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Abstract. We examine nonlinear periodic evolution inclusions of the subdifferential type
and prove two existence theorems: one for the “non-convex, lower semicontinuous” problem
and the other for the “convex, h-upper semicontinuous” problem. Our method of proof is
based on the theory of nonlinear operators of monotone type and on multi-valued analysis.
We also present three examples from partial and ordinary differential inclusions, illustrating
the applicability of our work.
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1. Introduction

The periodic problem for differential inclusions has been studied primarily under the
assumption that the orientor field (multi-valued vector field) is convex-valued. We
refer to the works of Macki, Nistri and Zecca [16], Haddad and Lasry (8], Pruszko
[19] and the references therein. These papers deal with differential inclusions in RN.
The non-convex periodic problem in RV has been considered recently by De Blasi,
Gorniewicz and Pianigiani [6], Hu, Kandilakis and Papageorgiou [10] and by Hu and
Papageorgiou [11].

The study of the periodic problem for evolution inclusions is lagging behind.
Only the “convex” problem has been investigated using a Nagumo-type tangential
condition. Bader [2] considered semilinear problems and used semigroup theory and
the Hausdorff measure of non-compactness. Hu and Papageorgiou [12] considered
nonlinear problems driven by time-varying maximal monotone coercive operators
defined in the context of an evolution triple and used Garlekin approximations. The
work of Bader [2] extended to evolution inclusions the paper of Priiss [18], while the
work of Hu and Papageorgiou [12] is related to the papers of Vrabie [21] and Hirano
[9]. We should also mention the recent work of Avgerinos and Papageorgiou [1],

R. Bader: Zentrum Math. der Techn. Univ., Arcisstrasse 21, D-80333 Miinchen

N. S. Papageorgiou: Nat. Techn. Univ., Dept. Math., Zografou Campus, Athens 15780,
Greece

bader@appl-math.tu-muenchen.de and npapg@math.ntua.gr

ISSN 0232-2064 / $ 2.50 (© Heldermann Verlag Berlin



964 R. Bader and N. S. Papageorgiou

who considered evolution equations defined in the framework of an evolution triple
and driven by a time-varying pseudomonotone (in general not maximal monotone)
operator.

In this paper we examine both the “convex” and the “non-convex” periodic prob-
lem for nonlinear evolution inclusions of the subdifferential type. Our work here
appears to be the first on nonlinear, non-convex periodic evolution inclusions and
also extends to a multi-valued setting the work of Hirano [9]. Our approach is based
on techniques from the theory of nonlinear operators of monotone type and from
multi-valued analysis.

2. Mathematical background

For easy reference, in this section we present some basic definitions and facts from
nonlinear operator theory and multi-valued analysis, which we shall need in the
sequel. Our main sources are the books {13, 14, 22|.

Let (2, Z) be a measurable space and X a separable Banach space. Throughout
this paper we use the notations

Proy(X) = {A C X : A is non-empty, closed (and convex)}

Pryr(ey(X) = {A C X : A is non-empty, (weakly-) compact (and convex)}.

A multifunction (set-valued function) F : Q — Pf(X) is said to be measurable, if for
each z € X the function

w s d(z, Fw)) = inf {||lz — u|| : v € F(w)}

is Y-measurable. Also, the multifunction F : @ — 2%\ {@} is said to be graph
measurable, if

GrF = {(w,z) € A x X : z € F(w)} € £ x B(X)

with B(X) being the Borel o-field of X. For a multifunction with values in Pf(X),
measurabi}ity implies graph measurability, while the converse is true if ¥ is complete
(i.e. ¥ = ¥ = the universal o-field).

Now let p be a finite measure on £. Given a multifunction F :  — 2%\ {0}
and 1 < p < o0, we define the set

SP = { felP(X): fw) € Fw) p-ae. on Q}

which may be empty. An easy application of a measurable selection theorem shows
that, for a graph measurable function F', the set S% is non-empty if and only if

inf {|jul| : v € F(w)} < p(w) p-a.e. on §2
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with ¢ € L?() 4. Moreover, the set S%. is closed or convex if and only if for p-almost
all w € Q) the set F(w) is closed or convex, respectively. Also, if F': © — Pyukc(X) is
measurable and

|F(w)| = sup {{jull : v € F(w)} < ¢1(w) p-ae. on

with p; € LP() 4+ (1 < p < o0), then S%. C LP(£, X) is non-empty, weakly compact
and convex. The set S% is decomposable in the sense that if (A, f1, f2) € £ x S x S%,
then xafi + xa-f2 € Sp.

Let Y and Z be Hausdorff topological spaces. A multifunction G : ¥ — 22 is
said to be lower semicontinuous, if for every C C Z closed, the set

GH(C)={yeY: Gy cC}

is closed. If Z is a metric space with metric d, then the multifunction G is lower
semicontinuous if and only if for any z € Z the function y — d(z, G(y)) is upper
semicontinuous. Also, if Z is a metric space with metric d on Ps(Z) we can define a
generalized metric, known in the literature as Hausdorff metric, by setting

h(A,B) = max supd(a, B),supd(b,A)| (A, B € P(Z)).
Sa€A beB

If Z is a complete metric space, then so is (Pf(Z), h). A multifunction G : Y — Pf(Z)
is said to be h-continuous, if it is continuous from Y into the metric space (Ps(Z), h).
Also, we set
h*(A, B) = sup d(a, B),
acA
and a multifunction G : Y — 2% \ {0} is said to be h-upper semicontinuous if for all
y € Y the function v — h*(G(v),G(y)) is continuous at y € Y.

