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Availability of standardized metabolite panels and genome-wide single-nucleotide polymorphism data endorse
the comprehensive analysis of gene–metabolite association. Currently, many studies use genome-wide asso-
ciation analysis to investigate the genetic effects on single metabolites (mGWAS) separately. Such studies have
identified several loci that are associated not only with one but with multiple metabolites, facilitated by the fact
that metabolite panels often include metabolites of the same or related pathways. Strategies that analyse several
phenotypes in a combined way were shown to be able to detect additional genetic loci. One of those methods is
the phenotype set enrichment analysis (PSEA) that tests sets of metabolites for enrichment at genes. Here we
applied PSEA on two different panels of serum metabolites together with genome-wide data. All analyses
were performed as a two-step identification–validation approach, using data from the population-based
KORA cohort and the TwinsUK study. In addition to confirming genes that were already known from mGWAS,
we were able to identify and validate 12 new genes. Knowledge about gene function was supported by the
enriched metabolite sets. For loci with unknown gene functions, the results suggest a function that is interre-
lated with the metabolites, and hint at the underlying pathways.

INTRODUCTION

Metabolites are small molecules of diverse biochemical proper-
ties, including, for example, amino acids, lipids and xenobiotics

like caffeine, that can be measured in body fluids such as blood,
serum or urine. They represent endpoints of biological processes
and therefore enable a direct readout of related pathways (1,2).
Recent studies demonstrate that although metabolites are very
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sensitive to environmental factors, e.g. nutrition, physical activ-
ity and medication intake (3), metabolite changes due to genetic
variation of underlying biochemical processes by factors like
enzymes or transporters can be identified (4–8). Insights into
the so-called genetically influenced metabotypes are important
preconditions to analyse pathways and processes that can
improve the understanding of disease. The knowledge of the
genetic determination of metabolites can guide the improvement
of diagnostics and therapies. Moreover, understanding the inter-
relation of metabolite profiles, genes and environmental factors
can be used for personalized medicine approaches (1,4).

Recent improvements and development of new bioanalytical
techniques to measure metabolites promote the systematic and
simultaneous analysis of hundreds of metabolites. For large
cohorts, using metabolite panels, which capture a wide range of
different pathways, is a feasible strategy with respect to time
and cost for analyzing the metabolome of large numbers of
participants. The genetic analysis of hundreds of metabolites
and millions of single-nucleotide polymorphisms (SNPs) is com-
putational challenging and demands an appropriate strategy.
Several studies analyse metabolites gained from metabolite
panels with genome-wide association studies (GWASs) on all
metabolite traits (mGWAS) separately (1,4–12). mGWAS have
recently been demonstrated to be an effective tool in identifying
genes that are associated with metabolites. A biomedical and
pharmaceutical impact can be described for many identified loci
(4). Other studies have followed a different approach by analysing
selected genes that are known from previous studies rather than
the whole genome. Such studies incorporated metabolites as
intermediate phenotypes with the integrative analysis of known
candidate genes (13,14). Although both approaches analyse meta-
bolites separately, they have found that many identified genes are
associated not only withone metabolite but witha groupofseveral
metabolites (4,7,8,14). In many cases, these metabolites belong to
the same pathway or the same biochemical group.

An approach to account for the dependency structure of
metabolite panel data is to simultaneously analyse multiple
metabolites together rather than separately. Various strategies
have been developed that analyse multiple phenotypes at a
time (e.g. 15–22). Some of these approaches were successfully
applied to metabolomics data (e.g. 23). Exploiting the informa-
tion shared by several metabolites makes it possible to identify
additional loci, while mGWAS that are focused on single meta-
bolites neglect such information. In this study, we have applied
one of these methods, namely, the phenotype set enrichment ana-
lysis (PSEA) (22), on two large panels of serum metabolites and
genome-wide SNP data. The same data were previously ana-
lysed in mGWAS (4,8). PSEA analyses genetic association of
sets of phenotypes, e.g. metabolites, which can be defined in
various ways using prior knowledge or the data itself. Those
phenotype sets are tested genome wide for gene enrichment
with a permutation test that compares the enrichment of the set
under investigation with enrichment of sets of permuted pheno-
types. The PSEA method was developed following ideas of gene
set enrichment strategies and has been previously published
(22). It was shown that PSEA could detect loci associated with
blood and iron phenotypes that were known from large
meta-analysis but that could not be detected in GWAS using
the same sample size. Therefore, we expect that using PSEA
will allow us to identify additional loci associated with

metabolites when compared with mGWAS on the same data.
The metabolite sets that are found to be associated with a gene
might also point to the gene function. In the present study,
we applied two different strategies to define the metabolite
sets: (i) Gaussian graphical modelling (GGM), a data-driven
method for reconstructing metabolite pathways (24,25) that is
used to identify biologically meaningful metabolite sets and
(ii) a method based on the association of single metabolites at
genes. The advantages of PSEA are that it can test high
numbers of metabolite sets that are freely defined, and that it
deals with a minimal number of assumptions. Importantly, by
applying PSEA as a multi-metabolite analysis strategy on two
different panels of metabolites, we were able to identify 12
new loci associated with metabolites.

