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ABSTRACT

The exploitation of the whole computing power of current
supercomputers is only achieved by few High-Performance
Computing (HPC) applications. We do not expect this issue
to be automatically solved with future hardware. One tech-
nique to achieve excellent system utilization is co-scheduling,
where at least two applications with divers resource require-
ments share the resources of one compute node. Co-sche-
duling enabled by Virtual Machine (VM) migration is able
to improve runtime and energy consumption of HPC ap-
plications. In this paper we investigate the impact of full-
virtualization on the performance of intra-node communi-
cation between VMs for various VM counts. Our analy-
sis reveals that compute-bound applications can achieve up
to 97% of the native performance when executed within
16 VMs while communication intensive operations such as
collectives suffer from increased latencies by a factor up
to 16. The results can be used as decision-making guide-
lines for the scheduling system to find suitable solutions for
the overall system performance.
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1. INTRODUCTION

We notice that common HPC applications are only ca-
pable of exploiting a fraction of the compute power offered
by today’s supercomputers. Although, some highly tuned
applications are able to get close to the systems’s peak per-
formance, most applications are limited by a single resource,
e.g., I/O or memory bandwidth. This characteristic is not
expected to change with upcoming hardware, rather will
the increasing gap between computing power and 1/O per-
formance [8] result in even more applications not being able
to utilize all available resources.

One of the main goals of compute centers is the maximaza-
tion of the overall system utilization as it allows more scien-
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tists to conduct their research. A way to achieve this goal
without manually tuning all applications used at a system,
is co-scheduling (6], i.e., running two or more applications
with divers resource demands in parallel on an overlapping
set of nodes. Co-scheduling may benefit from adaptations
to the schedule during the runtime as jobs come and go,
each exhibiting individual resource demands. Such a dy-
namic schedule can only be realized if it is possible to move
already running processes across nodes of the system. In
previous studies we have investigated different techniques
enabling such migrations and found full-virtualization, e. g.,
VMs based on KVM, to provide a good trade-off between
performance and flexibility in terms of a greater application
range [16].

However, identifying the correct size of a VM |, i.e., the
amount of Virtual CPUs (VCPUs), is non trivial. On the
one hand, large VMs limit the flexibility of the scheduler
as it can only migrate whole VMs from one node to an-
other. Small VMs on the other hand may result in the exe-
cution of multiple VMs with the same application on the
same host system, which slows down communication be-
tween the processes of the application. This slowdown is
due to the fact that processes running natively on the host
or within the same VM can communicate via shared mem-
ory, whereas inter-VM communication is typically handled
via (virtual) network interfaces. In this paper we investi-
gate the impact of full-virtualization on the performance of
intra-host communication. Therefore, we compare the per-
formance of different benchmarks and an example HPC ap-
plication executed natively to their execution in one or more
VMs running on the same host system.

Our results show that the influence of intra-host inter-VM
communication on the applications’ performance is highly
dependent on their characteristics. Compute-intensive bench-
marks achieve up to 97 % of the native performance when
executed within multiple VMs on the same host. However,
communication bound applications are slowed down by up
to 26 % in our studies. From a microbenchmark analysis we
could conclude that especially collective operations would
benefit from a locality-aware communication layer. Here,
the latency was increased by a factor of up to 16.

This paper is structured as follows: The following three
sections give a detailed overview of the hard- and software
setup used for our experiments. presents the per-
formance analysis results of selected benchmarks and appli-

cations. Before concluding the paper (Sect. 7)), we discuss
related work in
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2. HARDWARE

We ran all tests on a two-socket NUMA node equipped
with Intel IvyBridge CPUs (E5-2650 v2) clocked at 2.6 GHz.
Each CPU possesses 8 cores resulting in a total of 16 CPU
cores in the entire system. One CPU core has support for
two hardware thread contexts (HTC, often called Hyper-
threading), i.e., a total of 32 HTCs are provided by the
whole system. An HTC has its own set of registers but
shares the instruction pipeline and both L1 and L2 caches
with the second HTC of the same core. The instruction
pipeline has dedicated hardware for floating point, integer,
and SIMD instructions, which can be co-issued with various
constrains. The L3 cache is shared among all CPU cores of
a CPU.