Next, let X be a reflexive Banach space and X* its (topological) dual. A map
A: D c X — 2% is said to be monotone, if (x* —y*,x —y) > 0 for all z,y € D
and all z* € A(z),y* € A(y). Here by (-,-) we denote the duality brackets for the
pair (X, X*). If in addition the equality (z* —y*,z —y) = 0 implies z = y, then A is
strictly monotone. The map A is said to be mazimal monotone if (z* —y*,z—y) >0
for all z € D and all z* € A(z) imply that y € D and y* € A(y), i.e. the graph of
A is maximal with respect to inclusion among the graphs of all monotone maps. It
is easy to see that the graph of a maximal monotone map is closed in X x X and
in X, x X*. Here by X,, and X, we denote the spaces X and X*, respectively,
furnished with the weak topology. If X = H is a Hilbert space and H* = H (pivot
space), for every maximal monotone operator A: D C H — 2H and every A > 0, we

define the two well-known operators

Jy= (I +2A)™! (the resolvent of A)
Ay =3I = Jy) (the Yosida approzimation of A).

We have D(Jy) = D(A,) = H for all A > 0. Both operators Jy and A, are single-
valued and have nice properties which are listed below:
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(a) Jy is non-expansive, i.e. [|Jx(z) — JA(@)|l < |z —y|l forall z,y € H.
(b) Ay is monotone and Lipschitz continuous with Lipschitz constant + (hence
A) is maximal monotone).

(c) Ax(z) € A(Jx(z)) forallz € H.

(d) || Ax(2)]] < ||A%x)| for all z € D, where A°(z) is the unique element of
minimal norm in A(z) and Ax(z) — A%(z) as A | O for allz € D.

(¢) D is convex and Jj(z) — proj(z; D) for all z € H where proj(-; D) denotes
the metric projection on the convex set D.

Let ¢ : H > R = RU {+00} be a proper (i.e. the set {x € H : ¢(z) < 400}
is non-empty), convex and lower semicontinuous (i.e. ¢ € [o(H)) function. The
effective domain of ¢ is the set

domy = {z € H: p(z) < +o0}.
The subdifferential of v is the multi-valued operator d¢ : D(0p) C H — 2H defined
by
op(z) = { €H: (u,y—z) <p(y) —p(z)forally e H}
We have D(0¢) C dom and dy is a maximal monotone operator. For A > 0 we

define
¢x(z) = inf [p(y) + sxllz -yl : y € Y]

and call ¢y the Moreau-Yosida approzimation of ¢. We know that

e ) is convex and Fréchet differentiable (hence continuous)
P\ (x) = Opa(z) = (Op)a(z)

o(Ja(z)) < pa(z) <p(z) forall A >0andall z € H
or(r) > p(z)as A | Oforall z € H.

Now return to the more general situation where X is a reflexive Banach space.
A single-valued and everywhere defined operator A : X — X* is said to be demicon-
tinuous if z, —  in X implies A(z,) > A(z) in X*. A monotone demicontinuous
operator is maximal monotone. A map A: D C X — 2% " is said to be coercive if
inf [||z*||. : =* € A(z)] — oo as |jz]| — oo where | - || denotes the norm of X and
| - ||« the norm of X*. A maximal monotone coercive operator is surjective.

An operator A: X — X* is said to be pseudomonotone, if

ZTn > zin X
Azy) ¥ u = A(x)
Tp) — uin X* =
. A(zn),zn) — (A(2), 7).
limsup({A(z,),zn —z) <0

A monotone demicontinuous map is pseudomonotone. The sum of pseudomonotone
maps is still pseudomonotone. Also, a pseudomonotone coercive map is surjective.
Finally, a map A: X — X* is said to be of type (S5)+ if

1
Tp — T

= I, —zin X.
limsup(A(z,),zn — ) <0
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The prototype map of type (S); is a uniformly monotone map A: X — X*, ie. A

satisfies
Y(llz —ylDlz —yll < (A(2) — Aly),z—-y)  (z,y € X)

where ¥ : Ry — R, a strictly monotone, increasing and continuous with ¢(0) = 0
and lim, o ¥(r) = +00. A demicontinuous map of type (S)4 is pseudomonotone.

3. Non-convex problem

Let T = [0,b] and H a separable Hilbert space with inner product (+,+). We study
the multi-valued periodic problem

— z(t) € dp(z(t)) + F(t,z(t)) ae. onT }

1
z(0) = z(b) (1)

where ¢ € To(H) and F : T x H — 27\ {#}. The precise hypotheses on the data of
this problem are the following ones:

H(p) ¢ € To(H) is of compact-type, i.e. the set {x € H : ¢(z) + ||z[? < 0} is
compact for all § > 0 and 0 € 9p(0).

Remark. We know that ¢ is of compact type if and only if for every A > 0
the resolvent Jy of Ay is compact (see [13: p. 412]). Also, the condition 0 € J¢(0)
implies that ¢(0) = infy ¢, i.e. ¢ attains its infimum at z = 0.

H(F), F: T x H — Ps(H) is a multifunction such that the following conditions are
satisfied:
(i) (t,z) — F(t,z) is graph measurable.
(ii) For a.a. t € T, z — F(t,z) is lower semicontinuous.
(iii) For a.a. t € T, all ¢ € H and all v € F(t,z), ||v]| < ait) + ca(t)|z]| with
c1,c2 € LE(T)4.
(iv) For a.a. t € T, all z € D(9y), all w € dp(z) and all v € F(t,z), (w+v,x) >
callzl|? — cq(t) with c3 > 0 and ¢q € L}(T)4.
Definition. A function z € W12(T, H) is said to be a strong solution of problem
(1) if z(t) € D(9y) for all t € T, z(0) = z(b) and there exist u € 53, ,, and
fe S%(,VI(')) such that —&(t) = u(t) + f(t) a.e. on T.
Remark. We know (see, for example, [14: p. 6]) that a function z € W'*(T, H)
is absolutely continuous, hence strongly differentiable almost everywhere on T'.