RESULTS

We used PSEA to analyse 151 metabolites measured in blood
serum with the BIOCRATES AbsoluteIDQTM p150 kit (Supple-
mentary Material, Table S1) and 193 metabolites measured with a
technique supplied by Metabolon (Supplementary Material,
Table S2). Both technologies were applied to individuals from
thepopulation-based KORAcohortsand the TwinsUK study(26).

The basic principles of PSEA are presented in Figure 1A. The
metabolite sets, either defined by GGM (GGM sets, Fig. 1B) or
single association-defined metabolite sets (SAD sets, Fig. 1C),
were tested for enrichment at genes to identify additional
genetic loci that determine the metabolic make-up. We applied
a two-step identification–validation approach: initially, promis-
ing enrichments of phenotype sets at genes were identified in
KORA F4 (P , 1024). Thereafter, those enrichments were vali-
dated in the independent TwinsUK study (see Fig. 1D and E, and
Materials and Methods). PSEA is a gene-based method but uses
SNP genotype data. Due to the strategy of mapping SNPs to
genes (see Materials and Methods), proximate genes are often
based partially on the same SNPs and are therefore not independ-
ent. A group of genes that share SNPs are named gene group in
the following. In our data, 2319 gene groups were derived from
the 20 801 genes. SNPs that are shared by several genes can lead
to enrichment of the same metabolite set for all these genes. Of
course, such enrichments are not independent, as they probably
represent the effects of the same SNPs. We therefore introduced
a number for independent promising enrichments, which counts
multiple enrichments of the same metabolite set only once per
gene group. This assured that the number of identified enrich-
ments is not artificially increased by counting the same
enrichment at one gene multiple times. It is used to correct the
significance level in the validation step.

We analysed metabolite sets of three different batches by
PSEA. The first batch of metabolite sets was defined by GGM,
which is a valid tool for reconstruction of metabolite networks
by using pairwise partial correlation. The GGM sets consist of
the connected components in such networks at a specific partial-
correlation threshold (see Fig. 1B, and Materials and Methods
for details). Two other metabolite sets were defined using the
single metabolite associations at each gene under two different
conditions. SAD sets include all metabolites for which the
minimum association P-value at this gene is below a specific
threshold (see Fig. 1C and Materials and Methods for details).
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Our intention was to analyse all single metabolites at a specific
gene that were associated with the gene at a promising low
P-value as a set. With this, we aimed to find enrichments at espe-
cially those loci, for which the association of the gene and each
single metabolite was not significant genome wide. Two P-value
levels for the promising single association, 1024 and 1026, were

used to define SAD sets. In contrast to the GGM sets that were
analysed for all genes, each SAD set is gene dependent and
was evaluated only at the gene at which it was defined.

PSEA on metabolite sets confirmed gene–metabolite associa-
tions known from mGWAS on large metabolite panels but fur-
thermore revealed new genes that have not been previously

Figure 1. Schematic overview of the general method of PSEA (A), the definition ofmetabolite sets in this study (B and C) and the applied permutation schemes (D and E).
In part (A), different shapes represent different phenotypes, different colours represent different genes and the intensity of the colour represents the association strength.
(P, phenotype; p, P-value; P.set, phenotype set; ES, enrichment score; ESperm, enrichment score for permuted phenotypes; Nperm, number of permutations)
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published to be associated with metabolites. Table 1 summarizes
the number of independent and validated enrichments and the
number of loci with promising or validated enrichments of one
or more metabolite sets. Table 2 gives the details on loci for
which at least one metabolite set enrichment was validated but
which had not been previously identified in an mGWAS.