Our platform supports Intel’s virtualization technologies
VT-x and VT-d [17}|2]. The former extends the ring concept
of the x86-architecture by the so-called non-root execution
mode. This allows for guest Operating Systems (OSs) to run
at Ring 0—the most privileged level which is typically used
for OS kernels—but with certain restrictions. As OSs are
usually written with the assumption of having full control
over the hardware, their execution at a different privilege
level might result in unexpected or faulty behavior. The
non-root execution mode gives a guest OS the impression
of owning the hardware while still allowing the host kernel
to intercept operations that should not be permitted to the
guests. This hardware assisted virtualization provides com-
puting power within VMs close to that of native execution.

However, in contrast to the processor and memory, the
virtualization of I/O devices is still a challenge. Each inter-
action of a guest system with its devices requires 1/O op-
erations. For common hardware such as standard Gigabit
Ethernet Network Interface Cards (NICs) it is possible to
emulate these devices in software. However, this approach
fails for high-performance networks, e.g., InfiniBand (IB),
only reaching about 50 % of the native performance [13].
To overcome these performance penalties, Intel introduced
the VT-d extensions providing guests direct access to the
real hardware. It avoids expensive guest-to-host transitions
every time the guest accesses its devices by granting direct
access to the respective control registers. However, this tech-
nique by itself does not enable virtualized HPC clusters as
one device can only be passed to one guest at a time. Hence,
each VM communicating over IB would require an individ-
ual Host Channel Adapter (HCA).

This problem was identified by the Peripheral Component
Interconnect Special Interest Group (PCI-SIG) proposing
Single Root I/O Virtualization (SR-IOV) as an extension
to the PCle standard [10]. SR-IOV allows for hardware
supported I/O device multiplexing by introducing two PCle
function types: Physical Functions (PFs) and Virtual Func-
tions (VFs). The latter are a pared-down version of the PF
providing all PCle capabilities necessary for data movement.
The compute node used for our evaluation is equipped with
a two-port Mellanox ConnectX-3 IB adapter with support
for SR-IOV. It allows for the creation of up to 16 VFs, i.e.,
the adapter can be attached to 16 VMs at a time.

3. KERNEL-BASED VIRTUAL MACHINE

We used Kernel-based Virtual Machine (KVM) as virtual-
ization solution to perform our evaluation [15|. This hyper-
visor implements full-virtualization for the x86 architecture

based on Intel’s VT-x extension described in the previous
section or AMD’s virtualization extension (AMD-V). A VM
is an ordinary processes from the hypervisor’s point of view
and can be treated like any other process running on the sys-
tem. Similar to real hardware, it can be equipped with mul-
tiple VCPUs which are mapped onto threads of the KVM
process representing the VM.

In contrast to other hypervisors, e. g., Xen (4], KVM only
implements the necessary components for the virtualization
of the CPU and the main memory. Other parts of the com-
puter system have to be emulated in software. Therefore,
KVM is usually deployed in conjunction with the user-space
emulator QEMU |[5].

The virtualization of I/O devices is facilitated by means
of the Intel VT-d extensions and SR-IOV. The former allow
for the pass-through of PCle devices to VMs both prior the
boot time and during the runtime of the VM (hot-plugging).
This is an important feature for VM migration in HPC en-
vironments, as VMs cannot be migrated with an attached
pass-through device, but pass-through devices must be un-
plugged from a VM prior migration. With SR-IOV it is pos-
sible to attach the same physical PCle devices to multiple
VMs at a time. Support for both SR-IOV and hot-plugging
allows for near native IB performance, but also enables the
scheduler to migrate VMs for the optimization of the overall
system utilization.

Modern HPC systems are typically built by using NUMA
systems. Software running on top should be NUMA-aware
for a good exploitation of such architectures, i.e., threads
and processes should be scheduled such that remote mem-
ory access is avoided as far as possible. KVM brings NUMA-
awareness in terms of NUMA topologies that can be defined
for the guests running on top. Therefore, it is possible to
comprise one or more VCPUs in so-called cells which are
recognized as NUMA domain by the guest system. Fur-
thermore, memory policies can be imposed to these cells.
Thereby restrictions to memory placement can be defined
enabling the creation of a complete reflection of the host’s
topology to that of the guest.