Consider the vectorial Sobolev space W12(T, H) defined by

per

Whi={zeW"T,H): z(0) =z(b)}.
Since WY2(T,H) Cc C(T, H), the pointwise evaluations at ¢ = 0 and ¢t = b make
sense. Let WL2(T, H)* be the dual of WX2(T, H). Then the triple

per per

(WLA(T,H), LX(T, H), W 2(T, H)*)

per per
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is an evolution triple (see [14: p. 3]) or [22: p. 416]) and by (,-) we denote the duality
brackets for the pair (WL2(T, H), WL(T, H)*). Note that (-, ) ‘W,},;i(T,H)xL?(T,H) is

per

the inner product in the Hilbert space L2(T, H). Also, let j_l'; . L*(T,H) - L*(T, H)
be the Nemitsky operator corresponding to the resolvent operator Ji of the maximal

monotone map 9y, i.e. j% (@)(') =J1 (z(-)) for all z € L*(T, H).
Let
R: C(T,H) — P;(L*(T,H))

be the multi-valued Nemitsky operator corresponding to F, i.e. R(x) = 512?(-,;(-))‘
Proposition 1. If hypotheses H(F); hold, then R is lower semicontinuous.

Proof. By what was said in Section 2, it suffices to show that for every v €
L2(T, H) the function z — d(v, R(z)) is upper semicontinuous from C(T, H) into
R.. To this end we have to prove that for every 8 > 0 the superlevel set

U9)={zeC(T,H): dv, R(z)) > 0}
is closed. Let z, € U(8) (n > 1) and assume that z, — z in C(T, H). Then by

Fatou’s Lemma (hypothesis H(F),/ (i) permits its use) we have

b b
limsup/ d(v(t),F(t,wn(t)))dtS/ limsup d(v(t), F (¢, zn(t)))dt.
0 0

n—oc n—o0

Because F(t,-) is lower semicontinuous for almost all t € T, y — d(v(t), F (t,y)) is
upper semicontinuous. So since x,(t) — z(t) for all t € T" we have

limsup d(v(t), F(t,za(t))) < d(v(t), F(t,z(t)))

n—oc

a.e. on T. Hence

b b
lim sup /O d(v(t), F(t,2a(t)))dt < /0 d(v(), F(t, 2(t)))dt.

n—oo

But we know that

(see [13: p. 183]). Therefore § < d(v, R(z)) and we have proved the closedness of
U(6). So R is lower semicontinuous as claimed by the proposition i
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Note that the values of R are decomposable subsets of L2(T, H). So we can
apply [13: p. 245/Theorem I1.8.7] and obtain a continuous function v : C(T, H ) —
L?(T, H) such that u(z) € R(z) for all z € C(T, H).

Now let

Kn: WLA(T,H) » WRAT, H)*

per

be defined by
(Kn(z),y) = (22,9)) + (Bz,9) + (&' + u(J1(2),9)

for all z,y € WL2(T, H). Here by ((-,-)) we denote the inner product for the Hilbert

per

space L*(T,H), i.e. ((f,9)) = fob (F(t), (t))dt. Also, note that since Wy (T, H) C
C(T,H), from the properties of the resolvent operator (see Section 2) we have

~

Ji(z)(-) = Ji(z()) € C(T,H) for all z € WLA(T,H) and so u(j%(m)) is well
defined.

Proposition 2. If hypotheses H(yp) and H(F); hold, then K, is demicontinuous
and of type (S)+.
Proof. First we show the demicontinuity of K,. To this end let z,, — z in

WL2(T, H). Then !, — 2’ in L?(T, H) and from the non-expansiveness of Jui (-) we

per
have

HJ% (xm(t)) - J% (CIJ(t))“ S Hmm(t) - x(t)”
for allt € T and m > 1 from which

“jﬁ(xm) - j%(m)”c(T,H) < ||73m - xHC(T,II)

follows. But because z,, — x in Wp2(T, H) and WpX(T, H) is embedded contin-
wously in C(T,H), ||zm — z|lc(r,sy — 0 as m — oo, hence Ji(zm) — Ji(z) in
C(T,H) as m — oo. Therefore w(J1(zm)) = w(JL(z)) in L*(T, H) as m — oo. For

every y € Wp.2(T, H) we have

((Lz,,9) = (2, v))
(Rzm,y)) = ((2z,9)) (m — oa).
((z,, + u(j% (Zm)),y)) — (= + u(j% (x)),¥))

—
—

It follows that (K, (z),y) — (Kn(z),y) as m — oo, which proves the demicontinuity
of K,,.

