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Abstract

The hardware landscape for database systems has changed dramatically over the
past two decades. Today, the traditional database system architecture that was pio-
neered by System R and is implemented by IBM DB2, Microsoft SQL Server, Oracle
and Postgres, shows weaknesses in all major areas of application of commercial da-
tabase systems: operational transaction processing, decision support and business
intelligence, and beyond relational workloads. The shortcomings of the traditional
architecture on modern hardware have led to the development of new data man-
agement approaches and overthrew common beliefs in how to build a database
system. However, most modern database systems are optimized for only one of
the aforementioned areas of application. This separation into specialized systems
makes it difficult to achieve real-time awareness and to get to a common under-
standing of all data across an organization.

HyPer is a modern hybrid high performance main-memory database system that
overcomes the weaknesses of the traditional architecture and aims at fulfilling the
vision of a one size fits all database management system. Using a novel and unique
architecture, HyPer is able to unify the capabilities of modern specialized transac-
tional and analytical systems in a single system without sacrificing performance
or standards and reliability guarantees. In addition, HyPer aspires to integrate be-
yond relational workloads to overcome the connection gap between the relational
and beyond relational world.

This thesis makes several contributions to the research area of main-memory da-
tabase systems and the HyPer main-memory database system by improving the
scalability and flexibility of query and transaction processing. In particular, we
contribute (i) a fast serializable multi-version concurrency mechanism, (ii) an ap-
proach for fast data ingestion and in-situ query processing on files, (iii) a scale-out
of the HyPer system that allows elastic query processing on transactional data, (iv)
an analysis of main-memory database systems in virtualized environments, (v) op-
timizations for running main-memory database systems on wimpy and brawny
hardware, (vi) a vectorised scan subsystem for compiling query engines, and (vii)
an analysis of performance limits of the TPC-H analytical benchmark queries on
current hardware.
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Überblick

In den letzten beiden Jahrzehnten hat sich die Hardwarelandschaft für Datenbank-
systeme erheblich verändert. Die weit verbreitete traditionelle Architektur von Da-
tenbanksystemen, welche ursprünglich von System R umgesetzt wurde und heute
von IBM DB2, Microsoft SQL Server, Oracle und Postgres implementiert wird, zeigt
Schwächen in allen großen Andwendungsgebieten von kommerziellen Datenbank-
systemen: operationelle Transaktionsverarbeitung, Decision Support und Business
Intelligence sowie nicht-relationale Datenverwaltung. Die Defizite der traditionel-
len Architektur kommen besonders auf moderner Hardware zum Vorschein und
haben zur Entwicklung von neuen Ansätzen in der Datenverwaltung geführt. Weit
verbreitete Überzeugungen wie ein Datenbanksystem entwickelt werden soll wur-
den dabei in Frage gestellt und teilweise verworfen. Die meisten modernen Daten-
banksysteme sind jedoch nur für jeweils eines der zuvor genannten Anwendungs-
gebiete optimiert. Diese Unterteilung in spezialisierte Systeme macht es schwierig
Analysen in Echtzeit durchzuführen und ein gemeinsames Verständnis des gesam-
ten Datenbestands einer Organisation aufzubauen.

HyPer ist ein modernes hybrides hochperformantes Hauptspeicher-Datenbank-
system, welches sich zum Ziel gesetzt hat die Schwachstellen der traditionellen
Datenbankarchitektur zu beseitigen und die Vision eines “one size fits all” Da-
tenbanksystems umzusetzen. Durch seine moderne und einzigartige Architektur
schafft es HyPer die Eigenschaften moderner spezialisierter Transaktionssysteme
und analytischer Systeme in einem einzelnen System zu vereinigen, ohne dabei auf
Performanz oder Standards und Garantien zu verzichten. Darüber hinaus ist es ei-
ne Bestrebung des HyPer Projekts, nicht-relationale Datenverwaltung zu integrie-
ren, um Schwierigkeiten bei der Verbindung von relationaler und nicht-relationaler
Datenverwaltung zu beheben.

Diese Arbeit leistet Beiträge zum Forschungsgebiet der Hauptspeicher-Datenbank-
systeme und zum Hauptspeicher-Datenbanksystem HyPer um die Skalierbarkeit
und Flexibilität von Anfrage- und Transaktionsverarbeitung zu verbessern. Ins-
besondere werden folgende Beiträge gemacht: (i) eine schnelle serialisierbare Im-
plementierung von “Multi-Version Concurrency Control”, (ii) ein Ansatz um Da-
ten schnell in ein Datenbanksystem zu laden sowie zur direkten Anfragebearbei-
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tung auf Dateien, (iii) ein Ansatz zur horizontalen Skalierung des HyPer Systems,
welches elastische Anfragebearbeitung auf transaktionellen Daten erlaubt, (iv) ei-
ne Analyse zum Einsatz von Hauptspeicher-Datenbanksystemen in virtualisierten
Umgebungen, (v) Optimierungen um Hauptspeicher-Datenbanksysteme auf leis-
tungsschwacher sowie leistungsstarker Hardware einzusetzen, (vi) ein vektorisier-
tes “Scan”-Subsystem für kompilierende Anfrage-“Engines”, sowie (vii) eine Ana-
lyse von Leistungsgrenzen bei der Ausführung von analytischen TPC-H Anfragen
auf heutiger Hardware.
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Chapter 1

Introduction

1.1 A Changing Landscape for Database Systems

Traditional relational database management systems such as IBM DB2, Microsoft
SQL Server, Oracle, and Postgres all share a similar architecture that has first been
propagated over three decades ago by System R [10], the first implementation of
SQL. In this traditional architecture, data is stored as a sequence of contiguous
records (also called rows or tuples) on disk pages. Usually, these pages are heav-
ily compressed in order to compensate for the slow bandwidth when accessing the
disk drive. Storage backends that store data as a sequence of records are also re-
ferred to as row stores. If needed, disk pages are read into main memory by a buffer
manager. Traditional systems work under the assumption that the working set for
a transaction or query may exceed the capacity of the main memory. Intermediate
results can thus be spooled back to disk and pages can be evicted from the pool
of memory-resident pages at any time. Indexes, mostly B-tree variants [13], are
used to allow for fast accesses to individual records and to narrow the scan range
and therefore the number of page reads. Most traditional relational database sys-
tems guarantee the ACID properties (atomicity, consistency, isolation, durability)
for reliable transaction processing as defined by Gray [50]. Records are dynami-
cally locked by a lock manager in order to isolate logically concurrent transactions
and in order to guarantee consistency. This logical concurrency control thereby also
enables the flexibility to interleave the execution of reads and writes from different
transactions. Write-ahead logging (WAL) is used to provide atomicity and dura-
bility guarantees. WAL writes all data modifications to a durable log before the
modifications are applied to the records in place, i.e., in the pages. Usually both,
the redo and undo log, are stored on disk.
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Query evaluation plans are represented as a tree of algebraic operators, which is
optimized by a query optimizer. Classical cost-based query optimizers enumer-
ate a subset of valid join orders and choose the cheapest plan from semantically
equivalent alternatives based on a cost model that takes cardinality estimates as
input. To execute this plan, most systems use an implementation of the iterator
model [91], which is also referred to as Volcano-style query processing [47]. Con-
ceptually, every physical relational algebra operator produces a tuple stream from
its child operators and provides an interface to iterate over this stream one tuple at
a time. Tuples are pulled upwards in the operator tree by fetching the next tuple
from each operator. In traditional systems, multi-core and distributed parallelism
are usually implemented based on the Volcano parallelization model [46], which
encapsulates parallelism in so-called exchange operators. These operators route
the tuple streams between multiple executors, e.g., threads or nodes. The degree of
parallelism is thereby “baked into” the query plan by the query optimizer.

Today, the commercial database market can roughly be divided into three broad
categories: (i) operational transaction processing, (ii) decision support and busi-
ness intelligence, and (iii) a plethora of specialized solutions for specific workloads.
In all three categories, the traditional architecture has lately shown weaknesses;
mostly due to changes in the hardware landscape. This changing landscape has led
to the development of new data management approaches and overthrew common
beliefs in how to build a database system. Stonebraker went as far as to conclude
that the traditional wisdom is not a good idea in any application area and that tra-
ditional systems are obsolete in terms of performance and features [134].

One of the major changes in the hardware landscape is that memory prices have
dropped exponentially over the years; even if adjusted for inflation (see Figure 1.1),
and density of semiconductor memory has increased exponentially. As of April
2016, the price per gigabyte of main memory is at around US-$3. In 2015, Oracle
announced the SPARC M5-32 [111] with up to 32 CPUs and 32 TB of main memory
in a single machine. While the M5-32 certainly has a high price tag, at the time of
writing, commodity x86-64 servers with 1 TB of main memory are already retailing
for less than $30,000. At the same time, the size of transactional data grows at a
much smaller rate. If we take the gross domestic product as an indicator for the
growth of transactional enterprise data and assume an average growth of 2%, then
the amount of transactional data doubles roughly every 35 years. Main memory
capacity on the other hand doubles roughly every three to four years. A back-of-
the-envelope estimate of Amazon’s yearly transactional data volume reveals that
retaining all data in main memory is feasible even for large enterprises: with a
revenue of $60 billion, an average item price of $15, and a size of about 54 byte
per orderline, we derive less than 1/4 TB for the orderlines per year—the domi-
nant repository in a sales application. Furthermore, limited main memory capacity
is not a restriction as data can be divided into hot and cold data where the latter
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can be compressed and swapped out to disk. Thus, for the lion’s share of online
transactional workloads (OLTP), it is now feasible and economical to store all trans-
actional data in main memory. As shown in [54], traditional systems, however,
cannot benefit from the orders of magnitude faster access times to data in main
memory compared to disk. By implementing a new architecture that does not rely
on traditional buffer and lock managers, transactional main memory database sys-
tems such as VoltDB, SAP Hana, MemSQL, and HyPer enable unprecedented OLTP
throughputs.

The modern memory hierarchy (see Figure 1.2) is deep and has become more and
more complex. Modern servers with multiple CPU sockets have non-uniform
memory architectures (NUMA) that divide accessible memory into local and re-
mote parts. In the storage layer, magnetic disks are increasingly replaced by faster
flash-based solid state disks (SSDs) and in between SSDs and main memory, newer
forms of non-volatile RAM (NVRAM) aim at bridging the access latency gap be-
tween the storage layer and main memory. Rising main memory capacities and the
new layers in the memory hierarchy have shrunk the gap between data access la-
tency and CPU speed again. This change makes many transactional and analytical
workloads compute- instead of I/O-bound, which exposed another weakness of
the traditional database system architecture: interpreted execution of transactions
and queries on modern superscalar multi-core CPUs.

Over the past 30 years, the landscape of CPUs has changed even more than the
memory hierarchy. While the number of transistors keeps growing near exponen-
tially in accordance to Moore’s law, increases in frequency, typical power consump-
tion, and single-thread performance have started to stagnate (see Figure 1.3). Due
to physical restrictions, processor vendors are now forced to scale the number of
cores (hardware threads) in order to leverage the gains in transistor counts. How-
ever, it remains an open question if multi-core scaling will continue in the future or
if we head towards an era of Dark Silicon where only a small fraction of transistors
can be active at a time [36]. In addition to having multiple cores, CPU cores have
become more complex with each iteration. Modern CPUs have superscalar cores
that implement instruction-level parallelism and feature multiple execution units,
such as multiple Arithmetic Logical Units (ALU) and Single Instruction Multiple
Data (SIMD) units that execute a single instruction against multiple data items in
wide registers. SIMD parallelization is also referred to as data parallelism. Modern
cores have deep instructions pipelines and execute instructions that do not depend
on each other out of order and simultaneously on the aforementioned execution
units (see Figure 1.4). Software needs to be specifically designed to fully lever-
age the performance of these modern CPUs. For example, to improve the flow in
the pipeline, the CPU needs to predict the outcome of branches. If it mispredicts
the outcome of a branch, the pipeline needs to be flushed and many cycles of al-
ready performed work are lost. It is thus advisable to write code in a way that
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branching patterns are either predictable or branches are avoided altogether. Be-
sides branching, the multi-core scale-out and the deep memory hierarchy introduce
new challenges such as false sharing, cache pollution, and lock contention, to name
only a few. Most importantly, in order to fully leverage all cores, all code needs
to be parallelized on the task and data level, which often requires algorithms to be
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Figure 1.5: The conventional data management approach: relational data manage-
ment is separated into mission-critical transaction processing (OLTP) in a transac-
tional system and analytical query processing (OLAP) in a Data Warehouse. Non-
relational and beyond relational data and workloads (OBRP) are processed in sys-
tems that are often hard to connect to the relational systems.

redesigned. Tuple-at-a-time interpreted query and transaction execution in tradi-
tional database systems behaves particularly badly on modern CPUs due to, e.g.,
unpredictable branching patterns, bad data and code locality, heavy use of lock-
ing, and many virtual function calls. A database architecture modern CPUs and
the modern memory hierarchy thus requires a complete rethinking of traditional
query and transaction execution [54, 69, 92, 20, 108].

To overcome the weaknesses of the traditional architecture and in order to get
the maximum out of modern hardware, academia and vendors turned away
from general-purpose database systems and started developing highly special-
ized database systems, each optimized for a specific workload class. For exam-
ple, H-Store [69] and its commercial version VoltDB [149] are highly specialized
main-memory OLTP systems. MonetDB [92] and Vectorwise [157] are examples for
modern high performance OLAP engines. On the side, NoSQL systems that largely
give up ACID guarantees and SQL and new batch processing frameworks such as
MapReduce [29] and its open-source incarnation Hadoop have emerged.

The separation into specialized systems, at least one for each of the three main
workload categories, has solved the performance issues of the traditional architec-
ture, but has also given up the advantage of having a single system with a common
state. Leaving increased maintenance and development costs aside, this separation
introduces two new major challenges: First, analytical workloads are mostly pro-
cessed on a stale transactional state, because new transactional updates are only
periodically merged into the analytical systems, e.g., once every night, in order to
avoid slowing down the mission-critical transactional system. Second, specialized
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systems for non-relational data and batch workloads are often disconnected from
the relational systems. Stale data and the connection gap prevent analytics on a holis-
tic state and therefore make it difficult to achieve real-time awareness and to get to
a common understanding of all data across an organization (see Figure 1.5).

In the following Section we introduce HyPer [71], a modern hybrid OLTP and
OLAP main-memory database management system, that overcomes the weak-
nesses of the traditional architecture and aims at again fulfilling the vision of a one
size fits all database management system. Using a novel and unique architecture,
HyPer is able to unify the capabilities of modern transactional and analytical sys-
tems in a single system without a performance loss and aspires to integrate online
beyond relational workloads (OBRP) to overcome the connection gap.

1.2 The HyPer Main-Memory Database System

HyPer belongs to an emerging class of hybrid high-performance main-memory
database systems that enable real-time business intelligence by evaluating OLAP
queries directly in the transactional database. Using novel snapshotting and code
generation techniques, HyPer achieves highest performance—compared to state
of the art main-memory database systems—for both, OLTP and OLAP workloads,
operating simultaneously on the same database.

The HyPer data management approach is shown in Figure 1.6. Highlights of the
HyPer system include:

• Transactions (OLTP), analytical queries (OLAP), and beyond relational work-
loads (OBRP) are processed on the same column-store and on the same state,
thereby avoiding stale data and the connection gap between specialized sys-
tems. Columnar storage is the default storage layout in the HyPer system.
HyPer also implements a row-based storage backend, but using the HyPer ar-
chitecture, transaction processing on the column-store is almost as fast as on
the row-store. Analytics, however, profit from a columnar data layout. Work-
load classes are isolated using efficient snapshotting techniques [71, 109]. One
of these snapshotting techniques, namely a fast and serializable Multi-Version
Concurrency Control (MVCC) scheme [109] is a contribution of this thesis (see
Chapter 2).

• Queries and transactions are specified in SQL or a PL/SQL-like scripting lan-
guage [72]. HyPer translates these into a relational algebra tree, optimizes
the tree using its query optimizer, and finally generates and just-in-time (JIT)



8 1 Introduction

Execution Engine:
data-centric code generation and just-
in-time compilation to target-specific 
machine code for transactions, 
analytics, and beyond relational tasks
Main Storage:
columnar in-memory storage with multi-
version concurrency control (MVCC)

Transactions (OLTP) &
Continuous Data Ingestion

Analytics (OLAP)

Beyond Relational & 
Advanced Analytics (OBRP)
Graphs, Data Mining, …

HyPer: one system with one state for all target platforms

mobile desktop server cluster/cloud

wimpy brawnytarget platform

Figure 1.6: The HyPer data management approach: one system with one state for
all target platforms that allows analytics on the latest transactional state and makes
no tradeoffs with respect to standards and reliability guarantees. Non-relational
data and workloads are connected with relational data processing in the HyPer
system. This allows for fast analytics on a holistic state to achieve real-time aware-
ness and a common understanding of all data across an organization.

compiles machine code for the query or transaction using the LLVM compiler
framework [108]. Together with the elimination of ballast caused by buffer
management, locking, and latching, this novel data-centric code generation
approach allows HyPer to process more than 100,000 TPC-C transactions per
second in a single thread on modern hardware [71].

• HyPer makes no tradeoffs for performance and provides support for full
SQL-92+ relational query processing with graph- and data-mining exten-
sions and guarantees fully ACID-compliant transaction processing, including
durability and recovery.

• Query processing is fully parallelized using a novel morsel-driven paral-
lelization approach [84] that does not rely on exchange operators, thereby
enabling higher scalability and elasticity. The parallelization approach is also
optimized for modern Non-Uniform Memory Architectures (NUMA), which
are often found in large server systems. Together with its advanced query op-
timizer, HyPer achieves superior query response times, comparable to those
of MonetDB [92] and Vectorwise [157], two state of the art analytical main-
memory database systems. HyPer’s query engine is further designed to scale
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out to multiple nodes and process queries on data that is distributed across a
cluster of servers [125].

• We aim at running HyPer on a wide range of target platforms from wimpy
smartphone devices to the brawniest server systems and even on clusters of
servers and in cloud infrastructure (see Chapters 6, 4,and 5).

• HyPer offers efficient scan and data ingestion operators for structured data
files in order to shorten the time from data to insight (see Chapter 3).

This thesis makes several contributions to the research area of main-memory
databases and the HyPer main-memory database system in particular by improv-
ing the scalability and flexibility of query and transaction processing.

1.2.1 Data-Centric Code Generation

HyPer’s most distinctive feature is its data-centric code generation approach. Tra-
ditional database systems translate incoming queries and transactions into a phys-
ical algebra tree and evaluate this tree using the iterator model, which is also re-
ferred to as Volcano-style processing [47, 46]. Every physical algebraic operator
produces a tuple stream from its input and exposes this stream via an iterator, i.e.,
a function that fetches the next tuple. Despite being convenient and feeling natural,
the iterator model is also very slow on modern superscalar multi-core CPUs due to
a great many (virtual) function calls, degraded branch prediction, and poor code
locality. These negative properties of the iterator model are reinforced by the ad-
vent of main-memory database systems like HyPer, where query and transaction
performance is more and more determined by CPU costs rather than I/O speed.

To deal with the issues described for the iterator model, several modern database
systems such as MonetDB and Vectorwise produce more than one tuple during an
iterator call or even all tuples at once. While this kind of block-oriented processing
reduces the overhead of function calls and allows for the efficient use of vector-
ization instructions, it also eliminates the possibility to pipeline data, i.e., passing
data from one operator to its parent without copying or materialization; severely
limiting peak performance.

HyPer uses a novel data-centric query evaluation strategy [108] to deal with the
shortcomings of the iterator model. We came to the conclusion that it is not nec-
essarily a good idea to exhibit the algebraic operator structure during query pro-
cessing itself. In HyPer, query processing is thus data-centric rather than operator-
centric. Operator boundaries are blurred to enable pipelining and keep data in CPU
registers for as long as possible. To improve code and data locality, data is pushed
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Platform-Independent Platform-specific

Lexer and Parser

Semantic Analysis
and Cost-Based Optimizer

Platform-Independent
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Platform-Specific
Optimizing JIT Compiler

Execution

SQL String or
HyPer-Script

AST

Operator Tree

LLVM IR

Machine Code

Figure 1.7: The HyPer query engine

towards consuming operators in tight work loops rather than being pulled. Finally,
to achieve optimal performance and get most of the mileage out of a given proces-
sor, generated code is compiled to optimized native machine code instead of using
an interpreter.

More specifically, query compilation in HyPer is based on the LLVM compiler
framework and proceeds in three steps: First, incoming queries and transactions
are parsed and an algebraic tree is generated and optimized. Second, platform-
independent LLVM assembly code is generated based on the optimized algebraic
tree. The code generator mimics a producer/consumer interface, where data is
taken out of a pipeline breaker and is materialized into the next pipeline breaker.
Complex operators, e.g., index logic, are pre-compiled and calls to these oper-
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fork()

OLTP data

OLAP snapshot

queries

copy-on-update

A
B

A'
B

replicated page
(due to update of A)

update A to A'

Figure 1.8: HyPer’s virtual-memory-based snapshotting mechanism.

ators are generated dynamically during code generation. Third, the generated
LLVM assembly code is executed using the optimizing LLVM JIT compiler, which
quickly produces extremely fast machine code; usually within a few milliseconds.
The LLVM compiler makes our query compilation approach portable, as platform-
dependent machine code is generated only in the final step. LLVM backends exist
for several instruction sets, e.g., x86, x86-64, and ARM. The “way of a query” is also
shown in Figure 1.7.

1.2.2 Virtual Memory Snapshotting

Besides multi-version concurrency control snapshotting (see Chapter 2), this thesis
also often refers to the second snapshotting mechanism in HyPer: virtual-memory-
based snapshotting [71]. The mechanism is based on the POSIX system call fork():
OLAP queries are executed in a process that is forked from the OLTP process (see
Figure 1.8). This is very efficient as only the virtual page table of the OLTP process
is copied. The operating system uses the processor’s memory management unit to
implement efficient copy-on-update semantics for snapshotted pages. Whenever
the OLTP process modifies a snapshotted page for the first time, the page is repli-
cated in the forked process (see Figure 1.8).

1.3 Contributions and Outline

In subsequent chapters, we make the following contributions to the HyPer system
and the research area of main-memory database systems in general:
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Chapter 2: Fast Serializable Multi-Version Concurrency Control. State-of-the-
art main-memory database systems often do not offer the flexibility of logical con-
currency control. The original high performance in-memory transaction processing
model was pioneered by H-Store and later commercialized by VoltDB and relies
on pre-canned transactions that are each processed one after another. Interleaving
reads and writes from different transactions is not possible in this model. Existing
concurrency control models for main-memory database systems on the other hand
are exclusively optimized for either OLTP or OLAP scenarios and add substantial
overhead compared to serial execution with single-version concurrency control.

Multi-Version Concurrency Control (MVCC) is a widely employed logical concur-
rency control mechanism, as it allows for execution modes where readers never
block writers. However, most MVCC implementations in main-memory database
systems add a substantial bookkeeping overhead compared to single-version con-
currency control and most database systems implement only snapshot isolation (SI)
instead of full serializability as the default transaction isolation level. Adding se-
rializability guarantees to existing SI implementations, especially to main-memory
database systems, tends to be prohibitively expensive.

In Chapter 2, we present a novel MVCC implementation for main-memory da-
tabase systems that has very little overhead compared to serial execution with
single-version concurrency control, even when maintaining serializability guaran-
tees. Updating data in-place and storing versions as before-image deltas in undo
buffers not only allows us to retain the high scan performance of a single-version
system but also forms the basis of our cheap and fine-grained serializability val-
idation mechanism. The novel idea is based on an adaptation of precision lock-
ing and verifies that the (extensional) writes of recently committed transactions do
not intersect with the (intensional) read predicate space of a committing transac-
tion. We experimentally show that an implementation of our MVCC model in the
HyPer main-memory database system allows very fast processing of transactions
with point accesses as well as read-heavy transactions that scan large portions of the
database and that there is little need to prefer SI over full serializability any longer.

Chapter 3: Fast Data Ingestion and In-Situ Query Processing on Files. Vast
amounts of data is stored in structured file formats on disk and in distributed file
systems such as Hadoop HDFS. Today’s business intelligence and eScience appli-
cations are faced with the challenge of efficiently evaluating complex queries over
this large volume of data. To analyze such data in traditional disk-based database
systems, the data needs to be converted to a binary format that is suitable for fast
query processing. This operation is often referred to as data ingestion or bulk loading.
The performance of data ingestion, however, largely depends on the wire speed of
the data source and the data sink, i.e., how fast data can be can be read and how fast
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the optimized format can be written back out. As the speed of network adapters
and disks has stagnated in the past, loading has become a major bottleneck. The de-
lays it is causing are now ubiquitous as structured file formats, especially text-based
formats such as comma-separated values (CSV), are a preferred storage format for
reasons of portability and human readability.

But the game has changed: Ever increasing main memory capacities have fos-
tered the development of main-memory database systems and very fast network
infrastructures such as 10 Gigabit Ethernet and Infiniband as well as high perfor-
mance storage solutions based on solid state disks (SSDs) and non-volatile memory
(NVRAM) are on the verge of becoming economical. While hardware limitations
for fast data ingestion have disappeared, current approaches for main-memory da-
tabase systems fail to saturate the now available wire speeds of tens of Gbit/s. In
Chapter 3, we contribute Instant Loading, a novel CSV ingestion approach that al-
lows scalable data ingestion at wire speed. This is achieved by optimizing all phases
of loading for modern super-scalar multi-core CPUs. Large main memory capaci-
ties and Instant Loading thereby facilitate a very efficient data staging processing
model consisting of instantaneous load-work-unload cycles across data archives on a
single node. Once data is loaded, updates and queries are efficiently processed with
the flexibility, security, and high performance of relational main-memory database
systems. Our implementation of Instant Loading in the HyPer main-memory data-
base system shows that data ingestion scales with the wire speed of the data source
and the number of available CPU cores. The general Instant Loading approach in-
troduces a streaming-like read operator on external files in HyPer. In addition to
data ingestion, this operator can also be used to process ad-hoc queries directly, i.e,
in-situ, on stored files, without loading the data before query processing.

Chapter 4: Scaling to a Cluster of Servers and the Cloud. Declining DRAM
prices have lead to ever increasing main memory sizes. Together with the advent
of multi-core parallel processing, these two trends have fostered the development
of high performance main-memory database systems such as HyPer [71], i.e., data-
base systems that store and process data solely in main memory. On today’s server
systems, HyPer processes more than 100,000 TPC-C transactions per second in a
single thread, which is enough for human-generated workloads even during peak
hours. A ballpark estimate of Amazon’s yearly transactional data volume further
reveals that retaining all data in-memory is feasible even for large enterprises: with
a revenue of $60 billion, an average item price of $15, and about 54 B per order-
line, we derive less than 1/4 TB for the orderlines—the dominant repository in a
sales application. Furthermore, limited main memory capacity is not a restriction
as data can be divided into hot and cold data where the latter can be compressed
and swapped out to disk [41, 78]. We thus conjecture that even the transactional
data of large enterprises can be retained in main memory on a single server.
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Remaining server resources are used for OLAP query processing on the latest trans-
actional data, i.e., real-time business analytics. While a the performance of a single
server is sufficient for OLTP demands, an increasing demand for OLAP throughput
can only be satisfied economically by a scale out of the database system. In Chap-
ter 4 we present ScyPer, a Scale-out of our HyPer main-memory database system
that horizontally scales out on a cluster of shared-nothing servers, on premise and in the
cloud. In particular, we present an implementation of ScyPer that (i) sustains the
superior OLTP throughput of a single HyPer server, and (ii) provides elastic OLAP
throughput by provisioning additional servers on-demand.

Chapter 5: Main-Memory Database Systems and Modern Virtualization. Virtu-
alization owes its popularity mainly to its ability to consolidate software systems
from many servers into a single server without sacrificing the desirable isolation
between applications. This not only reduces the total cost of ownership, but also
enables rapid deployment of complex software and application-agnostic live mi-
gration between servers for load balancing, high-availability, and fault-tolerance.
Virtualization is also the backbone of cloud infrastructure that leverages the afore-
mentioned advantages and consolidates multiple tenants on virtualized hardware.
Deploying main-memory databases on cloud-provisioned infrastructure enables
increased deployment flexibility and the possibility to scale out on demand.

However, virtualization is no free lunch. To achieve isolation, virtualization en-
vironments need to add an additional layer of abstraction between the bare metal
hardware and the application. This inevitably introduces a performance over-
head. High performance main-memory database systems like our HyPer system
are specifically susceptible to additional software abstractions as they are closely
optimized and tuned for the underlying hardware. In Chapter 5, we analyze in de-
tail how much overhead modern virtualization options introduce for high perfor-
mance main-memory database systems. We evaluate and compare the performance
of HyPer and MonetDB under the modern virtualization environments Docker,
KVM, and VirtualBox as well as on cloud-provisioned Google Compute Engine
instances for analytical and transactional workloads. Our experiments show that
the overhead depends on the system and virtualization environment being used
and that deployments in virtualized environments have to be handled with care.

Chapter 6: Optimizing for Brawny and Wimpy Hardware. Shipments of smart-
phones and tablets with wimpy CPUs are outpacing brawny PC and server ship-
ments by an ever-increasing margin. While high performance database systems
have traditionally been optimized for brawny systems, wimpy systems have re-
ceived only little attention by industry and the research community; leading to
poor performance and energy inefficiency on wimpy hardware. Designing data-
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base systems that scale from brawny down to wimpy hardware increases the system’s
flexibility in an increasingly cloud-based and mobile-first hardware landscape. Optimizing
for wimpy CPUs has yet another advantage: Wimpy CPUs are mostly used in mo-
bile devices where energy efficiency is even more important than in desktop and
server settings. As such, wimpy hardware already uses energy saving techniques
that still need to be picked up by their brawny counterparts.

In Chapter 6, we demonstrate HyPer’s independence from a specific target plat-
form by benchmarking transactional and analytical workloads on a brawny x86-
64-based server system and a wimpy ARM-based smartphone system. In particu-
lar, we run the TPC-C and TPC-H benchmarks and report performance and energy
consumption results. In particular, we also try to answer the questions “What per-
formance can be expected from the currently fastest database systems on wimpy
and brawny systems?” and “Can one trade performance for energy efficiency or is
the highest performing configuration also still the most energy efficient one?”.

We further study heterogeneous multi-core processors, an energy saving technique
pioneered by wimpy smartphone CPUs. Today, physical and thermal restrictions
hinder commensurate performance gains from the ever increasing transistor den-
sity. While multi-core scaling helped alleviate dimmed or dark silicon for some
time, wimpy and brawny processors will need to become more heterogeneous in
order to decrease energy consumption while still providing performance benefits.
To this end, single instruction set architecture (ISA) heterogeneous processors are
a particularly interesting solution that combines multiple cores with the same ISA
but asymmetric performance and power characteristics. These processors, how-
ever, are no free lunch for database systems. Mapping jobs to the core that fits best
is notoriously hard for the operating system or a compiler. To achieve optimal per-
formance and energy efficiency, heterogeneity needs to be exposed to the database
system, which can use its domain knowledge to make better decisions.

In Chapter 6, we contribute a thorough study of parallelized core database op-
erators and TPC-H query processing on a wimpy CPU with a heterogeneous
single-ISA multi-core architecture. Using these insights we design a heterogeneity-
conscious job-to-core mapping approach for our high performance main-memory
database system HyPer and show that it is indeed possible to get a better mileage
while driving faster compared to static and operating-system-controlled mappings.
Our approach improves the energy delay product of a TPC-H power run by 31%
and up to over 60% for specific TPC-H queries. Our study also suggests that, while
in the past the best performing configuration was also the most energy efficient,
this may no longer hold for heterogeneous multi-core architectures. We are the first
to discuss energy-proportional database processing in the context of main-memory
database systems and are the first to investigate the impact of heterogeneous single-
ISA multi-core architectures.
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Chapter 7: Vectorized Scans in Compiling Query Engines. Modern database
systems that optimize for OLAP workloads work on compressed columnar for-
mat and increase the CPU efficiency of query evaluation by more than an order of
magnitude over traditional row-store database systems. The jump in query eval-
uation efficiency is typically achieved by using either “vectorized” execution or
“just-in-time” (JIT) compilation of query plans. Vectorization improves over in-
terpreted tuple-at-a-time query evaluation by executing all operations on blocks
of column values, i.e., vectors. The effect is reduced interpretation overhead, be-
cause virtual functions implementing block-wise operations handle thousands of
tuples per function call, and the loop over the block inside these function imple-
mentations benefits from many loop-driven compiler optimizations, including the
automatic generation of SIMD instructions. JIT compilation of queries directly into
executable code avoids query interpretation and its overheads altogether. Differ-
ent storage layouts for the blocks or chunks of a relation, e.g., for compression,
however, constitute a challenge for JIT-compiling tuple-at-a-time query engines.
As each compression schema can have a different memory layout, the number of
code paths that have to be compiled for a scan grow exponentially. This leads to
compilation times that are unacceptable for ad-hoc queries and transactions. Vec-
torized scans, on the other hand, can be pre-compiled and are thus not vulnerable
to multiple storage layouts.

In Chapter 7 we show how the strengths of both worlds, JIT compilation and
vectorization, can be fused together in our HyPer system by using an inter-
preted vectorized scan subsystem that feeds into JIT-compiled tuple-at-a-time
query pipelines.

Chapter 8: Limits of TPC-H Performance. The TPC-H benchmark still attracts
considerable interest from the database community: system vendors benchmark
their products against it for internal and marketing purposes, and researchers use
it as the standard benchmark for novel techniques in analytical query processing.
In recent years, these novel techniques have led to steady improvements in TPC-
H performance, especially in the context of main-memory database systems. Yet,
while we can measure and compare the performance of individual systems, inter-
esting questions such as “How good is a system in absolute terms?” and “How
much faster can it get?” still remain open.

To answer these question, in Chapter 8, we we first run the TPC-H benchmark
for Vectorwise (Actian Vector) and HyPer. We then study theoretical and practical
single-threaded performance limits of individual TPC-H queries both inside and
outside the scope of the TPC-H rules using best-effort hand-written query plans
and code analysis. To the best of our knowledge, we are the first trying to establish
tight lower bounds for TPC-H query runtimes. These bounds are generally useful
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as guidelines when implementing a database system, and indeed, our experiments
and some of the techniques presented in this chapter have triggered forthcoming
improvements in Vectorwise and HyPer.
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Chapter 2

Fast Serializable Multi-Version
Concurrency Control

Parts of this chapter have been published in [109].

2.1 Introduction

Transaction isolation is one of the most fundamental features offered by a database
management system (DBMS). It provides the user with the illusion of being alone
in the database system, even in the presence of multiple concurrent users, which
greatly simplifies application development. In the background, the DBMS ensures
that the resulting concurrent access patterns are safe, ideally by being serializable,
i.e., by being equivalent to a safe serial access pattern.

Serializability is a great concept, but it is hard to implement efficiently. A classical
way to ensure serializability is to rely on a variant of Two-Phase Locking (2PL) [151].
Using 2PL, the DBMS maintains read and write locks to ensure that conflicting
transactions, i.e., transactions that access a common data object that is modified by
at least one of the transactions, are executed in a well-defined order, which results
in serializable execution schedules. Locking, however, has several major disad-
vantages: First, readers and writers block each other. Second, most transactions
are read-only [118] and therefore harmless from a transaction-ordering perspec-
tive. Using a locking-based isolation mechanism, no update transaction is allowed
to change a data object that has been read by a potentially long-running read trans-
action and thus has to wait until the read transaction finishes. This severely limits
the degree of concurrency in the system.
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Multi-Version Concurrency Control (MVCC) [151, 15, 98] offers an elegant solution
to this problem. Instead of updating data objects in-place, each update creates a
new version of that data object, such that concurrent readers can still see the old
version while the update transaction proceeds concurrently. As a consequence,
read-only transactions never have to wait, and in fact do not have to use locking at
all. This is an extremely desirable property and the reason why many DBMSs im-
plement MVCC, e.g., Oracle, Microsoft SQL Server [33, 81], SAP HANA [37, 131],
and PostgreSQL [121]. However, most systems that use MVCC do not guarantee
serializability, but the weaker isolation level Snapshot Isolation (SI). Under SI, every
transaction sees the database in a certain state (typically the last committed state at
the beginning of the transaction) and the DBMS ensures that two concurrent trans-
actions do not update the same data object. Although SI offers fairly good isolation,
some non-serializable schedules are still allowed [2, 14]. This is often reluctantly
accepted because making SI serializable tends to be prohibitively expensive [24]. In
particular, the known solutions require keeping track of the entire read set of every
transaction, which creates a huge overhead for read-heavy (e.g., analytical) work-
loads. Still, it is desirable to detect serializability conflicts as they can lead to silent
data corruption, which in turn can cause hard-to-detect bugs.

In this chapter we introduce a novel way to implement MVCC that is very fast and
efficient, both for SI and for full serializability. Our SI implementation is admit-
tedly more carefully engineered than totally new, as MVCC is a well understood
approach that recently received renewed interest in the context of main-memory
DBMSs [81]. Careful engineering, however, matters as the performance of version
maintenance greatly affects transaction and query processing. It is also the basis of
our cheap serializability check, which exploits the structure of our versioning infor-
mation. We further retain the very high scan performance of single-version systems
using synopses of positions of versioned records in order to efficiently support an-
alytical transactions.