The analysis of 38 Biocrates- and 50 Metabolon-based GGM
sets (Supplementary Material, Tables S3 and S4) revealed seven
and eight independent gene groups, respectively, with validated
enrichments of at least one metabolite set (Table 1; Supplemen-
tary Material, Tables S5 and S6). These findings confirm gene
metabolite associations found in mGWAS on the same data
(4,8). The elements of the metabolite sets fit well to the known
metabolite associations (1,7,8). For example, at ACADM, the
enrichment of one Biocrates and two Metabolon GGM sets
were validated. The Biocrates set consisted of two carnitines
with a carbon atom chain length of 8 and 10, and the Metabolon
GGM sets included both carnitines with carbon 6, 8 and 10
carbon atoms and one of those additional 2-tetradecenoyl carni-
tine. In mGWAS, SNPs in ACADM were found to be associated
with acylcarnitines with a medium chain length (4,8). This asso-
ciation reflects the gene function of ACADM, which is a key
enzyme in the b-oxidation with its strongest substrate affinity
to acyl-CoAs with chains of 4–12 carbon atoms.

The analysis of SAD sets with the threshold of 1026 validated
the enrichment of Metabolon metabolites sets at 13 gene groups.
Genes of all gene groups are known from mGWAS (Supplemen-
tary Material, Fig. S1 and Table S7). For Biocrates, no metabolite
set reached a sufficient P-value in the intermediate validation
step (see Material and Methods). In total, 7942 different Bio-
crates and 10 951 Metabolon metabolite sets were identified as
SAD sets for at least one gene with the higher P-value threshold
of 1024. Testing these sets led to 15 and 23 independent gene
groups with validated enrichments of at least one set of Biocrates
or Metabolon metabolites (Fig. 2 and Fig. 3; Supplementary Ma-
terial, Tables S8 and S9). Eight and 16 of those gene groups with
enrichment of Biocrates- and Metabolon-based SAD sets,
respectively, were already known from previous mGWAS
using the same data (4,8). One special case is SLC22A1, which
was known from mGWAS on Metabolon metabolites

(associated with isobutyrylcarnitine) (4) but not from mGWAS
on Biocrates metabolites; however, it was identified in this
study with a promisingly enriched phenotype set of Biocrates
metabolites (six carnitines including butyrylcarnitine, five phos-
phatidylcholines and one amino acid). In addition to comparing
mGWAS on the same data, we used other published mGWAS
(1,4–6,8–12) on large metabolite panels to investigate our find-
ings. This revealed that one additional gene (SLC1A4), identified
by both Biocrates- and Metabolon-based SAD sets, was found
to be previously reported with metabolite levels (5). For the
remaining 12 loci identified with PSEA using SAD sets (thresh-
old 1024) on Biocrates metabolites (six loci) and on Metabolon
metabolites (six loci), no association with a metabolite had been
previously reported in mGWAS on a large metabolite panel
(Table 2). Therefore, these 12 loci were newly identified for
association with metabolites. For 8 of these 12 novel loci, the
corresponding SAD set of one gene was promisingly enriched
and validated (DKFZp686O1327, PDCD6IP, IL3, C12orf75,
INTS8, DIRAS3, MIR138–1 and LINGO2). At the other four
loci, SAD-defined phenotype sets showed validated enrichment
for several genes of a gene group (MFSD2A and MYCL1, UBL3
and LOC440131, several genes of the Cytochrome P450 family
4, GCDH and 12 other genes at chromosome 19). The promis-
ingly enriched and validated SAD-defined phenotype sets
were identical or similar within the gene group. For example,
the overlapping genes UBL3 and LOC440131 showed enrich-
ment of two different SAD sets. The SAD set of LOC440131
includes the same metabolites as the SAD set of UBL3 as well
as two additional ones.

DISCUSSION

By applying the multiple phenotype approach PSEA to metabo-
lites, 12 novel associations of genes and metabolites were iden-
tified that have not been published before in any mGWAS of a
large metabolite panel. This method additionally confirmed
several loci with known metabolite associations. For both
known and unknown loci, the enriched phenotype sets carried
information about networks and pathways.