Next we show that K, is of type (S)4+. So suppose that z,, — x in WL2(T, H)

per
and assume limsup,,, o, (Kn(Zm), Zm — ) < 0. We have to show that r,, — z in

WL2(T, H) as m — co. From the definition of the operator K,

per

(Kn(@m), T — ) = (320, T = @) + (32m, Tm — 7))

+ ((I"m + u(j;l; (.’Bm)), ITm — l’)) (2)
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Because Z,, — T in W;éz(T, H), £y 5 zin C(T,H) and so zp,(t) L z(t) in H as

m — oo, for all t € T. Since ¢ is of compact type (hypothesis H(y)), J%(-) is a
compact operator (see [13: p. 412]) and so J%(mm(t)) - Jy (z(¢)) in H as m — oo,
for all t € T. Thus, for each t € T, {JL(Im(t))}m>1 is relatively compact. Also,

we know that =/, = 2’ in L?(T, H) and so {2, }m>1 is uniformly integrable. Hence
given t € T and € > 0 there exists 0 < § = §(¢,€) such that

t+4
/ Il (s)lds <& (m>1).
t

Hence for t € [t,t + §)

”J% (:Cm(f)) - J% (I,,,,(t))” < me(tA) - xm(t)“ < [ ”xfm(s)” ds<e

and we see that {J1 (1:,,1(-))}m>1 is also equicontinuous. By the Ascoli-Arzela theo-
rem it follows that {j 1 (.’L‘m)}m>1 C C(T, H) is relatively compact. Since u is con-
tinuous, we obtain the same conclusion for {u(jl (:zrm))}m>1 C L?(T, H). Moreover,

because zm — = in WL2(T, H), Tm — z in L*(T, H) and so

lim ((w(J1(2m)), Zm — 7)) = 0. (3)

m—Cco

Also, for allm > 1

(&, T — 7)) = /0 L |z (D2t ~ (7)) = — (2, 2)

since Z,,(0) = z,,(b) and so

n}l_lgo((x;n’xm —x)) = _Agnoo((x:nvx))
= ~((=',2)
b g (4)
- [ Gz
=0.

We return to (2), pass to the limit as m — oo and use (3) - (4) above. So
lim sup ((%m;n,:r;n -z')) + ((%a:m,:vm - m))] <0

= limsup ((%(x;n -a'), 2, =)+ (2 (@m — 2),Tm - :L‘))] <0

m—oo *

= limsup 7—1L||:1:£n - 2|2 + %Hmm - :c||§] <0

m—00

= ||#m — zllwrz@a — 0 (M — 0).

Therefore we have proved that K, is of type (S)+ B
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For A > 0let A, : H — H be the Yosida approximation of the maximal monotone
operator A = d¢p. Recall that Ay = Oy, (see Section 2). Let

Ay: L¥T,H) - L*(T,H)

be the Nemitsky operator corresponding to Aj, i.e. Ax(z)() = Ax(z(").

Proposition 3. If hypotheses H(p) and H(F)1 hold, then for n > 1 large K, +

A1 is coercive.

L
n

Proof. Suppose that ||z, ||w1.2(r,#) — 0o as m — oco. We have

<Kn(mm) + A% (mm),$m>

. . 5
= %“mm”%‘/h?(T,H) + (&7, Tm)) + ((A%(xm) +“('];‘; (Zm)), Tm))- ®

Also,
b d )
(@ozn)) = 3 [ Fllan(®IPde =0
0
because z,,(0) = z,,(b). Therefore returning to (5) we can write
. 5 2
(Kn(@m) + A1 (@) ) = Lzl +n || = J0)@m)|2

+ (Az(m) +u(Js (@) Jr (@m)))  (6)
+ ((’U.(j% (mm))axm - j% (xm)))

We know that

Using hypothesis H(F'),/(iv), we get

~

(A (@m) + a1 (@m), J1 (@m))) 2 es]|T1 (@m)][5 = co

for m > 1 with c5,c6 > 0. Also, from hypothesis H(F');/(ii1) we have

~

|((U(J% (xm))amm - j% (.’Em)))| S (C7 + cg

|71 @m)ll ) |zm = Ja@a)ll, (D)
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for m > 1 with ¢7,cg > 0. Using Young’s inequality with € > 0 on the right-hand
side we obtain

|71 (@m)|ly) |2m — T2 (@)l

<ect+ed||1 @m); + Ellom = Jr (@),

(C7 +cs

from which
|(u(J 1 (@), 2m — T (2m)))]
<+ ey enl + & lom - Ty aml ®
follows. Using (7) and (8) in (6), we obtain
(Kn(@m) + AL (Tm), Tm)
> LlzmlBaem + ol = J0) @) (9)

[ @l = Fellem = Ty (el — e

+ 65||JA%_ (xm)”Z - 563

with cg = cg(€) > 0. Choose € > 0 so that cs > ec2. Then based on this choice of
€ > 0 choose ng > 1 large enough so that for n > ng we have n > 2—15 With these

choices, we see from (9) that for n > ng the operator K, + A, is coercive il

Using these auxiliary results we can now prove an existence theorem for problem
(1)

Theorem 4. If hypotheses H(y) and H(F'); hold, then problem (1) has a strong
solution x € WE2(T,RN).

per

Proof. The operator A: is maximal monotone and continuous, hence pseu-
domonotone. Also, from Pro})osition 2 we know that K, is demicontinuous and of
type (S)4+, thus pseudomonotone. The sum of pseudomonotone operators is pseu-
domonotone. Therefore z — (K, + A 1 )(z) is pseudomonotone. From Proposition 3

we know that it is also coercive. Hence it is surjective (see Section 2). So for every
n > 1 we can find z,, € WL2(T, H) such that

per
Kn(zn) + A1 (zn) = 0.

From (9) and the choices of € > 0 and n > 1 made there (see the proof of Proposition
3), we have

TIIHInHW,};Z(T,H) < M, for some M; >0 and all n > ng.