In particular, the main contributions of this chapter are:

1. A novel MVCC implementation that is integrated into our high-performance
hybrid OLTP and OLAP main-memory datbase system HyPer [71]. Our
MVCC model creates very little overhead for both transactional and analyti-
cal workloads and thereby enables very fast and efficient logical transaction
isolation for hybrid systems that support these workloads simultaneously.

2. Based upon that, a novel approach to guarantee serializability for snapshot
isolation (SI) that is both precise and cheap in terms of additional space con-
sumption and validation time. Our approach is based on an adaptation of
Precision Locking [151] and does not require explicit read locks, but still allows
for more concurrency than 2PL.
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3. A synopses-based approach (VersionedPositions) to retain the high scan perfor-
mance of single-version systems for read-heavy and analytical transactions,
which are common in today’s workloads [118].

4. Extensive experiments that demonstrate the high performance and trade-offs
of our MVCC implementation in our full-fledged main-memory database sys-
tem HyPer.

Our novel MVCC implementation is integrated into our HyPer main-memory
DBMS [71], which supports SQL-92 query and ACID-compliant transaction pro-
cessing (defined in a PL/SQL-like scripting language [72]). For queries and transac-
tions, HyPer generates LLVM code that is then just-in-time compiled to optimized
machine code [108]. In the past, HyPer relied on single-version concurrency control
and thus did not efficiently support interactive and sliced transactions, i.e., transac-
tions that are decomposed into multiple tasks such as stored procedure calls or in-
dividual SQL statements. Due to application roundtrip latencies and other factors,
it is desirable to interleave the execution of these tasks. Our novel MVCC model en-
ables this logical concurrency with excellent performance, even when maintaining
serializability guarantees.

2.2 MVCC Implementation

We explain our MVCC model and its implementation initially by way of an ex-
ample. The formalism of our serializability theory and proofs are then given in
Section 2.3. Figure 2.1 illustrates the version maintenance using a traditional bank-
ing example. For simplicity, the database consists of a single Accounts table that
contains just two attributes, Owner and Balance. In order to retain maximum scan
performance we refrain from creating new versions in newly allocated areas as in
Hekaton [33, 81]; instead we update in-place and maintain the backward delta be-
tween the updated (yet uncommitted) and the replaced version in the undo buffer
of the updating transaction. Updating data in-place retains the contiguity of the
data vectors that is essential for high scan performance. In contrast to positional
delta trees (PDTs) [56], which were designed to allow more efficient updates in col-
umn stores, we refrain from using complex data structures for the deltas to allow
for a high concurrent transactional throughput.

Upon committing a transaction, the newly generated version deltas have to be re-
timestamped to determine their validity interval. Clustering all version deltas of
a transaction in its undo buffer expedites this commit processing tremendously.
Furthermore, using the undo buffers for version maintenance, our MVCC model
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incurs almost no storage overhead as we need to maintain the version deltas (i.e.,
the before-images of the changes) during transaction processing anyway for trans-
actional rollbacks. The only difference is that the undo buffers are (possibly) main-
tained for a slightly longer duration, i.e., for as long as an active transaction may
still need to access the versions contained in the undo buffer. Thus, the VersionVec-
tor shown in Figure 2.1 anchors a chain of version reconstruction deltas (i.e., column
values) in “newest-to-oldest” direction, possibly spanning across undo buffers of
different transactions. Even for our column store backend, there is a single Version-
Vector entry per record for the version chain, so the version chain in general con-
nects before-images of different columns of one record. Actually, for garbage collec-
tion this chain is maintained bidirectionally, as illustrated for Sally’s Bal-versions.

2.2.1 Version Maintenance

Only a tiny fraction of the database will be versioned, as we continuously garbage
collect versions that are no longer needed. A version (reconstruction delta) becomes
obsolete if all active transactions have started after this delta was timestamped. The
VersionVector contains null whenever the corresponding record is unversioned and
a pointer to the most recently replaced version in an undo buffer otherwise.

For our illustrative example only two transaction types are considered: transfer
transactions are marked as “from → to" and transfer $1 from one account to an-
other by first subtracting 1 from one account’s Bal and then adding 1 to the other
account’s Bal. For brevity we omit the discussion of object deletions and creations
in the example. Initially, all Balances were set to 10. The read-only transactions de-
noted Σ sum all Balances and — in our “closed world” example — should always
compute $150, no matter under what startTime-stamp they operate.

All new transactions entering the system are associated with two timestamps:
transactionID and startTime-stamps. Upon commit, update transactions receive a
third timestamp, the commitTime-stamp that determines their serialization order.
Initially all transactions are assigned identifiers that are higher than any startTime-
stamp of any transaction. We generate startTime-stamps from 0 upwards and trans-
actionIDs from 263 upwards to guarantee that transactionIDs are all higher than the
startTimes. Update transactions modify data in-place. However, they retain the old
version of the data in their undo buffer. This old version serves two purposes: (1)
it is needed as a before-image in case the transaction is rolled back (undone) and
(2) it serves as a committed version that was valid up to now. This most recently
replaced version is inserted in front of the (possibly empty) version chain starting
at the VersionVector. While the updater is still running, the newly created version is
marked with its transactionID, whereby the uncommitted version is only accessible
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by the update transaction itself (as checked in the second condition of the version
access predicate, cf., Section 2.2.2). At commit time an update transaction receives
a commitTime-stamp with which its version deltas (undo logs) are marked as be-
ing irrelevant for transactions that start from “now” on. This commitTime-stamp
is taken from the same sequence counter that generates the startTime-stamps. In
our example, the first update transaction that committed at timestamp T3 (Sally→
Wendy) created in its undo buffer the version deltas timestamped T3 for Sally’s and
Wendy’s balances, respectively. The timestamp indicates that these version deltas
have to be applied for transactions whose startTime is below T3 and that the succes-
sor version is valid from there on for transactions starting after T3. In our example,
at startTime T4 a reader transaction with transactionID Tx entered the system and is
still active. It will read Sally’s Balance at reconstructed value 9, Henry’s at recon-
structed value 10, and Wendy’s at value 11. Another update transaction (Sally →
Henry) committed at timestamp T5 and correspondingly marked the version deltas
it created with the validity timestamp T5. Again, the versions belonging to Sally’s
and Wendy’s balances that were valid just before T5’s update are maintained as be-
fore images in the undo buffer of T5. Note that a reconstructed version is valid from
its predecessor’s timestamp until its own timestamp. Sally’s Balance version recon-
structed with T5’s undo buffer is thus valid from timestamp T3 until timestamp T5.
If a version delta has no predecessor (indicated by a null pointer) such as Henry’s
balance version in T5’s undo buffer its validity is determined as from virtual times-
tamp “0” until timestamp T5. Any read access of a transaction with startTime below
T5 applies this version delta and any read access with a startTime above or equal to
T5 ignores it and thus reads the in-place version in the Accounts table.

As said before, the deltas of not yet committed versions receive a temporary times-
tamp that exceeds any “real” timestamp of a committed transaction. This is exem-
plified for the update transaction (Sally→Henry) that is assigned the transactionID
timestamp Ty of the updater. This temporary, very large timestamp is initially as-
signed to Sally’s Balance version delta in Ty’s undo buffer. Any read access, except
for those of transaction Ty, with a startTime-stamp above T5 (and obviously below
Ty) apply this version delta to obtain value 8. The uncommitted in-place version of
Sally’s balance with value 7 is only visible to Ty.

2.2.2 Version Access

To access its visible version of a record, a transaction T first reads the in-place record
(e.g., from the column- or row-store) and then undoes all version changes along the
(possibly empty) version chain of undo buffer entries — by overwriting updated
attributes in the copied record with the before-images from the undo buffers — up
to the first version v, for which the following condition holds (pred points to the
predecessor; TS denotes the associated timestamp):
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v.pred = null ∨ v.pred.TS = T ∨ v.pred.TS < T.startTime

The first condition holds if there is no older version available because it never ex-
isted or it was (safely) garbage collected in the meantime. The second condition al-
lows a transaction to access its own updates (remember that the initial transactionID
timestamps assigned to an active transaction are very high numbers exceeding any
start time of a transaction). The third condition allows reading a version that was
valid at the start time of the transaction. Once the termination condition is satisfied,
the visible version has been re-materialized by “having undone” all changes that
have occurred in the meantime. Note that, as shown in Section 7.4, version “recon-
struction” is actually cheap, as we store the physical before-image deltas and thus
do not have to inversely apply functions on the in-place after-image.

The following pseudocode summarizes our implementation for version retrieval:

retrieveVersion(rowId,startTime,txId) {
t := load(rowId); // load in-place record
index := 0; v := getVersion(rowId,index++);
while (v != null) { // i.e., while versions exist
visible := v.versionId < startTime || v.versionId == txId;
if (visible)
if (v.operation == Delete)
return null; else
return t;

else
switch (v.operation)
case Insert: return null; // insert not visible
case Update: t := undoUpdate(v); break;
case Delete: break; // delete not visible

v := getVersion(rowId,index++);
}
return t;

}

Traversing the version chain guarantees that all reads are performed in the state
that existed at the start of the transaction. This is sufficient for serializability of
read-only transactions. However, for update transactions we need a validation
phase that (conceptually) verifies that its entire read set did not change during
the execution of the transaction. In previous approaches, this task is inherently
complex as the read set can be very large, especially for main-memory database
systems that tend to rely on full-table scans much more frequently than traditional
disk-based applications [118]. Fortunately, we found a way to limit this validation
to the objects that were actually changed and are still available in the undo buffers.
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.unchanged object. 

.deleted object.

.created object (phantom).

.created & deleted. 
object (phantom)

.modified object.

startTime commitTimelifetime of T

Figure 2.2: Modifications/deletions/creations of data objects relative to the lifetime
of transaction T

2.2.3 Serializability Validation

We deliberately avoid write-write conflicts in our MVCC model, as they may lead
to cascading rollbacks. If another transaction tries to update an uncommitted data
object (as indicated by the large transactionID timestamp in its predecessor version),
it is aborted and restarted. Therefore, the first VersionVector pointer always leads to
an undo buffer that contains a committed version — except for unversioned records
where the pointer is null. If the same transaction modifies the same data object
multiple times, there is an internal chain of pointers within the same undo buffer
that eventually leads to the committed version.

In order to retain a scalable lock-free system we rely on optimistic execution [75] in
our MVCC model. To guarantee serializability, we thus need a validation phase at
the end of a transaction. We have to ensure that all reads during transaction pro-
cessing could have been (logically) at the very end of the transaction without any
observable change (as shown for the object on the top of Figure 2.2). In terms of this
figure, we will detect the four (lower) transitions: modification, deletion, creation,
and creation & deletion of an object that is “really” relevant for the transaction T .
For this purpose, transactions draw a commitTime-stamp from the counter that is
also “giving out” the startTime-stamps. The newly drawn number determines the
serialization order of the transaction. Only updates that were committed during T ’s
lifetime, i.e., in between the startTime and the commitTime, are potentially relevant
for the validation. In terms of Figure 2.2, all events except for the top-most may
lead to an abort, but only if these modified/deleted/created objects really intersect
with T ’s read predicate space.

In previous approaches for serializability validation, such as in Microsoft’s Heka-
ton [33, 81] and PostgreSQL [121], the entire read set of a transaction needs to be
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Figure 2.3: Checking data points in the undo buffers against the predicate space of
a transaction

tracked (e.g., by using SIREAD locks as in PostgreSQL) and needs to be re-checked
at the end of the transaction — by redoing all the read accesses. This is prohibitively
expensive for large read sets that are very typical for scan-heavy main-memory da-
tabase applications [118], including analytical transactions. Here, our novel idea
of using the undo-buffers for validation comes into play. Thereby, we limit the
validation to the number of recently changed and committed data objects, no mat-
ter how large the read set of the transaction was. For this purpose, we adapt an
old (and largely “forgotten”) technique called Precision Locking [67] that eliminates
the inherent satisfiability test problem of predicate locking. Our variation of pre-
cision locking tests discrete writes (updates, deletions, and insertions of records)
of recently committed transactions against predicate-oriented reads of the transac-
tion that is being validated. Thus, a validation fails if such an extensional write
intersects with the intensional reads of the transaction under validation [151]. The
validation is illustrated in Figure 2.3, where we assume that transaction T has read
objects under the four different predicates P1, P2, P3, and P4, which form T ’s pred-
icate space. We need to validate the three undo buffers at the bottom and validate
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that their objects (i.e., data points) do not intersect with T’s predicates. This is done
by evaluating the predicates for those objects. If the predicates do not match, then
there is no intersection and the validation passes, otherwise, there is a conflict. This
object-by-predicate based validation eliminates the undecidability problem inher-
ent in other approaches that require predicate-by-predicate validation.

In order to find the extensional writes of other transactions that committed during
the lifetime of a transaction T , we maintain a list of recentlyCommitted transactions,
which contains pointers to the corresponding undo buffers (cf., Figure 2.1). We
start our validation with the undo buffers of the oldest transaction that committed
after T ’s startTime and traverse to the youngest one (at the bottom of the list). Each
of the undo buffers is examined as follows: For each newly created version, we
check whether it satisfies any of T ’s selection predicates. If this is the case, T ’s
read set is inconsistent because of the detected phantom and it has to be aborted.
For a deletion, we check whether or not the deleted object belonged to T ’s read
set. If so, we have to abort T . For a modification (update) we have to check both,
the before image as well as the after image. If either intersects with T ’s predicate
space we abort T . This situation is shown in Figure 2.3, where the data point x of
the left-most undo buffer satisfies predicate P3, meaning that it intersects with T ’s
predicate space.

After successful validation, a transaction T is committed by first writing its commit
into the redo-log (which is required for durability). Thereafter, all of T ’s transac-
tionID timestamps are changed to its newly assigned commitTime-stamp. Due to our
version maintenance in the undo buffers, all these changes are local and therefore
very cheap. In case of an abort due to a failed validation, the usual undo-rollback
takes place, which also removes the version delta from the version chain. Note that
the serializability validation in our MVCC model can be performed in parallel by
several transactions whose serialization order has been determined by drawing the
commitTime-stamps.

Instead of the read set, we log the predicates during the execution of a transaction
for our serializability validation. Note that, in contrast to Hekaton [81], HyPer not
only allows to access records through an index, but also through a base table scan.
We log predicates of both access patterns in our implementation. Predicates of a
base table access are expressed as restrictions on one or more attributes of the table.
We log these restrictions in our predicate log on a per-relation basis. Index accesses
are treated similarly by logging the point and range lookups on the index.

Index nested loop joins are treated differently. In this case, we log all values that
we read from the index as predicates. As we potentially read many values from
the index, we subsequently coarsen these values to ranges and store these ranges
as predicates in the predicate log instead. Other join types are not treated this way.
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Figure 2.4: Predicate Tree (PT) for the predicate space of Figure 2.3

These joins are preceded by (potentially restricted) base table accesses.

From an implementation perspective, a transaction logs its data accesses as read
predicates on a per-relation basis in a designated predicate log. We always use
64 bit integer comparison summaries per attribute to allow for efficient predicate
checks based on cheap integer operations and to keep the size of the predicate log
small. Variable-length data objects such as strings are hashed to 64 bit summaries.

Traditional serializable MVCC models detect conflicts at the granularity of records
(e.g., by “locking” the record). In our implementation we log the comparison sum-
maries for restricted attributes (predicates), which is sufficient to detect serializ-
ability conflicts at the record-level (SR-RL). However, sometimes a record is too
coarse. If the sets of read and written attributes of transactions do not overlap, a
false positive conflict could be detected. To eliminate these false positives, which
would lead to false aborts, we also implemented a way to check for serializabil-
ity conflicts at the granularity of attributes (SR-AL): in addition to the restricted
attributes we further log which attributes are accessed, i.e., read, without a restric-
tion. During validation we then know which attributes were accessed and can thus
skip the validation of versions that modified attributes that were not accessed. The
evaluation in Section 2.4.4 shows that serializability checks at the attribute-level
(SR-AL) reduce the number of false positives compared to serializability checks at
the record-level (SR-RL) while barely increasing the overhead of predicate logging
and validation.

Serializability validation works as follows: At the beginning of the validation of
a committing transaction, a Predicate Tree (PT) is built on a per-relation basis from
the predicate log. PTs are directed trees with a root node P . The PT for the predi-
cate space in Figure 2.3 is exemplified in Figure 2.4. The nodes of a PT are single-
attribute predicates, e.g., B = 15. Edges connect nodes with a logical AND, e.g.,
B = 15 ∧ I = 1. The logical OR of all paths in the tree then defines the predicate
space. Nodes for the same predicate that share the same root are merged together,
e.g., for B = 15 in Figure 2.4. During validation, data objects are checked whether
they satisfy the PT, i.e., whether there is a path in the PT that the object satisfies.
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2.2.4 Garbage Collection

Garbage collection of undo buffers is continuously performed whenever a transac-
tion commits. After each commit, our MVCC implementation determines the now
oldest visible transactionID, i.e., the oldest timestamp of a transaction that has up-
dates that are visible by at least one active transaction. Then, all committed trans-
actions whose transactionID is older than that timestamp are removed from the list
of recently committed transactions, the references to their undo buffers are atomi-
cally removed from the version lists, and the undo buffers themselves are marked
with a tombstone. Note that it is not possible to immediately reuse the memory of
a marked undo buffer, as other transactions can still have references to this buffer;
although the buffer is definitely not relevant for these transactions, it may still be
needed to terminate version chain traversals. It is safe to reuse a marked undo
buffer as soon as the oldest active transaction has started after the undo buffer had
been marked. As in our system, this can be implemented with very little overhead,
e.g., by maintaining high water marks.

2.2.5 Handling of Index Structures

Unlike other MVCC implementations in Hekaton [33, 81] and PostgreSQL [121],
our MVCC implementation does not use (predicate) locks and timestamps to mark
read and modified keys in indexes. To guarantee SI and serializability, our imple-
mentation proceeds as follows: If an update updates only non-indexed attributes,
updates are performed as usual. If an update updates an indexed attribute, the
record is deleted and re-inserted into the relation and both, the deleted and the
re-inserted record, are stored in the index. Thus, indexes retain references to all
records that are visible by any active transaction. Just like undo buffers, indexes
are cleaned up during garbage collection.

We ensure the uniqueness of primary keys by aborting a transaction that inserts a
primary key that exists either (i) in the snapshot that is visible to the transaction, (ii)
in the last committed version of the key’s record, or (iii) uncommitted as an insert
in an undo buffer. Note that these are the only cases that need to be checked, as
updates of indexed attributes are performed as a deletion and insertion.

For foreign key constraints we need to detect the case when an active transaction
deletes a primary key and a concurrent transaction inserts a foreign key reference
to that key. In this case, we abort the inserting transaction as it detects the (possibly
uncommitted) delete. The inserting transaction is aborted pro-actively, even if the
delete is uncommited, because transactions usually commit and only rarely abort.
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2.2.6 Efficient Scanning

Main-memory database systems for real-time business intelligence, i.e., systems
that efficiently handle transactional and analytical workloads in the same database,
rely heavily on “clock-rate” scan performance [153, 89]. Therefore, testing each data
object individually (using a branch statement) whether or not it is versioned would
severely jeopardize performance. Our MVCC implementation in HyPer uses LLVM
code generation and just-in-time compilation [108] to generate efficient scan code
at runtime. To mitigate the negative performance implications of repeated version
branches, the generated code uses synopses of versioned record positions to deter-
mine ranges that can be scanned at maximum speed.

The generated scan code proceeds under consideration of these synopses, called
VersionedPositions, shown on the left-hand side of Figure 2.1. These synopses main-
tain the position of the first and the last versioned record for a fixed range of records
(e.g., 1024) in a 32 bit integer, where the position of the first versioned record is
stored in the high 16 bit and the position of the last versioned record is stored in
the low 16 bit, respectively. Maintenance of VersionedPositions is very cheap as in-
sertions and deletions of positions require only a few logical operations (cf., eval-
uation in Section 7.4). Further, deletions are handled fuzzily and VersionedPositions
are corrected during the next scan where the necessary operations can be hidden
behind memory accesses.

Note that the versions are continuously garbage collected; therefore, most ranges
do not contain any versions at all, which is denoted by an empty interval [x, x) (i.e.,
the lower and upper bound of the half-open interval are identical). E.g., this is the
case for the synopsis for the first 5 records in Figure 2.1. Using the VersionedPositions
synopses, adjacent unversioned records are accumulated to one range where ver-
sion checking is not necessary. In this range, the scan code proceeds at maximum
speed without any branches for version checks. For modified records, the Version-
Vector is consulted and the version of the record that is visible to the transaction is
reconstructed (cf., Section 2.2.2). Again, a range for modified records is determined
in advance by scanning the VersionVector for set version pointers to avoid repeated
testing whether a record is versioned.

For the scan of transaction Tx in our example (cf., Figure 2.1), the following pseudo-
code is generated:

txId := x; startTime := 4; rowId := 0; sum := 0;
while (rowId < 15) {
versionedBegin := findFirstVersioned(rowId,15);
while (rowId < versionedBegin) {
sum := sum + Bal[rowId++];

}
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unversionedBegin := findFirstUnversioned(rowId,15);
while (rowId < unversionedBegin) {
t := retrieveVersion(rowId++,startTime,txId);
if (t != null) // i.e., if record is visible
sum := sum + tuple.Bal;

}
}

Looking at Figure 2.1, we observe that for strides 0 . . . 4 and 6 . . . 10 the loop on the
unversioned records scans the Balance vector at maximum speed without having
to check if the records are versioned. Given the fact that the strides in between two
versioned objects are in the order of millions in a practical setting, the scan perfor-
mance penalty incurred by our MVCC is marginal (as evaluated in Section 2.4.1).
Determining the ranges of versioned objects further ensures that the VersionedPosi-
tions synopses are not consulted in hotspot areas where all records are modified.

2.2.7 Synchronization of Data Structures

In this work, we focus on providing an efficient and elegant mechanism to allow
for logical concurrency of transactions, which is required to support interactive and
sliced transactions, i.e., transactions that are decomposed into multiple tasks such as
stored procedure calls or individual SQL statements. Due to application roundtrips
and other factors, it is desirable to interleave the execution of these decomposed
tasks, and our serializable MVCC model enables this logical concurrency. Thread-
level concurrency is a largely orthogonal topic. We thus only briefly describe how
our MVCC data structures can be synchronized and how transactional workloads
can be processed in multiple threads.

To guarantee thread-safe synchronization in our implementation, we obtain short-
term latches on the MVCC data structures for the duration of one task (a transaction
typically consists of multiple such calls). The commit processing of writing trans-
actions is done in a short exclusive critical section by first drawing the commitTime-
stamp, validating the transaction, and inserting commit records into the redo log.
Updating the validity timestamps in the undo buffers can be carried out unsyn-
chronized thereafter by using atomic operations. Our lock-free garbage collection
that continuously reclaims undo log buffers has been detailed in Section 2.2.4. Cur-
rently we use conventional latching-based synchronization of index structures, but
could adapt to lock-free structures like the Bw-Tree [87] in the future.

In future work, we want to optimize the thread-parallelization of our implemen-
tation further. We currently still rely on classical short-term latches to avoid race
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conditions between concurrent threads. These latches can largely be avoided by us-
ing hardware transactional memory (HTM) [86] during version retrieval, as it can
protect a reader from the unlikely event of a concurrent (i.e., racy) updater. Note
that such a conflict is very unlikely as it has to happen in a time frame of a few
CPU cycles. A combination of our MVCC model and HTM is very promising and
in initial experiments indeed outperforms our current implementation. In addition
to HTM, we want to adopt ideas from SILO [147] to reduce the amount of global
synchronization for multi-threaded transaction processing.

2.3 Theory

2.3.1 Discussion of our MVCC Model

In order to formalize our MVCC scheme we need to introduce some notation that
is illustrated in Figure 2.5. On the top of the figure a schedule consisting of four
transactions is shown. These transactions start at times S1, S2, S3, and S4, respec-
tively. As they access different versions of the data objects, we need a version or-
dering/numbering scheme in order to differentiate their reads and their version
creations. This is shown for the same four-transaction-schedule at the bottom of
the figure.

Transactions are allowed to proceed concurrently. They are, however, committed
serially. An update transaction draws its commitTime-stamp from the same counter
that generates the startTime-stamps. The commitTime-stamps determine the commit
order and, as we will see, they also determine the serialization order of the transac-
tions. Read-only transactions do not need to draw a commit order timestamp; they
reuse their startTime-stamp. Therefore, in our example the transaction that started
at S1 obtained the commitTime-stamp T6, because the transaction that started at S2
committed earlier at timestamp T4. The read-only transaction that started at times-
tamp S3 logically also commits at timestamp T3.

Transactions read all the data in the version that was committed (i.e., created) most
recently before their startTime-stamp. Versions are only committed at the end of a
transaction and therefore receive the identifiers corresponding to the commitTime-
stamps of the transaction that creates the version. The transaction schedule of Fig-
ure 2.5 creates the version chains y0 → y4 → y7 and x0 → x6. Note that versions
are not themselves (densely) numbered because of our scheme of identifying ver-
sions with the commitTime-stamp of the creating transaction. As we will prove in
Section 2.3.2, our MVCC model guarantees equivalence to a serial mono-version
schedule in commitTime-stamp order. Therefore, the resulting schedule of Figure 2.5
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Figure 2.5: Example of the explicit versioning notation in our MVCC model

is equivalent to the serial mono-version execution: r3(y), r3(x), c3, r4(y), w4(y), c4,
r6(x), w6(x), c6, r7(y), w7(y), c7. Here all the operations are subscripted with the
transaction’s commitTime-stamp.

Local writing is denoted as w( x ). Such a “dirty” data object is only visible to the
transaction that wrote it. In our implementation (cf., Section 2.2.1), we use the very
large transaction identifiers to make the dirty objects invisible to other transactions.
In our formal model we do not need these identifiers. As we perform updates in-
place, other transactions trying to (over-)write x are aborted and restarted. Note
that reading x is always possible, because a transaction’s reads are directed to the
version of x that was committed most recently before the transaction’s startTime-
stamp — with one exception: if a transaction updates an object x, i.e., w( x ), it will
subsequently read its own update, i.e., r( x ). This is exemplified for transaction
(S1, T2) on the upper left hand side of Figure 2.6(a). In our implementation this
read-your-own-writes scheme is again realized by assigning very large transaction
identifiers to dirty data versions.

Figure 2.6(a) further exemplifies a cycle of rw-dependencies, often also referred
to as rw-antidependencies [39]. rw-antidependencies play a crucial role in non-
serializable schedules that are compliant under SI. The first rw-antidependency in-
volving r(y0) and w( y ) in the figure could not have been detected immediately as
the write of y in (S4, T7) happens after the read of y; the second rw-antidependency
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involving r(x2) and w( x ) on the other hand could have been detected immedi-
ately, but in our MVCC model we opted to validate all reads at commit time. After
all, the rw-antidependencies could have been resolved by an abort of (S4, T7) or by
a commit of the reading transaction before T7.

The benefits of MVCC are illustrated in Figure 2.6(b), where transaction (S5, T6)
managed to “slip in front” of transaction (S4, T7) even though it read x after (S4, T7)
wrote x. Obviously, with a single-version scheduler this degree of logical concur-
rency would not have been possible. The figure also illustrates the benefits of our
MVCC scheme that keeps an arbitrary number of versions instead of only two as
in [127]. The “long” read transaction (S1, T1) needs to access x0 even though in
the meantime the two newer versions x3 and x7 were created. Versions are only
garbage collected after they are definitely no longer needed by other active trans-
actions.

Our novel use of precision locking consisting of collecting the read predicates and
validating recently committed versions against these predicates is illustrated in Fig-
ure 2.6(c). Here, transaction (S2, T5) reads x0 with predicate P , denoted rP (x0).
When the transaction that started at S2 tries to commit, it validates the before- and
after-images of versions that were committed in the meantime. In particular, P (x0)
is true and therefore leads to an abort and restart of the transaction. Likewise, phan-
toms and deletions are detected as exemplified for the insert i( o ) and the delete
d( u ) of transaction (S1, T4). Neither the inserted object nor the deleted object are
allowed to intersect with the predicates of concurrent transactions that commit af-
ter T4.

2.3.2 Proof of Serializability Guarantee

We will now prove that our MVCC scheme with predicate space validation guar-
antees that any execution is serializable in commit order.

Theorem. The committed projection of any multi-version schedule H that adheres to our
protocol is conflict equivalent to a serial mono-version schedule H ′ where the committed
transactions are ordered according to their commitTime-stamps and the uncommitted trans-
actions are removed.

Proof. Due to the nature of the MVCC protocol, the effects of any uncommitted
transaction can never be seen by any other successful transaction (reads will ignore
the uncommitted writes, writes will either not see the uncommitted writes or lead
to aborts). Therefore, it is sufficient to consider only committed transactions in this
proof.
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Basically, we will now show that all dependencies are in the direction of the order
of their commitTime-stamps and thus any execution is serializable in commit order.
Read-only transactions see a stable snapshot of the database at time Sb, and get
assigned the same commitTime-stamp Tb = Sb, or, in other words, they behave as
if they were executed at the point in time of their commitTime-stamp, which is the
same as their startTime-stamp.

Update transactions are started at Sb, and get assigned a commitTime-stamp Tc with
Tc > Sb. We will now prove by contradiction, that the transactions behave as if
they were executed at the time point Tc. Assume T is an update-transaction from
the committed projection of H (i.e., T has committed successfully), but T could
not have been delayed to the point Tc. That is, T performed an operation o1 that
conflicts with another operation o2 by a second transaction T ′ with o1 < o2 and
T ′ committed during T ’s lifetime, i.e., within the time period Sb ≤ T ′c < Tc. If T ′

committed after T , i.e., T ′c > Tc, we could delay T ′ (and thus o2) until after Tc, thus
we only have to consider the case T ′c < Tc.

There are four possible combinations for the operations o1 and o2. If both are reads,
we can swap the order of both, which is a contradiction to our assumption that
o1 and o2 are conflicting. If both are writes, T ′ would have aborted due to to our
protocol of immediately aborting upon detecting ww-conflicts. Thus, there is a con-
tradiction to the assumption that both, T and T ′, are committed transactions. If
o1 is a read and o2 is a write, the update o2 is already in the undo buffers when T
commits, as T ′c < Tc and the predicate P of the read of o1 has been logged. The
predicate validation at Tc then checks if o1 is affected by o2 by testing whether P is
satisfied for either the before- or the after-image of o2 (i.e., if the read should have
seen the write), as illustrated in Figure 2.6(c). If not, that is a contradiction to the
assumption that o1 and o2 are conflicting. If yes, that is a contradiction to the as-
sumption that T has committed successfully as T would have been aborted when
P was satisfied. If o1 is a write and o2 is a read, the read has ignored the effect of
o1 in the MVCC mechanism, as T ′c > Sb, which is a contradiction to the assumption
that o1 and o2 are conflicting. The theorem follows.

Note that since our MVCC model produces correct multi-version histories under
SI, we are further able to give another proof sketch for the correctness of our serial-
izability validation approach based on the results of Adya et al. [2] and Cahill and
Fekete et al. [23, 39]. In the following, we denote a transaction TX i as a pair of a
startTime-stamp Si and a commitTime-stamp Ti′ (TX i = (Si, Ti′)).

Theorem 1 (Cahill and Fekete et al. [23, 39]). Given a multi-version history H pro-
duced under snapshot isolation that is not serializable. Then there is at least one cycle
in the serialization graph of H and every cycle contains a structure of three consecutive
transactions TX in = (Sin , Tin′), TXpivot = (Spivot , Tpivot′), TXout = (Sout , Tout′),
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S1
T4

commit(w4) succeeds under SI 
but fails under SR because 
{h0,h3}  intersects the 
predicate space P[r(h0)] of T4

r(h0)

S2
T3

commit(h3)r(w0)

r(w0)

r(h0) w( h )

w( w )

rw rw

Figure 2.7: Example schedule that is valid under snapshot isolation (SI) but is non-
serializable (SR)

such that TX in and TXpivot are concurrent and TX in
rw−→ TXpivot , i.e., there is a rw-

antidependency between TX in and TXpivot , and TXpivot and TXout are concurrent and
TXpivot

rw−→ TXout , i.e., there is a rw-antidependency between TXpivot and TXout . Fur-
thermore, among these three transactions, TXout is the first to commit, i.e., Tout′ < Tin′

and Tout′ < Tpivot′ .

Note that TX in can be a read-only transaction as long as TXpivot and TXout are
update transactions and that TX in and TXout can be the same transaction. The
latter situation is exemplified in Figure 2.7, which shows a write skew anomaly. The
two transactions (S1, T4) and (S2, T3) both first check the balances of a couple’s
accounts and, if both accounts combined still have enough money to pay the mort-
gage, withdraw money. Under snapshot isolation it is possible that the constraint
can be invalidated due to a write skew while under serializability the constraint
always holds.

Theorem 2. Given a multi-version history H produced by our MVCC model with serial-
izability validation. Then H is equivalent to a serializable history H ′.

Proof. For the sake of contradiction, suppose that H is non-serializable. Then, ac-
cording to Theorem 1, H contains at least one cycle and every cycle contains a se-
quence s of three consecutive transactions TX in ,TXpivot ,TXout such that TX in

rw−→
TXpivot and TXpivot

rw−→ TXout . As further TXout of every such sequence s com-
mits before TXpivot , the writes of TXout become visible before TXpivot validates its
serializability. The validation of TXpivot then fails and TXpivot aborts because the
read predicate space of TXpivot conflicts with the now visible writes of TXout due
to the rw-antidependency TXpivot

rw−→ TXout . As thus, no such sequence s and
therefore no cycle exists in H , contradicting the initial assumption.
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CPU Intel Xeon E5-2660v2
Frequency 2.20 GHz (3.00 GHz maximum turbo)
Sockets 2 NUMA sockets
Cores/Threads 10/20 per socket
L1-/L2-Cache 32 KB/256 KB per core
L3-Cache 25 MB per socket
Memory 128 GB DDR3 1866 MHz per socket

Table 2.1: Specification of the evaluation system

2.4 Evaluation

In this section we evaluate our MVCC implementation in our HyPer main-memory
database system [71] that supports SQL-92 queries and transactions (defined in a
PL/SQL-like scripting language [72]) and provides ACID guarantees.

HyPer supports both, column- and a row-based storage of relations. Unless oth-
erwise noted, we used the column-store backend, enabled continuous garbage col-
lection, and stored the redo log in local memory. Redo log entries are generated
in memory and log entries are submitted in small groups (group commit), which
mitigates system call overheads and barely increases transaction latency. We evalu-
ated HyPer with single-version concurrency control, our novel MVCC model, and
a MVCC model similar to [81], which we mimiced by updating whole records
and not using VersionedPositions synopses in our MVCC model. We further ex-
perimented with DBMS-X, a commercial main-memory DBMS with a MVCC im-
plementation similar to [81]. DBMS-X was run in Windows 7 on our evaluation
machine. Due to licensing agreements we can not disclose the name of DBMS-X.

The experiments were executed on a 2-socket Intel Xeon E5-2660v2 2.20 GHz
(3 GHz maximum turbo) NUMA system with 256 GB DDR3 1866 MHz memory
(128 GB per CPU) running Linux 3.13. Each CPU has 10 cores and a 25 MB shared
L3 cache. Each core has a 32 KB L1-I and L1-D cache as well as a 256 KB L2 cache.
The system specification is also shown in Table 8.1.

2.4.1 Scan Performance

Initially we demonstrate the high scan performance of our MVCC implementa-
tion. We implemented a benchmark similar to the SIBENCH [24] benchmark and
our bank accounts example (cf., Figure 2.1). The benchmark operates on a single
relation that contains integer (key, value) pairs. The workload consists of update
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Figure 2.8: Scan performance with disabled garbage collection: the scan newest
transaction only needs to verify the visibility of records while the scan oldest trans-
action needs to undo updates.

transactions which modify a (key, value) pair by incrementing the value and a scan
transaction that scans the relation to sum up the values.

Figure 2.8 shows the per-core performance of scan transactions on a relation with
100M (key, value) records. To demonstrate the effect of scanning versioned records,
we disable the continuous garbage collection and perform updates before scanning
the relations. We vary both, the number of dirty records and the number of ver-
sions per dirty record. Additionally, we distinguish two cases: (i) the scan trans-
action is started before the updates (scan oldest) and thus needs to undo the effects
of the update transactions and (ii) the scan transaction is started after the updates
(scan newest) and thus only needs to verify that the dirty records are visible to the
scan transaction. For all cases, the results show that our MVCC implementation
sustains the high scan throughput of our single-version concurrency control imple-
mentation for realistic numbers of dirty records; and even under high contention
with multiple versions per record.

To validate our assumptions for the number of dirty records and versions we con-
sider Amazon.com as an example. 6.9 million copies of Harry Potter and the Half-
Blood Prince, one of the best-selling books of all time, were sold within the first 24
hours in the United States. Even if we make the highly pessimistic assumptions
that all books are sold through Amazon within 20 hours of that day and that Ama-
zon operates only six warehouses, 16 copies of that book are sold per warehouse
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Figure 2.9: Effect of VersionedPositions (VP) synopses per s records on scan perfor-
mance: if s is too large, the probability of a non-empty summary increases; if s is
too small, the amount of data that needs to be read for the synopses increases and
eats up memory bandwidth.

per second. Our experiment suggests that in order to measure a significant drop in
scan performance there need to be hundreds of thousands of such best-selling items
and a transaction that is open for a long period of time. Remember that in this case
the long-running transaction can be aborted and restarted on a snapshot [100].