4. TEST APPLICATIONS

This section briefly introduces the benchmarks and test
application that have been used for the evaluation of intra-
host inter-VM communication. They have been built with
the Intel compiler and were executed by using Intel MPI.

4.1 Microbenchmarks

For the analysis of key figures assessing the communica-
tion performance of intra-host MPI communication among
multiple VMs, we used both a self-written benchmark and
a selection of the low-level benchmarks from the Intel MPI
Benchmarks (IMB) [1]. The self-written benchmarkﬂ deter-
mines point-to-point latency and bandwidth by exchanging
messages between two processes in a PingPong pattern [1].
From the IMB we use a set of benchmarks for the evaluation
of the performance of MPI collective operations. We select
the following five collective operations:

barrier as it is an indispensable collective operation for the
synchronization of a set of MPI processes.

"https://github.com/RWTH-OS /mpi-benchmarks
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broadcast is a common parallel building block, e. g., used
at the beginning of solver phases, when a dataset must
be send from the master process to all processes of a
job.

allreduce is an operation combining partial results spread
among different MPI processes into a final result, e. g.,
it is used at the end of a solver phase.

allgather only collects the partial results without combin-
ing them.

alltoall is an extension to allgather allowing for the distri-
bution of distinct data to the receiving processes and
typically involves the most communication.

The exact implementation these benchmarks within Intel
MPT is unknown, however these collectives are typically im-
plemented using a communication tree for a reduction of the
required messages. The mapping of the tree onto MPI pro-
cesses and there nodes or VMs (in our case) can influence
the performance of the collective operation.

4.2 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPBs) [3] is a suite of dif-
ferent computing kernels that are commonly used by large-
scale fluid dynamics applications. It offers varying problem
classes suiting different cluster sizes. For our tests we chose
Class C, depicting a reasonable size for a small test system
like the one used for our work.

Originally, the suite contained eight different benchmarks
comprising five computing kernels and three so-called pseudo
applications. From the kernels we chose FT and CG. The
first computes a discrete 3D Fourier Transformation. This
is a communication intensive kernel exhibiting an all-to-all
communication pattern. CG computes the approximation
to the smallest eigenvalue of a large sparse matrix by using
a conjugate gradient method. This benchmark is character-
ized by irregular memory accesses and communication. Fur-
thermore, we evaluated the three pseudo applications BT,
LU, and SP which are basically solvers for equation systems.

As our work considers applications that are partly mi-
grated among nodes in a cluster as a result of co-scheduling,
we used the MPI implementation of the presented kernels.
However, the three pseudo application exist as multi-zone
version 18], as well. These solve the equation systems on
loosely coupled discretization meshes and are intended for
the evaluation of hybrid parallelization approaches. The
OpenMP+MPI implementation solves the individual zones
in parallel in accordance with the shared-memory paradigm
while the exchange of boundary values between these zones
is performed by means of message-passing. Therefore, they
are ideal application benchmarks for our test scenario as
many HPC applications exploit HPC systems by applying
different parallelization approaches at the same time.

4.3 MPIBlast

We use a slightly modified version of MPIBlast 1.6.(E| as a
real world application for our analysis. Using MPI-only, it is
a parallel version of the original BLAST (Basic Local Align-
ment Search Tool) algorithm from computational biology
for the heuristical comparison of local similarities between
genome or protein sequences from different organisms.