Also, as before, from the definition of the Yosida approximation, we have
((Ax(2n) + u(J1(2n)), Tn))
> es)|J1 (za)[|5 + | (T = 1) ()3 (10)
|j% (x")llz) ”xn - j%(x")Hz —C

- (67 +C
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for some ¢g > 0. Let 3 > 1 be such that c;;(%)2 > Eﬁﬂ Then

ﬁ”(I - j%)(mn)Hz <lzallz = m lznllz — “j%(xn)”ﬂ < lzall2

and so .
(B = Dlzallz < || T2 (2n)]],-

Because 0 € 9¢(0), JA(0) = 0 and so ||j%(:rn)||2 < ||znll2- From (10) we obtain

— 2 A
> ¢3(52) llzal3 = Gllzalla — S 171 (@n)ll2llZallz = co i~
—1\2 .
> ¢3(42) I} - S lzall} — Gllenllz - co
—13\2
= (e3(%54)" - @) llzall3 - Zlzallz = co.

On the other hand, if 8||(I — j%)(xn)Hz > ||znll2, then since ||( — j%)(:z:n)H2 <
2||zn|l2, from (10) we have

((A;ll-(xn) + u(j% (xn))vxn)) 2 (g%' - 208)”3311”% — 2cr7{|znl2 — co- (12)

From (11) and (12) we see that, for n > ng,

(AL

(€n) + u(J1(2n)),2n)) 2 croll@al’3 — c11
for some c1g,c¢11 > 0. Thus for n > ng

0= <Kn(-’rn) + A%(zn)awn>
> (A1 (zn) + u(J1(20)), 20))

> c1o|znll? — 11

Thus {2,}n>1 C L3(T, H) is bounded. From this and the fact that ||Ji(z,)||2 <
|zn]l2 (n > 1) we deduce that {jl(xn)}n>1 C L*(T, H) is bounded. From this, the
fact that u(J1 (zn)) € R(jl(xn)) and hypothesis H(F);/(iit) it follows that

{u(j% (:zcn))}nZl C LY(T,H) is bounded.

Note that, since z,, € WA2(T,H) and A’ () is Lipschitz continuous, A1 (z.) €
WL2(T, H). Because K,(z,) + A1 (z,) = 0 (n > 1), by tacking duality brackets
with fil(xn) we obtain

0= <Kn(a:n),fi%(zn)> + HA%(mn)”;
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and so A
0= (3% &Ag(an))) + (hom Ay (o) .
+ ((=, +u(J;(:z:n ), AL (:cn))) ||A1 (z)|2.
Recall that An is monotone, and because 0 € dp(0) we have A, ( )=0. So
0 < ((72n, Ay (2n)))- (14)

Also, for alln > 1

b
(3 $A45(@)) = [ (Reh(t), $45 (@n(e)at.
0

We know that A% is Lipschitz continuous, and so by the generalized Rademacher
theorem (see, for example, [5: p. 121]) it is Gateaux differentiable at every z € H\ D,
with D being a Haar-null subset of H. Then, employing the chain rule of Marcus
and Mizel [17],

(e, &4 (za(1)) = & (", A (a(t))) = (2", & (@n(0)74 (1)

for all z* € H and all t € T'\ N, (z*) with [N,(z*)| = 0, where | - | is the Lebesgue
measure on T. Let {2}, }m>1 be dense in H and set N, = Uy>1 Ny, (2},). Evidently,
|INn| =0 and for t € T\ N, and z* € H we have

(2, $AL(@n() = £ (3", AL (2a(1)) = (2", AL (2a(1))7,(1))

and so
4A% (z,(t)) = AL (zo(t))z,,(t) ae. on T.

Therefore

R b
(e # A3 @) = [ (Ren(e) Ay anlo)at
b
- [ Gano 4y epman)ae

Exploiting the monotonicity of A 1 we can easily check that

(72n(t), AL(za(t))z, (1) 20 ae onT.

So we deduce R
0< (R £ 4y (2)). (15)
Finally,
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(for the last two equalities see (13: p. 357]) and recall that z,(0) = z.(b)). Usmg
(14) - (16) in (13) we obtain

1As(a)lf; < lu(F1@a))]|, s ()],

We already know that {u(J 1 (2n))},>; C L*(T,H) is bounded. Therefore the se-
quence {/il(:x:,.)}n>1 C L*(T, H) is bounded.

For every n > 1, z, € (Kn + A%)'I(O) From Proposition 2 we know that
Ko+ A 1 is coercive. Therefore {zn}n>1 C W,A(T, H) is bounded. By passing to
a subsequence if necessary, we may assume that z,, — z in WoA(T, H). Arguing as
in the proof of Proposition 2, we obtain that {j_}‘_ (:l:,.)}"21 C L*(T, H) is relatively
compact and so we may asume that jﬁ' (zn) = y in L?(T, H). Recall that A%(zn) =
n(I — f_k)(a:,,) and {/i_l_(x,.)}'o1 C L%(T,H) is bounded. So ||zn — j_'x',(:::,.)H2 =0
asn — 0o, hence z, =y in L*(T,H). Also, we may assume that /il(:cn) B
in L}(T, H). i

Let ®: L*(T,H) = R = RU {00} be defined by

a(y) = { Jo pv@ét it pv()) € 11(T)
otherwise.
We know that & € To(L*(T, H)) and A1 (za) = 8% 1(zn) € 8%(J1(2n)) (see [13: p.
349]). The subdifferential 8% ia a maximal monotone operator in the Hilbert space
L*(T,H) and Jy(za) = < in L*(T, H) and A1(za) = v in L*(T, H). Recalling that

Gr 09 is closed in L3(T,H) x L?(T, H)w, v € 3%(z) and so v(t) € p(z(t)) a.e. on
T.