Table 1. Result counts for PSEA on Biocrates and Metabolon metabolite sets

Number of metabolite sets Number of promising enrichments,
(independent promising enrichments)
and number of gene groups (GG)

Number of validated enrichments
with number of gene groups (GG)

Number of novel enrichments
with number of gene groups (GG)

GGM-defined metabolite sets (GGM sets)
Biocrates 38 354 (92) at 61 GG 123 at 7 GG 0
Metabolon 50 344 (78) at 58 GG 75 at 8 GG 0

Single association-defined phenotype sets (SAD sets; threshold 1026)
Biocrates 71 0 0 0
Metabolon 86 96 (20) at 13 GG 96 at 13 GG 0

Single association-defined phenotype sets (SAD sets; threshold 1024)
Biocrates 7942 62 (45) at 22 GG 46 at 15 GG 7 at 6 GG
Metabolon 10 951 203(107) at 47 GG 131 at 23 GG 23 at 6 GG

This table summarises the number of analysed metabolite sets, the number of enrichments that were found to be promising in KORA and the number of those that were
validated in TwinsUK. Moreover, the number of gene groups is given at which the metabolite sets were enriched. The number of independent promising enrichments
counts the enrichment of the same metabolite only once per gene group (GG). This number was used to correct P-value in the replication stage. Enrichments that could
not be analysed for replication in the TwinsUK due unavailable metabolite sets are not included in these numbers.
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The gene function of the genes that were newly found to be
associated with metabolites is discussed in the Supplementary
Material, Text S1. Three genes are exemplarily discussed here:

IL3

A set of six acylcarnitines, one dicarboxyacylcarnitine, one acyl–
alkyl-phosphatidylcholine and one hydroxysphingomyelin was
enriched for interleukin 3 (IL3) on Biocrates metabolites. In
other words, the enriched metabolite set consists of seven acylcar-
nitines and two phospholipids. IL3 is known to be a hematopoietic
growth factor that stimulates survival,multiplicationanddifferen-
tiation of hematopoietic cells (27). Other studies found that IL3
stimulates phospholipid synthesis (28) and suppresses lipid
degradation and b-oxidation of fatty acids (29). Acylcarnitines
are known to play an important role in b-oxidation and are
needed for transport of activated fatty acids into the mitochondria.
Fatty acids, which are part of phosphatidylcholines and sphingo-
myelins, are substrates of b-oxidation. This shows how the

elements of the enriched phenotype set are involved in the
b-oxidation. The two phospholipids also stand for the involve-
ment of IL3 in phospholipid synthesis. Therefore, it can be
stated that the elements of the enriched metabolite set underscore
the previously reported role of the gene product of IL3 in the
b-oxidation.

Cytochrome P450 family 4

Four genes of the cytochrome P450 family 4 (CYP4B1,
CYP4A11, CYP4X1 and CYP4Z2P) and one additional gene
KIAA0494, which maps to a region that overlaps with CYP4B1,
were found on Metabolon metabolites with an enrichment in
four slightly different SAD sets. The sets included three to six
metabolites. Two glycerolipids as well as one fatty acid and two
carnitines were part of several sets. The amino acid L-tyrosine
and the peptide g-glutamyltyrosine were part of two enriched
phenotype sets. The cofactor haeme was identified for two
genes. The cytochrome P450 monooxygenase system is a

Table 2. Validated enrichments of metabolite sets for the 12 novel loci

Genes Elements of the phenotype seta

(1) GGM sets of Biocrates metabolites
MFSD2A, MYCL1 Lysophosphatidylcholines: acyl C16:0, acyl C17:0, acyl C18:1, acyl C20:4, acyl C18:0,
DKFZp686O1327 Carnitine, hydroxyhexadecadienylcarnitine, octadecanoylcarnitine, arginine, threonine, phosphatidylcholines: diacyl

C36:5, diacyl C36:6, diacyl C40:3, acyl–alkyl C36:5, lysophosphatidylcholines: acyl C18:1, acyl C20:4
PDCD6IP Decanoylcarnitine(C10), decanoylcarnitine (C10:1), decadienylcarnitine, tetradecenoylcarnitine (C14:1),

hydroxyhexadecenoylcarnitine, octadecenoylcarnitine (C18:1), hexanoylcarnitine, pimeloylcarnitine,
octanoylcarnitine, lysophosphatidylcholines: acyl C16:0, acyl C18:0, acyl C18:2

IL3 Hexadecanoylcarnitine (C16), octadecenoylcarnitine (C18:1), octadecadienylcarnitine, propionylcarnitine,
valerylcarnitine, pimeloylcarnitine, phosphatidylcholine acyl–alkyl C40:5, hydroxysphingomyeline C14:1

C12orf75 Decadienylcarnitine, hydroxytetradecadienylcarnitine, hydroxybutyrylcarnitine, hexanoylcarnitine, valerylcarnitine,
phosphatidylcholines: diacyl C36:2, acyl–alkyl C40:2, hydroxysphingomyeline: C14:1, C16:1, C22:1, C22:2,
C24:1