Figure 2.9 shows the performance effect of having VersionedPositions synopses (see
Section 2.2.6) on scan performance. Our implementation maintains VersionedPosi-
tions per 1024 records. The experiment suggests that increasing or decreasing the
number of records per VersionedPositions degrades scan performance. Compared
to not using VersionedPositions at all, scan performance is improved by more than
5.5×. 1024 records seems to be a sweetspot where the size of the VersionedPositions
vector is still reasonable and the synopses already encode meaningful ranges, i.e.,
ranges that include mostly modified records. A breakdown of CPU cycles in Fig-
ure 2.10 shows that our MVCC functions are very cheap for realistic numbers of
versioned records. We measured 2.8 instructions per cycle (IPC) during the scans.

We further compared the scan performance of our MVCC implementation to
DBMS-X. DBMS-X achieves a scan speed of 7.4M records/s with no dirty records
and 2.5M records/s with 10k dirty records (> 100× slower than our MVCC
implementation). Of course, we “misused” DBMS-X with its point-query-only-
optimized model for large full-table scans, which would be necessary for ana-
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dates per dirty record. For realistic numbers of versioned records, our MVCC im-
plementation creates almost no overhead for scans.

inserts [M/s] updates [M/s] delins [M/s]

modified attributes

1 5 10

no concurrency control 5.91 3.40 2.22 1.44 1.12
MVCC 4.05 1.94 1.43 1.03 1.03

Table 2.2: Throughput of insert, update, and “delete and insert” (delin) operations
on a relation with 10 integer attributes and 100M records.

lytical transactions. The Hekaton model is only optimized for point queries and
performs all accesses through an index, which severely degrades performance for
scans-based analytics.

2.4.2 Insert/Update/Delete Benchmarks

We also evaluated the per-core performance of insert, update, and “delete and in-
sert” (delin) operations on a relation with 10 integer attributes and 100M records.
As expected, compared to our single-version concurrency control implementation
(5.9M inserts/s, 3.4M updates/s, 1.1M delins/s), performance with our MVCC im-
plementation is slightly degraded due to visibility checks and the maintenance of
the VersionVector and the VersionedPositions (4M inserts/s, 2M updates/s, 1M delin-
s/s). The number of logically concurrent active transactions, however, has no per-
formance impact. As the newest version is stored in-place and the version record of



2.4 Evaluation 43

column-store row-store
0

50K

100K

150K

storage backend in HyPer

th
ro

ug
hp

ut
[T

X
/s

]

Figure 2.11: Single-threaded TPC-C experiment with a 5 warehouses in HyPer
with single-version concurrency control ( ), our MVCC model ( ), and a MVCC
model that mimics the behavior of [81] by updating whole records and not using
VersionedPositions ( ).

the previous version is inserted at the beginning of the version chain, performance
of updates is also independent of the total number of versions.

2.4.3 TPC-C and TATP Results

We use the TPC-C and the TATP benchmarks to evaluate our implementation with
more realistic workloads.

TPC-C is a write-heavy benchmark and simulates the principal activities of an
order-entry environment. Its workload mix consists of 8% read-only transactions
and 92% write transactions. Some of the transactions in the TPC-C perform ag-
gregations and reads with range predicates. Figure 6.3 shows the per-core perfor-
mance of our MVCC implementation for the TPC-C benchmark with 5 warehouses
and no think times. Compared to our single-version concurrency control imple-
mentation, our MVCC implementation costs around 20% of performance. Still,
more than 100k transactions/s are processed. This is true for our column- and a
row-based storage backends. We also compared these numbers to a 2PL imple-
mentation in HyPer and a MVCC model similar to [81]. 2PL is prohibitively expen-
sive and achieves a ∼5× smaller throughput. The MVCC model of [81] achieves a
throughput of around 50k transactions/s.

We further executed the TPC-C with multiple threads. Like in H-Store [69]/VoltDB,
we partition the database according to warehouses. Partitions are assigned to
threads and threads are pinned to cores similar to the DORA system [113]. These
threads process transactions that primarily access data belonging to their partition.
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Figure 2.12: Throughput of interleaved TPC-C transactions (5 warehouses) in
single-threaded HyPer under serializability with attribute- (SR-AL) and record-
level predicate logs (SR-RL) relative to SI throughput for a varying percentage of
read-heavy top-customer transactions in the workload mix.

Unlike DORA, partition-crossing accesses, which, e.g., occur in 11% of the TPC-C
transactions, are carried out by the primary thread to which the transaction was
assigned. The scalability experiment (see Figure 2.14) shows that our system scales
near linearly up to 20 cores. Going beyond 20 cores might require the reduction of
global synchronization like in the SILO system [147]. We further varied the con-
tention on the partitions by varying the percentage of partition-crossing transac-
tions as shown in Figure 2.15. Finally, as shown in Figure 2.16, we also measured
the impact of read-only transactions and proportionally varied the percentage of
the two read-only transactions in the workload mix.

Figure 2.14 also shows the scalability of HyPer when shipping the redo log using
remote direct memory accesses (RDMA) over Infiniband. RDMA-based log ship-
ping generates an overhead of 17% with 20 threads. Our evaluation system has a
Mellanox ConnectX-3 Infiniband network adapter, which operates at 4×QDR. The
maximum write bandwidth of our setup is 3.5 GB/s with a latency of 1.3µs. This
bandwidth is sufficient to ship the redo log entries: for 100k TPC-C transactions we
generate 85 MB of redo log entries. In our setup, the receiving node can act as a
high-availability failover but could also write the log to disk [103].

The Telecommunication Application Transaction Processing (TATP) benchmark
simulates a typical telecommunications application. The workload mix consists of
80% read-only transactions and 20% write transactions. Thereby, the read transac-
tions all perform point accesses and records are mostly updated as a whole. Thus,
the TATP benchmark is a best-case scenario for the MVCC model of [81]. We ran the
benchmark with a scale-factor of 1M subscribers. Compared to running the bench-
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Figure 2.14: Multi-threaded TPC-C throughput scalability with 20 warehouses in
HyPer with our MVCC model.

mark with single-version concurrency control (421,940 transactions/s), our MVCC
implementation creates just a tiny overhead (407,564 transactions/s). As expected,
the mimicked MVCC model of [81] also performs quite well in this benchmark,
but still trails performance of our MVCC implementation by around 20% (340,715
transactions/s).
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Figure 2.15: Multi-threaded TPC-C throughput under a varying contention with 20
warehouses and 20 worker threads.

TATP TX/s normalized

single-version system 421,940 1.00
our MVCC 407,564 0.97
MVCC similar to [81] 340,715 0.81

Table 2.3: Single-threaded TATP benchmark results

2.4.4 Serializability

To determine the cost of our serializability validation approach (cf., Section 2.2.3),
we first measured the cost of predicate logging in isolation from predicate vali-
dation by running the TPC-C and TATP benchmarks each in a single serial stream.
Without predicate logging, i.e., under SI, we achieve a TPC-C throughput of 112,610
transactions/s, with record-level predicate logging (SR-RL) 107,365 transactions/s,
and with attribute-level predicate logging (SR-AL) 105,030 transactions/s. This
means that there is a mere 5% overhead for SR-RL and a mere 7% overhead for
SR-AL. For the TATP benchmark, we measured an overhead of only 1% for SR-RL
and 2% for SR-AL. We also measured the predicate logging overhead for the mostly
read-only TPC-H decision support benchmark, which resulted in an even smaller
overhead. In terms of size, predicate logs generated by our implementation are
quite small. Unlike other serializable MVCC implementations, we do not need to
track the entire read set of a transaction. To illustrate the difference in size imagine
a top-customer transaction on the TPC-C schema that, for a specific warehouse and
district, retrieves the customer with the highest account balance and a good credit
rating (GC) and performs a small update:
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Figure 2.16: Multi-threaded TPC-C throughput with 20 warehouses, 20 worker
threads, and a varying percentage of read-only transactions in the workload.

select
c_w_id, c_d_id, max(c_balance)

from
customer

where
c_credit = ’GC’
and c_w_id = :w_id
and c_d_id = :d_id

group by
c_w_id, c_d_id

update ...

For such a query, serializable MVCC models that need to track the read set then
have to either copy all read records or set a flag (e.g., the SIREAD lock in Post-
greSQL [121]). If we assume that at least one byte per read record is needed for
book-keeping, then these approaches need to track at least 3 KB of data (a district
of a warehouse serves 3k customers in TPC-C). Our SR-AL on the other hand just
stores the read attributes and the aggregate that has been read which is less than
100 bytes. This is 30× less than what traditional read set book-keeping consumes;
and for true OLAP-style queries that read a lot of data, predicate logging saves even
more. E.g., the read set of an analytical TPC-H query usually comprises millions of
records and tracking the read set can easily consume multiple MBs of space.

To determine the cost of predicate validation, we again ran the TPC-C bench-
mark but this time interleaved transactions (by decomposing the transactions into
smaller tasks) such that transactions are running logically concurrent, which makes
predicate validation necessary. We further added the aforementioned top-customer
transaction to the workload mix and varied its share in the mix from 0% to 100%.
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The results are shown in Figure 2.12. For a pure TPC-C workload, predicate vali-
dation creates an overhead of around 30%. A perf analysis shows that most of the
overhead comes from building the predicate trees (cf., Section 2.2.3).

As TPC-C transactions are very short, it would be an option to skip the step of
building the predicate tree and instead just apply all the predicates as-is and thus
make predicate validation much faster. However, the predicate tree has much bet-
ter asymptotic behavior, and is therefore much faster and more robust when trans-
action complexity grows. We therefore use it all the time instead of optimizing
for very cheap transactions. And the figure also shows that with more read-only
transactions in the workload mix (as it is the case in real-world workloads [118]),
the overhead of serializability validation almost disappears. Building the predicate
trees takes between 2µs and 15µs for the TPC-C transactions on our system; and
between 4µs and 24µs for the analytical TPC-H queries (9.5µs geometric mean). In
comparison to traditional validation approaches that repeat all reads, our system
has, as mentioned before, a much lower book-keeping overhead. A comparison of
validation times by themselves is more complicated. Validation time in traditional
approaches depends on the size of the read set of the committing transaction |R|
and how fast reads can be repeated (usually scan speed and index lookup speed); in
our approach, it mostly depends on the size of the write set |W | that has been com-
mitted during the runtime of the committing transaction. In our system, checking
the predicates of a TPC-C transaction or a TPC-H query against a versioned record
that has been reconstructed from undo buffers is a bit faster than an index lookup.
In general, our approach thus favors workloads where |R| ≥ |W |. In our opinion
this is mostly the case, as modern workloads tend to be read-heavy [118] and the
time that a transaction is active tends to be short (long-running transactions would
be deferred to a “safe snapshot”).

Finally, we evaluated the concurrency control abort rates, i.e., the aborts caused by
concurrency control conflicts, of our MVCC implementation in HyPer. We again
ran TPC-C with logically interleaved transactions and varied the number of TPC-C
warehouses. As the TPC-C is largely partitionable by warehouse, the intuition is
that concurrency control conflicts are reduced with an increasing number of ware-
houses. The results are shown in Figure 2.13. We acknowledge that TPC-C does not
show anomalies under SI [39], but of course the database system does not know
this, and this benchmark therefore tests for false positive aborts. The aborts un-
der SI are “real” conflicts, i.e., two transaction try to modify the same data item
concurrently. Serializability validation with SR-AL creates almost no false positive
aborts. The only false positive aborts stem from the minimum (min) aggregation
in delivery, as it sometimes conflicts with concurrent inserts. Predicate logging of
minimum and maximum aggregates is currently not implemented in our system
but can easily be added in the future. SR-RL creates more false positives than SR-
AL, because reads are not only checked against updated attributes but rather any
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change to a record is considered a conflict, even though the updated attribute might
not even have been read by the original transaction.

2.5 Related Work

Transaction isolation and concurrency control are among the most fundamental
features of a database management system. Hence, several excellent books and
survey papers have been written on this topic in the past [151, 15, 14, 139]. In the
following we further highlight three categories of work that are particularly related
to this chapter, most notably multi-version concurrency control and serializability.

2.5.1 Multi-Version Concurrency Control

Multi-Version Concurrency Control (MVCC) [151, 15, 98] is a popular concurrency
control mechanism that has been implemented in various database systems be-
cause of the desirable property that readers never block writers. Among these
DBMSs are commercial systems such as Microsoft SQL Server’s Hekaton [33, 81]
and SAP HANA [37, 131] as well as open-source systems such as PostgreSQL [121].

Hekaton [81] is similar to our implementation in that it is based on a timestamp-
based optimistic concurrency control [75] variant of MVCC and uses code gen-
eration [40] to compile efficient code for transactions at runtime. In the context
of Hekaton, Larson et al. [81] compared a pessimistic locking-based with an op-
timistic validation-based MVCC scheme and proposed a novel MVCC model for
main-memory DBMSs. Similar to what we have seen in our experiments, the op-
timistic scheme performs better in their evaluation. In comparison to Hekaton,
our serializable MVCC model does not update records as a whole but in-place and
at the attribute-level. Further, we do not restrict data accesses to index lookups
and optimized our model for high scan speeds that are required for OLAP-style
transactions. Finally, we use a novel serializability validation mechanism based on
an adaptation of precision locking [67]. Lomet et al. [90] propose another MVCC
scheme for main-memory database systems where the main idea is to use ranges of
timestamps for a transaction. In contrast to classical MVCC models, we previously
proposed using virtual memory snapshots for long-running transactions [100],
where updates are merged back into the database at commit-time. Snapshotting
and merging, however, can be very expensive depending on databae size.

Hyder [17, 16] is a data-sharing system that stores indexed records as a multi-
version log-structured database on shared flash storage. Transaction conflicts are
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detected by a meld algorithm that merges committed updates from the log into the
in-memory DBMS cache. This architecture promises to scale out without partition-
ing. While our MVCC model uses the undo log only for validation of serializability
violations, in Hyder, the durable log is the database. In contrast, our implementa-
tion stores data in a main-memory row- or column-store and writes a redo log for
durability. OctopusDB [34] is another DBMS that uses the log as the database and
proposes a unification of OLTP, OLAP, and streaming databases in one system.

2.5.2 Serializability

In contrast to PostgreSQL and our MVCC implementation, most other MVCC-
based DBMSs only offer the weaker isolation level Snapshot Isolation (SI) instead
of serializability. Berenson et al. [14], however, have shown that there exist sched-
ules that are valid under SI but are non-serializable. In this context, Cahill and
Fekete et al. [24, 39] developed a theory of SI anomalies. They further developed
the Serializable Snapshot Isolation (SSI) approach [24], which has been implemented
in PostgreSQL [121]. To guarantee serializability, SSI tracks commit dependencies
and tests for “dangerous structures” consisting of rw-antidependencies between
concurrent transactions. Unfortunately this requires keeping track of every single
read, similar to read-locks, which can be quite expensive for large read transactions.
In contrast to SSI, our MVCC model proposes a novel serializability validation
mechanism based on an adaptation of precision locking [67]. Our approach does
not track dependencies but read predicates and validates the predicates against the
undo log entries, which are retained for as long as they are visible.

Jorwekar et al. [68] tackled the problem of automatically detecting SI anomalies.
[52] proposes a scalable SSI implementation for multi-core CPUs. Checking up-
dates against a predicate space is related to SharedDB [43], which optimizes the
processing of multiple queries in parallel.

2.5.3 Scalability of OLTP Systems

Orthogonal to logical transaction isolation, there is also a plethora of research on
how to scale transaction processing out to multiple cores on modern CPUs. H-
Store [69], which has been commercialized as VoltDB, relies on static partition-
ing of the database. Transactions that access only a single partition are then pro-
cessed serially and without any locking. Jones et al. [66] describe optimizations for
partition-crossing transactions. Our HyPer [71] main-memory DBMS optimizes
for OLTP and OLAP workloads and follows the partitioned transaction execution
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model of H-Store. Prior to our MVCC integration, HyPer, just like H-Store, could
only process holistic pre-canned transactions. With the serializable MVCC model
introduced in this work, we provide a logical transaction isolation mechanism that
allows for interactive and sliced transactions.

Silo [147] proposes a scalable commit protocol that guarantees serializability. To
achieve good scalability on modern multi-core CPUs, Silo’s design is centered
around avoiding most points of global synchronization. The proposed techniques
can be integrated into our MVCC implementation in order to reduce global syn-
chronization, which could allow for better scalability. Pandis et al. [113] show that
the centralized lock manager of traditional DBMSs is often a scalability bottleneck.
To solve this bottleneck, they propose the DORA system, which partitions a da-
tabase among physical CPU cores and decomposes transactions into smaller ac-
tions. These are then assigned to threads that own the data needed for the action,
such that the interaction with the lock manager is minimized during transaction
processing. Very lightweight locking [124] reduces the lock-manager overhead by
co-locating lock information with the records.

The availability of hardware transactional memory (HTM) in recent mainstream
CPUs enables a new promising transaction processing model that reduces the sub-
stantial overhead from locking and latching [86]. HTM further allows multi-core
scalability without statically partitioning the database [86]. In future work we thus
intend to employ HTM to efficiently scale out our MVCC implementation, even in
the presence of partition-crossing transactions.

Deterministic database systems [140, 141] propose the execution of transactions ac-
cording to a pre-defined serial order. In contrast to our MVCC model transactions
need to be known beforehand, e.g., by relying on holistic pre-canned transactions,
and do not easily allow for interactive and sliced transactions. In the context of
distributed DBMSs, [21] proposes a middleware for replicated DBMSs that adds
global one-copy serializability for replicas that run under SI.

2.6 Conclusion

The multi-version concurrency control (MVCC) implementation presented in this
work is carefully engineered to accommodate high-performance processing of
both, transactions with point accesses as well as read-heavy transactions and even
OLAP scenarios. For the latter, the high scan performance of single-version main-
memory database systems was retained by an update-in-place version mechanism
and by using synopses of versioned record positions, called VersionedPositions.
Furthermore, our novel serializabiliy validation technique that checks the before-
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image deltas in undo buffers against a committing transaction’s predicate space
incurs only a marginal space and time overhead — no matter how large the read
set is. This results in a very attractive and efficient transaction isolation mechanism
for main-memory database systems. In particular, our serializable MVCC model
targets database systems that support OLTP and OLAP processing simultaneously
and in the same database, such as SAP HANA [37, 131] and our HyPer [71] system,
but could also be implemented in high-performance transactional systems that cur-
rently only support holistic pre-canned transactions such as H-Store [69]/VoltDB.
From a performance perspective, we have shown that the integration of our MVCC
model in our HyPer system achieves excellent performance, even when maintain-
ing serializability guarantees. Therefore, at least from a performance perspec-
tive, there is little need to prefer snapshot isolation over full serializability any
longer. This significantly improves the flexibility of main-memory database sys-
tems, which before had to rely on pre-canned transactions in order to leverage
their full performance potential. Future work focuses on better single-node scal-
ability using hardware transactional memory [86] and the scale-out of our MVCC
model [103].



53

Chapter 3

Fast Data Ingestion and
In-Situ Query Processing on Files

Parts of this chapter have been published in [105].

3.1 Introduction

The volume of data stored in structured file formats like comma-separated values
files (CSV) has grown rapidly and continues to do so at an unprecedented rate. Sci-
entific data sets such as the Sloan Digital Sky Survey and Pan-STARRS are stored
as image files and, for reasons of portability and debugability, as multi-terabyte
archives of derived CSV files that are frequently loaded to databases to evaluate
complex queries [137, 136]. Other big data analytics and business intelligence ap-
plications are equally faced with the need to analyze similar archives of CSV and
CSV-like data [130, 136]. These archives are usually stored externally from the da-
tabase server on disk, in a network-attached storage (NAS), or in a distributed file
system (DFS) such as Hadoop HDFS.

To efficiently analyze CSV archives, traditional databases can do little to overcome
the premise of data ingestion or loading. Data needs to be in a format that is suitable
for fast query processing. The cost of parsing, deserializing, validating, and index-
ing structured text data needs to be paid either up front during a bulk load or lazily
during query processing on external tables. The performance of data ingestion,
however, largely depends on the wire speed of the data source and the data sink,
i.e., how fast data can be can be read and how fast the optimized format can be writ-
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Figure 3.1: Pushing the envelope: wire speed saturation of current CSV bulk load-
ing in database systems compared to a database system with Instant Loading.

ten back out. As the speed of network adapters and disks has stagnated in the past,
loading has become a major bottleneck. The delays it is causing are now ubiquitous
as structured file formats, especially text-based formats such as comma-separated
values (CSV), are a preferred storage format for reasons of portability and human
readability.

But the game has changed: Ever increasing main memory capacities have fos-
tered the development of main-memory database systems and modern network
infrastructures as well as faster disks are on the verge of becoming economical.
Servers with 1 TB of main memory and a 10 GbE adapter (10 Gbit/s ≈ 1.25 GB/s
wire speed) or Infiniband network adapters already retail for less than $30,000. At
the same time, storage solutions based on solid state disks (SSDs) and non-volatile
memory (NVRAM) are already or are on the verge of becoming economical. On
this modern hardware, the loading source and sink are no longer the bottleneck.
Rather, current data ingestion approaches for main-memory database systems fail
to saturate the now available wire speeds of tens of Gbit/s. With Instant Loading,
we contribute a novel CSV ingestion approach that allows scalable data ingestion at
wire speed (see Fig. 3.1). This makes the delays caused by data loading unobtru-
sive and relational main-memory database systems attractive for a very efficient
data staging processing model consisting of instantaneous load-work-unload cycles
across CSV data archives on a single node.
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Contributions. To achieve instantaneous data ingestion, we optimize CSV bulk
loading for modern super-scalar multi-core CPUs by task- and data-parallelizing
all phases of loading. In particular, we propose a task-parallel CSV processing
pipeline and present generic high-performance parsing, deserialization, and input
validation methods based on SSE 4.2 SIMD instructions. While these already im-
prove loading time significantly, other phases of loading become the bottleneck.
We thus further show how copying deserialized tuples into the storage backend
can be sped up and how index creation can efficiently be interleaved with paral-
lelized bulk loading using merge-able index structures (e.g., hashing with chaining
and the adaptive radix tree (ART) [85]).

To prove the feasibility of our generic Instant Loading approach, we integrate it
in our full-fledged main-memory database system HyPer [71] and evaluate our
implementation using the industry-standard TPC benchmarks. Results show im-
provements of up to a factor of 10 on a quad-core commodity machine compared
to current CSV bulk loading in main memory databases like MonetDB [92] and
Vectorwise. Our implementation of the Instant Loading approach aims at highest
performance in an in-memory computation setting where raw CPU costs dominate.
We therefore strive for good code and data locality and use light-weight synchro-
nization primitives such as atomic instructions. As the proportion of sequential
code is minimized, we expect our approach to scale with faster data sources and
CPUs with ever more cores.

Data ingestion operators in HyPer are implemented as streaming operators that can
not only be used for bulk loading, but also as leaf operators in arbitrary queries. The
data ingestion operators thus also lay the foundation for in-situ query processing
on raw files, i.e., to process ad-hoc queries directly on stored files.

Instant Loading in action: the (lwu)* data staging processing model. Modern
servers with 1 TB of main memory and more offer enough space to facilitate a
highly efficient data staging processing model to work on large sets of structured
text data using a main memory database. However, currently it is difficult to effi-
ciently load databases of such a size from raw text files. With Instant Loading we
envision a processing model consisting of instantaneous load-work-unload cycles
(lwu)* across windows of interest.

Data staging workflows exist in eScience (e.g., astronomy and genetics [137, 136])
and other big data analytics applications. For example, Netflix, a popular on-
demand media streaming service, reported that they are collecting 0.6 TB of CSV-
like log data in a DFS per day [58]. Each hour, the last hour’s structured log data is
loaded to a 50+ node Hadoop/Hive-based data warehouse, which is used for the
extraction of performance indicators and for ad-hoc queries. Our vision is to use In-
stant Loading in a single-node main memory database for these kinds of recurring
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Figure 3.2: Instant Loading for data staging processing: load-work-unload cycles
across CSV data.

load-work-unload workflows. Fig. 3.2 illustrates our three-step (lwu)* approach.
1 : A window of interest of hot CSV files is loaded from a NAS/DFS or a local

high-performance SSD/RAID to a main memory database at wire speed. The win-
dow of interest can even be bigger than the size of the main memory as selection
predicates can be pushed into the loading process. Further, data can be compressed
at load time. 2 : The full set of features of a relational main memory database—
including efficient support for queries (OLAP) and transactional updates (OLTP)—
can be used by multiple users to work on the window of interest. 3 : Prior to
loading new data, the potentially modified data is unloaded to the NAS/DFS or
SSD/RAID in either a (compressed) binary format or, for portability and debuga-
bility, as CSV. Instant Loading is the essential backbone that facilitates the (lwu)*
approach.

Comparison to MapReduce approaches. Google’s MapReduce [29] (MR) and its
open-source implementation Hadoop brought along new analysis approaches for
structured text files. While we focus on analyzing such files on a single node, these
approaches scale analysis jobs out to a cluster of nodes. By working on raw files,
MR requires no explicit loading phase like relational database systems. On the
downside, a comparison of databases and MR [114] has shown that databases are,
in general, much easier to query and significantly faster at data analysis. Exten-
sions of MR and Hadoop like Hive [142] and HAIL [35] try to close this gap by, e.g.,
adding support for declarative query languages, indexes, and data preprocessing.
As for comparison of MR with our approach, Instant Loading in its current state
aims at accelerating bulk loading on a single main memory database node—that
could be part of a cluster of servers. We see scaleout of query and transaction pro-
cessing as an orthogonal direction of research. Nevertheless, MR-based systems
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1,Africa\n
2,Antarctica\n
3,Asia\n
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6,North America\n
7,South America\n

(a) CSV

id name
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(b) relational

1 Africa
2 Antarctica
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Partition 1 Partition 2
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(c) physical (chunk-based column-store)

Figure 3.3: Continent names in three representations: (a) CSV, (b) relational, and (c)
physical.

could as well profit from the generic high-performance CSV parsing and deserial-
ization methods proposed in this work.

3.2 Data Representations

There are different ways to represent and store the same data. An important part
of bulk loading is the transformation and reorganization of data from one format
into another. This chapter focuses on the comma separated values (CSV), relational,
and common physical representations in main-memory database systems; Fig. 3.3
illustrates these three.

CSV representation. CSV is a simple, yet widely used data format that represents
tabular data as a sequence of characters in a human readable format. It is in many
cases the least common denominator of information exchange. As such, tera-scale
archives of CSV and CSV-like data exist in eScience and other big data analytics
applications [137, 136, 130]. Physically, each character is encoded in one or several
bytes of a character encoding scheme, commonly ASCII or UTF-8. ASCII is a subset
of UTF-8, where the 128 ASCII characters correspond to the first 128 UTF-8 charac-
ters. ASCII characters are stored in a single byte where the high bit is not set. Other
characters in UTF-8 are represented by sequences of up to 6 bytes where for each
byte the high bit is set. Thus, an ASCII byte cannot be part of a multi-byte sequence
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that represents a UTF-8 character. Even though CSV is widely used, it has never
been fully standardized. A first approach in this direction is the RFC 4180 [155]
proposal which closely resembles our understanding of CSV. Data is structured in
records, which are separated by a record delimiter (usually ’\n’ or "\r\n"). Each
record contains fields, which are again separated by a field delimiter (e.g., ’,’).
Fields can be quoted, i.e., enclosed by a quotation character (e.g., ’"’). Inside a
quoted field, record and field delimiters are not treated as such. Quotation charac-
ters that are part of a quoted field have to be escaped by an escape character (e.g.,
’\’). If the aforementioned special characters are user-definable, the CSV format is
highly portable. Due to its tabular form, it can naturally represent relations, where
tuples and attribute values are mapped to records and fields. Regarding NULL val-
ues, we interpret an empty string as NULL and a quoted empty string as an empty
string. NULL values need to be treated specifically as CSV lacks a standard way to
distinguish between NULL and an empty string.

Physical representations. Databases store relations in a storage backend that is
optimized for efficient update and query processing. In our HyPer main mem-
ory database system, a relation can be stored in a row- or a column-store backend.
A storage backend is structured in partitions, which horizontally split the relation
into disjoint subsets. These partitons store the rows or columns in either contiguous
blocks of memory or are again horizontally partitioned into multiple chunks (chun-
ked backend, cf., Fig 3.3(c)), a technique first proposed by MonetDB/X100 [92]. The
combination of these options gives four possibile types of storage backends: con-
tiguous memory-based/chunked row-/column-store. Most, if not all, main mem-
ory database systems, including MonetDB, Vectorwise, and SAP HANA implement
similar storage backends. Instant Loading is designed for all of the aforementioned
types of storage backends and is therefore a generic approach that can be integrated
into various main memory database systems.

This work focuses on bulk loading to uncompressed physical representations. Dic-
tionary encoding can, however, be used in the CSV data or created on the fly at
load time.

3.3 Instant Loading

In the following we analyze why standard CSV bulk loading fails to saturate cur-
rent wire speeds. We then describe the design of Instant Loading, our novel CSV
ingestion approach that allows scalable data ingestion at wire speed.
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Figure 3.4: Breakdown of CSV bulk loading time using a standard approach.

3.3.1 CSV Bulk Loading Analysis

To better understand how bulk loading of CSV data on modern hardware can
be optimized, we first analyzed why it currently cannot saturate available wire
speeds. The standard single-threaded implementation of CSV bulk loading in
our HyPer [71] main memory database system achieves a loading throughput of
around 100 MB/s for 10 GB of CSV data stored in an in-memory file system1. This
is comparable to the CSV loading throughput of other state of the art main mem-
ory databases like MonetDB [92] and Vectorwise, which we also evaluated. The
measured loading throughputs of 100 MB/s, however, do not saturate the avail-
able wire speed of the in-memory file system. In fact, not even a SSD (500 MB/s) or
1 GbE (128 MB/s) can be saturated. A perf analysis shows that about 50% of CPU
cycles are spent on parsing the input, 20% on deserialization, 10% on inserting tu-
ples into the relation, and finally 20% on updating indexes.

In our standard approach, parsing is expensive as it is based on a character at a
time comparison of CSV input and special characters, where each comparison is
implemented as an if-then conditional branch. Due to their pipelined architec-
ture, current general purpose CPUs try to predict the outcome of such branches.
Thereby, a mispredicted branch requires the entire pipeline to be flushed and ever
deeper pipelines in modern CPUs lead to huge branch miss penalties [6]. For CSV
parsing, however, the comparison branches can hardly be predicted, which leads
to almost one misprediction per field and record delimiter of the CSV input.

1For lack of a high-speed network-attached storage or distributed file system in our lab, we used
the in-memory file system ramfs as the loading source to emulate a CSV source wire speed of multi-
ple GB/s.
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Each value found by the parser needs to be deserialized. The deserialization
method validates the string input and transforms the string value into its data
type representation in the database. Again, several conditional branches lead to
a significant number of branch miss penalties. E.g., to deserialize an integer, first
each character of the input string has to be checked if it is a numeric character
using if-then conditional branches. Second, characters need to be transformed
and summed up. Third, the deserialization method has to ensure that no overflow
occurred during the transformation.

Parsed and deserialized tuples are inserted into the relation and are indexed in
the relation’s indexes. Inserting and indexing of tuples accounts for 30% of load-
ing time and is not the bottleneck in our standard loading approach. Instead, our
experiment revealed that the insertion and indexing speed of HyPer’s partitioned
column-store backend exceeds the speed at which standard parsing and deserial-
ization methods are able to produce new tuples.

3.3.2 Design of the Instant Loading Pipeline

The aforementioned standard CSV bulk loading approach follows a single-
threaded execution model. To fully exploit the performance of modern super-scalar
multi-core CPUs, applications need to be highly parallelized [65]. Following Am-
dahl’s law the proportion of sequential code needs to be reduced to a minimum to
achieve maximum speedup.

We base our implementation of Instant Loading on the programming model of the
Intel Threading Building Blocks (TBB) [123] library. In TBB, parallelism is exposed
by the definition of tasks rather than threads. Tasks are dynamically scheduled and
executed on available hardware threads by a run-time engine. The engine imple-
ments task stealing for workload balancing and reuses threads to avoid initialization
overhead. Task-based programming allows to expose parallelism to a great extent.

Instant Loading is designed for high scalability and proceeds in two steps (see
Fig. 3.5). 1 st, CSV input is chunked and CSV chunks are processed by unsyn-
chronized tasks. Each task parses and deserializes the tuples in its chunk. It further
determines a tuple’s corresponding partition (see Sect. 3.2 for a description of our
partitioned storage backend) and stores tuples that belong to the same partition in
a common buffer which we refer to as a partition buffer. Partition buffers have the
same physical layout (e.g., row or columnar) as the relation partition, such that no
further transformation is necessary when inserting tuples from the buffer into the
relation partition. Additionally, tuples in partition buffers are indexed according to
the indexes defined for the relation. In a 2 nd step, partition buffers are merged
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with the corresponding relation partitions. This includes merging of tuples and in-
dexes. While CSV chunk processing is performed in parallel for each CSV chunk,
merging with relation partitions is performed in parallel for each partition.

3.3.3 Task-Parallelization

To allow synchronization-free task-parallelization of parsing, deserialization, parti-
tion classification, and indexing, we split CSV input into independent CSV chunks
that can be processed in parallel. The choice of the chunk size granularity is chal-
lenging and impacts the parallelizability of the bulk loading process. The smaller
the chunk size, the more chunk processing and merge steps can be interleaved.
However, chunks should not be too small, as otherwise the overhead of dealing
with incomplete tuples at chunk borders increases. Instant Loading splits the in-
put according to a size for which it can at least be guaranteed that, assuming
the input is well-formed, one complete tuple fits into a CSV chunk. Otherwise,
parallelized parsing would be hindered. To identify chunk sizes that allow for
high-performance loading, we evaluated our Instant Loading implementation with
varying chunk sizes (see Fig. 3.14). The evaluation leads us to the conclusion that
on a CPU with a last-level cache of size l and n hardware threads, the highest load-
ing throughput can be achieved with a CSV chunk size in the range of 0.25 × l/n
to 1.0× l/n. E.g., a good chunk size on a current Intel Ivy Bridge CPU with a 8 MB
L3 cache and 8 hardware threads is in the range of 256 kB to 1 MB. When loading
from a local I/O device, we use madvise to advise the kernel to prefetch the CSV
chunks.

Chunking CSV input according to a fixed size produces incomplete tuples at CSV
chunk borders. We refer to these tuples as widows and orphans (c.f., Fig. 3.5):

Definition (Widow and orphan). “An orphan has no past, a widow has no future” is a
famous mnemonic in typesetting. In typesetting, a widow is a line that ends and
an orphan is a line that opens a paragraph and is separated from the rest of the
paragraph by a page break, respectively. Chunking CSV input creates a similar
effect. A widow of a CSV chunk is an incomplete tuple at the end of a chunk that is
separated from the part that would make it complete, i.e., the orphan, by a chunk
border.

Unfortunately, if chunk borders are chosen according to a fixed size, CSV chunk-
processing tasks can no longer distinguish between real record delimiters and
record delimiters inside quoted fields, which are allowed in the RFC proposal [155].
It is thus impossible to determine the widow and orphan of a CSV chunk only by
analyzing the data in the chunk. However, under the restriction that record de-
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limiters inside quoted fields need to be escaped, widows and orphans can again be
determined. In fact, as many applications produce CSV data that escapes the record
delimiter inside quoted fields, we propose two loading options: a fast and a safe
mode. The fast mode is intended for files that adhere to the restriction and splits the
CSV input according to a fixed chunk size. A CSV chunk-processing task initially
scans for the first unescaped record delimiter in its chunk2 and starts processing
the chunk data from there. When the task reaches the end of its chunk, it continues
processing by reading data from its subsequent chunk until it again finds an un-
escaped record delimiter. In safe mode, a serial task scans the CSV input and splits
it into CSV chunks of at least a certain chunk size. The task keeps track of quotation
scopes and splits the input at record delimiters, such that no widows and orphans
are created. However, the performance of the safe mode is determined by the speed
of the sequential task. For our implementation, at a multiprogramming level of 8,
the safe mode is 10% slower than the fast mode.

3.3.4 Vectorization

Parsing, i.e., finding delimiters and other special characters, and input validation
are commonly based on a character at a time comparison of CSV input with cer-
tain special characters. These comparisons are usually implemented as if-then
conditional branches. For efficient processing, current general purpose CPUs need
multiple instructions in their instruction pipeline. To fill this pipeline, the hard-
ware tries to predict upcoming branches. However, in the case of parsing and de-
serialization, this is not efficiently possible, which leads to a significant number
of branch miss penalties [6]. It is thus desirable to reduce the number of control
flow branches in the parsing and deserialization methods. One such possibility is
data-parallelization.

Modern general purpose CPUs are super-scalar multi-core processors that allow
not only parallelization at the task level but also at the data level—via single in-
struction multiple data (SIMD) instructions and dedicated execution units. Data par-
allelization is also referred to as vectorization where a single instruction is performed
simultaneously on multiple operands, referred to as a vector. Vectorization in gen-
eral benefits performance and energy efficiency [63]. In the past, SIMD extensions
of x86 CPUs like SSE and 3DNow! mostly targeted multimedia and scientific com-
puting applications. SSE 4.2 [63] adds additional byte-comparing instructions for
string and text processing.