Also, since {Tn}n>1 C WRHT, H)is bounded, Lz,, 12! — 0in L*(T, H). Recall
that for every z € L(T,H) and all n > 1

(225, 2) + (320, 2)) + (20 + u(F1(2n)), 2)) + ((A1(20),2)) = 0. (17)

Passing to the limit as n — oo and since u(J1(za)) = u(z) in L*(T, H) (because u
1s continuous) we obtain

(=" +u(2),2)) +((v,2)) = 0

— z'+u(z)+v=0

= —1'(t) € dp(z(t)) + F(t,z(t)) ae. onT
z(0) = z(b)

because u(z) € R(z). This proves that z € W;CE(T, H) is a strong solution of problem
(1n
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4. Convex problem

In this section we prove an existence theorem for the “convex” version of problem
(1). Our hypothesis on the orientor field F(t,z) is the following:

H(F); F: T x H - Ps(H) is a multifunction such that the following conditions
are satisfied:

(i) (t,z) — F(t,z) is measurable.

(ii) For almost all t € T, z — F(t,z) is h-upper semicontinuous.

(iii) For almost all t € T, all z € H and all v € F(t,z), ||v|| < a1(t) + c2(t)||z||
with Cc1,C2 € LZ(T)+

(iv) For almost all t € T, all z € H and all v € F(t,z), (v,z) > cs||z||> — ca(t)
with ¢c3 >0 and c4 € LI(T)+

(v) There exists r > 0 such that, for almost all ¢t € T, all z € H with ||z|]| = r
and all v € F(¢,z), (v,z) > 0.

Remark. If, for example, in hypothesis H(F);/(tv) above ¢4 € L*(T)4, then
hypothesis H(F'),;/(v) follows from hypothesis H(F), /(iv).

Theorem 5. If hypotheses H(p) and H(F); hold, then the set of strong solutions
of problem (1) is non-empty and compact in C(T, H).

Proof. Let r > 0 be as in hypothesis H(F');/(v) and let p, : H — H denote
the r-radial retraction on H, i.e.

= {7 Sl
priZ) = fr il >

Denote by F; the modification of F' given by
Fy: T x H— Ps(H), Fi(t,z) = F(t,p(2)).
So

e (t,z) — Fi(t, ) is measurable
e fora.a. t € T, z — F\(t,z) is h-upper semicontinuous
eforaa t€T,allze Handallve Fi(t,z), ||v]| < c(t) with c € L¥(T)4.

Now consider the periodic evolution inclusion

— 2(t) € Op(z(t)) + (2(t) — pr(z(t)) + Fi(t,2(t)) ae onT } (18)
z(0) = z(b) ' ==

Suppose we were able to obtain a strong solution z € Wle’2r r g of it. Then we claim

that ||z|lc(r,gy < r. Suppose that this is not the case. Then |z(t)]| > r for all
t € (8,7) and |lz(B)|l = [|z(7)|| = r. We know that

—z(t) =v(t)+h(t) ae onT
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with v € S§¢(=(~)) and

h(t) = (z(t) — p-(z(t)) + f() ae.onT (19)
where f € S% .y Since 0 € 8p(0), (v(t),z(t)) > 0 a.e. on T. So

(2(1),z(t)) + (R(t),z()) <0 ae. on T
and thus

14)z(t))* + (h(t),z(t)) <0 ae. onT.
Using (19) we see that, for almost all t € [8, 4],

(h(8),2(8)) = @I = rlla(t)]l + QX (1), p, (2(1)))
= 0< (h(t),z(t)) ae. on[8,1]
(hypothesis H(F)2/(v), and recall that r < ||z(t)]| on (8, 7))
= 14)z(t)|> <0 ae. on (8,7)

= llzI* < l=(B).

The last relation is a contradiction. So every strong solution z € WoA(T, H) of

problem (18) satisfies ||z||c(r, ) < r and it is obvious that every solution of problem
(18) is indeed a solution of problem (1).

Hence, in the sequel we will seek for strong solutions of problem (18). To this end
we invoke [13: p. 48/Lemma 3.1] (see also (7]) and we can find a decreasing sequence
of multifunctions FT* : T x H —+ Ps.(H) such that:

(a) For all z € H, t — FP(¢, ) is measurable.

(b) For a.e. t € T, z — FP(t,z) is locally h-Lipschitz.
(c)Foraa. te€ T, allz € H and all v € F*(t, z), ||v]| < c(t).
(d) Fora.a. t € T and all z € H, F(¢,z) LA Fi(t,z) as n — oo.

Consider the following approximation to problem (18):

— &(t) € Bp(z(t)) + (z(t) — pr(z(t)) + FI'(t,z(t)) ae. on T } (20)
z(0) = z(b) '

Note that for almost allt € Tand all z € H
F'(t,z) C Fi(t,z) +2¢(t)B1  where By ={z € H: ||z|| < 1}.