INTS8 Decadienylcarnitine, phosphatidylcholines: diacyl C36:1, diacyl C42:2

(2) GGM sets of Metabolon metabolites
CYP4B1 Tyrosine, haeme, carnitine C3:0, glutaroyl carnitine, fatty acid C11:1(10Z), gamma-glutamyltyrosine
KIAA0494 Tyrosine, haeme, carnitine 3:0, fatty acid C11:1(10Z), gamma-glutamyltyrosine
CYP4A11, CYP4X1 Fatty acid C11:1(10Z), phosphatidylcholines: diacyl C16:1(9Z)/C0:0, diacyl C14:0/C0:0
CYP4Z2P Fatty acid C11:1(10Z), phosphatidylcholine: diacyl C16:1(9Z)/C0:0, glutaroyl carnitine
DIRAS3 3-Methyl-2-oxopentanoate, glycerate, glycerol, phosphatidylcholine: acyl–alkyl C18:1(9Z)
MIR138-1 Creatinine, phosphatidylcholines: diacyl C20:3(8Z,11Z,14Z)/C0:0, diacyl C18:2(9Z,12Z)/C0:0, diacyl C0:0/

C18:1(9Z), gamma-glutamyltyrosine
LINGO2 Aspartate, betaine, creatine, S-glutathionyl-L-cysteine, glutamate, methionine, pyroglutamine, 2-tetradecenoyl

carnitine, isovalerylcarnitine, glycerol (C18:2(9Z, 12Z)/C0:0/C0:0), glycerol (C18:1(9Z)/C0:0/C0:0),
phosphatidylcholine: acyl–alkyl C18:2(9Z,12Z)/C0:0, fatty acid C11:1(10Z), fatty acid C20:4(5Z, 8Z, 11Z, 14Z),
fatty acid C20:3(n-3/n-6), xanthine, DSGEGDFXAEGGGVR, phenylsulfate

UBL3 Indolepropionate, N-acetylornithine, p-cresol, lactate, cortisone, dehydroepiandrosterone sulphate,
3-dehydrocarnitine, hydroxy fatty acid C16:0, hydroxy fatty acid C18:0, fatty acid C20:4(5Z, 8Z, 11Z, 14Z)

LOC440131 Indolepropionate, N-acetylornithine, p-cresol, lactate, cortisone, dehydroepiandrosterone sulphate,
3-dehydrocarnitine, hydroxy fatty acid C16:0, hydroxy fatty acid C18:0, fatty acid C20:4(5Z, 8Z, 11Z, 14Z),
phosphatidylcholine: diacyl C20:4(5Z, 8Z, 11Z, 14Z)/C0:0, theophylline

CALR, DNASE2, GCDH, MAST1,
PRDX2, RTBDN

Glutaroyl carnitine, glycerophosphorylcholine, erythritol

DAND5, FARSA, KLF1, RAD23A,
SYCE2

Arabitol, glutaroyl carnitine, glycerophosphorylcholine, oleamide C18:2(9Z), erythritol

GADD45GIP1 Arabitol, fructose, glutaroyl carnitine, oleamide C18:2(9Z), erythritol
NFIX Arabitol, fructose, glutaroyl carnitine, glycerophosphorylcholine, oleamide C18:2(9Z), erythritol

This table specifies the composition of all validated metabolite set enrichments at genes that were not previously found in mGWAS on large metabolite panels. Part 1 of
the table shows all novel genes found with Biocrates metabolite sets. Analogously, part 2 refers to all corresponding genes on Metabolon metabolites. Results for gene
groups are grey shaded. Further details on metabolites are given in the Supplementary Material, Tables S1 and S2.
aCa:b indicates a chain of ‘a’ carbon atoms, including ‘b’ double bounds. For phosphatidylcholines measured by Biocrates, the accumulated number of carbon atoms
and doublebounds of both ligated fatty acid chains are given.For Metabolon phosphatidylcholines and glycerol, the number of carbonatoms in each ligated fatty acid is
given and separated by a ‘/’, and the position of double bounds is given in brackets.
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multigene superfamily of enzymes that are involved in various
reactions, e.g. drug metabolism and lipid synthesis. Haeme isa co-
factor in these processes (30). The metabolites identified as

elements of the metabolite sets reflect the gene product’s function,
including possible substrates (glycerolipids and fatty acids),
cofactors (haeme) and related compounds (carnitines).