Zhttp://mpiblast.org/
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Figure 1: Throughput Overhead

Due to its embarrassingly parallel nature using a nested
master-slave structure, MPIBlast allows for perfect scaling
across tens of thousands of compute cores |7]. The MPI mas-
ter processes hand out new chunks of workload to their slave
processes whenever previous work gets finished. This way,
automatic load balancing is applied. MPIBlast uses a two-
level master-slave approach with one so-called super-master
responsible for the whole application and possibly multiple
masters distributing work packages to slaves. As a result,
MPIBIlast must be always run with at least 3 processes of
which one is the super-master, one is the master, and one
being a slave. We used only one master for all our bench-
marks and communication mostly only happens between the
master and the slave processes. The data structures used in
the different steps of the BLAST search typically fit into
L1 cache, resulting in a low number of cache misses. The
search mostly consists of a series of indirections resolved
from L1 cache hits, allowing for a good overlapping of dif-
ferent searches on the 2 HTCs of one core. Our modified ver-
sion of MPIBlast is available at GitHut’l In contrast to the
original MPIBlast 1.6.0 we removed all sleep() functions
calls that were supposed to prevent busy waiting. On our
test-system, this resulted in underutilization of the CPU.
Removing sleeps increased performance by about a factor
of 2. Furthermore, our release of MPIBlast updated the
Makefiles for the Intel Compiler to utilize inter-procedural
optimization which also resulted in a notable increase in
performance.

S. EVALUATION

We measured the results of our self-written benchmark for
the following three scenarios to understand the performance
penalties when running MPI processes within multiple VMs:

native (SHM) shared memory communication on the host
native (IB) communication using IB on the same host

VM (IB) communication between processes residing in dif-
ferent VMs using IB with SR-IOV

For native (SHM) the latency between two MPI processes
running on the same CPU socket is 0.27ps. This value
drastically increases to 1.37 ps for native (IB). However, for
VM (IB) the overhead of the virtualization layer and SR-IOV

3https://github.com/jbreitbart /mpifast
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Table 1: MPI Barrier (Latency in ps)
Native 1VM 2VMs 4VMs 8VMs 16 VMs
2.05 2.10 8.07 19.44 9.10 13.58

is hardly notable. The additional latency for VM (IB) of
0.02 ps is rather small. These results are similar when mea-
suring the throughput between two MPI processes (cf. .
The maximum bandwidth of VM (IB) is only at around 45 %
of that in native execution.
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5.1 Collectives

To assess the impact of multiple VMs on communication
intensive applications, we investigated a set of collective op-
erations, namely: barrier, allgather, alltoall, allreduce, and
broadcast (cf. [Tab. 1| and [Fig. 4). All benchmarks were
started with 16 MPI processes each pinned to an individual
core. The results present a scalability study over 2, 4, 8, and
16 VMs, i.e., 8, 4, 2, and 1 processes per VM respectively.
Each VM has been equipped with one of the VFs that are
available on our test system. As a result, inter-VM commu-
nication is using IB as transport, whereas ranks running on
the same VM communicate via shared-memory segments. In
all cases a compact pinning of ranks to VMs and cores has
been performed, e.g., in the scenario with 2 VMs Ranks 0
to 7 have been started on one VM while the remaining ranks
resided in the second.

Using more than one VM clearly increases the latency of
the barrier by a factor of around 4. This is due to IB commu-
nication that takes place between some processes. However,
adding more VMs has a moderate influence on the latency
with additional 5.51 ps for 16 VMs running on the same host,
i.e., instead of having a mixture of shared-memory (intra-
VM) and IB (inter-VM) communication, all processes syn-
chronize over IB. The peak of 19.44 ps in the case of 4 VMs
might arise from a suboptimal distribution of ranks to VMs.
The latency in this scenario can be improved to 10.68 s by
using a scatter pinning which. This results in a different
communication scheme as the communication tree is most
probably distributed differently across the VMs. However,
we have to investigate that point in more detail to get a
clearer picture.

The results of the other collective operations (cf.
reveal that their execution within more than one VM of-
ten results in significantly increased latencies. For example

the broadcast operation is throttled by a factor of 1.5 when
the 16 processes are distribted across two VMs compared to
native (SHM) for small messages. This factor increases to
6.3 for the 16-VM case. However, for the 2- and 4-VM case
the latencies converge at least for large messages of 4 MiB.
The Alltoall operation within 16 VMs is throttled by a factor
of 16 for small messages. However, again for larger messages
this discrepancy decreases to a factor of around 4.5.