Soif v € F'(t,z), then v = & + 2¢(t)e with © € Fi(t,z) and e € B,. Now suppose
|z|| < r. Then

(v,z) = (8 + 2¢(t)e, 7)
2 (9, 2) — 2¢(t)||<|
2 csllell? ~ ea(t) — 2¢(t)ll=]|
2 esllel|? — 2c(t)r — cq(?)
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provided (t,z) € T x H is such that hypothesis H(F);/(iv) holds. Now if ||z > r,
then :
((z = pr(2)) + v, 2) = |l2||* = rllz|| + (5 + 2c(t)e, z)
> lall? = rllzll — 2e(t) el
2
> Hlall? = 1(r + 26(t))
where we have used hypothesis H(F),/(v). From these observations and the fact that
(w,z) > 0 for all w € Ayp(z) (since 0 € Fp(0)) it follows that there exists &3 > 0 and
¢4 € L'(T)4 such that the mapping (t,z) = = — p.(z) + F*(t, z) satisfies hypothesis
H(F) /(i)
We are now in a position to apply Theorem 4 and we obtain a strong solution
€ W)A(T, H) of problem (20) for every n > 1. We have

—Z,a(t) = va(t) + (x,.(t) +p,-(.’tn(t)) + fa(t) ae.on T }
z,(0) = z,(d)

with v, € Sgw(zn(.)) and f, € S%.l,.(.,z"(,)). Taking the inner product with z,(t), we
obtain

122 (DI + (vn(t), 2n(t)) + (zn(t) + Pr(2a(t)), £a(t)) + (fa(t), 2a(t)) = 0
a.e. on T. From [13: p. 357] we know that
(va(t), za(t)) = %cp(x,.(t)) a.e. on T.
Therefore
[Za®)I? + Lo(za(t)) + (2a(t) + Pr(za(t)), 2a(t)) + (fa(t),2n(t)) =0ae. on T
b b
= lnll = [ (rlontin)dt = [ (falt)za)et

(since zn(0) = zn(b) and ¢(za(0)) = ¢(za(b)))
= |lzall2 < Vbr + |icll2 = M.
Then foralln > 1and all s,t € T withs <t

lza(t) - za(s)]l < / lén(r)ldr < Myvi—s

from which there follows that {zn}n>1 C C(T, H) is equicontinuous.

Also, let {S(t)}teT be the nonlinear semigroup of contractions generated by the
maximal monotone operator dp. From [13: p. 408] we know that, for alln > 1,t €
[0,b) and A > 0 with t + A < b,

| Ia(2a (1)) = za(2)]
A
< i./o ”S('r)z,,(t) - z,,(t)“dr

A A
<% /0 ||S(T):c,,(t) —za(t+ r)||dr + %/; ”a:,,(t +7) _i"(i)“i‘ri
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From [13: p. 408] we also have

t+r
|S(7)zn(t) — za(t + T)“ < /t c(s)ds.

Therefore exploiting also the equicontinuity of {z}n>1, we see that there exists 0,
a non-decreasing and continuous function on T such that 0¢(0) =0 and

173(@a(®) = za(®)]] < $20:() =40(3) =0 (AL0)

from which

sup [Ir(@a () —2a(®)]| =0 (A ]0)

follows.

Also, if t = b, then

[73(2a(8)) = za(B)]| = [|72(zn(0)) = zA(0}|

and the above argument is still valid. Because J) is compact (since ¢ is of compact
type), it follows that, for all t € T, {K(tj}">1 is compact in H. So by the Arzela-
Ascoli theorem {zn}n>1 C C(T, H) is relatively compact. Thus we may assume that
zn — « in C(T, H). Evidently, z € WLX(T, H) and 2, 5 zin L*(T, H). Also, there
exists f € L?(T,H) such that f, = f in L*(T,H). From [13: p. 694/Proposition
vii.3.9] and the properties of the sequence {F*},>; we have

f(t) € convw- limsup Fy'(t,z,(t)) C Fi(t,z(t)) a.e. onT

n—oo

and thus f € S%‘l(',z('))‘ Since

~Zn — (2n + pr(Tn)) — fn € 0P(24) (n21)

we have

& - (2 4+ pr(z)) — f € 38(z)

and so z € W,2(T, H) is a strong solution of problem (18). As already observed it
follows that z is a strong solution of problem (1). Finally, from the above argument
it is clear that the set of solutions of problem (1) is compact in C(T,H)
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5. Examples
In this section we present three examples illustrating the applicability of our work.

(a) We start with a nonlinear parabolic variational inequality with discontinuous
forcing term. So let Z C R" be a bounded domain with C'-boundary I'. We consider
the parabolic variational inequality

oz . p-2
5 div(]|Dz(2)||”~2Dz(z) + B(z(t,2)) 3 f(t,2,z(t,z)) } (21)

z|lrxr =0, 2(0,z) = z(b,z) a.e. on Z

where 2 < p < oo. The right-hand side term f(¢,z,z) is discontinuous in z € R.
So following Chang [4], to obtain an existence theorem of problem (21) we pass to a
multi-valued forcing term by, roughly speaking, filling in the jumps at the disconti-
nuity points of f(¢,z,:). To this end we introduce

fi(t,z,z) = liminf f(¢, z,2')
z'—z
fa(t,z,z) = limsup f(t,z,2').
z'—z
Then instead of (21) we consider the prob
0 . -
5 — div(IDa(2)|P~2Dx(z) + Bz (t, 2))
- [fl(t,z,z:(t,z)), f2(taz$z(taz))] 30 (22)
z|rxr =0, z(0,2) = z(b,z) a.e. on Z
with 2 < p < co. We solve this new problem. The hypotheses of the data are the
following ones:
H(B): B: R — 2R is a maximal monotone map with 0 € 8(0) (hence 8 = d; with
j € To(R)).

H(f): f: T x Z xR — R is a Borel measurable function such that |f(t,z,z)| <
ai(t, 2) + ca(t, 2)|z| a.e. on T x Z with ¢y,¢; € L¥T x 2)4, f1,f, are
both jointly measurable and, for almost all (t,z) € T x Z and all z € R,
f(t,z,z)z 2> c3(z)|z]* — ca(t, 2) with c3 € L°(Z) and ¢4 € L=(T x Z).