Figure 2. PSEA results on single association-defined metabolite sets (SAD set; threshold: 1024) on Biocrates metabolites. All metabolite sets that were promisingly
enriched in KORA F4 and validated in TwinsUK are presented along with the genes at which they were identified. Gene groups are separated by horizontal space.
Details of the presentation are explained in below the figure.
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Figure 3. PSEA results on single association-defined metabolite sets (SAD set; threshold: 1024) on Metabolon metabolites. All metabolite sets that were promisingly
enriched in KORA F4 and validated in TwinsUK are presented along with their respective genes. Gene groups are separated by a horizontal space. Details of the pres-
entation are explained below the figure.
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LINGO2

A large set of 17 Metabolon metabolites was significantly
enriched at the gene ‘leucine rich repeat and Ig domain containing
2’ (LINGO2). The set included various types of metabolites of the
lipid metabolism (fatty acids, carnitines, lysolipid and monoacyl-
glycerol), some amino acids, a nucleotide, one peptide and
phenylsulfate. The gene function of LINGO2 is not known yet.
A GWAS identified a genome-wide significant association of
LINOG2 with BMI (31). The elements of the enriched metabolite
set hint that an involvement in the metabolism of fatty acids. This
could explain the effect on BMI.

In general, PSEA emphasizes interesting relations between
genes and a small set of metabolites out of hundreds. These
enrichments can reveal two types of knowledge. First, novel
genetic loci can be identified. The ability of PSEA to identify
loci other than those identified by GWAS using the same data
derives from the consideration of multiple metabolites at a
time. Our results demonstrate that several loci could be identified
with PSEA but not GWAS on the same data. Second, information
about potential gene functions and affected pathways can be
extracted from the enriched sets for novel as well as previously
known genetic loci. For instance, the PSEA results supported
the known gene functions for IL3 and the cytochrome P450
family 4, while the identified sets suggested previously
unknown pathways for LINGO2. This knowledge about the asso-
ciation of metabolite sets with specific genes can motivate and
direct further analysis.

The computational intensity of the algorithm in combination
with computational limitations determined the minimal possible
P-value. With 10 000 permutations, the minimal P-value is
1024, which means that a Bonferroni-correction for .20 000
genes cannot be applied. Therefore, we could not claim statistical
significance in the identification step; rather, by terming enrich-
ments with a P-value below the minimal P-value of 1024 as
“promising enrichments”, and validating our results in the
TwinsUK, we were then able to use a Bonferroni-corrected mul-
tiple testing threshold. This two-stage design has reduced power
when compared with an approach that analyses statistical signifi-
cance inone cohortor from a meta-analysisof bothstudies,neither
of which was computationally possible with the current data.
Further studies are needed to replicate our results.

In summary, the present study identified the association of 12
loci with metabolites, which had not been published before.
This demonstrates the potential of multi-metabolite analyses.
With PSEA, we successfully screened hundreds of metabolites
and metabolite sets. The enriched sets carry information on the
possible pathways, and the findings hinted at the gene function.
Altogether, this knowledge can help to design biological experi-
ments and guide further research on the genetic determination
of metabolites.

MATERIALS AND METHODS

Study description and genotyping

Analyses wereperformed ina two-stage approach consisting of an
identification and a validation step. We analysed data of the
KORA F4 study from the KORA cohorts (cooperative health
research in the region of Augsburg) (32). KORA F4 participants

(n ¼ 1814) were genotyped on the Affymetrix 6.0 SNParray.
Imputation was performed with Impute v 0.4.2 (reference
HapMap phase 2, release 22) (33). Findings identified in the
analysis of KORA F4 were validated for data of the TwinsUK
study, a British adult twin registry. Participants of the TwinsUK
study were genotyped with a combination of different Illumina
arrays (HumanHap300, HumanHap510Q, 1M-Duo and 1.2MDuo
1M) and imputed with Impute v2. More details on study description
and genotyping are given in the Supplementary Material, Text S2.

Ethics statement

Written informed consent was given by all participants of
KORA and TwinsUK. The KORA study, including the protocols
for subject recruitment, assessment and the informed consent,
was approved by the ethics committee of the Bayerische Land-
esärztekammer. Ethics approval for the TwinsUK was obtained
from the Guy’s and St. Thomas’ Hospital Ethics Committee.