Programmers can use vectorization instructions manually via intrinsics. Modern
compilers such as GCC also try to automatically vectorize source code. This is,

2This might require reading data from the preceeding chunk.
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Figure 3.6: SSE 4.2 comparisons: (a) searching for special characters and (b) validat-
ing characters. For readability purposes, the illustration shows only 4 byte registers
instead of 16 byte SSE registers.

however, restricted to specific code patterns. To the best of our knowledge, no
compiler can (yet) automatically vectorize code using SSE 4.2 instructions. This
is due to the fact that using these instructions requires non-trivial changes to the
design of algorithms.

Current x86 CPUs work on 128 bit SSE registers, i.e., 16 8 bit characters per reg-
ister. While the AVX instruction set increased SIMD register sizes to 256 bit, the
SSE 4.2 instructions still work on 128 bit registers. It is of note that we do not as-
sume 16 byte aligned input for our SSE-optimized methods. Even though aligned
loads to SIMD registers had been significantly faster than unaligned loads in the
past, current generations of CPUs alleviate this penalty.

SSE 4.2 includes instructions for the comparison of two 16 byte operands of explicit
or implicit lengths. We use the EQUAL ANY and RANGES comparison modes to
speed up parsing and deserialization in Instant Loading: In EQUAL ANY mode,
each character in the second operand is checked whether it is equal to any character
in the first operand. In the RANGES mode, each character in the second operand
is checked whether it is in the ranges defined in the first operand. Each range is
defined in pairs of two entries where the first specifies the lower and the second
the upper bound of the range. The result of intrinsics can either be a bitmask or an
index that marks the first position of a hit. Results can further be negated. Fig. 3.6
illustrates the two modes. For presentation purposes we narrowed the register size
to 32 bit.

To improve parsing, we use the EQUAL ANY mode to search for delimiters on
a 16 byte at a time basis (cf. Fig.3.6(a)). Branching is performed only if a special
character is found. The following pseudocode illustrates our method:
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1: procedure nextDelimiter(input,specialChars)
2: while !endOfInput(input) do
3: special=_mm_set_epi8(specialChars)
4: data=_mm_loadu_si128(input)
5: mode=_SIDD_CMP_EQUAL_ANY
6: index=_mm_cmpistri(special,data,mode)
7: if index<16 then
8: // handle special character
9: input=input+16

For long fields, e.g., strings of variable length, finding the next delimiter often re-
quires to scan a lot more than 16 characters. To improve parsing of these fields, we
adapted the method shown above to compare 64 characters at a time: First, 64 byte
(typically one cache line) are loaded into four 128 bit SSE registers. For each of the
registers a comparison mask is generated using the _mm_cmpistrm intrinsic. The
four masks are interpreted as four 16 bit masks and are stored consecutively in one
64 bit integer where each bit indicates if a special character is found at the position
of the bit. If the integer is 0, no special character was found. Otherwise, the position
of the first special byte is retrieved by counting the number of trailing zeros. This
operation is again available as a CPU instruction and is thus highly efficient.

To improve deserialization methods, we use the RANGES mode for input valida-
tion (cf. Fig.3.6(b)). We again illustrate our approach in form of pseudocode:

1: procedure deserializeIntegerSSE(input,length)
2: if length<4 then
3: deserializeIntegerNoSSE(input,length)

4: range=_mm_set_epi8(0,...,0,’9’,’0’)
5: data=_mm_loadu_si128(input)
6: mode=_SIDD_CMP_RANGES|_SIDD_MASKED_NEGATIVE_POLARITY
7: index=_mm_cmpestri(range,2,data,length,mode)
8: if index!=16 then
9: throw RuntimeException("invalid character")

Experiments showed that for string lengths of less than 4 byte, SSE optimized in-
teger deserialization is slower than a standard non-SSE variant with current x86
CPUs. For integer deserialization we thus use a hybrid processing model where
the SSE optimized variant is only used for strings longer than 3 characters. Deseri-
alization methods for other data types were optimized analogously.

The evaluation in Sect. 3.4 shows that our vectorized methods reduce the number
of branch misses significantly, improve energy efficiency, and increase performance
by about 50% compared to non-vectorized methods.



66 3 Fast Data Ingestion and In-Situ Query Processing on Files

1 Africa

3 Asia
4 Australia

2 Antarctica

insert

Partition

Partition Buffer

4 Australia
3 Asia

(a) insert-based

1 Africa

3 Asia
4 Australia

2 Antarctica

Partition

Partition Buffer

3
4 Australia

Asia

memcpy memcpy

(b) copy-based

Partition

chunks

1 Africa
2 Antarctica

Partition Buffer

3
4 Australia

Asia

add chunk reference

(c) chunk-based

Figure 3.7: Merging buffers with relation paritions.

3.3.5 Partition Buffers

CSV chunk-processing tasks store parsed and deserialized tuples as well as indexes
on these tuples in partition buffers. These buffers have the same physical layout as
the relation partitions in order to avoid further transformations of data during a
merge step. In the following we discuss approaches to merge the tuples stored
in a partition buffer with its corresponding relation partition in the storage back-
end (see Fig. 3.7). Merging of indexes is discussed in the next section. The insert-
and copy-based approaches are viable for contiguous memory-based as well as
chunked storage backends. The chunk-based approach requires a chunked storage
backend (see Sect. 3.2).

insert-based approach. The insert-based approach constitutes the simplest ap-
proach. It iterates over the tuples in the buffer and inserts the tuples one-by-one
into the relation partition. This approach is obviously very simple to realize as in-
sertion logic can be reused. However, its performance is bounded by the insertion
speed of the storage backend.

copy-based approach. In contrast to the insert-based approach, the copy-based
approach copies all tuples from the buffer into the relation partition in one step. It
is thereby faster than the insert-based approach as it largely only depends on the
speed of the memcpy system call. We again task-parallelized memcpying for large
buffers to fully leverage the available memory bandwidth on modern hardware.
No additional transformations are necessary as the buffer already uses the physical
layout of the relation partition.
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chunk-based approach. For chunked storage backends the memcpy system call can
be avoided entirely. A merge step then only consists of the insertion of a buffer
reference into a list of chunk references in the backend. While merging time is min-
imal, too small and too many chunks negatively impact table scan and random
access performance of the backend due to caching effects. In general, it is advan-
tageous to have a small list of chunk references. Preferably, the list should fit in
the CPU caches, so that it can be accessed efficiently. For Instant Loading, we are
faced with the tradeoff between using small CSV chunk sizes for a high degree of
task-parallelization (cf., Sect. 3.3.3) and creating large storage backend chunks to
keep the backend efficient.

One way to meet this challenge is to store the partition buffer references of CSV
chunk processing tasks in thread local storage. Partition buffers are then reused as
threads are reused by the TBB library. Hence, the expected mean size of relation
partition chunks is the CSV input size divided by the number of hardware threads
used for loading. Nevertheless, this is no panacea. If partition buffers are reused,
merging of partition buffers with the relation can no longer be interleaved with
CSV chunk processing. Furthermore, this approach requires CSV input to be of a
respective size. For chunked storage backends it can thus also make sense to use
copy-based merging or a hybrid approach. We intend to investigate further merge
algorithms for various types of chunked storage backends in future work.

Buffer allocation. Allocation and reallocation of partition buffers on the heap is
costly as, in general, it needs to be synchronized. Using scalable allocators that
provide per-thread heaps is not an option as these are usually too small for loading
purposes where huge amounts of data are moved. While an initial allocation of
a buffer is unavoidable, reallocations can be saved by initially allocating enough
memory for the tuples in a CSV chunk. The difficulty lies in the estimation of the
number of tuples in a CSV chunk of a certain size. This is mainly due to nullable
attributes and attributes of varying lengths. Our solution is to let CSV chunk pro-
cessing tasks atomically update cardinality estimates for the partition buffers that
serve as allocation hints for future tasks. For our implementation, at a multipro-
gramming level of 8, this allocation strategy increases performance by about 5%
compared to dynamic allocation.

For hybrid OLTP&OLAP databases like HyPer, it further makes sense to allocate
partition buffers on huge virtual memory pages. Huge pages have the advantage
they have a separate section in the memory management unit (MMU) on most plat-
forms. Hence, loading and mission-critical OLTP compete less for the translation
lookaside buffer (TLB).
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3.3.6 Bulk Creation of Index Structures

Indexes have a decisive impact on transaction and query execution performance.
However, there is a tradeoff between time spent on index creation and time saved
during query and transaction processing. Using standard approaches, creating in-
dexes during bulk loading can significantly slow down the loading throughput. Al-
ternatives to the creation of indexes at load time such as database cracking [60] and
adaptive indexing [61] propose to create indexes as a by-product of query process-
ing and thereby allow faster data loading and fast query performance over time.
However, if data is bulk loaded to a mission-critical OLTP or OLAP system that
needs execution time guarantees immediately after loading, delayed index creation
is not an option. This is especially true for our proposed data staging processing
model where data is loaded, processed, and unloaded in cycles. Furthermore, to as-
sure consistency, loading should at least check for primary key violations. We thus
advocate for the creation of primary indexes at load time. With Instant Loading, it
is our goal to achieve this at wire speed.

We identified different options regarding how and when to create indexes during
loading. The first option is to always have a single index for the whole relation
that is incrementally updated by inserting keys of new tuples after they have been
added to the relation. The second option is to completely recreate a new index from
scratch. The first option is limited by the insertion speed of the index structure. The
second option could benefit from index structures that allow the efficient recreation
of an index. However, depending on the size of the relation, this might impose a
huge overhead. We thus propose a third way: each CSV chunk-processing task
maintains indexes in its partition buffers. These indexes are then merged with the
indexes in the relation partition during the merge step. We define indexes that
allow our approach as merge-able index structures for bulk loading:

Definition (Merge-able index structures for bulk loading). Merge-able index
structures for bulk loading are index structures that allow the efficient and par-
allelized creation of the set of indexes I = {I1, . . . , In} over a set of keys K =
{k1, . . . , km}, where K is partitioned into n nonempty disjoint subsets K1, . . . ,Kn

and Ij is an index over Kj for 1 ≤ j ≤ n. Further, there exists an efficient par-
allelized merge function that, given I, yields a single unified index over K. The
unified index creation time t is the aggregate of time needed to create I and time
needed to merge I. For merge-able index structures for bulk loading, t proportion-
ally decreases with an increasing number n of key partitions assuming n available
hardware threads.

In the following we show that hash tables with chaining and the adaptive radix tree
(ART) [85] are merge-able index structures for bulk loading. Our evaluation (see
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Sect. 3.4) further demonstrates that parallelized forms of these indexes achieve a
near-linear speedup with the number of key partitions and hardware threads used
for bulk index creation.

Hash table with chaining. Hash tables are a popular in-memory data structure
and are often used for indexes in main memory databases. Indexes based on hash
tables only allow point queries but are very fast due to their expected lookup time
in O(1). Hash tables inevitably face the problem of hash collisions. Strategies for
conflict resolution include open addressing and chaining. Hash tables that use
chaining for conflict resolution are particularly suitable as merge-able indexes for
bulk loading. Our implementation of a merge-able hash table for bulk loading uses
a fixed-sized hash table, where entries with the same hash value are chained in a
linked list. For a given partitioned key range, equally sized hash tables using the
same hash function are, in parallel, created for each partition. These hash tables are
then repeatedly merged in pairs of two by scanning one of the tables and concate-
nating each list entry for a specific hash value with the list for that hash value in the
other hash table. The scan operation can thereby again be parallelized efficiently.
It is of note that a space-time tradeoff is immanent in hash table-based index ap-
proaches. Our merge-able hash table with chaining allocates a fixed size hash table
for each parallel task and is thus wasting space. In contrast to hash tables, the
adaptive radix tree is highly space-efficient.

Adaptive Radix Tree (ART). The adaptive radix tree (ART) [85] is a high per-
formance and space-efficient general purpose index structure for main memory
databases that is tuned for modern hardware. Compared to hash tables, radix trees,
also known as tries, directly use the digital representation of keys for comparison.
The idea of a radix tree is similar to that of a thumb index of dictionaries, which
indexes its entries according to their first character prefix. Radix trees use this tech-
nique recursively until a specific entry is found. An example of an ART index is
shown in Fig. 3.8(a). ART is a byte-wise radix tree that uses the individual bytes
of a key for indexing. As a result, all operations have a complexity of O(k), where
k is the byte length of the indexed keys. Compared to hash tables, which are not
order preserving, radix trees store keys in their lexicographical order. This allows
not only exact lookups but also range scans, prefix lookups, and top-k queries.

While other radix tree implementations rely on a globally fixed fanout parameter
and thus have to trade off tree height against space efficiency, ART distinguishes
itself from these implementations by using adaptively sized nodes. In ART, nodes
are represented using four types of efficient and compact data structures with dif-
ferent sizes of up to 256 entries. The type of a node is chosen dynamically depend-
ing on the number of child nodes, which optimizes space utilization and access
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efficiency at the same time. The evaluation in [85] shows that ART is the fastest
general purpose index structure for main memory databases optimized for mod-
ern hardware. Its performance is only met by hash tables, which, however, only
support exact key lookups.

In this work we show that ART further belongs to the class of merge-able index
structures for bulk loading by specifying an efficient parallelized merge algorithm.
Fig. 3.8 illustrates the merging of two ART indexes. Radix trees in general are natu-
rally suited for efficient parallelized merging: starting with the two root nodes, for
each pair of nodes, children with common prefixes in the two trees are recursively
merged in parallel. When all children with common prefixes have been merged,
children of the smaller node that have no match in the bigger node are inserted
into the bigger node. This bigger node is then used in the merged tree. Ideally,
merging is thus reducible to a single insertion for non-empty trees. In the worst
case, both trees contain only keys with common prefixes and nodes at maximum
depth need to be merged. In general, merging of two radix trees t1 and t2 needs
O(d) copy operations, where d is the minimum of diff (t1, t2) and diff (t2, t1), where
diff (x, y) is the number of inner nodes and leaves of y that are not present in x and
are children of a node that does not already count towards this number.
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Our parallelized merge algorithm looks as follows:
1: procedure merge(t1,t2,depth)
2: if isLeaf(t1) then insert(t2,t1.keyByte,t1,depth)
3: return t2
4: if isLeaf(t2) then insert(t1,t2.keyByte,t2,depth)
5: return t1
6: // ensure that t1 is the bigger node
7: if t1.count>t2.count then swap(t1,t2)

8: // descend trees in parallel for common key bytes
9: parallel for each entry e in t2 do

10: c=findChildPtr(t1,e.keyByte)
11: if c then c=merge((c,e.child,depth+1))
12: // sequentially insert t2’s unique entries in t1
13: for each entry e in t2 do
14: c=findChildPtr(t1,e.keyByte)
15: if !c then insert(t1,e.keyByte,e.child,depth)

16: return t1

As mentioned before, we insert entries of key bytes of the smaller node that have no
match in the bigger node sequentially and after all children with common prefixes
have been merged in parallel. In ART, this separation into parallel and sequential
phases is particularly due to the fact that nodes can grow when inserting new en-
tries. For the biggest node type, which is essentially an array of size 256, insertions
can further be parallelized using lock-free atomic operations. This kind of insertion
parallelization is also applicable to other radix trees that work with nodes of a fixed
size. It is indeed also feasible to implement a completely lock-free version of ART,
which is, however, out of scope for this work, as we focused on an efficient merge
algorithm.

3.3.7 Instant Loading in HyPer

Instant Loading in HyPer allows (lwu)* workflows but can indeed also be used for
other use cases that require the loading of CSV data. This includes initial loads and
incremental loads for continuous data ingestion.

The interface of Instant Loading in HyPer is designed in the style of the PostgreSQL
COPY operator. Instant Loading takes CSV input, the schema it adheres to, and the
CSV special characters as input. Except for "\r\n", which we allow to be used as a
record delimiter, we assume that special characters are single ASCII characters. For
each relation that is created or altered, we generate LLVM glue code functions for
the processing of CSV chunks and for partition buffer merging (cf., the two steps
in Fig. 3.5). Code generation and compilation of these functions at runtime has
the advantage that the resulting code has good locality and predictable branching
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as the relation layout, e.g., the number of attributes and the attribute types, are
known. Searching for delimiters and the deserialization methods are implemented
as generic C++ functions that are not tailored to the design of HyPer. Just like
the LLVM functions HyPer compiles for transactions and queries [108], the Instant
Loading LLVM glue code calls these statically compiled C++ functions. Such LLVM
glue code functions can further be created for other CSV-like formats using the C++
functions similar to a library. Code generation of the LLVM functions for CSV data
is implemented for the four storage backend types in HyPer (cf. Sect. 3.2).

Offline loading. In offline loading mode, loading has exclusive access to the re-
lation, i.e., there are no concurrent transactions and queries; and loading is not
logged. Processing of CSV chunks and merge steps are interleaved as much as pos-
sible to reduce overall loading time. If an error occurs during the loading process,
an exception is raised but the database might be left in a state where it is only par-
tially loaded. For use cases such as (lwu)* workflows, in-situ querying, and initial
loading this is usually acceptable as the database can be recreated from scratch.

Online transactional loading. Online transactional loading supports loading with
ACID semantics where only the merge steps need to be encapsulated in a single
merge transaction. Processing of CSV chunks can happen in parallel to transaction
processing. There is a tradeoff between overall loading time and the duration of
the merge transaction: To achieve online loading optimized for a short loading
time, chunk processing is interleaved with merge steps. The duration of the merge
transaction starts with the first and ends with last merge step. No other transactions
can be processed in that time. To achieve a short merge transaction duration, first
all chunks are processed and then all merge steps are processed at once.

3.4 Evaluation

The evaluation of Instant Loading in HyPer was conducted on a commodity work-
station with an Intel Core i7-3770 CPU and 32 GB dual-channel DDR3-1600 DRAM.
The CPU is based on the Ivy Bridge microarchitecture and supports the SSE 4.2
string and text instructions, has 4 cores (8 hardware threads), a 3.4 GHz clock rate,
and a 8 MB last-level shared L3 cache. As operating system we used Linux 3.5 in
64 bit mode. Sources were compiled using GCC 4.7 with -O3 -march=native op-
timizations. For lack of a high-speed network-attached storage or distributed file
system in our lab, we used the in-memory file system ramfs as the CSV source to
emulate a wire speed of multiple Gbit/s. Prior to each measurement we flushed
the file system caches.
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Figure 3.9: Speedup of SSE, non-SSE, and Boost Spirit.Qi parsing and deserializa-
tion methods on an Intel Core i7-3770 CPU (Ivy Bridge) reading from an in-memory
CSV source and writing to heap-allocated result buffers.

3.4.1 Parsing and Deserialization

We first evaluated our task- and data-parallelized parsing and deserialization
methods in isolation from the rest of the loading process. CSV data was read from
ramfs, parsed, deserialized, and stored in heap-allocated result buffers. We im-
plemented a variant that is SSE 4.2 optimized (SSE) as described in Sect. 3.3.4 and
one that is not (non-SSE). As a contestant for these methods we used a parsing and
deserialization implementation based on the Boost Spirit C++ library v2.5.2. In par-
ticular, we used Boost Spirit.Qi, which allows the generation of a recursive descent
parser for a given grammar. We also experimented with an implementation based
on Boost.Tokenizer and Boost.Lexical_Cast but its performance trailed that of the
Boost Spirit.Qi variant. Just like our SSE and non-SSE variants, we task-parallelized
our Boost implementation as described in Sect. 3.3.3.

As input for the experiment we chose TPC-H CSV data generated with a scale-
factor of 10 (∼10 GB). While the SSE and non-SSE variants only require schema
information at run-time, the Spirit.Qi parser generator is a set of templated C++
functions that require schema information at compile-time. For the Boost Spirit.Qi
variant we thus hardcoded the TPC-H schema information into the source code.

Figure 3.9 shows that SSE and non-SSE perform better than Boost Spirit.Qi at all
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Figure 3.10: Speedup of SSE, non-SSE, and Boost Spirit.Qi parsing and deserializa-
tion methods on an AMD FX 8150 CPU (Bulldozer) reading from an in-memory
CSV source and writing to heap-allocated result buffers.

multiprogramming levels. SSE outperforms non-SSE and shows a higher speedup:
SSE achieves a parsing and deserialization throughput of over 1.6 GB/s with a mul-
tiprogramming level of 8 compared to about 1.0 GB/s with non-SSE, an improve-
ment of 60%. The superior performance of SSE can be explained by (i) the exploita-
tion of vector execution engines in addition to scalar execution units across all cores
and (ii) by the reduced number of branch misses compared to non-SSE. Perfor-
mance counters show that the number of branch misses is reduced from 194/kB
CSV with non-SSE to just 89/kB CSV with SSE, a decrease of over 50%. Using
all execution units of the CPU cores also allows SSE to profit more from Hyper-
Threading. This comes at no additional cost and improves energy efficiency: Mea-
suring the Running Average Power Limit energy sensors available in recent Intel
CPUs reveals that SSE used 388 J compared to 503 J (+23%) with non-SSE and 625 J
(+38%) with Boost Spirit.Qi.

Figure 3.10 shows the same experiments as in Figure 3.9 performed on an AMD
FX 8150 CPU (Bulldozer microarchitecture). Overall, on the AMD CPU, our SSE
implementation did not improve performance and energy efficiency. The used
pcmpistri instruction has a 17/10 cycles latency/throughput on the Bulldozer ar-
chitecture, whereas it has a 3/3 cycles latency/throughput on the Ivy Bridge ar-
chitecture. This hints that AMD Bulldozer only has a microcode emulation of the
instruction, explaining the on-par performance with the non-SSE implementation.
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insert copy chunk

column-store 7841 ms 6939 ms 6092 ms
row-store 6609 ms 6608 ms 6049 ms

Table 3.1: Loading of TPC-H CSV data (scale-factor 10) to a column- and row-store
using insert-, copy-, and chunk-based partition buffer merging.
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Figure 3.11: Speedup of merge-able HT and ART parallelized index building and
merging for 10 M 32 bit keys.

3.4.2 Partition Buffers

We evaluated Instant Loading for the column- and row-store storage backend im-
plementations in HyPer (cf., Sect. 3.2) and the three partition buffer merging ap-
proaches we proposed in Sect. 3.3.5. For the insert- and copy-based merging ap-
proaches we used storage backends based on contiguous memory, for the chunk-
based approach we used chunked storage backends. Table 3.1 shows the bench-
mark results when loading a TPC-H CSV data set with a scale-factor of 10. For the
column-store backends, copy was around 12% faster than insert. The chunk-based
approach improved performance by another 12%. For the row-store backend, in-
sert and copy performed similarly; chunk-based merging was 8.5% faster.
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3.4.3 Bulk Index Creation

We evaluated the parallelized creation of hash tables with chaining (HT) and adap-
tive radix trees (ART) on key range partitions and the parallelized merging of these
indexes to create a unified index for the total key range.

Fig. 3.11 shows the speedup of index creation for a key range of 10M 32 bit keys.
For ordered dense keys, i.e., ordered keys ranging from 1 to 10M, ART allows a
faster creation of the index than the HT for all multiprogramming levels. Merging
of ART indexes is, in the case of an ordered dense key range, highly efficient and
often only requires a few pointers to be copied such that the creation time of the
unified index largely only depends on the insertion speed of the ART indexes that
are created in parallel. The lower speedup of ART (×2.2) compared to HT (×2.6)
with a multiprogramming level of 4 is due to caching effects. The performance of
ART heavily depends on the size of the effectively usable CPU cache per index [85].
In absolute numbers, however, ART achieves an index creation speed of 130M keys
per second compared to 27M keys per second with HT. While the performance of
HT does not depend on the distribution of keys, an ordered dense key range is
the best case for ART. For unordered dense, i.e., randomly permuted dense keys,
and sparse keys, i.e., randomly generated keys for which each bit is 1 or 0 with
equal probability, the performance of ART drops. The index creation speed is still
slightly better than with HT. For unordered key ranges merging is more costly than
for ordered key ranges because mostly leaf nodes need to be merged. For a mul-
tiprogramming level of 4, merging accounted for 1% of loading time for ordered
dense, 16% for unordered dense, and 33% for sparse keys.

3.4.4 Offline Loading

To evaluate the end-to-end application performance of offline loading we bench-
marked a workload that consisted of (i) bulk loading TPC-H CSV data with a scale-
factor of 10 (∼10 GB) from ramfs and (ii) then executing the 22 TPC-H queries
in parallel query streams. We used an unpartitioned TPC-H database, i.e., only
one merge task runs in parallel, and configure HyPer to use a column-store back-
end based on contiguous memory. Partition buffers were merged using the copy-
based approach. We compared Instant Loading in HyPer to a Hadoop v1.1.1 Hive
v0.10 [142] cluster consisting of 4 nodes of the kind described at the beginning
of Sect. 3.4 (1 GbE interconnect), SQLite v3.7.15 compiled from source, MySQL
v5.5.29, MonetDB [92] v11.13.7 compiled from source, and Vectorwise v2.5.2.

Fig. 3.13 shows our benchmark results. Instant Loading achieves a superior com-
bined bulk loading and query processing performance compared to the contestants.



3.4 Evaluation 77

HDD SSD DDR3-1600
0 %

50 %

100 %

25 %

75 %

w
ire

sp
ee

d
sa

tu
ra

tio
n

w
ith

8
ha

rd
w

ar
e

th
re

ad
s

without I/O prefetching with I/O prefetching

Figure 3.12: Wire speed saturation of Instant Loading (cf., Fig. 3.1) with and with-
out I/O prefetching. Reading and writing from and to main memory (DDR3-1600)
is compute-bound.

Loading took 6.9 s (HyPer), unloading the database as a LZ4-compressed binary to
ramfs after loading took an additional 4.3 s (HyPer /w unload). The compressed
binary has a size of 4.7 GB (50% the size of the CSV files) and can be loaded again
in 2.6 s (3× faster than loading the CSV files). In both cases, the queries were eval-
uated in just under 12 s. Our unloading and binary loading approaches in HyPer
are again highly parallelized. We further evaluated the I/O saturation when load-
ing from local I/O devices. Fig. 3.12 shows that Instant Loading fully saturates
the wire speed of a traditional HDD (160 MB/s) and a SSD (500 MB/s). When the
memory is used as the source and the sink, only 10% of the available wire speed are
saturated (CPU bound). Fig. 3.12 further shows that advising the kernel to prefetch
data from the local I/O device (using madvise) is necessary to achieve a near-100%
saturation of local devices.

Hive is a data warehouse solution based on Hadoop. For our benchmark, we used
4 Hadoop nodes. Hadoop’s distributed file system (HDFS) and Hive were config-
ured to store data in ramfs. Other configuration settings were untouched, includ-
ing the default replication count of 3 for HDFS. This means that each node in the
setup had a replica of the CSV files. We did not include the HDFS loading time
(125.8 s) in our results as we assume that data is ideally already stored there. To
evaluate the query performance, we used an official implementation of the TPC-H
queries in HiveQL3, Hive’s SQL-like query language. Even though no explicit load-
ing is required and 4 nodes instead of a single one are used, Hive needed 50 minutes

3https://issues.apache.org/jira/browse/HIVE-600



78 3 Fast Data Ingestion and In-Situ Query Processing on Files

H
iv

e
4

no
de

s
H

iv
e

4
no

de
s,

R
C

Fi
le

s

S
Q

Li
te

in
-m

em
or

y
M

yS
Q

L
m

em
or

y
en

gi
ne

M
yS

Q
L

C
S

V
en

gi
ne

M
on

et
D

B
Ve

ct
or

w
is

e
w

/o
Q

5
H

yP
er

H
yP

er
w

/u
nl

oa
d

H
yP

er
w

/H
T

P
K

in
de

x

H
yP

er
w

/A
R

T
P

K
in

de
x

05010
0

15
0

23
.0

s
11

.1
s

28
.1

s
16

.2
s

23
.1

s
11

.2
s

18
.8

s
6.

9
s

10
9.

9
s

10
1.

6
s

13
3.

7
s

11
0.

0
s

>
1

ho
ur

>
1

ho
ur

>
1

ho
ur

48
m

in
.

50
m

in
.

executiontime[s]

Lo
ad

in
g

TP
C

-H
C

S
V

(s
ca

le
-fa

ct
or

10
)

P
ro

ce
ss

in
g

th
e

22
TP

C
-H

qu
er

ie
s

Fi
gu

re
3.

13
:

O
ffl

in
e

C
SV

bu
lk

lo
ad

in
g

an
d

qu
er

y
pr

oc
es

si
ng

pe
rf

or
m

an
ce

in
H

yP
er

w
it

h
In

st
an

t
Lo

ad
in

g,
ot

he
r

m
ai

n
m

em
or

y
da

ta
ba

se
s,

an
d

a
H

ad
oo

p
H

iv
e

cl
us

te
r

w
it

h
4

no
de

s.



3.4 Evaluation 79

to process the 22 queries. We also evaluated Hive with record columnar files (RC-
Files). Loading the CSV files into RCFiles using the BinaryColumnarSerDe, a trans-
formation pass that deserializes strings to binary data type representations, took
173.5 s. Query processing on these RCFiles was, however, only 5 minutes faster
than working on the raw CSV files.

SQLite was started as an in-memory database using the special filename :memory:.
For bulk loading, we locked the tables in exclusive mode and used the .import
command. Query performance of SQLite is, however, not satisfactory. Processing
of the 22 TPC-H queries took over 1 hour.

For MySQL we ran two benchmarks: one with MySQL’s memory engine using the
LOAD DATA INFILE command for bulk loading and one with MySQL’s CSV engine
that allows query processing directly on external CSV files. Bulk loading using the
memory engine took just under 2 minutes. Nevertheless, for both, the memory and
CSV engine, processing of the 22 TPC-H queries took over 1 hour again.

We compiled MonetDB with MonetDB5, MonetDB/SQL, and extra optimizations
enabled. For bulk loading we used the COPY INTO command with the LOCKED qual-
ifier that tells MonetDB to skip logging operations. As advised in the documenta-
tion, primary key constraints were added to the tables after loading. We created the
MonetDB database inside ramfs so that BAT files written by MonetDB were again
stored in memory. To the best of our knowledge MonetDB has no option to solely
bulk load data to memory without writing the binary representation to BAT files.
Bulk loading in MonetDB is thus best compared to Instant Loading with binary
unloading (HyPer w/ unload). While loading time is comparable to the MySQL
memory engine, queries are processed much faster. The combined workload took
133.7 s to complete.

For Vectorwise, we bulk loaded the files using the vwload utility with rollback on
failure turned off. Loading time is comparable to MonetDB while queries are pro-
cessed slightly faster. TPC-H query 5 could not be processed without the prior gen-
eration of statistics using optimizedb. We did not include the creation of statistics
in our benchmark results as it took several minutes in our experiments.

We would have liked to further compare Instant Loading to MonetDB’s CSV
vault [64] but couldn’t get it running in the current version of MonetDB. We would
have also liked to evaluate the NoDB implementation PostgresRaw [7] in the con-
text of high-performance I/O devices and main memory databases, but its imple-
mentation is not (yet) available.

Optimal chunk size. Fig. 3.14 shows Instant Loading throughput of a TPC-H
data set as a function of chunk size. Highest throughputs were measured between
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Figure 3.14: Throughput as a function of chunk size.

scale-factor loading throughput query time

10 (∼10 GB) 1.14 GB/s (∼9 Gbit/s) 16.6 s
30 (∼30 GB) 1.29 GB/s (∼10 Gbit/s) 57.9 s
100 (∼100 GB) 1.36 GB/s (∼11 Gbit/s) 302.1 s

Table 3.2: Scaleup of Instant Loading of TPC-H data sets on a server with 256 GB
main memory.

256 kB and 1 MB, which equals a range of 0.25–1.0 times the L3 cache size divided
by the number of hardware threads used.

Scaleup of Instant Loading. We evaluated the scaleup of Instant Loading on a
server machine with an 8 core Intel Xeon X7560 CPU and 256 GB of DDR3-1066
DRAM and bulk loaded TPC-H CSV data with scale-factors of 10 (∼10 GB), 30
(∼30 GB), and 100 (∼100 GB). We then again executed the 22 TPC-H queries in
parallel query streams. As shown in Table 3.2, Instant Loading achieves a linear
scaleup.

perf analysis of Instant Loading. A perf analysis of Instant Loading of a TPC-
H scale-factor 10 lineitem CSV file shows that 37% of CPU cycles are used to find
delimiters, 11.2% to deserialize numerics, 9.1% to deserialize dates, 6.5% to deseri-
alize integers, 5.5% in the LLVM glue code that processes CSV chunks, and 5% in
the LLVM glue code that merges partition buffers. The remaining cycles are mostly
spent inside the kernel. In more detail, the costs of deserialization methods and the
method to find delimiters are dominated by the instructions that load data to the
SSE registers and the SSE comparison instructions.
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Figure 3.15: Chunk-parallel or single-threaded (ST) online CSV Instant Loading
(IL) of 1M item and 4M stock entries with concurrent single-threaded (ST) or multi-
threaded (MT) TPC-C transaction processing.

3.4.5 Online Transactional Loading

Finally, we evaluated Instant Loading in the context of online transactional loading
with ACID semantics. In particular, we benchmarked the partitioned execution of
TPC-C transactions in a TPC-C database partitioned by warehouse with 4 ware-
houses. In parallel to transaction processing, we bulk loaded a new product cata-
log with 1M new items into the item table. In addition to the 1M items, for each
warehouse, 1M stock entries were inserted into the stock table. The storage back-
end was a chunked row-store and we used chunk-based partition buffer merging.
Fig. 3.15 shows the TPC-C throughput with online bulk loading of the aforemen-
tioned data set (∼1.3 GB), which was stored as CSV files in ramfs. In our bench-
mark, loading started after 1 second. We measured transaction throughput in four
scenarios: single- (ST) and multi-threaded (MT) transaction processing combined
with single-threaded and CSV chunk-parallel Instant Loading. In case of ST trans-
action processing, a throughput of 200,000 transactions per second was sustained
with ST Instant Loading; with chunk-parallel Instant Loading throughput shortly
dropped to 100,000 transactions per second. Loading took around 3.5 s with ST In-
stant Loading and 1.2 s with chunk-parallel Instant Loading. Merge transactions
took 250 ms. In case of MT transaction processing, transaction processing and In-
stant Loading compete for hardware resources and throughput decreased consid-
erably from 600,000 to 250,000 transactions per second. With ST Instant Loading,
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the additional load on the system is lower and transaction throughput barely de-
creases. With chunk-parallel Instant Loading, loading took 4.6 s; with ST Instant
Loading 7.0 s. Merge transactions took 250 ms again.

To the best of our knowledge, none of our contestants supports online transactional
loading yet. We still compared our approach to the MySQL memory engine, which,
however, has no support for transactions. We thus executed the TPC-C transactions
sequentially. MySQL achieved a transaction throughput of 36 transactions per sec-
ond. Loading took 19.70 s; no transactions were processed during loading.

3.5 Related Work

Due to Amdahl’s law, emerging multi-core CPUs can only be efficiently utilized
by highly parallelized applications. Instant Loading highly parallelizes CSV bulk
loading and reduces the proportion of sequential code to a minimum.

SIMD instructions have been used to accelerate a variety of database opera-
tors [156, 153]. Vectorized processing and the reduction of branching often en-
abled superlinear speedups. Compilers such as GCC [42] and the LLVM JIT com-
piler [108] try to use SIMD instructions automatically. However, often subtle tricks,
which can hardly be reproduced by compilers, are required to leverage SIMD in-
structions. To the best of our knowledge no compiler can yet automatically apply
SSE 4.2 string and text instructions. To achieve highest speedups, algorithms need
to be redesigned from scratch.

Already in 2005, Gray et al. [49] called for a synthesis of file systems and databases.
Back then, scientists complained that loading structured text data to a database
doesn’t seem worth it and that once it is loaded, it can no longer be manipu-
lated using standard application programs. Recent works addressed these objec-
tions [59, 7, 64]. NoDB [7] describes systems that “do not require data loading
while still maintaining the whole feature set of a modern database system”. NoDB
directly works on files and populates positional maps, i.e., index structures on files,
and caches as a by-product of query processing. Even though the NoDB reference
implementation PostgresRaw has shown that queries can be processed without
loading and query processing profits from the positional maps and caches, major
issues are not solved. These, in our opinion, mainly include the efficient support of
transactions, the scalability and efficiency of query processing, and the adaptabil-
ity of the paradigm for main memory databases. Instant Loading is a different and
novel approach that does not face these issues: Instead of eliminating data load-
ing and adding the overhead of an additional layer of indirection, our approach
focusses on making loading and unloading as unobtrusive as possible.
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Extensions of MapReduce, e.g., Hive [142], added support for declarative query
languages to the paradigm. To improve query performance, some approaches, e.g.,
HAIL [35], propose using binary representations of text files for query processing.
The conversion of text data into these binary representations is very similar to bulk
loading in traditional databases. HadoopDB [1] is designed as a hybrid of tradi-
tional databases and Hadoop-based approaches. It interconnects relational single-
node databases using a communication layer based on Hadoop. Loading of the
single-node databases has been identified as one of the obstacles of the approach.
With Instant Loading, this obstacle can be removed. Polybase [32], a feature of the
Microsoft SQL Server PDW, translates some SQL operators on HDFS-resident data
into MapReduce jobs. The decision of when to push operators from the database to
Hadoop largely depends on the text file loading performance of the database.

Bulk loading of index structures has, e.g., been discussed for B-trees [48, 45]. Da-
tabase cracking [60] and adaptive indexing [61] propose an iterative creation of
indexes as a by-product of query processing. These works argue that a high cost
has to be paid up-front if indexes are created at load-time. While this is certainly
true for disk-based systems, we have shown that for main memory databases at
least the creation of primary indexes—which enable the validation of primary key
constraints—as a side-effect of loading is feasible.