From the presented microbenchmark analysis it can be
concluded that the execution of a communication bound
MPI job on multiple VMs running on the same host can
impose important performance degradation. This is mostly
true for applications exchanging small-size messages and
should be considered when taking any scheduling decisions.

5.2 Applications

The previously shown microbenchmarks suggest that co-
scheduling using VMs on HPC clusters result in significant
performance penalties if the MPI library does not come
along with efficient intra-host inter-VM communication. In
this section we evaluate the performance hit for the appli-
cations described in

In the first test case, 32 MPIBlast processes run equally
distributed on a different number of VMs. All VMs run
on the same compute node and use InfiniBand as inter-VM
communication channels. shows the performance
differences between the various configurations. The usage
of 0 VMs means that all processes run natively on the host
system communicating over shared-memory segments. As
MPIBIlast is a compute-bound application and the commu-
nication channel does not constitute its bottleneck, the per-
formance differences between the configurations are rather
small.

shows the results of a similar test scenario, in
which the MPI-versions of the NPBs were divided equally
over VMs. Overall, the usage of multiple VMs is not a
performance drawback decreasing the performance of the
pseudo applications by only 1 % to around 3 % for the 16 VM
case related to the 1-VM case. The slower communication
interface between VMs in comparison to native execution is
only clearly noticeable in the more communication intensive
kernels CG and FT.

The next test case is the multi-zone version of the NPB.
They were started on one compute node for native (SHM)
and within multiple VMs on that node for VM (IB), i.e.,
the process count equals the VM count for the latter case.
However, the relationship between processes and threads
changed between every run. shows that the best
performance can be achieved if the benchmark uses more
processes rather than threads. The usage of a message pass-
ing interface reduces the number of side effects such as False
Sharing and contention on synchronization primitives. Fur-
thermore, the memory allocation strategy is simplified. The
processes are bound to a single NUMA node and always al-
locate the memory on its node guaranteeing local memory
accesses. In the case of using one process and 16 threads,
applications have to use NUMA-aware allocation strategies
to achieve best performance [11].

In the case, that the benchmarks are running natively on
the host system, a shared memory region is used for inter-
process communication. If the MPI processes run within
different VMs, a shared memory interface is missing and IB
is used as communication channel for the inter-VM com-
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Figure 3: Overhead when running MPI-only applications across multiple VMs compared to the execution within one VM.

munication. reveals that the performance degra-
dation by using multiple VMs is small. Consequently, the
performance of the multi-zone version of NPB does not de-
pend on small messages (smaller than the cache size), which
clearly is more efficient by using a shared memory inter-

face (cf. [Fig. 1)).

6. RELATED WORK

Overall there has been not much research on intra-host
inter-VM communication. Typically, studies focus either on
the comparison of different virtualization solutions in gen-
eral 7 or they investigate the impacts of I/O virtualiza-
tion on inter-node communication .

Zhang et. al proposed a design of a locality-aware MPI li-
brary . Their implementation extends MVAPICH2 Eﬂ
by a locality detector enabling communication over shared-
memory segments between processes residing in different
VMs on the same host. Focusing on the performance bene-
fits of Inter-VM Shared Memory (IVShmem) over SR-IOV
communication they perform a comprehensive performance
evaluation of inter-VM communication using either of the
two mechanisms.

7. CONCLUSION

This paper explores the applicability of virtualization as
driver for co-scheduling applied to HPC. We estimate the
impact of the VM size on the performance of HPC appli-
cations by conducting scalability studies over different VM
counts but with a fixed amount of processes, i.e., the vary-
ing VM granularity has a direct influence on the ratio be-
tween shared-memory and IB communication. Depending
on the application’s characteristics, a scheduler might decide
to host multiple VMs of the same job on one node without
taking high performance losses.

However, especially the latency of collective operations
suffer from the IB communication channel between VMs.
Therefore, we plan to work on locality-awareness of the MPI
layer. This should not only comprise inter-VM communica-
tion over shared-memory but also adoptions of the commu-
nication channels to dynamic re-schedules that might occur
during runtime.
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