solution u ∈ K then satisfies the variational inequality

a(u, v − u)� f (v − u), v ∈ K. (2.2)

For the discretization, we assume a family of shape-regular simplicial triangulations Th. We denote
by NVh the number of vertices of the triangulation, except the ones on Γ̄D and by NMh the number
of vertices on ΓS . Note that, since the Signorini boundary is a facet of the polyhedral domain, both
boundary parts are exactly represented by the triangulation. We define the discrete primal space using
first-order conforming finite elements Vh := {vh ∈ C(Ω̄) : vh|T ∈ P1(T), T ∈ Th, vh|ΓD = 0}, spanned by
the nodal Lagrange basis ϕi, i = 1, . . . , NVh , and denote the discrete trace space restricted to ΓS by Wh.
For simplicity, let us assume that g is affine and strictly positive. The discretization of (2.2) then reads:
find uh ∈ Kh := {vh ∈ Vh : vh|ΓS � g}, such that

a(uh, vh − uh)� f (vh − uh), vh ∈ Kh. (2.3)

In the more general case, a suitable approximation of g can be used in the definition of Kh. We note that
since g is affine one has Kh ⊂ K.

2.2 Main results

H1(Ω)-error estimates of order h for contact problems are given in Hüeber & Wohlmuth (2005) under
some regularity assumption on the active set, as well as more recently in Hild & Renard (2012) and
Drouet & Hild (2015) under weaker assumptions on the solution.

The previously used assumption is a certain regularity for the active set Γ act, in order to exclude
a fractal active set, see e.g., Wohlmuth (2011, Assumption 4.4). Given Σh := {x ∈ ΓS : dist
(x, ∂Γ act)� 2h}, under the assumption

‖u − g‖L2(Σh) � ch2−ε|u|H2−ε(ΓS), u ∈ H2−ε(ΓS), (2.4)

optimal H1(Ω)-error estimates can be derived more easily. For d = 2, this is fulfilled if ∂Γ act contains
a finite number of points. For d = 3, the abstract condition (2.4) is implied by the following criterion
based on Γ act; see Li et al. (2009, Lemma 2.1). The active set fulfils a cone property, has a piecewise
C1 boundary and there exists a δ0 > 0 such that, for all 0< δ < δ0 and x ∈ ∂Γ act, one has x + δn 	∈ Γ act,
where n is the outer unit normal of ∂Γ act in ΓS . See Fig. 1 for an illustration of the regularity condition.
Note that due to recently introduced techniques in Drouet & Hild (2015), the regularity assumption is
no longer necessary.
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Fig. 1. Illustration of the regularity assumption. Left: fulfilled condition and an illustration of the set Σh. Right: violated criterion
on Γ act.

In the following, ε ∈ (0, 1
2 ] is fixed. Generic constants 0< c, C<∞ are independent of the mesh

size, but possibly dependent on the mesh regularity. Moreover, some of our generic constants are not
robust with respect to ε.

The main result of this paper is summarized in the following theorem and proved in the following
sections.

Theorem 2.2 Let u be the solution of (2.2) and uh be the solution of (2.3). Assuming u ∈ H5/2−ε(Ω),
ε ∈ (0, 1

2 ] fixed, we get

‖u − uh‖H1/2
00 (ΓS)

� ch3/2−ε‖u‖H5/2−ε(Ω).

Note that the constant c depends on ε and tends to infinity if ε tends to zero.

Based on this trace estimate, we can easily improve the L2(Ω)-estimate, up to the order h3/2−ε.
Additionally, we show optimal approximation results for the boundary flux ∂nu|ΓS in the natural
H−1/2(ΓS)-norm.

3. Equivalent reformulations

A crucial role in our analysis play three different but equivalent variational formulations. Since g is
affine, the pointwise condition uh � g can be reformulated in a variationally consistent way, using a
biorthogonal dual basis. This choice yields the second variational formulation, a saddle point formula-
tion, where the primal solution as well as the flux on the Signorini boundary are unknowns. The third
formulation, a variational formulation for the Schur complement posed on ΓS , is adequate to bound the
primal trace error. However, the Schur complement of the discrete formulation differs from the Galerkin
discretization of the continuous Schur complement.

3.1 Saddle point formulation

The second formulation, a saddle point problem, is widely used for Signorini type as well as contact
problems. It can be obtained from the theory of constrained optimization; see for example, Ekeland
& Temam (1999) and Ito & Kunisch (2008). Associated to the dual space of W , M := H−1/2(ΓS), is
the convex cone M + := {μ ∈ M : 〈v,μ〉ΓS � 0, v ∈ W , v � 0}, where 〈·, ·〉ΓS denotes the duality pairing
between H1/2

00 (ΓS) and H−1/2(ΓS).
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The saddle point problem reads: find (u, λ) ∈ V × M +, such that

a(u, v)+ 〈v, λ〉ΓS = f (v), v ∈ V , (3.1a)

〈u,μ− λ〉ΓS � 〈g,μ− λ〉ΓS , μ ∈ M +. (3.1b)

Let the vertices be enumerated such that the first NMh vertices lie on ΓS . Associated to the primal
Lagrange basis functions ϕi, i = 1, . . . , NMh , which do not vanish on ΓS , are biorthogonal basis functions
ψi ∈ L2(ΓS), i = 1, . . . , NMh , satisfying 〈ϕj,ψi〉ΓS = δij 〈ϕj, 1〉ΓS . The standard choice are piecewise linear
basis functions with the same support on ΓS as the corresponding primal basis function. This uniquely
determines the basis by an inversion of the local mass matrix; see, for example, Wohlmuth (2001).
The discrete dual space Mh is spanned by the biorthogonal basis functions ψi ∈ L2(ΓS), and a uniform
inf–sup stability for the discrete spaces Vh and Mh holds, see Wohlmuth (2000). The convex cone M +

is discretized as the positive span of the biorthogonal basis functions, i.e., M +
h := {∑NMh

i=1 αiψi,αi � 0}.
We note that a crosspoint modification is in practice not required due to our assumption that Γ act is a
compact subset of ΓS .

The discretized saddle point formulation of (3.1) then reads: find (uh, λh) ∈ Vh × M +
h , such that

a(uh, vh)+ 〈vh, λh〉ΓS = f (vh), vh ∈ Vh, (3.2a)

〈uh,μh − λh〉ΓS � 〈g,μh − λh〉ΓS , μh ∈ M +
h . (3.2b)

We point out that Mh ⊂ M , but the discrete cone M +
h is not included in M +. The equivalence of the

primal formulation (2.3) with a pointwise constraint and the weak constraint of the saddle point problem
holds since g is affine. In the more general case, one can define Kh as {vh ∈ Vh : 〈vh, λh〉ΓS � 〈g, λh〉ΓS ,
λh ∈ M +

h }. Then (2.3) and (3.2) are still equivalent.