3.6 Outlook and Conclusion

Ever increasing main memory capacities have fostered the development of main-
memory database systems and very fast network infrastructures with wire speeds
of tens of Gbit/s are becoming economical. Current data ingestion approaches for
main-memory database systems, however, fail to leverage these wire speeds when
loading structured text data. In this work we presented Instant Loading, a novel
CSV loading approach that allows scalable data ingestion at wire speed. Task- and
data-parallelization of every phase of loading allows us to fully leverage the perfor-
mance of modern multi-core CPUs. We integrated the generic Instant Loading ap-
proach in our HyPer system and evaluated its end-to-end application performance.
The performance results have shown that Instant Loading can indeed leverage the
wire speed of emerging 10 GbE connectors. This paves the way for new (load-
work-unload)* usage scenarios where the main memory database system serves as a
flexible and high-performance compute engine for big data processing—instead of
using resource-heavy MapReduce-style infrastructures.

The data ingestion operators in HyPer are implemented as streaming-like read op-
erators on external files. In addition to data ingestion, these operators can also be
used to process ad-hoc queries directly, i.e, in-situ, on stored files, without loading
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the data to relations before query processing. In addition to CSV, further text-based
and binary structured formats are supported in a similar way. To improve in-situ
query processing, small materialized aggregates [97] can efficiently be computed at
load time.
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Chapter 4

Scaling to a Cluster of Servers and
the Cloud

Parts of this chapter have been published in [103, 102].

4.1 Introduction

Database systems face two distinct workloads: online transactional processing
(OLTP) and online analytical processing (OLAP). These two workloads are nowa-
days mostly processed in separate systems, a transactional one and a data ware-
house for OLAP, which is periodically updated by a so-called extract-transform-
load (ETL) phase. However, ETL interferes with mission-critical OLTP perfor-
mance and is thus often carried out once every night which inevitably leads to a
problem of data staleness, i.e., analytic queries are evaluated against an outdated
state of the transactional data. Industry leaders such as Hasso Plattner of SAP
thus argue that this data staleness is inappropriate for real-time business analyt-
ics [119]. New hybrid OLTP and OLAP main-memory database systems such as
our HyPer system [71] overcome this limitation of the traditional architecture and
achieve best-of-breed transaction processing throughput as well as best-of-breed
OLAP query response times in one system in parallel on the same database state.

Declining DRAM prices have lead to ever increasing main memory sizes. Together
with the advent of multi-core parallel processing, these two trends have fostered
the development of in-core database systems, i.e., systems that store and process
data solely in main memory. On the high end, Oracle recently announced the
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SPARC M5-32 [111] with up to 32 CPUs and 32 TB of main memory in a single
machine. While the M5-32 certainly has a high price tag, servers with 1 TB of main
memory are already retailing for less than $35,000. On such a server, high per-
formance main-memory database system such as HyPer [71] process more than
100,000 TPC-C transactions per second in a single thread, which is enough for
human-generated workloads even during peak hours. A back-of-the-envelope es-
timate of Amazon’s yearly transactional data volume further reveals that retaining
all data in-memory is feasible even for large enterprises: with a revenue of $60 bil-
lion, an average item price of $15, and a size of about 54 B per orderline, we derive
less than 1/4 TB for the orderlines—the dominant repository in a sales application.
Furthermore, limited main memory capacity is not a restriction as data can be di-
vided into hot and cold data where the latter can be compressed and swapped out
to disk [41, 78]. We thus conjecture that for the lion’s share of OLTP workloads, a
single server suffices.

Analytical queries on the other hand can be quite complex and computationally
expensive. Even though available resources—i.e., CPU cores that are not used
for OLTP—can process OLAP queries, OLAP throughput is still limited to the re-
sources of a single node. Thus, to maintain performance under high OLAP load, the
database system needs to scale out. A scale out also addresses the need for high avail-
ability in the sense that the database can fail-over to an active replica on the fly. In
this chapter we introduce ScyPer, a version of the HyPer system that horizontally
scales out on a cluster of shared-nothing servers, on premise and in the cloud.

A ScyPer cluster consists of one primary and several secondary nodes where each
node runs a ScyPer instance. The architecture of the system is shown in Figure 4.1.
The primary node is the entry point of the system for transactions as well as analyt-
ical queries. The OLTP workload is processed in an OLTP process and the logical
redo log is multicasted to all secondary nodes using pragmatic general multicast
(PGM). The PGM protocol is scalable and provides the reliable delivery of packets
in guaranteed ordering from a single sender to multiple receivers. The redo log
contains either the invocation parameters of transaction procedures together with
log sequence numbers, i.e., logical logging, or the physical updates for the changed
attributes, i.e., physical logging. The primary node is not restricted to but can use
a row-store data layout which is a suitable choice for OLTP processing and keeps
indexes that support efficient transaction processing. It can, but does not neces-
sarily have to have transaction-consistent snapshots on which it can process OLAP
queries or write transaction-consistent backups out to a storage node. A coordi-
nator process on the primary node receives incoming OLAP queries and load bal-
ances these queries among the secondary nodes. Note that while in Figure 4.1 and
this chapter we use virtual memory snapshotting using the fork system call, the
ScyPer architecture can also be used with multi-version concurrency snapshotting
(see Chapter 2).
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Figure 4.1: The architecture of a ScyPer cluster.

Secondary nodes receive the multicasted logical or phyiscal redo log from the pri-
mary node and rerun each of the transactions. As a large portion of a usual OLTP
workload is read-only (i.e., no redo is necessary), secondary nodes usually face less
OLTP work than primary nodes. These additional resources are used to process
incoming OLAP queries or create backups on forked transaction-consistent snap-
shots. Furthermore, indexes for efficient analytical query processing can be cre-
ated. Secondary nodes can either store data in a row-, column-, or hybrid row- and
column-store data format. Additionally, these nodes can have non-transactional
data on disk which can be queried by OLAP queries.

The creation of stored procedures and prepared queries is converted into system-
internal transactions that use the transaction or query definition as input of a
system-internal compile transaction. Similarly, cross-node consistent snapshots can
be created where the snapshots have the common logical time of the log sequence
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Figure 4.2: Elastic provisioning of secondary HyPer nodes in addition to the pri-
mary HyPer master instance for scalable OLAP throughput

number of the system-internal transaction. On such snapshots, processing of a sin-
gle query can be parallelized over several nodes. Parallelized query processing is,
however, out of scope of this thesis.

All nodes multicast heartbeats such that node failures can be detected. Secondary
nodes can fail arbitrarily as we assume that clients re-send OLAP query requests
after a timeout. Alternatively OLAP requests can be replicated in the system so
processing can be resumed if a secondary node fails. In case of a primary node
failure, the secondary nodes elect a new primary using a PAXOS-based protocol.
The latest acknowledged log sequence number when failing over is determined by
majority consensus.

In the following sections we focus on elastic OLAP query processing throughput
on a single transactional state using the ScyPer architecture.

4.2 Elastic OLAP Throughput on Transactional Data

ScyPer is a Scaled-out version of our HyPer main-memory database system that
horizontally scales out on a cluster of shared-nothing servers, on premise and in
the cloud. In the following sections we aim at (i) sustaining the superior OLTP
throughput of a single HyPer server, and (ii) providing elastic OLAP throughput
by provisioning additional servers on-demand. Figure 4.2 gives an overview of
ScyPer’s architecture for elastic OLAP throughput on the same transactional state.
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In ScyPer, a primary HyPer master instance processes all incoming transactions and
multicasts the redo log to secondaries, which in turn replay the log and—mainly
due to not having to replay read-only and aborted transactions—have free capac-
ities to process OLAP queries on transaction-consistent snapshots of the database.
In this section we use HyPer’s efficient virtual memory snapshotting mechanism
that is based on the fork() system call for our experiments. However, it is also
possible to instead use our multi-version concurrency control mechanism that we
introduced in Chapter 2. Secondaries can further use free hardware resources to,
e.g., maintain additional indexes, access non-transactional data, and write out da-
tabase backups.

In particular, we make the following contributions:

• An efficient redo log propagation mechanism from the primary HyPer master in-
stance to secondaries based on reliable multicasting protocol. An evaluation
of our approach on a 1 GbE and a 40 Gbit/s InfiniBand (4×QDR IPoIB) infras-
tructure demonstrates the feasibility of this approach. Further, we compare
logical and physical redo logging in the context of ScyPer.

• We introduce the notion of global transaction-consistent snapshots and show
how these are created in our architecture and which guarantees they give.

• We evaluate the sustained OLTP and scalable OLAP throughput of the ScyPer ar-
chitecture using the TPC-CH [27] benchmark that combines the transactional
TPC-C and analytical TPC-H workloads in a single benchmark.

• We show that secondaries can act as high availability failovers for the primary
HyPer master instance in case it goes down.

ScyPer in the cloud. “In-memory computing will play an ever-increasing role in
Cloud Computing” [119]: This is mainly due to the demand for ever faster services
and the fact that in-memory processing is more energy efficient than disk-based
data processing. ScyPer with its elastic scale-out is particularly suitable for the
deployments on private and public cloud infrastructures. In an infrastructure-as-
a-service scenario, ScyPer runs on multiple physical machines in the cloud. Nodes
for secondaries are provisioned on-demand, which makes this model highly cost-
effective. In a database-as-a-service scenario, ScyPer is offered as a database as a
service. The service provider aims at an optimal resource usage. Following the par-
titioned execution model of H-Store [69] and it commercialization VoltDB, HyPer—
and thus primary ScyPer instances—provide high single-server OLTP throughput
on multiple partitions in parallel, which allows running multiple tenants on one
physical machine [99]. Similarly, this multi-tenancy can be achieved by using our
MVCC mechanism introduced in chapter 2. Redo logs are multicast on a per-tenant
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Figure 4.3: Long-running snapshots allow parallel processing of OLAP queries and
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basis so that OLAP secondaries can be created for specific tenants. OLAP process-
ing for multiple tenants can again be consolidated on a single server. In case a pri-
mary node that processes the OLTP of multiple tenants faces an increased load, par-
titions of a tenant can migrate from one primary to another or a secondary can take
over as a primary very quickly (see Sect. 4.3.4). In summary, ScyPer in the cloud
allows great flexibility, very good resource utilization, and high cost-effectiveness.
However, let us add a word of caution: many cloud infrastructure offerings are vir-
tualized. As we will show later in this chapter, virtualized environments can lead
to severe performance degradations for main-memory database systems.

4.3 ScyPer Architecture

Our ScyPer architecture consists of two HyPer instance types: one primary master
instance and multiple secondaries. Incoming OLTP is processed on the primary
while OLAP queries are load-balanced across secondaries (and the primary if it
has spare resources). This allows to scale the OLAP throughput by provisioning
additional secondaries on-demand. When a secondary instance is started, it first
fetches the latest full database backup from durable storage and then replays the
redo log until it catches up with the primary instance. Secondaries can always
catch up as redo log replaying is about×2 faster than processing the original OLTP
workload (see Section 4.3.1). Furthermore, we do not expect a sustained high OLTP
load at all times.

The primary master instance can use a row-store data layout which is better suited
for OLTP processing and keeps indexes that support efficient transaction process-
ing. When processing the OLTP workload, the primary node multicasts the redo
log of committed transactions to a specific multicast address. The address encodes
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the database partition such that secondaries can subscribe to specific partitions.
This allows the provisioning of secondaries for specific partitions and enables a
more flexible multi-tenancy model as described in Section 4.2. Besides being mul-
ticast, the log is further sent to a durable log. Each redo log entry for a transaction
comes with a log sequence number (LSN). ScyPer uses these LSNs to define a log-
ical time in the distributed setting. A secondary that last replayed the entry with
LSN x has logical time x. It next replays the entry with LSN x+ 1 and advances its
logical time to x+ 1.

As a large portion of a usual OLTP workload is read-only (i.e., no redo is neces-
sary), replaying the redo log on secondary nodes is usually cheaper than process-
ing the original workload on the primary master instance. Further, read operations
of writer transactions do not need to be evaluated when physical logging is em-
ployed. The available resources on the secondaries are used to process incoming
OLAP queries on transaction-consistent snapshots. HyPer’s efficient virtual mem-
ory snapshotting mechanism allows to process several OLAP queries in parallel on
multiple snapshots as shown in Figure 4.3. This is also true for our MVCC-based
snapshotting mechanism (see Chapter 2). A snapshot can also be written to per-
sistent storage so that it can be used as a transaction-consistent starting point for
recovery. Furthermore, the faster OLTP processing allows to create additional in-
dexes for efficient analytical query processing. Secondary nodes can either store
data in a row-, column-, or a hybrid row- and column-store data layout. Addition-
ally, these nodes can include non-transactional data in OLAP analyses which need
not necessarily be kept in-core.

In the following we describe our redo log propagation and distributed snapshot-
ting approaches. We further show how ScyPer provides scalable OLAP throughput
while sustaining the OLTP throughput of a single server and how secondary nodes
can act as high availability failover instances.

4.3.1 Redo Log Propagation

When processing a transaction, HyPer creates a memory-resident undo log which
is used in case of a transaction rollback. Additionally, redo log entries are created
for durability. For committed transactions, this redo log has to be persisted and
written to durable storage so that it can be replayed during recovery. The undo log
however can be discarded when a transaction commits.

ScyPer uses multicasting to propagate the redo log of committed transactions from
the primary instance to secondaries in order to keep them up-to-date with the most
recent transactional state. Multicasting allows to add secondaries on-demand with-
out increasing the network bandwidth usage.
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UDP vs. PGM multicast. Standard UDP multicasting is not a feasible solution
for ScyPer as it may drop messages, deliver them multiple times, or transfer them
out of order. Instead, ScyPer uses OpenPGM for multicasting, an open source im-
plementation of the Pragmatic General Multicast (PGM) protocol [116], which is
designed for reliable and ordered transmission of messages from a single source
to multiple receivers. Receivers detect message loss and recover by requesting a
retransmission from the sender.

Logical vs. physical logging. ScyPer supports both, the use of logical and physical
redo logs for redo log propagation. These two alternatives differ in the size of the
resulting log and the time that is needed to replay the log entries. While in a log-
ical redo log only the transaction identifier and invocation parameters are logged,
the physical redo log logs the individual insert, update, and delete statements that
modified the database during the transaction. Physical redo logging results in a
larger log but replaying it is often much faster compared to logical logging, espe-
cially when the logged transaction executed costly logic or many read operations.
In any case, transactions that use operations where the outcome can not be de-
termined solely by the transactional state, e.g., random operations or current time
information, have to be logged using physical redo logging. Logical redo logging
is restricted to pre-canned stored procedures. Such stored procedures can be added
to ScyPer at any time by a low-overhead system-internal transaction. Logical redo
logging is also called command logging in VoltDB [152].

As mentioned before, secondaries do not need to replay all transactions. Only com-
mitted transactions that modify data are logged. Fig. 4.4 shows that replaying the
logical log of 100,000 TPC-C transactions saves 17% in execution time compared
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1 GbE InfiniBand

UDP PGM UDP PGM

Bandwidth [Mbit/s] 906 675 14,060 1,832
Throughput [1,000/s] 81 43 1,252 112
Latency [µs] 100.4 13.5

Table 4.1: Comparison of UDP and PGM performance for Gigabit Ethernet and
InfiniBand 4×QDR

to the original processing of the transactions by not having to re-execute read-only
and aborted transactions and an additional 6 % for not having to log again (undo
and redo log)—together this adds up to savings of 23 %. Physical logging is even
able to save 56 % of execution time on replay as it further does not re-execute read
operations of writers and only replays basic insert, update and delete operations.

The physical log for 100,000 TPC-C transactions has a size of 85 MB and is there-
fore about ×5 larger than the logical log which needs only 14 MB. An individual
physical log entry has an average size of ∼1,500 B, whereas a logical log entry has
∼250 B. Committing in groups allows to bundle and compress log entries for im-
proved network usage. Compression is not feasible on a per-transaction basis as
the individual log entries are simply too small. Compressing the log for 100,000
TPC-C transactions using LZ4 compression reduces the size by 48 % in the case of
physical and by 54 % for logical logging.

Ethernet vs. InfiniBand. Table 4.1 compares the single-threaded performance of
UDP and PGM multicasting with a 1 Gigabit Ethernet (1 GbE) and a 4×QDR IPoIB
InfiniBand infrastructure. Our setup consists of four machines each equipped with
an on-board Intel 82579V 1 GbE adapter and a Mellanox ConnectX-3 InfiniBand
adapter (PCIe 3 ×8). We used a standard 1 GbE switch and a Mellanox 8 Port
40 Gbit/s QSFP switch. UDP was measured with 1.5 kB datagrams; PGM messages
had a size of 2 kB. The UDP bandwidth and throughput increases by a factor of 15
from 1 GbE to InfiniBand; PGM still profits by a factor of 2.7. The latency is, in both
cases, reduced by a factor of 7.

With a processing speed of around 110,000 TPC-C transactions per second, HyPer
creates ∼60,000 redo log entries per second per OLTP thread. 1 GbE allows the
multicasting of the 60,000 logical log entries but offers not enough bandwidth for
physical logging due to its low PGM multicast performance. Only when group
commits with log compression are used, physical redo log entries can be multi-
cast over 1 GbE. Our InfiniBand setup can handle physical redo logging without
compression and even has free capacities to support multiple outgoing multicast
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streams. These could be used for the simultaneous propagation of the redo logs
of all transaction-processing threads in a partitioned execution setting. We expect
10 GbE to perform similarly.

4.3.2 Distributed Snapshots

ScyPer adapts HyPer’s efficient virtual memory snapshotting mechanism [71] in
a distributed setting. In the following, we describe how we designed ScyPer’s
global transaction-consistent snapshotting mechanism to solve two potential prob-
lems which affect query processing on transactional data: local order violations and
diverging distributed reads.

Local order violations. Figure 4.5(a) shows a schedule which exhibits a local order
violation: First, the snapshot is created. Then a transaction modifies a data item
which is afterwards read by an OLAP query. In this example the query reads the
data item’s old value a because the snapshot was created before the transaction
changed it to a*. A single client who issued both, the transaction and the read-
only query, would get an unexpected result—even though the schedule satisfies
serializability. Order-preserving serializability (OPS) avoids such order violations
as it “requires that transactions that do not overlap in time appear in the same order
in a conflict-equivalent schedule” [151]. In the example, the transaction finished
before the read-only query, i.e., both did not overlap, therefore OPS requires that
the query reads the new state.

To achieve OPS, a query has to be executed on a snapshot that is created after its
arrival. While one might argue that if OPS is desired, the read-only query has to
be executed as a transaction, i.e., on the master, we propose a solution that does
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not require this. A simple solution is to create a snapshot for every single query.
However, while snapshot creation is cheap, it does not come for free. Therefore,
we associate queries with a logical arrival time and delay their execution until a
snapshot with a greater logical creation time is available. The primary node then
acts as a load balancer for OLAP queries and tags every incoming query with a new
LSN as its logical arrival time. The primary also triggers the periodic creation of
global transaction-consistent snapshots (e.g., every second). Together, this guaran-
tees order-preserving serializability as transactions are executed sequentially and
queries always execute on a state of the data set that is newer than their arrival
time. Using our MVCC snapshotting mechanism (see Chapter 2) instead of the vir-
tual memory snapshotting mechanism, the periodic creation of global transaction-
consistent snapshots is not required. Instead, the primary controls when old ver-
sions can be garbage collected. To achieve OPS, a read-only query is only processed
on a secondary that processed all transactions up to the query’s arrival time.

Diverging distributed reads. The ScyPer system as described up to this point is
further subject to a problem which we call diverging reads: Executing the same
OLAP query twice can lead to two different results in which the second result is
based on an older transactional state—i.e., a database state with a smaller LSN than
that of the first query. Figure 4.5(b) illustrates an example for this. The diverging
reads problem is caused by the load balancing mechanism, which may assign a
successive query to a different node whose snapshot represents the state of the data
set for an earlier point in time. This problem is not covered by order-preserving
serializability (OPS) but is solved by the synchronized creation of snapshots.

To create such a global snapshot, the primary node sends a system-internal trans-
action to the secondary nodes which then create local virtual memory snapshots
using the fork() system call at the logical time point defined by the transaction’s
LSN. We use a logical time based on LSNs to avoid problems with clock skew
across nodes. The creation of the global transaction-consistent snapshot is fully
asynchronous on the primary node which avoids any interference with transaction
processing. Therefore, the time needed to create a global transaction-consistent
snapshot only affects the OLAP response time on the secondaries. The time to cre-
ate a global transaction-consistent snapshot on n secondary nodes is defined by

max
0≤i<n

(RTTi + Treplayi
+ Tforki

)

where RTTi is the round trip time from the primary master instance to secondary i,
Treplayi

is the time required to replay the outstanding log at i, and Tforki
is the time

to fork a snapshot at i. In our high-speed InfiniBand setup, RTTs are as low as a
few µs. To avoid inconsistencies, the snapshot transaction has to be processed in
order, i.e., the outstanding log at the secondary has to be processed first. However,
it is expected that at most one transaction has to be replayed before the snapshot
can be created—as the secondaries process transactions faster than they arrive. On
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average a transaction takes only 10µs. The time of the fork depends on the mem-
ory page size and the database size but is in general very fast. With a database size
of 8 GB, a fork takes 1.5 ms with huge pages and 50 ms with small pages. All in all,
the time needed to create a global transaction-consistent snapshot adds up to only
a few milliseconds which has no significant impact on the OLAP response time.

Using our MVCC snapshotting mechanism (see Chapter 2), diverging distributed
reads are already covered by order-preserving serializability (OPS). A query is al-
ways processed on exactly the snapshot that is defined by its arrival time. As the
second query has a higher arrival time than the first, the second query is processed
on a more recent snapshot.

Distributed processing. As global transaction-consistent snapshots avoid inconsis-
tencies between local snapshots, they also enable the distributed processing of a
single query on multiple secondaries. The distributed processing has the potential
to further reduce query response times. Distributed processing of a single query on
multiple secondaries is not covered in this thesis.

4.3.3 Scaling OLAP Throughput on Demand

The evaluation of ScyPer was conducted on four commodity workstations, each
equipped with an Intel Core i7-3770 CPU and 32 GB dual-channel DDR3-1600
DRAM. The CPU is based on the Ivy Bridge microarchitecture, has 4 cores, 8 hard-
ware threads, a 3.4 GHz clock rate, and 8 MB of last-level shared L3 cache. As oper-
ating system we used Linux 3.5 in 64 bit mode. Sources were compiled using GCC
4.7 with -O3 -march=native optimizations.

Figure 4.6 shows the isolated and combined TPC-CH benchmark [27] OLAP and
OLTP throughput that can be achieved with the ScyPer system. We prioritized the
OLTP process so that replaying the log is preferred over OLAP query processing
to avoid that secondaries cannot keep up with redo log replaying. Figure 4.6(a)
demonstrates that the OLAP throughput scales linearly when no transactions are
processed at the same time. Multiple query streams allow the nodes to process
queries in parallel using their 4 cores and therefore increase the OLAP throughput.
Figure 4.6(b) shows the transaction throughput that was achieved on the primary
master instance while the redo log is simultaneously broadcasted to and replayed
by the secondaries. The figure shows the transaction rate for the different redo log
types and commit variants. While the transaction rates for the four options dif-
fer by at most 15 %, group committing clearly provides a better performance than
per-transaction log propagation. The reason for this is the reduced PGM process-
ing overhead since group committing leads to fewer and larger messages. Finally,
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Figure 4.6: Evaluation of ScyPer’s isolated and combined OLAP and OLTP
throughput on a 4 node cluster
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Figure 4.6(c) shows the combined execution of OLTP and OLAP with logical redo
log propagation and uncompressed group committing. All four instances, includ-
ing the primary, process OLAP queries. The instances are able to handle up to two
query streams each, while sustaining a OLTP throughput of over 100,000 transac-
tions per second (normal execution on primary instance, replaying on secondaries).
Three streams degrade the OLTP throughput noticeably and with four streams, sec-
ondaries can no longer keep up with transaction log replaying. This is reasonable,
as the machines only have 4 cores, of which in this case all are busy processing
queries.

4.3.4 High Availability

Besides providing scalable OLAP throughput on transactional data, secondary Hy-
Per nodes can further be used as high availability failover nodes. Secondaries de-
tect the failure of the primary instance when no redo log message—or heartbeat
message—is received from the primary within a given timeframe. In case of failure,
the secondaries then elect a new primary using a distributed consensus protocol
such as Paxos [77] or Raft [110]. The new primary and the remaining secondaries
replay all transactions in the durable redo log for which they have not yet received
the multicast log. Once the primary replayed these transactions, it is active and can
process new transactions. It is thus recommendable to chose the new primary de-
pending on the number of transactions it has to replay, i.e., to choose the secondary
with smallest difference between its LSN and the LSN of the durable redo log. Fur-
ther, if a secondary using a row-store layout exists, this node should be preferred
over nodes using a column-store layout. However, for our main-memory database
system HyPer, TPC-C transaction processing performance only decreases by about
10 % using a column-store compared to a row-store layout. In conclusion, ScyPer is
designed to handle a failure of its primary node within a very short period of time.

4.4 Related Work

Oracle’s Change Data Capture (CDC) system [112] allows to continuously transfer
updates of the transactional database to the data warehouse. Instead of periodi-
cally running an extract-transform-load phase, CDC allows changes to be contin-
ually captured in the warehouse. As in ScyPer, changes can be sniffed from the
redo log to minimize the load on the OLTP database. In contrast to CDC, ScyPer,
however, multicasts the redo log directly from the primary to subscribed secon-
daries, which allows updates to be propagated with a µs latency in modern high-
speed network infrastructures. Further, being an in-core database, ScyPer allows
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unprecedented transaction and query processing speeds that are unachieved by
current commercial solutions. As ScyPer consolidates the transactional database
and the data warehouse in a true hybrid OLTP and OLAP solution, secondaries
can further act as failovers for the primary master instance. This is comparable to
Microsoft’s SQL Server AlwaysOn solution [95], which allows multiple SQL Server
instances to be running as backups that can take over quickly in case of a failure of
the master.

ScyPer differs from traditional data warehousing by not relying on materialized
views, which are commonly used to speed up OLAP query processing. In-core
processing of queries allows clock-speed scan performance, which in turn makes a
high query throughput and superior response times possible.

4.5 Conclusion and Outlook

In this chapter we have shown that ScyPer, a scaled-out version of the HyPer main-
memory database system, is indeed able to sustain the superior OLTP through-
put of a single HyPer instance while providing elastic OLAP throughput by pro-
visioning additional servers on-demand. OLAP queries are thereby executed on
global transaction-consistent snapshots of the transactional state. We have shown
that ScyPer’s snapshotting mechanism guarantees order-preserving serializability
and further prevents the problem of diverging reads in a distributed setting. Sec-
ondary nodes are efficiently kept up-to-date using a redo log propagation mecha-
nism based on reliable multicasting. In case of a primary node failure, these secon-
daries act as high availability failovers.
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Chapter 5

Main-Memory Database Systems
and Modern Virtualization

Parts of this chapter have been published in [101].

5.1 Introduction

Virtualization is a popular technique to isolate several virtualized environments
on one physical machine and ensures that each of the environments seems to run
on their own dedicated hardware resources (e.g., CPU, memory, and I/O). This
enables the consolidation of software systems from many servers into a single
server without sacrificing the desirable isolation between the systems. This not
only reduces the total cost of ownership, but also enables rapid deployment of
complex software and application-agnostic live migration between servers for load
balancing, high availability, and fault-tolerance. Virtualization is also the back-
bone of cloud infrastructure that leverages the aforementioned advantages and
consolidates multiple tenants on virtualized hardware. Deploying main-memory
databases on cloud-provisioned infrastructure enables increased deployment flexibil-
ity and the possibility to scale out on demand.

However, virtualization is no free lunch. The virtualization layer needs to ensure
the desired isolation to avoid that software running in one virtual environment af-
fects the stability or performance of software running in a separate environment on
the same physical machine. This isolation is bound to introduce a certain overhead.
In this chapter we analyze the impact of several modern virtualization techniques



102 5 Main-Memory Database Systems and Modern Virtualization

guest kernel

guest kernel

hardware

host kernelKVM module

guest OS
VirtualBox VMM

guest OS

Docker
guest OS

Figure 5.1: Modern virtualization environments

CPU Intel Core i7-3770
Frequency 3.40 GHz (3.90 GHz maximum turbo)
Cores/Threads 4/8
L1-/L2-Cache 32 KB/256 KB per core
L3-Cache 8 MB
Memory 32 GB DDR3 1600 MHz

Table 5.1: Specification of the evaluation system

on high-performance main-memory database systems. Main-memory database
systems are especially susceptible to additional software abstractions as they are
often closely optimized for the underlying hardware, using advanced CPU instruc-
tions for optimal performance. They are further sensitive to memory performance
as they cannot hide additional overheads behind disk access latencies. We evalu-
ate and compare the performance of two modern main-memory database systems,
HyPer [71] and MonetDB [92], running under three modern virtualization envi-
ronments. We compare containerization (Docker) and hypervisors (VirtualBox and
KVM+QEMU) shown in Figure 5.1 to bare metal performance using transactional
(TPC-C, TATP) as well as analytical (TPC-H) benchmarks. As we will see, the over-
head of virtualization depends heavily on the combination of systems used, rang-
ing from no overhead at all to severe performance degradations. We further eval-
uate the performance in an actual cloud environment using the Google Compute
Engine that internally uses KVM.

Bare metal execution adds no performance overhead but also provides the least iso-
lation between running processes. Sandboxing like in Google’s Chrome browser
can be considered application-level virtualization and adds little overhead and en-
ables the application to manage shared resources. However, this form of isolation
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is prone to software bugs of a single application and this form of isolation might
not be allowed for all use cases due to legal restrictions. Operating-system-level
virtualization is provided by so-called “containers” in Linux, where resources are
managed using cgroups. Docker is a popular example of a container management
software and we use it as an instance for this category in our benchmarks. Other
container managers include LXC and lmctfy. In general, for containers, the kernel
is shared between the host and guest operating systems. Thus, guests cannot use
a different kernel than the host (e.g., running a Windows guest on a Linux host
is not possible). This limitation is, however, usually not a problem for data cen-
ters. Still, the shared kernel imposes a higher security risk than running separate
kernels on the same hardware. Finally, hypervisors provide the strongest isolation
guarantees and allow running multiple operating systems with different kernels
on one physical machine. Among other things, hypervisors also need to isolate
interrupts and accesses to memory. This is expensive and was initially performed
by a software technique called binary translation. In recent years, CPU vendors
added specialized instructions (e.g., Intel VT-x/EPT and AMD-V/RVI) in order to
allow hardware-assisted virtualization. Both hypervisors used in our experiments,
KVM+QEMU and VirtualBox, use these instructions. A downside of hypervisor-
based virtualization is that the hypervisor needs to explicitly expose instruction set
extensions to the underlying guest operating system.

5.2 Benchmarks

To better understand the performance of current main-memory database systems in
modern virtualization environments, we benchmark our hybrid OLTP and OLAP
main-memory database system HyPer [71] version 0.5-186 and MonetDB [92] ver-
sion 11.19.9, a main-memory database system optimized for analytical workloads.
As virtualization environments we choose the container management software
Docker (version 1.5.0), the virtualization software package VirtualBox (version 5.0.0
beta 1), and the virtualization kernel module KVM (kernel 3.16.0-23) together with
the QEMU hypervisor (version 2.1.0). All virtualization environments run on a
Ubuntu 14.10 kernel 3.16.0-23 host operating system on an Intel Ivy Bridge CPU.
Guest operating systems are also Ubuntu 14.10. For KVM+QEMU and VirtualBox,
the guests are assigned 28 GB of main memory and 4 cores (virtualized cores have at
least SSE 4.2). Table 8.1 shows the full specification of the evaluation system. In ad-
dition to the virtualized environments, we also run all benchmark workloads under
the unmodified host operating system on unvirtualized hardware (bare metal). As
workloads we use the analytical benchmark TPC-H (scale factor 10) and the trans-
actional benchmarks TPC-C (5 warehouses) and TATP (1 million subscribers). Raw
experimental results (as CSVs) and configuration files can be downloaded from our
GitHub repository: https://github.com/muehlbau/mmdbms-virtualized.
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Figure 5.2: Running the 22 TPC-H queries (4 threads, scale factor 10, mean of 10
runs) with HyPer and MonetDB on our evaluation system (cf., Table 8.1).

Figure 5.2 shows the total runtime of the 22 TPC-H queries (scale factor 10) for all
tested configurations when running the database systems with 4 worker threads.
Runtimes are the mean of 10 runs. For HyPer, we did not measure a significant
overhead compared to bare metal execution for all tested virtualization environ-
ments. Docker, as expected, added the least overhead, KVM+QEMU added around
18% runtime, and VirtualBox added around 30% runtime. For MonetDB, Docker
also adds almost no overhead. For KVM+QEMU and VirtualBox, on the other
hand, we measured a significant overhead of 73% for KVM+QEMU and a stag-
gering 557% for VirtualBox.

To better understand this overhead we further looked at single-threaded perfor-
mance and the scalability of both database systems. Figure 5.3 shows the speedup
with the number of worker threads for HyPer and MonetDB. We did not include
Docker in this experiment, as it is almost indistinguishable from bare metal. In-
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Figure 5.3: Scalability of TPC-H (scale factor 10) query processing in virtualized
environments on our evaluation system (cf., Table 8.1) and on a Google Compute
Engine (GCE) instance.

terestingly, when running MonetDB with only one worker thread, the overhead of
KVM+QEMU and VirtualBox for MonetDB is much closer to what we measured
with HyPer. It is hard to determine what exactly causes the performance degrada-
tion of MonetDB under virtualized environments—especially in VirtualBox—with
more worker threads. In microbenchmarks, we were able to measure up to 10%
overhead for latencies caused by TLB misses and page faults and up to 60% over-
head for system calls in KVM+QEMU and VirtualBox compared to bare metal. Hy-
Per does not suffer so heavily from these overheads as it has a different execution
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Figure 5.4: Storage location of database files matters when running MonetDB in
VirtualBox.
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Figure 5.5: Transactional benchmarks with HyPer on our evaluation system.
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and parallelization model with less intermediate materialization. E.g., for TPC-H
query 1, MonetDB creates a 3 GB/s write load on the memory bus (measured with
Intel PCM), while HyPer only writes a few MB/s. An analysis of both database
systems with strace also revealed that MonetDB issues more system calls during
query execution, especially when using parallel worker threads. For VirtualBox it
further depends where MonetDB’s database files are stored. MonetDB maps these
files into memory and this is very expensive when the backing file is stored on a
VirtualBox disk image (VDI). By moving the database files to an in-memory file
system in the virtual machine (/dev/shm), we were able to drastically speed up
MonetDB in VirtualBox (see Figure 5.4).

As MonetDB is an analytical system, we measured transactional performance
solely with HyPer. Figure 5.5 shows HyPer’s TPC-C (5 warehouses) and TATP
(1M subscribers) sustained transaction throughputs for the different virtualization
environments. Compared to bare metal execution, virtualization adds up to 18%
of overhead. Similar to the analytical benchmarks, Docker adds the least overhead,
followed by KVM+QEMU, and VirtualBox.

Finally, we evaluated HyPer and MonetDB in a cloud-provisioned virtualized envi-
ronment using Google Compute Engine (GCE). Internally, Google uses KVM to of-
fer virtualized environments that can easily be provisioned on a pay-per-use basis.
The instance configuration and benchmark results are shown in Table 5.2. Both, Hy-
Per and MonetDB, perform very similarly compared to running in KVM+QEMU on
our evaluation machine taking the lower per-core frequency (2.60 GHz compared
to 3.40 GHz) and the older microarchitecture of the CPU into consideration. These
are encouraging results that show that modern cloud-provisioned infrastructure
and high-performance main-memory database systems can efficiently be used to-
gether.

Of course, the question remains if resources can be used even more efficiently by
consolidating multiple tenants in a single database system that “owns” the whole
system. This might allow better usage of system resources compared to adding
an additional layer, i.e., the virtualization layer. However, this also raises legal
questions, e.g., whether sensible data of tenants can be stored together, and security
concerns, e.g., whether a software bug in the database system can lead to data leaks
between tenants.

5.3 Related Work

There is only limited literature in the database field that compares the performance
of database systems in virtualized environments with their native performance.
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(a) n1-standard-8 instance specification

CPU Architecture Sandy Bridge
Frequency 2.60 GHz
Virtual Cores 8
Memory 30 GB

(b) HyPer

TPC-C (single-threaded) 88 448 transactions per second
TATP (single-threaded) 371 885 transactions per second

TPC-H (1 thread) 31.10 s (+/- 1.94 s) runtime
TPC-H (2 threads) 15.37 s (+/- 1.33 s) runtime
TPC-H (4 threads) 8.06 s (+/- 0.73 s) runtime
TPC-H (8 threads) 5.74 s (+/- 0.53 s) runtime

(c) MonetDB

TPC-H (1 thread) 104.63 s (+/- 6.76 s) runtime
TPC-H (2 threads) 60.54 s (+/- 2.16 s) runtime
TPC-H (4 threads) 37.79 s (+/- 0.77 s) runtime
TPC-H (8 threads) 35.00 s (+/- 0.82 s) runtime

Table 5.2: TPC-C (5 warehouses), TATP (1M subscribers), and TPC-H queries (scale
factor 10) on a n1-standard-8 Google Compute Engine instance.