Genes

PSEA is a gene-based approach, i.e. it is necessary that SNPs are
mapped to genes. Only autosomal SNPs were used that had a
minor allele frequency .5%, call rate .95% and imputation
quality .0.4. SNPs were mapped to genes when they were in
the transcribed region of a gene or in the flanking region of
110 kb upstream or 40 kb downstream. These thresholds were
chosen as it has been previously shown that 99% of the expected
cis-eQTLs are located within this interval (34). This leads to a
good coverage of SNPs that possibly affect the gene product.
The same mapping of SNPs to genes was also used for gene set
enrichment approaches based on GWAS data (35). A SNP was
mapped to multiple genes when it was in the transcribed or flank-
ing region of more than one gene. Gene information was down-
loaded from the UCSC (University of California Santa Cruz)
genome browser (http://genome.ucsc.edu/). The SNP gene
mapping has been described in detail previously (22). In total,
20 801 genes were analysed. As described above, due to the
broad assignment of SNPs to genes proximate genes often
overlap in SNPs. Such overlapping genes are named gene
group. In our data, the 20 801 genes led to 2319 gene groups.

Metabolite measurement

Metabolites were measured with two technologies, Biocrates
and Metabolon, in the same individuals in both the KORA F4
and the TwinsUK studies. Slight differences in final numbers
were caused by quality control exclusions.

Biocrates metabolites
A panel of 163 metabolites was measured for individuals of
KORA F4 using electro spray ionization tandem mass spectrom-
etry with the AbsoluteIDQTM p150 kit (BIOCRATES Life
Sciences AG, Innsbruck, Austria). Details of the measurement
methods and quality control were described in previous publica-
tions (7,8,14). After quality control, 151 metabolites remained
for further analyses. These 151 metabolites can be grouped in
10 metabolite classes and include 14 amino acids, 1 hexose,
carnitine species (1 free carnitine, 22 acylcarnitines and 12
hydroxy- and dicarboxyacylcarnitines), 9 sphingomyelins, 5
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hydroxysphingomyelins and different forms of phosphatidyl-
cholines (36 diacyl-phosphatidylcholines, 38 acyl–alkyl-
phosphatidylcholines and 13 lyso-phosphatidiylcholines). A
full list of all metabolites is available in Supplementary Material,
Table S1. For 1809 individuals in KORA F4, Biocrates metabo-
lites and genome-wide genotypes were available.

Samples from the TwinsUK cohort that had measurements for
metabolites with the same AbsoluteIDQTM p150 kit was used for
replication. The metabolites underwent the same quality control
as described for KORA F4. All 151 metabolites passed the
quality control in TwinsUK as well. Eight hundred and forty-
three unrelated individuals with genotypes and valid Biocrates
metabolites measurements were used for further analysis.

Metabolon metabolites
A different panel of 295 metabolites was measured with a tech-
nique supplied by Metabolon (Metabolon, Inc., Durham, USA).
It used ultrahigh-performance liquid-phase chromatography and
gas chromatography separation with tandem mass spectrometry
(36,37). The measurement method was described in detail in a
previous publication (4). One hundred and two metabolites
had .10% missing values and were excluded from the analyses.
Missing values for the remaining metabolites were imputed with
the MICE algorithm (http://cran.r-project.org/web/packages/m
ice/index.html) that was implemented in R (http://www.r-p
roject.org/). The remaining 193 metabolites spanned different
super pathways including amino acids (52), carbohydrates
(10), cofactors and vitamins (7), energy (3) and lipid (90)
pathway-relevant compounds, nucleotides (9), peptides (11)
and xenobiotics (11). The full list of all 193 metabolites together
with additional information about the pathways they belong to is
given in the Supplementary Material, Table S2. In total, 1768
KORA F4 individuals with valid Metabolon metabolites mea-
surements and genotypes were used for further analysis.

The same technology was applied to measure metabolites from
the TwinsUK data. Only metabolites that passed quality control
in KORA F4 were regarded. Individuals with .50% missing
values were excluded. Four metabolites that were present in
KORA F4 had ,300 valid measurements in TwinsUK data.
According to Suhre et al. (4), 300 is the critical limit of non-
missing values to avoid false-positive findings due to small
sample size. Therefore, these four metabolites were excluded
from further analysis. In the remaining 189 metabolites, the
maximal missing rate per metabolite was 65.59%, which is
equivalent to 362 valid measurements. To assure that most
metabolite sets could be analysed in the replication, no further ex-
clusion criteria for metabolites were applied. No imputation of
missing data was performed. After reduction to unrelated and
genotyped individuals, 705 individuals remained in the analysis.

For both Metabolon and Biocrates metabolites, outliers that
differed .5 SD from the mean were excluded. The residuals
of log-transformed metabolites with adjustment for sex and
age were calculated and taken as phenotypic input for PSEA.
For Biocrates metabolites, additional adjustments for an internal
batch variable accounting for possible measurement differences
was applied. After log transformation, most (146) Biocrates
metabolites were closer to the normal distribution than the
untransformed metabolite concentrations. For Metabolon meta-
bolites, the same was previously shown with log10 transformation

(4). For simplicity per panel, the same transformation was applied
to all metabolites.