3.2 Reformulation as a Schur complement system

Due to the fact that the inequality constraint is solely located on the boundary, we can easily rewrite (3.1)
and (3.2) as Schur complement systems. On the continuous level, we define the Steklov–Poincaré oper-
ator S : W → M by solving the Dirichlet problem

−Δwz = 0 in Ω , wz = 0 on ΓD, wz = z on ΓS ,

for any z ∈ W and defining Sz := ∂nwz|ΓS . The continuous Newton potential Nf = −∂nŵf |ΓS ∈ M is
defined based on the solution of the homogeneous Dirichlet problem −Δŵf = f in Ω and ŵf = 0
on ∂Ω . Based on these operators, we can formulate the Schur complement system, which is a vari-
ational inequality on the Signorini boundary. The primal trace uS := u|ΓS ∈ KS := {v ∈ H1/2

00 (ΓS) : v � g}
solves

〈v − uS , SuS〉ΓS � 〈v − uS , Nf〉ΓS , v ∈ KS . (3.3)

An equivalent characterization of the Steklov–Poincaré operator is possible, as the Lagrange multi-
plier λz = −Sz of a saddle point problem, where (wz, λz) ∈ V × M solves

a(wz, v)+ 〈v, λz〉ΓS = 0, v ∈ V , (3.4a)

〈wz,μ〉ΓS = 〈z,μ〉ΓS , μ ∈ M , (3.4b)
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which corresponds to weakly imposed Dirichlet conditions; see Babuška (1973). The continuous
Newton potential can also be defined as the Lagrange multiplier of an analogue saddle point formulation
with a nontrivial right-hand side in (3.4a), but a trivial one in (3.4b). The Steklov–Poincaré operator and
the Newton potential map Dirichlet data and volume data to Neumann data, respectively. They have sev-
eral applications, for example, in domain decomposition and boundary element methods; see Quarteroni
& Valli (1999), Toselli & Widlund (2005) and Steinbach (2008).

By using a mixed finite-element approximation to the above Dirichlet problem (3.4), we can define a
mesh-dependent Steklov–Poincaré operator Sh : W → Mh by Shz := −λz,h, where (wz,h, λz,h) ∈ Vh × Mh

solves

a(wz,h, vh)+ 〈vh, λz,h〉ΓS = 0, vh ∈ Vh, (3.5a)

〈wz,h,μh〉ΓS = 〈z,μh〉ΓS , μh ∈ Mh. (3.5b)

An analogue discretization yields a mesh-dependent Newton potential Nhf . Denote by Wh the trace
space of Vh. Up to scaling factors, the matrix formulation for Sh|Wh and Nhf coincide with the discrete
Schur complement system of the matrix formulation of (2.3) by construction. The uniform continuity of
Sh directly follows from the saddle point theory using the inf–sup stability of the discrete spaces, while
the uniform Wh-ellipticity follows using basic properties of discrete harmonic functions, e.g., Toselli
& Widlund (2005, Lemma 4.10). Precisely, one has 〈vh, Shvh〉ΓS = a(wv,h, wv,h), where wv,h ∈ Vh is the
discrete harmonic extension of vh ∈ Wh; hence 〈vh, Shvh〉ΓS = |wv,h|2H1(Ω)

� c‖vh‖2
H1/2

00 (ΓS)
.

The Schur complement system of (2.3) can be represented as an approximative discretization
of (3.3). For KS,h := {vh ∈ Wh : vh � g} find uS,h ∈ KS,h such that

〈vh − uS,h, ShuS,h〉ΓS � 〈vh − uS,h, Nhf 〉ΓS , vh ∈ KS,h. (3.6)

The three weak formulations (2.2), (3.1) and (3.3) are equivalent as well as the three discrete variational
problems (2.3), (3.2) and (3.6).

4. Application of a Strang lemma

While u solves the variational inequality (3.3) with the operators S and N , the discrete solution uh

solves the variational inequality (3.6) with the mesh-dependent operators Sh and Nh. In this subsection,
we show that the H1/2

00 (ΓS) error can be bounded by two terms. The first term is the H−1/2(ΓS) norm of
the difference between Nf − S(u|ΓS )= λ and Nhf − Sh(u|ΓS )=: λ̃h ∈ Mh. Note that λ̃h is the discrete dual
solution of the linear saddle point problems defining the Dirichlet–Neumann map; see (3.5). Associated
with λ̃h is ũh = ŵf ,h + wu|ΓS ,h, and (ũh, λ̃h) ∈ Vh × Mh solves

a(ũh, vh)+ 〈vh, λ̃h〉ΓS = f (vh), vh ∈ Vh,

〈ũh,μh〉ΓS = 〈u,μh〉ΓS , μh ∈ Mh.

The second term is the discretization error of the variational inequality on the boundary (3.3).
Let ūh ∈ KS,h be such that

〈vh − ūh, Sūh〉ΓS � 〈vh − ūh, Nf〉ΓS , v ∈ KS,h. (4.1)
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Lemma 4.1 The trace error of the Signorini problem (2.2) can be bounded by

‖u − uh‖H1/2
00 (ΓS)

� c‖λ− λ̃h‖H−1/2(ΓS) + c‖u − ūh‖H1/2
00 (ΓS)

.

Proof. The proof of this lemma follows the lines of Of et al. (2015, Theorem 3.2). Since the proof is
fundamental, we work it out. We start with the trivial triangle inequality

‖u − uh‖H1/2
00 (ΓS)

� ‖u − ūh‖H1/2
00 (ΓS)

+ ‖ūh − uh‖H1/2
00 (ΓS)

.

For the second term ūh − uh, we use the Wh-ellipticity of the mesh-dependent Steklov–Poincaré operator
and apply the variational inequalities (3.6) and (4.1):

c‖ūh − uh‖2
H1/2

00 (ΓS)
� 〈ūh − uh, Sh(ūh − uh)〉ΓS

� 〈ūh − uh, Shūh〉ΓS + 〈ūh − uh, Nf − Nhf 〉ΓS − 〈ūh − uh, Sūh〉ΓS

= 〈ūh − uh, Nf − Sūh − (Nhf − Shūh)〉ΓS

� ‖ūh − uh‖H1/2
00 (ΓS)

‖Nf − Sūh − (Nhf − Shūh)‖H−1/2(ΓS).

Using the boundedness of the operators and once again the triangle inequality, we get

‖ūh − uh‖H1/2
00 (ΓS)

� c‖Nf − Su − (Nhf − Shu)‖H−1/2(ΓS) + c‖S(u − ūh)‖H−1/2(ΓS) + c‖Sh(u − ūh)‖H−1/2(ΓS)

� c‖λ− λ̃h‖H−1/2(ΓS) + c‖u − ūh‖H1/2
00 (ΓS)

.

A bound of u − ūh can be shown using Falk’s lemma; see Falk (1974, Theorem 1), which is an analogue
result to Céa’s lemma for variational inequalities. Since g is affine, the discretization of the variational
inequality is conforming in the sense that KS,h ⊂ KS , and Falk’s lemma reads

‖u − ūh‖H1/2
00 (ΓS)

� c inf
vh∈KS,h

(‖u − vh‖H1/2
00 (ΓS)

+ 〈λ, u − vh〉1/2
ΓS
). (4.2)

�

Lemma 4.2 Let u ∈ KS be the solution to the variational inequality on the boundary (3.3) and ūh ∈ KS,h

be the Galerkin approximation; see Equation (4.1). Assuming u ∈ H5/2−ε(Ω), we get

‖u − ūh‖H1/2
00 (ΓS)

� ch3/2−ε|u|H5/2−ε(Ω).