Most existing work agrees that virtualization causes only a small overhead for data-
base systems both for transactional and analytical workloads [96, 22, 51, 5, 30, 128].

Minhas et al. [96] measured the impact of virtualization on the performance of Post-
greSQL in the TPC-H analytical benchmark. They found two major aspects of vir-
tualization with Xen that can slow down performance compared to bare metal:
system calls, which are up to 10× more expensive, and page faults, which take up
to twice as long on virtualized hardware. The overhead for virtualized system calls
does not affect the performance of PostgreSQL as system calls account only for a
minor fraction of the execution time. The additional overhead for page faults on
the other hand causes a significant slow down when each query is run in a sepa-
rate process. Yet, using the same process for all queries reduces the overhead to
only 10 % when the data is in cache and 6 % for cold caches. The cold-cache perfor-
mance benefits from aggressive prefetching that hides Xen’s overhead for I/O and
even causes some queries to run faster than on bare metal.

Curino et al. [28] promote the idea to integrate virtualization in the database system
itself instead of using virtualized hardware. Their proposed Relational Cloud con-
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sists of a single database system per physical machine that manages several logical
databases. They found that a single DBMS with 20 databases achieves about 6×
the TPC-C throughput of 20 virtualized database system instances managing one
database each. They attribute the performance degradation to multiple copies of
operating/database systems and missing coordination of resources, e.g., logs and
buffer pools.

The TPC-VMS [132] benchmark was developed to enable standardized compar-
isons for virtualized environments and adapts the TPC-C, TPC-E, TPC-H, and TPC-
DS benchmarks for this purpose. TPC-VMS requires that a database system runs
one of the four benchmarks simultaneously in three virtual machines that share a
physical machine. Deehr et al. [30] provide TPC-VMS results for SQL Server using
VMware for the transactional TPC-E benchmark. The overhead of virtualization
compared to three native SQL Server instances on the same physical machine was
a mere 7 %.

Grund et al. [51] measured the impacts of the Xen virtualization technology on
the analytical performance of main-memory database systems. They found that
the virtualized system behaved just as the physical system, except for an increased
overhead for memory address translation, resulting in a minor performance degra-
dation of 7 % for the HYRISE in-memory database system in the TPC-H benchmark.

Salomie and Alonso [128] present the Vela system that scales off-the-shelf database
systems on multi-core machines and clusters using virtualization to provide a con-
sistent view on resources. They found that main-memory workloads behave almost
the same whether they are run on virtualized hardware or bare metal, while I/O-
intensive workloads lead to higher CPU utilization and thus reduce performance.
They attribute the absence of larger performance differences between virtualized
and non-virtualized database systems mostly to the support of modern processor
for virtualization, i.e., the Intel VT-x and AMD-V extensions.

Soror et al. [133] cover the virtualization design problem, i.e., how to allocate resources
to virtual machines running on the same physical machine. This becomes especially
important when different virtual machines experience different workload charac-
teristics (e.g., CPU- vs. I/O-intensive).

5.4 Conclusion

Virtualization reduces the total cost of ownership by enabling multi-tenancy, offers
rapid deployment options for applications, and can ensure high availability, load
balancing, and fault tolerance via live migrations. This comes at the cost of addi-
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tional overheads for the applications running in virtualized environments. Modern
virtualization options differ in the degree of isolation ensured and the overhead
imposed on the applications running in the virtualization environment. We have
shown that containerization incurs almost no overhead and that the performance
impact of hypervisor-based virtualization depends on the system being used and
its configuration. Finally, we have shown that main-memory database systems can
be deployed in virtualized cloud environments such as the Google Compute En-
gine without major performance degradations.
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Chapter 6

Optimizing for Brawny and
Wimpy Hardware

Parts of this chapter have been published in [106, 104].

6.1 The Brawny Few and the Wimpy Crowd

Processor shipments reached 1.5 billion units in 2013, a rise of 24% over 2012 [62].
This growth was mainly driven by strong smartphone and tablet sales. PC and
server sales, however, stagnated (see Figure 6.1). As shipments of wimpy CPUs are
outpacing shipments of brawny CPUs, we are entering an era of the brawny few and
the wimpy crowd.

While the number of devices with wimpy processors is ever-increasing, these de-
vices receive only little attention from the database community. It is true that
database vendors have developed small-footprint database systems such as IBM
DB2 Everyplace, Oracle Lite and BerkeleyDB, SAP Sybase SQL Anywhere, and
Microsoft SQL Server CE. Yet, these systems either reached end-of-life, are non-
relational data stores, or are intended for synchronization with a remote backend
server only. In fact, SQLite has evolved to become the de facto standard database
for mobile devices. Apple’s and Google’s mobile operating systems both use it
as the default database solution [9, 44]. While this makes SQLite the backbone
of most smartphone applications, it neither offers highest performance transaction
and query processing nor is it specifically optimized for wimpy processors.
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Figure 6.1: Shipments of wimpy and predominantly ARM-based processors are
outpacing shipments of brawny processors [62]

Nonetheless, the need for high-performance database systems on mobile devices,
such as smartphones and tables, is growing. An increasing number of applica-
tions run natively on mobile devices and roundtrip latencies to data centers hinder
user experience. The development of more disconnected and sophisticated appli-
cations thus requires full-featured high-performance data processing capabilities.
The growing number of sensors in mobile devices and the desire to collect and an-
alyze collected sensor data reinforces the need for advanced and faster mobile data
management. Besides, energy efficiency is an important factor on mobile devices
and usually goes hand in hand with performance [146]. This is because faster data
processing consumes less CPU time and modern CPUs can save large amounts of
energy using dynamic frequency scaling.

Ideally, a relational database system for both, brawny and wimpy systems, should
(i) offer high-performance ACID-compliant transaction and SQL query processing
capabilities and (ii) be platform independent such that the system is universally
deployable and only one codebase needs to be maintained. Further, mobile and
embedded devices require a database system with a small memory footprint.

HyPer [71], our high-performance hybrid OLTP and OLAP main-memory data-
base system, aims at fulfilling these requirements. In this chapter we present initial
performance benchmarks on a wimpy smartphone system and a brawny server
system. The results show that our lean system with a memory footprint of only
a few megabytes achieves highest performance on both target platforms, enabled
by our target-specific just-in-time compilation. In statically compiled code paths,
we further added optimizations for ARM-based processors by, e.g., using ARM-
Cortex-A-specific NEON instructions for data parallelization where applicable.



6.2 Performance on Brawny and Wimpy Target Platforms 113

A15

A7A15 A15

A15

A7

A7 A7

Cache Coherent Interconnect (CCI)

big
Coretx-A15 cluster

high performance
out-of-order execution 

multi-issue pipeline
2MB shared L2 cache

LITTLE
Cortex-A7 cluster
energy efficiency
in-order execution
8 stage pipeline

512kB shared L2 cache

2GB LPDDR3 DRAM

(a) wimpy: ARMv7 big.LITTLE system

E5-2660v2
10 cores
25MB L3

E5-2660v2
10 cores
25 MB L3

8 x 16GB
DDR3 DRAM

8 x 16GB
DDR3 DRAM

QPI interconnect

(b) brawny: x86-64 NUMA system

Figure 6.2: Benchmark platforms: (a) a wimpy ARM big.LITTLE-based smart-
phone system and (b) a brawny x86-64 NUMA-based server system

6.2 Performance on Brawny and Wimpy Target Platforms

These benchmarks of the HyPer system expose the key features of our platform-
independent query compilation for wimpy and brawny target platforms.

All benchmarks were executed on two platforms, (a) a wimpy ARMv7 system and
(b) a brawny x86-64 system (see Figure 6.2):

Wimpy ARMv7 system. The wimpy system is an ARM development board. The
board’s hardware resembles the one in the Samsung Galaxy S4, a state-of-
the-art smartphone. It features a Samsung Exynos5 Octa 5410 CPU, which is
based on the ARM big.LITTLE architecture and combines an energy-efficient
quad-core ARM Cortex-A7 cluster with a high-performance quad-core ARM
Cortex-A15 cluster. Both clusters have highly different characteristics (see
Figure 6.2(a)). The clusters and a 2 GB LPDDR3 DRAM module are connected
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via a cache coherent interconnect. A 1 TB external hard disk is attached to
the development board via USB 3.0. The system runs a customized Linux
kernel version 3.4. To enable energy measurements, the development board
is connected to a power supply that collects energy numbers. The power
monitor has a sampling rate of 10 Hz and a tolerance of 2%. It exposes its
collected data via USB to the development board.

Brawny x86-64 system. The brawny server system is a 2-socket Intel Xeon E5-
2660v2 non-uniform memory access (NUMA) system with 20 cores and
256 GB of main memory1. The system runs a Linux kernel version 3.11. For
energy metrics, we use the running average power limit (RAPL) energy coun-
ters of the Intel CPUs. With these counters we can record the power consump-
tion of the CPUs and of the main memory, which make up a great fraction of
the overall energy consumption of the system.

We ran the TPC-C and TPC-H benchmarks on these two platforms. Reported per-
formance and power measurements are an average over multiple runs:

TPC-C. TPC-C was executed with 5 warehouses and no wait times. Figure 6.3
shows the serial execution throughput on the two target platforms. As ex-
pected, the brawny E5-2660v2 server CPU has a much higher single core peak
performance than the wimpy CPUs. Yet, close to 25K TPC-C transactions
per second can be executed on the wimpy system. Regarding performance
per Watt, the LITTLE A7 CPU processes 2.8K transactions per second per
Watt and the big A15 CPU processes 10.4K transactions per second per Watt.
SQLite is orders of magnitude slower and less energy efficient.

1Each E5-2660v2 CPU has 10 cores, 20 hardware threads, 25 MB of last level L3 cache and 128 GB
DDR3 DRAM.
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TPC-H. The 22 TPC-H queries were executed on a scale factor 1 database. Fig-
ure 8.2 reports the throughput numbers for single-threaded and intra-query
parallel execution. Regarding performance per Watt, the LITTLE A7 CPU
processes 1.2K (3.7K parallel) queries per hour per Watt and the big A15 CPU
processes 1.5K (2.2K parallel) queries per hour per Watt. SQLite is again or-
ders of magnitude slower: SQLite needed 5.6 hours to complete a single TPC-
H run and used 131KJ corresponding to a mere 0.6 queries per hour per Watt.
While the scale factor 1 data set was the largest to fit in the 2 GB of main
memory on the wimpy system, the brawny system could obviously handle
much larger data sets. Regarding performance per Watt, the brawny system
processes 0.5K queries per hour per Watt (1.7K parallel).

6.3 Heterogeneous Processors:
Wimpy and Brawny in One System

Following Moore’s law, transistor density on a given chip area continues to double
with each process generation. Coupled with Dennard scaling, i.e., the proportional
scaling of threshold and supply voltages to keep power density constant, the grow-
ing number of transistors led to commensurate performance increases in the past.
In recent years, however, supply voltage scaling has slowed down [57]. The failure
of Dennard scaling and a constant processor power budget, which is constrained
by thermal and physical restrictions, now pose the dilemma that either transistors
need to be underclocked or not all transistors can be used simultaneously, lead-
ing to dimmed or dark silicon [36, 53]. Although multi-core scaling helps to alleviate
dark silicon, it is just a workaround as the fraction of transistors that can be pow-



116 6 Optimizing for Brawny and Wimpy Hardware

ered continues to decrease with each process generation [8]. Future processors will
thus need to become more heterogeneous, i.e., be composed of cores with asymmetric
performance and power characteristics to use transistors effectively [8, 36, 53, 148].

Examples of commercially available heterogeneous processors include the IBM Cell
processor, Intel CPUs with integrated graphics processors, AMD accelerated pro-
cessing units, and the Nvidia Tegra series. With big.LITTLE [115], ARM proposes
another, particularly interesting heterogeneous design that combines a cluster of
high performance out of order cores (big) with a cluster of energy efficient in-order
cores (LITTLE). Despite being asymmetric in performance and power character-
istics, both types of cores implement the same instruction set architecture (ISA).
Single-ISA heterogeneous multi-core architectures are desirable for a number of
reasons: (i) LITTLE cores reduce energy consumption during phases of low load,
(ii) multiple LITTLE cores provide high parallel performance while big cores en-
sure high serial performance, mitigating the effects of Amdahl’s law, (iii) the sin-
gle instruction set allows to maintain a single implementation, and (iv) heteroge-
neous general-purpose cores avoid over-specialization that can occur with ASICs
and FPGAs. While ARM big.LITTLE processors are currently only available for
the embedded and mobile market, AMD has announced 64 bit big.LITTLE server
processors for 2014.

Single-ISA heterogeneous processors, however, are no free lunch for database sys-
tems. Each query processing job needs to be mapped to a core that is best suited
for the job. just like non-uniform memory access (NUMA) needs to be taken into
account during query processing [88, 84], we argue that processor heterogeneity
needs to be exposed to the database system [11] in order to achieve an optimal job-
to-core mapping. Such a mapping is both important and challenging: heuristics
based on load, CPI, and miss rates do not achieve optimum performance and en-
ergy efficiency [148, 11]. Whereas the operating system and compilers rely on such
heuristics, database systems have a priori knowledge about the workload, enabling
them to make better mapping decisions.

In the remainder of this chapter we examine the potential of a heterogeneity-
conscious DBMS-controlled job-to-core mapping approach for parallel query ex-
ecution engines. In particular, we make the following contributions: (i) We provide
a thorough study on the effects of running parallelized core database operators
and TPC-H query processing on a big.LITTLE architecture. (ii) Using the insights
gained from our study, we design and integrate a heterogeneity-conscious job-to-
core mapping approach in our high-performance main memory database system
HyPer [71] and show that it is indeed possible to get a better mileage while driv-
ing faster compared to static and operating-system-controlled (OS) mappings. (iii)
We evaluate our approach with the TPC-H benchmark and show that we improve
response time by 14% and reduce energy consumption by 19% compared to OS-
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Figure 6.5: Response time and energy consumption of TPC-H scale factor 2 power
runs with static and operating-system-controlled (OS) job-to-core mappings. The
potential of DBMS-controlled job-to-mapping is to reduce energy consumption
and improve performance compared to fixed clock rates and OS scheduling. The
dashed line indicates a constant energy delay product (EDP) relative to the big
cluster at 1600 MHz, i.e., trading an equal percentage of performance for energy
savings. DBMS-controlled mapping targets the area below the constant EDP curve.

controlled mapping. This corresponds to a 31% improvement of the energy delay
product. For specific TPC-H queries, we show that improvements of over 60% are
possible. (iv) Finally, we explore the design space for future heterogeneous multi-
core processors in light of dark silicon and highlight the implications for parallel
query execution engines.

While fast query response times have always been of importance in database re-
search, improving energy efficiency by adapting database software has only re-
cently gained importance. Related work in this area focuses on achieving energy
proportionality in database clusters [129, 79, 80], analyzing energy efficiency of da-
tabase operators on homogeneous multi-core servers [146, 55], adapting the query
optimizer for energy efficiency [154], and using specialized hardware such as FP-
GAs and ASICs to improve performance and reduce energy consumption [73, 107].
In contrast to previous work, we show how to improve energy efficiency and make
query processing faster in the context of single-ISA heterogeneous multi-core pro-
cessors. To the best of our knowledge we are the first to explore this potential for
database systems. The main question we tackle is: How can we make a parallel query
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processing engine use a single-ISA heterogeneous multi-core processor such that we reduce
energy consumption while maintaining or even improving query processing performance?

Figure 6.5 illustrates our goal. It shows response time and energy consumption
for TPC-H scale factor 2 power runs with static and OS-controlled job-to-core map-
pings on our big.LITTLE evaluation system. This initial data confirms the finding
of Tsirogiannis et al. [146] who stated that for a database server “the most energy-
efficient configuration is typically the highest performing one”. To correlate energy effi-
ciency and performance, we use the energy delay product (EDP), which is defined
as energy × delay and is measured in Joules times seconds. It is typically used to
study trade-offs between energy and performance. In the context of query process-
ing, energy is the energy consumed and delay the response time to process a query.
The dashed line in Figure 6.5 indicates a constant EDP relative to the highest per-
forming configuration (big cluster at 1600 MHz). This means that along this line
we trade an equal percentage of performance for energy savings. Ideally, DBMS-
controlled mapping is either on or even below this line. Our benchmark reveals
that with current static and OS-controlled mappings even true energy proportion-
ality, an important aspect in today’s cluster design [12], cannot be achieved.

In the following, we show that, some parallelized core database operators achieve a
better EDP on the LITTLE than the big cluster, if evaluated in isolation. This opens
the opportunity for our DBMS-controlled mapping approach.

6.4 Heterogeneity-aware Parallel Query Execution

For our experiments, we use our high-performance main memory database sys-
tem HyPer [71], which we ported to the ARM architecture [106]. HyPer imple-
ments a parallel query execution engine based on just-in-time compilation [108]
and a morsel-driven parallelization engine [84]. Compared to classical Volcano-
style (tuple-at-a-time) and vectorized (e.g., Vectorwise) query execution engines,
our data-centric code generation relies on execution pipelines in which operators
that do not require intermediate materialization are interleaved and compiled to-
gether. Such operators include join probes and aggregations, while join builds mark
pipeline breakers. With the morsel-driven query execution framework, scheduling
of pipeline jobs becomes a fine-grained run-time task. Morsel-driven processing
essentially takes fragments of input data coming from either a pipeline breaker or
a base relation, so-called morsels2, and dispatches pipeline jobs on these morsels to
worker threads. The degree of parallelism is thereby elastic and can even change

2Our experiments show that morsels of 100,000 tuples enable an almost perfect degree of paral-
lelism and load balancing.
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Figure 6.6: Heterogeneity-aware dispatching: query pipeline jobs on morsels (i.e.,
input data fragments) are dispatched to appropriate cores using a performance and
energy model (PEM)

during query execution. Worker threads are created at database startup and are
pinned to cores. Only one thread per hardware context is created to avoid oversub-
scription. During query processing, no thread needs to be created to avoid thread
creation and cleanup costs. Once started, a pipeline job on a morsel should not
migrate to another core as our approach tries to keep data in registers and low-
level caches for as long as possible. Switching cores would evict these registers and
caches, leading to severe performance degradations.

In HyPer, all database operators are parallelized such that the same pipeline job
can efficiently run on multiple morsels in parallel. Mapping of pipeline jobs to
worker threads (and thus cores) is performed by a dispatcher (see Figure 6.6). The
mapping decision of the dispatcher can be made at two points in time: during
query optimization or at runtime. We argue to make this decision at runtime for
two important reasons. First, mapping at optimization time has to rely on an es-
timate of intermediate result set cardinalities, while at runtime actual cardinalities
are known. Second, runtime-based mapping can further take response time, en-
ergy, and other quality of service constraints into account.

To make the job-to-core mapping of the dispatcher conscious of heterogeneity, we
extended our system with a Performance and Energy Model (PEM). The dispatcher
queries the PEM for each operator of a pipeline job to determine which cluster is
the better choice for the job in terms of energy consumption and performance, en-
capsulated in the EDP. The PEM consists of multiple segmented multivariate linear
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regression models that estimate the energy consumption and performance of the
parallelized database operators given a target cluster (LITTLE or big), a specified
number of cores, and operator-specific parameters. The set of these parameters is
selected carefully for each operator, such that the amount of data points that need
to be collected to develop the model for a given hardware platform stays small.
The data to calibrate the model is either collected through initial benchmarking or
are gathered and adaptively updated during query processing. Our PEM-based
approach is not limited to ARM big.LITTLE systems but is generally applicable to
any kind of single-ISA heterogeneous multi-core architecture. This also includes
architectures with more than two clusters and non-symmetrical numbers of cores.
Besides HyPer, we are convinced that our PEM-based approach can also be inte-
grated in many existing database systems. The general idea of our approach is
independent of query compilation and can be adapted for query engines based on
Volcano- and vectorized execution. Instead of entire operator pipelines, individual
operators are mapped to cores.

Figure 6.7 demonstrates morsel-driven query processing and our heterogeneity-
conscious mapping of pipeline jobs to cores using TPC-H query 14 as an example.
Figure 6.7(a) shows the SQL definition of query 14. HyPer parses the SQL state-
ment and creates an algebraic tree, which is then optimized by a cost-based opti-
mizer. The optimizer estimates that the cardinality of lineitem after filtering on
l_shipdate is smaller than part. Thus, as shown in Figure 6.7(b), the hash table
for the join of the two relations is built on the side of lineitem. Query 14 is di-
vided into two pipelines. Pipeline P1 scans lineitem and selects tuples that apply
to the restriction on l_shipdate. For these tuples the hash table for the equi-join
(B) with part is built. Building the hash table is a pipeline breaker. The second
pipeline P2 scans part and probes the hash table that resulted from P1. Finally,
the aggregation (Γ) and mapping (χ) evaluate the case expression and calculate the
arithmetic expression for the result on the fly. HyPer generates LLVM code for the
two pipeline jobs and compiles it to efficient native machine code. For each of the
two pipeline jobs, the dispatcher determines the cluster that fits best. It then dis-
patches jobs on input morsels of the pipeline to worker threads of the determined
cluster. Figure 6.7(c) shows the four-way parallel processing of the equi-join be-
tween the filtered tuples of lineitem and part.

As shown in Figure 6.7(b), pipeline P1 is mapped to the LITTLE cluster and pipeline
P2 is mapped to the big cluster. Our analysis in Sect. 6.4.3 shows that building a
large hash table is faster and more energy efficient on the LITTLE cluster due to
cache and TLB misses as well as atomic compare and swap instructions. P2 on
the other hand contains a string operation and probes a hash table, which the big
cluster is better suited for. The dispatcher thus switches to the big cluster when
executing P2 jobs.
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select 100.00 *
sum(case when p_type like ’PROMO%’

then l_extendedprice * (1 - l_discount)
else 0 end) /

sum(l_extendedprice * (1 - l_discount))
as promo_revenue

from lineitem, part
where l_partkey = p_partkey and

l_shipdate >= date ’1995-09-01’ and
l_shipdate < date ’1995-10-01’
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Figure 6.7: Example: processing TPC-H Q14 using morsel-driven query execution
and heterogeneity-conscious pipeline job-to-core mapping

6.4.1 System Under Test

Our system under test has a Samsung Exynos 5 Octa 5410 processor based on the
ARM big.LITTLE architecture. It features a LITTLE cluster with four Cortex A7
cores and a big cluster with four Cortex A15 cores. Both clusters allow dynamic
voltage and frequency scaling (DVFS) with clock rates up to 600 MHz (LITTLE)
and 1.6 GHz (big). A cache coherent interconnect (CCI) ensures cache coherency
and connects the clusters with 2 GB of dual-channel LPDDR3 memory (12.8 GB/s
transfer rate). Both, LITTLE and big cores, implement the ARMv7-A instruction
set architecture (ISA). Despite that, the cores’ features differ: LITTLE cores are in-
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LITTLE (A7) big (A15)

Cores 4 4
Clock rate 250–600 MHz 800–1600 MHz
Peak issue rate 2 ops/clock 3 ops/clock
Pipeline length 8–10 stages 15–24 stages
Pipeline scheduling in-order out of order
Branch predictor two-level two-level
Cache line 32 byte (VIPT) 64 byte (PIPT)
L1 I-/D-Cache 32 kB/32 kB 32 kB/32 kB

2-way/4-way 2-way/2-way
L2 D-Cache 512 kB (shared) 2 MB (shared)

8-way 16-way
TLB two-level two-level

10 I/10 D 32 I/32 D
256 (2-way) 512 (4-way)

Die area 3.8 mm2 19 mm2

Table 6.1: Specifications of the LITTLE cluster with A7 cores and the big cluster
with A15 cores

order cores with shallow pipelines and a small last-level cache. big cores are out-of-
order cores with a deep pipeline and a comparatively large last-level cache. These
differences lead to a staggering difference in size: a big core occupies 5× as much
space on the die than a LITTLE core. Table 6.1 contains the full set of specifications.

Both clusters further exhibit asymmetric performance and power characteristics for
different workloads. While the big cluster shows its strengths at compute-intensive
workloads with predictable branching and predictable memory accesses, the LIT-
TLE cluster has a much better EDP in memory-intensive workloads and workloads
where branches are hard to predict, many atomic operations are used, or data ac-
cesses show no temporal or spatial locality. For these workloads, the out of order
pipelines of big cores are frequently stalled, which has a negative impact on en-
ergy efficiency [57]. Further, the larger caches of big cores are more energy hungry
than the smaller cores of LITTLE cores. Our analysis in Sect. 6.4.3 shows that for
certain tasks the LITTLE cluster not only uses less energy but also offers better per-
formance. In light of dark silicon many LITTLE in-order cores seem to be more
appealing than a single big out of order core for OLAP-style query processing. We
show that four LITTLE cores, which occupy approximately the same die area as
one big core, outperform the big core in almost all benchmarks.
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The operating system of our system is based on Linux kernel version 3.11, which
assigns jobs to cores using the cluster migration approach. In this approach only
one of the two clusters is active at a time, which makes it a natural extension to
DVFS (through a unified set of P-states). The operating system transitions between
the two clusters based on a governor mode that adjusts the P-state. The default
governor mode is ondemand, which sets the cluster and its clock rate depending on
current system load. Cluster switching completes in under 2,000 instructions on
our hardware. We use the cpufreq library to switch clusters and clock rates from
inside the database system. Upcoming big.LITTLE processors and newer kernel
versions will implement two more operating system scheduling modes: in-kernel
switching (IKS) and global task scheduling (GTS). IKS pairs a LITTLE with a big core
and switches on a per-core basis. Beyond that, GTS enables true heterogeneous
multi-processing, where all cores can be used at the same time. Unfortunately
our hardware does not allow the simultaneous usage of all eight cores. However,
we expect the main results presented in this work to be equally true for upcom-
ing IKS and GTS modes on newer hardware. Even if operating-system-based job-
to-core mapping strategies become more sophisticated, these strategies are likely
based on performance counters and are unaware of memory-level parallelism and
how misses and other indicators translate into overall performance. We thus argue
strongly for a DBMS-controlled mapping approach.

Our system under test is connected to a power supply with a power meter such
that we can measure the actual energy drawn by the whole system from the wall
socket. The power meter has a sampling rate of 10 Hz and a tolerance of 2%. It
exposes its collected data to the system via a USB interface. Being idle, the system
draws 2 W. Under load, a single LITTLE core draws 240 mW, a big core 2 W.

6.4.2 Initial Benchmarks

In order to get an estimate for the peak sustainable memory bandwidth of our
system under test, we first run the STREAM benchmark [94]. Figure 6.8 shows
the throughput and power consumption of the STREAM copy benchmark with a
varying number of threads on the LITTLE and big cluster. For reasons of brevity
we do not show the scale, add, and triad results as these only differ by a constant
factor. The copy benchmark essentially copies an array in memory. We performed
the benchmark with an array size of 512 MB. Reported numbers are an average over
multiple runs. With four threads, the LITTLE cluster achieved a peak bandwidth of
3 GB/s, the big cluster of just over 6 GB/s. The higher copy performance comes at
a price. With the big cluster, the system draws close to 8 W while with the LITTLE
cluster it only draws around 3 W.
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Figure 6.8: Throughput and power consumption of the stream copy benchmark
with a varying number of threads on the LITTLE and big cluster.

In a second benchmark we compare single- and multi-threaded execution of the 22
TPC-H queries on the LITTLE and big cluster at their highest respective clock rate.
Figure 6.9 shows the results. With single-threaded execution, the big core clearly
outperforms the LITTLE core. It finishes processing the queries so much quicker
that it’s energy consumption is even below that of the LITTLE core. With multi-
threaded execution, the big cluster is still faster but the difference in performance
is much smaller. Conversely, the LITTLE cluster now consumes less energy. As
a consequence, the EDP of the LITTLE and big cluster is almost equal for multi-
threaded query processing.
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Figure 6.9: Single- and multi-threaded execution of the 22 TPC-H queries (scale
factor 2) on the A7 LITTLE and A15 big cluster.

6.4.3 Analysis of Database Operators

To develop a Performance and Energy Model (PEM) for our big.LITTLE platform,
we first analyze how parallelized database operators behave on the two clusters.
We choose equi-join, group-by/aggregation, and sort as benchmark operators. The
reason behind this choice is that by far most cycles of a TPC-H run are spent in
these operators. We expect this to be equally true for most analytical workloads.

In an initial experiment (see Figure 6.10 and Figure 6.11), we benchmark the paral-
lelized operators on the two clusters with four cores each and vary the clock rate of
the cores. The LITTLE cluster is benchmarked with clock rates from 250 to 600 MHz
and the big cluster with clock rates from 800 to 1600 MHz. Two cases are consid-
ered: (i) the working set of the operator fits in the last-level cache (LLC) and (ii) the
working set exceeds the LLC of the clusters.

Equi-join. Joins rank among the most expensive core database operators and ap-
pear in almost all TPC-H queries. Main memory database systems implement the
join operator usually as either a hash-, radix-, or a sort-merge-join. In special cases
a nested loop or index-based join method is used. The choice of implementation
in general depends on the system implementation as well as the physical database
design [19]. For equi-joins, HyPer uses a hash join implementation that allows the
hash table to be built in parallel in two phases. In the first phase, build input tuples
are materialized in thread-local storage. Then, a perfectly sized global hash table is
created. In the second phase, each worker thread scans its storage and sets point-
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Figure 6.10: Response time and energy consumption of multi-threaded hash equi-
join, hash group-by, aggregation, and merge sort operators on the LITTLE and big
cluster with varying clock rates and working set sizes that (a) fit in the last level
cache (LLC) of the cluster and (b) exceed the LLC of the cluster
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Figure 6.11: EDP for multi-threaded equi-join, group-by, aggregation, and sort op-
erators on the LITTLE and big cluster at the highest clock rate and with working
set sizes exceeding the LLC (cf., Fig. 6.10).

ers in the global hash table using atomic compare-and-swap instructions3. For our
initial benchmark we run a hash equi-join on two relations with random numeric
values. If the working set exceeds the LLC, the LITTLE cluster shows a much better
energy delay product (EDP) than the big cluster. Following our initial benchmarks,
we further explore the join operator and benchmark the build and probe phases
individually. The build phase usually shows a better EDP on the LITTLE cluster
because the atomic compare-and-swap instructions stall the pipeline to guarantee
serializability. This hinders out of order execution and diminishes the performance
advantages of the big cores.

Group-by/aggregation. Groupings/aggregations occur in all TPC-H queries. In
HyPer parallel aggregation is implemented using a two-phase aggregation ap-
proach similar to IBM DB2 BLU’s aggregation [122]. First, worker threads pre-
aggregate heavy hitters using a thread-local, fixed-size hash table. When the table
is full, it is flushed to overflow partitions. In the second phase these partitions
are then repeatedly exchanged, scanned, and aggregated until all partitions are fin-
ished. For our benchmark we separate two cases: pure grouping for duplicate elim-
ination and pure aggregation with only a single group. As our results show, when
the working set exceeds the LLC, both cases show different performance and power
characteristics. While pure aggregation profits from the big cores’ higher compute
power, pure grouping has a better EDP on the LITTLE cluster. In our grouping
benchmark, 66% of keys were duplicates. Following our initial benchmarks, we

3For details, we refer to [84]. Note that our evaluation system is a 32 bit system. Thus the tagging
approach described in [84] is not used, which leads to more pointers being chased.
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show that the performance and energy efficiency of group-by/aggregation opera-
tors depends much on the number of groups (distinct keys). For few groups, parti-
tions (i.e., groups) fit into caches, which benefits the big cores. Many groups on the
other hand lead to many cache and TLB misses. In this case, pipelines on big cores
are frequently stalled and LITTLE cores achieve a better EDP.

Sort. HyPer uses sorting to implement order by and top-k clauses, which are both
frequently used in TPC-H queries. Internally, sorting is implemented as a two-
phase merge sort. Worker threads first perform a local in-place sort followed by
a synchronization-free parallel merge phase. For the benchmark we sort tuples
according to one integer attribute. The total payload of a tuple is 1 kB. Our results
indicate that sorting always achieves a better EDP on the big cores, no matter if the
working set fits or exceeds the LLC.

The initial benchmark leads us to the conclusion that working set size is an impor-
tant indicator for where operators should be placed. While big cores always show
a better EDP when the working set fits into the LLC, LITTLE cores show a better
EDP for the equi-join and group-by operators when the working set exceeds the
LLC. The benchmark also shows that running the cores at the highest clock rate
(600 MHz and 1600 MHz, respectively) almost always yields the best EDP for the
cluster. In the following we thus run cores at their highest clock rate. The PEM can
nevertheless be extended to take frequency scaling into account, which can save
substantial amounts of energy [80].

Detailed analysis of equi-joins. To better understand the equi-join operator, we
split it into its build and probe phase and repeat our benchmark for varying input
sizes. For the PEM, it is necessary to get separate estimates for the build and probe
phases as both phases are parts of different pipelines. Figure 6.12 shows our results
for both join phases of the parallelized hash equi-join operator. Building the hash
table is the dominant time factor and shows a much better EDP on the LITTLE
cluster for working set sizes exceeding the LLC. Probing on the other hand has a
better EDP on the big cluster. In light of dark silicon, however, the LITTLE cluster
is better compared to a single big core, which approximately occupies the same die
area. In this case, the LITTLE cluster is again the winner.

Detailed analysis of group-by/aggregation. Group-by/aggregation is an example
for an operator for which the EDP is not only dependent on the input size, but also
on the number of groups it generates. We repeat our benchmarks for the group-by
operator (without aggregation) and vary the input size and the number of groups.
Figure 6.13 shows that the number of groups has a great influence on operator
runtime and energy consumption.
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Figure 6.12: Response time and energy consumption of multi-threaded build and
probe phases of the hash equi-join R B S on the LITTLE and big cluster (build
cardinality |R| ≤ 1000 · 210 tuples, probe cardinality |S| = 1000 · 210 tuples, 8 byte
keys and 8 byte payload).

6.4.4 Performance and Energy Model

The data points collected during our benchmarks build the foundation for the Per-
formance and Energy Model (PEM) for our big.LITTLE platform. For other hard-
ware platforms these benchmarks need to be run initially or can be collected during
query processing. The goal of the PEM is to provide a model that estimates the re-
sponse time and energy consumption of database operators given a target cluster
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Figure 6.13: Response time and energy consumption of a multi-threaded hash
grouping with a varying number of input tuples in R and a varying number of
result groups (distinct keys) on the LITTLE and big cluster.

(LITTLE or big), the number of threads, and operator-specific parameters. Table 6.2
lists the parameters that we consider for the operators when developing the PEM.
For each database operator we create multiple multivariate segmented linear re-
gression models using the least squares method: one response time and one per-
formance model for each combination of target cluster and number of threads. In
general, for clusters c1, . . . , cn with |ci|, 1 ≤ i ≤ n cores each and |o| operators,∑

i∈{1,...,n} |ci| · |o| · 2 segmented linear regression models are created. We use the
R C++ library to automatically compute the models given our benchmark results.
Computing the models takes less than a few seconds. Similarly the models can be
quickly refined if new data points were collected during query processing.

All database operators that we study show a linear correlation given the indepen-
dent parameters we have chosen for the respective operator. We regard the two
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Figure 6.14: Segmented linear regression model for the build phase of the hash
equi-join operator

cases where the working set of the operator fits into the LLC and the case where
the working set exceeds the LLC4. The models are thus divided into two segments.
The first segment is a model for working sets that fit into the LLC and the second
segment is a model for working sets that exceed the LLC.

Figure 6.14 shows an example of our segmented linear regression model for the
build phase of the hash equi-join operator. For each of the two segments, an equal
number of data points is collected. The predictor functions for the LITTLE and big
clusters estimate the data points with only a negligible residual error.

6.4.5 Heterogeneity-conscious Dispatching

The dispatcher uses the Energy and Performance Model (PEM) to estimate the re-
sponse time and energy consumption of an execution pipeline if ran on a specific
cluster of the heterogeneous processor. For a pipeline p with operators o1, . . . , on,
response time and energy consumption, and thus also the energy delay product
(EDP), for the LITTLE and big cluster are estimated by querying the PEM for
each of the operators and each of the clusters. In general, the response time rp

4The only database operator not showing a linear correlation is the cross product. Cross products,
however, occur only rarely in real use cases and are not considered in our PEM.
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operator variables for regression

equi-join (build) build cardinality
equi-join (probe) size of hash table, probe cardinality
group-by input cardinality, groups (estimate)
aggregation input cardinality, groups (estimate), number of aggregates
sort input cardinality, number of attributes, attribute types
all operators string operations (yes/no)

Table 6.2: Parameters for operator regression models
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Figure 6.15: TPC-H (scale factor 2) evaluation

for pipeline p on a cluster c is estimated as
∑

i∈{1,...,n} rc,oi(ctx), where rc,oi is the
response time predictor function for operator oi on cluster c and ctx is a context
that contains the operator-specific parameters. Energy consumption is estimated
analogously. For a pipeline, the dispatcher estimates response time and energy
consumption for all clusters and dispatches the pipeline jobs to the cluster that ex-
hibits the best weighted EDP. The weights are user-definable and allow to either
put a stronger emphasis on energy efficiency or performance. For our evaluation
we used a 60/40 ratio where we set the weight for performance to 0.6 and the
weight for energy efficiency to 0.40.