Let H = L?(Z) and
ote) = { HIDel + 3N it € W50 € 1'2)

+o0 otherwise.
Evidently, ¢ € To(H) (see [20: p. 194]) and dp(z) = —div(|| Dz||P~2Dz) + S30))

(see [20: p. 195]). Note that 0 € dp(0) and by virtue of the Sobolev embedding
theorem it is of compact type. Also, set

-F(t,z) = { —heH: fi(t,z,z(2)) < h(2) < fa(t,2,2(2)) a.e. on Z}.

Using hypotheses H(f),, we can easily check that hypothesis H(F); holds. Now
rewrite (22) in the equivalent abstract evolution inclusion form (1) and apply Theo-
rem 5 to deduce
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Proposition 6. If hypotheses H(B): and H(f): hold, then problem (22) has a
solution z € C(T,L*(Z)) such that 3% € L*(T x 2).

(b) We consider a semilinear parabolic control system with a priori feedback and
non-homogeneous, multi-valued Neumann boundary conditions. So Z C R¥ is as
before and, for z € WH2(Z,RV), Lz = (Azi)_, with & = (2x)}_,. We consider the
problem

Oz

i Lz(t,z) = f(t,z,2(t,2),u(t, z))
z|lrxr =0, z(0,2) = z(b,z) a.e. on Z
u(t,z) € U(t,2z,z(t,z)) ae. on T x Z
The hypotheses on the data are the following ones:
H(B)2 B = 0j with j € To(RY) and j(0) = infg~ j > 0.
H(f); f: TxZ xRN xR™ — R is a function such that the following conditions
are satisfied:
(i) For all (z,u) € R x R™, (¢,2) — f(¢,2,z,u) is measurable.
(ii) For all (¢t,2) € T x Z, (z,u) — f(¢,z,z,u) is continuous.
(iii) For all » > O there exist c1,,car € L}(T x Z) such that ||f(t,2,z,u)|| <
c1r(t, 2) + cor(t, 2)||z)| for a.a. (¢,2) €T x Z,allz € Rand all ||u|| < r.
(iv) For a.a. (t,2) € Tx Z, all € RY and all v € R™ with |Ju|| < r,
(f(t,z,2,u),2)gn > csllzll® — ca(t, z) with c3 > 0 and ¢4 € L(T x 2).
H(U) U: T x Z x RN — P(R™) is measurable, for almost all (¢,z) € T x Z,

U(t, z,-) is lower semicontinuous and, for a.a. (t,2) € T x Z, all z € RY and
allu e U(t, 2,z), ||ul| £ M.

Let H = L*(Z,R") and let ¢ : H - R = RU {400} be defined by
o(z) = { pIDzll? + fr j(a(2))do if = € WH(Z,RY), j(a()) € LX(T)

+00 otherwise.

(23)

From [3: p. 63] we know that ¢ € T'o(H) and 8¢(z) = —Lz with domain

D(0yp) = {:c e W2i(Z,RV): _g-f—z € B(z(z)) a.e. on P}.
Set f(t,z,z) = f(t,2,z,U(t,z,z)) and F(t,z) = S2 for all (t,z) € T x H.

f(tr"z('))
Using hypotheses H(f); and H(U) it is routine to check that hypotheses H(F'),

hold. So we can apply Theorem 4 and deduce
Proposition 7. If hypotheses H(B)2, H(f)2 and H(U) hold, then problem (23)
has a solution z € C(T, L*(2,RN)) with % € L*(T x Z,RV).

(¢) Our formulation also incorporates differential veriational inclusions

~ z(t) € Nk(z(t)) + F(t,z(t)) a.e.onT }

2(0) = z(b) (24)
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Herein Nk(z) is the normal cone to K at z € K, with K € Ps(R"). Problems like

(24) arise in theoretical mechanics and economics (see [14]). In fact, (24) is equivalent
to the projected system ’

— &(t) € proj( — F(t,2(t)); Tk(a(t))) ae. on T} . (25)

2(0) = z(b)

Here Tk(z) is the tangent cone to K at z. We know Nk (z)~ = Tk(z). Inclusions
like (25) arise in the study of systems with constraints (see, for example, [15]). The
hypotheses on F(t,z) are:

H(F); F: T x RY — P(R") is a multifunction such that the following conditions
are satisfied:
(i) (t,z) — F(t,z) is graph measurable.
(it) For a.a. t € T, z — F(t,z) is lower semicontinuous.

(iii) For a.a. t € T, all z € RV and all v € F(¢,z), ||[v]| < c1(t) + c2(t)||z]| with
Cc1,C2 € L2(T)+

(iv) Foraa. t€ T,allz € RV, allw € Ng(z) and all v € F(t,z), (w+v,z)gy >
cal|z]|? — ca(t) with c3 > 0 and ¢4 € L}(T)4.

Using Theorem 4 with

_ {0 ifze K
p(z) = bk(z) = {+oo otherwise

we obtain

Proposition 8. If hypotheses H(F); hold and K C RY is non-empty, closed

conver with 0 € K, then problem (24) (equivalently problem (25)) has a solution
z € WHY(T,RM).

In particular, if K = {z eRN:0<z< {} with £ € R_I:,’, we obtain

— &(t) € F(t,z(t)) a.e. on {t € T: 0 < z(t) < ¢}

— #(t) € F(t,z(t)) —RY ae. on {teT: z(t) =0}
— #(t) € F(t,z(t)) + RY ae on {teT: z(t) = b}
z € WH(T,RVN), 2(0) = z(b)
0<z(t)<tforallteT
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