Proof. This type of estimate was already considered in the context of boundary element methods,
in Spann (1993, Theorem 3.1) and Steinbach (2014, Section 3), where additional assumptions on the
boundary of the active set were made. To keep this article self-contained, we present a proof based on
techniques for H1(Ω)-estimates.

In this proof, only the Signorini boundary ΓS is considered, so any notation refers to R
d−1. We

introduce the triangulation T S
h on the Signorini boundary which is induced by the triangulation of Ω .

We note that the induced triangulation on the Signorini boundary is also shape-regular and denote by hT

the diameter of an element T ∈ T S
h .

We use recently introduced techniques from Drouet & Hild (2015) based on nonstandard L1- and
L2-estimates. We use Falk’s lemma (4.2) with vh = Jhu ∈ KS,h, where for d = 2, Jh is the piecewise linear
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Fig. 2. Active and inactive area within one element T for d = 2, i.e., ΔT = T .

nodal interpolation operator and for d = 3, Jh is the Chen–Nochetto operator, see Chen & Nochetto
(2000). It remains to bound

〈λ, u − Jhu〉ΓS =
∑

T∈T S
h

∫
T
λ(u − Jhu) dΓ .

One of the main ideas of this proof is to derive two estimates for each element, where dependent on the
measure of the active area in a surrounding patch one of the two estimates is applied. Given any T ∈ T S

h ,
we set ΔT = T for d = 2 and ΔT ⊂ ΓS as the patch surrounding T for d = 3.

On the patch, we define the local active area Δact
T =ΔT ∩ Γ act and the local inactive area

Δinact
T =ΔT\Δact

T ; see Fig. 2.
Note that by construction only the elements with |Δact

T |> 0 and |Δinact
T |> 0 are of interest, otherwise

either λ or u − Jhu is equal to zero. Recently developed nonstandard estimates for u and λ (see Drouet
& Hild, 2015) yield

∫
T
λ(u − Jhu) dΓ � c min

( |ΔT |1/2
|Δinact

T |1/2 ,
|ΔT |1/2
|Δact

T |1/2
)

h3−2ε
T

(|λ|2H1−ε(ΔT )
+ |u|2H2−ε(ΔT )

)
.

Since |Δact
T | + |Δinact

T | = |ΔT |, one of the measures is greater than or equal to |ΔT |/2. Summing over
the elements and applying the trace inequality yields the desired estimate. �

5. A priori estimate of the primal trace

In this section, an upper bound for ‖λ− λ̃h‖H−1/2(ΓS) is shown, which concludes the primal trace estimate
in Lemma 2.2. The Lagrange multiplier arises from a linear Dirichlet problem with a weak enforcement
of the boundary values, which is covered by the problem formulation in Melenk & Wohlmuth (2012).
However, the required regularity of B5/2

2,1 (Ω) is not given in our case. Thus, we have to generalize
these results. We follow the lines of Melenk & Wohlmuth (2012), but will not work with the Besov
space B5/2

2,1 (Ω). Reducing the regularity from B5/2
2,1 (Ω) to H5/2−ε(Ω) automatically results in a reduced

convergence order, but we do not lose a log-term.
The first two subsections collect some technical tools for the proof which is carried out in Sub-

section 5.3. Firstly, for a Scott–Zhang operator, we show optimal approximation results in anisotropic
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Fig. 3. Left: decomposition of a 2D domain into the patches. Right: one patch after a suitable rotation.

norms. Secondly, for two dual problems, estimates in these norms are shown. As a corollary of the main
result, we show improved rates in the L2(Ω)-norm.

5.1 Anisotropic norms and quasi-interpolation results

Estimating the dual solution on the boundary can be related to bounds of the primal solution in a neigh-
bourhood of Γ . We define strips around the boundary of width δ by S(δ) := {x ∈Ω : dist(x,Γ )� δ}.
Using a dual Neumann problem with local volume data, we can relate the dual error to the primal error
on a strip S(ch). As a technical tool to derive local error estimates for the dual problems on these
strips, we use anisotropic norms as in Melenk & Wohlmuth (2012), Melenk et al. (2013) and Waluga &
Wohlmuth (2013). We simplify the original definition, which was based on a technical decomposition
of the domain into ‘cylinders’. Instead, we use an intuitive decomposition into triangles and pyramids,
based on the faces of the polygonal domain.

For a formal definition, we first decompose the domain Ω into a set of patches which are triangles
if d = 2 and pyramids if d = 3. Each patch is supposed to connect one facet with the barycentre of Ω .
Since Ω is convex, the barycentre xc lies in the interior of Ω . Let an enumeration of the facets be given
by γi, i = 1, . . . , Nγ , and consider one facet γi. The patch Ωi is the triangle and pyramid in 2D and

3D, respectively, with γi as the base side and xc as the top. Obviously, Ω̄ = ∪Nγ
i=1Ω̄i; see Fig. 3. For

each patch Ωi, we define the anisotropic norm L(p, 2;Ωi) based on a decomposition of the patch into
a (d − 1)-dimensional part parallel to the facet γi and the one-dimensional distance to the facet. Given
i ∈ {1, . . . , Nγ }, without any loss of generality, we assume that γi lies in the x1, . . . , xd−1-plane and Ω
lies in the positive half-space {(x′, τ), x′ ∈ R

d−1, τ � 0}. We denote by γτ := {(x′, τ) ∈Ωi, x′ ∈ R
d−1} for

τ � 0, the part in Ωi parallel to γi, having distance τ to γi. We have γτ = ∅ for τ < 0 and τ � D, where
D is the diameter of Ω . By the Fubini–Tonelli formula, the integral over Ωi can be decomposed as

∫
Ωi

v dx =
∫ D

τ=0

∫
γτ

v dμ dτ ,

where dμ denotes the (d − 1)-dimensional Lebesgue measure. We define anisotropic norms L(p, 2;Ωi),
1 � p � ∞, by

‖v‖p
L(p,2;Ωi)

:=
∫ D

τ=0

(∫
γτ

v2 dμ

)p/2

dτ , 1 � p<∞,

‖v‖L(∞,2;Ωi) := sup
τ∈(0,D)

(∫
γτ

v2 dμ

)1/2

.
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Adding the components of each patch, we define anisotropic norms L(p, 2) on Ω:

‖v‖p
L(p,2) :=

Nγ∑
i=1

‖v‖p
L(p,2;Ωi)

, 1 � p<∞,

‖v‖L(∞,2) := max
i=1,...,Nγ

‖v‖L(∞,2;Ωi).

Note that the patches coverΩ without any overlap and the L(2, 2)-norm coincides with the L2(Ω)-norm.
The Hölder inequality

∫
Ω

fg dx � ‖f ‖L(p,2)‖g‖L(q,2) for 1/p + 1/q = 1 follows from the one-
dimensional Hölder inequality. Furthermore, an interpolation result analogue to Lp spaces is valid; see
e.g., Tartar (2007).

Lemma 5.1 For 1< p<∞ and 1/p + 1/p′ = 1, one has

L(p, 2)= (L(1, 2), L(∞, 2))1/p′ ,p.