6.4.6 Evaluation

We implemented our heterogeneity-conscious dispatching approach in our HyPer
system and evaluate its performance and energy efficiency using the TPC-H bench-
mark by comparing our approach (DBMS) against the operating system’s onde-
mand cpufreq governor (OS ondemand) and running TPC-H on the LITTLE and
big cluster at a fixed clock rate of 600 MHz and 1600 MHz, respectively. We do not
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cycles in M time [s] energy [J] EDP [J·s]

LITTLE 600 MHz 80,623 0.18 0.5 0.09
big 1600 MHz 104,392 0.17 1.31 0.22
OS ondemand 102,659 0.22 1.4 0.31
DBMS (our approach) 68,435 0.15 0.77 0.12

Table 6.3: TPC-H Q14 (scale factor 2) evaluation

show results for the other OS governors “performance” and “powersafe” as these
correspond to the big cluster at highest clock rate and LITTLE cluster at lowest
clock rate configuration, respectively. Scale factor 2 is the largest TPC-H data set
that fits into the main memory of our system under test. Figure 6.15 shows the re-
sults of our benchmark. Reported response time and energy numbers are the sum
of all 22 TPC-H queries and are an average of multiple runs. Figure 6.16 shows
the detailed results for all 22 queries. When comparing against the default operat-
ing system setting, our DBMS approach decreases response time by 14% and saves
19% of energy, thus getting a better mileage while being faster. This corresponds
to a 31% improvement of the EDP. Our results show that when running the clus-
ters at their highest clock rate, the LITTLE and big cluster can barely be separated.
Compared to fixed clock rates the EDP is improved by 12% compared to the LIT-
TLE cluster and 14% compared to big cluster. These improvements are much better
than what could be achieved with frequency scaling and also lie below the constant
EDP curve relative to the highest performing configuration (cf., Fig 6.5).

Not all queries profit equally from our DBMS approach. Figure 6.16 shows the
detailed evaluation results for the TPC-H scale factor 2 benchmark. The queries
that profit most are Q5, Q14, and Q18. The EDP for all these queries is improved
by more than 40%. For Q5, Q14, and Q19, response times are even faster than
what was originally benchmarked with the big cluster at the highest clock rate.
These queries have pipelines that better fit the LITTLE than the big cluster. The
OS likely draws the wrong conclusions when such a query is executed. As it only
sees a load spike it thus gradually increases clock rate by increasing the P-state.
Ultimately it will switch to the big cluster and reach the highest clock rate. Our
DBMS-controlled approach on the other hand enforces the LITTLE cluster for the
aforementioned pipelines. For Q1 where it seems that DBMS-controlled mapping
can do little to improve the EDP as the query contains no joins and only a single
pipeline, DBMS-controlled mapping still improves the EDP significantly compared
to OS-controlled mapping. This is because OS ondemand has to react to the sudden
load spike and gradually increases the clock rate of the cores. Our approach on the
other hand knows that Q1 is best executed on the big cluster at the highest clock
rate and immediately switches to that configuration. After the query is finished, the
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clock rate can be decreased again. The same applies to queries Q2, Q3, Q6, Q8, Q11,
Q13, Q15, Q16, Q17, Q20, Q21, Q22. All these queries are dispatched exclusively
to the big cluster. To a certain extent this is due to our EDP weights. Changing the
weights in favor of energy efficiency results in more pipelines being mapped to the
LITTLE cluster.

Table 6.3 shows detailed performance counters for Q14 (cf., Figure 6.7). Query 14
is one of the queries that profits most from our DMBS approach. Compared to the
operating system’s ondemand governor, our approach reduces response time by
35% and decreases energy consumption by 45%.

6.5 Related Work

In light of dimmed or dark silicon, several authors call for heterogeneous system
architectures [8, 36, 53]. In this respect, the usage of general purpose GPUs for
query (co-)processing already receives a lot of attention. Pirk et al. [117] recently
described a generic strategy for efficient CPU/GPU cooperation for query process-
ing by using the GPU to calculate approximate result sets which are then refined on
the CPU. Karnagel et al. [70] showed how to accelerate stream joins by outsourc-
ing parts of the algorithm to the GPU. Other authors show how FPGAs [107] can
be used to improve performance and reduce energy consumption in database sys-
tems. Further, on-chip accelerators have been investigated for database hash table
lookups [73].

We focus on single-ISA heterogeneous multi-core architectures and how these can
be used to improve performance and energy efficiency of a database system. Such
architectures include ARM’s big.LITTLE [115] and Intel’s QuickIA [25], which com-
bines a Xeon server CPU with an energy efficient Atom CPU in a single system.
Previous work on single-ISA heterogeneous architectures has shown that database
systems need to be adapted in order to optimally use heterogeneous processors [11]
and that job-to-core mapping in such a setting is important and challenging [148].

Numerous efforts analyzed the energy efficiency of individual database operators
and TPC-H queries on single homogeneous servers [146, 55, 154]. Tsirogiannis et
al. [146] stated that for a database server “the most energy-efficient configuration is typ-
ically the highest performing one”. On heterogeneous platforms, this statement still
holds for database systems that are not adapted to the underlying hardware. Our
DBMS-controlled mapping approach and its evaluation, however, have shown that
this statement no longer holds for query engines that dynamically map execution
jobs to the core that fits best. In contrast to these proposals we study how hetero-
geneous multi-core architectures can be used to not only improve energy efficiency
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but also improve performance of query processing.

Besides single node servers, significant energy efficiency improvements have been
proposed for database clusters [129, 80, 79, 138]. Schall et al. [129] suggest using
a cluster of wimpy nodes that dynamically powers nodes depending on query
load. Lang et al. [80] propose turning hardware components off or slowing them
down to save energy. Szalay et al. [138] consider using many blades composed of
low-power CPUs together with solid state disks to increase I/O throughput while
keeping power consumption constant. Lang et al. [79] further study the heteroge-
neous shared nothing cluster design space for energy efficient database clusters.
By combining wimpy and brawny nodes in a heterogeneous cluster setup, better
than proportional energy efficiency and performance benefits were achieved. At
the macro level, the authors use a similar approach to determine which workload
should be executed on which nodes. In contrast to the this study, this work studies
the effects and possibilities of heterogeneity inside a single node with heteroge-
neous processors and shared memory.

6.6 Concluding Remarks

Shipments of wimpy devices such as smartphones and tablets are outpacing ship-
ments of brawny PC and server systems. With our performance benchmarks and
optimizations for a specific heterogeneous platform we intended to raise the aware-
ness of the database community to focus not only on optimizing performance for
brawny, but also for wimpy or heterogeneous platforms. HyPer’s data-centric code
generation and platform-optimized machine code compilation allows for a lean
database system that achieves high performance on both, brawny and wimpy sys-
tems; even for different and heterogeneous CPU architectures. Thereby we get
most of the mileage out of a given processor. We further show that high perfor-
mance directly translates to high energy efficiency, which is particularly important
on energy-constrained devices such as smartphones and tablets. The platform-
agnostic code generation allows the HyPer system to maintain a single codebase
for multiple platforms. HyPer’s performance and versatile usability enable richer
data processing capabilities for more sophisticated mobile applications. Addi-
tionally, one platform-independent database system optimized for brawny and
wimpy systems enables distributed database systems like our scaled-out version
of HyPer [103] and energy-optimized systems like WattDB [129] to be composed
of heterogeneous nodes, each carefully selected for different quality of service re-
quirements.

Besides GPUs, ASICs and FPGAs, single instruction set architecture (ISA) het-
erogeneous multi-core processors are another way of utilizing otherwise dimmed
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or dark silicon. The thorough study of parallelized core database operators and
TPC-H query processing on a heterogeneous single-ISA multi-core architecture in
this chapter has shown that these processors are no free lunch for database systems.
In order to achieve optimal performance and energy efficiency, we have shown that
heterogeneity needs to be exposed to the database system, which, because of its
knowledge of the workload, can make better mapping decisions than the operat-
ing system (OS) or a compiler. We have integrated a heterogeneity-conscious job-
to-core mapping approach in our high-performance main memory database system
HyPer that indeed enables HyPer to get a better mileage while driving faster com-
pared to fixed and OS-controlled job-to-core mappings; improving the energy delay
product of a TPC-H power run by 31% and up to over 60% for specific queries. We
would like to stress that this is a significant improvement as our approach is inte-
grated in a complete query processing system and the whole TPC-H benchmark is
evaluated rather than single operators or micro-benchmarks.

In future work we plan to extend our performance and energy model to include
all relational database operators. Using the work of Lang et al. [79] as a founda-
tion, we want to explore energy efficient cluster designs for distributed transaction
and query processing [103] where not only the cluster can be composed of het-
erogeneous nodes but nodes themselves can again be composed of heterogeneous
processors. Further, upcoming hardware that allows the simultaneous usage of het-
erogeneous single-ISA cores will open the opportunity for co-processing of queries
on heterogeneous cores.
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Chapter 7

Vectorized Scans in Compiling
Query Engines

Parts of this chapter have been published in [78].

7.1 Introduction

In recent years, new database system architectures that optimize for OLAP work-
loads have emerged. These OLAP systems store data in compressed columnar for-
mat and increase the CPU efficiency of query evaluation by more than an order of
magnitude over traditional row-store database systems. The jump in query evalua-
tion efficiency is typically achieved by using “vectorized” execution where instead
of interpreting query expressions one tuple at a time, all operations are executed on
blocks of column values. The effect is reduced interpretation overhead, because vir-
tual functions implementing block-wise operations handle thousands of tuples per
function call, and the loop over the block inside these function implementations
benefits from many loop-driven compiler optimizations, including the automatic
generation of SIMD instructions. Examples of such systems are IBM BLU [122],
the Microsoft SQL Server Column Index subsystem [83], SAP HANA [131], Vector-
wise [157], and Vertica [76]. An alternative recent way to accelerate query evalua-
tion is “just-in-time” (JIT) compilation of SQL queries directly into executable code.
This approach avoids query interpretation and its overheads altogether. Recent an-
alytical systems using JIT compilation are Drill, our HyPer system [71, 108] and
Impala [150].
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The strength of tuple-at-a-time JIT compilation is its ability to generate code that
is highly efficient for both OLAP and OLTP queries, in terms of needing few CPU
instructions per processed tuple. Where vectorization passes data between opera-
tions through memory, tuple-at-a-time JIT passes data through CPU registers, sav-
ing performance-critical load/store instructions. Vectorization on the other hand
brings no CPU efficiency improvement at all for OLTP, as its efficiency depends
on executing expressions on many tuples at the same time, while OLTP queries
touch very few tuples and typically avoid scans. Different storage layouts for the
blocks or chunks of a relation, e.g., for compression, however, constitute a challenge
for JIT-compiling tuple-at-a-time query engines. As each compression schema can
have a different memory layout, the number of code paths that have to be compiled
for a scan grow exponentially. This leads to compilation times that are unaccept-
able for ad-hoc queries and transactions. In this case, vectorized scans come to the
rescue because their main strength is that they remain interpreted and can be pre-
compiled. Further, vectorized scans are amenable to exploit SIMD and can express
adaptive algorithms. In this chapter, we show how the strenghts of both worlds, JIT
compilation and vectorization, can be fused together in our HyPer system by using
an interpreted vectorized scan subsystem that feeds into JIT-compiled tuple-at-a-
time query pipelines.

7.2 Vectorized Scans in Compiling Query Engines

Choosing a single compression method for an attribute of a relation only by its
type cannot leverage the full compression potential, as the choice does not take the
attribute’s value distribution into account. Thus, multiple compression schemes
should be available for the same attribute, such that always the most space saving
method can be picked. The resulting variety of physical representations improves
the compression ratio, but constitutes a challenge for JIT-compiling tuple-at-a-time
query engines: Different storage layout combinations and extraction routines re-
quire either the generation of multiple code paths or to accept runtime overhead
incurred by branches for each tuple.

Our goal thus is to efficiently integrate multiple storage layouts into our tuple-at-
a-time JIT-compiling query engine in HyPer that is optimized for both, OLTP and
OLAP workloads. HyPer uses a data-centric compilation approach that compiles
relational algebra trees to highly efficient native machine code using the LLVM
compiler infrastructure. The compilation times from LLVM’s intermediate repre-
sentation (IR) which we use for code generation to optimized native machine code
is usually in the order of milliseconds for common queries.
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Compared to a traditional query execution model where for each tuple or vector
of tuples the control flow passes from one operator to the other, our query engine
generates code for entire query pipelines. These pipelines essentially fuse the logic
of operators that do not need intermediate materialization together. A query is bro-
ken down into multiple such pipelines where each pipeline loads a tuple out of a
materialized state (e.g., a base relation or a hash table), then performs the logic of
all operators that can work on it without materialization, and finally materializes
the output into the next pipeline breaker (e.g., a hash table). Note that compared
to traditional interpreted execution, tuples are not pulled from input operators but
are rather pushed towards consuming operators. In this context, scans are leaf oper-
ators that feed the initial query pipelines. The generated scan code (shown in C++
instead of LLVM IR for better readability) of two attributes of a relation stored in
uncompressed columnar format looks as follows:

for (const Chunk& c:relation.chunks) {
for (unsigned row=0;row!=c.rows;++row) {
auto a0=c.column[0].data[row];
auto a3=c.column[3].data[row];
// check scan restrictions and push a0,a3
// into consuming operator
...

} }

Note that for reasons of simplicity we omit multi-version concurrency control
checks here (see Chapter 2). In order to perform the same scan over different stor-
age layout combinations depending on the used compression techniques, the first
possibility is to add a jump table for each extracted attribute that jumps to the right
decompression method:

const Column& c0=c.column[0];
// expensive jump table per attribute
switch (c0.compression) {
case Uncompressed: ...
case Dictionary: a0=c0.dict[key(c0.data[row])];
...

}

Since the outcome of the jump table’s branch is the same within each chunk,
there will not be a large number of branch misses due to correct prediction of the
branches by the CPU. Yet, the introduced instructions add latency to the innermost
hot loop of the scan code, and, in practice, this results in scan code that is almost
3× slower than scan code without these branches.

An alternative approach that does not add branches to the innermost loop is to
“unroll” the storage layout combinations and generate code for each of the combi-
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Figure 7.1: Compile times of a query plan with a scan of 8 attributes and a varying
number of storage layout combinations of the base relation in our HyPer system
with JIT-compiled scan operators.

nations. For each chunk, e.g., a computed goto can then be used to select the right
scan code:

for (const Chunk& c:relation.chunks) {
// computed goto to specialized "unrolled"
// code for the chunk’s storage layout
goto *scans[c.storageLayout];
...
a0dicta3uncompressed:
for (unsigned row=0;row!=c.rows;++row) {
a0=c.column[0].dict[key(c0.data[row])];
a3=c.column[3].data[row];
...

} }

Unrolling the combinations, however, requires the query engine to generate a code
path for each storage layout that is used. The number of these layouts grows expo-
nentially with the number of attributes n. If each attribute may be represented in p
different ways, the resulting number of code paths is pn; e.g., for only two attributes
and six different representations, already 36 code paths are generated. While one
can argue that not all of these combinations will actually occur in a relation1, al-
ready a small number drastically increases code size and thus compilation time.
This impact is shown in Figure 7.1, which plots the compilation time of a simple

1Our proposed compression strategy in [78] uses over 50 different layouts for the lineitem relation
of TPC-H scale factor 100.
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select * query on a relation with 8 attributes and a varying number of storage
layout combinations.

Given the exploding compile time we thus turned to calling pre-compiled inter-
preted vectorized scan code for vectors of say 8K tuples. The returned tuples are
then consumed tuple-at-a-time by the generated code and pushed into the consum-
ing operator:

while (!state.done()) {
// call to pre-compiled interpreted vectorized scan
scan(result,state,requiredAttributes,restrictions);
for (auto& tuple:result) {
auto a0=tuple.attributes[0];
auto a3=tuple.attributes[1];
// check non-SARGable restrictions and push a0,a3
// into consuming operator
...

} }

Using the pre-compiled interpreted vectorized scan code, compile times can be
kept low, no matter how many storage layout combinations are scanned (cf., Fig-
ure 7.1). Additionally, SARGable predicates can be pushed down into the scan
operator where they can be evaluated on vectors of tuples; fully leveraging loop-
driven compiler optimizations.

7.3 Integration of a Vectorized Scan Subsystem in HyPer

Our JIT-compiling query engine is integrated in our HyPer system. As illustrated in
Figure 7.2, vectorized scans on hot uncompressed chunks and compressed blocks
(DataBlocks, cf., [78]) share the same interface in our system and JIT-compiled
query pipelines are oblivious to the underlying storage layout combinations.

In our system, vectorized scans are executed as follows: First, for each chunk of
a relation it is determined whether the block is frozen, i.e., compressed. If yes,
then a compressed block scan is initiated, otherwise a vectorized scan on uncom-
pressed data is initiated. Next, the JIT-compiled scan glue code calls a function that
generates a match vector that contains the next n positions of records that qual-
ify restrictions. n is the vector size and determines how many records are fetched
before each of these records is pushed to the consuming pipeline one tuple at a
time. The rationale for splitting the scan up into multiple invocations is cache ef-
ficiency: As the same data is accessed multiple times when finding the matches,
potentially unpacking these matches if compressed, and passing them to the con-
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Figure 7.2: Integration of the vectorized scan subsystem in our compiling query
engine in HyPer: The JIT-compiled scan, as used by the original HyPer system,
in (a) evaluates predicates as part of the query pipeline. The vectorized scans on
compressed and uncompressed chunks in (b) share the same interface and evalu-
ate SARGable predicates on vectors of records. Matches are pushed to the query
pipeline tuple at a time.
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Figure 7.3: Geometric mean of TPC-H scale factor 100 query runtimes depending
on vector size.

sumer, the vector-wise processing in cache-friendly pieces minimizes the number
of cache misses. Figure 7.3 shows the runtime of running the 22 TPC-H queries on
a scale-factor 100 database with varying vector sizes. For small vector sizes, query
runtimes slightly increase due to interpretation overheads (e.g., function calls). On
the other hand, when the records stored in a vector exceed the cache size, query
performance decreases as records are evicted to slower main memory before they
are pushed into the JIT-compiled query pipeline. In our system the vector size is
set to 8192 records.

After finding the matching positions, scan glue code on a cold compressed block
calls a function that unpacks the matches into temporary storage, and a scan on an
uncompressed chunk copies the matching required attributes out into temporary
storage. Finally, the tuples in the temporary storage are pushed to the consuming
operator tuple at a time. Even though vectorized scans are indeed copying more
data, our evaluation of vectorized scans in our JIT-compiling query engine shows
that most of the time the costs for copying can be neglected and that vectorized
predicate evaluation can outperform tuple-at-a-time evaluation.

In this respect, Q1 and Q6 of TPC-H exemplify two extremes: for Q1 most tuples
qualify the scan restriction and vectorized scans copy almost all of the scanned
data. As such, the runtime of Q1 suffers by almost 50% (cf., Table 7.2). Note that
without predicates our vectorized scan uses an optimization where it does not copy
data if all tuples of a vector match and thus performance is not degraded—due to
the uniform value distribution of the restricted attributes this optimization does not
help if predicates are SARGed. For Q6 on the other hand only a few percent of tu-
ples qualify the scan restriction. On uncompressed data, the vectorized evaluation
of predicates here improves runtime with vectorized scans over JIT-compiled scans
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scan type geometric mean sum

our system

JIT scans 0.586s 21.7s
Vectorized scans 0.583s (1.01×) 21.6s

+ SARGable predicate evaluation 0.577s (1.02×) 21.8s

Vectorwise

uncompressed storage 2.336s 74.4s

Table 7.1: Runtimes of TPC-H queries (scale factor 100) using different scan types
on uncompressed storage in our system and Vectorwise.

by more than 2× (cf., Table 7.2). Using vectorized scans on compressed blocks,
query runtimes improve by even more than that: runtime of Q6 improves by 6.7×
and the geometric mean of the 22 query runtimes improves by ×1.27.

7.4 Evaluation

In this section we evaluate our implementation of interpreted vectorized scans in
our JIT-compiling query engine HyPer. The experiments were conducted on a 4-
socket Intel Xeon X7560 2.27 GHz (2.67 .GHz maximum turbo) NUMA system with
1 TB DDR3 main memory (256 GB per CPU) running Linux 3.19. Each CPU has 8
cores (16 hardware contexts) and 24 MB of shared L3 cache.

We evaluated TPC-H scale factor 100 and compared query runtimes in our system
with JIT-compiled scans and vectorized scans on our uncompressed storage for-
mat. A summary of the results is shown in Table 7.1; detailed results are shown
in Table 7.2. Full results, including results on our compressed storage formats are
included in [78]. 64 hardware threads were used and runtimes are the median of
several measurements. Our results suggest that query performance with vector-
ized scans instead of JIT-compiled scans does not change significantly. This is also
true if we push SARGable predicates (+SARG) into the vectorized scan subsystem.
However, compilation times with vectorized scans is almost halved compared to
JIT-compiled scan code (see numbers in parentheses in Table 7.2).
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JIT scans Vectorized scans +SARG

Q1 0.388s (45ms) 0.373s (29ms) 0.539s
Q2 0.085s (177ms) 0.097s (89ms) 0.086s
Q3 0.731s (64ms) 0.723s (34ms) 0.812s
Q4 0.491s (50ms) 0.508s (27ms) 0.497s
Q5 0.655s (120ms) 0.662s (57ms) 0.645s
Q6 0.267s (20ms) 0.180s (11ms) 0.114s
Q7 0.600s (124ms) 0.614s (62ms) 0.659s
Q8 0.409s (171ms) 0.420s (78ms) 0.401s
Q9 2.429s (121ms) 2.380s (59ms) 2.357s
Q10 0.638s (96ms) 0.633s (50ms) 0.691s
Q11 0.094s (114ms) 0.092s (56ms) 0.092s
Q12 0.413s (58ms) 0.447s (32ms) 0.430s
Q13 6.695s (45ms) 6.766s (27ms) 6.786s
Q14 0.466s (41ms) 0.410s (22ms) 0.438s
Q15 0.441s (48ms) 0.440s (37ms) 0.434s
Q16 0.831s (99ms) 0.836s (55ms) 0.842s
Q17 0.427s (74ms) 0.439s (41ms) 0.436s
Q18 2.496s (91ms) 2.418s (49ms) 2.401s
Q19 1.061s (70ms) 1.119s (34ms) 1.125s
Q20 0.602s (108ms) 0.596s (54ms) 0.610s
Q21 1.223s (129ms) 1.176s (65ms) 1.166s
Q22 0.265s (81ms) 0.321s (48ms) 0.261s

Sum 21.708s (1945ms) 21.649s (1016ms) 21.822s
Geometric mean 0.586s (78ms) 0.583s (42ms) 0.577s

Table 7.2: Query runtimes and compilation times (in parentheses) of TPC-H queries
on scale factor 100 with (i) JIT-compiled tuple-at-a-time scans on uncompressed
data, (ii) vectorized scans on uncompressed data, and (iii) vectorized scans on un-
compressed data with SARG-able predicate evaluation (+SARG). Results with com-
pressed data are included in [78].

7.5 Conclusion

In this chapter we have shown how we integrated an interpreted vectorized
scan subsystem that feeds into JIT-compiled query pipelines into our previously
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compilation-only query engine HyPer to overcome the issue of generating an ex-
cessive amount of code for scans that target relations which are split up into chunks
with different storage layouts. In [78] we further present novel SSE/AVX2 SIMD-
optimized algorithms for vectorized predicate evaluation on compressed and un-
compressed data and introduce a novel compressed cold data format called Data
Blocks. The goal of Data Blocks is to conserve main memory while still allowing
for efficient scans and point accesses on the compressed data format.
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Chapter 8

Limits of TPC-H Performance

With contributions from Thomas Neumann and Peter Boncz.

8.1 Introduction

Benchmarks, and in particular the well-known TPC-H ad-hoc decision support
benchmark [145], have an enormous influence on the development of database
management systems. Database system vendors use TPC-H both for internal test-
ing and marketing purposes, and researchers alike use it for performance evalu-
ations, and often develop novel techniques that are required for good benchmark
performance. While TPC-H itself may not look very complicated, and it is indeed
much simpler than the newer TPC-DS benchmark, getting good TPC-H results is
not easy. Even though the benchmark has been well studied for a long time now,
still new tricks and techniques are being found and developed [19].

Accordingly, the research community and system vendors continue to use TPC-H
as one of the standard benchmarks for performance evaluations of novel query pro-
cessing techniques. Just-in-time query compilation is one such technique that has
gained increasing interest in recent years, because it promises to remove interpre-
tation overhead from query execution and modern compiler frameworks largely
mitigate the pain of generating machine code manually. Our HyPer main-memory
database system [71], for example, compiles SQL queries into machine code at run-
time using LLVM [108], and uses TPC-H to demonstrate the high performance of
its generated execution code for analytical queries.
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However, code generation is not the only viable approach: Vectorwise [157] (cur-
rently going under the commercial name Actian Vector), which originated from the
MonetDB/X100 project [20], for example, achieves similar performance without
code generation by using carefully constructed vectorized building blocks. In fact,
Vectorwise, since its release in 2011 until the time of writing, has constantly been at
or near the top of the official TPC-H results in the single server (“Non-Clustered”)
category for all database scale factors ≤ 1.000 [143]. The official Vectorwise results
are particularly interesting, as, in contrast to research systems like HyPer, these
were audited and validated by independent parties before publication.

Yet, while we can measure and compare the performance of individual systems,
interesting questions that remain open are: “How good is a system in absolute
terms?” and “How much faster can it get?”. One of the original motivations of this
chapter was to find out how “close to the limit” these systems are, i.e., if there is
still large room for improvement or if they perform nearly as fast as we can get on
today’s hardware.

To tackle these questions, we start our analysis of how fast one can run TPC-H by
running the benchmark for HyPer and Vectorwise. Based upon these results, in
Section 8.3, we turn to hand-written code, in order to find out how fast we could
get inside the scope of the TPC-H rules, giving indications for the absolute per-
formance of these systems. Of course, the comparison is a bit unfair, as automatic
query processing is difficult, and often cannot do tricks a human programmer can
come up with. The comparison is still useful to put the numbers into context. From
there, in Section 8.4, we then turn to pre-materialization techniques, which are a
violation of TPC-H rules. We will show that by relaxing the rules of the TPC-H
benchmark, arbitrarily low execution times become possible.

Admittedly, parts of this chapter, in particular Sections 8.3 and 8.4, are very tech-
nical and discuss and measure implementation details of individual hand-written
TPC-H queries. Yet, this technical discussion is necessary to understand the the-
oretical and practical performance limits of individual TPC-H queries both inside
and outside the scope of the TPC-H rules. This knowledge is very valuable when
implementing a database system: As database architects, we usually are satisfied
with our system as long as a competitor does not beat us in a comparison. For
example, if we can run a certain query in 500 ms on scale factor 10, we could be
satisfied, because, after all we are analyzing 10 GB of data. But if we knew that run-
ning the same query on the same scale factor is possible in 100 ms, then we would
be eager to improve our own system.

All experiments in this chapter were executed on an Intel Xeon X7560 CPU with
256 GB DDR3 DRAM. The full system specification is given in Table 8.1. In our
experiments, we focused on single-threaded performance as multi-threading does
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CPU Intel Xeon X7560
Microarchitecture Nehalem
Cores/Threads 8/16
Base Frequency 2.266 GHz
Maximum Turbo Frequency 2.666 GHz
Per Core L1-I/L1-D/L2 Cache 64 KB/64 KB/256 KB
Shared L3 LLC 24 MB
Memory 256 GB DDR3-1066

Table 8.1: Specification of the evaluation system

add parallelization overheads that can be tackled in different ways. We consider
these parallelization techniques, while necessary and highly interesting, as an or-
thogonal area of research and an area for future work in the context of establishing
meaningful theoretical and practical lower runtime bounds of individual TPC-H
queries.

8.2 Running TPC-H in Vectorwise and HyPer

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

HyPer 978 85 1564 1051 614 365 1030 838 3612 1015 182
Vectorwise 3007 198 150 132 479 165 771 821 4550 850 195

Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22

HyPer 928 4464 369 385 1034 848 5968 2238 566 2164 329
Vectorwise 562 4327 362 132 957 914 2293 2117 612 2958 829

Table 8.2: Single-threaded TPC-H experiments for Vectorwise v2.5.2 and HyPer
v0.4-452 (scale factor 10, runtimes in milliseconds).

First, we ran a single-threaded TPC-H benchmark with HyPer and Vectorwise. For
HyPer we used version v0.4-452. The Vectorwise experiments are with Vectorwise
2.5.2—using the configuration equal to the published Vectorwise results on the of-
ficial TPC-H website. We note that Vectorwise uses clustered indexes on the date
columns, which, for some queries significantly reduces the amount of tuples that
need to be processed. Our results are shown in Table 8.2. HyPer does not use
clustered indexes on the date columns.
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8.3 Performance of Hand-Written Query Implementations

It is no secret that every database system wants to be the fastest, especially in the
TPC-H benchmark. Vectorwise is currently recognized as one of the fastest au-
dited non-clustered systems on the TPC-H benchmark [143], while HyPer’s single-
threaded performance is a bit slower, but it scales much better on NUMA machines
with many cores [84]. As a research system, HyPer, however, does not have au-
dited TPC-H results. An interesting question is: how close are these systems to
“theoretical peak performance”, and can that even be defined? Theoretical peak
performance here we restrict to single-threaded execution on a concrete hardware
platform (see Table 8.1), since new hardware may have as of now yet unknown
properties. A slightly weaker approach for such reasoning is to establish lower
bounds on query runtimes rather than trying to establish theoretical peak perfor-
mance. It is instructive to consider such runtime bounds to check how much im-
provement is still possible.

Some bounds are easy to compute but too crude to be useful. For example, the
machine that we used in our experiments has a theoretical maximum memory read
speed of 25 GB/s. This suggests that the complete 10 GB of scale factor 10 could be
read in 400 ms1. But this number is not even a true lower bound for all queries, as
no query needs to read the entire data set. For other queries, this bound is too low,
because usually we do not just want to copy some arbitrary data over the memory
bus, but want to perform some computation on it and might need to read some
data more than once. Instead of making broad statements, we therefore concentrate
on individual TPC-H queries, analyze these both, theoretically and using micro-
benchmarks, and thus come to better and better estimates for lower bounds.

The storage layout of data has a great influence on query performance. To simplify
our comparison we use a simple columnar storage layout for our query implemen-
tations. We do not compress data and use ASCII representation for string values.
Queries and micro-benchmarks are implemented in C/C++ and are compiled with
GCC 4.9. All experiments were run on our evaluation machine (see Table 8.1).

8.3.1 Query 1

TPC-H Query 1 is particularly amenable to computing a lower bound on runtime
because it is structurally simple. It performs a single scan of lineitem, filtering out
only around 1% of the tuples and aggregates the qualifying tuples into effectively

1Note that a read speed close to the theoretical maximum of 25 GB/s can only be achieved using
multiple threads.
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four groups. There is only one reasonable execution plan for this query (a sequen-
tial scan with a filter, followed by aggregation), and it tends to be CPU-bound,
making it a good query to compare the computational efficiency of query execu-
tion across systems. The SQL text for Query 1 is shown below:

select
l_returnflag,
l_linestatus,
sum(l_quantity) as sum_qty,
sum(l_extendedprice) as sum_base_price,
sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,
sum(l_extendedprice * (1 - l_discount) * (1 + l_tax))
as sum_charge,

avg(l_quantity) as avg_qty,
avg(l_extendedprice) as avg_price,
avg(l_discount) as avg_disc,
count(*) as count_order

from
lineitem

where
l_shipdate <= date ’1998-12-01’ - interval ’90’ day

group by
l_returnflag,
l_linestatus

order by
l_returnflag,
l_linestatus

The question now is how fast this query can be evaluated? Implementing Query
1 using low-level x86 assembly instructions (no SIMD extensions) requires a min-
imum of 34 instructions per lineitem record: 12 loads, 12 arithmetic operations,
5 stores, 3 branches, and 2 comparisons. If we assume the maximum number
of instructions that our Intel CPU can overlap and execute in parallel, namely 4
instructions-per-cycle (IPC), we need 510 million cycles for the ∼60 million records
in lineitem at scale factor (SF) 10. On our evaluation machine with a maximum turbo
frequency of 2.666 GHz we thus get an absolute lower bound of 191 ms. However,
a sustained IPC of 4 is unachievable in practice. Any non-trivial code generates
data, instruction, and control flow dependencies, which limit instruction-level par-
allelism. E.g., for SPEC benchmark runs, current Intel CPUs process between 0.5
and 2.5 IPC [57]. Without SIMD instructions, a more realistic lower bound thus is
in the range of 306 ms and 1.5 s.

One could think that the number of instructions could potentially be reduced fur-
ther by using SSE/AVX SIMD instructions. However, this is hard, given the fact
that most effort in the query is spent on computing the aggregates and SSE/AVX
currently cannot be applied to aggregate multiple tuples in case of aggregation
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with group-by columns, because depending on the group, different aggregate fields
need to be updated (one would need SIMD support for both, scatter and gather
memory access, which is only available beginning in AVX512). Alternatively, it
might be possible to exploit SIMD to update multiple aggregate results for the same
tuple if we need to compute multiple similar aggregate functions on integers, e.g.,
computing multiple SUMs. However, bringing the input tuple columns together
in one SIMD register requires two instructions per input column (an insert and a
shuffle), limiting instruction count gains. The latter SIMD idea would work if the
aggregation input columns would already be lined up in memory in the correct
column-interleaved layout, but in TPC-H Query 1, this cannot be achieved since
most SUM inputs need to be computed in the query.

With SIMD instructions we therefore estimate the lower bound to be similar. To
support this estimate we use the Intel Architecture Code Analyzer (IACA) [26],
which statically analyzes the throughput under ideal front-end, out-of-order en-
gine, and memory hierarchy conditions for various Intel micro-architectures. For a
minimal hand-written implementation of the hot loop, which uses SIMD instruc-
tions for the double-precision floating-point arithmetics, the tool reports a through-
put of 11.55 cycles per iteration for the Nehalem microarchitecture, which is used
by our evaluation machine (11.25 cycles per iteration for the Sandy Bridge micro ar-
chitecture and 11.05 cycles per iteration for the newer Haswell micro-architecture).
Figure 8.1 shows the output of the IACA tool for our hand-written SIMD-optimized
implementation. A throughput of 11.55 cycles per iteration gives a lower bound of
259 ms on a Nehalem CPU at 2.666 GHz.

To get close to our estimated bounds in an actual experiment, we had to simplify
the query. We pre-filter such that only qualifying tuples remain (and ignore the
time for that pre-filtering). This has two effects. First, we have to process less
tuples within the hot loop, but as the predicate is not selective the effect is not very
large (>98% of the tuples qualify). But, more importantly, the inner loop is now
completely branch-free, which allows the CPU to execute at full speed without any
branch prediction issues. As a second simplification, we precompute the actual
group id (0-3) for each tuple and store it in an attribute. This is like precomputed
minimal perfect hashing, and allows us to access the aggregation values nearly for
free. These simplifications significantly speed up the query, as (i) the number of
instructions goes down, (ii) the number of processed tuples goes down, and (iii)
the dependencies between instructions are reduced.