Phenotype set enrichment analysis

The basic strategy of PSEA is shown in Figure 1. The details of
the algorithm were described in a previous publication (22). In
general, PSEA is a gene-based approach to identify association
of phenotype sets with a gene by a permutation test. For each
permutation, the phenotypes are permuted over individuals,
whereas all phenotypes of a set are permuted in the same way
to conserve the correlation structure of phenotypes. The geno-
types are not changed. PSEA was applied to Biocrates and Meta-
bolon metabolites separately. To define the phenotype sets, two
strategies were used: GGM and single phenotype association, as
described below.

GGM-defined metabolite sets (GGM sets)
To define phenotype sets, GGM was applied as a statistical
method that estimates the conditional dependence between vari-
ables (24). For each pair of metabolites, we estimated the partial-
correlation coefficient, which represent the pairwise (regular)
Pearson correlation coefficient conditioned for the correlation
with all other metabolites in the dataset. This completely data-
driven approach was shown to be a valuable tool to identify
metabolite networks, which is able to distinguish direct from
indirect associations (24,25). Another advantage is that this
estimation of metabolite sets is independent from further
information like availability of database information. The ana-
lysis strategy was applied to the panel of all metabolite measure-
ments in KORA F4 that passed quality control and to all
individuals with metabolite measurements and genotypes.
Two partial-correlation coefficient threshold levels (0.3 and
0.45) were used, both of which gave a different range of metab-
olite sets. The sets were not overlapping for each threshold, but
sets gained from the higher threshold level were subsets of the
sets gained with the lower threshold level.

Single association-defined metabolite sets (SAD sets)
A SAD set is defined per gene with the use of a P-value criterion
for the association of single metabolites. The gene association is
calculated in the same way as in PSEA and is the minimal asso-
ciation P-value of all SNPs mapped to this gene and the metab-
olite. All phenotypes for which the P-value for association with
the gene was below this P-value criterion are taken in a SAD set.
At most, one metabolite set can be identified for each gene. Two
runs were made using different P-value levels: 1024 and 1026.
The specification of SAD sets was based on the discovery
cohort KORA F4.

Two-step identification–validation strategy
As described in Results, we performed our analyses with a
two-step approach, with an initial identification of “promising
enrichments” in KORA F4, and a subsequent validation of
those in the TwinsUK study. A phenotype set that showed
enrichment at a gene with a permutation P ,1024 was named
promisingly enriched and was taken forward for validation in
the TwinsUK study. As described above, genes in the so-called
gene groups are not independent as the share SNPs. We observed
that, within a gene group, the same phenotype sets are often
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promisingly enriched for several genes. Therefore, the number of
independent promising enrichments was introduced. This counts
independent gene group enrichments of the same set only once. It
was used to correct for multiple testing in the validation stage,
and the corrected validation P-value level is 0.05/number of in-
dependent promising enrichments.

Permutation strategy
Identificationandvalidationwerebasedona permutation testwith
a total of10 000permutations.For computational reasons, the per-
mutations were performed in a graded process. In contrast to per-
forming the maximal number of permutations in KORA F4, for all
genes the number of permutations was increased in steps. After
each step, only those genes are taken forward to the round of per-
mutations with a promising P-value. Initially, 100 permutations
were calculated. Only those genes for which at least one pheno-
type set had P-value ≤ 0.03 were analysed with 1000 permuta-
tions. The genes that had P-value ≤ 0.003 were taken for the
10 000 permutations step. The enrichments with P-value
, 0.0001 were validated in the TwinsUK study (compare
Fig. 1D). The graded permutation strategy considerably reduced
the computational effort. As a consequence, the strategy has a
reduced statistical power but does not cause more false-positive
results.

In the analysis of SAD sets, the number of sets tested for en-
richment was much higher than in the analysis of GGM sets.
Toreduce thecomputationaleffort,we introducedan intermediate
validation step to the graded permutation scheme (compare
Fig. 1E). All genes at which a SAD set had a P-value ≤ 0.003
after 1000 permutations in KORA F4 were validated in the
TwinsUK study with 1000 permutations. Only those genes for
which a SAD set gained a P-value ≤ 0.003 in PSEA on
TwinsUK with 1000 permutations (intermediate validation)
were analysed in KORA F4 with 10 000 permutations.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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