Proof. For the convenience of the reader, we sketch the main steps. Consider any patch Ωi,
i ∈ {1, . . . , Nγ }. For any 1 � q � ∞ and v ∈ L(q, 2;Ωi), I = (0, D), consider fv ∈ Lq(I) which is defined
for almost every τ ∈ I by fv(τ ) := ‖v‖L2(γτ ). One has ‖v‖L(q,2;Ωi) = ‖fv‖Lq(I), and we can show the equality
of the two K-functionals

K(t, v; L(1, 2;Ωi), L(∞, 2;Ωi))= inf
v=v0+v1

(‖v0‖L(1,2;Ωi) + t‖v1‖L(∞,2;Ωi)),

K(t, fv; L1(I), L∞(I))= inf
fv=f0+f1

(‖f0‖L1(I) + t‖f1‖L∞(I)),

and use the standard Lp-interpolation Lp(I)= (L1(I), L∞(I))1/p′,p; see Tartar (2007, Lemma 22.6).
On the one hand, any decomposition fv = f0 + f1 directly implies a decomposition by

vi(x′, τ) := v(x′, τ)fi(τ )/fv(τ ) for x′ ∈ R
d−1. The case fv(τ )= 0 is trivial and can be excluded. One has

v = v0 + v1 and fvi = fi. As a consequence

K(t, v; L(1, 2;Ωi), L(∞, 2;Ωi))� K(t, fv; L1(I), L∞(I)).

On the other hand, for any decomposition v = v0 + v1 one has

fv0(τ )+ fv1(τ )= ‖v0‖L2(γτ ) + ‖v1‖L2(γτ ) � ‖v0 + v1‖L2(γτ ) = fv(τ ).

Hence, the decomposition of fv by fv = f0 + f1,

fi(τ ) := fvi(τ )
fv(τ )

fv0(τ )+ fv1(τ )
� fvi(τ ), i = 0, 1,

yields ‖f0‖L1(I) � ‖v0‖L(1,2) as well as ‖f1‖L∞(Ω) � ‖v1‖L(∞,2). This implies

K(t, v; L(1, 2;Ωi), L(∞, 2;Ωi))� K(t, fv; L1(I), L∞(I))

and concludes the equality of both K-functionals.
Since the patches cover Ω without any overlap, the interpolation property for L(p, 2) follows. �
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As a preliminary to our analysis, we state approximation results of a Scott–Zhang-type quasi-
interpolation operator in the anisotropic norms. We consider Ph : V → Vh as in Scott & Zhang (1990),
based on the biorthogonal basis on ΓS , preserving the homogeneous Dirichlet data on ΓD. The boundary
values are preserved such that Phv|ΓD = 0 and 〈Phv,μh〉ΓS = 〈v,μh〉ΓS for μh ∈ Mh. On ΓS , optimal order
L2-approximation properties

‖v − Phv‖L2(ΓS) � ch2−ε|v|H2−ε(ΓS) (5.1)

for v ∈ V ∩ H5/2−ε(Ω) are given. An approximation result in the L(q, 2)-norm is given by the following
lemma.

Lemma 5.2 For v ∈ V ∩ H5/2−ε(Ω), and 1/2 � ε > 0, one has

‖∇(v − Phv)‖L(q,2) � ch‖v‖H5/2−ε(Ω), with q = 1/ε.

Proof. Since the L(2, 2)-norm coincides with the L2(Ω)-norm, we have the standard approximation
result

‖∇(v − Phv)‖L(2,2) � ch|v|H2(Ω).

For q> 2, we show the estimate by an interpolation argument, using the L(2, 2) and the L(∞, 2) esti-
mate. For the L(∞, 2) norm, we can easily adapt the proof in Melenk & Wohlmuth (2012, Lemma 4.1)
using local approximation results of the Scott–Zhang operator (Scott & Zhang, 1990, Equation 4.3).
For any patch Ωi, i ∈ {1, . . . , Nγ } and τ > 0, we first define two strips around γτ . A strip of width 2δ
is defined by Si(δ, τ) := {x ∈Ω : dist(x, γτ )� δ} and a discrete neighbourhood can be constructed by
the elements intersecting γτ : Iτ := {T ∈ Th : γτ ∩ T̄ |= ∅}. Note that we cannot expect Si(δ, τ)⊂Ωi, but
this inclusion is not necessary for our analysis. Using these strips, local estimates of the Scott–Zhang
operator yield

‖∇(v − Phv)‖2
L2(γτ )

� c
∑
T∈Iτ

(
1

h
‖∇(v − Phv)‖2

L2(T) + h‖∇2(v − Phv)‖2
L2(T)

)

� ch|v|2H2(Si(c̃h,τ)) � ch2‖v‖2
B5/2

2,1 (Ω)
,

where in the last step (Li et al., 2009, Lemma 2.1) was used. Consequently, we have

‖∇(v − Phv)‖L(∞,2) � ch‖v‖B5/2
2,1 (Ω)

.

To show this estimate also for interpolation spaces, we can apply the interpolation property
(Tartar, 2007, Lemma 22.3). By the reiteration theorem and Lemma 5.1, we have the interpolation
representations L(q, 2)= (L(2, 2), L(∞, 2))1−2ε,q as well as the similar term H5/2−ε(Ω)= (H2(Ω),
B5/2

2,1 (Ω))1−2ε,2 ⊂ (H2(Ω), B5/2
2,1 (Ω))1−2ε,q. As a consequence, the stated estimate is also valid in the

interpolated spaces. �

5.2 Dual problems

In this subsection, we follow the lines of Melenk & Wohlmuth (2012, Section 5) and define a dual
Dirichlet problem with locally supported data. For v ∈ L2(Ω), suppv ⊂ S(h), we denote by TDv the
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solution operator of
−Δw = v in Ω , w = 0 on Γ , (5.2)

i.e., TDv = w.
In contrast to Melenk & Wohlmuth (2012), we cannot assume B5/2

2,1 (Ω)-regularity for the solution
of (2.2), but only H5/2−ε(Ω)-regularity. Naive interpolation of the final estimate does not yield optimal
results, but an additional log-term. For optimal results, we need the stronger estimate given in the fol-
lowing lemmas. In the next lemma, we state a regularity estimate in a weighted Sobolev space using the
local support of the data of the dual problem. Based on this estimate, we then state an approximation
result for the Galerkin approximation of the dual solution in an anisotropic norm.

Lemma 5.3 For v ∈ L2(Ω), suppv ⊂ S(h) and w := TDv there exists 0< c̃<∞ independent of v and
h, such that

‖δ1/2−ε/2
Γ ∇2w‖L2(Ω\S(c̃h)) � ch1/2−ε/2‖v‖L2(Ω),

where δΓ is the distance function to Γ .

Proof. We follow the idea of Melenk & Wohlmuth (2012, Lemma 5.4), but instead of several local
translations of w, we consider a global scaling of the coordinate system. To exploit the local data of the
dual problem, we choose a sufficiently large scaling factor such that the transformation of w is harmonic
in a neighbourhood of Ω . This allows us to apply interior regularity results for the transformation of w
(see Gilbarg & Trudinger, 2001, Theorem 8.8):

‖∇2z‖L2(B1) � c‖z‖H1(B1+ρ), (5.3)

for −Δz = 0 on B1+ρ , a ball of radius 1 + ρ for a fixed ρ > 0.
Without loss of generality, assume that the barycentre of Ω is the origin of the coordinate system.