When compiled with Clang++ 3.5 at O3 this results in 30 instructions in the inner
loop and uses SSE SIMD instructions for the double-precision floating-point arith-
metics. On scale factor 10, our evaluation machine needs 432 ms, which comes close
to our predicted lower bounds of 306 ms and 259 ms. Strictly speaking, it is not an
apples to apples comparison, of course, as, due to the preprocessing steps, we solve
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Throughput Analysis Report
--------------------------
Block Throughput: 11.55 Cycles Throughput Bottleneck: FrontEnd, PORT2_AGU, Port2_DATA

Port Binding In Cycles Per Iteration:
-------------------------------------------------------------------------
| Port | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 |
-------------------------------------------------------------------------
| Cycles | 9.6 0.0 | 9.6 | 11.0 11.0 | 3.0 0.0 | 3.0 | 9.8 |
-------------------------------------------------------------------------

N - port number or number of cycles resource conflict caused delay, DV - Divider pipe (on port 0)
D - Data fetch pipe (on ports 2 and 3), CP - on a critical path
F - Macro Fusion with the previous instruction occurred

* - instruction micro-ops not bound to a port
^ - Micro Fusion happened
# - ESP Tracking sync uop was issued
@ - SSE instruction followed an AVX256 instruction, dozens of cycles penalty is expected
! - instruction not supported, was not accounted in Analysis

| Num Of | Ports pressure in cycles | |
| Uops | 0 - DV | 1 | 2 - D | 3 - D | 4 | 5 | |
---------------------------------------------------------------------
| 2^ | | | 1.0 1.0 | | | 1.0 | CP | cmp dword ptr [rsi], 0x130e20b
| 0F | | | | | | | | jnbe 0x7c
| 1 | | | 1.0 1.0 | | | | CP | movsx edi, byte ptr [rbp]
| 1 | 1.0 | | | | | | | shl edi, 0x8
| 1 | | | 1.0 1.0 | | | | CP | movsx eax, byte ptr [rbx]
| 1 | | 0.8 | | | | 0.2 | | or eax, edi
| 1 | 0.2 | 0.4 | | | | 0.4 | | cdqe
| 1 | | | 1.0 1.0 | | | | CP | movsd xmm1, qword ptr [r13]
| 1 | | | 1.0 1.0 | | | | CP | movsd xmm2, qword ptr [r12]
| 1 | | | | | | 1.0 | | movapd xmm3, xmm0
| 1 | | 1.0 | | | | | | subsd xmm3, xmm2
| 1 | 1.0 | | | | | | | mulsd xmm3, xmm1
| 1 | | | 1.0 1.0 | | | | CP | movsd xmm4, qword ptr [r15]
| 1 | | 1.0 | | | | | | addsd xmm4, xmm0
| 1 | 1.0 | | | | | | | mulsd xmm4, xmm3
| 1 | | 1.0 | | | | | | lea rax, ptr [rax+rax*2]
| 1 | 0.8 | | | | | 0.2 | | shl rax, 0x4
| 1 | | | 1.0 1.0 | | | | CP | movsd xmm5, qword ptr [r14]
| 1 | | | | | | 1.0 | | unpcklpd xmm5, xmm1
| 2 | | 1.0 | 1.0 1.0 | | | | CP | addpd xmm5, xmmword ptr [rsp+rax*1+0x10]
| 2 | | | | 1.0 | 1.0 | | | movapd xmmword ptr [rsp+rax*1+0x10], xmm5
| 1 | | | | | | 1.0 | | unpcklpd xmm3, xmm4
| 2 | | 1.0 | 1.0 1.0 | | | | CP | addpd xmm3, xmmword ptr [rsp+rax*1+0x20]
| 2 | | | | 1.0 | 1.0 | | | movapd xmmword ptr [rsp+rax*1+0x20], xmm3
| 2 | | | 1.0 1.0 | | | 1.0 | CP | movhpd xmm2, qword ptr [rsp+rax*1+0x38]
| 1 | | | 1.0 1.0 | | | | CP | movsd xmm1, qword ptr [rsp+rax*1+0x30]
| 1 | | | | | | 1.0 | | unpcklpd xmm1, xmm0
| 1 | | 1.0 | | | | | | addpd xmm1, xmm2
| 2 | | | | 1.0 | 1.0 | | | movapd xmmword ptr [rsp+rax*1+0x30], xmm1
| 1 | 1.0 | | | | | | | add rsi, 0x4
| 1 | 1.0 | | | | | | | inc rbp
| 1 | 1.0 | | | | | | | inc rbx
| 1 | 0.5 | 0.2 | | | | 0.3 | | add r14, 0x8
| 1 | 0.2 | 0.2 | | | | 0.6 | | add r13, 0x8
| 1 | 0.2 | 0.4 | | | | 0.4 | | add r12, 0x8
| 1 | 0.4 | 0.3 | | | | 0.2 | | add r15, 0x8
| 1 | 0.3 | 0.3 | | | | 0.3 | | dec rdx
| 1 | | | | | | 1.0 | | jnz 0xffffffffffffff57
| 1 | 1.0 | | | | | | | shl rcx, 0x20
| 1 | | 1.0 | | | | | | or rcx, r8
Total Num Of Uops: 46

Figure 8.1: Output of Intel Architecture Code Analyzer for a SIMD implementation
of Query 1 for the Nehalem micro-architecture.

an easier problem. But it experimentally strengthens our confidence that 259 ms is
indeed a hard lower bound for our evaluation machine. Of course, these arguments
are only true if one adheres to the rules of the TPC-H benchmark. By precomputing
aggregated values we can be become arbitrarily fast (see Section 8.4). However, if
one indeed aggregates the tuples ad-hoc at query runtime and uses large enough
data types, our estimated bounds seem to be hard limits on today’s hardware.
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Without preprocessing, our fastest implementation of Query 1 needs 566 ms. In
comparison to the Query 1 runtimes that we obtained for the evaluated systems in
Section 8.2 (cf., Table 8.2), we see that all systems are at least 1.73× slower than the
566 ms of our hand-written implementation. Vectorwise, in particular, suffers from
its approach that touches tuples multiple times, as for Query 1 every extra instruc-
tion hurts because the inner loop is so tight. The performance of existing systems is
not surprising, as our implementation without preprocessing still made simplifica-
tions that a production system cannot make. First, both HyPer and Vectorwise, use
fixed-point arithmetic and handle numeric overflows. Handling numerical over-
flows in computations costs at least one additional instruction per numeric calcula-
tion, and in this tight loop already cuts performance in half, because SIMD instruc-
tions cannot be fully utilized. Our hand-written implementation uses doubles and
does not check for numerical issues, which is usually undesirable in production
systems. Second, both HyPer and Vectorwise support Unicode characters, which
makes the group-by computation more complex. E.g., in HyPer, a real hash-table
lookup is performed, where the system has to validate the entry and check for hash
collisions. Only then can the aggregates be updated.

To summarize, the hard limit for Query 1 on our evaluation machine is at 259 ms;
but that number is unachievable in practice. Our fastest hand-written implemen-
tation of Query 1 that does not require preprocessing needs 566 ms. Our hand-
written implementation, however, still makes too many simplifications that pro-
duction systems cannot make. But these numbers are harder to quantify, as there
are more implementation alternatives than for the basic implementation.

8.3.2 Query 6

Query 6 differs from Query 1 in that it computes a single ungrouped aggregate and
that the filter predicate has a selectivity of 98% on lineitem. Thus, barely any tuples
qualify for the aggregate. The SQL text for Query 6 is shown below.

select
sum(l_extendedprice * l_discount) as revenue

from
lineitem

where
l_shipdate >= date ’1994-01-01’
and l_shipdate < date ’1995-01-01’
and l_discount between 0.06 - 0.01 and 0.06 + 0.01
and l_quantity < 24

Our fastest hand-written implementation of Query 6 that adheres to the TPC-H
rules runs in 411 ms on our evaluation machine (15 cycles per lineitem tuple). For
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each tuple, 5 comparisons and 2 arithmetic operations are performed. By partition-
ing lineitem on l_shipdate on a yearly basis, runtime could be improved to 106 ms,
as for the particular choice of the substitution parameters, only one partition is
scanned and only 3 comparisons need to be performed per record. The clustered
index used in Vectorwise similarly allows to only compute results over tuples from
1994, though in this commercial system it takes a bit longer as with the hand-coded
version (165 ms).

We note that according to the TPC-H rules it is allowed to partition the data, or
store it as a clustered index using date fields as key. Since 9 of the 22 TPC-H queries
involve a selection on a date column of lineitem, and since its various date columns
are closely correlated, such a physical design may well make sense, because it im-
proves the data access pattern. We note, though, that the TPC-H rules prohibit
replication; hence if lineitem is stored in such a way, this representation must be
used in all queries.

8.3.3 Query 9

TPC-H Query 9 is the query with the largest joins, joining the largest table lineitem
with both, orders and partsupp, the second- and third-largest tables. The SQL text
for Query 19 is shown below:

select
nation,
o_year,
sum(amount) as sum_profit

from (
select
n_name as nation,
extract(year from o_orderdate) as o_year,
l_extendedprice * (1 - l_discount)
- ps_supplycost * l_quantity as amount

from
part,
supplier,
lineitem,
partsupp,
orders,
nation

where
s_suppkey = l_suppkey
and ps_suppkey = l_suppkey
and ps_partkey = l_partkey
and p_partkey = l_partkey
and o_orderkey = l_orderkey
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and s_nationkey = n_nationkey
and p_name like ’%green%’) as profit

group by
nation,
o_year

order by
nation,
o_year desc

Our hand-written implementation first scans part for parts that qualify for the re-
striction on p_name and stores these in a filter. To evaluate the string restriction,
we use a SSE4.2-based substring search implementation (see Query 13). Using the
filter, we then build a hash table for the matching parts’ suppliers from the partsupp
table and, for each key composed of partkey and suppkey, we store the supplycost
and the nationkey of the supplier (through a primary key index lookup on nation
and supplier) as values. Our hash table implementation for the primary key indexes
uses linear probing for collision resolution and the crc32 hardware instruction as
hash function. Next, our implementation scans lineitem and filters again using the
partkey filter. For qualifying lineitems, we retrieve the supplycost and nationkey from
the hash table, look up the orderdate (through a primary key index lookup on order)
to determine the year and aggregate the profit in a second hash table, where keys
are composed of nationkey and year. Finally, for each group, we determine n_name
and sort the result. On SF10, our hand-written implementation needs 1852 ms on
our evaluation machine.

8.3.4 Query 13

Query 13 seeks the relationship between customers and the size of their orders and
distinguishes itself from the other TPC-H queries by having the most costly like
predicate. The predicate is in fact a non-selective (∼1%) not like predicate that
searches for two consecutively occurring substrings in the o_comment column of or-
ders, which is the second largest relation in TPC-H. Additionally, the predicate is
not a prefix search; hence it cannot be pre-filtered by a less expensive range com-
parison like in Query 14, 16, and 20 [19]. The SQL text for Query 13 is shown below:

select
c_count,
count(*) as custdist

from (
select
c_custkey,
count(o_orderkey)

from
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customer left outer join orders on c_custkey = o_custkey
and o_comment not like ’%special%requests%’

group by
c_custkey) as c_orders (c_custkey, c_count)

group by
c_count

order by
custdist desc,
c_count desc

Due to the aforementioned costly like predicate, it is essential to have a fast sub-
string search implementation for our hand-written implementation of Query 13.
Of course one could use the standard library functions such as memmem and
std::strstr for that purpose, which both offer already quite fast performance.
But using the SSE4.2 string and text SIMD instructions, which are provided by the
CPU in our evaluation machine, substring search can be sped up further. Our im-
plementation contains a substring search implementation that uses the pcmpistri
instruction, which encodes a 16 byte at-at-time comparison in a single SIMD in-
struction. In its equal ordered mode, the instruction checks for the occurrence of a
needle with size ≤ 16 in a haystack of size ≤ 16 in just 3 cycles. Our experiments
suggest that for needles with size < 16, as is the case for the standard substitution
parameters, our SSE4.2-based substring search implementation performs best: per
o_comment, memmem needs 92 cycles, std::strstr needs 367 cycles, and our SSE4.2-
based variant needs 80 cycles. For longer needles it can make sense to pre-process
the needle and compile an automaton for the needle at runtime. [38] provides a
comprehensive overview and evaluation of available algorithms.

Query 13 needs to materialize an aggregate table that has as many entries as there
are customers (150K×SF, here 1.5M). This data structure likely does not fit into the
cache and therefore tends to suffer from cache misses. Our hand-written imple-
mentation of Query 13 minimizes these cache misses by keeping this data structure
as small as possible. Exploiting the fact that customer keys are relatively dense, we
use a fixed-size integer array of size max(c_custkey) + 1 for the order counts. The
array is initialized to 0 for all existing customer keys and to −1 for all non-existing
customer keys. For production systems, it may be difficult to use such an optimiza-
tion as it requires transactionally reliable statistics on the c_custkey distribution.
The insertion of a single extremely large key will invalidate the denseness prop-
erty. Generally speaking, production systems will end up using a true hash table
(or rely on sorted aggregation, though that tends to be slower in memory-resident
situations).

Note that a naive translation of the query first performs a (outer-) join between
orders and customer and subsequently an aggregation on custkey. HyPer exploits the
fact that hash-based implementations of these two relational operators would build
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the same hash table. Our hand-crafted implementation also merges the aggregation
and the join: it scans the o_comment column and evaluates the like predicate. If the
like predicate does not match, the count of the order’s customer is incremented.
In a final step all non-negative counts are grouped and the result is sorted.

On our evaluation machine, our implementation runs in 976 ms on SF10. Even
with our optimized SSE4.2 substring search implementation, still almost half of the
execution time (533ms ms) is spent on evaluating the like predicate.

8.3.5 Query 14

TPC-H Query 14 simulates a query that monitors the market response to a pro-
motion within one month. Due to the selective restriction on l_shipdate of lineitem
(∼99% selectivity), only very few tuples qualify for the result. The SQL text for
Query 14 is shown below:

select
100.00 * sum(case when p_type like ’PROMO%’
then l_extendedprice * (1 - l_discount) else 0 end)
/ sum(l_extendedprice * (1 - l_discount)) as promo_revenue

from
lineitem,
part

where
l_partkey = p_partkey
and l_shipdate >= date ’1995-09-01’
and l_shipdate < date ’1995-10-01’

As the query is highly selective, it makes sense to perform an index nested loop
join between lineitem and part on partkey. In our hand-written implementation, the
index on p_partkey is a hash table with linear probing for collision resolution. As
hash function we use the crc32 hardware instruction provided by the SSE4.2 in-
struction set of our Intel CPU. Compared to other popular non-cryptographic hash
functions such as MumurHash3, crc32 provides comparable collision resistance at
a very high speed (1 cycle throughput). At SF10, our implementation with CRC32
hashing needs 396 ms on our evaluation machine. In fact, if we again assume that
partkeys are dense, we can also use identity hashing for the index and safe the 1
cycle for CRC32 hashing, which, however, does not improve runtime. In an ideal
world, without evil updates that destroy the denseness of the keys, we could also
save the index lookup and directly jump into the part table at position partkey − 1.
Direct indexing reduces runtime to 274 ms, but avoiding the indirection through an
index is rarely applicable in practice, where we need to be able to handle updates
and provide transaction semantics.
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Like in Query 6, by partitioning lineitem on l_shipdate or by using a clustered index
as in Vectorwise, runtime could be improved further: 63 ms with CRC32 hashing,
63 ms with identity hashing, and 20 ms with direct indexing.

8.3.6 Query 17

At a first glance, Query 17 looks relatively expensive, reading part and joining with
lineitem twice:

select
sum(l_extendedprice) / 7.0 as avg_yearly

from
lineitem,
part

where
p_partkey = l_partkey
and p_brand = ’Brand#23’
and p_container = ’MED BOX’
and l_quantity < (
select
0.2 * avg(l_quantity)

from
lineitem

where
l_partkey = p_partkey)

However, the string equality restrictions on p_brand and p_container of part are
highly selective, which leads to few join partners in lineitem (<0.1%). As both, p_-
brand and p_container, are of type char(10), each of the two restrictions can be
evaluated by one 64 bit and one 16 bit integer comparison against constants. Fur-
thermore, if a row store is used, the data layout of part can be modified, such that
p_brand and p_container are next to each other in memory, which allows us to model
both restrictions as a comparison of only two 64 bit integers and one 32 bit integer,
all comparing to constants.

We store the few matches in a bitmap for p_partkey of size max(p_partkey)+1. Just
like for Query 13, this requires transactionally reliable statistics on the p_partkey
distribution.

Now we scan lineitem for qualifying l_partkey values by consulting the bitmap built
in the previous step. Selectivity is less than 0.1% and thus almost no partkeys
match. The few matching tuples are copied into a small buffer. The final steps
are then executed on very few tuples, so performance is no longer that crucial: We
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first sort the buffer by partkey and then perform a sorted group-by to find the av-
erage quantity for each partkey. Then we pass over the current group again to sum
up all extended prices for which the quantity is less than 5% of the average. Note
that in our implementation both, lineitem and part, are read only once, and lineitem
performs a very cheap and very selective semi-join. As long as we do not precom-
pute anything or use join indexes, our hand-written implementation should be the
minimum amount of work any implementation of Query 17 has to do. Our imple-
mentation needs 138 ms at SF10 on our evaluation machine.

At SF10, there are 2M parts and hence the bitmap has a size of 244 KB. It thus fits
into the L2 cache of our system (256 KB), yet there will be many L1 cache misses.
Given that less than 0.1% of the tuples match, it is best practice to add a bloom filter
test with such low join hit rates, to eliminate non-matching tuples before doing the
precise semi-join check. Due to the dense integer domain of p_partkey and the uni-
form spread of the selected tuples, we do not need to compute a hash for the bloom
filter either; just p_partkey modulo the bloom filter size suffices. We set just one bit
per value in the bloom filter—which is computationally faster than setting and test-
ing multiple bits—since bloom filter precision (which would benefit from multiple
bits) is non-critical anyway. If we add the bloom filter to our implementation, per-
formance, however, does not improve significantly, because, as mentioned before,
the bitmap fits into the relatively fast L2 cache. At higher scale factors, the bloom
filter can be beneficial, as its size is usually much smaller than that of the bitmap
(e.g., a bloom filter of 128K bits is only 16 KB in size (=128K/8) and comfortably fits
even into the L1 cache).

Again, if we compare our bound of 138 ms against the results from Table 8.2, most
systems are far away from that. But this is no surprise, as the plan is too aggressive
for general-purpose systems. Still, our hand-written implementation also demon-
strates that there still is room for improvements in existing systems.

8.3.7 Query 18

Query 18 is interesting, because it is, after Query 9, the TPC-H query with the
largest join without selection predicates between the largest tables orders and
lineitem [19]. Further, Query 18 has dependent group-by keys: c_custkey and l_-
orderkey alone functionally determine all group-by attributes. The SQL text for
Query 18 is shown below:
select top 100
c_name,
c_custkey,
o_orderkey,
o_orderdate,
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o_totalprice,
sum(l_quantity)

from
customer,
orders,
lineitem

where
o_orderkey in (
select
l_orderkey

from
lineitem

group by
l_orderkey

having
sum(l_quantity) > 300)

and c_custkey = o_custkey
and o_orderkey = l_orderkey

group by
c_name,
c_custkey,
o_orderkey,
o_orderdate,
o_totalprice

order by
o_totalprice desc,
o_orderdate

Our hand-written implementation first scans lineitem and, for each order, deter-
mines the quantity of the order by summing up the quantities of its lineitems. In
a next step, the orders table is scanned and orders that do not meet the quantity
threshold are immediately skipped. For qualifying orders, we materialize a group
entry, which includes the totalprice, orderkey, custkey, orderdate, and the quantity of
the order. The entry is then inserted into a vector that is sorted according to to-
talprice and orderdate. Finally, for the top 100, the customer name is retrieved by a
primary key index lookup on customer.

We note that the SQL query at first sight looks more complex than the sketched
strategy in that it contains two group by clauses (aggregations), which are merged
in the hand-written implementation. The observation that o_orderkey functionally
determines all other keys in the second group by, leads to the conclusion that both
group-bys are equal, hence the first one becomes just a having clause:

select top 100
c_name,
c_custkey,
o_orderkey,
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o_orderdate,
o_totalprice,
sum(l_quantity)

from
customer,
orders,
lineitem

where
c_custkey = o_custkey
and o_orderkey = l_orderkey

group by
c_name,
c_custkey,
o_orderkey,
o_orderdate,
o_totalprice

order by
o_totalprice desc,
o_orderdate

having
sum(l_quantity) > 300

On SF10, our hand-written implementation runs in 732 ms on our evaluation ma-
chine. If we assume that it is known that orderkeys are sorted in orders and lineitem,
runtime can be improved further. Instead of first scanning orders and then lineitem,
one can scan orders and lineitem in a zig-zag pattern; improving runtime to 341 ms.

Production systems implementing TPC-H can effectively achieve such a sequen-
tial merge access pattern in the join if the lineitem table (and maybe also orders)
is stored as a clustered index on orderkey. Note that clustered indexes likely slow
down updates compared to normal tables. Deletions and insertions are part of the
refresh streams in the TPC-H throughput workload, and hence clustered indexes
may lower the overall TPC-H score. Further, as remarked before, replication is not
allowed in TPC-H, hence the strategy—previously mentioned in the discussion of
Query 6—of having a clustered index on l_shipdate cannot be combined with a clus-
tered index on l_orderkey. However, it is allowed to combine a clustered index on
l_orderkey with table partitioning on l_shipdate, but efficiently merge-joining differ-
ently partitioned orders and lineitem, is not possible in currently known systems.
We note that Vectorwise in case of a clustered index on a foreign key (e.g., l_or-
derkey) physically stores the table in the order of the referenced table; hence it can
combine a clustered index on o_orderdate of orders with a clustered index on l_or-
derkey of lineitem and both get the efficient merge access pattern in the join as well
as good access patterns on date selections to both tables. Maintaining this order
comes, however, at quite a high price in terms of update cost—Vectorwise refresh
streams typically make up a significant portion of its throughput effort.
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A final remark on the rewritten query is that the Top-N restriction is formulated on
a base table column (o_totalprice). This makes it possible to inject a filter in the scan
on orders with predicate (o_totalprice ≤ TOP100 ) where TOP100 points to the key
value of the 100th element in the heap used for the Top-N (and is initialized to the
maximum domain value, initially, as long as the heap contains less than N values).
This optimization does not improve runtime on small scale factors, but makes the
scan work on orders (and lineitem—in zig-zag strategies as described previously) in
terms of amount of tuples that survive the filter (O(1/N)), trivializing this query
on SF 100 and beyond.

It was interesting to see that changing the data type of l_quantity (for which dbgen
generates only small integer values) from 64 bit doubles to 16 bit integers in this
query reduces the runtime by an additional 40%. Using 16 bit integers reduces the
amount of data that needs to be read and enables SSE integer instructions that work
on more operands than their double equivalents. Yet, we refrained from using
a smaller integer type, as the TPC-H specification [145] states that the l_quantity
column is of type decimal and that such columns must be able to represent any
value in the range −9, 999, 999, 999.99 to +9, 999, 999, 999.99 in increments of 0.01
(clause 2.3.1). As such, a smart storage backend that partitions the data such that
each partition uses the minimal data type can improve performance even further.

In addition to the aforementioned techniques, direct indexing could again be used
to improve runtime further. We refrain from doing so because it is a very brittle
technique that does not help make a fair comparison with existing systems.

8.3.8 Query 19

Query 19 resembles a data mining query that calculates the gross discounted rev-
enue attributed to the sale of selected parts handled in a particular manner:

select
sum(l_extendedprice* (1 - l_discount)) as revenue

from
lineitem,
part

where (
p_partkey = l_partkey
and p_brand = ’Brand#12’
and p_container in (’SM CASE’, ’SM BOX’,
’SM PACK’, ’SM PKG’)

and l_quantity >= 1 and l_quantity <= 1 + 10
and p_size between 1 and 5
and l_shipmode in (’AIR’, ’AIR REG’)
and l_shipinstruct = ’DELIVER IN PERSON’
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) or (
p_partkey = l_partkey
and p_brand = ’Brand#23’
and p_container in (’MED BAG’, ’MED BOX’,
’MED PKG’, ’MED PACK’)

and l_quantity >= 10 and l_quantity <= 10 + 10
and p_size between 1 and 10
and l_shipmode in (’AIR’, ’AIR REG’)
and l_shipinstruct = ’DELIVER IN PERSON’

) or (
p_partkey = l_partkey
and p_brand = ’Brand#34’
and p_container in (’LG CASE’, ’LG BOX’,
’LG PACK’, ’LG PKG’)

and l_quantity >= 20 and l_quantity <= 20 + 10
and p_size between 1 and 15
and l_shipmode in (’AIR’, ’AIR REG’)
and l_shipinstruct = ’DELIVER IN PERSON’)

What makes Query 19 interesting is the join of part and lineitem with its disjunc-
tive complex join condition. The restrictions on part are thereby highly selective,
with only 0.24% of the tuples qualifying. For our hand-written implementation of
Query 19 we thus first filter the tuples in part and classify each p_partkey into one
of four groups. If a key does not qualify any of the three disjunctive restrictions,
it is classified into group 0. Groups 1, 2, and 3 are the groups of the three parts of
the disjunction, respectively. For each p_partkey we store the group information in
a key to group mapping. Similar to Query 17, we assume to know that the keys
are dense and use a bytemap with max(p_partkey) + 1 entries. Robust implemen-
tations in production systems would likely use a hash-based mapping. As we have
to separate only four groups, 2 bits per map entry would be sufficient. We thus
also implemented a variant that uses only 2 bits per entry. Compared to using a
bytemap, runtimes are, however, slightly worse. A perf analysis shows that the
additional time is needed for the shifts and masking operations that are avoided
when using a bytemap. As such, we assume that the bytemap performs better as
long as the mapping fits into the last level cache, which is still the case for SF10
(2M parts =∼1.9 MB). For scale factors where the bytemap does not fit into the last
level cache, a 2 bit-map can outperform a bytemap.

In a second step we scan lineitem and retrieve the group for the l_partkey using
the mapping. We then filter out those tuples of lineitem that do not qualify for the
group-dependent predicate on l_quantity. For the remaining tuples, we then check
the restrictions on l_shipinstruct and l_shipmode. Just like in Query 17, the string
equality checks are implemented as integer comparisons against constants. If a
tuple matches the two string restrictions, the revenue result is updated accordingly.
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Hand-Written HyPer (v0.4-452) Vectorwise (v3.5.1)

Q1 566 978 (1.73×) 3007 (5.31×)
Q6+ 106 365 (3.44×) 165 (1.56×)
Q9 1852 3612 (1.95×) 4550 (2.46×)
Q13 976 4464 (4.57×) 4327 (4.43×)
Q14+ 63 369 (5.86×) 362 (5.75×)
Q17 259 848 (3.27×) 914 (3.53×)
Q18 732 5968 (8.15×) 2293 (3.13×)
Q19 401 2238 (5.58×) 2117 (5.28×)

+ Vectorwise exploits the fact that the tuple order in lineitem/orders is correlated with l_-
shipdate/o_orderdate, our hand-written query implementations use a partitioning on l_ship-
date/o_orderdate; the unpartitioned variants of our hand-written Q6 and Q14 implementa-
tions run in 411 ms and 396 ms, respectively.

Table 8.3: Runtimes of our best-effort hand-written TPC-H query implementations
compared to HyPer and Vectorwise (scale factor 10, runtimes in milliseconds). We
do not report numbers using direct indexing (see Queries 14 and 18).

Our hand-written implementation takes 402 ms on SF10 on our evaluation ma-
chine. This is significantly faster than any of the existing systems evaluated in
Section 8.2. Of course, the plan is again too aggressive for general-purpose sys-
tems, but being over 5× faster than the fastest evaluated system shows that existing
systems should still be able to improve quite a bit.

8.3.9 Discussion

In this section we have analyzed hand-written implementations for 8 out of the
22 TPC-H queries. For each implementation we went to the extremes and opti-
mized performance as much as we could while still adhering to the TPC-H rules.
Table 8.3 compares the runtimes of our hand-written implementations to those of
the existing systems evaluated in Section 8.2. It was instructive to see that indeed
one can become quite fast if one is willing to go to the extremes. Admittedly, the
hand-written query plans are sometimes over-fitted to the benchmark setting and
not all techniques presented in this section are applicable to general-purpose data-
base systems. But even taking this into account, there is still room for improvement
in existing systems. Indeed, some of the presented techniques have inspired forth-
coming optimizations in Vectorwise and HyPer. For example, Query 19 is over 5×
slower in HyPer and Vectorwise than with our hand-written implementation.
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8.4 Performance with Watered-Down TPC-H Rules

The TPC-H benchmark intentionally tests ad-hoc query processing, which means
that the database system is not allowed to exploit knowledge about the expected
workload. TPC-H originated from the now obsolete TPC-D benchmark, which did
not forbid precomputation. In 1998 this led Oracle to offer 1 million dollars to any-
one who could demonstrate that Microsoft SQL Server 7.0 was not 100× slower
than Oracle when running TPC-D. Of course, no one could, because Oracle imple-
mented materialized views, which turned TPC-D queries into mere O(1) lookups
of the precomputed results, and SQL Server did not. This rendered the TPC-D
benchmark obsolete. In its place, two new benchmarks originated: the now also
obsolete TPC-R benchmark for reporting, where materialized views are allowed,
and the TPC-H, where materialized views are explicitly forbidden. The exact rules
are specified in [145], but basically precomputation is not allowed; only keys, for-
eign keys, and dates may be indexed, and no data structure may involve data from
more than one relation. Furthermore there is an update stream that has to be run in
parallel for TPC-H, which prevents too aggressive indexing. In particular there ex-
ist index structures that are very efficient to read, but nearly impossible to update.

In the following we study how important these rules are for TPC-H performance
and how fast we could be if we watered them down or completely ignored them.
We will see that especially using materialized views, precomputation, and pre-
aggregation makes the TPC-H benchmark meaningless: If we allow these tech-
niques, we can answer any TPC-H query in less than 1 ms, on any scale factor. The
update stream would suffer dramatically, of course, but it is hard to make general
statements about how fast updates could be.

8.4.1 Running Query 1 in <1 ms

We now show how relatively easy it is to bring runtime of Query 1 down to < 1 ms
when watering down the TPC-H rules and that the necessary steps do not even
include extreme techniques like materializing the result set. Query 1 is an aggre-
gation query without any joins (the SQL formulation is shown in Section 8.3.1). As
the query accesses only a single relation, we cannot use join indexes but use other
forms of pre-aggregation.

We start with a straight-forward (but already tuned) implementation of Query 1
that uses a row-store format. Without overflow checking, the runtime for scale
factor 10 is 1077 ms on our evaluation machine.
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The query groups the tuples by returnflag and linestatus, which results in only four
different groups in the result. Thus, we modify our program such that the lineitem
relation is physically partitioned by these two attributes. Note that such a parti-
tioning scheme is explicitly forbidden by the TPC-H rules, but we ignore this in
this section. During query processing, we now have a 1:1 correspondence between
relation partitions and result groups, which greatly simplifies the group-by logic.

While the query spends a lot of time on computing the aggregates, a perf trace
shows that the filter on shipdate is still quite noticeable. To fix that, we modify our
program again, such that the tuples within each lineitem partition are sorted by
shipdate. Now we first perform a binary search to find the last tuple that satisfies
the predicate and then aggregate all tuples within the qualifying range without any
additional checks.

At this point the query is purely computation bound and no checks or partitioning
steps are executed at all. We see that the query performs 5 summations per tuple,
and, in addition, computes two derived values that are used in the aggregation. To
simplify the query further, we materialize these two values as derived columns in
the relation. The query now only loads values and adds them to running sums.

The query now just adds up large columns of data, without any checks or addi-
tional logic. We can speed up this computation by maintaining not only the derived
values themselves, but also the running sums for each attribute. This allows us to
compute the sums for any consecutive range of tuples in O(1) by subtracting the
running sums at the lower and the upper bounds of the range. Accordingly, the
query runtime is now < 1 ms.

Note that this computation is not as outlandish as it might look at a first glance. We
did not simply precompute the query result and, in fact, can now answer Query 1
for any arbitrary range of shipdate values in O(logn). Furthermore, if we had used
block-wise summaries [97] instead of simple running sums, we could have even
achieved this with just a negligible space overhead.

But for benchmarking purposes such an approach is clearly absurd, as we will get
a < 1 ms execution time for (nearly) arbitrary data sizes. This is the reason why
TPC-H, in contrast to its predecessor TPC-D, forbids most forms of precomputa-
tion. TPC-H is intentionally an “ad-hoc” benchmark, which means that the queries
must be executed as if they were unknown beforehand. Therefore, most indexes
(besides primary keys and dates) and all materialization techniques are forbidden.
The example of Query 1 clearly shows that if we water down and violate these
rules, query execution times quickly converge to zero.



170 8 Limits of TPC-H Performance

8.4.2 TPC-H with Precomputation

Dees and Sanders [31] implemented intra-query parallelized hand-written TPC-H
query plans, that use block summaries, inverted indexes for full text searches, and
join indexes. Generating these hard-to update-indexes and summaries is a form of
precomputation and violates the TPC-H rules. Yet, these techniques are interesting,
as they show how fast the TPC-H could be executed in a read-only environment.

Unfortunately the authors could not provide us with the source code that they used
for their experiments, but we re-implemented 2 particularly interesting queries
(Query 13 and Query 17) given the pseudo-codes in the paper. For Query 13 the
pseudo-code needed a minor fix: the paper states that initially a bitvector for the
customer table is created; yet, this should rather be a bitvector on orders. As in the
pseudo-code, our re-implementation constructs a word-level inverted index, which
indexes words that are separated by spaces or other punctuation characters. It is of
note that such an index structure is not generally suited for the evaluation of SQL
like %pattern% predicates, as the search pattern can be a substring of another
word. On a CPU like the one used in [31], our re-implementation of the query runs
in 452 ms on SF10. On the same hardware, it is also a bit slower than our hand-
written implementation that adheres to the TPC-H rules (see Section 8.3); but we
did not take the index structure implementations to the extremes. The original pa-
per states a single-threaded runtime of 103.7 ms on SF10. For Query 17, the pseudo-
code in [31] uses an inverted index to retrieve the list of lineitems for a specific part.
Our re-implementation also uses such an index and achieves a single-threaded run-
time of 8 ms on SF10. The original paper states a single-threaded runtime of 0.9 ms.
The exact reasons for the differences in runtimes for both queries are hard to guess
as the original implementation is unavailable.

8.5 Related Work

The fastest analytical query processing systems today are almost exclusively in-
memory column-stores. MonetDB [92] pioneered the development of main-
memory column stores, and C-Store [135] (commercialized as Vertica) renewed
the interest in column-stores in the early 2000s. For these systems, the classical
iterator model, which worked fine for disk-resident data, soon became a bottle-
neck, as query processing was no longer I/O-bound. Vectorwise [157], which
originated from the MonetDB/X100 project [20], targeted this bottleneck by re-
placing tuple at-a-time with vector at-a-time processing. Similar vectorized exe-
cution models for column-stores are now also integrated into Microsoft SQL Server
(project Apollo) [82], IBM DB2 BLU [122], and the SAP HANA database [37]. In
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recent years, enabled by modern compiler toolkits that largely mitigate the pain
of generating machine code manually, an increasing number of systems, including
HIQUE [74] and HyPer [71, 108], directly translate SQL queries into optimized ma-
chine code that removes the interpretation overhead from query processing. Yet
other systems like DBToaster [4] use compilation for materialized view mainte-
nance.

Most of the aforementioned systems also offer the possibility for intra-query paral-
lelization [84]. Other systems like SharedDB [43] optimize processing of multiple
individual queries in parallel. Yet another trend is to re-unify OLTP and OLAP sys-
tems [71]. In this context, OctopusDB [34] goes even further by investigating how
additionally streaming capabilities can be integrated into a single system.

As we have seen, materialized views can significantly speed up query processing.
Research on materialized views includes topics such as efficient view updating [18]
and the automatic selection of views [3].

The newer TPC-DS benchmark [120] is considerably more complex than TPC-H.
The database consists of multiple snowflake schemas with shared dimension tables
and skewed data, and the benchmark itself consists of a larger query set, including
reporting, ad-hoc, and deep analytics queries.

Several of the techniques presented in this chapter aggressively exploit knowledge
about data denseness and data correlations. This might be acceptable in a data
warehouse setting, but in general it is very brittle, as a single “noisy” tuple can
prevent these optimizations. There is a fine line between useful optimization and
benchmark over-fitting here. An interesting idea to prevent this kind of over-fitting
comes from the maintenance job in TPC-E [144]: Once a minute, a background
task should update a random attribute of a random tuple in a random table to
a random value (within the consistency constraints, of course). As it happens so
rarely, the cost of that update would be negligible, but the tiny data disturbance
would prevent the most extreme techniques presented in this chapter.

8.6 Conclusion and Outlook

In this chapter we have studied the theoretical and practical single-threaded perfor-
mance limits of individual TPC-H queries when adhering to the TPC-H rules. Our
results show that current systems are still quite far away from the lower runtime
bounds that we found, such that there is plenty of room for improvement in data-
base systems research. We have also shown, that if the TPC-H execution rules are
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not followed, and the ad-hoc nature of the benchmark is watered down, arbitrarily
fast query response times can be achieved, e.g. < 1 ms for Query 1.
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Chapter 9

Summary

The past decades have witnessed dramatic changes in the hardware landscape. The
economies of scale have enabled cheaper and larger main memory capacities and
transistor counts in CPUs have grown in accordance with Moore’s law. However,
gaining improved software performance from these developments is no longer a
free lunch. To fully leverage modern hardware, the traditional database system ar-
chitecture needed to be revised. HyPer is a modern hybrid high performance main-
memory database system that is built for modern hardware and aims at fulfilling
the vision of a one size fits all database management system. Using a novel and
unique architecture, HyPer is able to unify the capabilities of modern specialized
transactional and analytical systems in a single system without sacrificing perfor-
mance or standards and reliability guarantees. In addition, HyPer aspires to in-
tegrate beyond relational workloads to overcome the connection gap between the
relational and beyond relational world.

In this thesis we made contributions to the HyPer system and the research area of
main-memory database systems in general by improving the scalability and flex-
ibility of query and transaction processing: In Chapter 2, we proposed a multi-
version concurrency control (MVCC) implementation that is carefully engineered
to accommodate high-performance processing of both, transactions with point ac-
cesses as well as read-heavy transactions and even OLAP scenarios. Together
with our novel serializabiliy validation technique that is independent of the size
of the read set, our MVCC implementation enables a very attractive and efficient
transaction isolation mechanism for main-memory database systems. Chapter 3
introduced Instant Loading, a novel CSV loading approach that enables scalable
data ingestion as well as in-situ query processing at wire speed. Task- and data-
parallelization of every phase of loading allows to fully leverage the performance
of modern multi-core CPUs. Chapter 4 described the development of ScyPer, a hor-
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izontal scale-out of the HyPer main-memory database system, that sustains the su-
perior OLTP throughput of a single HyPer instance while providing elastic OLAP
throughput by provisioning additional servers on-demand. In Chapter 5, we evalu-
ated the impact of modern virtualization environments on modern main-memory
database systems. In Chapter 6, we turned to wimpy hardware and how main-
memory database systems like HyPer can be optimized not only for brawny servers
but also for devices such as smartphones and tablets. Further, the chapter describes
a scheduling approach to get most of the mileage out of heterogeneous CPU archi-
tectures with a single instruction set architecture. In Chapter 7, we proposed an
interpreted vectorized scan subsystem that feeds into just-in-time-compiled query
pipelines to overcome the issue of generating an excessive amount of code for table
scans. Finally, in Chapter 8, we studied the theoretical and practical single-threaded
performance limits of individual TPC-H queries to find out how good current da-
tabase systems are in absolute terms and how much faster they can get.
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