For sufficiently small h, we define a neighbourhood of Ω by a scaling Ω̃ := {(1 + 4C1h)x : x ∈Ω}.
Since we estimate w only on Ω\S(c̃h), where c̃ is selected later, we can choose the scaling factor
appropriately. The constant C1 is sufficiently large, but fixed and independent of h, such that,
for x ∈ S(h), one has (1 + 2C1h)x 	∈Ω . We scale w to a function on this neighbourhood by
w̃ : Ω̃ → R, w̃(x) := w(x/(1 + 4C1h)).

Note that the introduced scaling preserves harmonic functions, more precisely for x ∈Ω and
h< 1/(2C1), we have (1 + C1h)/(1 + 4C1h)x ∈Ω\S(h), and thus

Δw̃ = 0 at (1 + C1h)x, x ∈Ω .

Since the scaling factor is uniformly bounded, it also preserves Sobolev norms, i.e.,

c‖w̃‖Hσ (Ω̃) � ‖w‖Hσ (Ω) � C‖w̃‖Hσ (Ω̃), σ ∈ {0, 3/2}.

To apply the transformation w̃, we choose c̃ sufficiently large such that the transformation
of Ω\S(c̃h) is a subset of Ω\S(h), and thus

‖δ1/2−ε/2
Γ ∇2w‖L2(Ω\S(c̃h)) � c‖(δΓ + h)1/2−ε/2∇2w̃‖L2(Ω\S(h)), for x ∈Ω .

Standard interior regularity (5.3) yields ‖∇2w̃‖L2(Br) � cr−1/2+ε/2‖w̃‖H3/2+ε/2(Br(1+ρ)) for a fixed ρ > 0 and
any concentric balls of radius r and r(1 + ρ), such that Br(1+ρ) ⊂Ω . A covering of Ω\S(h) using balls
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of centre xi and radii ri ∼ h + δΓ (xi) shows

‖(δΓ + h)1/2−ε/2∇2w̃‖L2(Ω\S(h)) � c‖w̃‖H3/2+ε/2(Ω).

Details on the Besicovitch covering theorem can be found in Evans & Gariepy (1992, Section 1.5.2)
and Melenk (2002, Chapter 5).

An analogue computation as in Melenk & Wohlmuth (2012, Lemma 5.4), where the case ε= 0
was considered, concludes the proof . We bound the K-functional of the fractional Sobolev space
(H1(Ω), H2(Ω))1/2+ε/2,2 = H3/2+ε/2(Ω) by

‖w̃‖2
H3/2+ε/2(Ω) =

∫ h

t=0
(t−1/2−ε/2K(t, w̃))2

dt

t
+
∫ 1

t=h
(t−1/2−ε/2K(t, w̃))2

dt

t

�
∫ h

t=0
(t−1/2−ε/2K(t, w̃))2

dt

t
+
∫ 1

t=h
t−1−ε dt sup

t>0
(t−1/2K(t, w̃))2. (5.4)

Again applying the interior regularity (5.3), we get ‖w̃‖H2(Ω) � ch−1/2‖w‖H3/2(Ω), which yields
K(t, w̃)� ct‖w̃‖H2(Ω) � cth−1/2‖w‖H3/2(Ω). Substituting this upper bound in the first integral of (5.4)
and observing supt>0(t

−1/2K(t, w̃))� ‖w‖B3/2
2,∞(Ω)

, yields

‖w̃‖H3/2+ε/2(Ω) � ch−ε/2‖w‖B3/2
2,∞(Ω)

.

Finally, Melenk & Wohlmuth (2012, Lemma 5.2) states ‖w‖B3/2
2,∞(Ω)

� ch1/2‖v‖L2(Ω), which con-

cludes the proof. �

Remark 5.4 A closer look reveals that the upper bound depends on ε. More precisely if ε tends to zero
it tends to infinity. The first term on the right-hand side of (5.4) is robust in ε, but the constant in the
second term can only be bounded by ε−1/2, and in the limit case ε= 0 a log-term in h appears.

Using local error estimates and the weighted regularity result proved above, we show an approxi-
mation result for the Galerkin approximation of the dual problem in anisotropic norms.

Lemma 5.5 Given v ∈ L2(Ω) with suppv ⊂ S(h), consider w = TDv and the Galerkin approximation
wh ∈ Vh ∩ H1

0 (Ω). For 1< p = (1 − ε)−1 � 2, one has the following approximation property:

‖∇(w − wh)‖L(p,2) � ch3/2−ε‖v‖L2(Ω).

Proof. We show the estimate on each patchΩi, i ∈ {1, . . . , Nγ }. In the definition of the norm, we decom-
pose the integral in τ from 0 to D into two parts and find

‖∇(w − wh)‖p
L(p,2;Ωi)

=
∫ c̃1h

τ=0
‖∇(w − wh)‖p

L2(γτ )
dτ +

∫ D

τ=c̃1h
‖∇(w − wh)‖p

L2(γτ )
dτ ,

where c̃1 has to be adapted to the constant c̃ resulting from the previous lemma.
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The first term is an integral over a strip of width O(h). The Hölder inequality with the exponents
2/p, 2/(2 − p) and the Fubini–Tonelli formula obviously yield, for p = (1 − ε)−1,

∫ c̃1h

τ=0
‖∇(w − wh)‖p

L2(γτ )
dτ � ch(2−p)/2

(∫ c̃1h

τ=0
‖∇(w − wh)‖2

L2(γτ )
dτ

)p/2

� chp(1/2−ε)‖∇(w − wh)‖p
L2(S(c̃1h)).

Since Ω is convex, we have ‖∇(w − wh)‖L2(S(c̃1h)) � ‖∇(w − wh)‖L2(Ω) � ch‖v‖L2(Ω), which gives

∫ c̃1h

τ=0
‖∇(w − wh)‖p

L2(γτ )
dτ � chp(3/2−ε)‖v‖p

L2(Ω)
.

The second integral is estimated using a local approximation property and the regularity result given
in Lemma 5.3. First, we insert τ 1/2τ−1/2 and use the Hölder inequality with the same exponents as
before: ∫ D

τ=c̃1h
τ−1/2τ 1/2‖∇(w − wh)‖p

L2(γτ )
dτ

�
(∫ D

τ=c̃1h
τ−1/(2−p) dτ

)(2−p)/2(∫ D

τ=c̃1h
τ 1/p‖∇(w − wh)‖2

L2(γτ )
dτ

)p/2

� ch−pε/2‖τ 1/2−ε/2∇(w − wh)‖p
L2(Ω\S(c̃1h)).

Again, we note that the value of the constant does not stay bounded for ε→ 0.
Based on the discussion in Melenk & Wohlmuth (2012, Section 5.1.2), we derive the bound

‖τ 1/2−ε/2∇(w − wh)‖L2(Ω\S(c̃1h))

� c‖τ 1/2−ε/2∇(w − Ihw)‖L2(Ω\S(c̃2h)) + c‖τ−1/2−ε/2(w − wh)‖L2(Ω\S(c̃2h)) (5.5)

for an arbitrary but fixed c̃2 if c̃1 is chosen sufficiently large. Here, Ih denotes the standard nodal inter-
polation operator. This estimate is based on local approximation properties found in Wahlbin (1991,
1995) and a Besicovitch covering argument.

To estimate the first term, we exploit the regularity result derived in Lemma 5.3. Based on c̃, which
is given from the previous lemma, we can choose c̃2 and c̃1 sufficiently large such that

‖τ 1/2−ε/2∇(w − Ihw)‖L2(Ω\S(c̃2h)) � ch‖τ 1/2−ε/2∇2w‖L2(Ω\S(c̃h))

� ch3/2−ε/2‖v‖L2(Ω).

Using the convexity of Ω the second term of (5.5) can be bounded easily by

‖τ−1/2−ε/2(w − wh)‖L2(Ω\S(c̃2h)) � ch−1/2−ε/2‖w − wh‖L2(Ω) � ch3/2−ε/2‖v‖L2(Ω). �

The previously shown bounds in anisotropic norms are sufficient to show primal estimates in a
neighbourhood of the boundary. For a final bound of the Lagrange multiplier, we also need to consider
a dual problem with Neumann data, as defined in Melenk & Wohlmuth (2012, Section 5.2). Given
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v ∈ L2(Ω), suppv ⊂ S(h), define wN
v such that

−ΔwN
v = v − 1

|Ω|
∫
Ω

v dx in Ω , ∂nwN
v = 0, on Γ ,

∫
Ω

wN
v dx = 0. (5.6)

Denote by V−1
h the space of discrete functions without any restriction of the boundary values. Using

the same arguments as before, we can adapt the proof of Melenk & Wohlmuth (2012, Lemma 5.7), and
show the following statement based on the dual Neumann problem.

Corollary 5.6 Let u ∈ V ∩ H5/2−ε(Ω) and uN
h ∈ V−1

h satisfy the orthogonality condition

a(u − uN
h , vh)= 0 for vh ∈ V−1

h and
∫

S(h)
u − uN

h dx = 0;

then,

‖u − uN
h ‖L2(S(h)) � ch5/2−ε‖u‖H5/2−ε(Ω),

|u − uN
h |H1/2(Γ ) � ch3/2−ε‖u‖H5/2−ε(Ω).

5.3 Error bound for the Dirichlet–Neumann map

With the results of the previous subsection, we can estimate the H−1/2(ΓS)-error of the Dirichlet–
Neumann map Nf − S(u|ΓS ) and the mesh-dependent Dirichlet–Neumann map Nhf − Sh(u|ΓS ) (see
Section 3.2), in two steps. This bound is the last step to show the primal estimate in Theorem 2.2.
Firstly, we relate the error of the dual variable to the error of the primal variable in a small strip around
Γ using the dual Neumann problem (5.6). Secondly, the error in the strip is estimated using the dual
Dirichlet problem (5.2) and the approximation results derived in the anisotropic norms.

Theorem 5.7 Assuming the solution u of the Signorini problem (2.2) to be in H5/2−ε(Ω), ε ∈ (0, 1
2 ]

fixed, then one has
‖λ− λ̃h‖H−1/2(ΓS) � ch3/2−ε‖u‖H5/2−ε(Ω).

Proof. The proof is divided into two steps. Firstly, we bound the dual error by the primal error on a
small neighbourhood of the boundary. Secondly, we bound the primal error on a small strip using the
anisotropic estimates stated in Lemmas 5.2 and 5.5.

To be more precise, the first step is to show the upper bound

‖λ− λ̃h‖H−1/2(ΓS) � ch3/2−ε‖u‖H5/2−ε(Ω) + c
1

h
‖u − ũh‖L2(S(h)). (5.7)

We use the saddle point formulation to represent the dual error by discrete harmonic functions on the
domain. Using the stability of the harmonic extension and an inverse trace inequality, we can relate the
dual error to the primal error on the strip S(h).

We start using the uniform inf–sup stability in the H−1/2(ΓS)-norm to get

‖λ− λ̃h‖H−1/2(ΓS) � c inf
μh∈Mh

‖λ− μh‖H−1/2(ΓS) + c sup
zh∈Wh

〈zh, λ− λ̃h〉ΓS

‖zh‖H1/2
00 (ΓS)

� ch3/2−ε‖λ‖H1−ε(ΓS) + c sup
zh∈Wh

a(ũh − u, Ehzh)

‖zh‖H1/2
00 (ΓS)

,

O. STEINBACH ET AL.1086

 at T
echnical U

niversity M
unich on O

ctober 13, 2016
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


where Ehzh ∈ Vh is the discrete harmonic extension of zΓh ∈ H1/2(Γ ), which is the trivial extension to
Γ of zh ∈ Wh ⊂ H1/2

00 (ΓS).
We replace u by a discrete function uN

h ∈ V−1
h satisfying the requirements of Corollary 5.6. We also

use the fact that Ehzh and ũh − uN
h are discrete harmonic to see

sup
zh∈Wh

a(ũh − u, Ehzh)

‖zh‖H1/2
00 (ΓS)

= sup
zh∈Wh

a(ũh − uN
h , Ehzh)

‖zh‖H1/2
00 (ΓS)

� c|ũh − uN
h |H1/2(Γ ).

Using an inverse inequality, we get

|ũh − uN
h |H1/2(Γ ) � c

1

h
‖ũh − uN

h ‖L2(S(h))

� c
1

h
‖u − uN

h ‖L2(S(h)) + c
1

h
‖u − ũh‖L2(S(h)).

Now, Corollary 5.6 results in (5.7).
To bound ‖u − ũh‖L2(S(h)), we employ different Galerkin orthogonalities to get a suitable represen-

tation of the error in the whole domain based on the solution of the dual problem. Applying Green’s
formula, we obtain the representation of the local error eh := u − ũh:

‖eh‖L2(S(h)) = sup
‖v‖L2(S(h))=1

(eh, v)L2(Ω) = sup
‖v‖L2(S(h))=1

(eh, −Δ(TDv))L2(Ω)

= sup
‖v‖L2(S(h))=1

a(TDv, eh)− 〈eh, ∂n(T
Dv)〉ΓS ,

where TDv ∈ H1
0 (Ω) is the solution to the dual problem (5.2).

Let us introduce the conforming finite-element approximation of w := TDv as wh ∈ Vh ∩ H1
0 (Ω), and

denote λw := −∂nw|ΓS . We recall the following orthogonality results: using the Galerkin orthogonality
in the domain for the variational inequality (2.3), one has a(wh, eh)= 0, since Trwh = 0. We recall, that
the definition of the Scott–Zhang operator Ph (see Section 5.1), guarantees 〈u − Phu,μh〉ΓS = 0 as well
as 〈Phu − ũh,μh〉ΓS = 0 for μh ∈ Mh. We can then conclude with

a(w − wh, Phu − ũh)+ 〈Phu − ũh, λw〉ΓS = 0.

For 1/p + 1/q = 1, we find using the terms discussed above

a(w, eh)+ 〈eh, λw〉ΓS = a(w − wh, u − Phu)+ inf
μh∈Mh

〈u − Phu, λw − μh〉ΓS

� ‖∇(w − wh)‖L(p,2)‖∇(u − Phu)‖L(q,2) + ‖u − Phu‖L2(ΓS) inf
μh∈Mh

‖λw − μh‖L2(ΓS).

The convexity of Ω guarantees λw ∈ H1/2(ΓS) with ‖λw‖H1/2(ΓS) � c‖v‖L2(Ω). Setting q = ε−1,
p = (1 − ε)−1, the best approximation of the dual space, Equation (5.1) and Lemmas 5.2 and 5.5 yield
the result. �

Summarizing the results of Lemmas 4.1, 4.2 and Theorem 5.7 shows the a priori result for the
primal variable of Theorem 2.2.
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5.4 An improved result on the L2(Ω)-error

Based on Natterer (1976), a convergence order h3/2 in the L2(Ω)-norm was stated in Coorevits et al.
(2001). However, the required H2(Ω)-regularity of the dual problem is very strong, since the dual
problem is a variational inequality. Based on the improved trace estimate, we can show almost the same
order without involving a dual inequality problem.

Corollary 5.8 Let u be the solution of (2.2) and uh be the solution of (2.3). Assuming u ∈ H5/2−ε(Ω),
ε ∈ (0, 1/2] fixed, we get

‖u − uh‖L2(Ω) � ch3/2−ε‖u‖H5/2−ε(Ω).

Proof. The proof is based on an Aubin–Nitsche-type argument using a linear dual problem with homo-
geneous Dirichlet conditions. Due to the nonlinear Signorini condition, an additional error term on ΓS

needs to be bounded.
Let w ∈ H1

0 (Ω) solve −Δw = u − uh in Ω . Since Ω is convex, one has ‖w‖H2(Ω) � c‖u − uh‖L2(Ω)

and ‖∂nwv‖L2(ΓS) � ‖w‖H2(Ω). Applying Green’s formula yields

‖u − uh‖2
L2(Ω) =

∫
Ω

∇wT∇(u − uh) dx − 〈u − uh, ∂nwv〉ΓS .

The first term can be bounded as it is standard in Aubin–Nitsche arguments, due to the homogeneous
Dirichlet values of w. For the second term, we use the trace estimate provided in Theorem 2.2:

〈u − uh, ∂nw〉ΓS � ‖u − uh‖L2(ΓS)‖∂nw‖L2(ΓS)

� ch3/2−ε‖u‖H5/2−ε(Ω)‖w‖H2(Ω).
�

Remark 5.9 We note that, in the proof of the L2(Ω)-norm, we use the trivial bound ‖u − uh‖L2(ΓS) �
‖u − uh‖H1/2(ΓS). Thus, an extra h1/2 would be gained, if a higher-order L2(ΓS) bound was available.

6. Lagrange multiplier estimates

The H−1/2(ΓS)-norm for the Lagrange multiplier of the Signorini problem arising in the saddle point
formulation (3.1) can be estimated using similar arguments as those used in Theorem 5.7. Due to the
given primal estimate of Theorem 2.2, no estimate on a strip is needed here. By standard techniques,
the L2(ΓS)-norm can also be estimated.

Theorem 6.1 Let (u, λ) be the solution of the saddle point formulation (3.1). If the regularity require-
ment u ∈ H5/2−ε(Ω), ε ∈ (0, 1

2 ] fixed, holds, then

‖λ− λh‖H−1/2(ΓS) � ch3/2−ε‖u‖H5/2−ε(Ω),

‖λ− λh‖L2(ΓS) � ch1−ε‖u‖H5/2−ε(Ω).
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Proof. The first line of the saddle point problem (3.1a) and its Galerkin discretization (3.2a) yield
a(u − uh, vh)+ 〈vh, λ− λh〉ΓS = 0 for vh ∈ Vh. Similar arguments as in the proof of Theorem 5.7 give

‖λ− λh‖H−1/2(ΓS) � ch3/2−ε‖λ‖H1−ε(ΓS) + c sup
zh∈Wh

a(uh − u, Ehzh)

‖zh‖H1/2
00 (ΓS)

� ch3/2−ε‖λ‖H1−ε(ΓS) + c|uh − uN
h |H1/2(Γ ),

where we exploit the fact that a(u, Ehzh)= a(uN
h , Ehzh) and a stability estimate for discrete harmonic

functions; see Toselli & Widlund (2005, Lemma 4.10). It is important to note that uN
h ∈ V−1

h , which is
defined as in the proof of Theorem 5.7, only depends on u, not on uh or ũh. Nevertheless, uh − uN

h is
discrete harmonic due to the Galerkin approximation of the saddle point problem. Using Corollary 5.6
and the primal estimate of Theorem 2.2, we conclude

|uh − uN
h |H1/2(Γ ) � |u − uh|H1/2

00 (ΓS)
+ |u − uN

h |H1/2(Γ )

� ch3/2−ε‖u‖H5/2−ε(Ω).

The remaining error estimate in the L2(ΓS)-norm follows by an inverse inequality and the best
approximation properties:

‖λ− λh‖L2(ΓS) � inf
μh∈Mh

(‖λ− μh‖L2(ΓS) + ‖μh − λh‖L2(ΓS))

� c inf
μh∈Mh

(
‖λ− μh‖L2(ΓS) +

1√
h
‖μh − λ‖H−1/2(ΓS)

)
+ c√

h
‖λ− λh‖H−1/2(ΓS). �

7. Numerical results

We chose an example with an analytically known solution on Ω = (0, 1.4 + e/2.7)× (0, 0.5), where
ΓS = (0, 1.4 + e/2.7)× {0}. The choice of the domain was done in order to have an easy representation
of the solution with an asymmetry over the Signorini boundary. We chose the volumetric and Dirichlet
boundary data as well as the initial gap g(x)= 1 according to the exact solution, which is constructed
as follows.

In polar coordinates, the singular component (see also Remark 2.1) is given by using(r, θ)=
r3/2 sin( 3

2θ), which we will also denote using(x, y) in Cartesian coordinates. As this singular compo-
nent has a one-sided active area, we need to modify the function to ensure the condition that the
active set Γ act is a compact subset of the Signorini boundary ΓS . The singular function is translated
such that the transmission point between the active and inactive part is at xl := 0.2 + 0.3/π ≈ 0.295.
A spline of polynomial order four is used as a cut-off function ucut. Adding a weighted reflection of
this function, we get a function with a compact contact area. The second transmission point is set
to xr := 1.2 − 0.3/π ≈ 1.105. For some scalar weight a> 0 (in the examples a = 0.7), the solution is
given by

u(x, y) := (using(x − xl, y)ucut(x)+ ausing(xr − x, y)ucut(1.4 − x))(1 − y2)+ 1.

For the right-hand side f := −Δu, the Dirichlet data uD := u|ΓD and g(x)= 1, the solution satisfies
the Signorini-type problem (2.2). The actual contact area is given by Γ act = [0.2 + 0.3/π , 1.2 − 0.3/π ].

TRACE ERROR ESTIMATES FOR SIGNORINI-TYPE PROBLEMS 1089

 at T
echnical U

niversity M
unich on O

ctober 13, 2016
http://im

ajna.oxfordjournals.org/
D

ow
nloaded from

 

http://imajna.oxfordjournals.org/


Fig. 4. Exact solution and finite-element approximation on level 2. Values for the primal solution (left) and the dual solution
(right).

Fig. 5. Discretization error displayed at the Signorini boundary. Error of the primal variable (left) and of the dual variable (right)
at level k = 6.

This choice of the contact area was made to ensure that no vertex of the mesh coincides with its bound-
ary. The domain yields an asymmetry of the contact area. The desired regularity u ∈ H5/2−ε(Ω) is
given by construction. We start from a coarse, quadrilateral, initial mesh of 4 × 2 elements and refine
uniformly.

The exact solution on the Signorini boundary as well as a coarse finite-element approximation are
displayed in Fig. 4. In Fig. 5, the error distribution restricted to ΓS on a fine finite-element grid is shown.
Since the discrete Lagrange multiplier is based on a biorthogonal basis and hence is discontinuous,

a post-processing is applied for the visualization and the error computation. Instead of λh =∑NMh
i=1 λi

ψi ∈ Mh, we represent the Lagrange multiplier as

λ̂h =
NMh∑
i=1

λiϕi ∈ Wh.

As was shown in Hüeber (2008, Section 3.3), the order of convergence of λ̂h is the same as for λh.
Although the proof was shown for rates up to the order h, it can be easily extended to our situation.

The error distribution reflects the singularities of the solution at ∂Γ act. We observe two peaks of
large errors at the boundary of the active set caused by the reduced regularity at these points. The error
in the interior of the domain is of a similar order, hence the overall error is not dominated by the error
on the boundary.

In Table 1, the computed L2-norms of the error as well as the estimated rate of convergence
are depicted for each level k. Errors in fractional Sobolev norms are given in Fig. 6. The L2(ΓS)-,
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Table 1 Relative errors of the primal and dual solution at different mesh levels k and an averaged
numerical convergence order

k ‖λ− λh‖L2(ΓS) ‖u − uh‖L2(ΓS) ‖u − uh‖L2(Ω)

1 3.2629e−01 — 2.1724e−01 1.0050e−01
2 1.2955e−01 1.33 4.2717e−02 2.35 2.5761e−02 1.96
3 4.4331e−02 1.44 7.0192e−03 2.48 6.2041e−03 2.01
4 1.8560e−02 1.38 2.3468e−03 2.18 1.5550e−03 2.00
5 1.5159e−02 1.11 9.3812e−04 1.96 4.0559e−04 1.99
6 5.8243e−03 1.16 1.8083e−04 2.05 9.8738e−05 2.00
7 2.7746e−03 1.15 4.0096e−05 2.07 2.4336e−05 2.00
8 1.9410e−03 1.06 1.7967e−05 1.94 6.4165e−06 1.99
9 9.8497e−04 1.05 4.6480e−06 1.94 1.5986e−06 1.99
10 4.0873e−04 1.07 9.7558e−07 1.97 3.8972e−07 2.00
11 1.7042e−04 1.09 1.9775e−07 2.01 9.5737e−08 2.00

Fig. 6. Estimated convergence rates in fractional Sobolev spaces. Left: H1/2
00 (ΓS) norm for the primal solution. Right: H−1/2(ΓS)

norm for the dual solution.

L2(Ω)- and H1(Ω)-norms were computed by an adaptive integration to guarantee reliable results for
the nonsmooth solution. The dual norm H−1(ΓS) was estimated as the norm of the dual space to a
fine finite-element space. To be more precise, the post-processed Lagrange multiplier on each level
k = 1, . . . , 11 was prolongated to level 15. On this level, we replace λ by the piecewise linear inter-
polation and compute λ̂hk − I15λ ∈ Wh15 . Note that we have λ̂hk ∈ Whk ⊂ Wh15 due to the post-processing
as described above. The H−1(ΓS)-norm is approximated by the dual norm of Wh15 , i.e.,

‖λ− λhk ‖H−1(ΓS) ≈ sup
wh15 ∈Wh15

∫
ΓS
(λ̂hk − I15λ)wh15 dx

‖wh15‖H1(ΓS)

.

The fractional-order Sobolev spaces H1/2
00 (ΓS) and H−1/2(ΓS) were bounded using their interpolation

property, i.e.,

‖v‖H1/2
00 (ΓS)

� ‖v‖1/2
H1(ΓS)

‖v‖1/2
L2(ΓS)

, ‖v‖H−1/2(ΓS) � ‖v‖1/2
H−1(ΓS)

‖v‖1/2
L2(ΓS)

.
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Table 2 Distance of the transmission points xl and xr to the discrete transmission points xl,h and xr,h

on level k, compared to the mesh size h

k |xl − xl,h| |xl − xl,h|/h |xr − xr,h| |xr − xr,h|/h
1 7.9339e−02 0.21 1.9989e−02 0.05
2 7.9339e−02 0.42 1.9989e−02 0.11
3 1.4369e−02 0.15 1.9989e−02 0.21
4 1.4369e−02 0.31 2.6865e−02 0.57
5 9.0579e−03 0.39 3.4384e−03 0.15
6 2.6556e−03 0.23 3.4384e−03 0.29
7 3.2012e−03 0.55 3.4384e−03 0.59
8 2.7280e−04 0.09 5.1006e−04 0.17
9 2.7280e−04 0.19 5.1006e−04 0.35
10 2.7280e−04 0.37 2.2203e−04 0.30
11 9.3246e−05 0.25 1.4402e−04 0.39

Fig. 7. Zoom of dual solution and approximations at levels 2–4 around the left transmission point.

The averaged convergence rates αk , as given in Table 1 were computed in comparison with the first
solution, by the formula (

err1

errk

)
=
(

1

2

)αk(k−1)

.

We observe optimal-order convergence rates in the L2-norms, which is as expected from our theory for
the Lagrange multiplier, whereas for the L2(Ω) and the L2(ΓS)-norm, we obtain better rates, than given
by the theory. A closer look reveals that the convergence rates from level to level for the values on ΓS

vary more strongly. This is related to the fact that the discrete resolution of the active set is restricted to
the vertices of the finite-element mesh. Depending on the quality of the approximation of the active set,
the rates for values on ΓS can be larger or smaller than expected. In Fig. 6, we see that the averaging
described above is a reasonable estimate for the convergence rate.
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We are also interested in a good resolution of the actual contact set, so we take a closer look at the
solution near the boundary of Γ act. The discrete active set is taken as the coincidence set of the primal
solution Γ act

h := {x ∈ ΓS : uh(x)= 1}. In Table 2, the distance between the transmission points and the
discrete transmission points is shown and compared with the mesh size. We note that the distance is
always smaller than the mesh size. Since no vertex matches with a transmission point, this is the best we
can expect. Figure 7 shows the dual solution and some finite-element approximations on the Signorini
boundary.

8. Conclusion

In this work, we proved optimal-order convergence in the H1/2
00 (ΓS)-norm for a standard finite-element

approximation of Signorini problems. Based on this estimate, an optimal-order error bound for the
Lagrange multiplier, i.e., the flux, was derived in the H−1/2(ΓS)-norm, and an improved bound for the
primal error in the L2(Ω)-norm was shown as a side result.

Our analysis is based on a variational formulation of the continuous and the discrete Schur com-
plement system which are variational inequalities posed on H1/2

00 (ΓS). The difficulties arising from the
nonlinearity could be handled by a Strang lemma, resulting in two terms. One term is a Galerkin dis-
cretization error on ΓS , which could be bounded by standard techniques. To bound the second term,
a trace error of a linear problem posed on the whole domain, modern duality techniques with local
estimates are adapted to the given situation.

A numerical example confirmed the optimal bounds and showed an accurate resolution of the active
set. It also revealed that a gap remains between the theoretical and numerical results in the L2(Ω)-norm.
As it was noted in Section 5.4, improved bounds in the L2(ΓS)-norm would directly imply improved
bounds in the L2(Ω)-norm.
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